25.07.2013 Views

The Structure of the Free Volume in Poly(styrene-co-acrylonitrile ...

The Structure of the Free Volume in Poly(styrene-co-acrylonitrile ...

The Structure of the Free Volume in Poly(styrene-co-acrylonitrile ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

500 Full Paper<br />

Summary: <strong>The</strong> structure <strong>of</strong> <strong>the</strong> free volume and its temperature<br />

dependence between 25 and 190 8C <strong>of</strong> <strong>co</strong>polymers<br />

<strong>of</strong> <strong>styrene</strong> with <strong>acrylonitrile</strong>, SAN (0 to 50 mol-% AN), is<br />

studied by pressure volume temperature (PVT) experiments<br />

and positron annihilation lifetime spectros<strong>co</strong>py (PALS). In<br />

this first part <strong>of</strong> <strong>the</strong> work, PVT data are reported which were<br />

analysed with <strong>the</strong> Simha-Somcynsky equation <strong>of</strong> state (S-S<br />

eos) to estimate <strong>the</strong> volume fraction <strong>of</strong> holes, h, which <strong>co</strong>nstitute<br />

<strong>the</strong> excess free volume. <strong>The</strong> temperature and pressure<br />

dependence <strong>of</strong> <strong>the</strong> specific volume V, <strong>the</strong> specific occupied<br />

and free volume, V occ ¼ (1 h)Vand V f ¼ hV, and <strong>the</strong> <strong>co</strong>rrespond<strong>in</strong>g<br />

isobaric expansivities and iso<strong>the</strong>rmal <strong>co</strong>mpressibilities<br />

for both <strong>the</strong> rubbery and glassy state, are estimated. We<br />

obta<strong>in</strong>ed <strong>the</strong> unexpected results that (i) <strong>the</strong> occupied volume<br />

changes its <strong>co</strong>efficient <strong>of</strong> <strong>the</strong>rmal expansion at T g from<br />

a occ,g 0.5a g 1 10 4 K 1 below T g to almost zero above<br />

T g and (ii) <strong>the</strong> iso<strong>the</strong>rmal <strong>co</strong>mpressibility <strong>of</strong> <strong>the</strong> occupied<br />

volume at zero pressure is ra<strong>the</strong>r high, kocc 2<br />

10 4 MPa 1 , and decreases only slightly at T g. <strong>The</strong> variation<br />

<strong>of</strong> total, occupied, and free volume parameters with <strong>the</strong><br />

<strong>co</strong>mposition <strong>of</strong> <strong>the</strong> SAN <strong>co</strong>polymers is discussed.<br />

<strong>The</strong> <strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Free</strong> <strong>Volume</strong> <strong>in</strong><br />

<strong>Poly</strong>(<strong>styrene</strong>-<strong>co</strong>-<strong>acrylonitrile</strong>) from Positron Lifetime<br />

and Pressure <strong>Volume</strong> Temperature (PVT) Experiments<br />

I. <strong>Free</strong> <strong>Volume</strong> from <strong>the</strong> Simha-Somcynsky Analysis <strong>of</strong><br />

PVT Experiments<br />

Günter Dlubek,* 1 Jürgen Pionteck, 2 Duncan Kilburn 3<br />

1<br />

ITA Institut für Innovative Technologien GmbH, Kö<strong>the</strong>n, Aussenstelle Halle, Wiesenr<strong>in</strong>g 4, D-06120 Lieskau (bei Halle/S),<br />

Germany<br />

Fax: þ49-40-3603241463; E-mail: gdlubek@aol.<strong>co</strong>m<br />

2<br />

Institut für <strong>Poly</strong>merforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany<br />

3<br />

University <strong>of</strong> Bristol, H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1 TL, UK<br />

Received: September 16, 2003; Accepted: November 11, 2003; DOI: 10.1002/macp.200300103<br />

Keywords: free volume; glass transition; microstructure; pressure-volume-temperature (PVT) experiments; <strong>styrene</strong> <strong>co</strong>polymers<br />

Introduction<br />

<strong>The</strong> <strong>co</strong>ncept <strong>of</strong> free volume <strong>in</strong> polymers has proved useful <strong>in</strong><br />

discuss<strong>in</strong>g physical properties such as vis<strong>co</strong>sity, vis<strong>co</strong>elasticity,<br />

<strong>the</strong> glass transition, volume-re<strong>co</strong>very experiments,<br />

and mechanical properties. [1–8] In general, <strong>the</strong> free (not<br />

Specific volume V <strong>of</strong> SAN50 as a function <strong>of</strong> temperature T<br />

and as selection <strong>of</strong> isobars (<strong>in</strong> MPa).<br />

occupied) volume, V f, is def<strong>in</strong>ed as difference between <strong>the</strong><br />

total volume V and <strong>the</strong> occupied volume Vocc. [8] Vf and its<br />

volume fraction f are given by<br />

Vf ¼ V Vocc ð1aÞ<br />

f ¼ 1 Vocc=V ð1bÞ<br />

Macromol. Chem. Phys. 2004, 205, 500–511 DOI: 10.1002/macp.200300103 ß 2004 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim


<strong>The</strong> <strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Free</strong> <strong>Volume</strong> <strong>in</strong> <strong>Poly</strong>(<strong>styrene</strong>-<strong>co</strong>-<strong>acrylonitrile</strong>) from Positron Lifetime ... 501<br />

However, no unambiguous def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> occupied<br />

volume is available. Due to this, very different values for Vf<br />

and f and sometimes mislead<strong>in</strong>g <strong>co</strong>nclusion can be found <strong>in</strong><br />

<strong>the</strong> literature.<br />

<strong>The</strong> simplest and most clear way is to identify V occ with<br />

<strong>the</strong> van der Waals volume V W, that is <strong>the</strong> space occupied by a<br />

molecule, which is impenetrable to o<strong>the</strong>r molecules with<br />

normal <strong>the</strong>rmal energies. [8,9] VW can be calculated us<strong>in</strong>g <strong>the</strong><br />

group <strong>co</strong>ntribution method developed by Bondi. [10,11] In<br />

this case Vf : VfW and fW ¼ 1 VW/V represents <strong>the</strong> total<br />

(van der Waals) free volume or empty space. This type <strong>of</strong><br />

empty space is well known <strong>in</strong> polymer crystals where it is<br />

frequently termed <strong>in</strong>terstitial free volume, [8] V c ¼ V W þ V fi.<br />

It has values typically somewhat larger than 1 C hdp ¼<br />

0.26 where C hdp ¼ 0.74 is <strong>the</strong> pack<strong>in</strong>g <strong>co</strong>efficient <strong>of</strong> <strong>the</strong><br />

most dense pack<strong>in</strong>g <strong>of</strong> hard spheres (hdp or fcc lattice) [11]<br />

and expands with <strong>the</strong> temperature due to <strong>the</strong> anharmonicity<br />

<strong>of</strong> molecular vibrations.<br />

Amorphous polymers <strong>co</strong>nta<strong>in</strong> an additional free volume<br />

which lowers <strong>the</strong> density by about 10% <strong>co</strong>mpared with<br />

<strong>the</strong> crystall<strong>in</strong>e state <strong>of</strong> <strong>the</strong> same material. [11] This excess<br />

free volume appears <strong>in</strong> form <strong>of</strong> many irregularly shaped<br />

cavities or holes <strong>of</strong> atomic and molecular dimension (local<br />

free volumes) which arise because <strong>of</strong> disordered molecular<br />

pack<strong>in</strong>g <strong>in</strong> <strong>the</strong> amorphous phase (static and pre-exist<strong>in</strong>g<br />

holes), and molecular relaxation among <strong>the</strong> molecular<br />

cha<strong>in</strong>s and term<strong>in</strong>al ends (dynamic and transient holes). <strong>The</strong><br />

diffusion <strong>of</strong> small molecules through glassy polymers and<br />

<strong>the</strong> dynamics <strong>of</strong> rubbery polymers, as observed <strong>in</strong> mechanical<br />

or dielectrical relaxation and <strong>in</strong> vis<strong>co</strong>sity experiments,<br />

[1–6] are related to this type <strong>of</strong> (excess or hole) free<br />

volume. For calculat<strong>in</strong>g <strong>the</strong> hole free volume, Vf : Vfh ¼<br />

V Vocc, fh ¼ 1 Vocc/V, various approximations <strong>of</strong> <strong>the</strong><br />

occupied volume, Vocc, which now <strong>in</strong>cludes <strong>the</strong> <strong>in</strong>terstitial<br />

free volume, Vocc ¼ VW þ Vfi, fi ¼ 1 Vfi/V, are used. <strong>The</strong><br />

total (van der Waals) free volume is given by VfW ¼ Vfi þ<br />

V fh, <strong>the</strong> <strong>co</strong>rrespond<strong>in</strong>g fractional free volume by<br />

f W ¼ f i þ f h. Follow<strong>in</strong>g <strong>the</strong> traditional term<strong>in</strong>ology we will<br />

use <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g paragraphs <strong>the</strong> symbols V f (:V fh) and<br />

f (:fh) to describe <strong>the</strong> (excess) hole free volume and its<br />

volume fraction and VfWand fW for <strong>the</strong> total, van der Waals,<br />

free volume. Most <strong>co</strong>mmon approximations <strong>of</strong> <strong>the</strong> occupied<br />

volume are <strong>the</strong> zero po<strong>in</strong>t volume estimated from <strong>the</strong><br />

extrapolation <strong>of</strong> <strong>the</strong> densities <strong>of</strong> crystall<strong>in</strong>e or liquid<br />

(rubbery) materials down to 0 K, [1,2,10–12] V occ(0) ¼<br />

V r(0) ¼ V c(0) 1.3 V W, [10,11] and <strong>the</strong> crystall<strong>in</strong>e volume<br />

at room temperature, V occ(25 8C) ¼ V c(25 8C)<br />

1.45 VW. [11,13,14]<br />

Due to <strong>the</strong> anharmonicity <strong>of</strong> molecular vibrations <strong>the</strong><br />

occupied volume will show a <strong>the</strong>rmal expansion with a<br />

<strong>co</strong>efficient aocc, Vocc(T) ¼ Vocc(0)(1 þ aoccT). S<strong>in</strong>ce aocc is<br />

usually unknown, it is standard to identify it with <strong>the</strong><br />

<strong>co</strong>efficient <strong>of</strong> <strong>the</strong>rmal expansion <strong>of</strong> <strong>the</strong> glassy state, a occ ¼<br />

a g. [12] From this follows a frequently used relation for <strong>the</strong><br />

calculation <strong>of</strong> <strong>the</strong> temperature dependence <strong>of</strong> <strong>the</strong> fractional<br />

excess (hole) free volume above Tg:<br />

f ðTÞ ¼fg þ afr *ðT TgÞ ð2aÞ<br />

afr * Da ¼ ar ag ð2bÞ<br />

where fg is <strong>the</strong> fractional excess free volume at Tg and<br />

a fr* ¼ (1/V) (dV f/dT) ¼ (1/V) [d(V V occ)/dT] is <strong>the</strong> fractional<br />

<strong>co</strong>efficient <strong>of</strong> <strong>the</strong>rmal expansion <strong>of</strong> <strong>the</strong> excess free<br />

volume <strong>in</strong> <strong>the</strong> rubbery state <strong>of</strong> <strong>the</strong> polymer. a fr* is usually<br />

approximated by <strong>the</strong> difference <strong>of</strong> <strong>the</strong> <strong>co</strong>efficients <strong>of</strong><br />

<strong>the</strong>rmal volume expansion <strong>in</strong> <strong>the</strong> rubbery and glassy<br />

states, afr* ¼ Da ¼ (ar ag). [12] William, Landel, and Ferry<br />

(WLF) [3] estimated from vis<strong>co</strong>sity data values <strong>of</strong> Da ¼<br />

4.8 10 4 K 1 and fg ¼ 0.025 (WLF equation with B ¼ 1)<br />

which were believed for a long time to be universal.<br />

Later [15] it was found, however, that <strong>the</strong> hole fraction<br />

<strong>in</strong>creases from f g 0.02 for polymers with T g ¼ 200 K to<br />

fg 0.08 for polymers with Tg ¼ 400 K, a results which was<br />

<strong>co</strong>nfirmed recently. [16] From this result it was <strong>co</strong>ncluded<br />

that <strong>the</strong> glass transition is not an iso-free volume transition<br />

but ra<strong>the</strong>r determ<strong>in</strong>ed by <strong>the</strong> structural relaxation time<br />

(tg 100 s).<br />

A method which proved to be very successful <strong>in</strong> estimation<br />

<strong>of</strong> <strong>the</strong> fraction <strong>of</strong> free volume holes is <strong>the</strong> analysis <strong>of</strong><br />

pressure volume temperature (PVT) experiments us<strong>in</strong>g <strong>the</strong><br />

Simha-Somcynsky hole <strong>the</strong>ory equation <strong>of</strong> state (S-S<br />

eos). [15,17–19] This <strong>the</strong>ory describes <strong>the</strong> structure <strong>of</strong> a liquid<br />

by a cell or lattice model which allows an occupied latticesite<br />

fraction y ¼ y(V, T) <strong>of</strong> less <strong>the</strong>n one. <strong>The</strong> volume <strong>of</strong> an<br />

occupied lattice-site <strong>co</strong>nta<strong>in</strong>s <strong>the</strong> van der Waals volume <strong>of</strong><br />

<strong>the</strong> mer and a free volume <strong>in</strong>herent to <strong>the</strong> lattice cell. <strong>The</strong><br />

latter can be imag<strong>in</strong>ed to be similar to <strong>the</strong> <strong>in</strong>terstitial free<br />

volume <strong>of</strong> an elementary cell <strong>in</strong> crystals. In atomistic<br />

modell<strong>in</strong>g it has its <strong>co</strong>rrespondence <strong>in</strong> a large number <strong>of</strong><br />

holes be<strong>in</strong>g too small to <strong>co</strong>ntribute essentially to <strong>the</strong><br />

transport <strong>of</strong> small molecules, for example. It is assumed that<br />

N molecules, <strong>co</strong>nsist<strong>in</strong>g <strong>of</strong> n chemical repeat<strong>in</strong>g units, nmers,<br />

with molecular weight Mrep, are divided <strong>in</strong>to s<br />

equivalent segments, s-mers, with molecular weight M 0,<br />

sM 0 ¼ nM rep. <strong>The</strong> number N <strong>of</strong> s-mer molecules occupy<br />

<strong>the</strong> fraction y ¼ sN/(sN þ N h SS ) <strong>of</strong> <strong>the</strong> total available sites,<br />

(sN þ Nh SS ), where Nh SS is <strong>the</strong> number <strong>of</strong> unoccupied lattice<br />

sites or holes <strong>of</strong> <strong>the</strong> S-S <strong>the</strong>ory. <strong>The</strong> excess free-volume<br />

fraction is given by <strong>the</strong> fraction <strong>of</strong> unoccupied lattice-sites<br />

(holes) which is denoted <strong>in</strong> this <strong>the</strong>ory by h, h(V, T) ¼ 1 y.<br />

<strong>The</strong> h <strong>of</strong> <strong>the</strong> S-S eos <strong>co</strong>rresponds to our def<strong>in</strong>ition <strong>of</strong> f, f : h;<br />

<strong>in</strong> this paper we will use both symbols synonymously. <strong>The</strong><br />

macros<strong>co</strong>pic volume expands ma<strong>in</strong>ly due to <strong>the</strong> formation<br />

<strong>of</strong> new empty lattice sites.<br />

<strong>The</strong> S-S <strong>the</strong>ory expresses <strong>the</strong> <strong>co</strong>nfigurational or Helmholtz<br />

free energy F <strong>in</strong> terms <strong>of</strong> <strong>the</strong> volume V, temperature T<br />

and occupied lattice-site fraction y ¼ y(V, T), F ¼ F(V, T, y).<br />

<strong>The</strong> value <strong>of</strong> y is obta<strong>in</strong>ed through <strong>the</strong> pressure equation<br />

P ¼ (@F/@V)T and <strong>the</strong> m<strong>in</strong>imisation <strong>co</strong>ndition (@F/<br />

@y) V,T ¼ 0. <strong>The</strong> S-S eos is <strong>the</strong> most successful <strong>the</strong>ory <strong>in</strong><br />

Macromol. Chem. Phys. 2004, 205, 500–511 www.mcp-journal.de ß 2004 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim


502<br />

describ<strong>in</strong>g <strong>the</strong> variation <strong>of</strong> <strong>the</strong> specific volume as function<br />

<strong>of</strong> <strong>the</strong> temperature T and <strong>the</strong> hydrostatic pressure P. Several<br />

universal relationships where found which allow an<br />

approximate estimation <strong>of</strong> h and fW. [9,17–19]<br />

Despite a great deal <strong>of</strong> <strong>in</strong>terest <strong>in</strong> <strong>in</strong>vestigations <strong>of</strong> free<br />

volume <strong>in</strong> polymers, only limited <strong>in</strong>formation about its real<br />

structures, <strong>the</strong> hole dimensions and <strong>the</strong> size and shape<br />

distributions, are available, ma<strong>in</strong>ly due to a lack <strong>of</strong> suitable<br />

probes for open volumes <strong>of</strong> molecular dimensions. Dur<strong>in</strong>g<br />

<strong>the</strong> past decade, positron annihilation lifetime spectros<strong>co</strong>py<br />

(PALS) has developed to be <strong>the</strong> most important method for<br />

study<strong>in</strong>g sub-nanometer size holes <strong>in</strong> polymers. [20–23] In<br />

this technique, positronium <strong>in</strong> its ortho-state, o-Ps, is used<br />

as a probe for local free volumes. o-Ps is formed <strong>in</strong> or<br />

trapped by sub-nanometer size holes that form <strong>the</strong> (excess)<br />

free volume <strong>of</strong> amorphous polymers. Due to <strong>co</strong>llisions with<br />

<strong>the</strong> walls <strong>of</strong> <strong>the</strong> holes, <strong>the</strong> lifetime <strong>of</strong> o-Ps decreases with<br />

decreas<strong>in</strong>g size <strong>of</strong> holes. Assum<strong>in</strong>g spherical holes, <strong>the</strong> hole<br />

size can be calculated from <strong>the</strong> o-Ps lifetime us<strong>in</strong>g a semiempirical<br />

model.<br />

PALS itself is able to measure <strong>the</strong> mean volume <strong>of</strong> <strong>the</strong><br />

holes and, with larger limitations, <strong>the</strong>ir size distribution, [24]<br />

but not directly <strong>the</strong> hole density and <strong>the</strong> hole fraction.<br />

However, a <strong>co</strong>rrelation <strong>of</strong> PALS results with <strong>the</strong> hole free<br />

volume fraction estimated from <strong>the</strong> macros<strong>co</strong>pic volume by<br />

<strong>the</strong> help <strong>of</strong> <strong>the</strong> S-S eos <strong>the</strong>ory allows to estimate <strong>the</strong> hole<br />

density. [25–30] In one <strong>of</strong> our previous works [31] some <strong>of</strong> us<br />

have shown that <strong>in</strong> <strong>the</strong>rmal expansion experiments <strong>the</strong><br />

direct <strong>co</strong>mparison <strong>of</strong> <strong>the</strong> hole volume from PALS with <strong>the</strong><br />

macros<strong>co</strong>pic volume even allows to estimate <strong>the</strong> number<br />

density <strong>of</strong> holes and <strong>the</strong>ir entire volume fraction. In this<br />

way, all parameters <strong>of</strong> hole free volume can be determ<strong>in</strong>ed.<br />

This method has been successfully applied by several<br />

groups. [14,16,29,30] In <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> experiments it is,<br />

however, usually assumed that <strong>the</strong> occupied volume does<br />

not expand. [14,16,29] As <strong>the</strong> <strong>the</strong>rmal expansion <strong>of</strong> crystals<br />

shows [32] this simplification may be too strong.<br />

In order to obta<strong>in</strong> detailed <strong>in</strong>formation on <strong>the</strong> microstructure<br />

<strong>of</strong> <strong>the</strong> free volume <strong>in</strong> glassy and rubbery states <strong>of</strong><br />

polymers, we have studied <strong>in</strong> <strong>the</strong> present work <strong>the</strong> temperature<br />

dependence <strong>of</strong> <strong>the</strong> specific volume, V, by pressurevolume-temperature<br />

(PVT) experiments [33,34] and <strong>of</strong> <strong>the</strong><br />

size <strong>of</strong> local free volumes (holes) by PALS. For this study<br />

we have chosen a series <strong>of</strong> <strong>co</strong>polymers <strong>of</strong> <strong>styrene</strong> (S,<br />

[–CH 2CH(C 6H 5)–]) with <strong>acrylonitrile</strong> (AN, [–CH 2CH-<br />

(CN)–]), SAN, with a <strong>co</strong>ntent <strong>of</strong> AN <strong>co</strong>monomer between<br />

0 and 50 mol-%. <strong>Poly</strong><strong>styrene</strong> (PS) has been frequently<br />

studied <strong>in</strong> <strong>the</strong> literature by PALS, [14,16,26,28] while for SAN<br />

only two papers present<strong>in</strong>g a series <strong>of</strong> room temperature<br />

measurements [28,35] are known to us. SAN is an <strong>in</strong>terest<strong>in</strong>g<br />

system for our study, s<strong>in</strong>ce <strong>the</strong> specific volume <strong>of</strong> <strong>the</strong><br />

<strong>co</strong>polymers change with variation <strong>of</strong> <strong>the</strong> AN <strong>co</strong>ntent while<br />

<strong>the</strong> glass transition temperature, T g, is almost <strong>co</strong>nstant.<br />

Our work is subdivided <strong>in</strong>to two parts. In this part, we<br />

present PVT experiments and determ<strong>in</strong>e from <strong>the</strong>se, us<strong>in</strong>g<br />

<strong>the</strong> S-S eos, [15,17–19] <strong>the</strong> hole fraction h. <strong>The</strong> temperature<br />

dependence <strong>of</strong> <strong>the</strong> specific volume V, <strong>the</strong> specific occupied<br />

and free volume, Vocc ¼ yVand Vf ¼ hV, and <strong>the</strong> <strong>co</strong>rrespond<strong>in</strong>g<br />

isobaric expansivities and iso<strong>the</strong>rmal <strong>co</strong>mpressibilities<br />

for both <strong>the</strong> rubbery and glassy states, are estimated. <strong>The</strong><br />

variation <strong>of</strong> total, occupied and free volume parameters<br />

with <strong>the</strong> <strong>co</strong>mposition <strong>of</strong> <strong>the</strong> SAN <strong>co</strong>polymer will be<br />

discussed. From our data we will <strong>co</strong>nfirm that fg 0.07 >><br />

0.025 for SAN and show that <strong>the</strong> traditional approximation<br />

afr* ¼ Da ¼ ar ag is not <strong>co</strong>rrect.<br />

<strong>The</strong> se<strong>co</strong>nd part <strong>of</strong> <strong>the</strong> work shows measurements <strong>of</strong> <strong>the</strong><br />

local free volume us<strong>in</strong>g PALS. For <strong>the</strong> analysis <strong>of</strong> <strong>the</strong><br />

positron lifetime spectra we used <strong>the</strong> new rout<strong>in</strong>e LT <strong>in</strong> its<br />

latest version 9.0 [36,37] which allows both discrete and log<br />

normal distributed annihilation rates. From <strong>the</strong>se distributions<br />

<strong>the</strong> mean size and <strong>the</strong> size distribution <strong>of</strong> free volume<br />

holes can be calculated. We will also discuss <strong>the</strong> analysed<br />

hole size distribution <strong>in</strong> relation to <strong>the</strong>oretical models<br />

describ<strong>in</strong>g <strong>the</strong> <strong>the</strong>rmal volume fluctuation. From <strong>the</strong> <strong>co</strong>mparison<br />

<strong>of</strong> specific total and free volumes, Vand Vf, with <strong>the</strong><br />

mean hole volume <strong>the</strong> hole number density is estimated.<br />

Moreover, we discuss variations <strong>in</strong> <strong>the</strong> structure <strong>of</strong> <strong>the</strong><br />

free volume (fraction, hole size and number) as a function <strong>of</strong><br />

<strong>the</strong> <strong>co</strong>ntent <strong>of</strong> AN <strong>co</strong>-monomer and temperature. F<strong>in</strong>ally,<br />

we will show relations between <strong>the</strong> bulk modulus and <strong>the</strong><br />

free volume.<br />

Experimental Part<br />

G. Dlubek, J. Pionteck, D. Kilburn<br />

<strong>Poly</strong>(<strong>styrene</strong>-<strong>co</strong>-<strong>acrylonitrile</strong>) (SAN) test samples were provided<br />

by <strong>the</strong> BASF AG Ludwigshafen. <strong>The</strong>ir characteristics are<br />

given<strong>in</strong>Table1.<strong>The</strong>molecularweightsweredeterm<strong>in</strong>edbyGPC<br />

withRI-detector us<strong>in</strong>g PS standards and by GPC <strong>co</strong>upled withan<br />

LALLS-detector. <strong>The</strong> mean values <strong>of</strong> both methods <strong>of</strong> two<br />

measurements each were very similar (deviation <strong>in</strong> M w with<strong>in</strong><br />

3%). <strong>The</strong> <strong>acrylonitrile</strong> <strong>co</strong>-monomer <strong>co</strong>ntent was calculated from<br />

<strong>the</strong> nitrogen <strong>co</strong>ncentration determ<strong>in</strong>ed by elemental analysis by<br />

means <strong>of</strong> an EA1108 (Carlo Erba). <strong>The</strong> standard deviation from<br />

three measurements was with<strong>in</strong> 0.1% (except SAN50: 0.25%).<br />

<strong>The</strong> DSC measurements were performed with a DSC-7 (Perk<strong>in</strong>-<br />

Elmer), PYRIS-s<strong>of</strong>tware, Version 4.01. <strong>The</strong> glass transition<br />

temperaturesT g(half stepmethod) and<strong>the</strong>stepheightsDc p given<br />

<strong>in</strong> Table 1 were determ<strong>in</strong>ed from <strong>the</strong> 2 nd heat<strong>in</strong>g run <strong>of</strong> a circle 1 st<br />

heat, 1 st <strong>co</strong>ol, 2 nd heat with a scan rate <strong>of</strong> þ10/ 80 K m<strong>in</strong> 1 <strong>in</strong><br />

<strong>the</strong> temperature range <strong>of</strong> 10 to 200 8C.<br />

<strong>The</strong> PVT experiments were carried out by means <strong>of</strong> a fully<br />

automated GNOMIX high-pressure dilatometer. [33,34] <strong>The</strong><br />

data were <strong>co</strong>llected <strong>in</strong> <strong>the</strong> range from room temperature to<br />

250 8C <strong>in</strong> steps <strong>of</strong> 10 K. At every <strong>co</strong>nstant temperature <strong>the</strong><br />

material was pressurised from 10 to 200 MPa. <strong>The</strong> specific<br />

volumes for ambient pressure were obta<strong>in</strong>ed by extrapolat<strong>in</strong>g<br />

<strong>the</strong> values for 10 to 30 MPa <strong>in</strong> steps <strong>of</strong> 1 MPa ac<strong>co</strong>rd<strong>in</strong>g to <strong>the</strong><br />

Tait equation us<strong>in</strong>g <strong>the</strong> standard GNOMIX PVT s<strong>of</strong>tware. <strong>The</strong><br />

accuracy is with<strong>in</strong> 0.002 cm 3 g 1 . <strong>The</strong> data obta<strong>in</strong>ed <strong>in</strong> a<br />

<strong>co</strong>ol<strong>in</strong>g run after <strong>the</strong> heat<strong>in</strong>g showed a disappear<strong>in</strong>g small<br />

hysteresis to <strong>the</strong> heat<strong>in</strong>g data and are <strong>the</strong>refore not discussed.<br />

<strong>The</strong> densities <strong>of</strong> <strong>the</strong> samples at room temperature were<br />

Macromol. Chem. Phys. 2004, 205, 500–511 www.mcp-journal.de ß 2004 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim


<strong>The</strong> <strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Free</strong> <strong>Volume</strong> <strong>in</strong> <strong>Poly</strong>(<strong>styrene</strong>-<strong>co</strong>-<strong>acrylonitrile</strong>) from Positron Lifetime ... 503<br />

Table 1. Sample characterisation and volume parameters estimated from PVT data (see text).<br />

Quantity Uncerta<strong>in</strong>ty PS SAN22 SAN38 SAN50<br />

AN <strong>co</strong>ntent (mol-%) 0.2% 0 22.1 38.4 50.6<br />

AN <strong>co</strong>ntent (wt.-%)<br />

Mn (kg mol<br />

0.1% 0 12.6 24.1 34.3<br />

1 )<br />

Mw (kg mol<br />

175 108 74 67<br />

1 )<br />

Tg (DSC, 8C)<br />

Dcp (DSC, J g<br />

2<br />

394<br />

104<br />

203<br />

104<br />

153<br />

110<br />

131<br />

108<br />

1 K 1 )<br />

Tg (spec. vol., 8C)<br />

V25 (cm<br />

2<br />

0.32<br />

98<br />

0.35<br />

99<br />

0.39<br />

101<br />

0.44<br />

98<br />

3 g 1 )<br />

VW (cm<br />

0.001 0.9506 0.9404 0.9335 0.9190<br />

3 g 1 )<br />

Vg (cm<br />

0.6033 0.5990 0.5958 0.5934<br />

3 g 1 )<br />

Eg (10<br />

0.002 0.9660 0.9540 0.9451 0.9306<br />

4 cm 3 g 1 K 1 )<br />

Er (10<br />

0.05 2.17 1.85 1.61 1.65<br />

4 cm 3 g 1 K 1 )<br />

ag (10<br />

0.05 6.14 5.90 5.55 5.27<br />

4 K 1 )<br />

ar (10<br />

0.05 2.25 1.94 1.71 1.77<br />

4 K 1 )<br />

kg (10<br />

0.05 6.36 6.18 5.87 5.66<br />

4 MPa 1 )<br />

kr (10<br />

0.1 3.62 3.61 3.08 2.96<br />

4 MPa 1 )<br />

T* (K)<br />

V* (cm<br />

0.1<br />

40<br />

5.76<br />

11650<br />

5.90<br />

11797<br />

5.41<br />

12160<br />

5.24<br />

12380<br />

3 g 1 ) 0.002 0.9373 0.9281 0.9235 0.9134<br />

P* (MPa) 5 848.5 860 880 890<br />

Mrep (g mol 1 )<br />

M0 (g mol<br />

104.1 97.98 91.35 86.25<br />

1 )<br />

o (A˚<br />

0.3 40.48 40.94 41.45 42.19<br />

3 ) 0.5 60.2 60.3 60.7 61.1<br />

Vocc,g (cm 3 g 1 )<br />

Eocc,g (10<br />

0.003 0.895 0.886 0.882 0.872<br />

4 cm 3 g 1 K 1 )<br />

Eocc,r (10<br />

0.05 0.89 0.92 0.93 0.90<br />

4 cm 3 g 1 K 1 )<br />

*<br />

aocc,g (10<br />

0.05 0.20 0.18 0.18 0.18<br />

4 K 1 )<br />

*<br />

(10<br />

0.05 0.91 0.96 0.98 0.97<br />

4 K 1 ) 0.05 0.21 0.19 0.19 0.20<br />

aocc,r<br />

aocc,g (10 4 K 1 ) 0.05 0.98 1.04 1.05 1.04<br />

aocc,r (10 4 K 1 ) 0.05 0.22 0.21 0.20 0.21<br />

*<br />

kocc,g (10 4 MPa 1 ) 0.05 2.22 2.20 2.13 2.15<br />

*<br />

(10 4 MPa 1 ) 0.05 2.12 2.12 2.00 1.92<br />

kocc,r<br />

kocc,g (10 4 MPa 1 ) 0.05 2.18 2.17 2.10 2.12<br />

kocc,r (10 4 MPa 1 ) 0.05 2.17 2.09 1.97 1.90<br />

Vfg (cm 3 g 1 ) 0.003 0.070 0.067 0.063 0.058<br />

fg ¼ hg 0.003 0.073 0.070 0.067 0.063<br />

T0 0 (8C) 5 25 18 15 15<br />

Hh (kJ mol 1 ) 0.1 7.24 7.92 8.02 8.16<br />

Efg (10 4 cm 3 g 1 K 1 ) 0.06 1.19 0.94 0.69 0.74<br />

Efr (10 4 cm 3 g 1 K 1 ) 0.06 5.89 5.74 5.39 5.07<br />

* 4 1<br />

afg (10 K ) 0.06 1.34 0.98 0.73 0.80<br />

* 4 1<br />

afr (10 K ) 0.06 6.10 6.02 5.70 5.44<br />

afg (10 3 K 1 ) 0.08 1.84 1.39 1.09 1.28<br />

afr (10 3 K 1 ) 0.08 8.41 8.56 8.67 8.70<br />

* 4 1<br />

kfg (10 MPa ) 0.3 1.8 1.6 1.3 1.0<br />

kfr<br />

* (10 4 MPa 1 ) 0.1 3.41 3.11 3.00 2.89<br />

kfg (10 3 MPa 1 ) 0.4 2.5 2.2 1.9 1.7<br />

kfr (10 3 MPa 1 ) 0.1 4.71 4.43 4.50 4.64<br />

determ<strong>in</strong>ed by means <strong>of</strong> a Ultrapycnometer 1000 (Quantachrome)<br />

with an accuracy <strong>of</strong> 0.03%.<br />

Results and Discussion<br />

Specific <strong>Volume</strong><br />

In <strong>the</strong> follow<strong>in</strong>g section we will discuss firstly <strong>the</strong> ambient<br />

pressure volume parameters as a function <strong>of</strong> <strong>the</strong> SAN<br />

<strong>co</strong>mposition. In one <strong>of</strong> <strong>the</strong> last paragraphs, <strong>the</strong> pressure<br />

dependence <strong>of</strong> <strong>the</strong> specific volume will be viewed. Figure 1<br />

displays <strong>the</strong> temperature dependence <strong>of</strong> <strong>the</strong> specific volume<br />

V<strong>of</strong> <strong>the</strong> SAN <strong>co</strong>polymer series for P ¼ 0.1 MPa. V <strong>in</strong>creases<br />

almost l<strong>in</strong>early with<strong>in</strong> <strong>the</strong> two temperature regions below<br />

and above Tg with a dist<strong>in</strong>ct <strong>in</strong>crease <strong>in</strong> its slope at Tg. <strong>The</strong><br />

experimental data were l<strong>in</strong>early fitted <strong>in</strong> <strong>the</strong> temperature<br />

ranges from 25 8C toTg 10 K and from Tg þ 10 K to<br />

200 8C. Table 1 shows <strong>the</strong> volumetric Tg’s toge<strong>the</strong>r with <strong>the</strong><br />

DSC values. Fur<strong>the</strong>r parameters shown are <strong>the</strong> specific<br />

volume at room temperature, V 25, <strong>the</strong> van der Waals<br />

volume, V W (van Krevelen [11] ), <strong>the</strong> specific volume at T g,<br />

Vg, and <strong>the</strong> isobaric (P ¼ 0.1 MPa 0) expansivities <strong>of</strong> <strong>the</strong><br />

Macromol. Chem. Phys. 2004, 205, 500–511 www.mcp-journal.de ß 2004 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim


504<br />

Figure 1. <strong>The</strong> specific volume V<strong>of</strong> SAN <strong>co</strong>polymers as function<br />

<strong>of</strong> temperature T at ambient pressure. Empty symbols: experimental<br />

data, dots: S-S eos fits us<strong>in</strong>g Equation (8), straight l<strong>in</strong>es:<br />

l<strong>in</strong>ear fits <strong>in</strong> <strong>the</strong> ranges from 25 8CtoT g 10 K and from T g þ 10 K<br />

to 200 8C.<br />

specific volume, E g ¼ [dV/dT] P (T < T g) and E r ¼ [dV/dT] P<br />

(T > T g), <strong>in</strong> <strong>the</strong> glassy and rubbery state <strong>of</strong> <strong>the</strong> polymers.<br />

<strong>The</strong> volumetric Tgs are systematically lower by 6 to 10 K<br />

than those from DSC. This slight discrepancy may be<br />

attributed to <strong>the</strong> different physical quantities probed by<br />

<strong>the</strong>se techniques, and to <strong>the</strong> way to calculate Tg as ‘‘midpo<strong>in</strong>t’’<br />

temperature <strong>of</strong> <strong>the</strong> glass transition. <strong>The</strong> Tgs show a<br />

slight <strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>g <strong>co</strong>ntent <strong>of</strong> AN <strong>co</strong>monomer<br />

which appears more clearly <strong>in</strong> DSC experiments and<br />

follows <strong>the</strong> relation<br />

T DSC<br />

g ¼ 103:5ð 2Þþ0:11ð 0:06Þ XAN ð3Þ<br />

where Tg is given <strong>in</strong> 8C and is XAN <strong>the</strong> <strong>co</strong>ntent <strong>of</strong> AN<br />

<strong>co</strong>monomer <strong>in</strong> mol-%.<br />

As displayed <strong>in</strong> Figure 2, while T g <strong>in</strong>creases slightly, <strong>the</strong><br />

values <strong>of</strong> V25 and Vg decrease parallel to <strong>the</strong> van der Waals<br />

volume VW and follow <strong>the</strong> relations<br />

V25 ¼ 0:952ð 0:003Þ 5:9ð 1Þ 10 4 XAN ð4Þ<br />

Vg ¼ 0:968ð 0:003Þ 6:7ð 1Þ 10 4 XAN ð5Þ<br />

In this paper all specific volumes are given <strong>in</strong> units <strong>of</strong><br />

cm 3 g 1 . <strong>The</strong> ratio V25/VW shows a weak variation from<br />

1.58 (PS) to 1.54 (SAN50) while Vg/VW changes from 1.60<br />

to 1.56 ( 0.02). A l<strong>in</strong>ear extrapolation <strong>of</strong> <strong>the</strong> equilibrium<br />

specific volume from above Tg down to 0 K delivers Vr(0)/<br />

VW ¼ 1.23 ( 0.05). When us<strong>in</strong>g <strong>the</strong> S-S eos analytic<br />

expression for extrapolation (see Equation (8)), one obta<strong>in</strong>s<br />

V r(0)/V W ¼ 1.39 ( 0.05). Both values can be <strong>co</strong>mpared<br />

with Vr(0)/VW ¼ 1.3 (Bondi [10,11] ) frequently assumed as<br />

general value <strong>of</strong> <strong>the</strong> occupied volume <strong>of</strong> amorphous<br />

polymers at 0 K.<br />

<strong>The</strong> specific expansivities Eg and Er decrease roughly<br />

l<strong>in</strong>early with <strong>the</strong> mole <strong>co</strong>ntent <strong>of</strong> AN <strong>co</strong>monomer,<br />

G. Dlubek, J. Pionteck, D. Kilburn<br />

Figure 2. <strong>The</strong> Tg from DSC and <strong>the</strong> various specific volumes <strong>of</strong><br />

SAN <strong>co</strong>polymers as a function <strong>of</strong> <strong>the</strong> <strong>co</strong>ntent <strong>of</strong> AN <strong>co</strong>monomer.<br />

Shown are <strong>the</strong> specific total, occupied, and free volume at Tg, Vg,<br />

Vocc,g, Vfg, <strong>the</strong> total volume at 25 8C, V25, <strong>the</strong> S-S eos scal<strong>in</strong>g<br />

volume, V*, and <strong>the</strong> van der Waals volume, VW.<br />

E g ¼ (2.2 1.6) 10 4 cm 3 g 1 K 1 and E r ¼ (6.1<br />

5.3) 10 4 cm 3 g 1 K 1 (Table 1). As shown <strong>in</strong> Figure 3,<br />

<strong>the</strong> isobaric <strong>co</strong>efficients <strong>of</strong> <strong>the</strong>rmal expansion, a ¼ (1/V)<br />

[dV/dT]P, <strong>in</strong> <strong>the</strong> glassy and rubbery state, ag ¼ Eg/Vg and<br />

ar ¼ Er/Vg, show <strong>the</strong> same behaviour with <strong>in</strong>crements <strong>of</strong><br />

0.014 10 4 K 1 and 0.020 10 4 K 1 per mol-%<br />

AN, while <strong>the</strong>ir differences, Da ¼ (ar ag) ¼ (4.1 0.2)<br />

10 4 K 1 , are almost <strong>co</strong>nstant. Moreover, we remark that<br />

<strong>the</strong> value <strong>of</strong> DaT g is <strong>co</strong>nstant with<strong>in</strong> <strong>the</strong>ir uncerta<strong>in</strong>ties,<br />

DaT g ¼ 0.15 0.01, while a rT g may show a slight decrease<br />

from 0.24 to 0.21. Here Tg is given <strong>in</strong> K. <strong>The</strong> last two<br />

relations where dis<strong>co</strong>vered <strong>in</strong> <strong>the</strong> classical work <strong>of</strong> Simha<br />

and Boyer [12] and <strong>co</strong>nfirmed recently. [16]<br />

Figure 3. Coefficients <strong>of</strong> <strong>the</strong>rmal expansion <strong>of</strong> <strong>the</strong> total volume<br />

for <strong>the</strong> glassy and rubbery state, ag and ar, and <strong>the</strong>ir difference<br />

Da ¼ ar ag (empty symbols), and <strong>the</strong> <strong>co</strong>mpressibilities kg, kr,<br />

and Dk ¼ kr kg (filled symbols), as a function <strong>of</strong> <strong>the</strong> <strong>co</strong>ntent <strong>of</strong><br />

AN <strong>co</strong>monomer <strong>in</strong> SAN.<br />

Macromol. Chem. Phys. 2004, 205, 500–511 www.mcp-journal.de ß 2004 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim


<strong>The</strong> <strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Free</strong> <strong>Volume</strong> <strong>in</strong> <strong>Poly</strong>(<strong>styrene</strong>-<strong>co</strong>-<strong>acrylonitrile</strong>) from Positron Lifetime ... 505<br />

<strong>Free</strong> <strong>Volume</strong> from S-S eos<br />

<strong>The</strong> Simha-Somcynsky equation-<strong>of</strong> state [15,17–19] follows<br />

from <strong>the</strong> pressure equation P ¼ (@F/@V)T, where F ¼ F(V,<br />

T, y) is <strong>the</strong> <strong>co</strong>nfigurational (Helmholtz) free energy F <strong>of</strong> <strong>the</strong><br />

liquid,<br />

~P~V<br />

~T ¼ 1 yð21=2y~VÞ þ y<br />

~T<br />

2:002ðy~VÞ 4<br />

1=3 1<br />

2:409ðy~VÞ 2<br />

ð6Þ<br />

~P, ~V, and ~T are reduced variables, ~P ¼ P/P*, ~V ¼ V/V*,<br />

~T ¼ T/T*, where P*, V*, and T* are characteristic scal<strong>in</strong>g<br />

parameters. <strong>The</strong> occupied volume fraction y ¼ 1 h is<br />

<strong>co</strong>upled with ~T and ~V <strong>in</strong> a se<strong>co</strong>nd equation derived from <strong>the</strong><br />

m<strong>in</strong>imisation <strong>co</strong>ndition (@F/@y)V,T ¼ 0 and assum<strong>in</strong>g for<br />

polymers s !1and a flexibility ratio <strong>of</strong> s/3c ¼ 1. 3c is <strong>the</strong><br />

degree <strong>of</strong> freedom <strong>of</strong> a s-mer molecule. [24–26] <strong>The</strong> scal<strong>in</strong>g<br />

parameters are l<strong>in</strong>ked by <strong>the</strong> equation<br />

ðP*V*=T*ÞM0 ¼ðc=sÞR ¼ R=3 ð7Þ<br />

where M0 is <strong>the</strong> molecular mass <strong>of</strong> a s-mer occupy<strong>in</strong>g a<br />

lattice site, sM0 ¼ nMrep.<br />

It was shown that both equations may be replaced <strong>in</strong> <strong>the</strong><br />

temperature and pressure ranges ~T ¼ 0.016 to 0.071 and<br />

~P ¼ 0 to 0.35 by <strong>the</strong> universal <strong>in</strong>terpolation expression<br />

(Utracki and Simha, [19] see here also for <strong>the</strong> values <strong>of</strong> <strong>the</strong><br />

<strong>co</strong>nstants a0 to a5)<br />

ln ~V ¼ a0 þ a1 ~T 3=2 þ ~P½a2 þða3 þ a4 ~P þ a5 ~P 2 Þ~T 2 Š ð8Þ<br />

<strong>The</strong>re is no universal relationship for <strong>the</strong> h-function <strong>in</strong> <strong>the</strong><br />

glassy state at present. <strong>The</strong> S-S eos Equation (6) is derived<br />

under <strong>the</strong> general assumption <strong>of</strong> equilibrium, however <strong>the</strong><br />

specific assumption that <strong>the</strong> free energy is a m<strong>in</strong>imum, has<br />

not been made. <strong>The</strong>refore, it is usual to calculate <strong>the</strong> h<br />

values from <strong>the</strong> specific volume below Tg (respectively<br />

Tg(P), <strong>the</strong> pressure dependent glass transition) via Equation<br />

(6) assum<strong>in</strong>g <strong>co</strong>nstant scal<strong>in</strong>g parameters P*, V* and T*.<br />

<strong>The</strong>se h values are <strong>co</strong>nsidered to be sufficiently good<br />

approximations for <strong>co</strong>nditions not too far from equilibrium.<br />

[15,17–19,38–40]<br />

A first set <strong>of</strong> scal<strong>in</strong>g parameters we have determ<strong>in</strong>ed by<br />

us<strong>in</strong>g <strong>the</strong> standard GNOMIX PVT s<strong>of</strong>tware. S<strong>in</strong>ce we are<br />

most <strong>in</strong>terested <strong>in</strong> good fits <strong>of</strong> <strong>the</strong> ambient pressure isobar,<br />

we have estimated <strong>the</strong> f<strong>in</strong>al parameters <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g<br />

way. First T* and V* were determ<strong>in</strong>ed from non-l<strong>in</strong>ear least<br />

squares fits <strong>of</strong> Equation (8) to <strong>the</strong> volume data for P ¼ 0 MPa<br />

(ambient pressure) plotted <strong>in</strong> <strong>the</strong> temperature range from<br />

T g þ 10 8C to 250 8C. As shown <strong>in</strong> Figure 1, Equation (8)<br />

describes well <strong>the</strong> experimental data above Tg. Typical<br />

<strong>co</strong>efficients <strong>of</strong> determ<strong>in</strong>ation <strong>of</strong> Cd ¼ 0.9999, <strong>co</strong>rrelation<br />

<strong>co</strong>efficients squared <strong>of</strong> r 2 ¼ 0.9998 and standard deviations<br />

<strong>of</strong> s ¼ 0.0003 were obta<strong>in</strong>ed. <strong>The</strong> maximum deviation <strong>of</strong><br />

<strong>the</strong> fits from <strong>the</strong> experimental data amounts to jDVj¼<br />

0.0009 cm 3 g 1 <strong>co</strong>rrespond<strong>in</strong>g to 0.09%. Both, <strong>the</strong><br />

experimental data and <strong>the</strong> fits to Equation (8) <strong>in</strong>crease with<br />

temperature slightly faster than <strong>the</strong> l<strong>in</strong>ear fits from <strong>the</strong> range<br />

Tg to 200 8C.<br />

In a se<strong>co</strong>nd fit <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> data from <strong>the</strong> PVT field <strong>in</strong> <strong>the</strong><br />

range (T g(P) þ 10) 8C to 200 8C and 0 to 200 MPa and fix<strong>in</strong>g<br />

T* and V* to <strong>the</strong> former values <strong>the</strong> scal<strong>in</strong>g pressure P* was<br />

found. <strong>The</strong> scal<strong>in</strong>g parameters describe well <strong>the</strong> experimental<br />

curves <strong>in</strong> <strong>the</strong> whole fitt<strong>in</strong>g range, <strong>the</strong> maximum<br />

deviation between fits and experiments is now somewhat<br />

larger than for P ¼ 0 and amounts to jDVj¼0.002 cm 3 g 1 .<br />

Our scal<strong>in</strong>g parameters for PS deviate somewhat from<br />

previous ones [41] but are similar to those found recently by<br />

Schmidt et al. [29]<br />

<strong>The</strong> S-S eos orig<strong>in</strong>ally derived for homopolymers has<br />

been applied also for polymer blends and <strong>co</strong>polymers. [42,43]<br />

In case <strong>of</strong> random mix<strong>in</strong>g <strong>the</strong> derived parameters are mean<br />

values. In particular, M0 is <strong>the</strong>n <strong>the</strong> mean molecular weight<br />

<strong>of</strong> a s-mer determ<strong>in</strong>ed by averag<strong>in</strong>g <strong>the</strong> molecular weights<br />

M0i <strong>of</strong> <strong>the</strong> <strong>co</strong>mponent s-mers over <strong>the</strong> number sixi <strong>of</strong><br />

<strong>co</strong>mponent mers where xi is <strong>the</strong> mole fraction and si <strong>the</strong><br />

number <strong>of</strong> s-mers <strong>of</strong> a molecule <strong>of</strong> <strong>the</strong> <strong>co</strong>mponent i.<br />

We found that all <strong>of</strong> <strong>the</strong> scal<strong>in</strong>g parameters vary l<strong>in</strong>early<br />

with <strong>the</strong> <strong>co</strong>ntent <strong>of</strong> AN <strong>co</strong>monomers (Table 1 and V* <strong>in</strong><br />

Figure 2). From l<strong>in</strong>ear fits we obta<strong>in</strong>ed<br />

V* ¼ 0:938ð 0:002Þ 4:5ð 0:6Þ 10 4 XAN ð9Þ<br />

T* ¼ 11586ð 90Þþ14:8ð 3Þ XAN ð10Þ<br />

P* ¼ 846ð 3Þþ0:85ð 0:1Þ XAN ð11Þ<br />

where V*, T*, and P* are given <strong>in</strong> cm 3 g 1 , K, and MPa,<br />

respectively. With <strong>the</strong>se scal<strong>in</strong>g parameters <strong>the</strong> specific<br />

volume Vas function <strong>of</strong> temperature Tand pressure P can be<br />

predicted from Equation (8) for <strong>the</strong> SAN <strong>co</strong>polymer system<br />

with an AN <strong>co</strong>ntent between 0 and 50 mol-%. <strong>The</strong> observed<br />

l<strong>in</strong>ear <strong>co</strong>mposition dependence <strong>of</strong> <strong>the</strong> scal<strong>in</strong>g parameters<br />

suggest an absence <strong>of</strong> strong specific <strong>in</strong>teractions between S<br />

and AN <strong>co</strong>monomers. <strong>The</strong> scal<strong>in</strong>g volume V* has a <strong>co</strong>nstant<br />

ratio to <strong>the</strong> van der Waals volume <strong>of</strong> V*/VW ¼ (1.54 0.01).<br />

This ratio is close to that found by o<strong>the</strong>r groups for a larger<br />

variety <strong>of</strong> polymers, 1.45 [15] and 1.57 to 1.60. [16]<br />

From <strong>the</strong> scal<strong>in</strong>g parameters <strong>the</strong> molecular mass <strong>of</strong> a smer<br />

occupy<strong>in</strong>g a lattice cell, M0, and <strong>the</strong> cell volume o at a<br />

given temperature can be estimated us<strong>in</strong>g Equation (7). Our<br />

scal<strong>in</strong>g parameters deliver values for M0 <strong>in</strong>creas<strong>in</strong>g l<strong>in</strong>early<br />

between M 0 ¼ 40.6 g mol 1 for PS and 42.2 g mol 1 for<br />

SAN50. <strong>The</strong> ratio M 0/M rep ¼ n/s varies l<strong>in</strong>early with X AN,<br />

M0=Mrep ¼ 0:384ð 0:008Þþ0:291ð 0:02Þ 10 2 XAN<br />

ð12Þ<br />

In <strong>the</strong> literature <strong>the</strong> values <strong>of</strong> M0/Mrep for different<br />

polymers vary between 0.25 and 1.25; [41] for PS 0.49 [41] and<br />

0.38 [28] , and for SAN25 wt.-% 0.40 [28] have been estimated.<br />

From our values for M0/Mrep a cell volume at Tg, og ¼<br />

Macromol. Chem. Phys. 2004, 205, 500–511 www.mcp-journal.de ß 2004 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim


506<br />

(M0/Mrep) Vrep(Tg) ¼ M0Vocc,g/NA (NA – Avogadro’s number),<br />

show<strong>in</strong>g a slight <strong>in</strong>crease with rais<strong>in</strong>g AN <strong>co</strong>ntent from<br />

og ¼ 60.2 to 61.1 ( 0.5) A˚ 3 follows.<br />

Us<strong>in</strong>g <strong>the</strong> scal<strong>in</strong>g parameters P*, V*, and T* we have<br />

calculated <strong>the</strong> fractions <strong>of</strong> occupied sites, y, and hole sites,<br />

h ¼ 1 y, from a numerical solution <strong>of</strong> Equation (6) for<br />

both temperature ranges, above and below T g. Figure 4 and 5<br />

show <strong>the</strong> results <strong>of</strong> our analysis displayed as <strong>the</strong> specific<br />

occupied volume Vocc ¼ yV, and specific free volume Vf ¼<br />

hV. As <strong>in</strong> <strong>the</strong> S-S eos, we assume that <strong>the</strong> partial volumes<br />

Vocc and Vf behave additively and are exposed to <strong>the</strong> same<br />

temperature T and hydrostatic pressure P as applied<br />

externally to <strong>the</strong> sample, V(T, P) ¼ V occ(T, P) þ V f(T, P).<br />

Under <strong>the</strong>se assumptions, <strong>the</strong>ir expansivities and <strong>co</strong>mpressibilities<br />

behave also additively. One observes that <strong>the</strong><br />

occupied volume shows a l<strong>in</strong>ear expansion below and above<br />

Tg with an abrupt decrease <strong>in</strong> its expansivity at Tg. <strong>The</strong> free<br />

volume expands even almost l<strong>in</strong>early <strong>in</strong> both <strong>of</strong> <strong>the</strong> temperature<br />

regions, below and above Tg and shows a strong<br />

<strong>in</strong>creases <strong>in</strong> <strong>the</strong> expansivity at Tg.<br />

<strong>The</strong> total <strong>in</strong>crease <strong>of</strong> <strong>the</strong> specific free volume V f <strong>co</strong>mes<br />

from <strong>the</strong> <strong>in</strong>crease <strong>in</strong> N h SS , i.e. <strong>the</strong> creation <strong>of</strong> new empty<br />

cells, and to a small extent from <strong>the</strong> <strong>the</strong>rmal expansion <strong>of</strong><br />

<strong>the</strong> cells assumed to have <strong>the</strong> uniform size o ¼ Vocc/Ns. In<br />

order to study <strong>the</strong> real variation <strong>in</strong> <strong>the</strong> number <strong>of</strong> created<br />

holes, Nh SS , we have to <strong>co</strong>nsider <strong>the</strong> hole number related to<br />

<strong>the</strong> number <strong>of</strong> occupied lattice sites, Ns. Its variation per 1 K,<br />

d(Nh SS /Ns)/dT ¼ d(Vf/Vocc)/dT ¼ d(h/y)/dT, amounts for PS<br />

to 6.71 10 4 K 1 above and 1.42 10 4 K 1 below T g.<br />

Both values decrease with <strong>in</strong>creas<strong>in</strong>g <strong>co</strong>ntent <strong>of</strong> AN <strong>co</strong>monomer<br />

and amount to 5.94 10 4 K 1 and 0.79<br />

10 4 K 1 , respectively, for SAN50.<br />

When we <strong>co</strong>nsider <strong>the</strong> holes as quasi-po<strong>in</strong>t defects, <strong>the</strong>ir<br />

<strong>co</strong>ncentration may be calculated from [44,45]<br />

h ¼ expðSh=kBÞ expð Hh=kBTÞ ð13Þ<br />

Figure 4. <strong>The</strong> specific occupied volume, Vocc ¼ yV, <strong>of</strong> SAN<br />

<strong>co</strong>polymers as function <strong>of</strong> temperature T at ambient pressure.<br />

(Symbols as <strong>in</strong> Figure 1, straight l<strong>in</strong>es: l<strong>in</strong>ear fits).<br />

G. Dlubek, J. Pionteck, D. Kilburn<br />

Figure 5. <strong>The</strong> specific hole free volume, Vf ¼ hV, <strong>of</strong> SAN<br />

<strong>co</strong>polymers as function <strong>of</strong> temperature T at ambient pressure<br />

(Symbols as <strong>in</strong> Figure 1, straight l<strong>in</strong>es: l<strong>in</strong>ear fits).<br />

where h is <strong>the</strong> number <strong>of</strong> holes per lattice site, Hh is <strong>the</strong><br />

hole formation enthalpy, Sh is <strong>the</strong> hole formation entropy, kB<br />

is <strong>the</strong> Boltzmann <strong>co</strong>nstant, and T is <strong>the</strong> absolute temperature.<br />

Equation (13) is derived from m<strong>in</strong>imis<strong>in</strong>g <strong>the</strong> free<br />

enthalpy with respect to <strong>the</strong> hole number. Arrhenius plots<br />

<strong>of</strong> ln h vs. 1/T show straight l<strong>in</strong>es above T g (Figure 6) with a<br />

typical variance <strong>of</strong> 0.004 and r 2 value <strong>of</strong> 0.9997. From<br />

<strong>the</strong> fits a molar activation enthalpy for <strong>the</strong> hole formation <strong>in</strong><br />

PS <strong>of</strong> Hh ¼ 7.24 kJ mol 1 can be estimated which <strong>in</strong>creases<br />

systematically to Hh ¼ 8.16 kJ mol 1 for SAN50,<br />

while Sh/R fluctuates around 0.9. <strong>The</strong> fit parameters <strong>co</strong>rrespond<br />

to Hh ¼ (2.3 2.6) RTg (R – gas <strong>co</strong>nstant) which is<br />

close to H h 3 RT g estimated by Perez [44] from calorimetric<br />

data.<br />

We may imag<strong>in</strong>e <strong>the</strong> hole creation like <strong>the</strong> formation <strong>of</strong> a<br />

Schottky defect, i.e. a s-mer migrates to <strong>the</strong> surface leav<strong>in</strong>g<br />

Figure 6. Arrhenius plot <strong>of</strong> <strong>the</strong> fraction <strong>of</strong> empty lattice cells<br />

above Tg <strong>of</strong> SAN <strong>co</strong>polymers (Symbols as <strong>in</strong> Figure 1, straight<br />

l<strong>in</strong>es: l<strong>in</strong>ear fits).<br />

Macromol. Chem. Phys. 2004, 205, 500–511 www.mcp-journal.de ß 2004 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim


<strong>The</strong> <strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Free</strong> <strong>Volume</strong> <strong>in</strong> <strong>Poly</strong>(<strong>styrene</strong>-<strong>co</strong>-<strong>acrylonitrile</strong>) from Positron Lifetime ... 507<br />

an unoccupied lattice site <strong>in</strong> <strong>in</strong>ternal regions <strong>of</strong> <strong>the</strong> sample.<br />

For <strong>the</strong> migration, <strong>the</strong> bonds <strong>of</strong> a mer to its neighbours must<br />

be broken. In <strong>the</strong> average, half <strong>of</strong> <strong>the</strong>m are re<strong>co</strong>nstructed at<br />

<strong>the</strong> surface. From this <strong>co</strong>nsideration follows that <strong>the</strong> hole<br />

formation enthalpy Hh should approximately <strong>co</strong>rrespond to<br />

half <strong>of</strong> <strong>the</strong> <strong>co</strong>hesive energy. One may calculate <strong>the</strong> <strong>co</strong>hesive<br />

energy per mole lattice site from Ec ¼ d 2 Vmol(M0/Mrep) ¼<br />

d 2 (Mrep/r)(M0/Mrep) ¼ d 2 (M0/r) where r is <strong>the</strong> density,<br />

Vmol ¼ Mrep/r is <strong>the</strong> molar volume <strong>of</strong> <strong>the</strong> polymer, and Mrep<br />

and M0 are, as before, <strong>the</strong> molar mass <strong>of</strong> a n-mer and a s-mer,<br />

respectively. d is <strong>the</strong> solution parameter def<strong>in</strong>ed as <strong>the</strong> square<br />

root <strong>of</strong> <strong>the</strong> <strong>co</strong>hesive energy density, d ¼ (Umol/Vmol) 1/2<br />

with Umol <strong>the</strong> mean value <strong>of</strong> <strong>the</strong> <strong>in</strong>termolecular <strong>in</strong>teraction<br />

energy per mole. In van Krevelen’s <strong>co</strong>llection [11] d<br />

18 J 1/2 cm 3/2 for PS and d 28 J 1/2 cm 3/2 for poly<strong>acrylonitrile</strong><br />

(PAN, r ¼ 1.184 g cm 3 , Mrep ¼ 53.1 g mol 1 )<br />

can be found. <strong>The</strong>se values lead to Ec ¼ 12.4 kJ mol 1 for<br />

PS and a mean value <strong>of</strong> Ec ¼ 16.2 kJ mol 1 for SAN50.<br />

<strong>The</strong> half <strong>of</strong> both values is not very far from <strong>the</strong> Hh values<br />

found for PS and SAN50.<br />

<strong>The</strong>rmal Expansion and <strong>Free</strong> <strong>Volume</strong><br />

From <strong>the</strong> curves shown <strong>in</strong> Figure 4 and 5 one may derive <strong>the</strong><br />

expansivities <strong>of</strong> <strong>the</strong> specific occupied volume, E occ,g ¼<br />

dV occ/dT (T < T g) and E occ,r ¼ dV occ/dT (T > T g), and <strong>of</strong> <strong>the</strong><br />

specific free volume, Efg ¼ dVf/dT (T < Tg) and Efr ¼ dVf/<br />

dT (T > Tg) as well as <strong>the</strong> characteristic volumes at Tg,<br />

Vocc,g ¼ Vocc(Tg) and Vfg ¼ Vf(Tg) us<strong>in</strong>g l<strong>in</strong>ear fits. <strong>The</strong><br />

expansivities determ<strong>in</strong>e <strong>the</strong> <strong>co</strong>rrespond<strong>in</strong>g fractional <strong>co</strong>efficients<br />

<strong>of</strong> <strong>the</strong> <strong>the</strong>rmal expansion <strong>of</strong> <strong>the</strong> occupied and free<br />

volumes def<strong>in</strong>ed by<br />

aocc;g * ¼ Eocc;g=Vg ð14aÞ<br />

afg * ¼ Efg=Vg ð14bÞ<br />

when T < Tg and<br />

aocc;r * ¼ Eocc;r=Vg ð14cÞ<br />

afr * ¼ Efr=Vg ð14dÞ<br />

when T > Tg.<br />

<strong>The</strong> fractional <strong>co</strong>efficients are related to a by<br />

a ¼ aocc * þ af*. <strong>The</strong>y are related to <strong>the</strong> <strong>co</strong>efficients <strong>of</strong> <strong>the</strong>rmal<br />

expansion <strong>of</strong> <strong>the</strong> occupied and free volume, aocc ¼ (1/<br />

Vocc)(dVocc/dT) and af ¼ (1/Vf)(dVf/dT), via aocc * ¼<br />

(1 f)aocc and af* ¼ faf (f : h). <strong>The</strong> volumes and <strong>co</strong>efficients<br />

are shown <strong>in</strong> Table 1. We notice <strong>the</strong> relations<br />

afg* aocc,g * 0.5 ag (T < Tg) and afr* ar, aocc,r * 0(T > Tg). From l<strong>in</strong>ear fits <strong>the</strong> relations<br />

Vocc;g ¼ 0:8958ð 0:002Þ 4:5ð 0:6Þ 10 4 XAN ð15Þ<br />

Vfg ¼ 0:0712ð 0:001Þ 2:4ð 0:3Þ 10 4 XAN ð16Þ<br />

follow. <strong>The</strong> specific free volume at Tg, Vfg ¼ hgVg, decreases<br />

from 0.070 cm 3 g 1 for PS to 0.058 cm 3 g 1 for SAN50<br />

(Figure 2) which <strong>co</strong>mes from a decrease <strong>in</strong> <strong>the</strong> hole fraction,<br />

fg ¼ hg, from 0.073 to 0.063, and a <strong>co</strong>rrespond<strong>in</strong>g change <strong>in</strong><br />

<strong>the</strong> total volume Vg. This shows <strong>in</strong> agreement with previous<br />

results [15–19] that <strong>the</strong> fractional free (hole) volume can be<br />

dist<strong>in</strong>ctly larger than <strong>the</strong> WLF value [3] <strong>of</strong> fg ¼ 0.025. Table 1<br />

shows also a temperature denoted as T 0 0<br />

. This is <strong>the</strong> tem-<br />

perature where <strong>the</strong> equilibrium free volume disappears<br />

when extrapolated l<strong>in</strong>early from <strong>the</strong> temperature region<br />

above Tg. We notice that T0 0 ¼ Tg (113 123)K. T0 0 should<br />

be closely related with <strong>the</strong> temperature where <strong>the</strong> structural<br />

relaxation time be<strong>co</strong>mes <strong>in</strong>f<strong>in</strong>ite, this is <strong>the</strong> Vogel temperature<br />

T0. [3] In Part II <strong>of</strong> our work we will discuss this<br />

po<strong>in</strong>t more <strong>in</strong> detail tak<strong>in</strong>g <strong>in</strong>to ac<strong>co</strong>unt <strong>the</strong> results from<br />

PALS.<br />

afr and afg are <strong>in</strong> <strong>the</strong> order <strong>of</strong> 10 3 K 1 while, due to <strong>the</strong><br />

low free volume fraction, afg* and afr* have values <strong>in</strong> <strong>the</strong> order<br />

<strong>of</strong> 10 4 K 1 . <strong>The</strong> parameters Efg, Efr, and afg*, afr* decrease<br />

with <strong>in</strong>creas<strong>in</strong>g <strong>co</strong>ntent <strong>of</strong> AN <strong>co</strong>monomer. <strong>The</strong> differences,<br />

(afr* afg*)¼ (4.8 0.2) 10 4 K 1 (Figure 3), and<br />

<strong>the</strong> values (afr* afg*) Tg ¼ (0.18 0.01) and<br />

afr*T g ¼ (0.22 0.01) are <strong>co</strong>nstant with<strong>in</strong> <strong>the</strong>ir statistical<br />

uncerta<strong>in</strong>ties. We notice that <strong>the</strong> values <strong>of</strong> (afr* afg* ) are<br />

somewhat larger than <strong>the</strong> <strong>co</strong>rrespond<strong>in</strong>g values estimated<br />

from <strong>the</strong> specific volume data. This difference is due to <strong>the</strong><br />

abrupt decrease <strong>in</strong> <strong>the</strong> <strong>the</strong>rmal expansivity <strong>of</strong> <strong>the</strong> specific<br />

occupied volume, Vocc ¼ yV, atTg (Figure 4). <strong>The</strong> physical<br />

reasons for this behaviour are still unknown but <strong>the</strong>re are<br />

additional <strong>in</strong>dications for this from our PALS results (see<br />

Part II <strong>of</strong> this work). <strong>The</strong>se show that this behaviour is not<br />

<strong>the</strong> possible effect <strong>of</strong> <strong>the</strong> application <strong>of</strong> <strong>the</strong> S-S eos for <strong>the</strong><br />

non-equilibrium glassy phase. We speculate that <strong>the</strong> change<br />

<strong>in</strong> <strong>the</strong> expansivity <strong>of</strong> <strong>the</strong> occupied volume is probably<br />

related to <strong>the</strong> change <strong>in</strong> <strong>the</strong> polymer dynamics at Tg. [46]<br />

With <strong>in</strong>creas<strong>in</strong>g temperature <strong>the</strong> b process (trapped<br />

motions) sets <strong>in</strong> somewhat below Tg and shows a weak<br />

but observable volumetric effect. [47] At Tg <strong>the</strong> a process (notrapped<br />

motions, segmental dynamics) is activated which<br />

has a large volumetric effect. Future research may resolve<br />

this question.<br />

<strong>The</strong> specific expansivity <strong>of</strong> <strong>the</strong> occupied volume for all <strong>of</strong><br />

our samples changes at Tg from Eocc,g ¼ dVocc/dT ¼ 0.91<br />

10 4 cm 3 g 1 K 1 (T < Tg) toEocc,r ¼ dVocc/dT ¼ 0.18<br />

10 4 cm 3 g 1 K 1 (T > Tg) which <strong>co</strong>rresponds to a<br />

jump <strong>in</strong> <strong>the</strong> fractional <strong>co</strong>efficient <strong>of</strong> <strong>the</strong>rmal expansion<br />

<strong>of</strong> <strong>the</strong> occupied volume from aocc,g * ¼ Eocc,g/Vg ¼ 0.95<br />

10 4 K 1 to aocc,r<br />

* ¼ Eocc,g/Vg ¼ 0.21 10 4 K 1 . <strong>The</strong>se<br />

<strong>co</strong>efficients are smaller than those <strong>of</strong> polymer crystals. For<br />

polyethylene crystals, for example, ac ¼ 1.9 10 4 K 1<br />

has been estimated. [32] Because <strong>of</strong> aocc,r 0.1 ag, <strong>the</strong><br />

fractional <strong>co</strong>efficient <strong>of</strong> <strong>the</strong>rmal expansion <strong>of</strong> excess free<br />

volume should be approximated by a fr* a r ra<strong>the</strong>r than<br />

by a fr* Da ¼ (a g a r) as usually done (see Equation (2)).<br />

<strong>The</strong> same result we have obta<strong>in</strong>ed from <strong>in</strong>vestigations <strong>of</strong><br />

Macromol. Chem. Phys. 2004, 205, 500–511 www.mcp-journal.de ß 2004 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim


508<br />

a series <strong>of</strong> <strong>styrene</strong>-maleic anhydrite (SMA) <strong>co</strong>polymers<br />

(to be published) and differently plasticized polyv<strong>in</strong>ylchloride<br />

(PVC). [30] This shows <strong>the</strong> general nature <strong>of</strong> <strong>the</strong>se<br />

<strong>co</strong>nclusions.<br />

As a fur<strong>the</strong>r aspect we observed that <strong>the</strong> ratio V occ,g/V*,<br />

which is denoted <strong>in</strong> <strong>the</strong> literature by K(~Tg), [15,17–19] has a<br />

<strong>co</strong>nstant value <strong>of</strong> V occ,g/V* ¼ 0.9548 0.0005. <strong>The</strong> hole<br />

fraction h <strong>in</strong> <strong>the</strong>rmal equilibrium is frequently calculated<br />

from <strong>the</strong> approximation h ¼ 1 K(~T)/~V, where K(~T) be<strong>in</strong>g<br />

a very slowly vary<strong>in</strong>g function. V* may be estimated from<br />

<strong>the</strong> ratio V*/VW, which is 1.54 <strong>in</strong> case <strong>of</strong> our SAN system.<br />

From our data, we found also a <strong>co</strong>nstant ratio Vocc,g/<br />

V W ¼ 1.47 0.01. This value is larger than <strong>the</strong> traditionally<br />

accepted ratio <strong>of</strong> V r(0)/V W ¼ 1.3 which is estimated for<br />

T ¼ 0 K (Bondi [10,11] ), but may be <strong>co</strong>mpared with<br />

<strong>the</strong> universal relationship Vc/VW ¼ 1.45 (T ¼ 25 8C) where<br />

Vc is <strong>the</strong> specific crystall<strong>in</strong>e volume (van Krevelen [11] ).<br />

<strong>The</strong> result Vocc,g/VW Vc/VW justifies our previous judgement<br />

[13,48,49] to identify <strong>the</strong> occupied volume with <strong>the</strong><br />

crystall<strong>in</strong>e one when Vocc is not known.<br />

Hydrostatic Compression and <strong>Free</strong> <strong>Volume</strong><br />

In this chapter we discuss <strong>the</strong> results <strong>of</strong> <strong>the</strong> S-S eos analysis<br />

<strong>of</strong> <strong>the</strong> PVT measurements for nonzero pressures P. Figure 7<br />

shows as an example for <strong>the</strong> <strong>co</strong>polymer system <strong>the</strong> temperature<br />

dependence <strong>of</strong> <strong>the</strong> specific volume <strong>of</strong> SAN50 for<br />

selected pressures. As shown <strong>in</strong> <strong>the</strong> Figure, Equation (8),<br />

toge<strong>the</strong>r with <strong>the</strong> estimated scal<strong>in</strong>g parameters, fit very well<br />

<strong>the</strong> experimental data above T g(P).<br />

Figure 8 displays <strong>the</strong> variation <strong>of</strong> <strong>the</strong> specific occupied<br />

volume, Vocc, with <strong>the</strong> temperature. Aga<strong>in</strong>, <strong>the</strong> abrupt<br />

change <strong>in</strong> <strong>the</strong> expansivity Eocc from below Tg to above Tg(P)<br />

Figure 7. Specific volume V <strong>of</strong> SAN50 as a function <strong>of</strong><br />

temperature T and as selection <strong>of</strong> isobars (<strong>in</strong> MPa). Tg(0) and<br />

T g(P) represent <strong>the</strong> zero-pressure glass transition and <strong>the</strong> glass<br />

transition temperature as a function <strong>of</strong> pressure. Empty symbols:<br />

experimental data, dots: S-S eos fits us<strong>in</strong>g Equation (8) <strong>in</strong> <strong>the</strong> range<br />

<strong>of</strong> 125–250 8C and 0–200 MPa. (straight l<strong>in</strong>es: l<strong>in</strong>ear fits).<br />

G. Dlubek, J. Pionteck, D. Kilburn<br />

Figure 8. As <strong>in</strong> Figure 7, but specific occupied volume, Vocc ¼<br />

yV, <strong>of</strong> SAN50 (Symbols as <strong>in</strong> Figure 7, straight l<strong>in</strong>es: l<strong>in</strong>ear fits).<br />

can be observed. In Figure 9 <strong>the</strong> variation <strong>of</strong> <strong>the</strong> specific free<br />

volume Vf ¼ hV with <strong>the</strong> temperature is shown. Vf exhibits a<br />

l<strong>in</strong>ear expansion below T g(0) and above T g(P). Between<br />

T g(0) and T g(P) it is <strong>co</strong>mpressed to values lower than <strong>the</strong><br />

glass that was orig<strong>in</strong>ally loaded <strong>in</strong>to <strong>the</strong> PVT device.<br />

In Figure 10, <strong>the</strong> pressure dependence <strong>of</strong> <strong>the</strong> specific<br />

total, occupied, and free volume is shown for selected temperatures.<br />

As can be observed, <strong>the</strong> free volume, and <strong>the</strong>refore<br />

also <strong>the</strong> total volume, decrease highly nonl<strong>in</strong>ear with P<br />

at temperatures above Tg. V(P) and Vf(P) <strong>co</strong>uld be fitted by a<br />

polynomial <strong>of</strong> forth degree. At room temperature V and V f<br />

show a small, l<strong>in</strong>ear variation with P. V occ exhibits <strong>in</strong> all<br />

temperature ranges an almost l<strong>in</strong>ear decrease with P.<br />

<strong>The</strong> specific expansivities <strong>of</strong> all <strong>of</strong> <strong>the</strong> volumes, V, Vocc<br />

and Vf (Figure 7–9), decrease with <strong>in</strong>creas<strong>in</strong>g pressure as<br />

follows for SAN50 as example (<strong>in</strong> units <strong>of</strong> 10 4 cm 3 g 1<br />

K 1 ): Eg from 1.65 at P ¼ 0.1 MPa to 0.86 at P ¼ 200 MPa,<br />

Er from 5.27 to 3.17, Eocc,g from 0.90 to 0.74 and Eocc,r from<br />

Figure 9. As <strong>in</strong> Figure 7, but specific free volume, V f ¼ hV, <strong>of</strong><br />

SAN50 (Symbols as <strong>in</strong> Figure 7, straight l<strong>in</strong>es: l<strong>in</strong>ear fits).<br />

Macromol. Chem. Phys. 2004, 205, 500–511 www.mcp-journal.de ß 2004 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim


<strong>The</strong> <strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Free</strong> <strong>Volume</strong> <strong>in</strong> <strong>Poly</strong>(<strong>styrene</strong>-<strong>co</strong>-<strong>acrylonitrile</strong>) from Positron Lifetime ... 509<br />

Figure 10. Specific total, V, occupied, Vocc ¼ yV, and free,<br />

V f ¼ hV, volume <strong>of</strong> SAN50 as a function <strong>of</strong> pressure P for selected<br />

temperatures. Circles: 253 8C, squares: 209 8C, up-triangles:<br />

149 8C, down-triangles: 26 8C. <strong>The</strong> l<strong>in</strong>es are fits <strong>of</strong> <strong>the</strong> data to a<br />

polynomial function <strong>of</strong> first (Vocc and all data for 26 8C) and fourth<br />

degree (V f, V), respectively.<br />

0.18 to 0.07, Efg from 0.74 to 0.10 and Efr from 5.07<br />

to 3.27. An Arrhenius plot <strong>of</strong> ln h vs. 1/T (Equation (13))<br />

gives straight l<strong>in</strong>es <strong>in</strong> <strong>the</strong> temperature range above Tg(P)<br />

with activation enthalpies for hole formation, Hh, decreas<strong>in</strong>g<br />

slightly with <strong>in</strong>creas<strong>in</strong>g pressure.<br />

<strong>The</strong> iso<strong>the</strong>rmal <strong>co</strong>mpressibilities <strong>of</strong> <strong>the</strong> specific volumes<br />

for <strong>the</strong> glassy and rubbery states <strong>of</strong> <strong>the</strong> <strong>co</strong>polymers at Tg and<br />

for P ! 0 are shown <strong>in</strong> Figure 3 as function <strong>of</strong> <strong>the</strong> SAN<br />

<strong>co</strong>mposition. It was found that both kg ¼ (1/Vg)[dV/dP]T<br />

(T < Tg, T ! Tg) and kr ¼ (1/Vg) [dV/dP]T (T > Tg,<br />

T ! Tg) <strong>co</strong>uld be estimated best from l<strong>in</strong>ear fits to <strong>the</strong> bulk<br />

elasticity modulus, B ¼ 1/k, belowandaboveTg. kg and kr<br />

exhibit a decrease with an <strong>in</strong>crement <strong>of</strong> 0.0143<br />

10 4 MPa 1 and 0.0114 10 4 MPa 1 per mol-% AN.<br />

<strong>The</strong>ir differences, Dk ¼ (kr kg) are <strong>co</strong>nstant at Dk ¼<br />

(2.26 0.1) 10 4 MPa 1 . From this follows also <strong>the</strong><br />

<strong>co</strong>nstancy <strong>of</strong> dTg/dP(0) ¼ Dk/Da ¼ 0.55 K Mpa 1 (Ehrenfest<br />

relation).<br />

Figure 11 shows <strong>the</strong> behaviour <strong>of</strong> <strong>the</strong> temperature dependent<br />

iso<strong>the</strong>rmal <strong>co</strong>mpressibility k(T) ¼ [1/V(T)][dV(T)/<br />

dP]T (P ! 0) for PS and SAN50 toge<strong>the</strong>r with <strong>the</strong> fractional<br />

<strong>co</strong>mpressibilities <strong>of</strong> <strong>the</strong> occupied and free volume,<br />

kocc * (T) ¼ [1/V(T)][dVocc(T)/dP] T and kf*(T) ¼ [1/V(T)]-<br />

[dVf(T)/dP] T where k ¼ kocc * þ kf*. Moreover, <strong>the</strong> <strong>co</strong>mpressibility<br />

<strong>of</strong> <strong>the</strong> free volume itself, kf(T), is shown. <strong>The</strong><br />

relations kocc * ¼ (1 f)kocc and kf* ¼ fkf (f ¼ h) with<br />

kocc(T) ¼ [1/Vocc(T)][dVocc(T)/dP]T and kf(T) ¼ [1/<br />

Vf(T)][dVf(T)/dP]T hold.<br />

<strong>The</strong> <strong>co</strong>mpressibility k <strong>of</strong> PS and <strong>the</strong> SAN <strong>co</strong>polymers<br />

shows a slight <strong>in</strong>crease from 2.5 10 4 MPa 1 at room<br />

temperature to 3.5 10 4 MPa 1 at Tg, an abrupt jump to<br />

6 10 4 MPa 1 above Tg and a fur<strong>the</strong>r <strong>in</strong>crease to<br />

10 10 4 MPa 1 at 250 8C. <strong>The</strong> fractional <strong>co</strong>mpressibility<br />

Figure 11. Temperature dependence <strong>of</strong> <strong>the</strong> iso<strong>the</strong>rmal <strong>co</strong>mpressibilities<br />

for P ! 0 <strong>of</strong> <strong>the</strong> total volume, k, and fractional<br />

<strong>co</strong>mpressibilities <strong>of</strong> <strong>the</strong> occupied, kocc * , and free volume, kf*, for<br />

PS (circles) and SAN50 (squares). Moreover, <strong>the</strong> <strong>co</strong>mpressibilities<br />

<strong>of</strong> <strong>the</strong> free volume, kf, are shown (see text).<br />

<strong>of</strong> <strong>the</strong> occupied volume, kocc * (T), shows an only slight<br />

decrease with values around kocc * 2 10 4 MPa 1 . kf*(T)<br />

behaves like k(T) but is reduced by kocc * (T). <strong>The</strong> value <strong>of</strong><br />

kocc * (T) is close to that <strong>of</strong> kg(T), and somewhat larger than<br />

<strong>the</strong> <strong>co</strong>mpressibility <strong>of</strong> crystals <strong>of</strong> PE. From <strong>the</strong> data<br />

published by Ja<strong>in</strong> and Simha [50] zero pressure <strong>co</strong>mpressibilities<br />

<strong>of</strong> PE crystals <strong>of</strong> 1.5 10 4 MPa 1 (20 8C) and<br />

1.6 10 4 MPa 1 (66 8C) can be estimated. <strong>The</strong> values <strong>of</strong><br />

kocc * and kocc seem to be unexpected high. Bohlen and<br />

Kirchheim [14] have estimated <strong>the</strong> specific number <strong>of</strong> local<br />

free volumes from iso<strong>the</strong>rmal <strong>co</strong>mpression experiments by<br />

a <strong>co</strong>mparison <strong>of</strong> <strong>the</strong> specific volume, V, and mean local free<br />

(hole) volume derived from PALS, assum<strong>in</strong>g kocc ¼ 0. <strong>The</strong><br />

estimated values are higher by a factor <strong>of</strong> 1.5 to 2.5 than<br />

those from <strong>the</strong>rmal expansion experiments. An agreement<br />

between <strong>the</strong> results from both types <strong>of</strong> experiments is,<br />

however, obta<strong>in</strong>ed when tak<strong>in</strong>g <strong>in</strong>to ac<strong>co</strong>unt <strong>the</strong> above<br />

estimated values for kocc.<br />

Surpris<strong>in</strong>gly, <strong>the</strong> <strong>co</strong>mpressibility <strong>of</strong> <strong>the</strong> free volume,<br />

kf(T), is at room temperature not much larger than that <strong>of</strong> <strong>the</strong><br />

occupied volume, kocc(T). kf(T) <strong>in</strong>creases strongly with<br />

<strong>in</strong>creas<strong>in</strong>g temperature and be<strong>co</strong>mes an order <strong>of</strong> magnitude<br />

larger than k(T) near below and above Tg. Due to this larger<br />

values, <strong>the</strong> fractional <strong>co</strong>mpressibility kf*(T) dom<strong>in</strong>ates <strong>the</strong><br />

total <strong>co</strong>mpressibility although <strong>the</strong> volume fraction is<br />

between 5 and 15% only.<br />

As mentioned, <strong>the</strong> SAN <strong>co</strong>polymers show <strong>co</strong>efficients <strong>of</strong><br />

<strong>the</strong>rmal expansion and <strong>co</strong>mpressibilities <strong>of</strong> <strong>the</strong> free volume,<br />

af and kf, which are, for not too low temperatures, by about<br />

one order <strong>of</strong> magnitude larger than <strong>the</strong> <strong>co</strong>rrespond<strong>in</strong>g<br />

values for <strong>the</strong> total volume. afr shows an <strong>in</strong>crease with<br />

<strong>in</strong>creas<strong>in</strong>g <strong>co</strong>ntent <strong>of</strong> AN <strong>co</strong>monomer while kfr shows a<br />

weak decrease above Tg. All <strong>the</strong> <strong>co</strong>efficients <strong>of</strong> <strong>the</strong> total<br />

Macromol. Chem. Phys. 2004, 205, 500–511 www.mcp-journal.de ß 2004 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim


510<br />

volume, a and k, and <strong>the</strong> fractional <strong>co</strong>efficients <strong>of</strong> <strong>the</strong> free<br />

volume, af* and kf*, decrease with <strong>in</strong>creas<strong>in</strong>g <strong>co</strong>ntent <strong>of</strong> AN<br />

<strong>co</strong>monomer. <strong>The</strong> behaviour <strong>of</strong> af and kf can be attributed to<br />

<strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> <strong>co</strong>hesive energy density with <strong>in</strong>creas<strong>in</strong>g<br />

<strong>co</strong>ntent <strong>of</strong> AN <strong>co</strong>monomer. [11] That is also <strong>the</strong> reason that<br />

<strong>the</strong> hole formation enthalpy, H h, <strong>in</strong>creases and with that <strong>the</strong><br />

hole <strong>co</strong>ncentration C h(T), respectively <strong>the</strong> specific free<br />

volume at any temperature T, Vf(T), decrease. <strong>The</strong> decrease<br />

<strong>in</strong> <strong>the</strong> <strong>co</strong>efficients <strong>of</strong> <strong>the</strong>rmal expansion and <strong>co</strong>mpressibilities<br />

<strong>of</strong> <strong>the</strong> specific (total) volume, a and k, is ma<strong>in</strong>ly due<br />

to <strong>the</strong> decreas<strong>in</strong>g fraction <strong>of</strong> free volume with <strong>in</strong>creas<strong>in</strong>g<br />

<strong>co</strong>ntent <strong>of</strong> AN <strong>co</strong>monomer, and to a smaller extent to <strong>the</strong><br />

variation <strong>in</strong> a f and k f. <strong>The</strong> decrease <strong>in</strong> <strong>the</strong> specific free<br />

volume V(T) <strong>co</strong>mes from both, <strong>the</strong> decrease <strong>of</strong> <strong>the</strong> occupied<br />

volume due to <strong>the</strong> decrease <strong>of</strong> <strong>the</strong> van der Waals volume,<br />

and <strong>the</strong> decrease <strong>of</strong> <strong>the</strong> free volume (Table 1).<br />

Conclusions<br />

Us<strong>in</strong>g <strong>the</strong> S-S eos for <strong>the</strong> analysis <strong>of</strong> PVT data <strong>of</strong> SAN<br />

<strong>co</strong>polymers with 0–50 mol-% AN we have calculated <strong>the</strong><br />

hole or excess free volume fraction, h, and from this <strong>the</strong><br />

specific occupied and <strong>the</strong> free volume, V occ ¼ (1 h)V and<br />

Vf ¼ hV where <strong>the</strong> specific total volume is given by<br />

V ¼ Vocc þ Vf. We studied <strong>the</strong> behaviour <strong>of</strong> <strong>the</strong>se sub-volumes<br />

as function <strong>of</strong> temperature and pressure.<br />

<strong>The</strong> unexpected result was found that <strong>the</strong> fractional<br />

<strong>co</strong>efficient <strong>of</strong> <strong>the</strong>rmal expansion <strong>of</strong> Vocc changes at Tg from<br />

aocc,g * 0.2<br />

* 0.5 ag 1 10 4 K 1 (T < Tg)toaocc,r 10 4 K 1 (T > Tg). From this it follows that <strong>the</strong> traditional<br />

approximation, whereby <strong>the</strong> fractional <strong>co</strong>efficient <strong>of</strong><br />

<strong>the</strong>rmal expansion <strong>of</strong> <strong>the</strong> free volume <strong>in</strong> <strong>the</strong> rubbery state<br />

is set equal to <strong>the</strong> difference <strong>of</strong> <strong>the</strong> <strong>co</strong>efficients <strong>of</strong> total<br />

volume expansion above and below Tg, afr* ¼ Da ¼<br />

(ar ag) 4 10 4 K 1 , which <strong>co</strong>mes from aocc,r * ¼ ag,<br />

is <strong>in</strong><strong>co</strong>rrect. S<strong>in</strong>ce aocc,r * 0, afr* ar 6 10 4 K 1 is <strong>the</strong><br />

dist<strong>in</strong>ctly better approximation. From <strong>the</strong> temperature<br />

variation <strong>of</strong> V f <strong>the</strong> fractional <strong>co</strong>efficient <strong>of</strong> <strong>the</strong>rmal expansion<br />

<strong>of</strong> <strong>the</strong> free volume was estimated to be a fg* ¼ (1.3<br />

0.8) 10 4 K 1 and afr* ¼ (6.1 5.4) 10 4 K 1 while <strong>the</strong><br />

<strong>co</strong>rrespond<strong>in</strong>g values <strong>of</strong> <strong>the</strong> free volume itself are<br />

afg ¼ (1.84 1.28) 10 3 K 1 and afr ¼ (8.41 8.70)<br />

10 3 K 1 .<br />

<strong>The</strong> fractional <strong>co</strong>mpressibility <strong>of</strong> <strong>the</strong> occupied and free<br />

volume, kocc * , and kf* show <strong>the</strong> follow<strong>in</strong>g behaviour. kocc *<br />

exhibits an only small change at Tg with values <strong>of</strong><br />

kocc,g * kocc,r * 2 10 4 MPa 1 , a value which seem to<br />

be unexpected high but <strong>co</strong>rresponds well to <strong>the</strong> <strong>co</strong>mpressibility<br />

<strong>of</strong> PE crystals, for example. kf* varies parallel to k,<br />

kf* ¼ k kocc * . <strong>The</strong> <strong>co</strong>mpressibility <strong>of</strong> <strong>the</strong> free volume itself,<br />

kf, has values <strong>of</strong> kf 2 10 3 MPa 1 below Tg and<br />

kf 5 10 3 MPa 1 above.<br />

<strong>The</strong> variation <strong>of</strong> total and free volume parameters with<br />

<strong>the</strong> <strong>co</strong>mposition <strong>of</strong> <strong>the</strong> SAN <strong>co</strong>polymers is discussed. It was<br />

found that <strong>the</strong> hole number per mer follows an Arrhenius<br />

G. Dlubek, J. Pionteck, D. Kilburn<br />

law with an activation enthalpy approximately half <strong>of</strong><br />

<strong>the</strong> <strong>co</strong>hesive energy. <strong>The</strong> free volume at Tg, Vfg, and <strong>the</strong><br />

expansivities and <strong>co</strong>mpressibilities decrease l<strong>in</strong>early with<br />

<strong>in</strong>creas<strong>in</strong>g <strong>co</strong>ntent <strong>of</strong> AN <strong>co</strong>monomer. This was attributed<br />

to <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g <strong>co</strong>hesive energy. In <strong>the</strong> se<strong>co</strong>nd part <strong>of</strong><br />

<strong>the</strong> work <strong>the</strong> mean size, mean number density and size<br />

distribution <strong>of</strong> sub-nanometer size free volume holes are<br />

determ<strong>in</strong>ed from <strong>the</strong> PALS experiments and <strong>the</strong>ir <strong>co</strong>mparison<br />

with PVT data. We show that <strong>the</strong> unexpected f<strong>in</strong>d<strong>in</strong>gs<br />

aocc,r * 0 and kocc,g * kocc,r * 2 10 4 MPa 1 have a large<br />

effect on <strong>the</strong> estimation <strong>of</strong> <strong>the</strong> hole densities.<br />

Our results show clearly that <strong>the</strong> occupied volume shows<br />

a <strong>the</strong>rmal expansion and is also <strong>co</strong>mpressible s<strong>in</strong>ce it<br />

<strong>co</strong>nta<strong>in</strong>s <strong>the</strong> <strong>in</strong>terstital free volume, Vocc ¼ VW þ Vfi. Its<br />

expansivity and <strong>co</strong>mpressibility differ from that <strong>of</strong> <strong>the</strong><br />

excess free volume Vf. Vf depends on <strong>the</strong> route <strong>in</strong> <strong>the</strong> T-P<br />

plane on which <strong>the</strong> <strong>co</strong>nstant V is reached. From this follows<br />

that <strong>the</strong> frequently made observation <strong>of</strong> different relaxation<br />

properties for <strong>the</strong> same total volume or density [40,51] does<br />

not necessarily <strong>co</strong>ntradict <strong>the</strong> free volume <strong>the</strong>ory as it has<br />

been sometimes <strong>co</strong>ncluded. [51] <strong>The</strong> total volume is not <strong>the</strong><br />

<strong>co</strong>ntroll<strong>in</strong>g parameter <strong>of</strong> <strong>the</strong> mobility, but, as shown<br />

recently by some <strong>of</strong> us, [52] <strong>the</strong> excess free volume is.<br />

Acknowledgement: We thank M. Weber, BASF AG, for<br />

provid<strong>in</strong>g <strong>the</strong> SAN samples. For <strong>the</strong> characterisation <strong>of</strong> <strong>the</strong><br />

samples by GPC, DSC and EA we thank D. Voigt, L. Häußler, and<br />

R. Schulze (all from Dresden).<br />

[1] [1a] T. G. Fox, P. J. Flory, J. Appl. Phys. 1950, 21, 581; [1b]<br />

T. G. Fox, P. J. Flory, J. <strong>Poly</strong>m. Sci. 1954, 14, 315.<br />

[2] A. K. Dolittle, J. Appl. Phys. 1951, 21, 1471.<br />

[3] M. L. Williams, R. F. Landel, J. D. Ferry, J. Am. Chem. Soc.<br />

1955, 77, 3701.<br />

[4] [4a] M. H. Cohen, D. Turnbull, J. Chem. Phys. 1959, 31,<br />

1164; [4b] D. Turnbull, M. H. Cohen, J. Chem. Phys. 1970,<br />

52, 3038.<br />

[5] H. Fujita, Fortschr. Hochpolym. -Forsch. 1961, 3,1.<br />

[6] [6a] J. S. Vrentas, J. L. Duda, J. <strong>Poly</strong>m. Sci., Part B: <strong>Poly</strong>m.<br />

Phys. 1977, 15, 403; [6b] J. S. Vrentas, C. M. Vrentas,<br />

J. <strong>Poly</strong>m. Sci., Part B: <strong>Poly</strong>m. Phys. 1992, 30, 1005.<br />

[7] R. E. Robertson, R. Simha, J. G. Curro, Macromolecules<br />

1985, 18, 2239.<br />

[8] J. Frenkel, ‘‘K<strong>in</strong>etic <strong>The</strong>ory <strong>of</strong> Liquids’’, Oxford University<br />

Press, London 1946.<br />

[9] R. Simha, G. Carri, J. <strong>Poly</strong>m. Sci., Part B: <strong>Poly</strong>m. Phys. 1996,<br />

32, 2645.<br />

[10] [10a] A. Bondi, J. Phys. Chem. 1964, 68, 441; [10b] A.<br />

Bondi, ‘‘Physical Properties <strong>of</strong> Molecular Crystals, Liquids,<br />

and Gases’’, Wiley, New York 1968, p. 450.<br />

[11] D. W. Van Krevelen, ‘‘Properties <strong>of</strong> <strong>Poly</strong>mers’’, Elsevier Sci.<br />

Publ. Co., Amsterdam 1990.<br />

[12] R. Simha, R. F. Boyer, J. Chem. Phys. 1962, 37, 1003.<br />

[13] G. Dlubek, J. Stejny, Th. Lüpke, D. Bamford, K. Petters, Ch.<br />

Hübner, M. A. Alam, M. J. Hill, J. <strong>Poly</strong>m. Sci., Part B: <strong>Poly</strong>m.<br />

Phys. 2002, 40, 65.<br />

Macromol. Chem. Phys. 2004, 205, 500–511 www.mcp-journal.de ß 2004 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim


<strong>The</strong> <strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Free</strong> <strong>Volume</strong> <strong>in</strong> <strong>Poly</strong>(<strong>styrene</strong>-<strong>co</strong>-<strong>acrylonitrile</strong>) from Positron Lifetime ... 511<br />

[14] J. Bohlen, R. Kirchheim, Macromolecules 2001, 34, 4210.<br />

[15] R. Simha, P. S. Wilson, Macromolecules 1973, 6, 908.<br />

[16] R. Srithawatpong, Z. L. Peng, B. G. Olson, A. M. Jamieson,<br />

R. Simha, J. D. McGervey, T. R. Maier, A. F. Halasa, H.<br />

Ishida, J. <strong>Poly</strong>m. Sci., Part B: <strong>Poly</strong>m. Phys. 1999, 37, 2754.<br />

[17] R. Simha, T. Somcynsky, Macromolecules 1969, 2, 342.<br />

[18] R. Simha, G. Carri, J. <strong>Poly</strong>m. Sci., Part B: <strong>Poly</strong>m. Phys. 1994,<br />

32, 2645.<br />

[19] L.A.Utracki,R.Simha,Macromol.<strong>The</strong>orySimul.2001,10,17.<br />

[20] O. E. Mogensen, ‘‘Positron Annihilation <strong>in</strong> Chemistry’’,<br />

Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, Heidelberg, New York 1995.<br />

[21] Y. C. Jean, P. E. Mallon, D. M. Schrader, Eds., ‘‘Pr<strong>in</strong>ciples<br />

and Application <strong>of</strong> Positron and Positronium Chemistry’’,<br />

World Scientific, S<strong>in</strong>gapore 2003.<br />

[22] R. A. Pethrick, Progr. <strong>Poly</strong>m. Sci. 1997, 22,1.<br />

[23] Y. Ito, T. Suzuki, Y. Kobayashi, Eds., ‘‘Proc. <strong>of</strong> <strong>the</strong> 6 th Int.<br />

Workshop on Positron and Positronium Chemistry (PPC 6)’’,<br />

7–11 June 1999, Tsukuba, Japan, Rad. Phys. and Chem.<br />

2000, 58, no. 5-6, p. 401 ff.<br />

[24] J. Liu, Q. Deng, Y. C. Jean, Macromolecules 1993, 26, 7149.<br />

[25] Y. Kobayashi, W. Zehng, E. F. Meyer, J. D. McGervey, A.<br />

Jamison, A. R. Simha, Macromolecules 1989, 22, 2302.<br />

[26] Z. Yu, U. Yashi, J. D. McGervey, A. M. Jamieson, R. Simha,<br />

J. <strong>Poly</strong>m. Sci., Part B: <strong>Poly</strong>m. Phys. 1994, 32, 2637.<br />

[27] M. Schmidt, F. H. J. Maurer, Macromolecules 2000, 33, 3879.<br />

[28] M. Schmidt, M. Olsson, F. H. J. Maurer, J. Chem. Phys. 2000,<br />

112, 11095.<br />

[29] M. Schmidt, F. H. J. Maurer, <strong>Poly</strong>mer 2000, 41, 841.<br />

[30] G. Dlubek, V. Bondarenko, J. Pionteck, M. Supey, A.<br />

Wutzler, T. Krause-Rehberg, <strong>Poly</strong>mer 2003, 44, 1921.<br />

[31] G. Dlubek, J. Stejny, M. A. Alam, Macromolecules 1998, 31,<br />

4574.<br />

[32] R. P. Quirk, M. A. A. Alsamarrie, ‘‘Physical Constants <strong>of</strong><br />

<strong>Poly</strong>ethylene’’, <strong>in</strong>: <strong>Poly</strong>mer Handbook, J. Brandrup, E. H.<br />

Immergut, Eds., 3 rd Edition, John Wiley & Sons, New York<br />

1985, p. V/15.<br />

[33] P. Zoller, C. J. Walsh, ‘‘Standard Pressure-<strong>Volume</strong>-<br />

Temperature Data for <strong>Poly</strong>mers’’, Technomic Publ Co.<br />

Inc., Lancaster, Basel 1995.<br />

[34] J. Pionteck, S. Richter, S. Zschoche, K. Sahre, K. F. Arndt,<br />

Acta <strong>Poly</strong>mer 1998, 49, 192.<br />

[35] C. Wästlund, F. H. J. Maurer, <strong>Poly</strong>mer 1998, 39, 2897.<br />

[36] J. Kansy, Nucl. Instrum. Methods Phys. Res., Sec. A 1996,<br />

374, 235.<br />

[37] J. Kansy, LT for W<strong>in</strong>dows, Version 9.0, June 2002, PL-40-007<br />

Katowice: Inst. <strong>of</strong> Phys. Chem. <strong>of</strong> Metals, Silesian<br />

University, Bankowa 12, Poland, private <strong>co</strong>mmunication.<br />

[38] R. K. Ja<strong>in</strong>, R. Simha, P. Zoller, J. <strong>Poly</strong>m. Sci., Part B: <strong>Poly</strong>m.<br />

Phys. 1982, 20, 1399.<br />

[39] A. Quach, R. Simha, J. Phys. Chem. 1972, 76, 416.<br />

[40] R. E. Roberson, <strong>in</strong>: ‘‘Computational Modell<strong>in</strong>g <strong>of</strong> <strong>Poly</strong>mers’’,<br />

J. Bicerano, Ed., Marcel Dekker, Midland, MI 1992,<br />

p. 297.<br />

[41] B. Hartmann, R. Simha, A. E. Berger, J. Appl. <strong>Poly</strong>m. Sci.<br />

1991, 43, 983.<br />

[42] R. K. Ja<strong>in</strong>, R. Simha, J. <strong>Poly</strong>m. Sci., Part B: <strong>Poly</strong>m. Phys.<br />

1982, 20, 1399.<br />

[43] P. Zoller, R. K. Ja<strong>in</strong>, R. Simha, J. <strong>Poly</strong>m. Sci., Part B: <strong>Poly</strong>m.<br />

Phys. 1986, 24, 687.<br />

[44] J. Perez, ‘‘Physics and Mechanics <strong>of</strong> Amorphous <strong>Poly</strong>mers’’,<br />

A. A. Balkema, Ed., Brookfield, Rotterdam 1998, p. 18.<br />

[45] N. Hirai, H. Eir<strong>in</strong>g, J. <strong>Poly</strong>m. Sci. 1959, 37, 51.<br />

[46] Y. Tanabe, <strong>in</strong>: Macromolecular science and eng<strong>in</strong>eer<strong>in</strong>g,<br />

Spr<strong>in</strong>ger series <strong>in</strong> materials science, Vol. 25, Y.<br />

Tanabe, Ed., Spr<strong>in</strong>ger, Berl<strong>in</strong>, Heidelberg, New York 1999,<br />

p. 267.<br />

[47] O. Olabisi, R. Simha, Macromolecules 1975, 8, 211.<br />

[48] G. Dlubek, K. Saar<strong>in</strong>en, H. M. Fretwell, J. <strong>Poly</strong>m. Sci., Part<br />

B: <strong>Poly</strong>m. Phys. 1998, 36, 1513.<br />

[49] G. Dlubek, D. Bamford, A. Rodriguez-Gonzalez, S.<br />

Bornemann, J. Stejny, B. Schade, M. A. Alam, M. Arnold,<br />

J. <strong>Poly</strong>m. Sci., Part B: <strong>Poly</strong>m. Phys. 2002, 40, 434.<br />

[50] R. K. Ja<strong>in</strong>, T. Simha, J. <strong>Poly</strong>m. Sci., <strong>Poly</strong>m. Lett. Ed. 1979, 17,<br />

33.<br />

[51] J. T. Bendler, J. J. Fontanella, M. F. Shles<strong>in</strong>ger, M. C.<br />

W<strong>in</strong>tersgill, Electrochim. Acta 2003, 48, 2267.<br />

[52] D. Bamford, A. Reiche, G. Dlubek, F. Allo<strong>in</strong>, J.-Y. Sanchez,<br />

M. A. Alam, J. Chem. Phys. 2003, 118, 9420.<br />

Macromol. Chem. Phys. 2004, 205, 500–511 www.mcp-journal.de ß 2004 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!