25.07.2013 Views

Gabriela Kohr

Gabriela Kohr

Gabriela Kohr

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Geometric and analytic aspects of Loewner chains<br />

in C n and complex Banach spaces<br />

<strong>Gabriela</strong> <strong>Kohr</strong><br />

Faculty of Mathematics and Computer Science<br />

Babes¸-Bolyai University<br />

Cluj-Napoca, Romania<br />

Based on joint works with Ian Graham (Toronto), Hidetaka Hamada (Fukuoka),<br />

Mirela <strong>Kohr</strong> (Cluj-Napoca)<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 1 / 62


Non-normalized univalent subordination chains and the<br />

generalized Loewner differential equation on the unit ball in<br />

C n<br />

Solutions for the generalized Loewner differential equation in<br />

C n associated with non-normalized univalent subordination<br />

chains given by a time-dependent linear operator<br />

Univalent subordination chains and the generalized Loewner<br />

differential equation in reflexive complex Banach spaces<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 2 / 62


1. Main contributions<br />

1. Contributions in SCV<br />

• J.A. Pfaltzgraff (1974-1975):<br />

-The first generalizations to higher dimensions of various results in the<br />

theory of Loewner chains.<br />

-Generalizations to higher dimensions of the one variable univalence<br />

and quasiconformal extension results due to J. Becker<br />

1. J.A. Pfaltzgraff, Subordination chains and univalence of holomorphic<br />

mappings in C n , Math. Ann., 210 (1974), 55-68.<br />

2. J.A. Pfaltzgraff, Subordination chains and quasiconformal extension<br />

of holomorphic maps in C n , Ann. Acad. Scie. Fenn. Ser. A I Math.,<br />

1(1975), 13-25.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 3 / 62


1. Main contributions<br />

• T. Poreda (1990):<br />

-The Loewner differential equation on the unit polydisc in C n<br />

-Applications of parametric representation to growth theorems and<br />

coefficient estimates on the unit polydisc<br />

-Extensions to complex Banach spaces<br />

1. T. Poreda, On generalized differential equations in Banach spaces,<br />

Dissertationes Mathematicae, 310 (1991), 1-50.<br />

• M. Chuaqui (1995):<br />

-Growth results for strongly starlike maps on the unit ball in C n by using<br />

the theory of Loewner chains<br />

-Explicit quasiconformal extensions to C n of quasiconformal strongly<br />

starlike mappings on B n<br />

1. M. Chuaqui, Applications of subordination chains to starlike<br />

mappings in C n , Pacif. J. Math., 168(1995), 33-48.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 4 / 62


1. Main contributions<br />

• I. Graham, H. Hamada, G. K., M. <strong>Kohr</strong>, J.A. Pfaltzgraff, T.J.<br />

Suffridge, and P. Duren:<br />

-The Loewner differential equation on the unit ball in C n ;<br />

-Distortion results for mappings with parametric representation on B n<br />

-Quasiconformal extension results and Loewner chains<br />

-Geometric aspects of Loewner chains: asymptotic starlikeness and<br />

asymptotic spirallikeness; Extension operators and Loewner chains<br />

-Extreme points and support points associated to families of<br />

biholomorphic mappings with parametric representation<br />

1. I. Graham and G. <strong>Kohr</strong>, Geometric Function Theory in One and<br />

Higher Dimensions, Marcel Dekker, New York, 2003.<br />

2. I. Graham, H. Hamada, G. <strong>Kohr</strong> and M. <strong>Kohr</strong>, Parametric<br />

representation and asymptotic starlikeness in C n , Proc. AMS, 136<br />

(2008), 3963–3973.<br />

3. P. Duren, I. Graham, H. Hamada and G. <strong>Kohr</strong>, Solutions for the<br />

generalized Loewner differential equation in several complex variables,<br />

Math. Ann. 347 (2010) 411–435.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 5 / 62


1. Main contributions<br />

• M. Elin, S. Reich and D. Shoikhet (2000):<br />

-Parametric representation for spirallike mappings in C n and complex<br />

Banach spaces, by using the nonlinear semigroups theory<br />

1. M. Elin, S. Reich, D. Shoikhet, Complex dynamical systems and the<br />

geometry of domains in Banach spaces, Dissertationes Math.,<br />

427(2004), 1-62.<br />

2. S. Reich and D. Shoikhet, Nonlinear Semigroups, Fixed Points, and<br />

Geometry of Domains in Banach Spaces, Imperial College Press,<br />

London, 2005.<br />

• M. Elin; I. Graham, H. Hamada, and G.K.; J.R. Muir:<br />

1. M. Elin, Extension operators via semigroups, J. Math. Anal. Appl.,<br />

377(2011), 239-250.<br />

2. I. Graham, H. Hamada and G.K., Extension operators and univalent<br />

subordination chains, J. Math. Anal. Appl., 386(2012), 278–289.<br />

3. J.R. Muir, A class of Loewner chain preserving extension operators,<br />

J. Math. Anal. Appl., 337(2008), 862-979.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 6 / 62


1. Main contributions<br />

• F. Bracci, M.D. Contreras, S.Diaz-Madrigal (2008):<br />

-The study of a general version of the Loewner differential equation on<br />

the unit disc and complex hyperbolic manifolds, by using the iteration<br />

and the semigroups theory<br />

1. F. Bracci, M.D. Contreras and S.Diaz-Madrigal, Evolution families<br />

and the Loewner equation I: the unit disk, J. Reine Angew. Math., to<br />

appear.<br />

2. F. Bracci, M.D. Contreras and S.Diaz-Madrigal, Evolution families<br />

and the Loewner equation II: complex hyperbolic manifolds, Math.<br />

Ann., 344(2009), 947-962.<br />

• M.D. Contreras, S. Diaz-Madrigal and P. Gumenyuk (2009): a<br />

general version of the notion of Loewner chains and the<br />

correspondence with the evolution families.<br />

1. M.D. Contreras, S. Diaz-Madrigal and P. Gumenyuk, Loewner<br />

chains in the unit disk, Rev. Mat. Iberoamer., 26 (2010), 975–1012<br />

2. M.D. Contreras, S. Diaz-Madrigal and P. Gumenyuk, Geometry<br />

behind chordal Loewner chains, Complex Analysis and Operator<br />

Theory, 4 (2010), 541–587.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 7 / 62


1. Main contributions<br />

• L. Arosio, F. Bracci, H. Hamada and G.K. (2010):<br />

-Abstract construction of Loewner chains on the unit ball and<br />

hyperbolic manifolds: one-to one correspondence between<br />

L d -Loewner chains and L d -evolution families.<br />

1. L. Arosio, F. Bracci, H. Hamada and G.<strong>Kohr</strong>, An abstract approach<br />

of Loewner’s chains, J. Anal. Math., to appear.<br />

2. H. Hamada, G. K., and J. Muir, Extensions of L d -Loewner chains to<br />

higher dimensions, submitted.<br />

• L. Arosio; M. Vodă (2010): resonances to construct solutions to the<br />

generalized Loewner differential equation on the unit ball in C n .<br />

1. L. Arosio, Resonances in Loewner equations, Advances Math.,<br />

227(2011), 1413-1435.<br />

2. M. Vodă, Solution of a Loewner chain equation in several complex<br />

variables, J. Math. Anal. Appl., 375 (2011), 58-74.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 8 / 62


2. Univalent subordination chains in several complex variables<br />

3. Univalent subordination chains<br />

Subordination chains in C n<br />

Definition<br />

(a) If f , g ∈ H(B n ), we say that f is subordinate to g (written f ≺ g) if<br />

there is a Schwarz mapping v such that f = g ◦ v.<br />

• If g is biholomorphic, then f ≺ g iff f (0) = g(0) and f (B n ) ⊆ g(B n ).<br />

(b) f : B n × [0, ∞) → C n is an univalent subordination chain if:<br />

(i) f (·, t) is biholomorphic on B n , f (0, t) = 0, t ≥ 0;<br />

(ii) f (·, s) ≺ f (·, t) whenever 0 ≤ s ≤ t < ∞.<br />

• f (z, t) = e t<br />

0 A(τ)dτ z + · · · , where A : [0, ∞) → L(C n , C n ) is locally<br />

Lebesgue integrable, m(A(t)) > 0, t ≥ 0, and ∞<br />

0 m(A(τ))dτ = ∞.<br />

Here m(A(t)) = minz=1 Re 〈A(t)(z), z〉.<br />

• f (z, t) = etAz + · · · –A-normalized univalent subordination chain.<br />

• f (z, t) = etz + · · · –usual Loewner chain.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 9 / 62


2. Univalent subordination chains in several complex variables<br />

Remark<br />

The first part of the talk refers to univalent subordination chains<br />

with the normalization Df (0, t) = e t<br />

0 A(τ)dτ for t ≥ 0.<br />

f (·, s) ≺ f (·, t) is equivalent to the existence of a Schwarz mapping<br />

v = v(z, s, t)-transition mapping associated with f (z, t), such that<br />

f (z, s) = f (v(z, s, t), t), z ∈ B n , 0 ≤ s ≤ t < ∞.<br />

(vs,t)-evolution family associated to f (z, t).<br />

Remark<br />

Let f (z, t) be a univalent subordination chain and let v(z, s, t) be the<br />

transition mapping associated with f (z, t). Then<br />

(i) v(·, s, t) is biholomorphic on B n and v(z, s, s) = z, z ∈ B n , s ≥ 0.<br />

(ii) v(z, s, ·) is decreasing on [s, ∞), for all z ∈ B n and s ≥ 0.<br />

(iii) Semigroup property:<br />

v(z, s, τ) = v(v(z, s, t), t, τ), z ∈ B n , 0 ≤ s ≤ t ≤ τ < ∞.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 10 / 62


2. Univalent subordination chains in several complex variables<br />

S(B n ) = {h ∈ H(B n ) : h biholomorphic , h(0) = 0, Dh(0) = In}; S(B 1 ) = S<br />

• Every function f ∈ S can be embedded in a Loewner chain.<br />

• In C n , n ≥ 2, there exist mappings f ∈ S(B n ) that cannot be<br />

embedded in Loewner chains f (z, t) such that {e −t f (·, t)}t≥0 is a<br />

normal family on B n .<br />

• Every function f ∈ S has parametric representation, i.e.<br />

f (z) = limt→∞ e t v(z, t), where v = v(z, t) is the unique Lipschitz<br />

continuous solution on [0, ∞) of the initial value problem<br />

∂v<br />

= −vp(v, t) a.e. t ≥ 0, v(z, 0) = z,<br />

∂t<br />

for some choice of p = p(z, t) such that p(·, t) ∈ P for almost all<br />

t ∈ [0, ∞) and p(z, ·) is measurable on [0, ∞) for z ∈ U.<br />

P = {p ∈ H(U) : p(0) = 1, Re p(z) > 0, z ∈ U}.<br />

• S 0 (B 1 ) = S; S 0 (B n ) S(B n ) for n ≥ 2, where S 0 (B n ) is the family of<br />

mappings which have parametric representation.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 11 / 62


2. Univalent subordination chains in several complex variables<br />

• S 0 (B n ) is compact, but S(B n ) is not compact for n ≥ 2.<br />

• There exist mappings f ∈ S 0 (B n ) such that 1<br />

2 D2 f (0) > 2.<br />

• In dimension n ≥ 2, there exist Loewner chains f (z, t) such that<br />

{e −t f (·, t)}t≥0 is not a normal family.<br />

• Let p : U × [0, ∞) → C be a function such that p(·, t) ∈ P, t ≥ 0, and<br />

p(z, ·) is measurable on [0, ∞), z ∈ U. Then there exists a unique<br />

Loewner chain f (z, t) which satisfies the Loewner differential equation<br />

∂f<br />

∂t (z, t) = zf ′ (z, t)p(z, t), a.e. t ≥ 0, ∀z ∈ U.<br />

• In dimension n ≥ 2, the Loewner differential equation<br />

∂f<br />

(z, t) = Df (z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ U,<br />

∂t<br />

does not have a unique normalized univalent solution f (z, t).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 12 / 62


2. Univalent subordination chains in several complex variables<br />

• Many classical results in the theory of holomorphic mappings in C n<br />

do not hold in infinite dimensional complex Banach spaces.<br />

• Montel’s theorem does not hold in the infinite dimensional setting<br />

(but surprisingly, Vitali’s theorem does).<br />

• On a domain in Cn , any univalent (holomorphic and injective)<br />

mapping into Cn is also biholomorphic. However, this result is no<br />

longer true in infinite dimensional complex Banach spaces. For<br />

example, if f : ℓ2 → ℓ2 is given by f (x) = (x 2 1 , x 3 1 , x 2 2 , x 3 2 , . . .), then f is<br />

univalent on the unit ball of ℓ2, but is not biholomorphic.<br />

• On a domain in C n any univalent mapping is open. Heath and<br />

Suffridge (1980): an example of a univalent mapping on the unit ball B<br />

of a complex Banach space which is not biholomorphic, f (B) contains<br />

an open set, but f (B) is not open.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 13 / 62


2. Univalent subordination chains in several complex variables<br />

• There exist biholomorphic mappings on the unit ball B of an infinite<br />

dimensional complex Banach space X which are not bounded on the<br />

ball Br for r ∈ (0, 1).<br />

• Graham, Hamada, K (2012): Let f (x) = (0, f2(x1), f3(x2), . . .) for<br />

x = (x1, x2, . . .) ∈ ℓ2, where fn+1(xn) = 1<br />

n(n+1) (2xn) n+1 , n ≥ 1. Also, let<br />

F(x) = x + f (x). Then F is biholomorphic on ℓ2 and is not bounded on<br />

Br for r ∈ (2/3, 1).<br />

• L. Harris, S. Reich, D. Shoikhet (2000): Let X be a complex Banach<br />

space and let h : B → X be a holomorphic mapping. If L(h) is finite,<br />

then hs is bounded on B for each s ∈ (0, 1), where hs(z) = h(sz) and<br />

L(h) = lim<br />

s→1 sup Re V (hs).<br />

• It is natural to consider to what extent such phenomena require<br />

changes in the development of Loewner theory in complex Banach<br />

spaces.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 14 / 62


2. Univalent subordination chains in several complex variables<br />

Example<br />

A mapping f ∈ H(B n ) is normalized if f (0) = 0 and Df (0) = In.<br />

LSn-the family of normalized locally biholomorphic maps on B n<br />

• If f ∈ LSn, then the following conditions are equivalent:<br />

(i) f ∈ S ∗ (B n ) (i.e. f is biholomorphic and e −t f (B n ) ⊆ f (B n ) for t ≥ 0);<br />

(ii) f (z, t) = e t f (z) is a Loewner chain.<br />

Example<br />

• Let A ∈ L(C n , C n ) be such that Re 〈A(z), z〉 > 0, z = 0. If f ∈ LSn,<br />

then the following conditions are equivalent:<br />

(i) f is spirallike with respect to A (i.e. f is biholomorphic on B n and<br />

e −tA f (B n ) ⊆ f (B n ) for t ≥ 0);<br />

(ii) f (z, t) = e tA f (z) is an A-univalent subordination chain;<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 15 / 62


2. Univalent subordination chains in several complex variables<br />

I. Graham, H. Hamada, G.K, M.K, 2008:<br />

Example<br />

Let A : [0, ∞) → L(Cn , Cn ) be a measurable mapping such that<br />

m(A(t)) > 0 for t ≥ 0 and ∞<br />

0 m(A(t))dt = ∞. Moreover, assume that<br />

A(·) is uniformly bounded on [0, ∞). If f ∈ LSn, then the following<br />

conditions are equivalent:<br />

(i) f is (generalized) spirallike with respect to A (i.e. f is biholomorphic<br />

on B n and exp(− t<br />

0 A(τ)dτ)f (Bn ) ⊆ f (B n ) for t ≥ 0);<br />

(ii) f (z, t) = e t<br />

0 A(τ)dτ f (z) is a univalent subordination chain;<br />

(iii) ℜ〈[Df (z)] −1 A(t)f (z), z〉 > 0, a.e. t ≥ 0, ∀z ∈ B n \ {0}.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 16 / 62


2. Univalent subordination chains in several complex variables<br />

• f (z, t) univalent subordination chain with Df (0, t) = U(t), t ≥ 0,<br />

where U(t) is the unique locally absolutely continuous solution of<br />

dU/dt = A(t)U a.e. t ≥ 0, U(0) = In.<br />

I. Graham, H. Hamada, G. K, M. K (2008-); L. Arosio; M. Vodă (2011).<br />

L. Arosio, F. Bracci, H.Hamada, G.K (2010): L d -Loewner chains.<br />

Definition<br />

Let X be a complex Banach space. For z ∈ X \ {0}, we define<br />

T (z) = {ℓz ∈ L(X, C) : ℓz(z) = z, ℓz = 1}.<br />

Then T (z) = ∅. If A ∈ L(X), let<br />

m(A) = inf{Re [ℓz(A(z))] : z = 1, ℓz ∈ T (z)}<br />

k(A) = sup{Re [ℓz(A(z))] : z = 1, ℓz ∈ T (z)}<br />

|V (A)| = sup{|ℓz(A(z))| : z = 1, ℓz ∈ T (z)}.<br />

V (A)-the numerical radius of the operator A.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 17 / 62


2. Univalent subordination chains in several complex variables<br />

Definition<br />

Let k+(A) = max{Re λ : λ ∈ σ(A)} be the upper exponential index<br />

(Lyapunov) index of A, where σ(A) is the spectrum of A ∈ L(X).<br />

Let k−(A) = min{Re λ : λ ∈ σ(A)} be the lower exponential index<br />

(Lyapunov) index of A.<br />

Remark<br />

Let A ∈ L(X) be such that m(A) > 0. Then<br />

(i) k−(A) ≤ m(A) ≤ k+(A) ≤ k(A) ≤ |V (A)| ≤ A ≤ e|V (A)|;<br />

;<br />

(ii) For each ω > k+(A), there is δ = δ(ω) > 0 s.t. etA ≤ δeωt , t ≥ 0;<br />

(iii)<br />

e m(A)t ≤ e tA (u) ≤ e k(A)t , t ∈ [0, ∞), u = 1.<br />

k+(A) = limt→∞ ln etA t<br />

(iv) L. Harris, 1971: If Pm : X → X is a homogeneous polynomial<br />

mapping of degree m, then Pm ≤ km|V (Pm)|, where km = m m/(m−1)<br />

when m ≥ 2 and k1 = e (k1 = 2 for complex Hilbert spaces).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 18 / 62


2. Univalent subordination chains in several complex variables<br />

The Carathéodory family N<br />

Definition<br />

N = {h ∈ H(B) : h(0) = 0, Re [ℓz(h(z))] > 0, z ∈ B \ {0}, ℓz ∈ T (z)},<br />

N A = {h ∈ N : Dh(0) = A} and M = N I = {h ∈ N : Dh(0) = I}.<br />

• If n = 1, then f ∈ M iff<br />

f (z)/z ∈ P = {h ∈ H(U) : h(0) = 1, Re h(z) > 0, z ∈ U}.<br />

Remark<br />

L. Harris, S. Reich, D. Shoikhet, 2000: Bloch radii; distortion form of<br />

Schwarz’s lemma; T. Poreda, 2001; M. Elin, S. Reich, D. Shoikhet,<br />

2004: geometric aspects of biholomorphic mappings in complex<br />

Banach spaces; I. Graham, H. Hamada, G. K (2002): compactness of<br />

M when X = C n ; radius problems for compact subsets of S(B n );<br />

applications to Loewner’s theory in C n (2008-).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 19 / 62


2. Univalent subordination chains in several complex variables<br />

J.A. Pfaltzgraff (1974; X = C n ); K. Gurganus (1975):<br />

Lemma<br />

If h ∈ N A, where A ∈ L(X) with m(A) > 0, then<br />

1 − z<br />

Re [ℓz(A(z))]<br />

1 + z ≤ Re [ℓz(h(z))]<br />

1 + z<br />

≤ Re [ℓz(A(z))]<br />

1 − z ,<br />

for all z ∈ B \ {0} and ℓz ∈ T (z).<br />

• H. Hamada, G. K (2002): Any h ∈ N is bounded on Br , r ∈ (0, 1).<br />

I. Graham, H. Hamada, G. K, 2002 (X = C n and Df (0) = In); (2008):<br />

Theorem<br />

Let X be a complex Banach space and A ∈ L(X) be s.t. m(A) > 0.<br />

If f (z) = Az + ∞<br />

m=2 Pm(z) ∈ N A, then<br />

(i) |V (Pm)| ≤ 2|V (A)| and Pm ≤ 4m|V (A)| for m ≥ 2.<br />

(ii) m(A)r(1 − r)/(1 + r) ≤ f (z) ≤ 4|V (A)|r/(1 − r) 2 for z ≤ r < 1.<br />

(iii) N A is a compact family when X = C n .<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 20 / 62


2. Univalent subordination chains in several complex variables<br />

I. Graham, H. Hamada, G.K, M.K. (2008-2011), L. Arosio (2011); M.<br />

Voda (2011): non-normalized univalent subordination chains with<br />

normalization given by a time-dependent linear operator.<br />

Assumption<br />

Let A : [0, ∞) → L(Cn , Cn ) be a measurable mapping such that<br />

(a) m(A(t)) > 0 for t ≥ 0, and ∞<br />

0 m(A(t))dt = ∞;<br />

(b) A(·) is uniformly bounded on [0, ∞);<br />

(c) t<br />

s A(τ)dτ ◦ s<br />

r A(τ)dτ = s<br />

r A(τ)dτ ◦ t<br />

s A(τ)dτ, t ≥ s ≥ r ≥ 0.<br />

(d) There exists δ > 0 such that k+(A(t)) ≤ 2m(A(t)) − δ for t ≥ 0;<br />

Remark<br />

(i) (c) holds if A(t) ≡ A ∈ L(C n , C n ) or if A(t) is diagonal, t ≥ 0.<br />

(ii) A-univalent subordination chains (I. Graham, H. Hamada, G. K,<br />

and M. K, 2008).<br />

(iii) Solutions to the Loewner differential equation generated by<br />

A-univalent subordination chains (P. Duren, I. Graham, H. Hamada,<br />

and G.K, 2010).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 21 / 62


2. Univalent subordination chains in several complex variables<br />

J. Pfaltzgraff (1974); T. Poreda (1990); M. Elin, S. Reich, D. Shoikhet<br />

(2000); I. Graham, H. Hamada, G.K, M.K. (2008); L. Arosio; M. Voda<br />

(2011).<br />

Theorem<br />

Let A : [0, ∞) → L(C n , C n ) be such that (a)-(c) hold. Also let<br />

h : B n × [0, ∞) → C n satisfy the following conditions:<br />

(i) h(·, t) ∈ N and Dh(0, t) = A(t) for t ≥ 0;<br />

(ii) h(z, ·) is measurable on [0, ∞) for each z ∈ B n .<br />

Then for each z ∈ B n and s ≥ 0, the initial value problem<br />

(2.1)<br />

∂v<br />

∂t<br />

= −h(v, t), a.e. t ≥ s, v(z, s, s) = z,<br />

has a unique solution v = v(z, s, t) such that v(·, s, t) is a univalent<br />

Schwarz mapping, v(z, s, ·) is Lipschitz continuous on [s, ∞) locally<br />

uniformly with respect to z ∈ B n and Dv(0, s, t) = exp(− t<br />

s A(τ)dτ).<br />

h(z, t)-generating vector field (Herglotz vector field).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 22 / 62


2. Univalent subordination chains in several complex variables<br />

Theorem<br />

T. Poreda, 1990; Graham, Hamada and K., 2001 (A = In); M. Elin, S.<br />

Reich, D. Shoikhet, 2000; I. Graham, H. Hamada, G.K, M.K., 2008:<br />

Let A : [0, ∞) → L(C n , C n ) be such that (a)-(d) hold. Also let<br />

vs,t(z) = v(z, s, t) be the solution of (2.1). Then the limit<br />

t<br />

(2.2) lim e 0<br />

t→∞ A(τ)dτ vs,t(z) = f (z, s)<br />

exists locally uniformly on B n for s ≥ 0. Moreover, f (z, t) is an univalent<br />

subordination chain and {e − t<br />

0 A(τ)dτ f (·, t)}t≥0 is a normal family on B n<br />

and <br />

t≥0 ft(B n ) = C n . In addition, f (z, ·) is locally Lipschitz continuous<br />

on [0, ∞) locally uniformly with respect to z ∈ B n , and<br />

(2.3)<br />

∂f<br />

∂t (z, t) = Df (z, t)h(z, t), a.e. t ≥ 0, ∀ z ∈ Bn .<br />

The univalent subordination chain f (z, t) given by (2.2) is called<br />

the canonical solution of the Loewner differential equation (2.3).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 23 / 62


2. Univalent subordination chains in several complex variables<br />

J. Pfaltzgraf (1975, A = In); I. Graham, H. Hamada, G.K., M.K., 2008.<br />

Theorem<br />

Let A : [0, ∞) → L(C n , C n ) be such that (a)-(d) hold. Let<br />

f = f (z, t) : B n × [0, ∞) → C n be such that f (·, t) ∈ H(B n ), f (0, t) = 0<br />

and Df (0, t) = e t<br />

0 A(τ)dτ for t ≥ 0, and f (z, ·) is locally Lipschitz<br />

continuous on [0, ∞) locally uniformly with respect to z ∈ B n . Assume<br />

that there exists a generating vector field h(z, t) = A(t)z + · · · such that<br />

∂f<br />

∂t (z, t) = Df (z, t)h(z, t), a.e. t ≥ 0, ∀ z ∈ Bn .<br />

Then f (z, t) is a subordination chain. If {e − t<br />

0 A(τ)dτ f (·, t)}t≥0 is a<br />

normal family on B n , then f (z, t) is a univalent subordination chain<br />

which coincides with the canonical solution of (2.3).<br />

g(z, t)-standard solution of (2.3) if g(·, t) ∈ H(B n ), g(0, t) = 0 for<br />

t ≥ 0, g(z, ·) is locally Lipschitz continuous on [0, ∞) locally<br />

uniformly with respect to z ∈ B n , and g(z, t) is a solution of (2.3).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 24 / 62


2. Univalent subordination chains in several complex variables<br />

• The above result does not hold if k+(A) = 2m(A).<br />

Example<br />

Let f : B 2 → C 2 be given by f (z) = (z1, z2 + az 2 1 ) for z = (z1, z2) ∈ B 2 ,<br />

where a ∈ C \ {0}. Also let A ∈ L(C 2 , C 2 ) be given by A(z) = (z1, 2z2)<br />

and f (z, t) = e At f (z). Then k+(A) = 2m(A) and f is spirallike w.r.t. A.<br />

Also f (z, t) is a univalent subordination chain such that {e −At f (·, t)}t≥0<br />

is a normal family on B 2 and<br />

∂f<br />

∂t (z, t) = Df (z, t)h(z, t), t ≥ 0, z ∈ B2 ,<br />

where h(z, t) = (z1, 2z2). Let v(z, s, t) = (e s−t z1, e 2(s−t) z2). Then<br />

v(z, s, t) is the unique solution of the initial value problem<br />

∂v<br />

∂t<br />

= −h(v, t), t ≥ s, v(z, s, s) = z.<br />

But e At v(z, s, t) = (e s z1, e 2s z2) f (z, s) = (e s z1, e 2s (z2 + az 2 1 )).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 25 / 62


2. Univalent subordination chains in several complex variables<br />

Theorem<br />

Let A : [0, ∞) → L(Cn , Cn ) be such that (a)-(d) hold. Let f (z, t) be an<br />

univalent subordination chain such that Df (0, t) = exp( t<br />

0 A(τ)dτ).<br />

Then f (z, ·) is locally Lipschitz continuous on [0, ∞) locally uniformly<br />

with respect to z ∈ Bn . Also there is a generating vector field<br />

h = h(z, t) such that Dh(0, t) = A(t) and<br />

Theorem<br />

∂f<br />

∂t (z, t) = Df (z, t)h(z, t), a.e. t ≥ 0, ∀ z ∈ Bn .<br />

I. Graham, H. Hamada, G. K., M. K., 2008: Assume the conditions<br />

(a)-(d) hold. Let f (z, t) = e t<br />

0 A(τ)dτ z + · · · be an univalent<br />

subordination chain. If {e− t<br />

0 A(τ)dτ f (·, t)}t≥0 is a normal family on Bn ,<br />

then f (z, s) = limt→∞ e t<br />

0 A(τ)dτ v(z, s, t) locally uniformly on Bn for<br />

s ≥ 0, where v = v(z, s, t) is the transition mapping of f (z, t), and<br />

f (z, t) coincides with the canonical solution of (2.3).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 26 / 62


2. Univalent subordination chains in several complex variables<br />

• T. Poreda, 1990 (starlikeness); M. Elin, S. Reich, D. Shoikhet, 2000<br />

(spirallikeness w.r.t. a linear operator).<br />

Corollary<br />

Assume k+(A) < 2m(A). If f (z, t) is an A-univalent subordination chain<br />

such that {e −tA f (·, t)}t≥0 is a normal family, then<br />

z<br />

(1 + z) 2 ≤ e−tA f (z, t) ≤<br />

z<br />

(1 − z) 2 , z ∈ Bn , t ≥ 0.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 27 / 62


2. Univalent subordination chains in several complex variables<br />

Corollary<br />

I. Graham, G.K, 2003:<br />

(i) If f (z, t) = e t z + · · · is a Loewner chain such that {e −t f (·, t)}t≥0 is a<br />

normal family on B n , then<br />

etz (1 + z) 2 ≤ f (z, t) ≤ etz (1 − z) 2 , z ∈ Bn , t ≥ 0.<br />

(ii) If, in addition, the generating vector field h(z, t) of (2.3) satisfies the<br />

condition <br />

1<br />

<br />

〈h(z, t), z〉 − 1<br />

z2 < 1, z ∈ Bn \ {0},<br />

then<br />

etz 1 + z ≤ f (z, t) ≤ etz 1 − z , z ∈ Bn , t ≥ 0.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 28 / 62


2. Univalent subordination chains in several complex variables<br />

Remark<br />

(a) (i) yields the growth result for S ∗ (B n ): R. Barnard, C. FitzGerald<br />

and S. Gong (1991); J.A. Pfaltzgraff (1991); M. Chuaqui (1995), T. Liu<br />

(1999).<br />

(b) (ii) yields the growth result for K (B n ) may be obtained from (ii): C.<br />

FitzGerald, C. Thomas, S. Gong (1995); P. Liczberski (1998), T. Liu<br />

(1999); H. Hamada, G.K. (2000).<br />

(c) There exist Loewner chains f (z, t) that do not satisfy the growth<br />

result (i) and {e −t f (·, t)}t≥0 is not a normal family on B n , for n ≥ 2.<br />

Example<br />

Let g(z, t) =<br />

<br />

et z1<br />

(1−z1) 2 e<br />

,<br />

t z2<br />

(1−z2) 2<br />

<br />

for z = (z1, z2) ∈ B2 , t ≥ 0. Then g(z, t)<br />

is a Loewner chain and if Φ(z) = (z1, z2 + z2 1 ) then Φ ∈ Aut(C2 ) and<br />

<br />

f (z, t) = Φ(g(z, t)) given by f (z, t) =<br />

is a<br />

<br />

et z1<br />

(1−z1) 2 e<br />

,<br />

t z2<br />

(1−z2) 2 + e2t z2 1<br />

(1−z1) 4<br />

Loewner chain such that f (r, 0) > r/(1 − r) 2 for r ∈ (0, 1) and<br />

{e−tf (·, t)}t≥0 is not a normal family on B2 .<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 29 / 62


2. Univalent subordination chains in several complex variables<br />

Solutions for the generalized Loewner differential equation (2.3):<br />

∂f<br />

∂t (z, t) = Df (z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ Bn ,<br />

where h(z, t) is a generating vector field such that Dh(0, t) = A(t)<br />

for t ≥ 0.<br />

n = 1: Ch. Pommerenke, 1965; J. Becker (1973-1980);<br />

n ≥ 2: I. Graham, G.K., J.A. Pfaltzgraff, 2005 (A = In); P. Duren, I.<br />

Graham, H. Hamada and G.K, 2010 (k+(A) < 2m(A)); L. Arosio<br />

(2010); M. Voda (2010); H. Hamada (2010): m(A) > 0; I. Graham,<br />

H. Hamada, G.K. (2010): Herglotz-vector fields with respect to a<br />

time-dependent linear operator.<br />

J. Becker: useful to construct the solutions of the Loewner<br />

differential equation which, for fixed t, are holomorphic on a<br />

punctured disc (rather than a disc) with center at zero.<br />

In several complex variables, point singularities of holomorphic<br />

mappings are removable.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 30 / 62


2. Univalent subordination chains in several complex variables<br />

(i) If f (z, t) is a Loewner chain and Φ : C n → C n is a normalized<br />

biholomorphic mapping (i.e. Φ(0) = 0 and DΦ(0) = In), not the<br />

identity, then Φ(f (z, t)) is also a Loewner chain and satisfies the<br />

same Loewner differential equation as f (z, t).<br />

In C n , n ≥ 2, normalized univalent solutions of the generalized<br />

Loewner differential equation need not be unique.<br />

Theorem<br />

I. Graham, G.K., J.A. Pfaltzgraff, 2005; P. Duren, I. Graham, H.<br />

Hamada and G.K, 2010 (A(t) ≡ A); Graham, Hamada, K (2010):<br />

Let A : [0, ∞) → L(C n , C n ) be such that (a)-(d) hold. Let<br />

f (z, t) = e t<br />

0 A(τ)dτ z + · · · be the canonical solution of (2.3) and let<br />

g(z, t) be a standard solution of (2.3). Then <br />

t≥0 f (Bn , t) = C n and<br />

there exists a mapping Φ ∈ H(C n ) such that<br />

g(z, t) = Φ(f (z, t)), z ∈ B n , t ≥ 0.<br />

In addition, g(·, t) is univalent on B n iff Φ is biholomorphic in C n .<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 31 / 62


2. Univalent subordination chains in several complex variables<br />

Theorem<br />

P. Duren, I. Graham, H. Hamada and G.K, 2010 (A(t) ≡ A); Graham,<br />

Hamada, K (2010): Let A : [0, ∞) → L(C n , C n ) be such that (a)-(d)<br />

hold. Let f (z, t) = e t<br />

0 A(τ)dτ z + · · · be the canonical solution of (2.3)<br />

and let g(z, t) be a standard solution of (2.3). Assume that<br />

{e − t<br />

0 A(τ)dτ g(·, t)}t≥0 is a normal family on B n . Then there exists<br />

Ψ ∈ L(C n , C n ) such that g(z, t) = Ψ(f (z, t)) for z ∈ B n and t ≥ 0.<br />

Corollary<br />

Let A : [0, ∞) → L(C n , C n ) be such that (a)-(d) hold. Let g(z, t) be a<br />

standard solution of the Loewner differential equation (2.3) such that<br />

{e − t<br />

0 A(τ)dτ g(·, t)}t≥0 is a normal family on B n and Dg(0, 0) = In. Then<br />

g(z, s) ≡ f (z, s), where f (z, s) is the canonical solution of (2.3).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 32 / 62


2. Univalent subordination chains in several complex variables<br />

Corollary<br />

Let A : [0, ∞) → L(C n , C n ) be such that (a)-(d) hold. The canonical<br />

solution f (z, t) = e t<br />

0 A(τ)dτ z + · · · of the Loewner differential equation<br />

(2.3) is the unique normalized univalent subordination chain solution<br />

such that {e− t<br />

0 A(τ)dτ f (·, t)}t≥0 is a normal family on Bn <br />

. In addition,<br />

t≥0 f (Bn , t) = Cn .<br />

Corollary<br />

I. Graham, G.K., J.A. Pfaltzgraff, 2005: Any Loewner chain<br />

g(z, t) = e t z + · · · has the form g(z, t) = Φ(f (z, t)), z ∈ B n , t ≥ 0,<br />

where f (z, t) is a Loewner chain of the distinguished class and<br />

Φ : C n → C n is a normalized biholomorphic mapping (i.e. an<br />

automorphism of C n or a normalized Fatou-Bieberbach map).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 33 / 62


2. Univalent subordination chains in several complex variables<br />

Example<br />

Let n = 2 and let f : B2 → C2 be given by f (z) = (z1, z2 + az2 1 ) for<br />

z = (z1, z2) ∈ B2 , where a ∈ C \ {0}. Also let A ∈ L(C2 , C2 ) be given<br />

by A(z) = (z1, 2z2) and f (z, t) = etAf (z). Then m(A) = 1 and<br />

k+(A) = 2. Also f is spirallike with respect to A and f (z, t) = etAf (z) is<br />

a univalent subordination chain such that<br />

∂f<br />

∂t (z, t) = Df (z, t)h(z), t ≥ 0, z ∈ B2 ,<br />

where h(z) = A(z). Next, let g(z, t) = e tA (z) for z ∈ B 2 and t ≥ 0.<br />

Then g(z, t) is a univalent subordination chain and Dg(0, t) = e tA for<br />

t ≥ 0, {e −tA g(·, t)}t≥0 is a normal family on B 2 and g(z, t) satisfies the<br />

same Loewner differential equation as f (z, t). But, f (z, t) ≡ g(z, t).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 34 / 62


2. Univalent subordination chains in several complex variables<br />

Corollary<br />

T. Poreda, 1991; M. Elin, S. Reich, D. Shoikhet, 2000: Let h ∈ M.<br />

Then the differential equation<br />

Df (z)h(z) = f (z), z ∈ B n ,<br />

has a unique solution f ∈ H(B n ) such that f (0) = 0 and Df (0) = In.<br />

This solution is starlike.<br />

• T. Poreda, 1991 (A < 2m(A)); M. Elin, S. Reich, D. Shoikhet, 2004<br />

(k+(A) < 2k−(A)); Duren, Graham, Hamada, K., 2008.<br />

Corollary<br />

Let h ∈ N A be such that k+(A) < 2m(A). Then the differential equation<br />

Df (z)h(z) = f (z), z ∈ B n ,<br />

has a unique solution f ∈ H(B n ) such that f (0) = 0 and Df (0) = In.<br />

This solution is spirallike w.r.t. A.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 35 / 62


3. Parametric representation on the unit ball<br />

4. Parametric representation on the unit ball<br />

Lemma<br />

Poreda-Szadkowska, 1990: Let f ∈ S∗ (Bn ) and h(z) = [Df (z)] −1f (z).<br />

Then f (z) = lim e<br />

t→∞ t v(z, t) locally uniformly on Bn , where v(z, t) is the<br />

unique solution of the initial value problem<br />

∂v<br />

∂t<br />

= −h(v), ∀ t ≥ 0, v(z, 0) = z,<br />

i.e. f has parametric representation. In addition,<br />

z<br />

≤ f (z) ≤<br />

(1 + z) 2<br />

z<br />

(1 − z) 2 , z ∈ Bn .<br />

• J.A. Pfaltzgraff (1991); R. Barnard, C. FitzGerald and S. Gong<br />

(1991); M. Elin, S. Reich, D. Shoikhet, 2000.<br />

• If f ∈ S then f has parametric representation, i.e. there exists a<br />

Loewner chain f (z, t) such that f = f (·, 0).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 36 / 62


3. Parametric representation on the unit ball<br />

T. Poreda, 1991 (A < 2m(A)); M. Elin, S. Reich, D. Shoikhet,<br />

2004 (k+(A) < 2k−(A)); Duren, Graham, Hamada, K., 2008.<br />

Theorem<br />

Let A ∈ L(C n , C n ) be an operator such that k+(A) < 2m(A). Also let<br />

f : B n → C n be a spirallike mapping with respect to A and let<br />

h(z) = [Df (z)] −1 Af (z) for z ∈ B n . Then f (z, t) = e tA f (z) is a univalent<br />

subordination chain and<br />

lim<br />

t→∞ eAtv(z, s, t) = f (z, s)<br />

locally uniformly on B n , where v(z, s, t) = f −1 (e (s−t)A f (z)). Also<br />

∂f<br />

∂t (z, t) = Df (z, t)h(z), t ≥ 0, z ∈ Bn .<br />

Spirallike mappings w.r.t. A with k+(A) < 2m(A) have a<br />

”generalized” parametric representation.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 37 / 62


3. Parametric representation on the unit ball<br />

• In dimension n ≥ 2, there exist mappings f ∈ S(B n ) which cannot be<br />

imbedded in Loewner chains f (z, t) such that {e −t f (·, t)}t≥0 is a<br />

normal family on B n (for example, spirallike mappings).<br />

Definition<br />

Let f ∈ H(B n ) be such that f (0) = 0, Df (0) = In. Also let A ∈ L(C n , C n )<br />

such that k+(A) < 2m(A); f has A-parametric representation (and<br />

denote by f ∈ S 0 A (Bn )) if there exists a generating vector field h(z, t)<br />

such that Dh(0, t) = A for t ≥ 0, and<br />

f (z) = lim<br />

t→∞ e tA v(z, t)<br />

locally uniformly on B n , where v = v(z, t) is the unique Lipschitz<br />

continuous solution on [0, ∞) of the initial value problem<br />

∂v<br />

∂t = −h(v, t), a.e. t ≥ 0, v(z, 0) = z, ∀z ∈ Bn .<br />

• A = In-parametric representation; S 0 In (Bn ) := S 0 (B n ).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 38 / 62


3. Parametric representation on the unit ball<br />

I. Graham, H. Hamada, G.K., 2002 (A = In); I. Graham, H. Hamada,<br />

G.K., M.K., 2008 (k+(A) < 2m(A)); cf. T. Poreda (A = In).<br />

Theorem<br />

Let f ∈ S(B n ) and k+(A) < 2m(A). Then f ∈ S 0 A (Bn ) if and only if there<br />

exists an A-univalent subordination chain f (z, t) such that<br />

{e −tA f (·, t)}t≥0 is a normal family on B n and f = f (·, 0).<br />

Remark<br />

• Ch. Pommerenke (1965): S 0 (B 1 ) = S.<br />

• If n ≥ 2 then S 0 (B n ) S(B n ).<br />

• The most important compact subfamilies of S(B n ): starlikeness,<br />

convexity, close-to-starlikeness, are also subfamilies of S 0 (B n ).<br />

Theorem<br />

S 0 A (Bn ) is a compact family for k+(A) < 2m(A).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 39 / 62


Theorem<br />

3. Parametric representation on the unit ball<br />

I. Graham, H. Hamada, G.K. 2003: Let f ∈ S 0 (B n ). Then<br />

z<br />

≤ f (z) ≤<br />

(1 + z) 2<br />

These estimates are sharp. Also<br />

Moreover, 1<br />

2 D2 f (0) ≤ 8.<br />

Corollary<br />

S 0 (B n ) is compact.<br />

Remark<br />

z<br />

(1 − z) 2 , z ∈ Bn .<br />

<br />

<br />

1<br />

2 〈D2 <br />

<br />

f (0)(v, v), v〉 ≤ 2, v = 1.<br />

There exist mappings f ∈ S 0 (B n ), n ≥ 2, such that (1/2)D 2 f (0) > 2.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 40 / 62


3. Parametric representation on the unit ball<br />

• Asymptotic spirallikeness, a natural generalization of spirallikeness.<br />

Definition<br />

Let Ω ⊆ C n be a domain which contains the origin and let<br />

A ∈ L(C n , C n ) be such that m(A) > 0. We say that Ω is<br />

A-asymptotically spirallike if there exists a mapping<br />

Q = Q(z, t) : Ω × [0, ∞) → C n which satisfies the following conditions:<br />

(i) Q(·, t) is a holomorphic mapping on Ω, Q(0, t) = 0, DQ(0, t) = A,<br />

t ≥ 0, and the family {Q(·, t)}t≥0 is locally uniformly bounded on Ω.<br />

(ii) Q(z, ·) is measurable on [0, ∞) for all z ∈ Ω;<br />

(iii) The initial value problem<br />

∂w<br />

∂t<br />

= −Q(w, t) a.e. t ≥ s, w(z, s, s) = z,<br />

has a unique solution w = w(z, s, t) for each z ∈ Ω and s ≥ 0, such<br />

that w(·, s, t) is a holomorphic mapping of Ω into Ω for t ≥ s, w(z, s, ·)<br />

is locally absolutely continuous on [s, ∞) locally uniformly with respect<br />

to z ∈ Ω for s ≥ 0, and lim<br />

t→∞ e At w(z, 0, t) = z locally uniformly on Ω.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 41 / 62


3. Parametric representation on the unit ball<br />

• A domain Ω ⊆ C n which contains the origin is called asymptotically<br />

spirallike if there exists an operator A ∈ L(C n , C n ) with m(A) > 0 such<br />

that Ω is A-asymptotically spirallike.<br />

Definition<br />

Let f ∈ S(B n ) and let A ∈ L(C n , C n ) be such that m(A) > 0. We say<br />

that f is A-asymptotically spirallike if f (B n ) is an A-asymptotically<br />

spirallike domain.<br />

Remark<br />

If Ω is a spirallike domain with respect to A with m(A) > 0, then Ω is<br />

A-asymptotically spirallike.<br />

• Ω ⊆ C n is In-asymptotically spirallike if and only if Ω is asymptotically<br />

starlike.<br />

Problem Does there exist a connection between A-asymptotic<br />

spirallikeness and A-parametric representation?<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 42 / 62


Theorem<br />

3. Parametric representation on the unit ball<br />

Let A ∈ L(C n , C n ) be an operator with m(A) > 0 and k+(A) < 2m(A).<br />

Also let f ∈ S(B n ). Then f has A-parametric representation iff there is<br />

a univalent subordination chain f (z, t) such that Df (0, t) = e At , t ≥ 0,<br />

{e −At f (·, t)}t≥0 is a normal family on B n and f = f (·, 0).<br />

Corollary<br />

Let f : Bn → Cn be a spirallike mapping with respect to A ∈ L(Cn , Cn )<br />

such that k+(A) < 2m(A). Then f has A-parametric representation. In<br />

addition, there is a univalent subordination chain f (z, t) such that<br />

f (0, t) = 0, Df (0, t) = etA , {e−tAf (·, t)}t≥0 is a normal family on Bn and<br />

f = f (·, 0). Let v(z, s, t) be the transition mapping of f (z, t). Then<br />

f (z) = lim e<br />

t→∞ tA v(z, t) locally uniformly on Bn , where v(z, t) = v(z, 0, t).<br />

• Particular cases of this result were obtained by T. Poreda and A.<br />

Szadkowska, 1990; M. Elin, S. Reich, D. Shoikhet, 2004.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 43 / 62


Theorem<br />

3. Parametric representation on the unit ball<br />

Let A ∈ L(C n , C n ) be such that m(A) > 0 and k+(A) < 2m(A). Also let<br />

f ∈ S(B n ). Then f is A-asymptotically spirallike if and only if f has<br />

A-parametric representation.<br />

Remark<br />

The class of A-asymptotically spirallike mappings with k+(A) < 2m(A)<br />

is compact, however the full class of asymptotically spirallike mappings<br />

is not compact in dimension n ≥ 2.<br />

Indeed, let n = 2 and f : B2 → C2 be given by f (z) = (z1, z2 + az2 1 ) for<br />

z = (z1, z2) ∈ B2 . Also let A ∈ L(C2 , C2 ) be given by A(z) = (z1, 2z2).<br />

Then f is spirallike with respect to A for all a ∈ C. Thus f is also<br />

asymptotically spirallike. But, if z0 = (1/2, 0) then f (z0) = (1/2, a/4)<br />

and f (z0) → ∞ as a → ∞.<br />

• The class of asymptotically starlike mappings is compact.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 44 / 62


Remark<br />

3. Parametric representation on the unit ball<br />

Let f : B n → C n be an A-asymptotically spirallike mapping, where A is<br />

a diagonal matrix whose eigenvalues λ1, . . . , λn satisfy the conditions<br />

ℜλ j = a > 0 for j = 1, . . . , n. Then<br />

Theorem<br />

z<br />

≤ f (z) ≤<br />

(1 + z) 2<br />

z<br />

(1 − z) 2 , z ∈ Bn .<br />

Let f ∈ S(B n ) and let A ∈ L(C n , C n ) be such that A + A ∗ = 2aIn, where<br />

a > 0 and A ∗ is the adjoint of A. Then f is asymptotically spirallike if<br />

and only if f is asymptotically starlike.<br />

Theorem<br />

Let f : B n → C n be a spirallike mapping with respect to an operator<br />

A ∈ L(C n , C n ) such that A + A ∗ = 2aIn, where a > 0. Then f ∈ S 0 (B n ).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 45 / 62


Examples<br />

Example<br />

3. Parametric representation on the unit ball<br />

Let f1, . . . , fn ∈ S be such that f1 is not spirallike and let<br />

f (z) = (f1(z1), . . . , fn(zn)) for z = (z1, . . . , zn) ∈ B n . Then f is<br />

asymptotically starlike, and hence asymptotically spirallike, but is not<br />

spirallike.<br />

Example<br />

Let f1 ∈ S be a function which has a1-parametric representation and<br />

assume f : B n−1 → C n−1 has A-parametric representation. Then<br />

F : B n → C n given by F(z) = (f1(z1), f (z ′ )), z = (z1, z ′ ) ∈ B n , has<br />

Ã-parametric representation where à =<br />

a1 0<br />

0 A<br />

(3.1) max{ℜa1, k+(A)} < 2 min{ℜa1, m(A)},<br />

<br />

. In addition, if<br />

then F is Ã-asymptotically spirallike. If f1 is not spirallike then F is also<br />

not spirallike.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 46 / 62


4. Subordination chains in complex Banach spaces<br />

4. Subordination chains in complex Banach spaces<br />

I. Graham, H. Hamada, G.K, M.K, 2012;<br />

• Let X be a reflexive complex Banach space.<br />

X = C n : J. Pfaltzgraff, 1974 (A = In); T. Poreda, 1990; M. Elin, S.<br />

Reich, D. Shoikhet, 2004; Graham, H. Hamada, G.K, M.K. (2008):<br />

Theorem<br />

Let h(z, t) : B × [0, ∞) → X be a generating vector field:<br />

(i) h(·, t) ∈ N , Dh(0, t) = A ∈ L(X), t ≥ 0, where m(A) > 0.<br />

(ii) h(z, ·) is strongly measurable on [0, ∞) for z ∈ B.<br />

Then for each s ≥ 0 and z ∈ B, the initial value problem<br />

(4.1)<br />

∂v<br />

∂t<br />

= −h(v, t) a.e. t ≥ s, v(z, s, s) = z,<br />

has a unique solution v = v(z, s, t) such that v(·, s, t) is a univalent<br />

Schwarz mapping, v(z, s, ·) is Lipschitz continuous on [s, ∞) uniformly<br />

with respect to z ∈ Br , r ∈ (0, 1), Dv(0, s, t) = exp(−A(t − s)).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 47 / 62


4. Subordination chains in complex Banach spaces<br />

• J. Pfaltzgraff (1975; X = C n ); T. Poreda (1990): h(z, t) generating<br />

vector field in (4.1) such that:<br />

h(z, t) ≤ M(r), z ≤ r < 1, t ≥ 0.<br />

• T. Poreda: h = h(z, t) is continuous on B × [0, ∞)<br />

Theorem<br />

Under the assumptions of the previous result, the following estimates<br />

hold:<br />

and<br />

v(z, s, t)<br />

(1 − v(z, s, t))<br />

e −k(A)(t−s)<br />

z<br />

2 ≤ e−m(A)(t−s)<br />

z<br />

≤<br />

(1 + z) 2<br />

, z ∈ B, t ≥ s ≥ 0,<br />

(1 − z) 2<br />

v(z, s, t)<br />

, z ∈ B, t ≥ s ≥ 0.<br />

(1 + v(z, s, t)) 2<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 48 / 62


Theorem<br />

4. Subordination chains in complex Banach spaces<br />

Let h = h(z, t) : B × [0, ∞) → X be a generating vector field such that<br />

Dh(0, t) = A ∈ L(X) for t ≥ 0, and k+(A) < 2m(A). Also, let<br />

v = v(z, s, t) be the unique Lipschitz continuous solution on [s, ∞) of<br />

the initial value problem (4.1). Then the limit<br />

(4.2) lim<br />

t→∞ e tA v(z, s, t) = f (z, s)<br />

exists uniformly on each closed ball Br for r ∈ (0, 1) and s ≥ 0.<br />

Moreover, f (z, t) is an A-normalized univalent subordination chain.<br />

Theorem<br />

Let A ∈ L(X) be s.t. k+(A) < 2m(A). Also, let f (z, t) be an<br />

A-normalized univalent subordination chain. Assume that for each<br />

r ∈ (0, 1), there is M = M(r, A) > 0 such that e −tA f (z, t) ≤ M,<br />

z ≤ r, t ≥ 0. If v(z, s, t) is the transition mapping of f (z, t), then<br />

f (z, s) = limt→∞ e tA v(z, s, t) uniformly on Br , r ∈ (0, 1).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 49 / 62


Corollary<br />

4. Subordination chains in complex Banach spaces<br />

Let f (z, t) = e t z + · · · be a normalized univalent subordination chain.<br />

Assume that for each r ∈ (0, 1), there is M = M(r) > 0 such that<br />

e −t f (z, t) ≤ M, z ≤ r, t ≥ 0. Then<br />

Corollary<br />

r/(1 + r) 2 ≤ e −t f (z, t) ≤ r/(1 − r) 2 , z = r < 1, t ≥ 0.<br />

Assume X is separable. Let h = h(z, t) : B × [0, ∞) → X be a<br />

generating vector field such that Dh(0, t) = A ∈ L(X) for t ≥ 0, and the<br />

condition k+(A) < 2m(A) holds. Also, let f (z, t) = e tA z + · · · be the<br />

A-normalized univalent subordination chain given by (4.2). Assume<br />

that ∂f<br />

∂t (z, t) exists for t ∈ [0, ∞) \ E and z ∈ Bδ, for some δ ∈ (0, 1),<br />

where E ⊂ [0, ∞) (independent of z) has measure zero. Then<br />

∂f<br />

(z, t) = Df (z, t)h(z, t), t ∈ [0, ∞) \ E, ∀ z ∈ B.<br />

∂t<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 50 / 62


Theorem<br />

4. Subordination chains in complex Banach spaces<br />

(i) Assume that f (z, t) = e tA z + · · · is a standard solution of the<br />

generalized Loewner differential equation<br />

(4.3)<br />

∂f<br />

(z, t) = Df (z, t)h(z, t), t ∈ [0, ∞) \ E, ∀z ∈ B,<br />

∂t<br />

where E is a subset of [0, ∞) of measure zero. Also, assume that for<br />

each r ∈ (0, 1), there is M = M(r, A) > 0 such that<br />

e −tA f (z, t) ≤ M(r, A), z ≤ r, t ≥ 0.<br />

Then f (z, t) is an A-univalent subordination chain and (4.2) holds.<br />

(ii) Assume that g(z, t) is another standard solution of (4.3). If for each<br />

r ∈ (0, 1), there is K = K (r, A) > 0 such that e −tA g(z, t) ≤ K ,<br />

z ≤ r and t ≥ 0, then g(z, t) is a subordination chain and there<br />

exists Ψ ∈ L(X) such that g(z, t) ≡ Ψ(f (z, t)). If, in addition,<br />

Dg(0, 0) = I, then g(z, t) ≡ f (z, t).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 51 / 62


Definition<br />

4. Subordination chains in complex Banach spaces<br />

Let A ∈ L(X) be such that k+(A) < 2m(A) and let f ∈ H(B) be a<br />

normalized mapping. We say that f has A-parametric representation<br />

(f ∈ S0 A (B)) if there exists a generating vector field<br />

h = h(z, t) : B × [0, ∞) → Cn such that Dh(0, t) = A for t ≥ 0, and<br />

f (z) = lim e<br />

t→∞ tA v(z, t) uniformly on each closed ball Br for r ∈ (0, 1),<br />

where v = v(z, t) is the unique Lipschitz continuous solution on [0, ∞)<br />

of the initial value problem<br />

∂v<br />

∂t<br />

= −h(v, t) a.e. t ≥ 0, v(z, 0) = z,<br />

for each z ∈ B.<br />

If A = I and f has I-parametric representation, then we say that f has<br />

parametric representation in the usual sense.<br />

• If f ∈ S0 A (B), then f is univalent.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 52 / 62


Remark<br />

4. Subordination chains in complex Banach spaces<br />

(i) Let S be the family of normalized univalent functions on the unit<br />

disc U in C. It is well known that f ∈ S if and only if there exists a<br />

Loewner chain f (z, t) such that f = f (·, 0).<br />

(ii) In C n , n ≥ 2, such result does not hold for the full family S(B n ) of<br />

normalized biholomorphic mappings on the unit ball B n in C n .<br />

(iii) However, if A ∈ L(C n , C n ) is such that k+(A) < 2m(A), then<br />

f ∈ S(B n ) has A-parametric representation if and only if there exists an<br />

A-normalized univalent subordination chain f (z, t) such that<br />

{e −tA f (·, t)}t≥0 is a normal family on B n and f = f (·, 0).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 53 / 62


Corollary<br />

4. Subordination chains in complex Banach spaces<br />

Let A ∈ L(X) satisfy the condition k+(A) < 2m(A). Also, let f : B → X<br />

be a normalized holomorphic mapping. Then the following assertions<br />

hold:<br />

(i) If f has A-parametric representation, then there exists an<br />

A-normalized univalent subordination chain f (z, t) such that f = f (·, 0),<br />

and for each r ∈ (0, 1), there is M = M(r) > 0 such that<br />

(4.4) e −tA f (z, t) ≤ M(r), z ≤ r, t ≥ 0.<br />

(ii) Conversely, assume that f (z, t) = e tA z + · · · is a standard solution<br />

of the generalized Loewner differential equation (4.3), which satisfies<br />

the condition (4.4), and such that f = f (·, 0). Then f has A-parametric<br />

representation.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 54 / 62


4. Subordination chains in complex Banach spaces<br />

• Applications to spirallikeness and starlikeness<br />

Definition<br />

Let A ∈ L(X) be such that m(A) > 0. Also let Ω be a domain in X<br />

which contains the origin. We say that Ω is spirallike with respect to A if<br />

e −tA (w) ∈ Ω, for all w ∈ Ω and t ≥ 0.<br />

A mapping f ∈ S(B) is said to be spirallike with respect to A if f (B) is a<br />

spirallike domain with respect to A.<br />

Note that if A = I in the above definition, we obtain the usual notion of<br />

starlikeness.<br />

Remark<br />

A normalized locally biholomorphic mapping f on B is spirallike with<br />

respect to A ∈ L(X), m(A) > 0, if and only if (T. Suffridge; K.<br />

Gurganus, 1975)<br />

ℜ[ℓz([Df (z)] −1 Af (z))] > 0, z ∈ B \ {0}, ℓz ∈ T (z).<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 55 / 62


Corollary<br />

4. Subordination chains in complex Banach spaces<br />

Let A ∈ L(X) be such that m(A) > 0. Also, let f : B → X be a<br />

normalized locally biholomorphic mapping. Then f is spirallike with<br />

respect to A if and only if f (z, t) = e tA f (z) is an A-normalized univalent<br />

subordination chain.<br />

• T. Poreda (1999); M. Elin, S. Reich, D. Shoikhet (2004); Graham,<br />

Hamada, K.K. (2008); P. Duren, I. Graham, H. Hamada, G.K. (2010):<br />

Corollary<br />

Let A ∈ L(X) be such that k+(A) < 2m(A) and let f be a spirallike<br />

mapping with respect to A. Then f has A-parametric representation.<br />

Corollary<br />

Let A ∈ L(X) be s.t. the condition k+(A) < 2m(A) holds, and let h ∈ N<br />

be s.t. Dh(0) = A. Then the differential equation Df (z)h(z) = Af (z),<br />

z ∈ B, has a unique solution f ∈ H(B) with f (0) = 0 and Df (0) = I.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 56 / 62


5. Open problems<br />

Conjecture<br />

5. Open problems<br />

Let A ∈ L(X) be such that k+(A) < 2m(A). Also, let f (z, t) be an<br />

A-normalized univalent subordination chain f (z, t) such that the<br />

condition (4.4) holds. Then f = f (·, 0) has A-parametric representation.<br />

• In the case X = C n , every Loewner chain satisfies the generalized<br />

Loewner differential equation (Graham, Hamada, K, 2002).<br />

Problem<br />

Let A ∈ L(X) be such that k+(A) < 2m(A) and let f (z, t) be an<br />

A-normalized univalent subordination chain. Does there exist a<br />

generating vector field h(z, t) = Az + · · · such that<br />

∂f<br />

(z, t) = Df (z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ B?<br />

∂t<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 57 / 62


Conjecture<br />

5. Open problems<br />

Let A ∈ L(X) be such that k+(A) < 2m(A). If f (z, t) is the A-normalized<br />

univalent subordination chain given by (4.2), then f (·, t) is<br />

biholomorphic on B for t ≥ 0.<br />

• P. Duren, I. Graham, H. Hamada, G.K (2010): positive answer to the<br />

following problem when X = C n .<br />

Problem<br />

Let A ∈ L(X) be such that k+(A) < 2m(A) and let ft(z) = f (z, t) be the<br />

A-normalized univalent subordination chain given by (4.2). Also, let<br />

Ω = <br />

t≥0 ft(B). Is it true that Ω = X?<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 58 / 62


Definition<br />

5. Open problems<br />

Let Ω ⊆ X be a domain which contains the origin and let A ∈ L(X) be<br />

such that m(A) > 0. We say that Ω is A-asymptotically spirallike if<br />

there exists a mapping Q = Q(z, t) : Ω × [0, ∞) → X such that:<br />

(i) Q(·, t) ∈ H(Ω), Q(0, t) = 0, DQ(0, t) = A, t ≥ 0, and for each closed<br />

ball B(z0, r) contained in Ω, there exists some M = M(r, z0) > 0 such<br />

that Q(z, t) ≤ M(r, z0) for z ∈ B(z0, r).<br />

(ii) Q(z, ·) is strongly measurable on [0, ∞), for all z ∈ Ω;<br />

(iii) The initial value problem<br />

∂w<br />

∂t<br />

= −Q(w, t) a.e. t ≥ s, w(z, s, s) = z,<br />

has a unique solution w = w(z, s, t) for each z ∈ Ω and s ≥ 0, such<br />

that w(·, s, t) is a holomorphic mapping of Ω into Ω for t ≥ s, w(z, s, ·)<br />

is strongly locally absolutely continuous on [s, ∞), for all z ∈ Ω and<br />

s ≥ 0, and lim e<br />

t→∞ tA w(z, 0, t) = z uniformly on each closed ball B(z0, r)<br />

contained in Ω.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 59 / 62


Definition<br />

5. Open problems<br />

A mapping f ∈ S(B) is called A-asymptotically spirallike<br />

(asymptotically starlike) if f (B) is an A-asymptotically spirallike<br />

(I-asymptotically spirallike) domain.<br />

Remark<br />

Note that any spirallike mapping with respect to an operator A ∈ L(X)<br />

is A-asymptotically spirallike. Also, any normalized starlike mapping is<br />

asymptotically starlike.<br />

It would be interesting to give an answer to the following question. In<br />

the case X = C n , positive answer: Graham, Hamada, K.K. (2008).<br />

Problem<br />

Does there exist a connection between A-normalized univalent<br />

subordination chains and A-asymptotically spirallike mappings in the<br />

case of reflexive complex Banach spaces?<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 60 / 62


5. Open problems<br />

References<br />

1. P. Duren, I. Graham, H. Hamada, G. <strong>Kohr</strong>: Solutions for the<br />

generalized Loewner differential equation in several complex variables,<br />

Math. Ann., 347, 411-435 (2010).<br />

2. Graham, I., Hamada, H., <strong>Kohr</strong>, G.: Parametric representation of<br />

univalent mappings in several complex variables, Canadian J. Math.,<br />

54, 324-351 (2002).<br />

3. Graham, I., Hamada, H., <strong>Kohr</strong>, G., <strong>Kohr</strong>, M.: Parametric<br />

representation and asymptotic starlikeness in C n , Proc. Amer. Math.<br />

Soc., 136, 3963-3973 (2008).<br />

4. Graham, I., Hamada, H., <strong>Kohr</strong>, G., <strong>Kohr</strong>, M.: Asymptotically<br />

spirallike mappings in several complex variables, J. Anal. Math., 105,<br />

267-302 (2008).<br />

5. Graham, I., Hamada, H., <strong>Kohr</strong>, G., <strong>Kohr</strong>, M.: Spirallike mappings<br />

and univalent subordination chains in C n , Ann. Scuola Norm. Sup.<br />

Pisa-Cl. Sci., 7 (2008), 717-740.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 61 / 62


5. Open problems<br />

6. Graham, I., <strong>Kohr</strong>, G.: Geometric Function Theory in One and Higher<br />

Dimensions, Marcel Dekker, New York (2003).<br />

7. Graham, I., <strong>Kohr</strong>, G., <strong>Kohr</strong>, M.: Loewner chains and parametric<br />

representation in several complex variables, J. Math. Anal. Appl., 281,<br />

425-438 (2003).<br />

8. Graham, I., <strong>Kohr</strong>, G., Pfaltzgraff, J.A.: The general solution of the<br />

Loewner differential equation on the unit ball in C n , Contemporary<br />

Mathematics, 382, 191-203 (2005).<br />

9. Hamada, H., <strong>Kohr</strong>, G.: Subordination chains and the growth<br />

theorem of spirallike mappings, Mathematica (Cluj), 42 (65), 153-161<br />

(2000).<br />

10. Hamada, H., <strong>Kohr</strong>, G.: An estimate of the growth of spirallike<br />

mappings relative to a diagonal matrix, Ann. Univ. Mariae Curie<br />

Sklodowska, Sect. A, 55, 53-59 (2001).<br />

11. L. Arosio, F. Bracci, H. Hamada, G. <strong>Kohr</strong>, An abstract approach to<br />

Loewner’s chains, submitted, 2010.<br />

12. I. Graham, H. Hamada, G. <strong>Kohr</strong>, Extreme points, support points<br />

and the Loewner variation in several complex variables, submitted.<br />

<strong>Gabriela</strong> <strong>Kohr</strong> (UBB Cluj) Geometric and analytic aspects of Loewner chains 62 / 62

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!