25.07.2013 Views

Recent developments in small gas turbines - Siemens - Near You

Recent developments in small gas turbines - Siemens - Near You

Recent developments in small gas turbines - Siemens - Near You

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Recent</strong> Developments <strong>in</strong> Small<br />

Industrial Gas turb<strong>in</strong>es<br />

Ian Amos<br />

Product Strategy Manager<br />

<strong>Siemens</strong> Industrial Turbomach<strong>in</strong>ery Ltd<br />

L<strong>in</strong>coln, UK<br />

Content<br />

Gas Turb<strong>in</strong>e as Prime Movers<br />

Applications<br />

History<br />

Technology<br />

thermodynamic trends and drivers<br />

core components<br />

Future requirements<br />

Market <strong>developments</strong><br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Page 2 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

1


Gas Turb<strong>in</strong>e as Prime Mover<br />

Prime mover : A mach<strong>in</strong>e that<br />

transforms energy from thermal,<br />

electrical or pressure form to<br />

mechanical form; typically an eng<strong>in</strong>e<br />

or turb<strong>in</strong>e.<br />

Gas Turb<strong>in</strong>es vary <strong>in</strong> power output<br />

from just a few kW more than 400,000<br />

kW.<br />

The shaft output can be used to<br />

generate electricity from an alternator<br />

or provide mechanical drive for<br />

pumps and compressors.<br />

Industrial Turb<strong>in</strong>es<br />

Page 3 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

SGT5-8000H<br />

SGT5-4000F<br />

SGT6-5000F<br />

SGT5-2000E<br />

SGT6-2000E<br />

SGT-800<br />

SGT-700<br />

SGT-600<br />

SGT-500<br />

SGT-400<br />

SGT-300<br />

SGT-200<br />

SGT-100 5<br />

Figures <strong>in</strong> net MW<br />

SGT6-8000H 266<br />

Utility Turb<strong>in</strong>es <strong>Siemens</strong> Industrial <strong>gas</strong> turb<strong>in</strong>e range<br />

47<br />

31<br />

25<br />

17<br />

13<br />

8<br />

7<br />

113<br />

Page 4 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

168<br />

198<br />

287<br />

375<br />

2


Industrial Gas Turb<strong>in</strong>e Product Range<br />

Portfolio<br />

(MW)<br />

SGT-800<br />

SGT-700<br />

SGT-600<br />

SGT-500<br />

SGT-400<br />

SGT-300<br />

SGT-200<br />

SGT-100<br />

30<br />

25<br />

17<br />

13<br />

8<br />

7<br />

5<br />

SGT-500<br />

47<br />

SGT-100-1S<br />

SGT-200-2S<br />

SGT-600<br />

SGT-100-2S SGT-200-1S<br />

SGT-300<br />

SGT-400<br />

SGT-700 SGT-800<br />

Page 5 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Industrial Gas Turb<strong>in</strong>e<br />

Product applications<br />

Power<br />

Generation<br />

An SGT-100<br />

generat<strong>in</strong>g set is<br />

<strong>in</strong>stalled on Norske<br />

Shell's Troll Field<br />

platform <strong>in</strong> the<br />

North Sea<br />

Pump<strong>in</strong>g<br />

Thirty SGT-200<br />

driven pump sets<br />

on the OZ2 pipel<strong>in</strong>e<br />

operated by<br />

Sonatrach, Algeria<br />

Compression CHP Comb. Cycle<br />

Two SGT-700<br />

driven <strong>Siemens</strong><br />

compressors for<br />

natural <strong>gas</strong><br />

liquefaction plant<br />

owned by UGDC<br />

at Port Said,<br />

Egypt.<br />

An SGT-800 CHP<br />

plant for InfraServ<br />

Bavernwerk’s<br />

chemical plant <strong>in</strong><br />

Gendork,<br />

Germany.<br />

Two SGT-400<br />

generat<strong>in</strong>g sets<br />

operat<strong>in</strong>g <strong>in</strong><br />

cogeneration/<br />

comb<strong>in</strong>ed cycle<br />

for BIEP at BP’s<br />

Bulwer Island<br />

ref<strong>in</strong>ery, Australia<br />

Page 6 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

3


Gas Turb<strong>in</strong>e Refresher<br />

Comparison of Gas Turb<strong>in</strong>e and Reciprocat<strong>in</strong>g Eng<strong>in</strong>e Cycle<br />

Cont<strong>in</strong>uous<br />

Intermittent<br />

AIR INTAKE<br />

FUEL<br />

COMPRESSION<br />

COMBUSTION<br />

EXHAUST<br />

AIR/FUEL INTAKE COMPRESSION COMBUSTION EXHAUST<br />

Page 7 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Gas Turb<strong>in</strong>e as Prime Mover<br />

Gas Turb<strong>in</strong>e Characteristics<br />

Size and Weight<br />

High power to weight ratio<br />

giv<strong>in</strong>g a very compact power<br />

source<br />

Vibration<br />

Rotat<strong>in</strong>g parts mean vibration<br />

free operation requir<strong>in</strong>g simple<br />

foundations<br />

Emissions<br />

Very low emissions of NOx<br />

Operation and Ma<strong>in</strong>tenance<br />

No Lubricat<strong>in</strong>g oil changes<br />

High levels of availability<br />

Fuel flexibility<br />

Dual fuel capability<br />

Burn Lean <strong>gas</strong>es (high N2 or<br />

CO2 mixtures)<br />

Vary<strong>in</strong>g calorific values<br />

Page 8 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

4


Brayton Cycle<br />

1-2 Air drawn from atmosphere and compressed<br />

2-3 Fuel added and combustion takes place at constant pressure<br />

3-4 Hot <strong>gas</strong>es expanded through turb<strong>in</strong>e and work extracted<br />

(<strong>in</strong> s<strong>in</strong>gle shaft approx 2/3 of turb<strong>in</strong>e work is used to drive the compressor)<br />

Page 9 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Ideal Eng<strong>in</strong>e Cycle:<br />

Efficiency<br />

Simple cycle efficiency<br />

Ideal thermal efficiency<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

⎛ ⎞<br />

⎜ 1 ⎟<br />

= 1−<br />

⎜ ⎟<br />

⎜ P1<br />

⎟<br />

⎝ P2<br />

⎠<br />

( γ −1)<br />

/ γ<br />

0<br />

0 10 20 30 40 50<br />

Pressure Ratio<br />

Cycle efficiency is therefore<br />

only dependant on the<br />

cycle pressure ratio.<br />

Assumption : Ideal cycle<br />

with no component or<br />

system losses.<br />

Page 10 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

5


Shaft Efficiency (%)<br />

Eng<strong>in</strong>e Cycle:<br />

The Real Eng<strong>in</strong>e<br />

Deviations from Ideal Cycle<br />

•Aerodynamic losses <strong>in</strong> turb<strong>in</strong>e and<br />

compressor blad<strong>in</strong>g<br />

• Work<strong>in</strong>g fluid property changes<br />

with temperature<br />

• Pressure losses <strong>in</strong> <strong>in</strong>takes,<br />

combustors, ducts, exhausts,<br />

silencers etc.<br />

• Air used for cool<strong>in</strong>g hot<br />

components<br />

• Parasitic air & hot <strong>gas</strong> leakages<br />

• Mechanical losses <strong>in</strong> bear<strong>in</strong>gs,<br />

gearboxes, seals, shafts<br />

• Electrical losses <strong>in</strong> alternators<br />

‘Real’ Efficiencies<br />

• Practical simple cycle <strong>gas</strong><br />

turb<strong>in</strong>es achieve 25 to 40 % shaft<br />

efficiency<br />

• Complex <strong>gas</strong> turb<strong>in</strong>e cycles can<br />

achieve shaft efficiencies up to<br />

50%<br />

• However, heat rejected <strong>in</strong> the<br />

exhaust can be used :-<br />

•Large comb<strong>in</strong>ed cycle GT can<br />

achieve close to 60% shaft<br />

efficiency<br />

•Cogeneration (Heat and Power)<br />

can exceed 80% total thermal<br />

efficiency<br />

Page 11 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Energy Cost Sav<strong>in</strong>gs<br />

GT cycle parameter study<br />

43.0<br />

42.0<br />

41.0<br />

40.0<br />

39.0<br />

38.0<br />

37.0<br />

36.0<br />

1200ºC<br />

1250ºC<br />

1300ºC<br />

1350ºC<br />

FIRING TEMPERATURE<br />

1400ºC<br />

1450ºC<br />

35.0<br />

280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480<br />

Shaft Specific Output (kJ/kg)<br />

Increase Pressure ratio and fir<strong>in</strong>g temperatures for higher simple cycle efficiencies<br />

Page 12 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

14<br />

25<br />

16<br />

22<br />

20<br />

18<br />

PRESSURE<br />

RATIO<br />

6


Design Drivers :<br />

Low Specific Fuel Consumption<br />

Higher Pressure Ratios<br />

• Increased Cycle Efficiency<br />

• Increased number of compressor / turb<strong>in</strong>e stages and<br />

therefore cost<br />

Complex Cycles<br />

• Increased Cycle Efficiency and/or Specific Power<br />

• Can impact operability, cost and reliability<br />

Higher Fir<strong>in</strong>g Temperature<br />

• Requires <strong>in</strong>creased sophistication of cool<strong>in</strong>g systems<br />

• Can impact life and reliability and combustor emissions<br />

Page 13 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Design Drivers :<br />

Availabilty, Cost and Emissions<br />

High reliability.<br />

Moderates the trend to <strong>in</strong>crease fir<strong>in</strong>g temperature and cycle<br />

complexity.<br />

Low Emissions (Driven by environmental legislation)<br />

More difficult to achieve with high fir<strong>in</strong>g temperatures and<br />

combustion pressures<br />

Lowest possible cost.<br />

Encourages <strong>small</strong>est possible frame size, i.e. high specific<br />

power high fir<strong>in</strong>g temperature.<br />

Reduced Pressure ratios (< 20:1) to avoid auxiliary fuel<br />

compression costs<br />

Compromise is required <strong>in</strong> the concept design to get the best<br />

balance of parameters<br />

Page 14 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

7


Core Eng<strong>in</strong>e Trends:<br />

Key Parameter Trends<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Pressure Ratio 16<br />

3CT<br />

Centrifugal Compr.<br />

TA<br />

TE<br />

TF<br />

Pressure Ratio<br />

Pressure Ratio<br />

Fir<strong>in</strong>g Temperature<br />

Fir<strong>in</strong>g Temperature<br />

700<br />

1950 1960 1970 1980 YEAR<br />

Year<br />

1990 2000<br />

Page 15 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Eng<strong>in</strong>e Trends:<br />

Thermal Efficiency<br />

Specific Power (kJ/kg)<br />

350<br />

300<br />

250<br />

200<br />

150 TB5000<br />

TG<br />

TD<br />

SGT-200<br />

TB<br />

SGT-100<br />

100<br />

24<br />

1975 1980 1985 1990<br />

Year<br />

1995 2000 2005<br />

SGT-200<br />

SGT-100<br />

SGT-300<br />

SGT-400<br />

Specific Power Output<br />

Thermal Efficiency<br />

SGT-400<br />

Future<br />

Mach<strong>in</strong>es<br />

1300<br />

1200<br />

1100<br />

1000<br />

Page 16 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

900<br />

800<br />

Dramatic impact of <strong>in</strong>creased TET and pressure ratio over last 25 years:<br />

• Specific Power <strong>in</strong>creased by almost 100%<br />

• Specific Fuel Consumption reduced by over 30%<br />

• reduced airflow for a given power output and has resulted <strong>in</strong> <strong>small</strong>er<br />

eng<strong>in</strong>e footpr<strong>in</strong>ts, reduced weight and reduced eng<strong>in</strong>e costs<br />

40<br />

38<br />

36<br />

34<br />

32<br />

30<br />

28<br />

26<br />

Thermal Efficiency (%)<br />

Fir<strong>in</strong>g Temperature °C<br />

8


Product Evolution<br />

Page 17 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Gas Turb<strong>in</strong>e Layout<br />

- s<strong>in</strong>gle shaft or tw<strong>in</strong> shaft<br />

Tw<strong>in</strong> Shaft<br />

Expansion over 2 series of<br />

turb<strong>in</strong>es.<br />

Compressor Turb<strong>in</strong>e (CT)<br />

provides power for compressor<br />

Useful output power provided by<br />

free Power Turb<strong>in</strong>e (PT)<br />

SGT-300<br />

Introduced 1995<br />

7,900 kWe 30.5% eff<br />

TA<br />

S<strong>in</strong>gle Shaft<br />

Introduced 1952<br />

750kW 17.6% eff<br />

Developed to 1,860kW<br />

Expansion through a s<strong>in</strong>gle series of<br />

turb<strong>in</strong>e stages.<br />

Power transmitted through rotor<br />

driv<strong>in</strong>g the compressor and torque at<br />

the output shaft<br />

Page 18 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

9


SGT-400 Industrial <strong>gas</strong> turb<strong>in</strong>e<br />

Compressor<br />

Page 19 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Combustion<br />

Combustion<br />

system<br />

Gas Generator<br />

Turb<strong>in</strong>e<br />

Power<br />

Turb<strong>in</strong>e<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

10


Environmental Aspects<br />

Pollutants and Control<br />

Pollutant Effect Method of Control<br />

Carbon Dioxide Greenhouse <strong>gas</strong> Cycle Efficiency<br />

Carbon Monoxide Poisonous DLE System<br />

Sulphur Oxides Acid Ra<strong>in</strong> Fuel Treatment<br />

Nitrogen Oxides Ozone Depletion<br />

Smog<br />

DLE System<br />

Hydrocarbons Poisonous<br />

Greenhouse <strong>gas</strong><br />

DLE System<br />

Smoke Visible pollution DLE System<br />

DLE - Dry Low Emissions<br />

Page 21 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Exhaust Emission Compliance<br />

Emissions control:<br />

Two types of combustion configuration need to be considered:<br />

Diffusion flame<br />

Dry Low Emissions (DLE or DLN) us<strong>in</strong>g Pre-mix combustion<br />

Diffusion flame<br />

Produces high combustor primary zone temperatures, and as NOx is a<br />

function of temperature, results <strong>in</strong> high thermal NOx formation<br />

Use of wet <strong>in</strong>jection directly <strong>in</strong>to the primary zone to lower combustion<br />

temperature and hence lower NOx formation<br />

Dry Low Emissions<br />

Lean pre-mixed combustion result<strong>in</strong>g <strong>in</strong> low combustion temperature, hence<br />

low NOx formation<br />

With good design and control


Combustion<br />

NOx Formation<br />

NOx Formation Rate [ ppm/ms ]<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

0.00001<br />

0.000001<br />

1300 1500 1700 1900 2100 2300 2500<br />

Flame Temperature [ K ]<br />

Page 23 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Combustion<br />

NOx Formation<br />

Lean Pre-mix<br />

Diffusion Flame<br />

Flame temperature affects thermal NOx formation<br />

Flame Temperature as a function of Air/Fuel ratio<br />

Flame<br />

temperature<br />

Lean burn<br />

Lean<br />

Lean Pre-mixed<br />

(DLE/DLN)<br />

Stoichiometric<br />

FAR<br />

Diffusion flame reaction<br />

zone temperature<br />

Rich<br />

Diffusion flame<br />

Page 24 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

12


Combustor Configuration<br />

NOx product is a function of temperature<br />

Cool<strong>in</strong>g<br />

Page 25 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

DLE Lean Pre-mix Combustor<br />

(SGT-100 to SGT-400 configuration)<br />

Pilot<br />

Burner<br />

Ma<strong>in</strong> Gas<br />

Injection<br />

Igniter<br />

Igniter<br />

Gas/Air<br />

Mix<br />

Liquid<br />

Core<br />

Pilot Gas<br />

Injection<br />

Air<br />

Gas<br />

Ma<strong>in</strong> Burner<br />

Radial<br />

Swirler<br />

Air<br />

Diffusion<br />

Combustion<br />

- high primary zone<br />

temperature<br />

Dry Low<br />

Emissions<br />

Combustion<br />

-low peak temperature<br />

achieved with lean<br />

pre-mix combustion<br />

Robust design <strong>in</strong>volv<strong>in</strong>g no mov<strong>in</strong>g<br />

parts<br />

Fixed swirler vanes<br />

Variable fuel meter<strong>in</strong>g via pilot and<br />

ma<strong>in</strong> fuel valves<br />

Pre Chamber<br />

Double Sk<strong>in</strong><br />

Imp<strong>in</strong>gement<br />

Cooled Combustor<br />

Page 26 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

13


Lean Pre–Mix combustion<br />

Simple fuel system<br />

Variable fuel meter<strong>in</strong>g via pilot and ma<strong>in</strong> fuel valves<br />

Low NOx across a wide operat<strong>in</strong>g range of load and ambient conditions<br />

BLEED<br />

VALVE<br />

BLOCK<br />

VALVE<br />

BLOCK<br />

VALVE<br />

PILOT FLOW<br />

CONTROL<br />

VALVE<br />

M<br />

MAIN FLOW<br />

CONTROL<br />

VALVE<br />

MAIN<br />

MANIFOLD<br />

PILOT<br />

MANIFOLD<br />

Page 27 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Combustion<br />

DLE Lean Premix System<br />

Key to success<br />

good mix<strong>in</strong>g of fuel and air<br />

multiple <strong>in</strong>jection ports around swirler<br />

long pre-mix path<br />

fuel <strong>in</strong>jection as far from combustion zone as possible<br />

good air flow distribution<br />

can annular arrangement with top hats<br />

use of pilot burner<br />

CO control & flame stability<br />

use of guide vane modulation/air bleed<br />

air flow management<br />

Page 28 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

14


DLE System : <strong>Siemens</strong> experience<br />

15million operat<strong>in</strong>g hours across the range (SGT-100 to SGT-800)<br />

Approximately 1000 DLE units<br />

About 90% of new orders DLE<br />

Page 29 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Experience<br />

Stable load accept/reject<br />

Daily profile for unit runn<strong>in</strong>g more than 8000hrs DLE operation on liquid fuel.<br />

kW<br />

Daily variations<br />

Load Shed and Accept<br />

Page 30 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

15


Gas Fuel Flexibility<br />

BIOMASS &<br />

COAL GASIFICATION<br />

3.5<br />

Landfill & Sewage<br />

37 49 65<br />

Gas<br />

LPG<br />

Low Calorific<br />

Value (LCV)<br />

Off-shore lean<br />

Well head <strong>gas</strong><br />

High Hydrogen<br />

Ref<strong>in</strong>ery Gases<br />

IPG Ceramics<br />

Pipel<strong>in</strong>e<br />

Quality NG<br />

Other <strong>gas</strong><br />

Associated Gas<br />

Off-shore rich <strong>gas</strong><br />

Medium Calorific Value (MCV) ‘’Normal’’ High Calorific Value<br />

(HCV)<br />

<strong>Siemens</strong> DLE Units operat<strong>in</strong>g<br />

DLE Capability Under<br />

Development<br />

10 20 30 40 50 60 70<br />

Wobbe Index (MJ/Nm³)<br />

<strong>Siemens</strong> Diffusion<br />

Operat<strong>in</strong>g<br />

Experience<br />

SIT Ltd.<br />

Def<strong>in</strong>ition<br />

Page 31 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

The change <strong>in</strong> WI by the addition of <strong>in</strong>ert species to pipel<strong>in</strong>e quaility <strong>gas</strong><br />

Wobbe MJ/m 3<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

UK Natural Gas<br />

Medium CV Fuel<br />

MCV Range development<br />

Def<strong>in</strong>ition<br />

LCV Burner<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

CO 2 or N 2 content of UK Natural Gas<br />

CO2<br />

N2<br />

Page 32 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

16


Examples of <strong>Siemens</strong> SGT Fuels Experience<br />

NON DLE Combustion<br />

Natural Gas<br />

Wellhead Gases<br />

Landfill Gas<br />

Sewage Gas<br />

High Hydrogen Gases<br />

Diesel<br />

Kerosene<br />

LPG (liquid and <strong>gas</strong>eous)<br />

Naphtha<br />

‘Wood’ or Synthetic Gas<br />

Gasified Lignite<br />

DLE experience on Natural Gas, Kerosene and Diesel<br />

DLE on fuels with high N2 and CO2 content.<br />

DLE Associated or Wellhead Gases<br />

Page 33 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Turb<strong>in</strong>e<br />

Gasified Biomass<br />

Special Diffusion<br />

burner<br />

Sewage <strong>gas</strong><br />

standard burner<br />

Landfill <strong>gas</strong><br />

Special<br />

Diffusion<br />

burner<br />

High Hydrogen <strong>gas</strong><br />

standard burner<br />

UK Natural Gas<br />

Liquified Petroleum <strong>gas</strong><br />

modified MPI<br />

5 1 0 15 2 0 25 30 3 5 40 45 5 0 5 5 6 0 6 5 7 0<br />

Wobbe Index MJ/m3<br />

standard<br />

<strong>gas</strong>es<br />

Gaseous Fuel Range of Operation<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

17


Aerodynamic optimised design !<br />

Page 35 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Aerodynamics<br />

High Load Turb<strong>in</strong>e<br />

M<strong>in</strong>imised loss<br />

optimum pitch/width ratio<br />

across whole span.<br />

low load<strong>in</strong>g<br />

High speed<br />

high stage number<br />

low Mach numbers<br />

th<strong>in</strong> trail<strong>in</strong>g edges<br />

low wedge angle<br />

zero tip clearance<br />

Computational Fluid Dynamics (CFD) used to complement experimental test<strong>in</strong>g of<br />

advanced components.<br />

Page 36 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

18


Analytical optimised design !<br />

Page 37 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Mechanical Design -<br />

Reduce blade stresses<br />

M<strong>in</strong>imal shroud<br />

shroud may still be desirable<br />

for damp<strong>in</strong>g purposes.<br />

High hub/tip area ratio<br />

Low rotational speed.<br />

Maximise life<br />

Low temperatures<br />

Low unsteady forces<br />

Improved analysis software<br />

(grid and solver) and improved<br />

hardware allow traditional ‘postdesign’<br />

to be carried out dur<strong>in</strong>g<br />

design iterations.<br />

Mesh<strong>in</strong>g of complex cooled<br />

blade could take many man<br />

months <strong>in</strong> early 90’s - now<br />

down to m<strong>in</strong>utes.<br />

More sophisticated analysis for<br />

detailed lif<strong>in</strong>g studies still<br />

required after design.<br />

Page 38 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

19


Fatigue Life of Rotat<strong>in</strong>g Blades<br />

Positions of Concern<br />

Aerofoil<br />

Fillets<br />

Blade Vibration response<br />

Predicted by FE and measured <strong>in</strong><br />

Lab.<br />

Identifies critical blade frequencies<br />

and modes (Campbell Diagram)<br />

High Cycle Fatigue<br />

Fillet Radii between aerofoil &<br />

platform<br />

Top neck of firtree root<br />

Low Cycle Fatigue<br />

In areas of highest stress<br />

Eg - blade root serrations<br />

Root Serration (<strong>in</strong>clud<strong>in</strong>g skew effects)<br />

Page 39 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Mechanical Design - Vibration analysis<br />

Frequency (Hz)<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

mode 6<br />

mode 5<br />

mode 4<br />

mode 3<br />

mode 2<br />

mode 1<br />

Campbell Diagram for LPT Blade (Blade only)<br />

0<br />

15000 15500 16000 16500 17000 17500 18000 18500 19000 19500 20000<br />

Iteration 3 version 10<br />

95%<br />

100%<br />

Eng<strong>in</strong>e Speed (rpm)<br />

D G Palmer 3-8-01<br />

Page 40 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

EO20<br />

105%<br />

EO19<br />

EO18<br />

EO17<br />

EO11<br />

EO10<br />

EO9<br />

EO6<br />

EO3<br />

20


Cool<strong>in</strong>g optimised design !!<br />

Large LE radius<br />

Page 41 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Cooled Blad<strong>in</strong>g Designs<br />

SGT100 > SGT300 > V2500 Aeroeng<strong>in</strong>e<br />

m<strong>in</strong>imise stagnation htc<br />

thick trail<strong>in</strong>g edge thickness<br />

and large wedge angle for<br />

cool<strong>in</strong>g<br />

thickness distribution to suit<br />

cool<strong>in</strong>g passages.<br />

M<strong>in</strong>imise <strong>gas</strong> washed<br />

surface.<br />

Page 42 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

21


SGT400 First Vane Cool<strong>in</strong>g Features<br />

Cast 2 Vane<br />

Segment<br />

Film<br />

Cool<strong>in</strong>g<br />

Trail<strong>in</strong>g Edge<br />

Ejection<br />

Imp<strong>in</strong>gement<br />

Cool<strong>in</strong>g<br />

Turbulators<br />

Page 43 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

SGT-400 13MW Industrial Gas Turb<strong>in</strong>e<br />

First Stage Cooled Vane<br />

Hot Blades are life<br />

limited.<br />

-Oxidation<br />

- Thermal fatigue<br />

- Creep<br />

Life typically 24,000<br />

hrs.<br />

Life can be <strong>in</strong>creased<br />

or decreased<br />

depend<strong>in</strong>g on duty<br />

and environment.<br />

Page 44 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

22


SGT-300 First Stage Cooled Rotor Blade<br />

Ceramic Core form<strong>in</strong>g<br />

Cool<strong>in</strong>g Passages<br />

SGT300 8MW Industrial Gas Turb<strong>in</strong>e<br />

Multi-Pass Cooled First Stage Rotor Blade<br />

Page 45 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

HP Turb<strong>in</strong>e Blade Coat<strong>in</strong>gs<br />

Hot Gas Surface Coat<strong>in</strong>gs for Corrosion & Oxidation protection<br />

Alum<strong>in</strong>ide,<br />

Silicon Alum<strong>in</strong>ide (Sermalloy J)<br />

Chromis<strong>in</strong>g<br />

Chrome Alum<strong>in</strong>ide, Plat<strong>in</strong>um Alum<strong>in</strong>ide<br />

MCrAlY<br />

Internal Coat<strong>in</strong>gs on Cooled Blades operat<strong>in</strong>g <strong>in</strong> poor environments<br />

Ceramic Thermal Barrier Coat<strong>in</strong>gs<br />

Yttria stabilised Zirconia<br />

Plasma Spray Coat<strong>in</strong>gs used on Vanes<br />

EBPVD Coat<strong>in</strong>gs used on rotat<strong>in</strong>g blades<br />

More uniform structure for improved <strong>in</strong>tegrity<br />

Page 46 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

23


Turb<strong>in</strong>e Validation Process<br />

Design<br />

Analysis<br />

Prototype Test<br />

Page 47 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

New technology <strong>in</strong>corporated <strong>in</strong>to exist<strong>in</strong>g<br />

eng<strong>in</strong>e platforms<br />

Compressor Blade<br />

• Stator stages S1& S2<br />

• Rotor stages R1 & R2<br />

T P<br />

HP Rotor blade<br />

• SX4 material<br />

• Triple f<strong>in</strong> shroud<br />

• Step Tip seal<br />

Assess<br />

evaluation<br />

and<br />

calibration<br />

of methods<br />

SGT-100 Product Development<br />

New rat<strong>in</strong>gs have been released<br />

Aerodynamic modifications to<br />

compressor and turb<strong>in</strong>e.<br />

Power generation, 5.4MWe<br />

(launch rat<strong>in</strong>g 3.9MW<br />

previously 5.25MWe)<br />

Mechanical Drive, 5.7MW<br />

(previously 4.9MW)<br />

Page 48 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

24


Industrial Gas Turb<strong>in</strong>es<br />

Advanced Materials & Manufactur<strong>in</strong>g<br />

Page 49 Nov 2010<br />

SGT400 PT 2 Nozzle R<strong>in</strong>g<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Bladed Turb<strong>in</strong>e Disc<br />

Page 50 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

25


The Gas Turb<strong>in</strong>e Package<br />

In addition to the ma<strong>in</strong> package, the follow<strong>in</strong>g is also<br />

required:<br />

Combustion air <strong>in</strong>take system<br />

Gas turb<strong>in</strong>e exhaust system<br />

Enclosure ventilation system (if enclosure fitted)<br />

Control system<br />

UPS or battery and charger system<br />

Page 51 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

SGT-300 Industrial <strong>gas</strong> turb<strong>in</strong>e<br />

Package design – The latest Module Design<br />

Available as a factory assembled<br />

packaged power plant for utility and<br />

<strong>in</strong>dustrial power generation applications<br />

Easily transported, <strong>in</strong>stalled and<br />

ma<strong>in</strong>ta<strong>in</strong>ed at site<br />

Package <strong>in</strong>corporates <strong>gas</strong> turb<strong>in</strong>e,<br />

gearbox, generator and all systems<br />

mounted on a s<strong>in</strong>gle underbase<br />

Preferred option to mount controls on<br />

package, option for off package.<br />

Common modular package design<br />

concept<br />

Acoustic treatment to reduce noise<br />

levels to 85 dB(A) as standard (lower<br />

levels available as options)<br />

Page 52 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

26


Typical Compressor Set<br />

Page 53 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

SGT-400<br />

New Package Design<br />

M<strong>in</strong>imised customer <strong>in</strong>terfaces reduc<strong>in</strong>g contract execution/<strong>in</strong>stallation costs<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

Combustion Air Intake<br />

Enclosure Air Inlet<br />

On-Skid Controls<br />

Fire & Gas System<br />

Interfaces<br />

Lub Oil Cooler<br />

Enclosure Air Exit<br />

Highly flexible modular construction<br />

Customer configurable solutions based upon pre-eng<strong>in</strong>eered options<br />

Standard module <strong>in</strong>terfaces to allow flexibility and <strong>in</strong>ter-changeability<br />

Additional functionality provided dependent upon client needs<br />

Base design provides common platform for on-shore and off-shore PG and MD<br />

2<br />

3<br />

4<br />

Page 54 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

1<br />

7<br />

5<br />

6<br />

27


Future direction<br />

Future Trends<br />

- guided by market requirements<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Universal demand for further <strong>in</strong>creases <strong>in</strong> efficiency and reliability, and<br />

reduction <strong>in</strong> cost.<br />

Oil & Gas (Mech drive and Power Gen)<br />

Fuel flexibility - associated <strong>gas</strong>es, off-<strong>gas</strong>es, sour <strong>gas</strong><br />

Remote operation<br />

Emissions -<strong>in</strong>c CO2<br />

Independent Power Generation<br />

Fuel flexibility - syn<strong>gas</strong>, biofuels(?), LPG<br />

Flexible operation - part load operation<br />

Distributed cogeneration (rather than centralised generation)<br />

Emissions - <strong>in</strong>c CO2<br />

Page 56 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

28


Oil and Gas<br />

remote operations / fuel flexibility<br />

•First application of its k<strong>in</strong>d <strong>in</strong> Russia<br />

(Western Siberia) burn<strong>in</strong>g wellhead <strong>gas</strong><br />

which was previously flared<br />

•Solution:<br />

Three SGT-200 <strong>gas</strong> turb<strong>in</strong>e<br />

•Output 6.75 MWe each<br />

•DLE Combustion system<br />

•Guaranteed NOx and CO<br />

emission levels of 25ppm<br />

•M<strong>in</strong>. air temp. (-57 o C)<br />

•Max. air temp. (+34 o C)<br />

•Gas composition with Wobbe Index<br />

>45MJ/m 3<br />

•Total DLE hours approximately 22,300<br />

hours for each unit<br />

•Significant reduction of emissions : 80-90%<br />

reduction of NOx level<br />

•<strong>Siemens</strong> has supplied 135 <strong>gas</strong> turb<strong>in</strong>es for<br />

Power Generation , Gas compression and<br />

pump<strong>in</strong>g duty throughout the Russian oil &<br />

<strong>gas</strong> <strong>in</strong>dustry<br />

Page 57 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

Power Generation<br />

re-emergence of cogeneration<br />

GRID<br />

FUEL<br />

WATER<br />

BOILER<br />

OR<br />

DRIER<br />

PRODUCT / STEAM<br />

Page 58 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

~<br />

29


Thank <strong>You</strong><br />

Page 59 Nov 2010<br />

Copyright © <strong>Siemens</strong> AG 2009. All rights reserved.<br />

Energy Sector<br />

30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!