25.07.2013 Views

automorphisms of real rational surfaces and weighted blow-up ...

automorphisms of real rational surfaces and weighted blow-up ...

automorphisms of real rational surfaces and weighted blow-up ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

WEIGHTED BLOW-UP SINGULARITIES ON REAL RATIONAL SURFACES 10<br />

where gi,hi ∈ R[x] are <strong>of</strong> degree < ei. Moreover, since Pi is a curvilinear<br />

subscheme <strong>of</strong> S 2 , we have<br />

x 2 + g 2 i + h2 i = 1 (mod (x − xi) ei ).<br />

By Lemma 3.6, there is ai ∈ R[x]/(x − xi) ei such that<br />

(1 − a 2 i )fi = (1 + a 2 i )gi, <strong>and</strong><br />

2aifi = (1 + a 2 i)hi<br />

in R[x]/(x − xi) ei , <strong>and</strong>, moreover, 1 + a 2 i is invertible.<br />

By the Chinese Remainder Theorem, there is a polynomial a ∈ R[x] such<br />

that a = ai (mod (x − xi) ei ), for all i. Then<br />

(1 − a 2 )fi = (1 + a 2 )gi (mod (x − xi) ei )<br />

2afi = (1 + a 2 )hi (mod (x − xi) ei ),<br />

<strong>and</strong> 1 + a 2 is invertible in R[x]/(x − xi) ei , for all i.<br />

Put<br />

Then<br />

p = 1 − a 2 , q = 2a, r = 1 + a 2 .<br />

pfi = rgi (mod (x − xi) ei )<br />

qfi = rhi (mod (x − xi) ei ),<br />

<strong>and</strong> r is invertible in R[x]/(x − xi) ei , for all i. Moreover,<br />

• r does not have any roots in the interval [−1,1], <strong>and</strong><br />

• p 2 + q 2 = r 2 .<br />

By Lemma 3.3, the polynomials p,q,r give rise to an algebraic automorphism<br />

ϕ <strong>of</strong> S2 defined by<br />

<br />

yp − zq<br />

ϕ(x,y,z) = x, ,<br />

r<br />

yq + zp<br />

<br />

.<br />

r<br />

In order to show that ϕ(Qi) = Pi for all i, we compute<br />

(ϕ −1 ) ⋆ ((x − xi) ei ) = (x − xi) ei<br />

ui = (ϕ −1 ) ⋆ (y − fi) =<br />

vi = (ϕ −1 ) ⋆ (z) =<br />

yp + zq<br />

− fi<br />

r<br />

−yq + zp<br />

,<br />

r<br />

so that ϕ(Qi) is the curvilinear subscheme <strong>of</strong> S 2 defined by the ideal ((x −<br />

xi) ei ,ui,vi). We have<br />

p<br />

r ui − q<br />

r vi = y − p<br />

r fi = y − gi (mod (x − xi) ei )<br />

<strong>and</strong><br />

q<br />

r ui + p<br />

r vi = z − q<br />

r fi = z − hi (mod (x − xi) ei ).<br />

It follows that ϕ(Qi) = Pi.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!