25.07.2013 Views

V - Positron Annihilation in Halle

V - Positron Annihilation in Halle

V - Positron Annihilation in Halle

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Defect Characterization <strong>in</strong> Crystall<strong>in</strong>e y Solids<br />

R. Krause-Rehberg<br />

Univ. <strong>Halle</strong><br />

• Why are nano-defects important at all?<br />

• Defects <strong>in</strong> metals and semiconductors<br />

• <strong>Positron</strong> beam applications<br />

Mart<strong>in</strong>-Luther-Universität RK<br />

<strong>Halle</strong><br />

R


Po<strong>in</strong>t defects determ<strong>in</strong>e properties of materials<br />

Galliumphosphide<br />

• Po<strong>in</strong>t defects determ<strong>in</strong>e<br />

electronic and optical<br />

properties<br />

without vacancies with 00.001% 001% vacancies<br />

• electric conductivity<br />

strongly <strong>in</strong>fluenced<br />

transparent opaque<br />

1 vacancy <strong>in</strong> 100000 atoms<br />

• Po<strong>in</strong>t defects are generated by irradiation, by plastic deformation or by<br />

diffusion, …<br />

• Metals <strong>in</strong> high radiation environment -> > formation of voids -> > embrittlement<br />

• -> Properties of vacancies and other po<strong>in</strong>t defects must be known<br />

• Analytical tools are needed to characterize po<strong>in</strong>t defects<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

1 cm


• Vacancy concentration <strong>in</strong><br />

thermal equilibrium:<br />

• <strong>in</strong> metals H F 1...4 eV <br />

at T m [1v] 10 -4...-3 /atom<br />

• fits well to the sensitivity<br />

range of positron annihilation<br />

(Ziegler, 1979)<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

Vacancies <strong>in</strong> thermal Equilibrium<br />

meter<br />

W param<br />

Tungsten<br />

H F = (4.0 0.3) eV<br />

temperature (K)<br />

fit to trapp<strong>in</strong>g model


Defects <strong>in</strong> Iron after tensile strength and fatigue treatment<br />

• extensive i study d of f defects d f <strong>in</strong> i mechanically h i ll ddamaged d i iron and d steel l<br />

• <strong>Positron</strong>s are very sensitive: detection of defects already <strong>in</strong> the Hooks range of the<br />

stress-stra<strong>in</strong> experiment<br />

• Vacancy cluster and dislocations are detectable <strong>in</strong> both cases<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

Somieski et al., J. Physique IV 5, C1/127-134 (1995)


Defects <strong>in</strong> electron-irradiated electron irradiated Ge<br />

• Electron irradiation (2 MeV @ 4K) <strong>in</strong>duces Frenkel pairs (vacancy - <strong>in</strong>terstitial pairs)<br />

• steep anneal<strong>in</strong>g stage at 200 K<br />

• at high irradiation dose: divacancies are formed (thermally stable up to 400 K)<br />

(Polity et al., 1997)<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

GGe<br />

e - irr. at 4K


Electron irradiation of Si<br />

• low-temperature electron irradiation<br />

was performed at 4K (Ee-=2 MeV)<br />

• anneal<strong>in</strong>g stage of monovacancies at<br />

about 170 K<br />

• mov<strong>in</strong>g V Si partly form divacancies<br />

• divacancies anneal at about 550…650 K<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

PPolity lit et t al., l Ph Phys. RRev. B 58 (1998) 10363


GaAs: anneal<strong>in</strong>g under def<strong>in</strong>ed As As-partial partial pressure<br />

• two-zone-furnace: Control of sample<br />

temperature and As partial pressure<br />

allows to navigate freely <strong>in</strong> phase<br />

diagram (existence area of compound)<br />

• Measurements near equilibrium after<br />

quench<strong>in</strong>g of samples<br />

T Tsample: l : 1100 1100° C T d t i A H W l t l J C t G th 109 191 (1991)<br />

As: determ<strong>in</strong>es Aspartial<br />

pressure<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

H. Wenzl et al., J. Cryst. Growth 109, 191 (1991).


ation (cm -3 Vacanccy<br />

concentra )<br />

10 17<br />

GaAs: Anneal<strong>in</strong>g under def<strong>in</strong>ed As pressure<br />

Si Ga-V Ga<br />

GaAs:Si<br />

L<strong>in</strong>ear fit<br />

001 0,01 01 0,1 1 10<br />

Arsenic pressure (bar)<br />

Thermodynamic reaction:<br />

1/4 As gas<br />

4 ↔ AsAs As As + V Ga<br />

Mass action law:<br />

[V [VG ] = KVG × p 1/4<br />

Ga] KVG × pAAs Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

tration (cm )<br />

-3 Vacanncy<br />

concent )<br />

10 18<br />

10 17<br />

10<br />

10 16<br />

-3<br />

[T [Te] ] <strong>in</strong> i cm -3<br />

6x10 18<br />

2x10 18<br />

17<br />

4x10 17<br />

9x10 16<br />

GaAs:Te<br />

Te As-V Ga<br />

0,1 1 10<br />

Arsenic pressure (bar)<br />

Fit: [V Ga-Dopant] ~ p As n<br />

→ n = 1/4<br />

250<br />

245<br />

240<br />

235<br />

231<br />

K (ps)<br />

τ at 550 K<br />

av<br />

J. Gebauer et al.,<br />

Physica y B 273-274, 705 (1999) ( )


Comparison of doped and undoped GaAs<br />

Bondarenko et al., 2003<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

Thermodynamic y reaction:<br />

As As ↔ VAs + 1/4As gas<br />

4<br />

Mass action law:<br />

[V As] = K VAs × p As -1/4<br />

Fit: [V-complex] [V complex] ~ p n<br />

As<br />

→ n = -1/4<br />

undoped GaAs: As vacancy


Vacancy clusters <strong>in</strong> semiconductors<br />

• vacancy clusters were observed after ion/neutron irradiation, ion<br />

implantation and plastic deformation<br />

• due to lar large e open volume (low electron density) -> > positron lifetime<br />

<strong>in</strong>creases dist<strong>in</strong>ctly<br />

• example: plastically deformed Ge<br />

• lifetime: τ = 525 ps<br />

• reason for void formation: jog<br />

dragg<strong>in</strong>g mechanism<br />

• trapp<strong>in</strong>g rate of voids disappears<br />

dur<strong>in</strong>g anneal<strong>in</strong>g experiment<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

Krause-Rehberg et al., 1993


Theoretical Calculation of Vacancy Clusters <strong>in</strong> Si<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

• there are cluster configurations<br />

with a large energy ga<strong>in</strong><br />

• „Magic Magic Numbers“ Numbers with 6, 6 10 und<br />

14 vacancies<br />

• positron lifetime <strong>in</strong>creases<br />

dist<strong>in</strong>ctly with cluster size<br />

• for n > 10 saturation effect, i.e.<br />

size cannot be determ<strong>in</strong>ed<br />

T.E.M. Staab et al.,<br />

Physica B 273-274 (1999) 501-504


Height H [nm] ]<br />

02 0.2<br />

0.1<br />

0.0<br />

Identification of V VGa Ga-Si SiGa Ga-Complexes Complexes <strong>in</strong> GaAs:Si<br />

occupied empty states<br />

-2.0 V +1.4 V<br />

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9<br />

lattice spac<strong>in</strong>g <strong>in</strong> [110] direction<br />

• Scann<strong>in</strong>g tunnel<strong>in</strong>g microscopy at GaAs (110)-<br />

cleavages l planes l (by (b Ph Ph. Ebert, Eb t Jülich) Jüli h)<br />

• Defect complex identified as VGa-SiGa Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

cm -3 Defect<br />

conceentration<br />

(c )<br />

10 19<br />

10 19<br />

10 18<br />

10 17<br />

10 18<br />

<strong>Positron</strong>s - c vac<br />

STM - [Si Ga -V Ga ]<br />

10 19<br />

Si concentration (cm -3 )<br />

• Quantification → Agreement<br />

Mono-Vacancies <strong>in</strong> GaAs:Si are V Ga- Si Ga-complexes<br />

Gebauer et al., Phys. Rev. Lett. 78 (1997) 3334


Defects after high energy Si self self-implantation<br />

implantation -the the Rp/2 Effect<br />

on (cm -3 Cu conncentratio<br />

)<br />

• After high-energy self-implantation of Si (3.5 MeV; 5 ×10<br />

2 15 cm -2 ) and RTA (900°C, 30s): two<br />

new getter zones appear at Rp and Rp /2 (Rp = projected range of Si + )<br />

• Zones become visible after Cu <strong>in</strong>-diffusion from rear side of sample (Cu implantation and<br />

diffusion anneal<strong>in</strong>g at 600°C)<br />

10 17<br />

10 16<br />

TEM image by P. Werner, MPI <strong>Halle</strong><br />

SIMS<br />

10<br />

0 1 2 3 4<br />

15<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

R p/2<br />

DDepth th( (μm)<br />

)<br />

R p<br />

• at Rp : getter<strong>in</strong>g by <strong>in</strong>terstitial type<br />

dislocation loops<br />

• Formed due to <strong>in</strong>terstial excess Si after<br />

iimplantation l t ti and dRTA RTA anneal<strong>in</strong>g li<br />

• Although getter<strong>in</strong>g appears, no defects<br />

visible by TEM at Rp /2<br />

• What is the nature of these defects?


positron<br />

lifetime (pss)<br />

Improved depth resolution by us<strong>in</strong>g a positron microbeam<br />

τ defect<br />

τ bulk<br />

positron<br />

microbeam<br />

E = 8 keV<br />

• We used Munich positron<br />

microscope p<br />

• Sample polished wedge-like<br />

scan direction (wedge angle 0.5…2°)<br />

• Defect depth profile of 10 µm<br />

μ<br />

α = 0.6° lateral resolution<br />

1 ... 2 μm<br />

becomes as long as 1 mm<br />

• Thus, depth resolution con be<br />

optimized by wedge angle<br />

defect depth<br />

10 m<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

0 1 mm<br />

scan width


First defect-depth defect depth profile us<strong>in</strong>g a<br />

0,6<br />

positron microprobe<br />

0,4<br />

• 45 lifetime spectra were recorded along<br />

wedge d<br />

• Because of beam diameter - depth resolution<br />

of 155 nm is obta<strong>in</strong>ed at α = 0.81°<br />

• <strong>Positron</strong> implantation energy: 8 keV ⇒ mean<br />

<strong>in</strong>formation depth 400 nm<br />

• OOptimum i ddepth h resolution l i<br />

• Both defected regions well visible<br />

• Vacancy clusters with <strong>in</strong>creas<strong>in</strong>g density<br />

down to 2 µm (Rp/2 region)<br />

• At R p region: lifetime τ2 = 330 ps; open<br />

volume corresponds to a divacancy; must<br />

be stabilized or be<strong>in</strong>g part of dislocation<br />

loops<br />

R. Krause-Rehberg et al., Appl. Phys. Lett. 77 (2000) 3932<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

η<br />

τ 2 (ps)<br />

averagee<br />

lifetime (ps) (<br />

0,8<br />

450<br />

400<br />

350<br />

380<br />

360<br />

340<br />

320<br />

300<br />

260<br />

0 1 2 3 4 5 6<br />

microvoids<br />

R p /2 R p<br />

fraction of<br />

trapped positrons<br />

defect-related<br />

lifetime<br />

divacancy-type<br />

defect<br />

Silicon self-implantation<br />

- 3.5 MeV, 5×10 15 cm -2<br />

- annealed 30s 900°C<br />

- Cu contam<strong>in</strong>ated<br />

Cu SIMS-Profil<br />

280 surface bulk silicon<br />

0 1 2 3 4 5 6<br />

ddepth th( (µm) )


Diffusion of Cu <strong>in</strong> GaAs<br />

280<br />

• <strong>Positron</strong> experiment:<br />

• 30 nm Cu-layer deposited by<br />

•<br />

evaporation evapo at o<br />

Anneal<strong>in</strong>g at 1100°C (under def<strong>in</strong>ed<br />

270<br />

•<br />

•<br />

As-pressure) for Cu <strong>in</strong>-diffusion<br />

Quench<strong>in</strong>g to RT<br />

then anneal<strong>in</strong>g with grow<strong>in</strong>g<br />

260<br />

•<br />

temperature<br />

<strong>Positron</strong> lifetime measurement<br />

250<br />

• Cu is completely solved at 1100°C<br />

• But it is oversaturated at RT<br />

• Precipitation starts very slowly (slow<br />

diffusion)<br />

• However: at elevated temperatures – diffusion<br />

240<br />

bbecomes faster: f out-diffusion diff i process<br />

• Result: formation of vacancy-type defects<br />

when out-diffusion starts<br />

• Not compatible with ith current c rrent diffusion diff sion models<br />

230<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

averrage<br />

positrron<br />

lifetimee<br />

(ps)<br />

400 K<br />

500 K<br />

550 K<br />

600 K<br />

650 K<br />

700 K<br />

750 K<br />

800 K<br />

850 K<br />

900 K<br />

0 100 200 300 400 500<br />

measurement temperature (K)


Determ<strong>in</strong>ation of Defect Type 280<br />

• Formation of these clusters is almost<br />

<strong>in</strong>dependent of dop<strong>in</strong>g / conduction type<br />

• Identical behavior <strong>in</strong> undoped p GaAs<br />

• In beg<strong>in</strong>n<strong>in</strong>g of defect formation: defectrelated<br />

lifetime is about 250 ps – a<br />

monovacancy<br />

• In course of anneal<strong>in</strong>g: lifetime growth to<br />

averagee<br />

lifetime (pps)<br />

defect-relaated<br />

lifetime (pps)<br />

270<br />

260<br />

250<br />

240<br />

230<br />

500<br />

450<br />

400<br />

350<br />

300<br />

320-350 ps correspond<strong>in</strong>g to a divacancy 250<br />

• at 800 K: τ 2 > 450 ps: rather large vacancy<br />

clusters (n > 10)<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

<strong>in</strong>tensitty<br />

I2 1,0<br />

05 0,5<br />

0,0<br />

undoped GaAs<br />

GaAs:Te<br />

measurement temperature: 466 K<br />

500 600 700 800 900<br />

anneal<strong>in</strong>g temperature (K)


Voids <strong>in</strong> GaAs<br />

• Molecular-dynamic cluster<br />

calculations give energy ga<strong>in</strong><br />

compared to sum of monovacancies<br />

• Relaxation was taken <strong>in</strong>to account<br />

• Energetically favored: 12 vacancies<br />

• <strong>Positron</strong> lifetime was calculated<br />

• stable 12-atom cluster exhibit positron<br />

lifetime of about 450 ps<br />

• Found <strong>in</strong> experiment<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

TEM Staab et al., Physica B 273-274 (1999) 501-504


Co<strong>in</strong>cidence<br />

Co<strong>in</strong>cidence-Doppler Doppler Spectroscopy at GaAs:Cu<br />

• In high-momentum region (>10-2 2<br />

m m0c) c) annihilation with Coreelectrons<br />

dom<strong>in</strong>ate<br />

0<br />

• Electron momentum distribution of<br />

core electrons almost not changed<br />

compared to <strong>in</strong>dividual atoms<br />

1,00<br />

• Rlti Relatively l easy to t calculate l lt<br />

• In example: the detected vacancies<br />

have Cu atoms <strong>in</strong> closest vic<strong>in</strong>ityy 075 0,75<br />

• Vacancies are obviously stabilized<br />

by Cu<br />

Mart<strong>in</strong>-Luther-Universität <strong>Halle</strong><br />

Raatio<br />

to bulkk<br />

GaAs<br />

4<br />

Cu<br />

V Ga -Si Ga<br />

SI-GaAs:Cu (annealed, at 500 K)<br />

SI-GaAs:Cu (as quenched, at 30 K)<br />

0 10 20<br />

p (10 L<br />

30<br />

-3 m c) 0<br />

V. Bondarenko, K. Petters, R. Krause Krause-Rehberg, Rehberg, J. Gebauer, H.S. Leipner,<br />

Physica B 308-310 (2001)792-795


Conclusions<br />

• <strong>Positron</strong>s are a useful tool<br />

• For characterization of vacancy-type defects <strong>in</strong> crystall<strong>in</strong>e solids<br />

• Unique for mono-vacancies<br />

• V Very sensitive iti for f vacancy clusters l t for f n < 10 (below (b l TEM sensitivity) iti it )<br />

• Sensitivity limit for monovacancies ≈ 10 15 /ccm<br />

R. Krause-Rehberg, H.S. Leipner<br />

„<strong>Positron</strong> <strong>Annihilation</strong> <strong>in</strong> Semiconductors“<br />

Spr<strong>in</strong>ger Spr<strong>in</strong>ger-Verlag, Verlag 1999

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!