25.07.2013 Views

Ph.D. Thesis - Physics

Ph.D. Thesis - Physics

Ph.D. Thesis - Physics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5-15 Comparison of motional coupling rates in lattice and linear traps as a function<br />

of ion-ion distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br />

5-16 Simulated J-coupling rates in lattice and linear traps. . . . . . . . . . . . . 126<br />

5-17 Dependence of the trap depth on the trap scale for lattice traps at constant<br />

secular frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

6-1 Schematic of a linear ion trap . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />

6-2 Trap electrode layout for the San Quentin trap. . . . . . . . . . . . . . . . . 133<br />

6-3 Pseudopotentials for San Quentin. . . . . . . . . . . . . . . . . . . . . . . . 135<br />

6-4 Trap depth and ion decompensation as a function of Vtop in San Quentin. . 136<br />

6-5 <strong>Ph</strong>otograph of San Quentin. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br />

6-6 <strong>Ph</strong>otograph of San Quentin with top plate. . . . . . . . . . . . . . . . . . . 137<br />

6-7 The experimental setup for measurements on San Quentin. . . . . . . . . . 138<br />

6-8 Image of an ion cloud in San Quentin. . . . . . . . . . . . . . . . . . . . . . 139<br />

6-9 Micromotion compensation measurements in San Quentin. . . . . . . . . . . 141<br />

6-10 <strong>Ph</strong>otograph of the surface-electrode trap Bastille. . . . . . . . . . . . . . . . 142<br />

6-11 Bastille mounted in a CPGA. . . . . . . . . . . . . . . . . . . . . . . . . . . 143<br />

6-12 Rf amplitude during ablation loading. . . . . . . . . . . . . . . . . . . . . . 144<br />

6-13 Ablation experiment setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145<br />

6-14 Ion signal as a function of the number of ablation pulses. . . . . . . . . . . 147<br />

6-15 Trapped ion signal as a function of trap depth in Bastille. . . . . . . . . . . 148<br />

6-16 Probability distribution for the number of ions loaded with a single ablation<br />

laser pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

7-1 Schematic diagrams of Uraniborg 1 and 2 elliptical traps. . . . . . . . . . . 153<br />

7-2 Calculated q parameters and trap depths as a function of rf voltage for the<br />

elliptical trap Uraniborg 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

7-3 Calculated secular frequencies for Uraniborg 2 as a function of rf voltage. . 155<br />

7-4 Elliptical trap secular frequencies as a function of trap size. . . . . . . . . . 156<br />

7-5 Structure of small ion crystals in Uraniborg 2. . . . . . . . . . . . . . . . . . 157<br />

7-6 Structure of larger ion crystals in Uraniborg 2. . . . . . . . . . . . . . . . . 158<br />

7-7 Calculation of the transition from a 2-D to a 3-D crystal in Uraniborg 2. . . 159<br />

7-8 Crystal structures for 120 ions in a symmetric (ωˆx = ωˆy) elliptical trap with<br />

a dc bias voltage along ˆz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160<br />

7-9 Calculation results for a simulated Ising model for two ion-qubits with a<br />

spatially and temporally constant force. . . . . . . . . . . . . . . . . . . . . 164<br />

7-10 Calculation results for a simulated Ising model for two ion-qubits with a<br />

position-dependent force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br />

7-11 Calculation results for a simulated Ising model for two ion-qubits with a<br />

linear variation in time of the applied state-dependent force. . . . . . . . . . 166<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!