26.07.2013 Views

download whole issue - Tbiweb.org

download whole issue - Tbiweb.org

download whole issue - Tbiweb.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PRSRT STD<br />

U.S. Postage PAID<br />

San Ramon, CA<br />

Permit No. 174


Our Line-up of<br />

Cell Culture Solutions<br />

Just Keeps Growing<br />

Now that Upstate ®, Chemicon and Linco are part of<br />

Millipore Corporation, you have one source for stem<br />

cells, sterile filtration devices, water systems and<br />

many of the other products you need for cell culture.<br />

• The broadest selection of cell culture inserts and plates including MilliCell ® single-well inserts<br />

(hanging and standing), 24-well and 96-well insert plates<br />

• The widest selection of vacuum and pressure-driven devices for sterile filtration, including<br />

Stericup, Steritop, Sterifl ip and Millex Filter Units<br />

• Mouse embryonic stem cells from a variety of genetic backgrounds<br />

• The Milli-Q ® Advantage Ultrapure Water System with customizable delivery options<br />

• Media components and formulations including ESGRO ® Complete Medium<br />

• More than 10,000 purified primary and secondary antibodies<br />

Greater Selection. Greater Convenience.<br />

Visit www.millipore.com for more information on our cell culture solutions.<br />

Copyright © 2006 Millipore Corporation. Millipore, Millicell, Milli-Q and ESGRO are registered trademarks of Millipore Corporation. Stericup, Steritop,<br />

Sterifl ip and Millex are trademarks of Millipore Corporation. Upstate is an affi liated company of Millipore Corporation. Printed in USA 07/06 06-289


F a l l<br />

3 - 2 0 0 7<br />

Trends In<br />

Bio/Pharmaceutical<br />

Industry<br />

Table of Content<br />

Letter from Editor Leping Li /2<br />

Biopharma News<br />

Digest<br />

Drug Discovery &<br />

Development<br />

Triumphal return of “haigui”: IPo of Wuxi PharmaTech in us /3<br />

Leping Li<br />

commenTary<br />

The Keys to Ge li and Wuxi PharmaTech’s success /6<br />

Guoliang Yu<br />

“made-in-china”: Fda approved First Generic drug from china<br />

under the yallow skin: the First asian Genome completed /8<br />

IP Law ready for Primetime in us? an overview of the regulatory and<br />

Patent environment for Follow-on Biologics / 0<br />

Y. Philip Zhang<br />

关于知识产权促进医药创新的政策思考 / 7<br />

周和平<br />

2006年中国中药资源研究与学科建设进展 /23<br />

段金廒,吕洁丽,宿树兰, 周荣汉<br />

label free Technology for drug research /34<br />

Ye Fang<br />

development of hepatitis B Therapeutic Vaccine /40<br />

Lizhen He<br />

Conference Reports Tianjin Bioeco conference /46<br />

Job Market /48<br />

Sci-tech Park nanjing high-Tech Zone /26<br />

Advertisement Wuzhong Pharma Park /39<br />

Biorad laboratories<br />

millipore corporation /50<br />

morrison and Foerster /22<br />

cisBio / 6<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007


Trends in Bio/Pharmaceutical Industry<br />

Editor Board of<br />

Trend in<br />

Bio/Pharmaceutical<br />

Industry<br />

Editor in Chief<br />

John Wang<br />

Novartis, USA<br />

Board of Scientlfic Editors<br />

Feng Gen-sheng<br />

Burnham Inst.<br />

USA<br />

han Jun<br />

Novartis, USA<br />

li Bin<br />

Chempartner, China<br />

li hui<br />

Pfizer, USA<br />

li leping<br />

Amgen, USA<br />

liu chuan<br />

J&J, USA<br />

mo chengjun<br />

Medimmune, USA<br />

shi li<br />

Merck, USA<br />

Wang deqian<br />

Bayer, USA<br />

Wei yingfei<br />

Elixirin,USA<br />

Wu Jinzi<br />

Ambrilia, Canada<br />

Wu ruifang<br />

CJND, China<br />

yang dajun<br />

Ascera, USA<br />

yang Pei<br />

Sunesis, USA<br />

yang naibo<br />

MDS, USA<br />

yu Guoliang<br />

Epitomics, USA<br />

Art Director<br />

li Xiaojun<br />

CA State, USA<br />

TBI online<br />

www.cabsweb.<strong>org</strong><br />

Contact us:<br />

TBI@CABSweb.<strong>org</strong><br />

2 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

Letter from Editor<br />

Dear Readers of TBI,<br />

As you have come to expect, our journal continues to<br />

bring useful information covering a broad range of<br />

topics in biopharmaceutical fields with a strong favor<br />

of bridging the information flow between the United<br />

States and China. With a good mix of news digest and<br />

commentary and review articles, I hope you will find<br />

this <strong>issue</strong> of particular interest to you.<br />

The biopharmaceutical fields continue to be very<br />

dynamic and fast moving. A lot have happened over<br />

the past a few months. One of the significant developments<br />

was the successful initial public offering of<br />

Wuxi PharmaTech (ticker symbol: WX). The astonishing<br />

development of the company was briefly recapped<br />

in the article which I have opportunity to provide. I find it particularly refreshing in<br />

reading the commentary by Guo-Liang Yu, in which he gives an in-depth analysis of the<br />

factors that might have contributed to the impressive growth of the business and the<br />

successful debut of Wuxi PharmaTech at the New York Stock Exchange. News Commentary<br />

is a Column we would like to incorporate more frequently into the future <strong>issue</strong>s.<br />

Another interesting challenge we often encounter in the rapid changing landscape of the<br />

biomedical and biopharmaceutical fields is the new terminologies and vocabularies. The<br />

need to communicate accurately in both English and Chinese, has never been greater. In<br />

this <strong>issue</strong> we have introduced a testing case, called “Say it in Chinese”. Please let us hear<br />

your input on how we can make it more useful and have a broader coverage.<br />

Intellectual property (IP) is the life line of a biopharmaceutical business. This topic is<br />

well represented in this <strong>issue</strong>. A timely discussion concerning follow-on biologics, or<br />

biosimilars, is given by Phillip Zhang. The article by Heping Zhou deals with the relationship<br />

between IP protection and innovation. He also expresses his views on how policy<br />

setting, under the circumstances that are most relevant to the Chinese pharmaceutical<br />

business, can allow for adequate IP protection while stimulating, rather than hindering,<br />

creativity and innovation.<br />

We are fortunate to have several informative review papers covering a variety of research<br />

topics in this <strong>issue</strong>. The paper co-authored by Professor Duan et al focuses on Traditional<br />

Chinese Medicine. In addition to providing a survey on the resource distribution,<br />

cultivation and production of herb medicine, the status of natural product chemistry,<br />

phytochemistry research in conjunction with management of the medicinal herbs is assessed.<br />

Lizhen He gives a detailed account on the different approaches and the challenges<br />

in the development of HBV therapeutic vaccines. Ye Fang, an expert on the technology<br />

of label-free optical biosensors, introduces to us the powerful new tool and its application<br />

in both biochemical and cell-based assays at many stages of the drug discovery<br />

process.<br />

Last but not least, writing this letter gives me an opportunity to thank all of you for your<br />

efforts and supports to the TBI journal by contributing articles and being loyal readers.<br />

I would also like to take this time to thank the Executive Council members of CABS for<br />

choosing me to serve as the next CABS President. Together, we will be successful.<br />

Truly Yours,<br />

Leping Li


BIOPHARMA NEWS DIGEST<br />

Triumphal Return of “Haigui”:<br />

IPO of Wuxi PharmaTech in US<br />

The spectacular initial public offering (IPO) of WuXi PharmaTech<br />

(Cayman) Inc. at the New York Stock Exchange<br />

(NYSE) on August 9, 2007 has been the topic of hot discussions<br />

in both the pharmaceutical and the financial worlds.<br />

The successful IPO was another major milestone in the still<br />

developing story of the company. Wuxi PharmaTech is no<br />

stranger to our readers, as its story was created by one of our<br />

own and we have had close associations through activities<br />

<strong>org</strong>anized by our CABS <strong>org</strong>anization and through business<br />

relation at the <strong>org</strong>anizations we are serving, it is worthy of<br />

taking another close look at the astonishing story at this<br />

juncture.<br />

Wuxi PharmaTech was founded in December 2000 in<br />

Shanghai, China, by Ge Li and his business partners. Ge Li,<br />

who has been serving as Chairman of the Board and Chief<br />

Executive Officer, graduated from Peking University and<br />

obtained his Ph.D. in <strong>org</strong>anic chemistry from Columbia<br />

University. He was one of the founding scientists of Pharmacopeia,<br />

Inc. one of world's pioneering companies in the<br />

field of combinatorial chemistry based in Princeton, New<br />

Jersey. Dr. Li returned to China after spending twelve years in<br />

the United States and established Wuxi PharmaTech., initially<br />

focusing on producing libraries of drug-like compounds<br />

for screening against various biological targets and building<br />

blocks that were attractive to pharmaceutical companies<br />

to generate targeted compound libraries of them own. The<br />

company’s business continues evolving based on the changing<br />

business demands and the building up of infrastructure<br />

and capacity. But at all stages of the company’s growth, Dr.<br />

Li paid special attention to quality and reputation by assembling<br />

a high-caliber and dedicated management & scientific<br />

team that is well-versed in western techniques and styles. One<br />

notable example was the recruitment of Shuhui Chen as its<br />

Chief Scientific Officer in 2004 from Eli Lily and Company.<br />

Dr. Chen has built a very successful career in the pharmaceutical<br />

industries as a medicinal chemist after obtaining his<br />

Biopharma News Digest<br />

WuXi PharmaTech (Cayman)<br />

Inc. Announces<br />

Closing Of Initial Public<br />

Offering<br />

14 Aug 2007, 05:20 PM ET<br />

WuXi PharmaTech (Cayman)<br />

Inc. announced the<br />

closing of its initial public<br />

offering of 15,167,326<br />

American Depositary<br />

Shares (ADSs), including<br />

1,978,347 ADSs <strong>issue</strong>d<br />

in connection with the<br />

exercise of the over-allotment<br />

option in full. The<br />

Company's ADSs commenced<br />

trading on the New<br />

York Stock Exchange on<br />

August 9, 2007 under the<br />

symbol 'WX'. Credit Suisse<br />

Securities (USA) LLC and<br />

J.P. M<strong>org</strong>an Securities Inc.<br />

acted as lead underwriters<br />

and joint book-runners and<br />

Jefferies & Company, Inc.<br />

acted as a co-manager in<br />

the offering.<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 3


Trends in Bio/Pharmaceutical Industry<br />

About: Dr. Ge Li<br />

Dr. Ge Li has served as<br />

WuXi PharmaTech (Cayman)<br />

Inc's Chief Executive<br />

Officer since inception and<br />

Chairman since early 2004.<br />

Before forming Wuxi PharmaTech,<br />

Dr. Li was one of<br />

the founding scientists of<br />

Pharmacopeia, Inc., a Nasdaq<br />

listed company based<br />

in Princeton, New Jersey.<br />

Dr. Li received a bachelor's<br />

degree in chemistry from<br />

Peking University, and a<br />

master's degree and a Ph.D.<br />

in <strong>org</strong>anic chemistry from<br />

Columbia University.<br />

4 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

Ph.D. in <strong>org</strong>anic chemistry from Yale University. Led by a business-savvy<br />

and western-trained management team, WuXi PharmaTech continues<br />

strengthening itself by attracting many strong professionals from home<br />

and abroad.<br />

In the short seven years, Wuxi PharmaTech has established itself as the<br />

preferred choice of CROs in the pharmaceutical and biotech sector.<br />

While its core business initially was in the areas of providing synthetic<br />

chemistry support in the lead discovery and lead optimization segment<br />

of the drug discovery process, the chemistry services has expanded all<br />

the way to process R&D and bulk manufacture of active pharmaceutical<br />

ingredients. As the trend of outsourcing to the East continues under the<br />

pressure of increasing cost and time efficiency, Wuxi PharmaTech has<br />

broadened its business to meet the demands of its global partners. This<br />

year, WuXi PharmaTech is also expanding its outsourcing to include animal<br />

testing, where not only are cost differentials pronounced, but a more<br />

permissive ethical climate exists as Shanghai, at this stage, is beyond the<br />

reach of animal rights groups. Today its operations are grouped into two<br />

segments: laboratory services, consisting of discovery chemistry, service<br />

biology, analytical, pharmaceutical development and process development<br />

services, and research manufacturing, focusing on manufacturing<br />

of advanced intermediates and active pharmaceutical ingredients for<br />

R&D use.<br />

The trend of outsourcing and to China continues trending up. The growing<br />

opportunity also brings fierce competition. To stay ahead, the company<br />

has recognized that it is essential to win the trust and confidence of<br />

its customers particularly in the areas of service quality and high regard<br />

for intellectual property protection. Today, they have been doing well. In<br />

addition to being recognized by its many global partners as evidenced by<br />

the awards and expanding business, Wuxi PharmaTech has been recognized<br />

by the entire business world, including being named one of the top<br />

103 National Innovative Companies awarded by the Ministry of Science<br />

and Technology. The company has been among the Deloitte Technology<br />

Fast 500 Asia Pacific competition three consecutive years since 2003 and<br />

voted one of Red Herring Asia 100 private enterprises in 2005.<br />

Wuxi PharmaTech has produced spectacular growth over its short history.<br />

The rapid revenue growth and world-class reputation are without<br />

doubt contributing to the build up of it high valuation. Based on what<br />

was disclosed in the company’s financial picture in the prospectus, given<br />

the story behind the company and investors’ large appetites for all things<br />

Chinese – the need for biopharma to outsource its early discovery operations<br />

at low cost – Wuxi PharmaTech (WX) is a compelling story of<br />

investment.


About Wuxi PharmaTechs<br />

Founded in December 2000 and based in Shanghai, WuXi PharmaTech is the leading<br />

China-based pharmaceutical and biotechnology R&D outsourcing company. As a<br />

research-driven and customer-focused company, WuXi PharmaTech offers global pharmaceutical<br />

and biotechnology companies a broad and integrated portfolio of laboratory<br />

and manufacturing services ranging from discovery chemistry to biological services and<br />

manufacturing of APIs for R&D use.<br />

WuXi PharmaTech assists its global partners in shortening the cycle and lowering the cost<br />

of drug discovery and development by providing cost-effective and efficient outsourcing<br />

solutions. Our management team consists of Western-trained Ph.D.s and MBAs with<br />

experience in drug R&D methodologies and Western-style business practices. Collectively,<br />

our senior management has more than 100 patents pending or granted, published more<br />

than 500 publications and has an average of 10 years of experience working in major<br />

international pharmaceutical and biotechnology companies.<br />

With over 1,300 scientific staff members, a 630,000 sq. ft. Shanghai Waigaoqiao Free<br />

Trade Zone research facility, a 220,000 sq. ft. cGMP-quality manufacturing plant in<br />

Jinshan District, Shanghai, and a new 130,000 sq. ft. Tianjin research facility, WuXi<br />

PharmaTech is well-positioned to offer its customers high quality services along the drug<br />

discovery value chain. In 2006, WuXi PharmaTech's customers included 9 of the top 10<br />

pharmaceutical companies in the world, as measured by 2006 total revenues.<br />

Biopharma News Digest<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 5


Trends in Bio/Pharmaceutical Industry<br />

The Keys To Ge Li And Wuxi Pharma<br />

Tech’s Success<br />

Guo-Liang Yu<br />

On August 14, 2007, Wuxi PharmaTech surprised many<br />

entrepreneurs and technologists who share the same dream<br />

as Ge’s by his company’s astonishing successful initial public<br />

offering in New York Stock Exchange. On September 10,<br />

Wuxi PharmaTech (WX, NYSE) reached a market capitalization<br />

of $1.7 billions after 7 years of operation. It took<br />

more than ten years for Amgen and Genentech to reach<br />

the same market capitalization. While we all cheer for Ge’s<br />

success and wish to be the next in line, many come to me<br />

asking the following questions.<br />

What are the key elements behind Wuxi PharmaTech’s<br />

success? How many other Chinese biotechnology companies<br />

can follow the suite? What can we all learn from Ge’s<br />

success?<br />

1. Strong leadership team. It was said “idea is cheap,<br />

execution is the key and team wins”. Since the beginning,<br />

Ge surrounded himself with good partners such<br />

as Xiaozhong Liu (Excutive Vice President), Tao Lin<br />

(Vice President, Internal Operation) and Zhaohui Zhang<br />

(Vice President, Domestic Marketing). Together, this<br />

team formulated a business strategy, developed a sound<br />

business plan and faithfully executed the plan. Under Ge’s<br />

leadership, each team member takes the responsibilities in<br />

his respective area and collectively forms a fully integrated<br />

functional team that is essential for the rapid growth of<br />

the company. Without the team efforts, it is impossible to<br />

command the explosive growth WuXi PharmaTech has<br />

experienced.<br />

2. Focused business model. Service model may not be as<br />

attractive in the Western countries than those of product<br />

development companies. However, it is a totally different<br />

story in China. Among more than 400 biotech companies<br />

in Zhangjiang, most are founded by oversea returnees,<br />

about 80% of are now CROs. About two years ago,<br />

I visited Wuxi PharmaTech and had a very interesting<br />

discussion with Ge. My concern was that a “service only”<br />

business has less value than a product company and is<br />

difficult to be sustainable. While Ge acknowledged my<br />

6 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

About the author: dr.<br />

Guo-liang is currently the<br />

chairman and President of<br />

epitomics, Inc. an emerging<br />

biotech company dedicated to<br />

the development of innovative<br />

next-generation monoclonal<br />

antibodies. Before starting<br />

epitomics, he was the senior<br />

Vice-President of research<br />

and development in mendel<br />

Biotechnology Inc. dr. yu<br />

has broad technological and<br />

scientific experiences in many<br />

aspects of biotechnology. his<br />

interests cover genomics,<br />

molecular biology, genetics,<br />

immunology, cancer biology,<br />

and plant physiology and drug<br />

discovery. he is co-inventor<br />

and co-author of over 00 patents<br />

and scientific articles.<br />

dr. yu received Ph.d. degree<br />

in molecular Biology from<br />

the university of california,<br />

Berkeley and B.s. degree<br />

in Biochemistry from Fudan<br />

university, china. Guo-liang<br />

conducted his Post-doctoral<br />

training in dr. Frederick ausubel’s<br />

laboratory at the harvard<br />

medical school. dr. yu founded<br />

chinese Biopharmaceutical association<br />

(cBa) headquartered<br />

in Washington dc and is an<br />

executive member of several<br />

professional <strong>org</strong>anizations in<br />

u.s and china.


Biopharma News Digest<br />

opinion, he emphasized the importance of “not to compete with the customers”. It is proven today<br />

that his strategy has worked well since a large number of outsourcing deals have been signed with<br />

large pharmaceutical companies.<br />

Service business completely depends on outstanding customer satisfaction, i.e., the ability to address<br />

customer’s needs and concerns, especially when China is still viewed as a risky place for intellectual<br />

property protections. Wuxi has done an excellent job making the customers comfortable about IP<br />

protection by investing in the infrastructure to ensure fire-walls between the service teams performing<br />

for different companies. Proper documentation, real time data transfer and customer communications<br />

have been in place to ensure happy customers.<br />

3. Driving growth as suppose to profit. A business is meant to make profit. However, it is always a<br />

challenge for biotech companies to manage cash flow and focus on revenue growth. To be able to<br />

continuously find the cash that it is necessary to keep the company going is one of the main challenges<br />

to the CEO. There are three types of cash sources: investors who buy the stocks, customers<br />

who pay for services and products, and loans that need to be paid back. The company has to<br />

do well in order to attract venture investors. The best kind of cash is revenue flow although it is<br />

not easy to generate revenue and keep growing it to a critical level, especially at early stage of the<br />

company with weak credibility. Ge and his team did everything necessary to ensure the success of<br />

the initial projects for customers. Rumor said that they even used two people to perform one FTE<br />

(full time equivalent) work. With good reputation on the capability and delivery, the business grew<br />

steadier and faster. In the last 5 years Wuxi had an average growth of 100% per year. To achieve<br />

such impressive revenue growth, Wuxi must have reinvested all profit back to growing of revenue.<br />

Not until last year the company started to make a profit. For the second quarter of 2007, Wuxi had<br />

a net profit of $7M with revenue of $40M. Such a rapid growth has never been heard of in biotech<br />

history.<br />

4. Simplicity in technology and business. Wuxi is now recognized as the best and the largest chemistry<br />

outsourcing place. It is unusual to have a simple and scalable technical platform in the biotech drug<br />

development industry. Medicinal chemistry is an ideal technology platform to be adopted in China.<br />

It is easy to execute, easy to replicate and easy to train staff. In China, probably true in other places<br />

too, critical mass is important to have the cost benefits. Normally, an operation of 20 people can<br />

hardly bring the cost down due to the low efficiency and productivity. However, when the number<br />

of scientific staff increases to great than 50, the efficiency starts to bring the cost benefits and<br />

operation efficiency. The simplicity of technology platform also makes the business relatively easy<br />

to operate and manage because the outsource work can be tracked and priced in a uniform way. It<br />

also makes the sales and marketing job easy. Although each program from different customers is<br />

different, the process in which the works are performed is the same. In essence, the sales team sells<br />

service as if selling “vacation packages”. This takes out the operational risks and pre-set customer<br />

expectations.<br />

Obviously, there are many other important qualities and practices that contributed to Ge and his<br />

team’s success. Having a strong mentality to be the industry leader with the long term vision is one.<br />

To find the right market place and to be able to execute well is another. To be able to control all risks<br />

associated with the business and not let other things distract the main focus is also critical. Is it just<br />

luck? Is it because they are at the right place and the right moment? Maybe. But it is definitely much<br />

more than pure luck.<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 7


Trends in Bio/Pharmaceutical Industry<br />

NEVIRAPINE<br />

H3C<br />

N<br />

HN<br />

“Made-in-China”:<br />

FDA Approved First Generic Drug from China<br />

On July 10, 2007, FDA granted tentative approval for a generic formulation of<br />

nevirapine tablets, 200 mg, manufactured by Zhejiang Huahai Pharmaceutical<br />

Co. Ltd. of Zhejiang China, under expedited review provisions developed for<br />

US President's Emergency Plan for AIDS Relief. Huahai will be able to sell nevirapine<br />

in the United States after the patent on the drug expires in 2012. For now,<br />

Nevirapine is sold in the U.S. by Pfizer under the brand-name Viracept.<br />

*CD-ROM ILLUSTEO LECTURE NOTES ON TROPICAL MEDICINE<br />

N<br />

O<br />

N<br />

8 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

Nevirapine, also marketed under the trade name Viramune®<br />

(Boehringer Ingelheim ), is a non-nucleoside reverse transcriptase<br />

inhibitor <br />

(NNRTI) used to treat HIV-1 infection and AIDS .<br />

Pfizer's VIRACEPTÒ (nelfinavir mesylate) is an inhibitor of the human<br />

immunodeficiency virus (HIV ) protease .<br />

"Tentative Approval" means that FDA has concluded that a drug product has met all required<br />

quality, safety and efficacy standards, even though it may not yet be marketed in the U.S. because<br />

of existing patents and/or exclusivity rights. However, tentative approval does make the product<br />

eligible for consideration for purchase under the PEPFAR program. As with all generic applications,<br />

FDA conducts an on-site inspection of each manufacturing facility and of the facilities<br />

performing the bioequivalence studies prior to granting approval or tentative approval to these<br />

applications to evaluate the ability of the manufacturer to produce a quality product and to assess<br />

the quality of the bioequivalence data supporting the application.<br />

Zhejiang Huahai Pharmaceutical Co.,Ltd, was founded by Chen Baohua in January 1989 and located<br />

at Linhai Zhejiang, with an initial investment of around $5,000 and 12 employees mixing chemicals<br />

in a one-room warehouse. It is now one of leading modern large-scale pharmaceutical manufacturing<br />

enterprises in China with 2200 employees, Huahai used to focus on hypertension drugs but now makes<br />

a stable of generic medicines. Its sales tripled to 557 million yuan last year from 187 million Chinese<br />

yuan in 2002. The company's profit has more than doubled in that same period, rising to 110 million<br />

yuan. The stock price has also soared<br />

in recent years.<br />

According to Federation of Pharmaceutical<br />

Generic Associations,<br />

China API industry is currently estimated<br />

to be under 4.4% of world<br />

market and is expected tog grow to<br />

9.9% by 2010.


Under the Yellow Skin:<br />

The First Asian Genome Completed<br />

What genetic make-ups have made us the distinct “Yellow Race”?<br />

The answer has recently been revealed. In the 9th China Hi-Tech Fair,<br />

Beijing Genomics Institute - Shenzhen (BGI-SZ) and other units<br />

announced that the first genome sequence map of a Han-Chinese individual<br />

was worked out by a group of Chinese scientists. The work was<br />

underway at the Shenzhen Huada Gene Institute. Although the current<br />

project will not be a standard map, it is certain to be the first genome<br />

atlas of the yellow race.<br />

The First Asian Diploid Genome Project was named as " YanHuang<br />

(炎黄)No.1". Yan and Huang were the two earliest leaders of different tribes in ancient<br />

China. Chinese people generally believe that we are all the descendants of Yan and Huang. The<br />

project included 1000 individuals of Han nationality.<br />

Two currently available versions of human genome (the Human Genome Sequencing Consortium<br />

version and the Celera version) are both composites from multiple individuals. Recent<br />

publications of J. Craig Venter and James Watson’s genomes have started the emerging era of<br />

individual genome.<br />

Genomic accuracy is critical for medical research. For example, about 2,000 genes have been<br />

linked to human diseases. Among them, 1,500 have been identified in clinical diagnosis in the<br />

United States. However, the Chinese government has only approved<br />

some dozens of genes for clinic diagnosis – fewer than 3% of those<br />

in the US. Due to the differences between the yellow and white races,<br />

China cannot imitate foreign diagnostic standards. With Research on<br />

the yellow race's genome atlas will provide a more accurate genetic<br />

standard atlas pool for genetic research and disease treatment.<br />

Biopharma News Digest<br />

The first human genome project was a result of cooperation of 6<br />

countries, several years’ work, and hundreds of millions of US dollars.<br />

Now with high-throughput sequencing technology, it only took a few<br />

months and tens of millions of yuan to complete. The project started<br />

the research of individual genome and their variations. This is not only<br />

the first attempt of sequencing individual genome of Asian people, but<br />

also a diploid sequencing including both genetic information inherited<br />

from both father and mother. It is clear that this project will greatly<br />

help the building of approaches for personalized genetic research, especially<br />

for the Asian race.<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 9


Trends in Bio/Pharmaceutical Industry<br />

READY FOR PRIME TIME IN THE U.S.?<br />

An Overview of the Regulatory and Patent Environment for Follow-on Biologics 1<br />

y. Philip Zhang, J.d., Ph.d.<br />

About the author: Philip Zhang is<br />

chief IP counsel at ensemble discovery<br />

corporation, a biotechnology<br />

company based in cambridge, massachusetts,<br />

where he handles all patent<br />

and other IP matters for the company.<br />

Prior to joining ensemble, he was Patent<br />

counsel at Genzyme corporation,<br />

a major biopharmaceutical company,<br />

and handled patent matters for<br />

Genzyme’s drug discovery and development<br />

efforts. Before joining Genzyme,<br />

he was in private law practice<br />

for several years with Testa, hurwitz<br />

& Thibeault llP, where he advised<br />

numerous clients on various intellectual<br />

property matters. dr. Zhang is a<br />

co-founder and current President of<br />

chinese american IP law association<br />

(www.caipla.<strong>org</strong>).<br />

dr. Zhang holds a Ph.d. in <strong>org</strong>anic<br />

chemistry from dartmouth college and<br />

a J.d. from Vanderbilt university law<br />

school. he graduated from university<br />

of science & Technology of china<br />

with a Bachelor of science degree<br />

in chemistry. he is a member of the<br />

massachusetts bar and is registered<br />

to practice before the u.s. Patent &<br />

Trademark Office.<br />

0 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

ABSTRACT<br />

Follow-on biologics or biosimilars present unique regulatory <strong>issue</strong>s that<br />

await guidance from the U.S. legislature and the FDA. High cost of biological<br />

drugs, patient safety and protection of biotechnology innovations are<br />

among the key <strong>issue</strong>s being debated on Capitol Hill and among industry<br />

advocates alike. In the meantime, Europe has taken the steps of approving<br />

biosimilar products since 2006. It is likely that the immense political and<br />

economic pressure will result in legislative and regulatory actions that would<br />

pave the way for follow-on biologics in the U.S. The regulatory review and<br />

approval process for follow-on biologics, however, is unlikely to be as simplified<br />

and streamlined as in the case of conventional generic chemical drugs<br />

due to the unique safety and efficacy concerns for follow-on biologics. In<br />

contrast to the Hatch-Waxman Act’s bioequivalence approach, new legislation<br />

and regulations on follow-on biologics likely would require demonstration<br />

of clinical safety and efficacy as conditions for market approval.<br />

摘要<br />

仿制生物药(Follow-on Biologics),也称相似生物药(Biosimilars),的<br />

审批程序尚有待美国国会和FDA的新法案和管理条例的颁布。仿制<br />

生物药的高价格,病人的安全,和对生物技术创新的保护与鼓励是<br />

目前美国国会辩论的主要争结所在。与此同时,欧盟自2006年以来<br />

已经批准了几种相似生物药。在美国不断增强的政治和经济压力很<br />

有可能在不远的将来导致相关法案和管理条例的颁布。但是,介于<br />

生物药和化学药的巨大区别,仿制生物药的审批要求和程序将和仿<br />

制化学药的审批要求和程序有明显的不同。现行的亥赤-威克斯曼<br />

法案(Hatch-Waxman Act)中针对仿制化学药申请和审批的生物等效<br />

(Bioequivalence)框架将不适用于仿制生物药的申请和审批。针对仿<br />

制生物药的新法案很有可能要求仿制生物药的申请者通过临床试验<br />

确证药物的安全性(Safety)和疗效(Efficacy)。<br />

Key words: follow-on biologics; biosimilar; Hatch-Waxman; ANDA; patent.<br />

INTRODUCTION<br />

The past decade has seen mounting economic and political pressure on<br />

reducing healthcare cost and drug prices in the United States. The U.S. legislature<br />

and the FDA continue their struggle to define a clear regulatory path<br />

for follow-on biologics, with drug safety and protection of innovation at the<br />

center of a persistent debate. This article hopes to provide an overview of<br />

the regulatory and patent environment for follow-on biologics.<br />

Biotechnology and Biologics<br />

The biotechnology industry accomplished its first major milestone in 1982<br />

when the FDA approved the first genetically engineered drug, Genentech’s<br />

human insulin produced by genetically engineered bacteria. Still a young<br />

industry comparing to traditional pharmaceuticals, biotechnology has had


a significant impact on the availability of new and improved<br />

treatments. More than two hundred new therapies and vaccines<br />

have been created, targeting cancers, diabetes, HIV/<br />

AIDS, autoimmune disorders and rare genetic disorders such<br />

as Gaucher’s disease. 2 Additionally, more than four hundred<br />

biotech drugs and vaccines are currently in clinical trials aimed<br />

at more than 200 diseases. Biologics produced by recombinant<br />

DNA technology such as insulins, interferons and human<br />

growth hormones are being used everyday by millions of patients<br />

throughout the World. The biotech industry has grown<br />

rapidly. There are now over 1,400 biotechnology companies<br />

in the U.S. with biotech healthcare revenues at more than $50<br />

billion.<br />

Political Environment and Follow-on Biologics<br />

With the escalating healthcare cost in the U.S., the pressure to<br />

reduce the cost of prescription drugs and treatments continues<br />

to mount. The typically much higher price of biological<br />

drugs has caused politicians and advocates alike to call for<br />

reform of the FDA regulatory process to allow easier approval<br />

of cheaper generic biological drugs. While generic chemical<br />

drugs have been around since the mid-1980s ever since<br />

Congress enacted the Hatch-Waxman Act, cheaper versions<br />

of biologics, called “follow-on biologics” or “biosimilar products,”<br />

have been off-limited to the U.S. consumers partly due<br />

to the lack of clearly-defined regulatory pathways.<br />

Biopharmaceuticals generally cost more than chemical drugs.<br />

For example, biologic drugs for treating rheumatoid arthritis<br />

and multiple sclerosis cost more than $15,000 per year.<br />

Table 1 Examples of Brand Chemical and Biological Drugs<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

IP Law<br />

Higher cost of biologics is due to a variety of factors such as<br />

lengthy development time and high cost to bring a biological<br />

drug to market. 3 Biotechnology is still an infant science and<br />

much risk exists in developing a drug. Patient population also<br />

has a direct impact on drug prices. Some biologics are approved<br />

for a small number of patients, making it hard for the<br />

biotech firm to recover research and development cost and to<br />

make a profit without a huge price tag. For example, Elaprase,<br />

a treatment for a rare genetic disease, is used only by about<br />

250 patients and can cost up to $300,000 a year.<br />

The political pressure on lowering drug price, however, is generally<br />

less on innovative drugs that are protected by patents.<br />

Generally speaking, the political pressure favoring generic<br />

drugs grows when a drug is off-patent and still maintain its<br />

price due to the lack of generic competition, with potentially<br />

anti-trust concerns. 4 Examples include drugs such as insulins<br />

and certain interferons, some of which are off patent but do<br />

not face competition of follow-on biologics in the U.S.<br />

While not yet available in the U.S., follow-on biologics are<br />

available in many parts of the World. Recently, European<br />

Union adopted biosimilar regulations, making some follow-on<br />

biologics available in the EU member countries.<br />

HISTORY AND STATUS OF ABBREVIATED FDA<br />

APPROVALS<br />

Biologics vs. Small Molecule Drugs<br />

In contrast to traditional pharmaceuticals (referred to as<br />

Brand Name Active Ingredient Indication Company<br />

Chemical (“Small Molecule”) Drugs<br />

Lipitor Atorvastatin calcium High cholesterol and triglycerides Pfizer<br />

Gleevec Imatinib mesylate Leukemia Novartis<br />

Claritin Loratadine Allergy Schering-Plough<br />

Plavix Clopidogrel bisulfate Vascular ischaemic events BMS; Sanofi<br />

Biological Drugs<br />

Epogen Epoetin Alfa Anemia Amgen; Roche<br />

Herceptin Trastuzumab Breast cancer Roche; Genentech<br />

Erbitux Cetuximab<br />

Head and Neck and<br />

Colorectal Cancers<br />

Merck KGaA; BMS<br />

Humalog Insulin lispro Diabetes Eli Lily


Trends in Bio/Pharmaceutical Industry<br />

“drugs” in statutory texts) that are made by synthetic chemistry<br />

or plant extractions, “biological products” or “biologics”<br />

are often derived from or made in living cells, <strong>org</strong>anisms,<br />

plants or animals. Small molecule drugs usually are pure<br />

chemical substances formulated with excipients. A single or<br />

small number of chemical structures define the active ingredients.<br />

Their characterization tends to be straightforward,<br />

and different products can be easily compared for chemical<br />

content, purity, safety and efficacy. Biological drugs, on the<br />

other hand, are composed of much larger and more complex<br />

macromolecules that are typically composed of molecules of<br />

varied chemical compositions.<br />

Due to these differences, traditional pharmaceuticals are<br />

reviewed by the Center for Drug Evaluation and Research<br />

(CDER) through New Drug Applications (NDAs) while many<br />

types of biological drug products (e.g., blood and blood components)<br />

are reviewed by the Center for Biologics Evaluation<br />

and Research (CBER) under Biologics License Applications<br />

(BLAs). Historically, however, some large molecule, nature<br />

source protein drugs such as insulin, hyaluronidase, menotropins,<br />

and human growth hormones (hGHs) were approved<br />

as drugs via NDAs under Federal Food, Drug, and Cosmetic<br />

Act (the FD&C Act) while other nature source proteins such<br />

as blood factors are approved as biologics via BLAs under the<br />

Public Health Service Act (the PSH Act). 5 In early 1990s, the<br />

FDA moved all recombinant proteins and monoclonal antibodies<br />

to CBER except hormones such as insulins and hGHs,<br />

which continued to be regulated by CDER. In 2003, the<br />

FDA again moved therapeutic products overseen by CBER to<br />

CDER. As a result, some proteins are currently approved via<br />

NDA under Section 505 of the FD&C Act while others are<br />

licensed via BLA under Section 351 of the PHS. 6<br />

Overview of the Hatch-Waxman Act<br />

The modern generic approval procedure at the FDA was established<br />

in 1984 with the enactment of the Drug Price Competition<br />

and Patent Term Restoration Act, often referred to as<br />

the Hatch-Waxman Act after the bill’s congressional sponsors,<br />

Senator Oren Hatch (R-Utah) and Congressman Henry<br />

Waxman (D-California). The key component of the Hatch-<br />

Waxman Act as it relates to generic drugs is the establishment<br />

of the Abbreviated NDA (ANDA) regulatory process which<br />

allows much streamlined approval processes for generic drugs.<br />

Before 1984, generic drug sponsors had to submit full NDAs<br />

which required a complete documentation of safety and efficacy<br />

of a generic drug.<br />

The ANDA regulatory pathway is codified in Section 505(j)<br />

of the FD&C Act. 7 The ANDA pathway allows the generic<br />

drug sponsor to heavily rely on the safety and efficacy data of<br />

2 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

the reference listed drug. The ANDA sponsors only need to<br />

demonstrate “bioequivalence” between the generic drug and<br />

the reference listed drug, thus substantially cutting down the<br />

time and capital resources needed to bring a generic drug to<br />

market. 8 In addition, most generic drugs are able to receive<br />

the “A” interchangeability rating which allows the pharmacy to<br />

substitute the brand drug with the A-rated generic version.<br />

As part of the political deal that resulted in the passage of the<br />

Hatch-Waxman Act, the Act also provides for patent term extension<br />

and market exclusivities for innovative drugs. A NDA<br />

holder is entitled to various market exclusivities based on the<br />

nature of the NDA approval, ranging from five years for new<br />

chemical entities to three years for supplemental NDAs. In<br />

addition, the NDA holder can receive up to five years of extended<br />

(or “restored”) patent protection. The actual length of<br />

the patent term extension is calculated based on lose of patent<br />

term due to regulatory reviews at the FDA.<br />

Patent Challenge under the Hatch-Waxman Act<br />

The Hatch-Waxman Act further provided a mechanism by<br />

which a generic drug may be approved before the patent term<br />

of the brand drug expires. On the one hand, the Act provides<br />

a generic drug applicant the ability to start patent challenge<br />

before it places the generic drug on the market and risks patent<br />

infringement damages. On the other hand, the Act allows<br />

the NDA and patent holders certain benefits in terms of<br />

predictable delays of generic approval during patent litigation<br />

proceedings.<br />

In particular, the NDA holder is required to list certain types<br />

of patents that cover the brand drug in “Approved Drug<br />

Products with Therapeutic Equivalence Evaluations,” often<br />

referred to as “the Orange Book.” 9 An ANDA applicant is<br />

required to certify whether it wishes to challenge the listed<br />

patents and if so, must make a so-called “Paragraph IV<br />

certification.” 10 The ANDA applicant must notify the NDA<br />

and patent holders of its intention to challenge a patent and<br />

provide relevant legal and factual bases for the challenge. If<br />

the NDA holder files a patent infringement suit against the<br />

ANDA applicant within 45 days, the FDA approval of the<br />

ANDA is stayed (i.e., the FDA cannot approve the generic<br />

application) for 30 months or until the resolution of the law<br />

suit, whichever comes earlier. If the NDA holder does not file<br />

patent infringement suit, the FDA may approve the ANDA if<br />

the FDA is otherwise satisfied with the ANDA.<br />

To achieve the purpose of increasing drug price competition,<br />

the Hatch-Waxman Act also provides a unique market incentive<br />

to the generic drug industry. The first generic applicants<br />

that successfully challenge an Orange Book-listed patent


enjoy a 180-day generic exclusivity. The FDA cannot approve<br />

another ANDA on the same reference listed drug until the<br />

180-day exclusivity has run. During this exclusivity period, the<br />

generic drug not only can gain a large market share, but also<br />

can typically charge a much higher price than if other generic<br />

products are also on the market.<br />

Impact of the Hatch-Waxman Act<br />

The Hatch-Waxman Act of 1984 gave birth to the generic<br />

drug market in the U.S., which has since grown to a size of<br />

over $20 billion. Today, the largest generic manufactures are<br />

pharmaceutical giants in their own right, having annual revenues<br />

in billions of dollars.<br />

Table 2 Leading Generic Firms in the World<br />

Company Country<br />

Teva Israel<br />

Mylan U.S.<br />

Sandoz Switzerland<br />

Apotex Canada<br />

Ranbaxy India<br />

SAFETY CONSIDERATIONS FOR FOLLOW-ON<br />

BIOLOGICS<br />

Biologics, such as proteins or other large and complex macromolecules<br />

or living cells, are typically comprised of a number<br />

of variations in terms of molecular size and structures. They<br />

are often difficult to purify and susceptible to contamination,<br />

degradation and loss of activity. The production of biologics<br />

often presents difficulties not encountered in the manufacture<br />

of small molecule drugs. While small molecule drugs can be<br />

copied exactly in terms of their chemical contents, biologics<br />

manufactured from different cell lines in principle are not<br />

chemically or structurally identical. Small changes in manufacturing<br />

protocols sometimes yield substantial modifications in a<br />

Table 3 First Biosimilar Products in Europe<br />

IP Law<br />

biological product’s chemical composition, purity and potency.<br />

As a result, the manufacturing process places a critical role in<br />

defining the identity and quality of a biological product. 11<br />

While the active ingredients of a conventional pharmaceutical<br />

can be easily identified and measured, currently available<br />

analytical tools often are unable to fully identify and characterize<br />

a biological product to such degree that it can be compared<br />

directly with another product, such as a reference biological<br />

drug. Therefore, pharmaceutical and biological equivalence<br />

is difficult to establish, and sometimes cannot be established,<br />

through chemical analyses as in the case of small molecule<br />

drugs. As a result, the FDA places heightened oversight on<br />

manufacturing procedures for biologics than traditional drugs.<br />

Immunogenicity also presents a serious safety<br />

concern in the case of biologics. A well-known<br />

example of immunogenicity occurred several years<br />

ago when Johnson & Johnson changed the manufacturing<br />

process for Eprex. The manufacturing<br />

change was later found to cause certain severe adverse<br />

reaction in a small number of patients. Other<br />

safety <strong>issue</strong>s that have been raised include processrelated<br />

impurities and conformational differences.<br />

Due to these reasons, it is unlikely that a simple<br />

“bioequivalence” study can be deemed sufficient,<br />

as is the case for generic chemical drugs. 12 It is<br />

generally agreed that a “generic” or “bioequivalent”<br />

biological product is not scientifically feasible, at least as of today.<br />

As a result, some in the industry continue to advocate the<br />

requirement of demonstration of clinical safety and efficacy as<br />

conditions for market approval of follow-on biologics.<br />

BIOSIMILARS IN EUROPE<br />

Follow-on biologics are called similar biological medicinal<br />

products or “biosimilars” in Europe. The first approval of a<br />

biosimilar was on April 12, 2006 when the European Medicines<br />

Agency (EMEA) granted approval to Omnitrope. 13<br />

EMEA clearly stated that Omnitrope is a biosimilar product<br />

with Pfizer’s Genotropin (a hGH) as its reference product. 14<br />

Biosimilar Product Brand Product Biosimilar Sponsor Approval Date<br />

Omnitrope Pfizer’s Genotropin Sandoz April 12, 2006<br />

Valtropin Eli Lily’s Humatrope BioPartners May 4, 2006<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 3


Trends in Bio/Pharmaceutical Industry<br />

In 2003, EU established a regulatory path for biosimilars with<br />

the adoption of the general regulatory guideline for evaluating<br />

and approving biosimilars. 15 Additionally, certain scientific<br />

guidelines have since been <strong>issue</strong>d. 16 Generally speaking, the<br />

EU’s approach is that of “case-by-case” as EMEA reserves<br />

the right to set criteria for biosimilars (e.g., what comparability<br />

data is required) and decides each biosimilar application<br />

on a case-by-case basis. In many cases, both pre-clinical data<br />

and clinical efficacy trials are required. And the biosimilar<br />

manufacturer must characterize, in parallel, both its biosimilar<br />

product and the reference product and demonstrate, with a<br />

high degree of certainty, that the quality of the biosimilar is<br />

comparable to the reference product. Immunogenicity tests<br />

are often needed as well. The reference product’s molecular<br />

complexity, unique characteristics, safety and efficacy concerns,<br />

and manufacturing processes influence the type of tests<br />

and trials that are required for approval. Recently, EMEA<br />

<strong>issue</strong>d new guidelines for biosimilars. 17<br />

In June 2007, EMEA’s Committee for Medicinal Products for<br />

Human Use (CHMP) recommended approval of three more<br />

biosimilar products: Binocrit from Sandoz GmbH, Epoetin<br />

alfa Hexal from Hexal Biotech Forschungs GmbH, and Abseamed<br />

from Medice Arzneimittel Pütter GmbH for the treatment<br />

of anemia associated with chronic kidney disease and<br />

in oncology patients and to reduce blood transfusion requirements<br />

in oncology patients. 18 All three biosimilar products<br />

have been shown to be similar to Johnson & Johnson’s Eprex<br />

(erythropoietin or EPO). In late August of 2007, EMEA<br />

granted final approval to Sandoz’s biosimilar Epoetin alfa. 19<br />

REGULATORY PATH FOR FOLLOW-ON BIOLOG-<br />

ICS IN THE U.S.<br />

Current Status in the U.S.<br />

Although an abbreviated approval procedure does not yet<br />

exist in the U.S. for follow-on biologics, there are ways one<br />

can bring an off-patent biologic product to market. Firstly,<br />

one can always conduct all necessary trials and file a complete,<br />

unabbreviated NDA or BLA. This route, however, is typically<br />

commercially impractical because the high cost and lengthy<br />

development process make it unattractive to generic firms.<br />

The May 30, 2006 approval by the FDA of Omnitrope 20<br />

under the FDCA’s 505(b)(2) re-candled the generic industry’s<br />

hope that a somewhat abbreviated approval procedure does<br />

exist in the U.S. Section 505(b)(2) provides a sponsor the<br />

ability to submit a full NDA without having to generate all<br />

necessary data by itself. Rather, the sponsor can “cite” or incorporate<br />

certain data available in scientific literature and other<br />

FDA recognized sources. Previously referred to as a “paper”<br />

4 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

NDA, a 505(b)(2) NDA is typically used by innovative firms<br />

for approval of slightly modified drugs, such as a drug having<br />

a different delivery or of a different salt.<br />

Omnitrope, developed by Sandoz, the generic unit of pharmaceutical<br />

giant Novartis AG, was filed under 505(b)(2). Initially,<br />

the FDA refused to grant final approval. Novartis sued the<br />

FDA in U.S. federal court and, through a court order, successfully<br />

forced the FDA to act on the application. 21 Although<br />

the FDA made it clear that the approval of Omnitrope under<br />

505(b)(2) does not signal the availability of this pathway to follow-on<br />

biologics, 22 many in the industry believe Omnitrope’s<br />

approval makes 505(b)(2) a practical, albeit imperfect, procedure<br />

for follow-on biologics approval in the U.S.<br />

Legislative Activities<br />

In June 2007, the U.S. Senate Health, Education, Labor and<br />

Pensions (HELP) Committee passed the Biologics Price<br />

Competition and Innovation Act, leading some in the industry<br />

to speculate the imminent adoption of new laws on followon<br />

biologics in the U.S. The proposed legislation includes<br />

provisions for streamlined approval of follow-on biologics<br />

and was sponsored by key senator from both parties: Senators<br />

Kennedy (D-Massachusetts), Hatch (R-Utah), Clinton (D-New<br />

York), Enzi (R-Wyoming) and Schumer (D-New York).<br />

The Senate bill (S. 1695) 23 provides “a procedure designed<br />

to help resolve patents in an expedited way, and strong but<br />

responsible incentives to encourage innovation and the<br />

development of new therapies.” 24 It amends Section 351 of<br />

the PSA to provide for an approval pathway that requires the<br />

demonstration of “biosimilarity” - that there are no clinically<br />

meaningful differences in safety, purity and potency between<br />

the follow-on product and the reference drug. The demonstration<br />

of biosimilarity includes “analytical data, animal testing<br />

and one or more clinical studies, unless such a requirement<br />

is determined by the FDA to be unnecessary.”<br />

As to interchangeability, the bill allows the FDA to FDA to<br />

approve a biosimilar product as interchangeable. The bill,<br />

however, requires the sponsor of follow-on biologics to provide<br />

evidence that the biosimilar product will have “the same<br />

clinical result as the brand product in any given patient” and<br />

will present “no additional risk in terms of safety or diminished<br />

efficacy” if a patient alternates or is switched between<br />

the brand and biosimilar products.<br />

Regarding data exclusivity, i.e., the period of time during<br />

which no follow-on products can be approved, the bill provides<br />

twelve years of data exclusivity for the brand company,<br />

much longer than the five year exclusivity available to new


chemical entities. Additionally, as incentive to follow-on product<br />

manufactures, a one-year exclusivity is provided for the<br />

first interchangeable follow-on product, comparing to the 180day<br />

exclusivity for the first generic chemical drug applicant<br />

that must also have successfully challenged a brand patent.<br />

The bill also includes provisions on patent dispute resolution<br />

and challenge. Information exchange is required between<br />

the biosimilar applicant and the brand company, including<br />

information on patents covering the brand product and the<br />

biosimilar’s manufacturing process. This process is intended<br />

to identify relevant patents and disputed <strong>issue</strong>s on patent .<br />

validity and infringement. The two parties either agree to a list<br />

of patents to be litigated first or exchange patent lists if they<br />

cannot agree on them. The brand company then has 30 days<br />

to file patent suits against the biosimilar sponsor over the disputed<br />

patents. Interestingly, the bill provides that if the brand<br />

company fails to identify a patent, it is forever prevented from<br />

enforcing it against the biosimilar product.<br />

One vehicle for the passage of this bill would have been<br />

through the FDA Amendments Act of 2007, which was going<br />

through the Senate and the House and includes a variety of<br />

FDA-related legislations. The FDA Amendments Act was<br />

passed by both Congress and signed into law by President Bush<br />

in late September 2007. The provisions on biosimilars that were<br />

in earlier drafts of the legislation, however, were not included in<br />

the final enacted version. 25 The most contested <strong>issue</strong>s are the<br />

length of the data exclusivity period for the brand biologics and<br />

the review standard for safety and efficacy of follow-on products.<br />

As such, the highly anticipated FDA regulatory overhaul<br />

of biosimilar approval procedures must now re-gather political<br />

momentum and await future legislative action.<br />

CONCLUSION<br />

The current political pressure in the U.S. will likely continue<br />

and may result in legislative and regulatory actions that would<br />

pave the way for follow-on biologics. The FDA approval<br />

process for follow-on biologics, however, is unlikely to be<br />

as simplified and streamlined as in the case of conventional<br />

generic chemical drugs due to the unique safety and efficacy<br />

concerns for follow-on biologics.<br />

References<br />

1. The content of this article is not to be attributed to the<br />

author’s current, past or future clients or employers, nor<br />

should it be viewed or regarded as legal advice to anyone.<br />

2. Biotechnology Industry Organization (BIO), http://bio.<br />

<strong>org</strong>/speeches/pubs/er/statistics.asp.<br />

IP Law<br />

3. Some recent studies have questioned the potential savings<br />

of follow-on biologics. For example, Avalere Health’s<br />

studies have suggested that government savings from<br />

follow-on biologics to be only $3.6 billion over the next<br />

ten years. See, http://www.avalerehealth.net/research/<br />

docs/Modeling_Budgetary_Impact_of_FOBs.pdf.<br />

Congressional Budget Office is also studying the economic<br />

savings of follow-on biologics, which, if found to be<br />

insubstantial, could have an impact of the support for<br />

legislative activities.<br />

4. Remarks of FTC Commissioner Pamela Jones Harbour’s,<br />

“The Competitive Implifications of Generic Biologics,”<br />

June 14, 2007, http://www.ftc.gov/speeches/harbour/<br />

070614genbio.pdf, see p.13-14.<br />

5. http://www.fda.gov/opacom/laws/phsvcact/phsvcact.<br />

htm.<br />

6. See, e.g., Statement by Acting Commissioner of Food and<br />

Drugs Department of Health and Human Services on<br />

the Law of Biologic Medicine (2004), http://www.hhs.<br />

gov/asl/testify/t040623.html.<br />

7. P.L. 84-417, 98 Stat. 1585 (1984). http://www.fda.gov/<br />

opacom/laws/fdcact/fdctoc.htm.<br />

8. In addition to bioequivalence, pharmaceutical equivalence<br />

of the generic and brand products are required and are<br />

typically met by the “five sameness” requirements, i.e.,<br />

same active ingredient, label, route of administration,<br />

dosage form, and strength.<br />

9. An online version is at http://www.fda.gov/cder/ob/.<br />

10. There are four categories of patent certification in an<br />

ANDA. A “Paragraph I” certification is used when there<br />

are no patents listed in the Orange Book for the drug. A<br />

“Paragraph II” certification applies when the relevant<br />

patent has expired. A “Paragraph III” certification applies<br />

when the ANDA does not seek marketing approval<br />

until after a listed patent expires. A “Paragraph IV”<br />

certification is made when the ANDA applicant claims<br />

that a listed patent is invalid or will not be infringed by<br />

the manufacture, use, or sale of the generic drug. Thus,<br />

an ANDA applicant wishing to challenge a listed patent<br />

must make a Paragraph IV certification. The “paragraph”<br />

numbers refer to the paragraphs of the relevant statutory<br />

language in the FD&CA.<br />

11. Studies have suggested that biosimilar products made by<br />

certain generic firms are different from Amgen’s Epoetin<br />

Alfa approved in the U.S. and Europe.<br />

12. For example, BIO has raised certain safety <strong>issue</strong>s with<br />

follow-on biologics. See, “http://www.bio.<strong>org</strong>/healthcare/<br />

followonbkg/PatientSafety.asp.<br />

13. EU’s press release: http://europa.eu/rapid/<br />

pressReleasesAction.do?reference=IP/06/<br />

511&format=HTML&aged=0&language=EN&guiLangu<br />

age=en.<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 5


Trends in Bio/Pharmaceutical Industry<br />

14 European Public Assessment Report: http://www.<br />

emea.europa.eu/humandocs/PDFs/EPAR/Omnitrope/<br />

060706en1.pdf.<br />

15 http://www.emea.europa.eu/pdfs/human/biosimilar/<br />

043704en.pdf.<br />

16 EMEA scientific guidelines: http://emea.europe.eu/<br />

htms/human/biosimilar/biosimilarfin.htm.<br />

17 EMEA guidelines on biosimilars: http://www.emea.<br />

europa.eu/pdfs/human/pcwp/7456206en.pdf. http://<br />

www.emea.europa.eu/htms/human/humanguidelines/<br />

biologicals.htm.<br />

18 See, http://www.emea.europa.eu/pdfs/human/<br />

press/pr/26755607en.pdf. The EC usually follows the<br />

recommendation of CHMP.<br />

19 http://hugin.info/134323/R/1150279/220459.pdf.<br />

20 FDA approval letter, http://www.fda.gov/cder/foi/<br />

appletter/2006/021426s000LTR.pdf.<br />

21 April 10, 2006 decision of the US District Court for the<br />

District of Columbia. See, http://www.orangebookblog.<br />

com/files/sandoz_v.%20Leavitt.pdf. The FDA has since<br />

appealed the decision.<br />

22 FDA “Omnitrope Questions and Answers,” http://www.<br />

Introduction<br />

Founded in 2001, Shanghai-based WuXi PharmaTech is China`s<br />

leading drug R&D service company. As a research-driven and<br />

customer-focused company, WuXi PhamaTech offers global<br />

pharmaceutical and biopharmaceutical companies a diverse,<br />

value-added, and fully integrated portfoli of outsourcing services<br />

ranging from discovery chemistry to biological services and GMP<br />

manufacturing.<br />

Process Chemistry and<br />

Manufacturing Services<br />

WuXi PharmaTech Co., Ltd.<br />

288 FuTe ZhongLu<br />

Waigaoqiao Free Trade Zone<br />

Shanghai, China, 200131<br />

Tel: +86 (21) 5046-1111<br />

Fax: +86 (21) 5046-1000<br />

www.pharmatechs.com<br />

Chemistry Services<br />

6 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

Service Biology<br />

fda.gov/cder/drug/infopage/somatropin/qa.htm.<br />

23 http://frwebgate.access.gpo.gov/cgi-bin/getdoc.<br />

cgi?dbname=110_cong_bills&docid=f:s1695is.txt.pdf.<br />

24 Senate Committee press release, http://help.senate.gov/<br />

Maj_press/2007_06_27_c.pdf.<br />

25 FDA Amendments Act of 2007 was passed by both<br />

the U.S. Senate and House of Representatives and was<br />

signed into law by President Bush on September 27,<br />

2007. http://frwebgate.access.gpo.gov/cgi-bin/getdoc.<br />

cgi?dbname=110_cong_bills&docid=f:h3580enr.txt.pdf.<br />

The Act includes the Prescription Drug User Fee Act,<br />

the Medical Device User Fee and Modernization Act, the<br />

Best Pharmaceuticals for Children Act, and the Pediatric<br />

Research Equity Act.<br />

Say it in Chinese:<br />

Follow-on Biologics 仿制生物药<br />

Biosimilars 相似生物药<br />

Bioequivalence 生物等效<br />

Value<br />

By allowing our collaboration partners to fully leverage the<br />

comparatively low cost R&D capabilities in China, WuXi<br />

PharmaTech helps its partners to shorten the cycle and lower<br />

the cost of drug discovery and development. We do this by<br />

offering global pharmaceutical and biopharmaceutical firms<br />

high quality and diverse R&D outsourcing services.<br />

Pharmaceutical<br />

Development Services<br />

Analytical Services<br />

If you are interested in working at WuXi PharmaTech please send your resume to hr@pharmatechs.com.


关于知识产权促进医药创新的政策思考<br />

周和平<br />

作者介绍: 周和平,研究员(律<br />

师、专利代理人资格),中国药科<br />

大学知识产权管理办公室。1977年<br />

毕业于南京药学院药学专业,留<br />

校。2002年被江苏省人民政府知识<br />

产权联席会议办公室聘为江苏省知<br />

识产权咨询专家组成员。2005年入<br />

选国家知识产权战略专家库。<br />

IP Law<br />

摘 要:为建立创新型国家这一奋斗目标,本文分析创新与知识产权<br />

的辩证关系,根据我国尤其是医药领域自主创新及其知识产权保护<br />

的现状,探讨利用知识产权促进创新的政策调整的目的、原则及必<br />

要性,并对医药领域创新类别及相应政策调整提出若干具体设想。<br />

知识产权制度不仅要保护现有创新权利人的利益,更要促进全社会<br />

的创新。因为知识产权制度对创新力强的给予强保护,对创新力弱<br />

的是弱保护,甚至制约大于保护。所以需要根据我国在不同领域的<br />

创新能力强弱来设置知识产权政策,使我国创新力量由弱变强,从<br />

而体现知识产权制度与经济基础的适应及良性的相互作用。这种中<br />

长期的政策调整应贯穿国家及各行各业的知识产权战略研究中。<br />

关键词 知识产权 创新 政策 医药<br />

本文根据创新与知识产权的本质及有关特点,初步分析其间之辩证<br />

关系,根据我国尤其是医药领域的自主创新及其知识产权保护的现<br />

状,探讨利用知识产权促进创新政策调整的目的、原则及必要性,<br />

并对医药领域创新类别及相应政策调整提出若干具体设想。<br />

一、创新的本质及特点<br />

除体制创新外,创新主要是指科学技术的创新(以下简称“创<br />

新”)。创新活动的产物是智力劳动成果,亦称为创新成果或创<br />

新。创新活动的本质是一种个体的智力劳动。科技创新的特点是要<br />

具备三个必不可少的条件:<br />

(一)物质基础;<br />

(二)相关的知识积累;<br />

(三)智力劳动。<br />

在具备一定物质基础和相关知识背景的前提下,人通过智力劳<br />

动,迸发智慧火花,量变导致质的飞跃,就产生智力劳动成果,即<br />

专利法中的创造发明、著作权法中的作品、商标法中的可视性标<br />

志。<br />

二、知识产权的本质及若干特点<br />

“知识产权本质上是一种特定主体所专有的财产权” 1 ,是一种私<br />

权,其相对应的是公众利益。<br />

知识产权作为一种私有财产权,权利人会使用各种手段使其获得最<br />

大程度的保护,以便最大限度地通过市场独占而获利。这就是为什<br />

么会屡屡出现用专利申请号、外观设计专利甚至于非有效专利去套<br />

取国家优惠政策现象的根本原因。<br />

知识产权属于无形财产权范畴。无形财产不象实物,其权利的范<br />

围、权利的存续期限均有一定的不确定性。“中华人民共和国专利<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 7


Trends in Bio/Pharmaceutical Industry<br />

法释义” 2 中就明确“专利权作为一种无形的财产权及<br />

授权情况的复杂性,很难保证每一项被授予的专利权都<br />

符合法律规定的条件而不在其后被宣告无效”。这种不<br />

确定性更因涉及人为因素而复杂化。<br />

三、创新与知识产权之间的辩证关系<br />

(一)知识产权属于上层建筑。<br />

知识产权属于上层建筑,上层建筑取决于经济基础,并<br />

反作用于经济基础。因此,知识产权的保护类型、范<br />

围、强度及具体措施等,应当与社会发展一定阶段的经<br />

济基础相适应。<br />

(二)没有创新就没有知识产权。<br />

创新是知识产权的保护对象,没有创新就没有知识产权。<br />

正如没有专利法意义上的发明创造就不可能获得专利权、<br />

没有著作权法意义上的作品就不能享有著作权一样。<br />

(三)市场经济环境下,没有知识产权保护难有重大基<br />

础创新<br />

创新是人类社会发展的动力。当社会发展到市场经济占<br />

主导的阶段,知识产权是促进创新的关键。正如郑成思<br />

先生所强调的“如果不真正保护好知识产权,中国以后<br />

就难再有‘四大发明’那样的科技创新” 3 。并不是没<br />

有知识产权保护就没有创新。<br />

(四)有创新也不一定就能获得知识产权。<br />

除著作权是自作品完成之日即自动产生以及商业秘密<br />

外,知识产权中其它权利,几乎都需要依法办理手续、<br />

经过审批或认定。<br />

需要办理却没有依法办理相应手续或经过相关程序审批<br />

或认定,即便是创新,也不一定能够获得知识产权法律<br />

保护。例如:一项具备新颖性、创造性、实用性的发明<br />

创造,但发明人没有申请专利,或者申请文件反复修改<br />

后仍不符合法律要求等等。申请专利、委托高水平的代<br />

理人、维持专利权、维护专利权等等,也都需要有相应<br />

的财力支撑。<br />

(五)知识产权有可能保护的不是创新。<br />

《中华人民共和国专利法》(以下简称《专利法》)第<br />

47条第1款规定:“宣告无效的专利权视为自始即不存<br />

在”。<br />

专利权作为一种无形的财产权及授权情况的复杂性,很<br />

8 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

难保证每一项被授予的专利权都符合法律规定的条件而<br />

不在其后被宣告无效,而不具备新颖性、创造性、实用<br />

性而被无效掉的专利中的技术方案不是真正的创新。<br />

(六)知识产权保护力度与创新高度成正比。<br />

知识产权制度是对个体创新活动给予物质回报的一种法<br />

律保障。知识产权制度对创新力强的给予强保护,对创<br />

新力弱的给予弱保护,有时甚至是制约大于保护,对不<br />

具创新力的没有保护只有制约。<br />

对于一项具体发明创造,就技术方案本身而言,其知识<br />

产权保护力度与创新高度成正比。例如:工艺改进只能<br />

获得方法发明专利,全新结构的化合物可以获得物质发<br />

明专利,而器械的小改动只能获得实用新型专利。实用<br />

新型专利保护期为10年,发明专利保护期为20年。显而<br />

易见,发明专利保护力度显著大于实用新型专利,而化<br />

合物发明专利保护力度又显著大于方法发明专利。<br />

(七)实施自主知识产权也会受到他人制约<br />

如果是在别人创新基础上作出的改进发明,即使获得专<br />

利保护,也是他人基本专利的从属专利,其实施需要得<br />

到基本专利专利权人的许可,从而受他人制约。<br />

(八)知识产权在保护权利人创新的同时,亦存在制约<br />

创新的因素<br />

知识产权本质上作为一种私权,其在保护权利人的创新<br />

的同时,亦存在抑制他人创新的因素。为此,法律明确<br />

规定了限制知识产权条款,如专利权期限、强制许可、<br />

若干不构成侵权行为的例外,以及著作权法中的合理使<br />

用等等。<br />

在有关基因专利的争论中,专家明确指出“基因专利在<br />

减少低水平重复的同时,也减少同一领域的研究者。据<br />

2月7日出版的《自然》杂志,1998年提出的与80%-<br />

85%的血色沉着症发生有关的C282Y和H63D突变测试<br />

专利,其现在的临床测试许可证的持有者宣布,诊断实<br />

验室人员要向该公司支付费用以继续使用自己的测试,<br />

或者向这家公司购买测试试剂盒。虽然许多美国实验室<br />

在专利授予前就开始了血色沉着症的遗传测试,但大约<br />

30%的被访实验室因为临床测试服务中的专利问题,而<br />

不再使用或是不再发展该类遗传测试,这样将会限制技<br />

术的进一步发展” 4 。<br />

(九)知识产权制度是在私权与公众利益之间寻求平衡<br />

如前所述,知识产权是一种私权,其相对应的是公众利<br />

益。一个蛋糕,中间切一刀,一边多了,另一边肯定就<br />

要少。


这就是为什么发明专利保护期限为20年,而不是10年或<br />

40年。因为一般认为20年时间内专利权人通过市场的获<br />

利已可以补偿其对社会的贡献(包括向社会公开其发明<br />

内容),过短得不到足够回报,过于长则可能有损公众<br />

利益。<br />

保护现有创新权利人的利益与促进全社会的创新既有相<br />

关性,亦有矛盾性。无论是专利审查还是司法保护都须<br />

在权利人与公众之间寻求一种利益平衡。显著破坏这种<br />

平衡,不管偏向哪一边,都会妨碍创新。通过政策调<br />

整,可以达到相对平衡。任何平衡都是动态的。为此,<br />

所进行的政策调整不但应有阶段性、连续性,而且应有<br />

地域及行业差异性的特点。<br />

(十)知识产权保护是手段,促进创新是目的<br />

正如已故美国总统林肯所说“专利制度是给智慧之火添<br />

加利益之油”。 “添油”即专利权人通过市场独占,将<br />

创新获得最大收益,使权利人愿意(耗费智力)并且有<br />

能力(物质基础)投入新一轮的创新,以此形成良性循<br />

环。在 “各尽所能、各取所需”的人类最高文明阶段到<br />

来之前,没有知识产权保护,创新得不到物质回报,就<br />

不可能持续进行,最终影响到社会文明的进程和全人类<br />

的利益。<br />

但是,知识产权制度不仅仅是为了保护权利人的知识产<br />

权,还要“鼓励发明创造”(不单是鼓励已有权利人,<br />

而是所有公民),“促进科学技术进步和创新” 5 。郑<br />

成思先生在讲解《与贸易有关的知识产权协议》(简称<br />

Trips协议)第7条时明确提出“知识产权保护本身,并不<br />

是目的”,知识产权保护的目的“在于促进技术的革<br />

新、技术的转让与技术传播,以有利于社会及经济福利<br />

的方式去促进技术知识的生产者与技术知识使用者互<br />

利,并促进权利与义务的平衡” 6 。<br />

所以,如果只看到知识产权制度中保护权利人权益的表<br />

层作用,而忽视其促进全社会创新的深层目的,只注意<br />

知识产权有促进创新的一面,忽视其抑制创新的一面,<br />

仅强调保护现有创新权利人的利益,忽视对全社会创新<br />

的促进,单纯为知识产权保护而知识产权保护,这种对<br />

知识产权制度片面、机械地理解,会对创新产生负面影<br />

响,从而影响到知识产权制度的正确施行。<br />

四、我国自主创新及其知识产权保护的现状<br />

(一)我国在许多领域原始创新的能力极弱小<br />

我国在许多领域原始创新的能力极弱小,仅有不同程度<br />

的集成创新能力和引进消化吸收再创新的能力。<br />

IP Law<br />

(二)我国创新成果受知识产权保护的难度大、力度弱<br />

我国集成创新和引进消化吸收再创新的成果往往创新力<br />

度小。<br />

这些创新力度小的成果,获得知识产权保护的难度大。<br />

即使获得了知识产权保护,不但保护范围小、保护力度<br />

弱,而且往往受到他人制约。<br />

(三)我国医药领域创新成果与专利保护现状<br />

以医药专利为例,目前医药领域创新成果可分为三大<br />

类:原始创新药、集成创新和引进消化吸收再创新的<br />

药,以及工艺改革。<br />

第一类,原始创新药,其专利权人几乎全为外国制药公<br />

司。<br />

第二类,集成创新和引进消化吸收再创新的药,如工艺<br />

改进的仿制药、新制剂、新用途。这方面创新成果中,<br />

我国企业占有一席之位。我国医药企业很大部分专利也<br />

都属于此类。但是,如果化合物专利是外国制药公司所<br />

有,会直接制约我国企业创新成果的产业化。例如:<br />

外国制药公司拥有某化合物专利A,而我国制药企业拥<br />

有该化合物的新合成方法专利B,但专利A仍在有效期<br />

内,我国制药企业必须得到该外国公司的许可,才能实<br />

施自己的专利B。<br />

第三类,已知化合物的工艺改进,如维生素C的工艺改<br />

进。工艺改革是我国制药企业的长项。<br />

在2006年举办的“北京国际医药化工知识产权高峰论<br />

坛”上,专家强调“国内医药化工专利申请还明显存在<br />

诸多不足;复方及制备方法等下游产品多,保护效力<br />

弱;中药制药及保健品多;权利要求范围窄且种类及项<br />

数少”等等 7 。实际上,这些所谓不足反映的正是我国<br />

现阶段医药领域的创新现状。<br />

(四)目前我国医药创新企业面临前堵后追的困境<br />

目前我国医药创新企业正面临前堵后追的困境。<br />

前面有外国制药企业的新化合物专利阻挡,即便在仿制<br />

过程中有所创新并获得专利保护,也受制于他人。<br />

由于我国企业研发成果的创新程度低,专利保护力度<br />

弱,抵御侵权的难度大。其它企业稍改动,就跳出了专<br />

利保护范围,随后出现大量低水平重复产品围追初见效<br />

益的自主创新成果。<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 9


Trends in Bio/Pharmaceutical Industry<br />

(五)有些规定使我国企业雪上加霜<br />

以专利为例:<br />

1、专利申请时,外国制药企业研发全新结构化合物可<br />

用范围很大的通式表示。而我国发明往往是在已知<br />

结构基础上修饰的新化合物,其只能用范围很小的<br />

通式表示;如果修饰位点分散,常因不符合单一性<br />

被要求分案,专利保护范围更小,有时仅能保护几<br />

个零星的化合物且被要求分案。而分案又加重了企<br />

业的经济压力。<br />

2、财力雄厚的外国制药企业可以制备大量实施例化合<br />

物,以支持其通式范围很大的权利要求。而我国企<br />

业因经济原因不能合成大量实施例化合物,审查时<br />

往往被要求缩小权利要求范围。<br />

3、专利审查时,全新结构化合物,只要有一定用途和<br />

效果,就认为具有创造性;而在已知结构基础上修<br />

饰的新化合物,必须要有预料不到的用途和效果,<br />

才能被认为具有创造性,而现阶段我国医药领域研<br />

发的新化合物绝大多数是对已知化合物进行的结构<br />

修饰,常因创造性缺乏而得不到保护。<br />

4、新复方、新制剂、以及大量中药复方类新药目前占<br />

我国医药领域创新的大半壁江山。但这类创新常因<br />

被认为创造性不够而难以获得保护。<br />

在审查通知书中常见“所用辅料为药学领域常规辅<br />

料”一类措辞来否定发明的创造性。实际上,任何<br />

药物制剂,如真想用于临床,就必须使用药典规定<br />

的辅料。<br />

再有,对区别特征的认定是创造性审查的前提与基<br />

础。当申请人根据对比文件指出审查员没有提及的<br />

区别特征时,审查员是否应对申请人提出区别特征<br />

作出评述,还是可以不置可否?《审查指南》对此<br />

没有明确规定。<br />

5、新修改的《审查指南(征求意见稿)》将“半开放<br />

式”删除,会使我国具有较大创新空间的复方、制<br />

剂,包括大量中药复方的新技术方案,即便获得专<br />

利,也得不到有效专利保护,从而严重影响医药领<br />

域创新。<br />

《审查指南》规定了药物组合物可用三种方式表述:开<br />

放式、半开放式、封闭式 8 。在用途限定的前提下,真<br />

正可用开放式限定的药物组合物实际上并不存在。所<br />

谓“半开放式”,指药物组合物中可以加入一些未指出<br />

的、但对主要药效没有实质影响的组分。比如,一般中<br />

20 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

药复方,加点大枣或甘草;一般片剂,制颗粒时加点淀<br />

粉、糊精之类,对药物组合物的基本特性并无实质影<br />

响。如果不允许用半开放式,一般就只能用封闭式来表<br />

述药物组合物。此时,稍加一点药效相近的、或者对药<br />

效无影响的组分,就跳出了用封闭式权利要求限定的专<br />

利保护范围。<br />

五、利用知识产权促进创新政策调整的原则、目的<br />

及必要性<br />

(一)政策调整的目的<br />

利用知识产权促进创新政策调整主要目的是:最大限度<br />

促进我国全面创新。即便我国自主创新成果弱小,也要<br />

力促其获得知识产权保护,并使权利人能够获得较多回<br />

报,以便积累实力,逐步由弱变强。每个企业增强,国<br />

家必定富强。<br />

(二)政策调整的原则<br />

政策调整的基本原则是:以促进创新为目的,根据我国<br />

在不同领域的创新能力的强弱来设计相关知识产权政策。<br />

利用知识产权促进创新不能搞一刀切、粗放式管理,而<br />

需要根据我国不同领域的具体情况,区别对待。笔者认<br />

为:这是在知识产权与创新领域,对温家宝总理政府工<br />

作报告中 “正确把握宏观调控的方向和力度,注重区别<br />

对待、分类指导,有针对性地解决经济发展中的突出矛<br />

盾” 精神的具体贯彻。<br />

(三)政策调整的必要性<br />

1、从社会公益角度,需要政策支持市场回报率低或风<br />

险大的创新<br />

一方面,我们提倡用市场检验创新成果的价值,由市<br />

场得利来补偿发明创造者。另一方面,从国家安全<br />

和人民利益角度,市场行为需要政策引导和调控。<br />

例如医药领域创新的风险极大,如果没有政策支<br />

持,罕见病用药、基础研究等就不会有企业投入巨<br />

资进行研发。<br />

2、创新能力强者,可通过市场独占获得回报<br />

知识产权是一种财产权。创新权利人通过知识产权<br />

法授予的市场独占地位,在市场竞争中获得物质回<br />

报。这是一种纯粹、个体的市场行为。<br />

我国创新能力强的项目,可依据市场独占强势地位获<br />

得利益回报,无须政府再锦上添花。再者国家在政


策财政资助方面僧多粥少,只能将其用在国家最迫<br />

切需要而我国创新能力又最弱的领域。<br />

3、政策调整有助于我国创新能力弱的领域走出“恶性<br />

循环”<br />

虽然不同领域、不同行业在评判创新能力强弱时的具<br />

体标准不尽相同,但一般而言,创新能力最弱的领<br />

域,往往创新难度最大、风险最大。<br />

我国创新能力最弱的领域,即使有创新,也多半是<br />

在他人基础上的改进。这类创新往往力度弱小,因<br />

此不但获得知识产权保护的难度大,而且获得的保<br />

护范围小,最终通过市场获利也很小。唯有通过政<br />

策调整才能使我国创新能力弱小领域走出“恶性循<br />

环”。<br />

因此,有必要在我国已确立的知识产权法律体系的框<br />

架内,依据我国具体国情,宏观调控、区别对待,<br />

通过政策调整,趋利避害,达到利用知识产权促进<br />

全民创新、建成创新型国家的目标。<br />

六、医药领域创新分类及相应政策调整的探讨<br />

首先根据技术难度或创新高度对医药领域的创新成果进<br />

行分类,对不同类型的创新给予不同类型的政策支持;<br />

对相同类型的创新,依疗效、毒副作用、环境与资源保<br />

护这三大指标,选择重点给予政策支持。<br />

(一)根据技术含量对医药领域创新进行分类<br />

医药领域的创新类型可按技术含量初步分类如下:<br />

1、发明专利 > 实用新型专利 > 外观设计专利<br />

2、化合物发明专利 > 复方发明专利、用途发明专利、<br />

制剂发明专利、用方法限定的药品专利 > 单纯方法<br />

发明专利。<br />

(二)促进医药领域不同类型创新的政策倾向<br />

1、上述不同的创新类型,给予不同的政策支持。<br />

2、相同的创新类型,优选考虑疗效、毒副作用、环<br />

境与资源保护这三大指标,选择政策重点支持的对<br />

象。<br />

3、在疗效相同或等同,甚至于略低于现有技术时,毒<br />

副作用明显降低或减少是创新的显著标志。<br />

4、在疗效与毒副作用相同或等同的前提下,有利于环<br />

IP Law<br />

境保护或资源保护是创新的显著标志。因为环境与<br />

资源是可持续发展的基础。<br />

(三)医药领域利用知识产权促进创新的具体措施<br />

1、化合物专利保护的新药<br />

具有化合物发明专利的新药,因其高技术、高风险、<br />

高效益,是各项政策支持的主要对象。在已知结构<br />

基础上修饰的新化合物,应多方面考虑其创造性。<br />

具有化合物发明专利的新药应在药品定价、招标采<br />

购与进入医保方面优先考虑。在具有化合物发明专<br />

利的新药中,政策优选支持疗效好的品种;在疗效<br />

相同或等同的新药中,优选支持毒副作用明显降低<br />

或减少的品种;在疗效与毒副作用相同或等同的前<br />

提下,优选支持有利于环境或资源保护的品种。<br />

2、复方发明专利、用途发明专利、制剂发明专利在<br />

招标采购中给予考虑。但是,招标采购与医保方面<br />

的政策优惠只应考虑有效保护期内的发明专利。同<br />

样,对于这类具有发明专利的新药,政策支持疗效<br />

好的品种;在疗效相同或等同的新药中,政策支持<br />

毒副作用明显降低或减少的品种;在疗效与毒副作<br />

用相同或等同的前提下,支持有利于环境或资源保<br />

护的品种。<br />

3、方法发明专利,政策只支持二类专利:一是显著有<br />

利于环境保护的制备方法专利;二是显著有利于资<br />

源保护的方法专利(主要涉及中药领域)。其余如<br />

降低成本的制备方法、检测方法专利等,可依靠市<br />

场竞争获得优势。<br />

(四)政策调整应贯穿新药研发、专利审查、新药审<br />

批、生产、销售的全过程<br />

政策调整是一系统工程,应贯穿新药研发、专利审查、<br />

新药审批、生产、销售的全过程。例如:新药研发阶段<br />

的政府基金、资金投入;专利审查阶段对结构修饰新化<br />

合物、药物组合物的创造性评价;涉及从属专利药品的<br />

强制许可及强制许可费的调控;销售阶段的药品定价、<br />

招标采购与进入医保,等等。<br />

(五)政策调整应增加透明度、建立共享专家库及相应<br />

管理、监督程序<br />

各级政府资助、科技部立项、风险基金及药品定价、招<br />

标采购与进入医保等,均应该透明公开,对不同类型的<br />

创新给予不同形式、不同侧重点的政策支持,集中财力<br />

重点支持我国创新能力弱、创新风险大、国计民生迫切<br />

需要的创新成果的产业化。<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 2


Trends in Bio/Pharmaceutical Industry<br />

为防止弄虚作假,套取国家优惠政策以获私利,政策调<br />

整这一系统工程中,每个重要环节须设置知识产权管理<br />

及监督程序,并按专业领域建立共享知识产权专家库。<br />

例如:2004年WHO专门成立“知识产权委员会”,<br />

研究新药研发中不断出现的有关知识产权的问题,并<br />

定期与相关部门沟通、协调 9 。再如:加拿大卫生部<br />

设有“专利药品及联络办公室”(Office of Patented<br />

Medicines and Liaison) 10 。<br />

另外,专家意见应向社会公布,专家也应受公众监督。<br />

七、结语<br />

知识产权制度是保护创新,然其终端目的是激励、促进<br />

全社会的创新。知识产权制度不仅要保护现有创新权利<br />

人的利益,更要促进全社会的创新,加快全人类的文明<br />

进程。国家通过对知识产权的适当保护,达到促进全社<br />

会创新的目的。适当的知识产权保护是建立创新型国家<br />

的基础和动力。是否适当要依据具体国情及不同领域的<br />

相应的发展阶段而定。是否适当的标准在于看其是促进<br />

了创新还是抑制了创新。十全十美不可能,但依据具体<br />

情况作相应的政策调整却是可为且必为的。这种中长期<br />

life sciences<br />

More than 200 lawyers whose practice<br />

and experience are significantly devoted to<br />

the life sciences industry, and more than<br />

60 professionals with advanced scientific<br />

degrees in life sciences disciplines. We<br />

have developed our practice to “protect the<br />

complete life sciences product life cycle,”<br />

with depth and quality in all important areas:<br />

regulatory, transactional, and litigation.<br />

We’re in this together. Your team and ours.<br />

22 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

leaders<br />

This communication is provided as a general informational service to clients and friends<br />

of M<strong>org</strong>an, Lewis & Bockius LLP. It should not be construed as, and does not constitute,<br />

legal advice on any specific matter, nor does this message create an attorney-client<br />

relationship. These materials may be considered ATTORNEY ADVERTISING in some<br />

states. Please note that the prior results discussed in the material do not guarantee<br />

similar outcomes. The photos in this material are dramatizations.<br />

的政策调整规划贯穿于国家及各行各业的知识产权研究<br />

战略中,任重而道远。<br />

参考文献:<br />

1. 郑成思:《WTO知识产权协议逐条讲解》,中国方<br />

正出版社2001年第1版,第3页。<br />

2. 中华人民共和国专利法释义第四十七条,全国文化<br />

信息资源共享工程www.ndcnc.gov.cn<br />

3. “两会”媒体关注教育,www.hainan.gov.cn<br />

4. 周和平:《关于基因专利的争论》,载《中国新药<br />

杂志》2004年第13卷1期,第5页<br />

5. 参见:《中华人民共和国专利法》第1条。<br />

6. 郑成思:《WTO知识产权协议逐条讲解》,中国方<br />

正出版社2001年第1版,第42页。<br />

7. 刘仁:《国知局专家解读医药化工知识产权问<br />

题》,载《中国知识产权报》2006-5-10<br />

8. 《审查指南》,知识产权出版社2001年版,第二部分<br />

第十章,2-156页<br />

9. www.un.<strong>org</strong> /chinese/News/fullstorynews<br />

10. The Food and Drug Regulations-http://laws.justice.gc.ca/<br />

en/f-27/c.r.c.-c.870/text.html-2004-08-31<br />

www.m<strong>org</strong>anlewis.com<br />

M<strong>org</strong>an, Lewis & Bockius LLP • 1701 Market Street • Philadelphia, PA 19103-2921 • Tel: 215.963.5000


2006年我国中药资源研究与学科建设进展<br />

段金廒 1 吕洁丽 2,1 宿树兰 1 周荣汉 2<br />

(1 南京中医药大学 江苏 南京,210046;2 中国药科大学 江苏 南京,210009)<br />

作者介绍: 段金廒教授目前担任南京<br />

中医药大学科技副校长兼中医药研究<br />

院院长、江苏省方剂研究重点实验室<br />

主任及中国药科大学兼职教授。 段<br />

金廒教授从事中医药学领域科学研<br />

究、教学等工作27年余,主要研究方<br />

向包括:1. 方剂(复方)效应物质基<br />

础与配伍规律;2. 中药资源化学与活<br />

性物质的寻找。 并同时担任中华中<br />

医药学会理事、国家科技部中国高新<br />

技术产业促进会理事、江苏省中医药<br />

现代化领导小组副组长、全国天然药<br />

物资源专业委员会主任委员等;被聘<br />

为《中国实验方剂学》杂志副主委、<br />

《中药材》杂志副主委、《药学研究<br />

与临床》杂志副主委、《世界科学技<br />

术-中医药现代化》杂志编委、《中<br />

国药科大学学报》编委、《中国天<br />

然药物》编委、《Asian Traditional<br />

Medicine》编委等。主编和副主编科<br />

技专著2部;发表科技论文百余篇;<br />

培养硕、博士研究生30余人。<br />

DRUG DISCOVERY AND DEVELOPMENT<br />

摘要: 通过检索我国学者2006年在国内外发表的中药资源研究相关<br />

文献,综述了我国中药资源研究与学科建设进展。本文重点介绍了<br />

中药资源调查、中药资源生产、资源综合开发利用、中药及天然药<br />

物资源化学、植物化学分类学与亲缘学、中药资源学科建设等方面<br />

的进展。<br />

中药资源是自然资源的一部分,人类在漫长的生活实践和生产实践<br />

中利用自然资源,发现并累积了利用植物、动物和矿物防病治病的<br />

知识,并逐渐形成体系,著成多部本草学。随着社会对中药资源的<br />

需求量的增加,使得中药材原料供求矛盾突出。中药资源的可持续<br />

利用与发展是中药资源科学发展的关键及核心问题。如何实现中药<br />

资源的可持续利用和发展,是中药和天然药物资源科学工作者的任<br />

务。2006年,我国中药及天然药物资源研究在资源调查、资源生产<br />

及质量评价、新技术的应用、资源化学及分类、资源开发利用、中<br />

药资源学科建设等方面取得了显著进展。<br />

1 中药资源的调查与研究<br />

1.1 中药资源种类、数量及地理分布的调查研究<br />

中药资源调查研究是充分开发利用中药资源的前提,主要包括药用<br />

植、动物种类、蕴藏量、资源更新的调查。<br />

药用植物资源调查 徐淑珍等[1]对我国菝葜属药用植物的种类、分<br />

布、生态环境和蕴藏量进行调查,整理出270份标本,已鉴定菝葜属<br />

16个种和2个变种,其中3个为新记录品种;获取13个省份菝葜属植<br />

物的分布特征、生长环境及其蕴藏量的信息。徐文芬等[2]通过野外<br />

调查、标本采集及分类学研究,明确了《贵州中药资源》收载的贵<br />

阳市菊科药用植物的种类、拉丁学名、地理分布等。贵阳市分布新<br />

记录1种,产地县分布首次记载7种,贵州省药用新资源7种,贵阳<br />

市药用新资源14种,《贵州中药资源》记载的有7种贵阳市未见分<br />

布,2种贵州不产,17种为拉丁异名;确认贵阳市现有菊科药用植物<br />

130种6变种。经调查鉴定 [3] ,重庆獐牙菜属药用植物有9种,其中西<br />

南獐牙菜、北方獐牙菜为重庆分布新记录。<br />

王业桥等 [4] 对海南药用植物的种类、数量、分布、生境以及开发、<br />

利用现状进行分析,针对海南药用植物保护和利用中存在的问题进<br />

行了探讨,提出海南今后发展植物药产业的建议和措施。三峡库区<br />

有药用植物1129 种,隶属于603 属,174 科。根茎类药用植物占<br />

42.1% [5] 。经调研四川省攀枝花市中药资源全市共有植物药1300余<br />

种,动物药300余种,矿物药30余种, 常用药约300余种。其中优质高<br />

效多产动植物药有菌灵芝、川续断、首乌、山药、川牛膝、核桃、<br />

高山胆草、重楼、白花蛇舌草、苏铁、穿山甲等,且具有川滇两地<br />

特色 [6] 。广东省江门市锦江源自然保护区内共有维管植物232种,<br />

370属,1179种,拥有国家重点保护野生植物15科19种,珍稀濒危植<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 23


Trends in Bio/Pharmaceutical Industry<br />

物15科17种。其中药用植物527种,用材植物216种,观<br />

赏植物198中,油脂植物132种,蜜源植物63种,纤维植<br />

物85种 [7] 。<br />

整理出甘肃秦艽组植物6种1变种 [8] ;六盘山区分布有秦<br />

艽Gentiana macrophylla、小秦艽G. dahurica 和麻花秦艽G.<br />

straminea 3 种 [9] 。广西青蒿资源进行调查研究 [10] 发现全<br />

区40余个县市均有青蒿资源的分布, 为中国青蒿生产地的<br />

主要省份,2005 年广西种植青蒿约670公顷,靖西县达<br />

340公顷,且该地的青蒿提取物青蒿素含量可达1.2%。<br />

药用动物、海洋生物资源调查 2002-2004年陕西家<br />

养林麝资源实地考察结果表明 [11] :截止到2004年8月<br />

底,陕西家养林麝存栏量约800余只,主要集中在宝<br />

鸡、安康和汉中,约占全省家养林麝资源80%以上。<br />

嵊山岛礁生物资源以及邻近海域的微藻资源调查 [12] ,<br />

共发现121种潮间带生物,其中有28种海洋药用生物,<br />

包括红条毛肤石鳖(Acanthochiton rubrolineatus) 、马<br />

粪海胆(Hemicentiotus pulcherrimus) 、海萝(Gloiopeltis<br />

furcata)等,嵊山岛丰富的海绵资源具有筛选天然活性<br />

物质的潜力。嵊山岛邻近海域的产毒藻类包括产麻痹<br />

性贝毒( PSP)的链状亚历山大藻(Alexandrium catenatum<br />

) 、塔玛亚历山大藻(Alexandrium tam arens),产腹泻<br />

性贝毒(DSP)的倒卵形鳍藻(Dinophysis forti) 、具尾鳍<br />

藻(D. caudata);产记忆缺失性贝毒(ASP)的尖刺拟菱<br />

形藻( Pseudonitzschia pungens) 、多列拟菱形藻( P. m<br />

ultiseries)和多纹拟菱形藻( P. multistriata);产神经性<br />

贝毒(NSP)的短凯伦藻(Kerina breve)以及红色裸甲藻<br />

(Gymnodinium sangium ) 、米氏凯伦藻( Kerinamik imoto)<br />

、环状异甲藻(Heterocapsa circularisquama)等能产生生理<br />

活性物质的藻类,其中嵊山岛邻近海域产石房蛤毒素和<br />

神经毒素的有毒藻类可能具有药用开发价值。<br />

1.2 新技术、新方法在中药资源调研中的应用<br />

地理信息系统( Geographic Information System,GIS) 、遥<br />

感(Remote Sensing,RS)和全球定位系统(Global Positioning<br />

System,GPS)三大空间科学技术(简称“3S”技术),为中<br />

药资源研究如资源的调查、监测、中药资源的宏观分析<br />

和管理提供了新方法 [13] 。赵润怀等 [14] 运用《中药材产地<br />

适宜性分析地理信息系统》( TCMGIS - I),分析了附子<br />

的全国适宜产地,结果表明四川江油县等为附子的传统<br />

产区外,全国共有四川、陕西、贵州、湖南、湖北、甘<br />

肃、云南、广西、江西、安徽等10个省区的336个县市为<br />

附子适宜产区,适宜产区面积总和为294057169km 2 。附<br />

子的次适宜产区和适宜产区面积大致相等。附子适宜区<br />

分析结果覆盖了第3次全国中药资源普查记载的95%以上<br />

的区域,同时还分析预测出贵州、江西等普查没有记载<br />

的区域,同时也验证了TCMGIS-Ⅰ系统的科学性和可靠<br />

性。孙成忠等 [15] 进一步阐述了地理信息系统GIS的功能以<br />

24 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

及在中药资源信息化建设中的作用,同时对中药资源信<br />

息化建设过程中有关GIS的关键问题提出合理化建议。孙<br />

宇章等 [16] 通过对中药资源调查的现状及调查中存在问题<br />

的分析,阐述遥感的概念、特点及其在中药资源调查中<br />

应用的优势,列举了遥感在国内外资源调查中的实例,<br />

提出遥感应用于资源调查的思路和方法,指出遥感在中<br />

药上的应用必将成为中药研究的一个热点。<br />

中药资源可持续利用是中药产业健康发展的关键和核<br />

心,国内许多学者致力于此项研究,探索中药资源可持<br />

续发展的有效模式。陈世林等 [17] 率先在青藏高原山地实<br />

施川贝母野生抚育,突破了传统药材人工种植的模式,<br />

在中国对濒危药材建立规模的野生抚育体系。川贝母野<br />

生抚育地是在其原有生态环境条件下,主要在海拔约<br />

4000米的高山灌丛和高山草甸,建立川贝母野生抚育推<br />

广体系,产生了重要的社会生态效益和经济效益。川贝<br />

母野生抚育在其特有分布的群落类型中进行,其抚育技<br />

术突出了川贝母生物学特性及群落等产地适宜性。通过<br />

测定川贝母分布的群落样地的相对优势度,应用Bray-<br />

Curtis 距离系数以计算机进行聚类分析等数值分类方法<br />

划分川贝母分布的群落类型。成都恩威集团建立2500余<br />

亩川贝母的种源基地,修建了网围栏,对采集的川贝母<br />

种子进行后熟和低温处理,并进行了中小规模的试种试<br />

验,为以后种子的生理研究及种子繁育技术研究打下了<br />

基础。中药品种70%-80%来源于野生资源,因此,中药<br />

材野生抚育可发展成一种新兴的中药生态产业模式。<br />

黄明进等 [18] 从地理条件、气候环境、人类活动等方面阐<br />

明了中药资源储量形成和积累的自然、社会条件;从中<br />

药材本身的物种遗传、所处的生态环境和人类活动对环<br />

境的污染,滥用农药造成农药残留超限以及重金属超标等<br />

方面,阐明了中药资源质量形成的内外因素。从而为合<br />

理开发、应用中药材,实现中药资源的可持续发展提供<br />

参考。<br />

对伞形科野生药用植物资源因药用和食用种类多而被重<br />

视,皖南山区有伞形科野生药用植物28种2变种1变型,<br />

多数种类开发利用不够;对皖南山区该科野生药用植物<br />

资源的现状进行了分析, 对永续利用提出了建议 [19] 。陈<br />

仕江等 [20] 分析了我国的冬虫夏草及其资源概况以及国内<br />

外冬虫夏草人工培殖研究进展,提出冬虫夏草资源可持<br />

续利用的对策与建议。分析中药资源的应用现状、提出<br />

促进中药资源可持续发展的措施 [21] 。<br />

2中药资源生产现状<br />

2.1 中药材规范化生产(GAP)基地建设<br />

1997年起在国家食品监督管理局的主持和重视下,在相<br />

关管理部门和全国天然药物资源学会的大力支持下,经


过几年来若干次会议讨论,发布出台了《中药材生产<br />

管理规范》(GAP),迄今已通过国家GAP认证的品种<br />

已达140多个。据有关资料报道,目前全国已建成的中<br />

药材生产基地600多个,中药材生产专业场1.3万个,中<br />

药材专业户达34万个,中药材种植面积600万亩,产量<br />

35万吨,年生产总值约160亿元。<br />

GAP实施两年有余,但中药材基地建设上缺乏技术依托<br />

和专门人才,优质优价的政策环境尚未形成等,仍然制<br />

约着GAP产业的健康发展。浙江省中药材行业针对存在<br />

的问题,提出了产业发展目标及实施中药材良种工程、<br />

加强标准化体系建设、提高药农组织化程度、加快先进<br />

技术开发与应用、加大产品开发力度、建立现代中药先<br />

进制药产业链等对策。在国家科技部“中药现代化研究<br />

与产业化开发”重点项目资金的支持和引导下,全国中<br />

药规范化种植基地发展迅速,发挥了良好的示范带动作<br />

用,促进了中药产业化的发展 [22] 。“十一五”国家科技<br />

部支撑计划项目“中药资源可持续利用与产业共性技术<br />

研究”的启动和推进必将使中药资源事业的健康发展起<br />

到重要支撑。<br />

2.2 优良种质选育研究<br />

优良的药用生物资源种质是产生优质丰产药材的根本因<br />

素。从现有种质资源中用形态描述和分子标记分析相结<br />

合的方法,进行遗传多样性评价,构建出含有野生种、<br />

农家种和主要改良种的核心种质,并进行有效的保护是<br />

中药材栽培可持续发展的基础。同时,根据药用植物有<br />

效成分生物合成的分子机理,发掘一批重要的有效成分<br />

调控基因,也可为今后用基因工程等生物技术开发利用<br />

中药资源打下基础。杜娟等 [23] 选择全国10个主要产地<br />

的野生或栽培半夏为材料,采用扩增酶切片段多态性<br />

AFLP方法研究,绘制的系统进化树不同种源之间遗传<br />

关系的远近与其总生物碱含量差异趋势一致。为半夏及<br />

其他中药材道地性研究、种质资源鉴定、亲缘关系研<br />

究、品种选育和引种栽培提供分子水平生物学依据。马<br />

小军等 [24] 采用加权打分法定量评价半夏种质资源,收集<br />

到7个省(市)的9个主产区栽培或野生种质,在田间进行完<br />

全随机种植实验,根据半夏特点选相应关键指标。探讨了<br />

人工诱变技术在药用植物育种中的发展方向及前景 [25] 。<br />

3 中药资源的综合开发利用与保护更新<br />

3.1 中药资源的综合开发利用研究<br />

我国在药用植物资源开发利用方面已取得可喜成果。以<br />

四大南药——砂仁、益智、槟榔、巴戟天为主的热带药<br />

用植物标准化、规范化开发已取得进展。用现代科学手<br />

段和方法研究热带植物药,从热带植物天然产物中寻找<br />

新的活性成分,是发展创新天然药物的有效途径 [26] 。按<br />

DRUG DISCOVERY AND DEVELOPMENT<br />

照我国行政区划对六大区(华北、东东、华东、中南、西<br />

南和西北) 的中药资源开发利用研究的现状进行综述 [27] 。<br />

储蓉等 [28] 通过调查贵州裸子药用植物种类、分布、现状<br />

及用途,为开发利用提供依据。采用野外调查、引种保<br />

存、资料收集、分析、市场调研等方法,指出贵州裸子<br />

药用植物种类较多,具有良好的开发应用效果,应走可<br />

持续发展模式。<br />

3.2 中药资源的保护与管理<br />

长期以来,由于对合理开发利用中药资源的认识不足,<br />

致使有些药用种类过度采收,资源受到不同程度的破<br />

坏,一些种类出现衰退甚至濒临灭绝;有些物种的优良<br />

种质正面临消失和解体。因此,加强中药资源保护和管<br />

理已势在必行。同时,引起国家及相关部门的高度重<br />

视。我国科技工作者一直在进行着很有意义的研究与探<br />

索,闫志峰 [29] 等针对我国中药资源保护和可持续利用目<br />

标,开展动态监测和系统评价研究,提出了构建我国濒<br />

危中药资源系统评价保护体系的思路和系统评价内容、<br />

评价方法及相关评价指标。李西林等 [30] 分析了我国濒危<br />

药用动植物资源的现状及造成生物物种灭绝的原因,列<br />

举国际、国内颁布的濒危物种保护公约与名录,以及我<br />

国对药用动植物的保护条例,探讨了中药资源保护和管<br />

理的意义与对策。通过对药用濒危野生动物的界定和我<br />

国药用濒危野生动物繁育利用的调查、调查方法、分析<br />

方法、繁育利用技术和管理模式的研究,使产业化的发<br />

展模式和管理政策科学化、标准化 [31] 。<br />

陈静等 [32] 分析了我国野生药材资源现状、中药材管<br />

理、保护、利用的立法现状及以现存问题,提出关于野<br />

生药材资源的可持续利用原则必然要求以综合的长远的<br />

观点对药材资源进行开发利用,其立法亟待解决的首要<br />

问题是制定专门的野生药材资源保护法律,对其资源保<br />

护及综合性开发进行法律规定。提出药用植物资源管理<br />

系统的功能 [33] ,以鸡血藤为例从药用植物资源管理系统<br />

在鸡血藤中生产应用的结果显示出,该系统能有效地管<br />

理中药材的生产。药用植物资源管理系统既可用于监测<br />

药用植物资源状况,又可指导人们的生产活动,达到可持<br />

续利用的目的,为解决药用植物资源保护、开发和可持<br />

续利用的矛盾提供了很好的决策。提出基于3S (GPS、<br />

GIS、RS) 技术的中药资源信息化管理 [34] ,是提升和改<br />

造传统中药研发、生产、销售等供应链的前提条件,可<br />

以帮助中药资源管理的需求者获得相应的中药信息和管<br />

理决策支持,进而对我国中药自然资源进行合理有效地<br />

利用和管理,实现中药产业的可持续性发展。<br />

3.3中药新品种、新药源的发现<br />

对于濒危物种开展替代资源研究,是中药资源有效保护<br />

的重要方面,在进行保护生物学研究的同时,开展以优<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 25


Trends in Bio/Pharmaceutical Industry<br />

南<br />

京<br />

高<br />

新<br />

南京•高新<br />

P h<br />

a<br />

r<br />

m<br />

a<br />

I<br />

n<br />

d<br />

u<br />

s<br />

t<br />

r<br />

y<br />

請聯繫我們,告訴我們您的想法和需求<br />

電話:86 25 66982666-6118,86 13913943244<br />

電郵:njnhz@163.com 網址:www.njnhz.com.cn<br />

26 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

人文南京 創意高新<br />

An innovative area in a civlized city<br />

南京高新技術產業開發區於1988年創建,是全國首批國家級高<br />

新區,地處中國東部沿海長江三角洲中心,位於史稱“六朝古都<br />

、十朝都會”的古城南京江北地區的中心位置。東南瀕長江,西<br />

接被稱為城市綠肺的國家級旅遊度假區珍珠泉公園和國家級森林<br />

公園老山風景區,北靠龍王山風景區,是江蘇省環境優秀園區,<br />

生態環境得天獨厚,極其優美。目前1700多家企業在高新區註<br />

冊,其中外商投資企業320家,產業涉及電子資訊、軟體、生物<br />

醫藥、新型材料、汽車製造、軌道交通車輛製造等領域。<br />

生物醫藥園是南京高新區建區以來一直重點發展的園區,區內現<br />

有南京歐加農制藥有限公司、南京康海藥業有限公司、愛斯醫藥<br />

科技(南京)有限公司、南京靖龍醫藥技術有限公司、南京川博<br />

生物技術有限公司等近六十家生物醫藥生產及研發外包骨幹企業<br />

,產品涉及化學合成、生物合成、基因醫藥、醫療器械、天然保<br />

Nanjing Hi-Tech Zone


南<br />

京<br />

高<br />

新<br />

健品等領域。區內的“國家遺傳工程小鼠資源庫”是國家科技部“十<br />

五”科技攻關專案,是國際知名、國內唯一的小鼠基因庫;生物醫藥<br />

研發公共服務平臺---南京高新生物醫藥研究所,總面積超過2500平<br />

方米,目前已建成:化學分析中心、生物分析測試中心、生化試劑中<br />

心、化學合成中心,並有大量公共研究儀器設備可供使用;再加上高<br />

新區內生物工程與醫藥園內的13000平方米專業醫藥孵化器平臺和<br />

中國南京留學人員創業園的政策支持,這四大生物醫藥研發的綜合服<br />

務平臺作為南京高新區的生物醫藥研發外包基地的基礎支撐平臺,將<br />

把南京高新區的生物醫藥研發外包基地打造成具有世界一流水平的“<br />

藥穀”。<br />

為對接全球醫藥企業,打造全國一流“藥谷”,南京高新區已正式啟<br />

動了占地5.25平方公里的南京高新區生物醫藥園新區建設,為生物<br />

醫藥產業的發展拓展空間。新園區將以培育優勢產品為特色,以引進<br />

研發企業為突破,構建以生物醫藥研發、製造為一體的醫藥產業基地<br />

。<br />

請聯繫我們,告訴我們您的想法和需求<br />

電話:86 25 66982666-6118,86 13913943244<br />

電郵:njnhz@163.com 網址:www.njnhz.com.cn<br />

Sci-tech Park<br />

高新生物醫藥外包產業基地<br />

Nanjing Hi-Tech Zone<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 27


Trends in Bio/Pharmaceutical Industry<br />

质栽培品替代野生植物,以资源丰富的物种取代濒危物<br />

种,以再生性强的部分(如枝、叶)取代再生性弱的部<br />

分(如根及根茎)等研究,是确保中药资源可持续发展<br />

的重要途径和措施。索风梅等 [35] 分析当前濒危中药替代<br />

资源的研究现状及存在问题,并对我国今后替代品研究<br />

方向及策略提出了建议和展望。谭仁祥 [36] 从兼具材料稀<br />

有性、结构新颖性、功能独特性和药源可供性四种特性<br />

出发,对海洋微生物可作为新天然药物的重要资源进行<br />

了剖析,并对海洋微生物的关键共性问题进行了探讨。<br />

从本草、功效、化学成分、机制等方面将常用马兜铃药<br />

用植物与《中国药典》规定的已有替代药材进行比较,<br />

探讨其可行性 [37] 。药用植物内生真菌能够产生许多结构<br />

新颖的活性次级代谢产物,已成为发现新天然活性物质<br />

的重要源泉 [38] 。Rongmin Yu et al. [39] 采用HPLC-<br />

DAD指纹图谱技术对人工蛹虫草进行研究,对人工新药<br />

源的质量进行评价。<br />

利用组织培养、细胞培养等现代生物技术生产中药资源<br />

或其药用次生代谢产物越来越受到重视。林丛发等 [40] 采<br />

用组织培养技术进行铁皮石斛(Dendrobium officinale<br />

Kimura et Migo)及其类原球茎增殖培养的改良、组培<br />

苗的移栽进行了研究。李永丽等 [41]综述了近年来细胞培<br />

养生产药用次生代谢物的研究进展。为保护自然资源做<br />

出了有益探索。<br />

4 中药及天然药物资源化学研究<br />

4.1 中药及天然药物资源有用物质的动态积累及变化<br />

规律研究<br />

4.1.1 植物次生代谢产物的生物合成、基因调控及生<br />

态环境的影响研究<br />

黄酮类化合物合成过程受到苯丙氨酸解氨酶(PAL)、<br />

茶尔酮合成酶(CHS)、茶尔酮异构酶(CHI)、黄烷<br />

酮醇还原酶(DFR)、异黄酮合成酶(IFS)等系列酶<br />

的调控,而这些酶的活性及其分子合成水平又受到光<br />

照、水分、矿物质等环境因素的影响。通过黄酮类化合<br />

物合成途径及其关键酶的分析,明确环境因子影响黄酮<br />

合成及其分子机制 [42] 。植物甾醇和三萜类皂苷是在生物<br />

合成过程中有许多关键酶,如鲨烯合成酶(SS) 、鲨烯氧<br />

化酶(SE) 、氧化鲨烯环化酶(OSCs) 和糖基转移酶(GT)<br />

等。综述这些关键酶在催化机理、基因克隆与表达调控<br />

方面的研究进展,并简要探讨了通过这些关键酶的代谢<br />

工程研究来增产植物甾醇和三萜类皂苷的广阔前景 [43] 。<br />

药用生物的次生代谢产物,包括生物碱、萜类、酚类、<br />

甙类等,在植物的生理调节、自身保护、生存竞争、协<br />

调与环境关系等生命活动方面均起着重要作用。各种生<br />

28 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

态环境因素包括光、温度、土壤、空气以及生物因素均<br />

影响到药用植物的次生代谢过程。对药用植物次生代谢<br />

成分与生态环境因素的关系进行研究有利于揭示药用植<br />

物药用有效成分地域性差异的原因,可为药用植物的育<br />

种、栽培提供理论依据 [44] 。有对基因调控技术提高药用<br />

植物细胞有效成分产量的研究进行综述 [45] 。<br />

4.1.2 不同产地、不同采收期药用生物体内代谢产物<br />

动态积累及变化规律研究<br />

运用固相萃取预处理、HPLC - ELSD等方法建立了不同<br />

产地连钱草中三萜酸类、黄酮类成分的分析方法,评价<br />

了不同产地连钱草中多类型、多指标药效物质成分及其<br />

质量 [46] 。采用多变量分析(multivariate data analysis)<br />

方法 [47] 对53个不同产地的蛇床子样品中11种香豆素成分<br />

进行分析,采用PCA法进行分析归类,揭示该类成分在<br />

不同产地蛇床子中的分布具有一定规律性。采用酸性染<br />

料比色法与两相滴定法 [48] 对不同产地、不同采收期平贝<br />

母中总生物碱的积累进行研究。<br />

采用HPLC指纹图谱技术 [49] 对中国当归属及其伞形科植<br />

物药材进行研究。采用HPLC-ELSD法 [50] 同时测定了通<br />

光藤Marsdenia tenacissima中7种多氧孕烷苷类化合物。<br />

采用高效液相色谱法(HPLC) [51] 对分布于我国11个省份<br />

的红花药材(共36份样品)进行色谱分离,对不同种质红<br />

花药材进行聚类分析,并对其相似度进行分析。<br />

采用HPLC-MS法 [52] 对当归及伞形科相关药用植物中藁本<br />

内酯成分进行定量分析。采用紫外-可见分光光度法 [53] 测<br />

定不同采收时间苏薄荷中总黄酮的含量,采用HPLC法考<br />

察黄酮苷元(香叶木素)和黄酮苷(蒙花苷)的动态变化;采<br />

用GC法 [54] 考察苏薄荷挥发性成分的动态积累变化。<br />

研究了不同生长期连翘果实干物质及叶和果实中有效成<br />

分的积累规律 [55] 。分析了不同生长发育期北细辛中挥<br />

发油的形成和积累,采用GC-MS法测定北细辛根中不<br />

同样品的挥发油含量,并对其进行主成分分析,确定了<br />

北细辛的最佳采收期 [56] 。采用HPLC分析不同时期采收<br />

的桑叶药材中芦丁及绿原酸的含量 [57] ,桑叶最佳采收<br />

期应为10月下旬经初霜后,这符合桑叶药用须经霜的传<br />

统要求。研究了蓝花桔梗和白花桔梗中总皂苷的动态积<br />

累 [58] 。<br />

对湖北两个天麻GAP ( good agricultural practice)基地不<br />

同品种的天麻进行了天麻素含量的动态检测和生态条件<br />

及产量的考察 [59] 。采用紫外分光光度法 [60] 对野马追生<br />

长过程中总黄酮含量的变化规律进行研究。利用分子生<br />

物学技术中随机扩增多态性DNA(RAPD) 技术和HPLC技<br />

术 [61] 对不同农家类型的巴戟天进行内在质量的分析。


4.2 植物化学分类学及亲缘学研究<br />

植物化学分类学以植物化学成分为依据,对药用植物加<br />

以分类,研究各植物类群间的亲缘关系探讨植物界演化<br />

规律;同时更好地引导开发和利用植物资源,如药物新<br />

品种、新原料和新资源的发现等。<br />

彭勇等 [62] 研究了毛茛科Ranunculaceae扁果草亚科<br />

Isopyroideae药用植物亲缘学,对扁果草亚科植物形态、<br />

化学成分、药理作用及其疗效研究数据进行归纳分析,<br />

综合研究该亚科各属的形态、化学成分,并结合以往系<br />

统分类结果,对该亚科内各属系统发育和亲缘关系进行<br />

探讨。肖培根等 [63] 对中国乌头属植物药用亲缘学进行<br />

研究,发现牛扁亚属subgen. Lycoctonum是以牛扁碱和<br />

C18-二萜生物碱为主的类群,由于其毒性中等,因而是<br />

寻找镇痛、抗炎等新药的一个对象。从二萜生物碱化学<br />

成分来看,露蕊乌头亚属subgen. Gymnaconitum并不显<br />

得最为进化,对其分类位置尚难作出最后的结论。并对<br />

乌头亚属subgen. Aconitum亚属下系之间的化学分类表<br />

现出的特征进行分析研究,指出各乌头系的毒性差异及<br />

其开发利用价值。<br />

5 中药资源学科发展现状<br />

5.1 中药资源科学研究进展<br />

随着中药产业的发展,中医药行业的发展越来越受到国<br />

家科技部、国家中医药局、国家生物技术中心以及各级<br />

相关部门的重视,相关科研项目资助力度有逐年上升趋<br />

势。2006年新发布的中医药创新发展规划纲要中明确提<br />

出“加快构建中药农业技术体系”,开展中药材规范化<br />

生产技术、绿色无公害技术、中药材质量系统评价、珍<br />

稀濒危品种保护、繁育和替代品等研究。在资源调查基<br />

础上建立中药材种质库、基因库、化学样品库等。<br />

2006年启动实施的国家“十一五”科技支撑计划项<br />

目“中药资源可持续利用及产业共性技术研究”,分<br />

为八个课题。主要研究内容包括:1、生物技术与中药<br />

材优良品种选育研究;2、道地药材适宜生产区的区划<br />

及生态适宜性研究;3、有效恢复中药材生产立地条件<br />

与土壤生态环境修复技术研究;4、种子贮存、栽培生<br />

产、商品流通等环节的病虫害防治技术研究;5、药材<br />

采收、初加工、贮藏过程中共性技术研究;6、中药饮<br />

片炮制技术和相关设备研究;7、中药制药过程与设备<br />

工程化共性技术研究;8、现代制剂技术在中药制剂中<br />

应用的适宜性研究。该项目的启动实施必将大力推进中<br />

药资源事业的快速发展。<br />

DRUG DISCOVERY AND DEVELOPMENT<br />

5.2 中药资源学科建设<br />

中药资源学作为一门以生物学为基础的多学科交叉学科,<br />

涉及生物分类学、生理生态学、地理学、生物化学、天然<br />

产物化学和中药学等学科。其目的是研究药用植、动物自<br />

身生长发育规律及其繁衍与生长所依赖的生态环境,以及<br />

在研究其资源分布规律的基础上,运用经济效益的优化技<br />

术,合理安排中药资源采收、加工和综合利用等,使社会<br />

效益、经济效益及生态效益三者协调发展,为人类医疗事<br />

业及中药产业提供质优量足的中药原料。<br />

学科体系:中药资源科学的分支学科主要包括中药资源<br />

化学、植物化学分类学、中药资源生态学、中药资源地<br />

理学、中药资源管理学、中药资源法学等。<br />

研究任务:中药资源学作为一门新兴学科在许多方面都<br />

有长足发展,但在理论和实践上有待充实和提高。基本<br />

任务是:(1)中药资源科学基础理论和方法学研究;<br />

(2)中药资源调查,蕴藏量的调查和测算,重要药用<br />

动植物、珍稀濒危药用植物资源保护、天然更新和人工<br />

更新研究,药物资源定位观测研究等;(3)重要生物<br />

资源生态环境、地理分布和活性成分、原料产量间的关<br />

系,药物资源带动生产区划研究等;(4)医药工业原<br />

料的综合利用和开发;(5)重要药用植物化学成分积<br />

累动态、生物合成及增产因子研究;(6)紧缺药材、<br />

进口药材代替品和类效品以及新资源寻找与开发;(<br />

7)防治重要疾病药物新品种、新资源寻找和开发;(<br />

8)运用现代科学技术(离体保护、细胞工程、基因工<br />

程等)进行种质资源保护研究。<br />

发展趋势:1、中药资源可持续发展与利用的系统性研<br />

究 (1)、优良种质资源保存与优良品种选育研究;(<br />

2)、濒危、珍稀品种的抚育更新与繁育技术研究;(<br />

3)、道地药材适宜生产区的区划及生态适宜性研究;<br />

(4)、大宗品种的资源综合利用研究;(5)、稀缺、<br />

贵重中药材的生物工程技术应用性研究;(6)、新资<br />

源、替代资源的系统研究。<br />

2、中药生产过程中共性关键技术系统性研究 (1)、有<br />

效恢复中药材生产立地条件与土壤微生态环境修复技术<br />

研究;(2)、种子贮存、栽培生产、药材贮藏、流通<br />

各环节的病虫害防治技术研究;(3)、药材适宜采收<br />

期、初加工技术、贮藏期质量控制技术研究。<br />

教材建设:1993年中国药科大学周荣汉教授主编的《中<br />

药资源学》教材由中国医药科技出版社正式出版发行,<br />

这是我国第一部中药资源学专著,对该学科的发展和相<br />

关学科人才培养发挥了重要作用。<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 29


在中药资源普查工作的基础上,我国相继出版了若干具<br />

有代表性的大型著作,如《中国中药资源志要》、《中<br />

国中药区划》等,系统地记载了我国中药资源状况。之<br />

后,有些学者就资源学科研究内容编纂出版了一批有影<br />

响力的著作和专论,为学科建设及科学研究做出了重要<br />

贡献。近年来出版的具有代表性的著作如下:《中药<br />

资源科学百科全书》(上、下册)、《植物化学分类<br />

学》、《中药资源可持续利用导论》、《中药材规范化<br />

种植(养殖)技术指南》等,供从事中药领域研究的科<br />

研、教学人员很有价值的参考书籍。其中2005年出版的<br />

由周荣汉、段金廒主编的《植物化学分类学》一书荣获<br />

2006年度华东地区优秀科技图书一等奖。<br />

5.3中药资源人才培养现状<br />

5.3.1 高等院校相关专业设置情况<br />

随着社会和市场对中药及中药资源人才的需求,各高校相<br />

继设置中药学、中药资源学、中药资源与开发等专业,以<br />

适应我国及世界范围内对中药领域人才的需求。同时,注<br />

重高层次人才的培养,如设置中药学、生药学及中药资源<br />

学专业的硕士点、博士点,为中医药事业的发展输送或贮<br />

备高层次、高水平人才资源。目前,我国主要高等院校中<br />

药资源相关专业设置及培养人才概况如下:<br />

(1)开设“中药资源与开发”本科专业的院校:<br />

2个药科大学(中国药科大学、沈阳药科大学);12个<br />

中医药类院校(南京中医药大学、广州中医药大学(新<br />

增)、黑龙江中医药大学、山东中医药大学、北京中医<br />

药大学(中药专业新增中药资源与开发方向)、成都中<br />

医药大学、湖南中医药大学(新增)、广西中医学院、<br />

云南中医学院、安徽中医学院、江西中医学院、湖北中<br />

医学院);9个农(林)类大学(安徽农业大学生命科<br />

学学院、江西农业大学、吉林农业大学(中药学专业中<br />

药资源方向)、山西农业大学(新增)、山东农业大<br />

学、南京农业大学、湖南农业大学、河北农业大学(专<br />

科)、吉林农业科技学院(中药科学系)、浙江林学院<br />

(中药资源));其他院校(广东药学院、浙江工业大<br />

学、新疆医科大学、黑龙江林业职业技术学院、山西生<br />

物应用职业技术学院、黑龙江农业经济职业学院、广西<br />

卫生管理干部学院等)。<br />

(2)开设“中药资源”相关专业、方向硕士点、博士<br />

点的院校<br />

开设中药资源学专业硕士点的学校 中国药科大学、沈<br />

阳药科大学、西北大学<br />

开设中(生)药学专业设有中药资源研究方向硕士点<br />

DRUG DISCOVERY AND DEVELOPMENT<br />

的高校 浙江中医药大学、甘肃中医学院、广西中医学<br />

院、贵阳中医学院、南京中医药大学、浙江大学、华中<br />

科技大学、江苏大学、四川大学、南京农业大学等。<br />

开设“中药资源学、中药学、生药学”博士点的高校<br />

沈阳药科大学、浙江中医药大学、长春中医学院、新疆<br />

医科大学、四川大学等。<br />

5.3.2人才队伍状况及培养目标<br />

目前,中医药高等院校包括综合性大学的药学专业已累<br />

计超过300所,每年培育的专业技术人才已逾万人,每<br />

年培育的硕士、博士人才超过千人。相对而言,中药资<br />

源研究人才队伍缺乏系统性、整体性,人才流失严重。<br />

各大院校培养的中药资源人才往往转向药剂学、药理<br />

学、化学等领域,基层单位的情况则更为严峻,与中药<br />

资源相应的研究室和部门几乎形同虚设。国家如果对资<br />

源的调查研究仍不进行大规模投入,由于中药资源短缺<br />

和资源研究人才短缺造成的中药现代化发展瓶颈问题将<br />

会日益突出。<br />

中药资源人才培养应适应中药资源基础与应用研究、中<br />

药现代化与中药产业化发展的需要,如培养“GAP种植<br />

基地基地建设”的专业人才、管理人才等;培养“资源<br />

保护与更新”的专业技术人才、管理人才等。<br />

6 结语<br />

综上表明,2006年中药资源学科在国家科技管理和行业<br />

管理部门的高度重视、投入和引导下,在本领域科、<br />

教、产、商及政府各环节的共同努力下取得了丰硕成<br />

果。中药资源作为国家战略资源和储备物资,即满足了<br />

日益增长的人口健康保障需求,产生了巨大的社会效<br />

益;又满足了国内外制药工业、食物补充剂、保健品、<br />

化妆品等产业链的原料药需求,产生了巨大的经济效<br />

益;随着中药材栽培品种和面积的不断扩展,有效地调<br />

整了药材主产区的农村产业结构和增加了农民收入,同<br />

时又使自然药用生物资源的种群数量和蕴藏量得到有效<br />

保护和更新,产生了巨大的社会、经济和生态效益。<br />

参考文献<br />

[1] 徐淑珍,干国平,吴和珍,等. 菝葜属药用植物资<br />

源调查,现代中药研究与实践,2006,20(1):<br />

26-28<br />

[2] 徐文芬,何顺志. 贵阳市菊科药用植物新资源,贵<br />

州农业科学, 2006 ,34 (6) :27-29<br />

[3] 李胜蓉,王昌华,李紫微. 重庆獐牙菜属药用植物<br />

资源及其开发利用,资源开发与市场,2006,22(<br />

4):377-379<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 3


Trends in Bio/Pharmaceutical Industry<br />

[4] 王业桥,杨本鹏. 海南药用植物资源及其保护与利<br />

用,中国野生植物资源, 2006,25(5):21-24<br />

[5] 余顺惠,邓洪平,覃勉. 三峡库区药用植物种植调<br />

查,重庆三峡学院学报,2006,22(3):14-16<br />

[6] 刘华宝,包晓红,金作衡,等. 攀枝花市中药资源<br />

分布情况调查,四川中医,2006,24(1):46-47<br />

[7] 戴智明,谢健国,税 ,等. 广东江门市锦江源<br />

自然保护区维管植物资源调查,广东林业科技,<br />

2006,22(1):48-51)<br />

[8] 汪荣斌,张西玲,晋玲,等. 甘肃产中药秦艽资源调<br />

查,甘肃中医学院学报, 2006,23( 4):43-45)<br />

[9] 唐建宁,杨云飞, 李满,等. 六盘山区秦艽植物资源<br />

及其利用研究,农业科学研究,2006,27(1):<br />

59-62)<br />

[10] 唐其展,周嘉运,何铁光,等. 广西青蒿资源研究<br />

现状,广西农业科学,2006,37(1):84-87<br />

[11] 刘文华,岳乃鱼,张洪峰. 陕西省家养林麝资源<br />

现状与分析研究,陕西师范大学学报(自然科学<br />

版),2006,34(sup.):183-188<br />

[12] 王金辉,孙亚伟,秦玉涛,等. 嵊山岛海洋药用生<br />

物资源状况调查,氨基酸和生物资源,2006,28<br />

(1):1-5<br />

[13] 卢颖,王文全. 地理信息系统(GIS)在中药资源研究<br />

中的应用探讨,北京中医药大学学报,2006,29(<br />

4):246-249<br />

[14] 赵润怀,王继永,孙成忠,等. 基于TCMGIS -Ⅰ的<br />

道地药材附子产地适宜性分析, 2006,8(7):4-8<br />

[15] 孙成忠,陈士林,赵润怀. 地理信息系统与中药资<br />

源信息化建设,中国现代中药,2006,8(10):<br />

4-7<br />

[16] 孙宇章, 黄璐琦,郭兰萍,等. 遥感技术在中药资源<br />

调查中的应用,中国现代中药,2006,8(9):<br />

7-11<br />

[17] 陈士林,肖诗鹰,魏建和,等. 川贝母野生抚<br />

育——中药材可持续利用模式研究,亚太传统医<br />

药,2006,2:72-75)<br />

[18] 黄明进,伍明江,邱德文. 浅谈中药资源储量和质<br />

量的形成,贵阳中医学院学报,2006,28(6):<br />

42-44<br />

[19] 汪立祥,方建新. 皖南山区伞形科野生药用植物资<br />

源及永续利用,中国农学通报,2006,22(6):<br />

407-409<br />

[20] 陈仕江,钟国跃,马开森. 珍稀名贵中药材冬虫夏<br />

草资源可持续利用的思考与建议,重庆中草药研<br />

究,2006,2:8-10<br />

[21] 郭冬梅. 中药材资源的可持续发展研究,中国现代中<br />

药,2006,8(3):35-36<br />

[22] 么厉,程惠珍,杨智,主编. 中药材规范化种植<br />

(养殖)技术指南[M]. 中国农业出版社,北京:<br />

2006:8-15.<br />

32 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

[23] 杜娟,马小军,李学东. 半夏不同种质资源AFLP<br />

指纹系谱分析及其应用,中国中药杂志,2006,<br />

31(1):30-33<br />

[24] 马小军,李西文,杜鹃,等. 加权打分法定量评价<br />

半夏种质资源的研究,中国中药杂志,2006,31(<br />

12):975-977<br />

[25] 吴立蓉,贺红,林小桦. 人工诱变技术在药用植物<br />

育种中的应用与展望,中草药,2006,37(7):<br />

1107-1109<br />

[26] 杨逢春,胡新文. 我国热带药用植物开发现状,亚<br />

热带植物科学,2006,35(2):78-80.<br />

[27] 何经亮,林文津. 中药资源开发利用研究现状及进<br />

展,海峡药学,2006,18(1):108-111)<br />

[28] 储蓉,林昌虎,赵承友,等. 贵州裸子药用植物<br />

及可持续开发利用,经济地理,2006(sup.):<br />

317-318<br />

[29] 闫志峰,张本刚,陈士林,等.濒危中药资源系统<br />

评价保护体系的构建,世界科学技术-中医药现代<br />

化,2006,8(5):16-21)<br />

[30] 李西林,周秀佳,南艺蕾. 中药濒危药用动植物<br />

资源保护与可持续利用,上海中医药大学学报,<br />

2006, 20(2):69-71<br />

[31] 韩嵩,刘俊昌,陈文汇,等. 我国药用濒危野生动<br />

物繁育利用现状,林业调查规划,2006,31 ( 2) :<br />

24-27<br />

[32] 陈静,李斌. 野生药材资源保护与利用的立法探<br />

讨,中国中医药信息杂志,2006,13 (11):6-8<br />

[33] 缪剑华. 药用植物资源管理系统的研究,广西医<br />

学,2006,28(6):784-787<br />

[34] 王广平,张少辉. 用3S技术推动中药资源信息化管<br />

理,中国现代中药,2006, 8(2):4-7<br />

[35] 索风梅,陈士林. 论濒危中药替代品的研究,亚太<br />

传统医药,2006,4:68-72)<br />

[36] 谭仁祥. 海洋微生物:新天然药物的重要源泉,中国<br />

天然药物,2006,4(1):2-4<br />

[37] 刘永晔,李连达,吴理茂,等. 马兜铃属植物与其<br />

替代药材的对比分析,中国临床药理学与治疗学,<br />

2006,11(8):841 - 846<br />

[38] 顾谦群,温江妮,朱天骄,等. 药用植物内生真<br />

菌---天然活性产物新资源,中国海洋大学学报,<br />

2006,36 (3) :365-369<br />

[39] Rongmin Yu, Bin Ye, Chunyan Yan, et al.Fingerprint<br />

analysis of fruiting bodies of cultured Cordyceps<br />

militaris by high-performance liquid chromatographyphotodiode<br />

array detection. Journal of Pharmaceutical<br />

and Biomedical Analysis 2007, 44: 818-823<br />

[40] 林丛发,钟爱清,林云斌,等. 铁皮石斛组培快速<br />

繁殖技术研究,闽东农业科技,2006,2:3-7)<br />

[41] 李永丽,周洲,李科友. 细胞培养生产药用次生代


谢物研究进展,安徽农业科学,2006, 34( 2) :<br />

219- 221<br />

[42] 徐文燕,高微微,何年春. 环境因子对植物黄酮类<br />

化合物生物合成的影响,世界科学技术-中医药现<br />

代 [43] 刘强,丛丽娜,张宗申. 植物甾醇与三萜类<br />

皂苷生物合成基因调控的研究进展,安徽农业科<br />

学, 2006,34(19):4844 - 4846<br />

[44] 鲁守平,隋新霞,孙群,等. 药用植物次生代谢的<br />

生物学作用及生态环境因子的影响,天然产物研究<br />

与开发,2006,18:1027-1032<br />

[45] 江湖,苏虎.基因调控技术提高药用植物细胞有效<br />

成分产量的研究进展,中草药,2006,37(11):<br />

附7-8<br />

[46] 王庆,段金廒,钱大玮,等. 不同产地连钱草中三<br />

萜酸类及黄酮类成分的分析与评价,南京中医药大<br />

学学报,2006,22(1):44-46<br />

[47] Feng Yan, Zhang Liang, Cai Jianna, et al. PCA<br />

Analysis of Cnidium monnieri fruits in different<br />

regions of China. Talanta 2001 53: 1155-1162<br />

[48] 王艳红,吴晓民,郑友兰. 不同产地和采收期的平<br />

贝母总生物碱含量, 中药材, 2006,29(1):8-10<br />

[49] Guang-Hua Lu, Kelvin Chan, Yi-Zeng Liang,<br />

et al. Development of high-performance liquid<br />

chromatographic fingerprints for distinguishing<br />

Chinese Angelica from related umbelliferae herbs<br />

Journal of Chromatography A, 2005,1073: 383-392<br />

[50] Jun Deng, Fan Shen, Daofeng Chen.Quantitation<br />

of seven polyoxypregnane glycosides in Marsdenia<br />

tenacissima using reversed-phase high-performance<br />

liquid chromatography-evaporative light-scattering<br />

detection. Journal of Chromatography A, 2006,1116<br />

:83-88.<br />

[51] 张戈,郭美丽,张汉明,等. 不同种质红花药材的高<br />

效液相色谱法指纹图谱研究,第二军医大学学报,<br />

DRUG DISCOVERY AND DEVELOPMENT<br />

2006,27 (3):280-282<br />

[52] Guang-Hua Lu, Kelvin Chan, Chi-Leung Chan, et al.<br />

Quantification of ligustilides in the roots of Angelica<br />

sinensis and related umbelliferous medicinal plants by<br />

high-performance liquid chromatography and liquid<br />

chromatography-mass spectrometry. Journal of<br />

Chromatography A, 2004, 1046 :101-107<br />

[53] 林彤,段金廒,钱大玮,等. 薄荷黄酮类含量动态<br />

变化,中药材,29(9):888-890<br />

[54] 林彤,段金廒,钱大玮,等. 苏薄荷挥发性成分<br />

分析及其动态变化研究,现代中药研究与实践,<br />

2006,20(4):28-31<br />

[55] 李卫建,李先恩. 连翘果实干物质与有效成分积累<br />

规律研究,中草药,2006,37(6):921-924<br />

[56] 陈文杰,曲振山. 主成分分析确定北细辛的最佳采<br />

收期,黑龙江医药,2006,19(1):38-39<br />

[57] 任玉珍,王龙虎,梁焕,等. 不同采收期桑叶药材<br />

的质量比较,中国现代中药,2006,8(5):8-10<br />

[58] 郝昕,王雪,崔树玉,等. 长白山区桔梗最佳采收<br />

期的研究及聚类分析,中成药,2006,28(11):<br />

1595-1597<br />

[59] 王新胜,尤敏,斯缨,等. 湖北天麻GAP基地不<br />

同品种天麻最佳采收期研究,武汉植物学研究,<br />

2006, 24 (1) : 71-73<br />

[60] 胡林水. 野马追最佳采收期的研究,中国药业,<br />

2006,15(2):65-66<br />

[61] 丁平,徐吉银,楚桐丽,等.不同农家类型巴戟天<br />

DNA与HPLC指纹图谱的质量评价研究,中国药学<br />

杂志,2006,41(13):974-977)<br />

[62] 彭勇,陈四保,刘勇,等. 毛茛科扁果草亚科药用<br />

植物亲缘学的探讨,中国中药杂志,2006,31(<br />

14):1210-1214<br />

[63] 肖培根,王锋鹏,高 峰. 中国乌头属植物药用亲缘<br />

学研究,植物分类学报, 2006,44 (1):1-46<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 33


Trends in Bio/Pharmaceutical Industry<br />

Label-Free Optical Biosensors in Drug Discovery<br />

ye Fang<br />

About the author: dr. ye Fang is<br />

currently a research manager at<br />

corning Incorporated. Prior to corn-<br />

ing, he was a postdoc at Johns hop-<br />

kins university school of medicine<br />

from 996 to 2000, and at univer-<br />

sity of Vermont from 995 to 996.<br />

he received his Bs in chemistry<br />

from hubei university, and his ms<br />

in physical chemistry from Wuhan<br />

university, and his Phd in Biophysi-<br />

cal chemistry from the Institute<br />

of chemistry, chinese academy of<br />

sciences. he has published over 80<br />

papers. his areas of research inter-<br />

est include biophysics, systems cell<br />

biology, protein microarrays, and op-<br />

tical biosensors. ye can be reached<br />

by email at fangy2@corning.com.<br />

34 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

Abstract<br />

Label-free optical biosensors have migrated from a tool solely for<br />

biomolecular interaction analysis to a universal platform for both<br />

biochemical and cell-based assays. Together with recent advancement in<br />

instruments for high througphput screening, the newly discovered ability of<br />

optical biosensors for assaying living cells will accelerate wide adoption of<br />

label-free biosensors in drug discovery processes.<br />

Introduction<br />

The pharmaceutical industry is constantly looking for new tools, techniques<br />

and practices to increase the productivity of R&D and improve the<br />

quality of the innovative medicines they produce. In the recent years, high<br />

throughput screening (HTS) systems that quickly screen massive numbers<br />

of compounds have become essential in drug discovery processes. However,<br />

significant limitations persist in most HTS platforms which utilize labels<br />

or cell engineering to study an interaction, a pathway or a cellular activity.<br />

Labels or cell engineering can, in some cases, interfere with the detection,<br />

the molecular interaction, or the cell biology of target receptors, thus<br />

resulting in false positives [1] . Importantly, most cell-based assays that are<br />

biased on a single pathway or activity can also lead to false negatives, given<br />

that many ligands often exhibit collateral efficacies in activating different<br />

signaling pathways through a single receptor [2] . To address these limitations,<br />

solutions-providers have developed label-free techniques, including optical<br />

biosensors and electrical biosensors.<br />

Biosensor<br />

In the past several decades, many types of biosensors have been developed.<br />

Although there is difference in operating principle (e.g., heat, light, impedance),<br />

all biosensors consists of three components – a biological component,<br />

a detector element, and a transducer associated with both components<br />

(Fig. 1). The biological<br />

component is generally a<br />

bioreceptor (e.g., protein,<br />

nucleic acids, or lipids)<br />

immobilized on, or a living<br />

system (e.g., cells, or t<strong>issue</strong>s)<br />

contacted with, the surface<br />

of the transducer [3] . The<br />

interaction between a compound<br />

and bioreceptors or<br />

living systems can produce a<br />

change in physical contents<br />

of the transducers. Such<br />

changes can be detected and<br />

used to directly quantify the<br />

transducer<br />

Analyte<br />

Detector system<br />

bioreceptor<br />

Figure 1 The operating principle of<br />

biosensors.


inding of the compound, or to determine the compoundinduced<br />

alterations of cells (Fig. 2). Based on the transducer<br />

used, they are often named as calorimetric, acoustic, electrical,<br />

magnetic, and optical biosensors. Table 1 summarizes the<br />

major players in label-free biosensors.<br />

Optical biosensor<br />

Optical biosensor is the most important class of biosensors<br />

[1, 4] . Most of these biosensors exploit evanescent waves to<br />

characterize molecular interactions, or compound-induced<br />

response of living cells, at or near the sensor surface [3, 5] . The<br />

evanescent-wave is an electromagnetic field, created by the<br />

total internal reflection of light at a solution-surface interface,<br />

which typically extends a short distance (~hundreds of nanometers)<br />

into the solution with a characteristic depth, termed as<br />

penetration depth or sensing volume. Common to all optical<br />

biosensors is that they measure changes in local refractive<br />

index at or very near the sensor surface, although commercial<br />

systems differ greatly in operating principle, throughput,<br />

sample delivery process, and applications.<br />

1. Surface Plasmon Resonance (SPR) systems<br />

SPR relies on a prism to direct a wedge of polarized light,<br />

covering a range of incident angles, into a planar glass substrate<br />

having a gold thin film to excite surface plasmons. The resonant<br />

angle at which a minimal in intensity of reflected light occurs<br />

is a function of the refractive index of the solution close to<br />

the gold layer on the opposing face of the sensor surface [5] .<br />

Coupled with microfluidics which introduces an analyte as<br />

well as separates unbound and bound molecules, the biosensor<br />

becomes a powerful biophysical tool for biomolecular interaction<br />

analysis – quantitatively characterizing how biomolecular<br />

complexes form and dissociate apart over time.<br />

a<br />

E C M<br />

b<br />

iec<br />

DRUG DISCOVERY AND DEVELOPMENT<br />

cell<br />

B ro a d b a n d lig h t R e fle c te d lig h t<br />

itc (transcellular current)<br />

Electric<br />

pulse<br />

D e te c ta b le D M R<br />

W a v e g u id e<br />

g la s s<br />

iec (extracellular current)<br />

G o ld e le c tro d e<br />

s u b s tra te<br />

Figure 2 Principles of two types of biosensors for living<br />

cell sensing. (a) A RWG biosensor for monitoring ligandinduced<br />

dynamic mass redistribution in living cells. Cells<br />

are anchored to the sensor surface through interaction with<br />

the extracellular matrix (ECM). (b) An electric biosensor<br />

for monitoring the ionic environment surrounding the<br />

biosensor and the cells. Cells are cultured on the surface<br />

of a biosensor having an array of gold microelectrodes.<br />

Both flows of extracellular (iec) and transcellular (itc)<br />

current are measured, and a low AC voltage at variable<br />

frequencies is applied to the cell layer.<br />

Table 1 Biosensor technologies, manufacturers, instruments, throughput, and website information.<br />

Technology Manufacturer Instrument Throughput Website<br />

SPR<br />

RWG<br />

Biacore<br />

GWC Technologies<br />

BioRad<br />

Corning Inc<br />

SRU Biosystems<br />

A100, T100, S51, FLEXChip<br />

SPRimager®II<br />

ProteOn<br />

Epic®<br />

BIND<br />

Low/medium<br />

Medium<br />

low<br />

High<br />

High<br />

www.biacore.com<br />

www.gwctechnologies.com<br />

www.bio-rad.com<br />

www.corning.com<br />

www.srubiosystems.com<br />

Resonant mirror Thermo IAsys Low www.thermo.com<br />

Interferometry ForteBio Octet System Medium www.fortebio.com<br />

Electrical biosensor<br />

Acea Biosciences<br />

Applied BioPhysics<br />

MDS Sciex<br />

RT-CES<br />

ECIS<br />

CellKey<br />

Medium<br />

Low<br />

Medium<br />

www.aceabio.com<br />

www.biophysics.com<br />

www.mdssciex.com<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 35


Trends in Bio/Pharmaceutical Industry<br />

SPR-based systems were first commercialized in the 1990s by<br />

a Swedish company Biacore, who still dominates the labelfree<br />

biosensor market today. Biacore offers a series of SPRbased<br />

systems, including A100, S51, T100 and 3000, that are<br />

tailored for profiling the specificity, affinity and kinetics of<br />

protein interactions. These systems differ in how the sample<br />

is delivered and processed, and in throughput. Details related<br />

to these systems can be found from the manufacture’s website<br />

(http://www.biacore.com). However, Biacore systems suffer<br />

from low throughput. To increase throughput, Biacore<br />

recently introduced automated systems such as Biacore 3000,<br />

and multiplexing system FLEXChip. Although these automated<br />

systems are configured such that they are readily accept<br />

samples directly from 96well microplates, these systems have<br />

relative low to medium throughput because limited channels<br />

are available for sample analysis, and measurements have to be<br />

done in series.<br />

2. Resonant waveguide grating (RWG) systems<br />

RWG biosensor utilizes the resonant coupling of light into a<br />

waveguide by means of a diffraction grating. A polarized light,<br />

covering a range of incident wavelengths, is used to illuminate<br />

the waveguide; light at specific wavelengths<br />

is coupled into and propagate along the<br />

waveguide. The resonant wavelength at<br />

which a maximum incoupling efficiency is<br />

achieved is a function of the local refractive<br />

1 . 0<br />

index at or near the sensor surface 0 . 0<br />

PAR 1<br />

- 1 . 0<br />

PKC<br />

[3, 6] .<br />

For HTS as well as cell-based assays, RWG<br />

biosensor is advantageous – this type of<br />

biosensor with appropriate designs allows<br />

lights at nominally normal incident angle<br />

to illuminate the biosensor. This is a very<br />

important design parameter for illuminating<br />

large numbers of biosensors simultaneously<br />

– the prerequisite for HTS which<br />

directly assay samples in the Society for<br />

Biomolecular Sciences (SBS; http://www.<br />

sbsonline.<strong>org</strong>) standard microtiter plates,<br />

such as 384well microplates.<br />

Epic® system, commercialized by Corning<br />

Inc. in 2006, is the first system that is tailored<br />

for both biochemical- and cell-based assays<br />

[3, 7-14] . The Epic® system consists of a<br />

RWG detector, an external liquid handling<br />

accessory and a scheduler, such that it can<br />

process large numbers of microplates using<br />

end-point measurements for HTS, or using<br />

kinetic measurements for high information<br />

36 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

content screening. Epic® 384well biosensor microplates<br />

follow the standard SBS footprint. For biochemical assays,<br />

the microplate surfaces are modified readily such that they<br />

enable covalent coupling of proteins. For cell-based assays,<br />

the microplate surfaces are t<strong>issue</strong> culture compatible for both<br />

adherent and weakly adherent cells.<br />

The SRU BIND system is also centered on RWG<br />

biosensors. It comprises of SBS-standard 96, 384, and 1536well<br />

microplates and a selection of two types of detection<br />

instruments. The BIND Reader contains eight parallel<br />

detection heads, and reads a 96-well plate in 15 seconds. The<br />

system has a small footprint for compatibility with robotic<br />

plate handling systems or single-user operation. The system is<br />

dedicated for bio-affinity measurement, including cell adhesion<br />

to proteins immobilized on the surfaces [15] .<br />

3. Interferometry systems<br />

Interferometry biosensor uses a spectrometer to capture<br />

interference patterns in the reflected light from the biosensor<br />

interface. When biological molecules bind to the biosensor<br />

surface, its thickness increases, and the binding can be<br />

a<br />

3 . 0<br />

b c<br />

2 . 0<br />

thrombin<br />

epinephrine<br />

0 6 0 0 12 0 0 1 80 0 2 40 0 3 0 00 3 6 0 0<br />

PLC<br />

Tim e ( s e c )<br />

DAG<br />

IP3 P-DMR<br />

G q<br />

Ca2 + 2 + , Ca<br />

N -DMR<br />

1 . 0<br />

0 . 5<br />

0 . 0<br />

- 0 . 5<br />

- 1 . 0<br />

2AR<br />

AC<br />

cAMP<br />

0 6 0 0 12 0 0 18 0 0 24 0 0 3 00 0 3 60 0<br />

Tim e ( s e c )<br />

G s<br />

1 . 5<br />

1 . 0<br />

0 . 5<br />

0 . 0<br />

- 0 . 5<br />

LPA 1<br />

Lysophosphatidic acid<br />

AC<br />

cAMP<br />

G i<br />

0 6 0 0 1 2 0 0 1 8 0 0 2 4 0 0 3 0 0 0 3 6 0 0<br />

T im e ( s e c )<br />

Figure 3 Broad applicability of optical biosensor for GPCR screens. (a)<br />

Gq-signaling and its DMR signal (protease activated receptor subtype 1 in<br />

Chinese hamster ovary cells, 10 unit/ml thrombin). (b) Gs-signaling and<br />

its DMR signal (β2-adrenergic receptors in A431 cells, 2nM epinephrine).<br />

(c) Gi-signaling and its DMR signal (lysophophatidic acid (LPA)<br />

receptors in A431, 100nM LPA). The broken arrows indicate the time<br />

when an agonist solution is introduced. Data was generated using Epic®<br />

angular interrogation system. 1 unit equals to 100 pm shift in resonant<br />

wavelength. Figure was reproduced with permission from Ref. 12.


monitored by analyzing changes in the interference pattern<br />

at the spectrometer. This type of biosensor does not need<br />

microfluidics to separate bound and unbound molecules<br />

in order to study the kinetics of protein interactions,<br />

since unbound molecules and medium do not change the<br />

interference pattern. In 2006, ForteBio released the Octet<br />

system, based on BioLayer Interferometry [1] . The biosensor<br />

surface is coated with a biocompatible matrix that can interact<br />

with molecules from a surrounding solution. This system<br />

is applicable to 96well microplates, and only devoted for<br />

biomolecular interaction analysis.<br />

Optical biosensors in drug discovery<br />

Drug discovery involves the identification, optimization,<br />

characterization, screening, and assays of drug candidates for<br />

therapeutic efficacy. The ability of examining living cells is<br />

increasingly important for the success of drug discovery and<br />

development. Although more complex and less specific than<br />

biomolecular interaction analysis, cell-based assays show superior<br />

ability to facilitate the measurements of mode of action,<br />

pathway activation, toxicity, and phenotypic responses of cells<br />

induced by drug compounds. Optical biosensors were solely<br />

used for biomolecular interaction analysis [1, 4, 5] , and had little<br />

use in cell-based assays until we recently demonstrated that<br />

optical biosensors are very useful for probing cell signaling in<br />

both high throughput and high information content fashions<br />

[3, 7-14] . High throughput and cell-based assays are the two most<br />

unmet needs of label-free biosensors. Figure 3 shows the optical<br />

signals of three classes of endogenous G protein-coupled<br />

receptors (GPCRs) in living cells.<br />

1. Systems cell biology<br />

Optical biosensors can track in real time a ligand-induced<br />

dynamic mass redistribution (DMR) signal in native cells or<br />

cell systems, without the need of any labels or manipulations<br />

of cells [3] . The DMR signal represents an integrated and<br />

physiologically relevant cellular response [7] , and is an<br />

approximately global representation of cell signaling and<br />

physiology of a compound acting on cells [8-13] . Given its<br />

ability of multiplexing and quantitative system-response<br />

profiles, biosensor cell assays are well-suited for systems cell<br />

biology study. In combination with chemical biology approach<br />

that directly uses chemicals for intervention of specific cell<br />

signaling components, we have applied optical biosensors to<br />

study the systems cell biology of epidermal growth factor<br />

receptor [8] , bradykinin B2 receptor [7,9] and β2 adrenergic<br />

receptor [10] , all endogenously expressed in A431 human<br />

epidermoid carcinoma cells.<br />

DRUG DISCOVERY AND DEVELOPMENT<br />

2. Systems cell pharmacology<br />

A compound or drug candidate often has off-target effects,<br />

such as toxic to cells. Most cell assays rely on the measurements<br />

of ligand-induced biological responses linked to a single<br />

signaling pathway. Thus, multiple types of assays are required<br />

to assess the compound’s off-target effects. Since biosensor<br />

cell assays do not require prior knowledge of cell signaling and<br />

are applicable to wide classes of targets and cell signaling [7-14] ,<br />

a single biosensor assay can be used to study the systems cell<br />

pharmacology of a drug candidate acting on cells.<br />

3. High throughput screening<br />

Assaying a large numbers of samples is essential for drug discovery<br />

– a process to “fish” out druggable hits from a library<br />

of millions of compounds. Optical biosensor cell assays hold<br />

great potentials in HTS. Unlike conventional assays that often<br />

lead to potential false negatives due to the pathway biased<br />

nature, as well as high false positives due to labels or cell engineering,<br />

optical biosensor offers a non-invasive and manipulation-free<br />

alternative to assay endogenous cellular targets such<br />

as GPCRs in native cells.<br />

Epic® system is the first biosensor system that has been applied<br />

for HTS using both immobilized proteins and living cells<br />

[14]. An internal study using Sigma LOPAC (Library of Pharmaceutically<br />

Active Compounds) and Epic® cell-based assays<br />

for endogenous β2-adrenergic receptors in A431 showed that<br />

Epic® system is able to screen compounds in HTS end-point<br />

mode (~5min per plate), the assay is robust with a Z’ of<br />

greater than 0.7, and leads to high quality of data with a hit<br />

rate of ~2.6%.<br />

4. Hit selection and optimization<br />

The process of transforming hits into high-content lead series<br />

is a crucial step in drug discovery. Both optical biosensor<br />

biochemical and cell-based assays can find many applications<br />

during this hit selection and optimization step. Label-free<br />

cell assays can be used for orthogonal testing and secondary<br />

screening, whereas label-free biochemical assays can be used<br />

assess how the compound binds to the target, and to identify<br />

promiscuous inhibitors.<br />

Conclusion<br />

The drug discovery process has been constantly evolving from<br />

affinity- and targeted-based screens to systems biology- or<br />

biological or clinical activity-based screens. The advent of<br />

optical biosensors, particularly high throughput instruments<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 37


Trends in Bio/Pharmaceutical Industry<br />

and cell-based assays, will accelerate acceptance of optical<br />

biosensors in many points at many stages of the drug<br />

discovery process, for which both high information content<br />

and high throughput are important.<br />

Reference:<br />

1. Cooper, M. A. Optical biosensors: where next and how<br />

soon. Drug Discov. Today 2006, 11, 1061-1067.<br />

2. Kenakin, T. New concepts in drug discovery: collateral<br />

efficacy and permissive antagonism. Nat. Rev. Drug<br />

Discov. 2005, 4, 919-927.<br />

3. Fang, Y. Label-free cell-based assays with optical<br />

biosensors in drug discovery. Assays and Drug<br />

development Technologies 2006, 4, 583-595.<br />

4. Rich, R. L.; Myszka, D. G. Higher-throughput, label-free,<br />

real-time molecular interaction analysis. Anal. Biochem.<br />

2007, 361, 1-6.<br />

5. Cooper, M. A. Optical biosensors in drug discovery. Nat.<br />

Rev. Drug Discov. 2002, 1, 515-528.<br />

6. Tiefenthaler, K.; Lukosz, W. Sensitivity of grating<br />

couplers as integrated-optical chemical sensors. J. Opt.<br />

Soc. Am. B 1989, 6, 209-220.<br />

7. Fang, Y.; Ferrie, A.M.; Fontaine, N.H.; Mauro, J.;<br />

Balakrishnan, J. Resonant waveguide grating biosensor for<br />

living cell sensing. Biophys. J. 2006, 91, 1925-1940.<br />

8. Fang, Y.; Ferrie, A. M.; Fontaine, N. H.; Yuen, P. K.<br />

Characteristics of dynamic mass redistribution of EGF<br />

receptor signaling in living cells measured with label free<br />

optical biosensors. Anal. Chem. 2005, 77, 5720-5725.<br />

9. Fang, Y.; Li, G.; Peng, J. Optical biosensor provides<br />

insights for bradykinin B2 receptor signaling in A431<br />

cells. FEBS Lett. 2005, 579, 6365-6374.<br />

10. Fang, Y.; Ferrie, A. M.; Lahiri, J. Systems biology and<br />

pharmacology of β2 adrenergic receptors in A431. 2007,<br />

In Trends in Signal Transduction Research, Meyers, J.N.,<br />

ed., Nova Science Publishers Inc.: New York, pp. 145-<br />

171.<br />

11. Fang, Y.; Ferrie, A. M.; Li, G.; Fontaine, N. H. Cellular<br />

functions of cholesterol probed with optical biosensors.<br />

Biochim. Biophys. Acta 2006, 1763, 254-261.<br />

12. Fang, Y.; Li, G.; Ferrie, A. M. Non-invasive optical biosensor<br />

for assaying endogenous G protein-coupled receptors<br />

in adherent cells. J. Pharmacol. Toxicol. Methods 2007,<br />

55, 314-322.<br />

13. Fang, Y.; Ferrie, A.M. Optical biosensor differentiates<br />

signaling of endogenous PAR1 and PAR2 in A431 cells.<br />

BMC Cell Biol. 2007, 8, 24.<br />

38 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

14. Li, G.; Ferrie, A.M.; Fang, Y. Label-free profiling of endogenous<br />

G protein-coupled receptors using a cell-based<br />

high throughput screening technology. J. Assoc. Lab.<br />

Automat., 2006, 11, 181-187.<br />

15. Cunningham B.T.; Li, P.; Schulz, S.; Lin, B.; Baird, C.;<br />

Gerstenmaier, J.; Genick, C.; Wang, F.; Fine, E.; Laing, L.<br />

Label-free assays on the BIND system. J. Biomol. Screening<br />

2004, 9, 481-490.<br />

Say it in Chinese:<br />

Label-free 无标记<br />

Biosensors 生物检测器<br />

High Throughput Screeen 高通量筛选<br />

Biomolecule 生物活性分子<br />

Cell-based Assay 细胞测试


Trends in Bio/Pharmaceutical Industry<br />

Development of Hepatitis B Therapeutic Vaccine<br />

lizhen he<br />

About the author: dr. lizhen he<br />

is an associate director at r & d<br />

division in celldex Therapeutics,<br />

a vaccine company focusing on<br />

anti-cancer and anti-virus treat-<br />

ment. dr. he joined medarex in<br />

200 and moved to celldex with<br />

its spinning-off in 2005. dr. he<br />

received her medical degrees from<br />

Fujian medical university, and did<br />

her post-doctoral trainings in royal<br />

Free hospital school of medicine,<br />

london and memorial sloan-Ketter-<br />

ing cancer center, new york.<br />

40 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

Abstract<br />

Hepatitis B virus (HBV) infection is a severe global public health problem.<br />

The administration of prophylactic vaccine has dramatically lowered the<br />

incidence of HBV infection, but it is ineffective to those already infected.<br />

Current anti-viral nucleotide/nucleoside analogues are effective in suppressing<br />

HBV replication but in most cases fail to clear the virus. HBV mutations<br />

resulting in resistance to these drugs and the disease recurrence may be<br />

inevitable in a large proportion of hepatitis B patients. The combination of<br />

anti-viral drugs with immunotherapies renders the promise of controlling<br />

and eventually resolving the infection. In this review, different approaches<br />

in the development of HBV therapeutic vaccines, including selection and<br />

formulation of antigens and adjuvants, are summarized. The difficulties and<br />

challenges in the manipulation of immune responses in chronic HBV-infected<br />

patients are also discussed.<br />

乙肝病毒感染是一严重的全球性公众卫生问题。注射预防性乙肝疫<br />

苗大大减低了乙肝病毒感染的发病率, 但是对于已感染人群却无<br />

效。目前使用的抗病毒核酸类药可以有效地抑制乙肝病毒的福祉,<br />

但在多数情况下并不能完全清除病毒。同时由病毒异变所造成的抗<br />

药性和大部分乙肝病人疾病的复发也是不可避免的。因而,联合使<br />

用抗病毒药和免疫治疗将使得控制疾病以至最终治愈疾病成为可<br />

能。<br />

Introduction<br />

According to WHO report in 2001, 350 million people are chronically<br />

infected with hepatitis B virus (HBV) worldwide, and the infection is responsible<br />

for 1 million deaths each year. Typically, chronic hepatitis and its<br />

complications, i.e., liver cirrhosis and hepatocellular carcinoma, are the death<br />

causes of HBV infection.<br />

Since the success of prophylactic vaccines against HBV infection in 1982,<br />

it has been introduced into childhood immunization services and high<br />

risk individuals in many countries and the incidence of HBV infection has<br />

dropped significantly in these countries. The HBV vaccines currently used<br />

in immunization are HBV surface antigen (HBsAg)-based and their protective<br />

efficacy is mediated by neutralizing antibodies against HBsAg (HBsAb),<br />

which block HBV from entering hepatocytes. Around 90% of healthy<br />

normal individuals, including infants, respond to prophylactic HBV vaccines<br />

and develop protective levels of HBsAb. However, these vaccines are<br />

ineffective at treatment in already infected HBV carriers or hepatitis patients.<br />

On one hand, it is difficult to induce immune responses in infected individuals<br />

whose immune system is apparently tolerant to HBV; on the other hand,<br />

HBsAb can not access to and impact on HBV that live and replicate inside<br />

of hepatocytes.


Much effort and progress has been made in the development of<br />

antiviral drugs. Alpha-interferon (IFNα) was the first approved<br />

therapy for chronic hepatitis B. IFNα, combining antiviral and<br />

immunostimulant properties, results in a sustained suppression<br />

of HBV replication in only one third of patients [1] , and the<br />

adverse events are a drawback for its application. Subsequently,<br />

thenucleoside/nucleotide analogues, such as Lamivudine,<br />

Adefovir, Entecavir and Telbivudine, were delivered to clinics<br />

one after another. These are effective in leading to a rapid inhibition<br />

of HBV replication as well as frequent improvement<br />

of the necroinflammatory activity of liver diseases and lesser<br />

extent of fibrosis [2, 3] . Nevertheless, short-term treatment<br />

with antiviral analogues leads to a frequent relapse of HBV<br />

replication and long-term treatment may result in virological<br />

breakthrough related to the selection of resistant viral variants.<br />

It is evident that clearance of HBV from a chronic carrier by<br />

these antiviral drugs is an unachievable goal. The limitations<br />

of all these antiviral therapies in HBV carriers and hepatitis<br />

patients indicate that development of a more potent therapeutic<br />

regimen is greatly needed for chronic HBV infection. Vaccines<br />

designed to elicit significant host immunity to the virus,<br />

in combination with these therapeutic nucleoside analogues,<br />

render the promise to effectively control the Hepatitis B virus<br />

(HBV) infection and its complications.<br />

Rationale for immunotherapy in chronic HBVinfection<br />

HBV is a non-cytopathic virus. The host anti-HBV immune<br />

response is a double-edged sword in HBV infection. While it<br />

eliminates HBV from bloodstream and hepatocytes, it causes<br />

liver injury. It is not completely understood why some HBV<br />

infected individual exhibit self-limited hepatitis and clear the<br />

virus, whereas the others are unable to do so and become<br />

chronic HBV carriers or chronic hepatitis patients. Circumstantial<br />

evidences suggest that the age and the immune status<br />

at the time of infection are the key factors in this regard. The<br />

majority of adulthood HBV infection manifests a clinically<br />

non-symptomatic or mild acute hepatitis and result in virus<br />

clearance and lifelong protective immunity, which is characterized<br />

by vigorous polyclonal and multispecific antibody and T<br />

cell response. On the contrary, up to 90% of HBV infection<br />

derived from perinatal transmission or during early childhood<br />

results in chronic infection, exhibiting a weak, transient,<br />

narrowly focused and antigenically-restricted HBV-specific<br />

immune response [4, 5] . The small proportion (5-10%) of HBV<br />

infected adults who become chronic HBV carriers is often<br />

linked to their suppressed immune status, such as receiving<br />

chemotherapy, <strong>org</strong>an transplantation or HIV infection.<br />

Both type 1 CD4+ helper T lymphocytes (Th1) and CD8+<br />

cytolytic T lymphocytes (CTL) that are HBV specific contrib-<br />

DRUG DISCOVERY AND DEVELOPMENT<br />

ute to effective control of HBV. Th1 cells exert their effect<br />

through the secretion of multiple cytokines, which mediate antiviral<br />

activities directly and promote CTL response. HBV-sensitized<br />

CTL are capable of recognizing and destroying HBV<br />

infected hepatocytes. The association of hepatocyte destruction<br />

with the HBV clearance has been a critical concern in the<br />

clinical development of immunotherapy against chronic HBV<br />

infection if a potent HBV-specific CTL response is elicited. In<br />

fact, both Th1 and CTL contribute to the immunopathogenesis<br />

of HBV infection [6, 7] . Intrahepatic infiltration of HBVnon-specific<br />

inflammatory cells, i.e., macrophages, neutrophils,<br />

NK cells and activated bystander lymphocytes, also contribute<br />

to the pathogenesis of liver injury. The most important finding<br />

to support the concept of HBV therapeutic vaccine is<br />

that clearance of the HBV from infected hapatocytes probably<br />

does not require massive lysis of hepatocytes, but could<br />

be largely mediated by antiviral cytokines that are secreted by<br />

cells of the innate and adaptive immune systems. In particular,<br />

type 1 and 2 interferon (IFNα, β, γ) and tumor necrosis factor<br />

alpha (TNFα) have demonstrated the ability to trigger several<br />

pathways leading to inhibition of viral replication without the<br />

direct destruction of infected cells in chimpanzee infection<br />

model and HBV transgenic mice model [8-10] . In the case of<br />

acute HBV infection in humans, kinetic analysis indicated that<br />

all or the majority of hepatocytes become infected during an<br />

acute hepatitis course [11] . Amazingly, these patients are able<br />

to recover completely without severe liver flare while vigorous<br />

Th1 and CTL responses to HBV are readily detectable.<br />

Therefore, manipulation to disassociate immune-mediated<br />

HBV clearance from destruction of hepatocytes is potentially<br />

achievable with HBV therapeutic vaccines.<br />

Clinical development of HBV therapeutic vaccines<br />

The objective of HBV therapeutic vaccine is to break immunological<br />

tolerance in chronic carriers and elicit potent<br />

immune responses leading to the resolution of infection with<br />

minimized hepatocyte damage. Based on the observation in<br />

patients and chimpanzees that have completely recovered<br />

from acute infection, the desired immune response profile<br />

should include activation of CD4+ T cells with Th1 bias to<br />

secrete anti-viral cytokines and promote CD8+ T cell activity<br />

and CD8+ T cells that clear virus through cytolytic (CTL) and<br />

non-cytolytic (anti-viral cytokines) activities. Many efforts have<br />

been made by academic, industry and clinicians to develop<br />

HBV vaccines possessing the desired properties and delivering<br />

clinical efficacy. Below is a summary of these efforts with<br />

a focus on on-going clinical programs. Some of the descriptions<br />

may be quoted from institutional website or conference<br />

presentations.<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 4


Trends in Bio/Pharmaceutical Industry<br />

Protein-based vaccines<br />

Current prophylactic HBV vaccines comprise recombinant<br />

protein HBsAg and alum as adjuvant, aiming to induce<br />

antibody responses. Many attempts, including increasing the<br />

vaccine doses or frequencies, addition of preS2/S1 antigens,<br />

and changes in the format of recombinant protein, have been<br />

made to render this vaccine effective in the treatment of HBV<br />

chronic infection. Decrease in HBV DNA, normalization of<br />

serum alanine transaminase level (ALT) and seroconversion to<br />

anti-HBe have been observed in varying small proportion of<br />

hepatitis B patients or carriers who were recruited to clinical<br />

studies, but complete elimination of HBV DNA and seroconversion<br />

of HBsAg to anti-HBsAb have not been achieved [12] .<br />

Most of these investigations did not go far beyond pilot<br />

studies or phase I trials. The most advanced on-going study<br />

is led by Prof. Wen and conducted by Fudan-Yueda Bio-tech<br />

Co. in Shanghai, China. Their approach is taking advantage<br />

of immune response enhancement properties of antigen-antibody<br />

immune complex by mixing prophylactic HBV vaccine<br />

with human HBV immunoglobulin as therapeutic vaccine.<br />

Preclinical data generated in mouse models, including HBsAg-expressing<br />

transgenic mice, showed the induction of<br />

HBsAb, and IFNγ-secreting CTL [13-15] . Healthy volunteers<br />

administrated with the HBsAg-HBsAb immune complex in<br />

combination with alum developed HBsAb without severe<br />

adverse events. Clinical trial phase IIa and IIb in HBV carriers<br />

or hepatitis patients have been completed, but to our knowledge,<br />

no data has been released so far. Along the same line is<br />

Virexx’s Chimigen, a recombinant chimeric molecule fusing<br />

HBsAg to xenotypic IgG Fc, which facilitates binding of Chimigen<br />

vaccine to Fc receptors. In addition, the high mannose<br />

glycosylation of Chimigen due to its production process is<br />

expected to be recognized by macrophage mannose receptor<br />

(MMR). Both Fc receptors and MMR are predominantly expressed<br />

on antigen-presenting cells (APC), capable of mediating<br />

the internalization of bound antigens for efficient processing<br />

and presentation to T cells. It is of interest to explore if<br />

the promotion of delivering HBsAg to APC results in potent<br />

anti-HBV immunity in chronic infected patients.<br />

HBV core protein has been an attractive antigen (HBcAg) in<br />

HBV therapeutic vaccine development. Unlike the secreted<br />

HBsAg and HBeAg, HBV core particles are isolated from host<br />

immune system, and thus highly immunogenic. However, HBeAg<br />

may function as a T cell tolerogen and regulate the immune<br />

response to HBcAg due to the homology. In general, HBcAgspecific<br />

T cell responses are vigorous in infected adults that<br />

have complete and spontaneous recovery, and are much weaker<br />

in chronic carriers. The importance of HBcAg-reactive T-cells<br />

in viral clearance was further emphasized by the association of<br />

adoptive transfer of HBcAg-reactive T-cells via bone marrow<br />

transplantation with the resolution of chronic HBV infection<br />

in recipients, as evidenced that CD4+ T reactivity to HBV core<br />

was common in donors and corresponding recipients while<br />

none reacted to S, pre-S1 or pre-S2 antigen, and the frequency<br />

of core-specific CD4+ and CD8+ T cells in recipients was<br />

42 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

several-fold higher than those specific for surface antigen [16] .<br />

Celldex Therapeutic is developing an HBV vaccine that is a<br />

viral-like particle (VLP) comprising 240 modified HBcAg protein<br />

subunits co-administered with a strong Th1-promoting adjuvant,<br />

a synthetic lipid A mimetic that acts via Toll-like receptor (TLR)<br />

4. The proprietary modifications to the HBcAg subunit have<br />

improved the purity and stability of the VLP, allowing the<br />

establishment of a robust vaccine manufacturing processes and<br />

the production of clinical grade VLP material. Immunological<br />

studies in mice have documented that 10-25µg HBcAg VLP<br />

with the adjuvant promotes Th1-type CD4+ and CD8+ T cell<br />

response profile. These responses increased further following<br />

booster injections a few weeks apart. Studies with peripheral<br />

blood immune cells from chronic HBV carriers were able to<br />

show T cell stimulation by the modified HBcAg VLP, indicating<br />

that the antigen is also appropriately processed and presented to<br />

human T cells. Based on these data, Celldex is planning to enter<br />

clinical development in the near future.<br />

Peptide-based vaccines<br />

Using modern immunological techniques, several CD4+<br />

and CD8+ T cell epitopes have been identified from HBV<br />

proteins, including core, surface, polymerase and X protein<br />

[17-22] . One well-established example is the core antigen 18-<br />

27 peptide, which is immunodominant and subdominant in<br />

different supertype of HLA-A2 molecules, and could induce<br />

HBV-specific CTL response in patients with different HLA-<br />

A2 subtypes. Furthermore, this peptide was also found to<br />

stimulate HLA class II restricted T-cell response. T cells specific<br />

to this epitope are widely measured with high frequency<br />

in most patients with acute self-limited HBV infection<br />

[17, 18, 23,<br />

24] . Therefore, it represents the main component of peptidebased<br />

therapeutic vaccines. A mimetic oligopeptides comprising<br />

HBcAg18-27 linked to the universal T helper sequence of<br />

tetanus toxoid (TT830-843) and the PreS2 18-24 B-epitope<br />

was designed and shown to mediate the induction of CTLmediated<br />

cytotoxicity in human peripheral blood mononuclear<br />

cells (PBMCs) from healthy donors and chronic hepatitis B<br />

patients in vitro and HLA-A2 transgenic mice in vivo [21, 25] .<br />

Based on these findings, a therapeutic vaccine in the format of<br />

liposome-oligopeptides has been delivered to clinical development<br />

by Chongqing Jiachen Biotech Co. with a Phase II trial<br />

on-going in China. There are no clinical data reported yet.<br />

Nevertheless, earlier studies with similar lipopeptide vaccines<br />

showed high immunogenicity in healthy volunteers but comparatively<br />

weak CTL responses in chronically infected HBV<br />

patients [26-28] .<br />

DNA-based vaccines<br />

DNA vaccine approach utilizes plasmid or modified virus to<br />

carry and deliver the encoding sequence of antigen, which is<br />

then synthesized in the vaccination recipients. By virtue of the<br />

sustained in vivo antigen synthesis and the inherent immunostimulatory<br />

properties, DNA vaccines appear to induce strong<br />

and long-lasting humoral (antibodies) and cell-mediated (T-


help, other cytokine functions and cytotoxic T-cells) immune responses<br />

in animals. Data generated from mouse models showed<br />

preferential CTL responses elicited by HBV DNA vaccines and<br />

HBsAg clearance in HBsAg-transgenic mice [29, 30] . However,<br />

similar results have neither been reproduced in HBV transgenic<br />

mice [31] , nor achieved yet in humans and non-human<br />

primates. Oxxon Pharmaccines entered phase II trials with<br />

its H1-8 HBV therapeutic vaccine, containing 2 doses of<br />

DNA plasmid primes and two modified vaccinia virus Ankara<br />

(MVA) boosts, both vectors expressing the same HBV surface<br />

antigen. The phase IIa study concluded that this novel diseasespecific<br />

therapeutic vaccine was well tolerated and appeared<br />

capable of inducing HBeAg seroconversion (4/21, 19%)<br />

and reducing the HBV viral load in HBeAg seroconverters.<br />

Meanwhile, PowderMed designed a plasmid DNA (ppdpSC18)<br />

expressing both HBcAg and HBsAg antigens and is carrying<br />

out a phase I trial in Hong Kong, Singapore, Taiwan and USA.<br />

Dendritic cell-based vaccines<br />

Antigen-pulsed dendritic cells (DCs) have been investigated<br />

as a vaccine platform to enhance the antigen-specific immunity,<br />

in particular, in the treatment of patients with cancers.<br />

Bone marrow-derived DCs pulsed with HBs28-39 peptide or<br />

recombinant preS2/S particles were used to immunize HBV<br />

transgenic mice in an attempt to break tolerance to HBsAg<br />

at the B and T cell levels. The study revealed that while DNA<br />

vaccination only stimulated an Ab response, infusion of<br />

activated DCs derived from transgenic or nontransgenic mice<br />

stimulated a splenic CTL response in all three transgenic lines<br />

immunized. The CTL precursor frequencies are comparable<br />

to those in nontransgenic mice, indicating that DC function is<br />

normal, and HBsAg-specific CTLs are present in HBV transgenic<br />

mice. However, in spite of the HBsAg-specific CTLs<br />

response, none of the transgenic mice developed hepatitis or<br />

displayed suppressed HBV RNA expression or HBV DNA<br />

replication, implying that the CTLs induced in HBV transgenic<br />

mice by the DCs vaccination are insufficient in numbers,<br />

too brief in duration and impaired in functions [31] . A single<br />

injection of HBsAg-pulsed DCs in normal volunteers either<br />

sharply increased the serum levels of anti-HBsAg titers in<br />

HBsAb-positive volunteers or induced anti-HBsAg titers in<br />

HBsAb-negative normal volunteers with no adverse effects<br />

documented during a period of 12 months observation [32] . It<br />

remains to be established if DC-based vaccines are capable of<br />

eliciting efficient anti-viral immunity in HBV infected individuals.<br />

Technically, DC-based vaccine is a costly and technically<br />

challenging approach, and thus the full scale clinical feasibility<br />

is unclear, considering that chronic HBV infection is most<br />

significant in developing countries.<br />

Other formats of vaccines<br />

Emergent BioSolutions’ vaccine candidate uses their<br />

proprietary spi-VEC® oral delivery system to deliver hepatitis<br />

B core antigen to the human immune system. Spi-VEC<br />

is based on live attenuated typhoid vaccine and employs<br />

DRUG DISCOVERY AND DEVELOPMENT<br />

recombinant technology to insert the gene for hepatitis<br />

B core into the live attenuated Salmonella bacteria. The<br />

bacteria produce the antigen once inside the patient. After the<br />

completion of Phase I clinical trial in the United Kingdom<br />

in 30 healthy adult volunteers, a Phase II clinical trial in 45<br />

participants chronically infected with hepatitis B has been<br />

initiated. The primary purpose of this trial is to evaluate the<br />

safety and tolerability of six monthly doses of the vaccine<br />

candidate. The secondary purpose is to investigate whether the<br />

vaccine candidate can reduce the hepatitis B viral DNA load,<br />

a recognized surrogate endpoint for treatment of hepatitis B<br />

using current therapeutics.<br />

Combination of immunotherapy with antiviral<br />

drugs<br />

It is reasonable to combine immunotherapy with antiviral<br />

chemical drugs. Anti-HBV nucleoside/nucleotide analogues<br />

quickly inhibit HBV replication resulting in a reduced HBV<br />

load in circulation and liver. The low virus load environment<br />

may allow potent anti-viral immunity to be triggered by therapeutic<br />

vaccines and thus to exert its efficacy in virus clearance<br />

at absence of massive hepatocyte lysis. Furthermore, the antiviral<br />

immunity may compensate the short-lasting anti-HBV activities<br />

of nucleoside/nucleotide analogues and keep infection<br />

under surveillance. Significant higher negative conversion rate<br />

of HBV DNA and seroconversion from HBeAg to HBeAb<br />

were reported in chronic hepatitis patients received Lamivudine<br />

plus prophylactic HBV vaccine vs Lamivudine monotherapy<br />

[33] . An on-going phase III study is on-going in Senegalesa,<br />

sponsored by French National Agency for Research on AIDS<br />

and Viral Hepatitis and collaborated by GlaxoSmithKline.<br />

The objective of this study is to compare the combination of<br />

Lamivudine with the prophylactic HBV vaccine Engerix B to<br />

Lamivudine alone for any long-term benefit.<br />

Challenges in the development of HBV therapeutic<br />

vaccine<br />

The basic difference between a therapeutic vaccine and a<br />

prophylactic vaccine for HBV are: neutralizing antibody<br />

recognizing HBV surface antigen is enough for protection in<br />

healthy subjects, but potent CD4 and CD8 T cell responses<br />

in addition to antibody titers are required for HBV clearance.<br />

Therefore, understanding how to elicit effective T cell responses<br />

in tolerated chronic HBV carriers without the accompanying<br />

of dramatic hepatocyte lysis has been the real challenge<br />

in the development of HBV therapeutic vaccine. Many<br />

efforts have been made in antigen selection, format design and<br />

adjuvants formulation. However, all these crucial <strong>issue</strong>s must<br />

be addressed in HBV infected subjects due to the distinct state<br />

of immunotolerance and immunopathogenesis in hepatitis<br />

patients and HBV carriers. Clinical data generated on healthy<br />

volunteers can not reflect the efficacy and adverse events<br />

which may appear in hepatitis patients and HBV carriers. The<br />

lack of suitable animal model that can be infected by HBV<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 43


Trends in Bio/Pharmaceutical Industry<br />

and mimic the pathogenesis of human hepatitis is a major<br />

hurdle in the development of HBV therapeutic vaccines.<br />

Chimpanzee was the only animal being used to create HBV<br />

infection model for decades. Besides the high cost, a major<br />

drawback of using the chimpanzee model is that the HBV infection<br />

in this animal resembles an acute hepatitis course and<br />

can be resolved spontaneously. The Asian tree shrew (Tupaia<br />

belangeri), a non-rodent, primate-like small animal, has recently<br />

been proposed as another HBV infection model. Human<br />

HBV hepatitis and HBV-related hepatocellular carcinoma have<br />

been successfully established in the tree shrew [34, 35] . It will be<br />

worthwhile to investigate the value of using this model in the<br />

development of HBV therapeutic vaccines. Taking advantage<br />

of genetic approaches, several lines of HBV transgenic mice<br />

have been engineered. These express HBV component proteins<br />

or even assemble HBV virus in hepatocytes in vivo. They<br />

are suitable models to study the immunotolerance but may not<br />

truly reflect the immunopathogenesis, because their hepatocytes<br />

are not infected by HBV and no inflammatory reaction<br />

is observed in the liver. The transgenic mice are thus very<br />

helpful subject for the exploration of the potency of vaccine<br />

candidates and the capability of breaking tolerance but help<br />

less in prediction of liver damages caused by the vaccination.<br />

Concerns for the risk of severe liver damage caused by immunization<br />

with a potent vaccine in HBV chronically infected<br />

patients have slowed clinical development.<br />

With the progress on immunology, the indispensable role of<br />

adjuvant in directing and magnifying immunity has been well<br />

recognized. Administration of well-defined antigen alone<br />

normally triggers T cells tolerance. Converting naïve T cells<br />

to effectors requires the interaction with fully activated APCs.<br />

Discovering and identifying new adjuvants to effectively activate<br />

APCs is crucial in the development of vaccines to combat<br />

cancers or viral infections where robust Th1-biased and CTL<br />

cell responses are required. More specifically in the case of<br />

HBV therapeutic vaccine, adjuvants should be able to direct<br />

the induction of viral inhibiting cytokine profile, but keep<br />

cytolytic activities under control.<br />

Alum is the most widely used adjuvant in humans. It is also<br />

the adjuvant in current commercially available HBV prophylactic<br />

vaccines. Alum predominantly helps antibody responses<br />

and does little for the induction of cell-mediated responses.<br />

Hence, it is not a suitable adjuvant for HBV therapeutic vaccines.<br />

A variety of molecules have been identified possessing<br />

adjuvant properties, capable of activating certain subset of<br />

APC and directing different types of immune responses. One<br />

good example among them is the toll-like receptor (TLR)<br />

agonists. Unlike alum, various TLR agonists induce different<br />

cytokine secretion profile by APC and thus different patterns<br />

of T cell responses. Furthermore, TLR agonists inhibit HBV<br />

virus replication in the liver of HBV transgenic mice in an<br />

IFNα/β-dependent manner [36] . It has been reported that<br />

TLR agonists, such as CpG or poly I:C, significantly boost<br />

44 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

the preventive effect of current HBsAg-based prophylactic<br />

vaccine [37] . Combining TLR9 agonist, an immune stimulation<br />

sequence (ISS), with HBV surface antigen, Dynavax’s prophylactic<br />

vaccine HEPLISAV in phase III trial showed 100%<br />

protection. It is superior to conventional vaccines not only in<br />

healthy young adults to whom only two immunizations over<br />

a one-month period is enough to achieve protective HBV antibody,<br />

but more importantly, in old people who traditionally<br />

respond poorly to current vaccines. A therapeutic vaccine is<br />

in clinical development based on the same formulation using<br />

both surface and core antigens.<br />

Conclusion<br />

A combined effect of anti-viral treatments and HBV-specific<br />

immune reconstitution is a potential cure of HBV infection.<br />

Although many attempts have been made in the development<br />

of HBV therapeutic vaccines, robust cell-mediated anti-viral<br />

immunity has not been achieved in chronic infected patients. It<br />

is critical to employ less tolerogenic HBV component proteins<br />

as antigens and select adjuvants that are able to direct Th1biased<br />

anti-HBV immune responses in these subjects. With<br />

the advance in understanding of the mechanism of persistent<br />

HBV infection and the recognition of effective anti-viral<br />

immunity, the availability of suitable animal models and the<br />

emerging of novel adjuvant candidates, it is possible to work<br />

out new ways in designing and developing effective anti-HBV<br />

vaccines.<br />

References<br />

1. Hoofnagle, J.H. and A.M. di Bisceglie, The treatment of<br />

chronic viral hepatitis. N Engl J Med, 1997. 336(5): p.<br />

347-56.<br />

2. Liaw, Y.F., et al., Effects of extended lamivudine therapy<br />

in Asian patients with chronic hepatitis B. Asia Hepatitis<br />

Lamivudine Study Group. Gastroenterology, 2000.<br />

119(1): p. 172-80.<br />

3. Yao, G., Entecavir is a potent anti-HBV drug superior<br />

to lamivudine: experience from clinical trials in China. J<br />

Antimicrob Chemother, 2007.<br />

4. Chisari, F.V. and C. Ferrari, Hepatitis B virus immunopathogenesis.<br />

Annu Rev Immunol, 1995. 13: p. 29-60.<br />

5. Chang, J.J. and S.R. Lewin, Immunopathogenesis of hepatitis<br />

B virus infection. Immunol Cell Biol, 2007. 85(1): p.<br />

16-23.<br />

6. Chisari, F.V., Cytotoxic T cells and viral hepatitis. J Clin<br />

Invest, 1997. 99(7): p. 1472-7.<br />

7. Franco, A., et al., Pathogenetic effector function of CD4positive<br />

T helper 1 cells in hepatitis B virus transgenic<br />

mice. J Immunol, 1997. 159(4): p. 2001-8.<br />

8. Guidotti, L.G., et al., Viral clearance without destruction<br />

of infected cells during acute HBV infection. Science,<br />

1999. 284(5415): p. 825-9.<br />

9. Heise, T., et al., Hepatitis B virus RNA-binding proteins<br />

associated with cytokine-induced clearance of viral RNA


from the liver of transgenic mice. J Virol, 1999. 73(1): p.<br />

474-81.<br />

10. Lavine, J.E., Noncytolytic mechanisms involved in hepatitis<br />

B virus clearance. Acta Gastroenterol Belg, 1998.<br />

61(2): p. 183-4.<br />

11. Whalley, S.A., et al., Kinetics of acute hepatitis B virus<br />

infection in humans. J Exp Med, 2001. 193(7): p. 847-54.<br />

12. Akbar, S.M., et al., Vaccine therapy for hepatitis B virus<br />

carrier. Curr Drug Targets Infect Disord, 2004. 4(2): p.<br />

93-101.<br />

13. Zheng, B.J., et al., Therapeutic efficacy of hepatitis B surface<br />

antigen-antibodies-recombinant DNA composite in<br />

HBsAg transgenic mice. Vaccine, 2001. 19(30): p. 4219-25.<br />

14. Wen, Y.M., D. Qu, and S.H. Zhou, Antigen-antibody<br />

complex as therapeutic vaccine for viral hepatitis B. Int<br />

Rev Immunol, 1999. 18(3): p. 251-8.<br />

15. Wen, Y.M., et al., Enhanced immunogenicity in mice<br />

with hepatitis B vaccine complexed to human hepatitis B<br />

immunoglobulin. Chin Med J (Engl), 1994. 107(10): p.<br />

741-4.<br />

16. Lau, G.K., et al., Resolution of chronic hepatitis B and<br />

anti-HBs seroconversion in humans by adoptive transfer<br />

of immunity to hepatitis B core antigen. Gastroenterology,<br />

2002. 122(3): p. 614-24.<br />

17. Livingston, B.D., et al., Immunization with the HBV core<br />

18-27 epitope elicits CTL responses in humans expressing<br />

different HLA-A2 supertype molecules. Hum Immunol,<br />

1999. 60(11): p. 1013-7.<br />

18. Maini, M.K., et al., Direct ex vivo analysis of hepatitis B<br />

virus-specific CD8(+) T cells associated with the control of<br />

infection. Gastroenterology, 1999. 117(6): p. 1386-96.<br />

19. Nayersina, R., et al., HLA A2 restricted cytotoxic T lymphocyte<br />

responses to multiple hepatitis B surface antigen<br />

epitopes during hepatitis B virus infection. J Immunol,<br />

1993. 150(10): p. 4659-71.<br />

20. Rehermann, B., et al., The cytotoxic T lymphocyte response<br />

to multiple hepatitis B virus polymerase epitopes during<br />

and after acute viral hepatitis. J Exp Med, 1995. 181(3):<br />

p. 1047-58.<br />

21. Shi, T.D., et al., Therapeutic polypeptides based on HBV<br />

core 18-27 epitope can induce CD8+ CTL-mediated cytotoxicity<br />

in HLA-A2+ human PBMCs. World J Gastroenterol,<br />

2004. 10(13): p. 1902-6.<br />

22. Sobao, Y., et al., Identification of hepatitis B virus-specific<br />

CTL epitopes presented by HLA-A*2402, the most<br />

common HLA class I allele in East Asia. J Hepatol, 2001.<br />

34(6): p. 922-9.<br />

23. Penna, A., et al., Cytotoxic T lymphocytes recognize an<br />

HLA-A2-restricted epitope within the hepatitis B virus<br />

nucleocapsid antigen. J Exp Med, 1991. 174(6): p. 1565-<br />

70.<br />

24. Bertoletti, A., et al., Molecular features of the hepatitis B<br />

virus nucleocapsid T-cell epitope 18-27: interaction with<br />

HLA and T-cell receptor. Hepatology, 1997. 26(4): p.<br />

1027-34.<br />

25. Shi, T.D., et al., Therapeutic polypeptides based on<br />

DRUG DISCOVERY AND DEVELOPMENT<br />

HBcAg(18-27) CTL epitope can induce antigen-specific<br />

CD(8)(+) CTL-mediated cytotoxicity in HLA-A2 transgenic<br />

mice. World J Gastroenterol, 2004. 10(8): p. 1222-6.<br />

26. Livingston, B.D., et al., The hepatitis B virus-specific CTL<br />

responses induced in humans by lipopeptide vaccination<br />

are comparable to those elicited by acute viral infection. J<br />

Immunol, 1997. 159(3): p. 1383-92.<br />

27. Heathcote, J., et al., A pilot study of the CY-1899 T-cell<br />

vaccine in subjects chronically infected with hepatitis B<br />

virus. The CY1899 T Cell Vaccine Study Group. Hepatology,<br />

1999. 30(2): p. 531-6.<br />

28. Vitiello, A., et al., Development of a lipopeptide-based<br />

therapeutic vaccine to treat chronic HBV infection. I.<br />

Induction of a primary cytotoxic T lymphocyte response in<br />

humans. J Clin Invest, 1995. 95(1): p. 341-9.<br />

29. Davis, H.L., et al., DNA-mediated immunization in mice<br />

induces a potent MHC class I-restricted cytotoxic T lymphocyte<br />

response to the hepatitis B envelope protein. Hum<br />

Gene Ther, 1995. 6(11): p. 1447-56.<br />

30. Mancini, M., et al., DNA-mediated immunization in a<br />

transgenic mouse model of the hepatitis B surface antigen<br />

chronic carrier state. Proc Natl Acad Sci U S A, 1996.<br />

93(22): p. 12496-501.<br />

31. Shimizu, Y., et al., Dendritic cell immunization breaks<br />

cytotoxic T lymphocyte tolerance in hepatitis B virus transgenic<br />

mice. J Immunol, 1998. 161(9): p. 4520-9.<br />

32. Fazle Akbar, S.M., et al., Safety and efficacy of hepatitis B<br />

surface antigen-pulsed dendritic cells in human volunteers.<br />

Hepatol Res, 2004. 29(3): p. 136-141.<br />

33. Horiike, N., et al., In vivo immunization by vaccine<br />

therapy following virus suppression by lamivudine: a novel<br />

approach for treating patients with chronic hepatitis B. J<br />

Clin Virol, 2005. 32(2): p. 156-61.<br />

34. Cao, J., et al., The tree shrews: adjuncts and alternatives to<br />

primates as models for biomedical research. J Med Primatol,<br />

2003. 32(3): p. 123-30.<br />

35. Kock, J., et al., Efficient infection of primary tupaia hepatocytes<br />

with purified human and woolly monkey hepatitis<br />

B virus. J Virol, 2001. 75(11): p. 5084-9.<br />

36. Isogawa, M., et al., Toll-like receptor signaling inhibits<br />

hepatitis B virus replication in vivo. J Virol, 2005. 79(11):<br />

p. 7269-72.<br />

37. Cooper, C.L., et al., CPG 7909, an immunostimulatory<br />

TLR9 agonist oligodeoxynucleotide, as adjuvant to<br />

Engerix-B HBV vaccine in healthy adults: a double-blind<br />

phase I/II study. J Clin Immunol, 2004. 24(6): p. 693-701.<br />

Say it in Chinese:<br />

Immunotherapy 免疫治疗<br />

Prophylactic vaccine 预防性疫苗<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 45


Trends in Bio/Pharmaceutical Industry<br />

2007国际生物经济大会26日在天津滨海新区举行<br />

“The 2007 International Conference<br />

for Bio-economy" was held on June 26<br />

in Binhai New District, Tianjin. Ms.<br />

Chen Zhili, State Councilor(国务委员陈至<br />

立), attended the opening ceremony and<br />

delivered a speech. Wan Gang (科技部长万<br />

钢), Minister of Science and Technology,<br />

Zhang Gaoli, secretary of Tianjing Municipal<br />

Committee, Dai Xianglong, mayor of<br />

Tianjing and the leadership of the relevant<br />

ministries attended the conference. Former<br />

minister of the Ministry of Science and<br />

Technology and president of the conference,<br />

Xu Guanhua (前科技部长徐冠华), the<br />

1981 Nobel laureate, Weisaier, National Academy Member of United States, William<br />

Rutter and the famous Chinese biologist, Wang Xiaodong, has made excellent<br />

reports. From 25 countries and regions, more than 2,000 scientists, and entrepreneurs<br />

attended the conference.<br />

At the opening ceremony, State Councilor Ms. Chen ZhiLi said that China has<br />

already set the goal to develop biotechnology and biological industry in the relevant<br />

national development plan; arranged three special<br />

science and technology projects important to the state,<br />

“Cultivation of new variety of transgenic biological<br />

product”, “Major new drug discovery and manufacture”,<br />

and “Prevention of AIDS hepatitis and other major<br />

infectious diseases”; deployed a set of projects for biotechnology<br />

research and problem solving.<br />

She indicated China will initially form the political and<br />

legal system to benefit development of biological indus-<br />

46 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007


try, systems for technology innovation, technology<br />

standardization, biological safety guarantee, industrial<br />

<strong>org</strong>anizing, and professional service; to realize<br />

the goals of significantly improving the capability<br />

of innovation independently in biotechnology,<br />

optimizing and upgrading the industrial structure,<br />

rapid expansion of the industrial scale.<br />

Chen ZhiLi emphasized that China will further improve<br />

the policy and measure in tax, finance, projecting<br />

intellectual property to encourage technology innovation in enterprises; create<br />

the policy and environment beneficial to development of biotechnology and biological<br />

industry; significantly increase government investment in biotechnology research,<br />

encourage and attract investment in biotechnology R&D and biological industry from<br />

corporations and the society; strengthen and expand international interaction and collaboration<br />

in biology field.<br />

Ten different sub-conference sessions were held, including 1) Policy Forum, 2) Life<br />

Science, 3) Bioagriculture, 4) Biomedicine, 5) Chinese Medicine and System Biology,<br />

6) Industrial and Environmental Biotechnology, 7) Bioenergy, 8) Bioresource and<br />

Biodiversity, 9) Chemical Drugs and Drug Safety, 10) Biobusiness Forum.<br />

This conference was sponsored/<strong>org</strong>anized by 14 PRC State Ministries/Bureaus and<br />

international <strong>org</strong>anizations, including PRC Ministry of Science and Technology,<br />

Tianjing Municipal Government, United Nations Development Program, World<br />

Health Organization, European Commission, etc (see details below in<br />

Chinese). This conference will be held biannually in the future.<br />

Numerous new technologies and the scientific achievements in the<br />

biotechnology field have been presented in this conference.<br />

Conference Reports<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 47


Trends in Bio/Pharmaceutical Industry<br />

Job Market<br />

Consultant, VP Director of QA<br />

Location:<br />

US & China<br />

Company:<br />

Rim Tech Ltd.<br />

Duty:<br />

Rim Tech, one of the fastest growing biopharmaceutical companies<br />

in China focused on developing, manufacturing and<br />

marketing biologic therapeutics. We are looking for a VP level<br />

consultant as QA DIRECTOR/MANAGER with strong leadership<br />

in manufacturing, validation, stability testing, auditing,<br />

on both pre-commercial and commercial products. Analytical<br />

method validation, raw material assessment and laboratory<br />

equipment calibration and maintenance with FDA, cGMP's<br />

compliance. Duties and Responsibilities: Oversee the overall<br />

quality management system and implement a cGMP system<br />

with FDA compliance -Directly supervise all QA activities for<br />

biopharma manufacturing, including: QA Review and Release;<br />

QA Components Inspection; Document Control; Consumer<br />

Affairs; Internal Auditing; cGMP Training, Investigations<br />

and deviations. -Report to senior management, develop and<br />

execute department’s strategy and planning. We offer a stimulating<br />

working environment, a high level of professional and<br />

intellectual challenge, and attractive salaries and comprehensive<br />

benefits package depending on qualifications<br />

Requirement:<br />

At least 10 years of experience in GMP (FDA or EMEA)<br />

compliance. -Demonstrated record of FDA or EMEA inspection<br />

and audit experience, preferably in biopharmaceutical<br />

manufacturing sites, with strong knowledge of ICH, cGMP<br />

and EU regulatory guidance required. -Strong ability of managing,<br />

coordinating, and planning; Proactive, highly energetic<br />

team leaders -Chinese-English bilinguals helpful (not required)<br />

-MS or BS and at least 10 years of pharmaceutical QA experience<br />

in US biopharma companies<br />

Contact:<br />

Please send your resume, inquiries and recommendations to<br />

Billy2k94703@yahoo.com. Please write QA Director in the<br />

subject line.<br />

48 Trends In BIo/PharmaceuTIcal IndusTry | 3-2007<br />

Director, Chemistry<br />

Location:<br />

China<br />

Company:<br />

LEAD Therapeutics<br />

Duty:<br />

LEAD Therapeutics is a new chemistry-driven drug discovery<br />

company, founded to combine western drug discovery<br />

experience with the emerging capabilities in China. Funded<br />

by leading venture capital firms, LEAD is now recruiting the<br />

Chinese management team. The Director of Chemistry will<br />

manage medicinal chemistry projects conducted at contract<br />

research <strong>org</strong>anizations and company laboratories based in<br />

Shanghai, China. The Director will work with a US-based<br />

management team to plan projects and then be responsible for<br />

day-to-day management and execution of the plans in Chinese<br />

laboratories.<br />

Requirement:<br />

Requirements for this position are a PhD with strong training<br />

in synthetic chemistry, plus at least five years medicinal<br />

chemistry experience at a pharmaceutical or biotechnology<br />

company. This experience must include demonstrated contributions<br />

to drug discovery projects, and responsibility at<br />

the project leader or director level. Important experience in<br />

addition to medicinal chemistry will include interaction with<br />

biologists, hiring and motivating people, and management of<br />

contract research <strong>org</strong>anizations. Fluency in English and Chinese<br />

is required. Compensation will include competitive salary,<br />

benefits, relocation, Shanghai living allowance, and equity.<br />

Interested chemists should send a CV, including education and<br />

employment history, description of work experience, publications,<br />

and patents, to jobs@leadtherapeutics.com or LEAD<br />

Therapeutics, Human Resources, 999 Bayhill Drive, Suite 130,<br />

San Bruno, CA 94966.<br />

Contact:<br />

jobs@leadtherapeutics.com or LEAD Therapeutics, Human<br />

Resources, 999 Bayhill Drive, Suite 130, San Bruno, CA 94966.


Senior Scientist Epigenetics<br />

Location:<br />

Singapore<br />

Company:<br />

Eli Lilly Singapore/LSCDD<br />

Duty:<br />

For more than 130 years, Lilly has been dedicated to meeting<br />

the health care needs of people in the United States and<br />

around the world. We address these needs primarily by developing<br />

innovative medicines, investing a higher percentage of<br />

our sales in research and development than any other major<br />

pharmaceutical company. The Lilly Singapore Centre for Drug<br />

Discovery (LSCDD) was founded in November 2002, as Lilly<br />

Systems Biology. Since its establishment, the facility has shown<br />

leadership in the use of cutting-edge pharmaceutical research<br />

technologies to discover new medicines more productively. A<br />

significant expansion is underway to add additional capabilities<br />

in the areas of drug discovery research. The Senior Scientist,<br />

Epigenetics will play a key role in helping LSCDD deliver<br />

upon portfolio milestones. In this role, you will contribute<br />

as an independent research scientist in addition to providing<br />

scientific leadership for a team focused to Epigenetics as<br />

it relates to drug development in cancer and diabetes. Key<br />

Objectives/Deliverables Provide scientific leadership focused<br />

on epigenetics across the Drug Discovery Research <strong>org</strong>anization<br />

Provide scientific and drug hunting leadership, mentoring<br />

and professional development for associate scientists within<br />

an Epigenetics team Provide cutting edge integration of new<br />

areas of biology associated with epigenetic regulation, e.g.<br />

miRNA, stem cells Identify and validate targets and pathways<br />

involved in epigenetic regulation Apply modern cell and<br />

molecular biology technologies to epigenetic drug discovery<br />

Collaborate with Systems Biology and Computational scientists<br />

to identify new therapeutic targets Utilize in vivo modeling<br />

to establish linkage between biological targets and a disease<br />

phenotype Design relevant primary and secondary assays<br />

for compound screening Establish and leverage internal and<br />

external networks to accelerate drug discovery and development<br />

efforts Participate in the creation of a Fully Integrated<br />

Pharmaceutical Network (FIPNET) Oversee recruiting and<br />

staffing activities<br />

Requirement:<br />

Minimum of 7 years of experience; with a minimum of 3<br />

years pharmaceutical or biotechnology industry experience<br />

or academic track record in epigenetic research Expertise in<br />

pathways relevant to chromatin modification Expertise in<br />

technologies to analyze epigenetic modifications (histone/<br />

DNA modifications, CHIP-on-chip analysis) Familiarity with<br />

Molecular and cell biology scientist<br />

Location:<br />

Bay Area<br />

Company:<br />

Optivia Biotechnology<br />

Job Market<br />

Duty:<br />

Job Description: We are looking for a highly experienced<br />

and motivated Ph.D. level scientist to drive development<br />

and implementation of in vitro drug transport assays for the<br />

purpose of designing a platform of drug screening and profiling,<br />

as well as to ascertain a mechanistic understanding of the<br />

transport properties of drug candidates. Key responsibilities<br />

include: To clone a variety of drug transporter proteins, and<br />

to develop, conduct and interpret a diverse array of in vitro<br />

based drug transport studies including, epithelial cell culture,<br />

transport kinetics, relevant cell based assays, drug concentration<br />

analysis, protein concentration determinations, and other<br />

specialized studies. Experience in drug transporter research<br />

and assay development is highly desirable but not required.<br />

Fluent Chinese speaking and being able to travel to China<br />

occasionally are also desirable. Candidate should have a strong<br />

background in molecular and cell biology, particularly in gene<br />

cloning, cell culture and cell-based assay development.<br />

Requirement:<br />

Minimum requirements: Candidates should have more than 2<br />

years relevant postgraduate experience. Excellent collaboration<br />

and communication skills, both written and oral, strong experimental<br />

and problem solving skills, as well as a track record<br />

of strong initiative and follow-through are required. Education:<br />

Candidates shall have a Ph.D. or an equivalent degree in<br />

Molecular and Cell Biology, Pharmacology, Pharmaceutical<br />

Sciences, Chemistry, Biochemistry or a related Biological Science.<br />

Contact:<br />

Dr. Y. Huang, Tel: (510)488-3653 Fax: (510)783-4288 email:<br />

career@rationalbio.com<br />

epigenetic enzyme classes (HDAC, HAT, methyltransferase<br />

and demethylase) Familiarity with adult stem cells/cancer stem<br />

cells and their epigenetic regulation<br />

Contact:<br />

Lilly Singapore Centre for Drug Discovery Pte Ltd 1 Science Park<br />

Road #04-01 The Capricorn, Singapore Science Park II Singapore<br />

117528 www.lscdd.lilly.com.sg Phone: +65-6416-6300 Fax:<br />

+65-6416-6311<br />

Trends In BIo/PharmaceuTIcal IndusTry | 3-2007 49


Protein Interaction Analysis<br />

One-Shot Kinetics<br />

Multiplex your SPR results<br />

One-shot kinetics is a brand new application that provides you with<br />

a complete kinetic data set, in one experiment, with no regeneration.<br />

The ProteOn XPR36 protein interaction array system provides<br />

a solution to the bottleneck of experiment optimization —<br />

one-shot kinetics.<br />

n Full kinetic profile in a single run<br />

n No regeneration required<br />

n Multiplexing<br />

n Rapid optimization<br />

n Significant time savings<br />

Visit us on the Web at www.bio-rad.com/OSK/<br />

Visit us on the Web at discover.bio-rad.com<br />

Call toll free at 1-800-4BIORAD (1-800-424-6723);<br />

outside the US, contact your local sales office.<br />

XPR <br />

Technology<br />

The ProteOn XPR36 protein interaction array<br />

system, an optical biosensor for the study<br />

of protein interactions, brings multiplexing to<br />

surface plasmon resonance (SPR).<br />

Job 07-0080_OneShotKin_AdDev_FINAL.i1 #: 00-0000 • Publication: ___________________ 1 • Trim: ______” x ______” • Run Date: 00/00/00<br />

5/2/07 3:06:44 PM

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!