26.07.2013 Views

Neno Toric

Neno Toric

Neno Toric

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

COST Action TU0904<br />

Integrated Fire Engineering and Response<br />

Training school<br />

University of Malta, Sliema, 11.-14. April 2012.<br />

Scientific project: Reliability of Structures and Risk Assesment to Extreme<br />

Loading, Ministry of Science and Tehnology, Croatia<br />

NEW NUMERICAL MODELS FOR<br />

BEHAVIOUR OF STEEL AND CONCRETE<br />

STRUCTURES EXPOSED TO FIRE<br />

<strong>Neno</strong> Torić, PhD student<br />

UNIVERSITY OF SPLIT, CROATIA<br />

FACULTY OF CIVIL ENGINEERING, ARCHITECTURE AND GEODESY<br />

Chair for steel and timber structures


• Introduction<br />

• Research concept<br />

OVERVIEW<br />

• Numerical model for behaviour of steel and concrete structures<br />

exposed to fire<br />

• Experimental research<br />

• Numerical examples<br />

• Discussion


INTRODUCTION<br />

• Development of structural analysis models for predicting fire behaviour<br />

• Current research is focused on development of structural analysis model<br />

comprised of 3D heat transfer model, model for calculating mechanical<br />

properties of the cross section and model for structural analysis<br />

• Development of simplifed model for calculating mechanical properties of the<br />

cross section taking into account the additional load dependent strains that<br />

occur during heating (creep, transient-creep)<br />

• Calculation of modified stress-strain curves which implicitly take into<br />

account the additional load dependent strains (strain modified curves)<br />

3


RESEARCH CONCEPT<br />

Steel – steady state test vs. transient state test vs. EC3<br />

steady-state test EC3<br />

transient-state test<br />

4


Stress [MPa]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

RESEARCH CONCEPT<br />

Concrete – steady state test vs. EC2<br />

0 0.004 0.008 0.012<br />

Strain<br />

0.016 0.02 0.024<br />

EN1992-1-2 - 20°C<br />

EN1992-1-2] - 230°C<br />

EN1992-1-2 - 400°C<br />

EN1992-1-2 - 500°C<br />

EN1992-1-2 - 600°C<br />

EN1992-1-2 - 700°C<br />

EN1992-1-2 - 800°C<br />

STEADY S. TEST - 20°C<br />

STEADY S. TEST - 230°C<br />

STEADY S. TEST - 400°C<br />

STEADY S. TEST - 500°C<br />

STEADY S. TEST - 600°C<br />

STEADY S. TEST - 700°C<br />

STEADY S. TEST - 800°C<br />

5


RESEARCH CONCEPT<br />

• Strain modified curve<br />

6


NUMERICAL MODEL FOR BEHAVIOUR OF STEEL<br />

AND CONCRETE STRUCTURES EXPOSED TO FIRE<br />

3D Bernoulli beam<br />

(6 D.O.F.)<br />

• 3D nonlinear heat transfer model,<br />

• Model for calculating mechanical properties of the cross section<br />

• Model for structural analysis<br />

Cross-section discretization<br />

6<br />

5<br />

1<br />

3<br />

(0,0,0)<br />

2<br />

7<br />

2 3<br />

7<br />

1<br />

3D Cube element<br />

8<br />

4


NUMERICAL MODEL FOR BEHAVIOUR OF STEEL<br />

AND CONCRETE STRUCTURES EXPOSED TO FIRE<br />

• Calculation procedure for strain modified curve<br />

8


EXPERIMENTAL RESEARCH<br />

• Material behaviour<br />

9


EXPERIMENTAL RESEARCH<br />

• Structure behaviour<br />

Furnace<br />

625 1250 625<br />

V<br />

V<br />

2500<br />

Furnace<br />

625 1250 625<br />

V<br />

V<br />

2500<br />

H<br />

H<br />

V<br />

10<br />

V


EXPERIMENTAL RESEARCH<br />

• Structure behaviour<br />

Chimney<br />

lvdt3<br />

lvdt4<br />

8280<br />

2730 2820 2730<br />

aerated concrete blocks<br />

HE 320 A<br />

H1 H1<br />

4145 4140<br />

2730 2820 2730<br />

12 13 14<br />

oil burner<br />

oil burner oil burner<br />

HE 200 A<br />

11<br />

1955<br />

1590<br />

255<br />

3800


Creep model:<br />

Dorn/Harmathy<br />

NUMERICAL EXAMPLES<br />

Example 1<br />

V<br />

Furnace<br />

625 1250 625<br />

V<br />

2500<br />

V=200 kN<br />

Steel: S355<br />

V<br />

12


NUMERICAL EXAMPLES<br />

Example 1<br />

13


NUMERICAL EXAMPLES<br />

Example 1<br />

14


NUMERICAL EXAMPLES<br />

Example 1<br />

15


Temperature [°C]<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

NUMERICAL EXAMPLES<br />

Example 1<br />

0 10 20 30 40 50 60 70 80 90 100 110<br />

Ti m e [m i n ]<br />

T_furnace<br />

Exp upper flange<br />

Exp lower flange 3<br />

Model<br />

16


Midspan deflection [mm]<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

NUMERICAL EXAMPLES<br />

Exp midspan defl<br />

EC3<br />

Example 1<br />

Exp stress-strain curves without creep<br />

Exp strain modified curves<br />

EC3 strain modified curves<br />

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115<br />

Time [min]<br />

17


Creep model:<br />

Dorn/Harmathy<br />

NUMERICAL EXAMPLES<br />

V<br />

Example 2<br />

Furnace<br />

625 1250 625<br />

V<br />

2500<br />

V=200 kN<br />

H=400 kN<br />

Steel: S355<br />

H<br />

H<br />

V<br />

18


NUMERICAL EXAMPLES<br />

Example 2<br />

19


NUMERICAL EXAMPLES<br />

Example 2<br />

20


NUMERICAL EXAMPLES<br />

Example 2<br />

21


Temperature [°C]<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

NUMERICAL EXAMPLES<br />

T_furnace<br />

Exp upper flange<br />

Exp lower flange<br />

Model<br />

Example 2<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190<br />

Time [min]<br />

22


Midspan deflection [mm]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Exp midspan defl<br />

EC3<br />

NUMERICAL EXAMPLES<br />

Exp stress-strain curves without creep<br />

EC3 strain modified curves<br />

Exp strain modified curves<br />

Example 2<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190<br />

Time [min]<br />

23


NUMERICAL EXAMPLES<br />

Transient-creep model:<br />

Anderberg/Thelandersson<br />

Example 3<br />

K K<br />

K K<br />

2730 2820 2730<br />

8280<br />

d=20 cm<br />

K=20 kN<br />

Concrete: C 60/70<br />

Prest. Steel - fy=1600 MPa<br />

24


NUMERICAL EXAMPLES<br />

Example 3<br />

25


NUMERICAL EXAMPLES<br />

Example 3<br />

26


NUMERICAL EXAMPLES<br />

Example 3<br />

27


Temperature [°C]<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

NUMERICAL EXAMPLES<br />

Example 3<br />

Exp cable T7<br />

Exp cable T8<br />

Exp cable T9<br />

Exp void T10<br />

Exp surface T11<br />

Model T7<br />

Model T8,T9<br />

Model T10<br />

Model T11<br />

T_furnace<br />

0 10 20 30 40<br />

Time [min]<br />

50 60 70 80<br />

28


Deflection (mm)<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

Exp midspan defl LVDT3<br />

Exp midspan defl LVDT4<br />

Exp stress-strain curves<br />

EC2<br />

Exp strain modified curves<br />

EC2 strain modified curves<br />

NUMERICAL EXAMPLES<br />

Example 3<br />

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80<br />

Time (min)<br />

29


DISCUSSION<br />

• Application of strain modifed curves in classical structural analysis<br />

calculation was presented<br />

• Validity of the strain modified curves was tested on results of three different<br />

experiments conducted on testing of simply supported steel and<br />

prestressed concrete elements exposed to high temperatures<br />

• Numerical results of the three presented examples show good agreement<br />

with the experiment by using strain modified curves in terms of predicting<br />

the structural stiffness<br />

• Further research is required to confirm the application of the presented<br />

calculation methodology<br />

30


THANK YOU FOR YOUR<br />

ATTENTION

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!