25.07.2013 Views

Engineering Application of Exergy Analysis - circe - Universidad de ...

Engineering Application of Exergy Analysis - circe - Universidad de ...

Engineering Application of Exergy Analysis - circe - Universidad de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

and 4). Second, due to the high temperature <strong>of</strong><br />

flow 1, the combustion takes place at a high<br />

temperature (above 1400 ºC), which reduces<br />

substantially irreversibility due to heat transfer.<br />

I_combustion (kW)<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

I_combustion (kW) phi_combustion (‐)<br />

0 200 400 600 800 1000 1200<br />

Time (s)<br />

Fig. 7. Irreversibility <strong>of</strong> combustion.<br />

I_HRSG (kW)<br />

40000<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

I_HRSG (kW) phi_HRSG (‐)<br />

0 200 400 600 800 1000 1200<br />

Time (s)<br />

Fig. 8. Irreversibility in the HRSG.<br />

0.1<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

Irreversibility in the heat recovery steam generator<br />

is plotted in Fig. 8. These losses can be as high as<br />

30 MW, or more than 15%. They might be<br />

reduced by consi<strong>de</strong>ring another <strong>de</strong>sign <strong>of</strong> the<br />

boiler, producing steam <strong>of</strong> different levels <strong>of</strong><br />

pressure. It should be noted that the separation <strong>of</strong><br />

combustion and heat transfer has been ma<strong>de</strong> to<br />

simplify the mo<strong>de</strong>l. Accordingly, the actual<br />

distribution <strong>of</strong> losses between these two processes<br />

is not exactly the same as the values calculated<br />

here.<br />

Figure 9 represents irreversibility produced in the<br />

first washing venturi, where gases are cooled from<br />

more than 700 ºC down to less than 100 ºC. This<br />

irreversibility is around 6% <strong>of</strong> the exergy <strong>of</strong> flow<br />

1, and might be reduced by modifying the <strong>de</strong>sign<br />

<strong>of</strong> the HRSG in or<strong>de</strong>r to use a higher part <strong>of</strong> the<br />

thermal exergy <strong>of</strong> gases.<br />

phi_combustion (‐)<br />

phi_HRSG (‐)<br />

I_venturi1 (kW)<br />

20000<br />

18000<br />

16000<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

I_venturi1 (kW) phi_venturi1 (‐)<br />

0 200 400 600 800 1000 1200<br />

Time(s)<br />

Fig. 9. Irreversibility in the first washing venturi.<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

Finally, Fig. 10 shows how 2.5 MW <strong>of</strong> exergy are<br />

<strong>de</strong>stroyed without use in the steam con<strong>de</strong>nsers.<br />

This amount may seem not too high compared to<br />

flow 1 (between 1 and 2%), but represents around<br />

20% <strong>of</strong> the exergy <strong>of</strong> steam used in steel<br />

treatments (flow 104). This value only <strong>de</strong>pends on<br />

operation strategy and can be reduced substantially<br />

by a proper management <strong>of</strong> steam storage and<br />

steam export to plant net.<br />

I_con<strong>de</strong>nsers (kW)<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

I_con<strong>de</strong>nsers (kW) phi_con<strong>de</strong>nsers (‐)<br />

0 200 400 600 800 1000 1200<br />

Time (s)<br />

Fig. 10. Irreversibility in the con<strong>de</strong>nsers.<br />

3.2. Integral cycle indicators.<br />

0<br />

0<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

In this section, parameters <strong>de</strong>fined in (7-10) are<br />

used to summarize the performance <strong>of</strong> the whole<br />

recovery cycle. The main flows appear in Table 1,<br />

and the main components in Table 2.<br />

Table 1. Integral cycle indicators for the main flows<br />

Flow Bcycle (GJ) η cycle(-)<br />

1, gases from converter 193.31 1.0000<br />

9, flared gas 82.92 0.4290<br />

10, recovered gas 59.70 0.3089<br />

104, steam to treatments 11.55 0.0597<br />

135, steam to net -1.686 -0.0087<br />

Accumulated steam 8.438 0.0437<br />

http://www.ecos2010.ch 6 14-17th june 2010, Lausanne, Switzerland<br />

phi_venturi1 (‐)<br />

phi_con<strong>de</strong>nsers (‐)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!