25.07.2013 Views

Development and application of the Kalman filter ... - IRTG Heidelberg

Development and application of the Kalman filter ... - IRTG Heidelberg

Development and application of the Kalman filter ... - IRTG Heidelberg

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Development</strong> <strong>and</strong> <strong>application</strong><br />

<strong>of</strong> <strong>the</strong> <strong>Kalman</strong> <strong>filter</strong> method<br />

in <strong>the</strong> CBM <strong>and</strong> ALICE experiments<br />

Sergey Gorbunov<br />

GSI / KIP<br />

<strong>Heidelberg</strong><br />

October 19, 2007


Outline<br />

• Fit problem in event reconstruction in HEP<br />

• The <strong>Kalman</strong> Filter method<br />

• <strong>Kalman</strong> Filter for on-line event reconstruction in CBM<br />

• KF track fit in CBM<br />

• CA+KF tracker in CBM<br />

• Fast SIMDized <strong>Kalman</strong> Filter<br />

• <strong>Kalman</strong> Filter for on-line event reconstruction in ALICE HLT<br />

• CA tracker for ALICE HLT<br />

• KF fit with 3D track model<br />

• Reconstruction <strong>of</strong> vertices <strong>and</strong> decayed particles<br />

• Summary<br />

<strong>Heidelberg</strong>, 19.10.2007 Sergey Gorbunov, GSI/KIP 2/15


Fit problem in event reconstruction<br />

• Track finding<br />

• Track fitting<br />

• Track merging<br />

• Reconstruction <strong>of</strong> vertices<br />

<strong>and</strong> decayed particles<br />

D 0 K -<br />

<strong>Heidelberg</strong>, 19.10.2007 Sergey Gorbunov, GSI/KIP 3/15<br />

ππ ++


The <strong>Kalman</strong> <strong>filter</strong> method<br />

r 0<br />

initial<br />

track<br />

m 1<br />

σ 1<br />

σ m1<br />

r 1<br />

m 2<br />

<strong>Heidelberg</strong>, 19.10.2007 Sergey Gorbunov, GSI/KIP 4/15<br />

r 2<br />

m 3<br />

r 3<br />

fitted track<br />

The <strong>Kalman</strong> <strong>filter</strong> is <strong>the</strong> most used method for <strong>the</strong> fit problem.<br />

The method is well known in HEP, but in modern experiments<br />

<strong>the</strong> large amount <strong>of</strong> data <strong>and</strong> specific problems require development <strong>of</strong> new<br />

<strong>Kalman</strong> <strong>filter</strong>-based algorithms as well as investigations <strong>of</strong> <strong>the</strong> basic method.


KF fit in <strong>the</strong> CBM experiment<br />

The full set <strong>of</strong> fitting utilities<br />

has been developed<br />

Tracking in STS<br />

Tracking in muon chambers<br />

Tracking in TRD<br />

Track-ring match in RICH<br />

Hit ga<strong>the</strong>ring (MVD)<br />

Global tracking<br />

Reconstruction <strong>of</strong> vertices<br />

<strong>and</strong> decayed particles<br />

Smoo<strong>the</strong>r utility<br />

CBM reconstruction challenge<br />

~ 1000 charged particles/collision<br />

85% fake hits<br />

non-homogeneous magnetic field<br />

10 7 Au+Au collisions/sec<br />

no simple trigger<br />

CbmKF is <strong>the</strong> default fitting package in CBM<br />

<strong>Heidelberg</strong>, 19.10.2007 Sergey Gorbunov, GSI/KIP 5/15


CA+KF tracker for CBM<br />

CA w/o KF CA with KF<br />

Efficiency, %<br />

95.29<br />

90.52<br />

76.05<br />

0.00<br />

2.18<br />

Track category<br />

Reference set<br />

All set<br />

Extra set<br />

Clone<br />

Ghost<br />

Efficiency, %<br />

99.45<br />

96.98<br />

89.46<br />

<strong>Heidelberg</strong>, 19.10.2007 Sergey Gorbunov, GSI/KIP 6/15<br />

0.01<br />

0.61


Speed up <strong>of</strong> <strong>the</strong> <strong>Kalman</strong> <strong>filter</strong><br />

Problem: Pixel geometry (1 sec ) => double-sided strips (3 min)<br />

Reco time = N combinations*fit time => speed up <strong>of</strong> KF fit utilities needed<br />

Stage<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

Initial scalar version<br />

Approximation <strong>of</strong> <strong>the</strong> magnetic field<br />

Optimization <strong>of</strong> <strong>the</strong> algorithm<br />

SIMDization<br />

Porting to SPE<br />

Parallelization on 16 SPE’s<br />

Final SIMDized version on Cell<br />

FPGA<br />

Description<br />

Time/track<br />

12 ms<br />

240 µs<br />

7.2 µs<br />

1.6 µs<br />

1.1 µs<br />

0.1 µs<br />

0.1 µs<br />

? ns<br />

Speedup<br />

120000<br />

<strong>Heidelberg</strong>, 19.10.2007 Sergey Gorbunov, GSI/KIP 7/15<br />

-<br />

50<br />

35<br />

4.5<br />

1.5<br />

10<br />

?<br />

Dual Cell Blade<br />

at <strong>the</strong> IBM Laboratory,<br />

Böblingen, Germany<br />

Future,<br />

but realistic


KF fit on different architectures<br />

Fit <strong>of</strong> a single track:<br />

lxg1411<br />

eh102<br />

blade11bc4<br />

S.Gorbunov, U.Kebschull, I.Kisel, V.Lindenstruth, W.F.J.Müller, Fast SIMDized <strong>Kalman</strong> <strong>filter</strong> based track fit, acc. by CPC<br />

Fit <strong>of</strong> thous<strong>and</strong>s <strong>of</strong> tracks:<br />

<strong>Heidelberg</strong>, 19.10.2007 Sergey Gorbunov, GSI/KIP 8/15


Speed up <strong>of</strong> CA+KF tracker<br />

1000 times<br />

faster<br />

Central events Minimum bias events<br />

Efficiency, %<br />

97.04<br />

93.26<br />

79.95<br />

1.15<br />

2.28<br />

523<br />

78 ms<br />

All set<br />

Clone<br />

Ghost<br />

Track category<br />

Reference set (>1 GeV/c)<br />

Extra set (


CA+KF tracker for ALICE HLT<br />

All Set<br />

(Hits >10, P > .05)<br />

Eff Clone<br />

97.4<br />

14.2<br />

Reference Set<br />

(All Set + P>1.)<br />

Eff Clone<br />

99.5<br />

0.00<br />

Extra Set<br />

(All Set + P


CA+KF algorithm (sector view)<br />

step 0: Clusters<br />

YX view<br />

ZX view<br />

step 1: Cells<br />

YX view<br />

step 2: Neighbors step 3: Tracks ( KF )<br />

• No vertex constraint => physics, cosmics, beam gas, laser tracks…<br />

• Simple code, small memory => Cell, GPU,…<br />

• 3D track model r [8] = ( x, y, z, p x , p y , p z , q/P )<br />

ZX view<br />

ZX view<br />

<strong>Heidelberg</strong>, 19.10.2007 Sergey Gorbunov, GSI/KIP 11/15


Reconstruction <strong>of</strong> vertices <strong>and</strong> decayed particles<br />

D 0<br />

K -<br />

ππ ++<br />

KFParticle: particle parameters<br />

r [8] = ( x y z, p x p y p z , E, S(=L/p) )<br />

with full covariance matrix C [ 8×8 ]<br />

• Physical track model for mo<strong>the</strong>r [D 0 ] <strong>and</strong> daughters [ππ ++ , K - ]<br />

• State vector contains all <strong>the</strong> particle parameters<br />

both at decay <strong>and</strong> production vertices<br />

• Algorithm is suitable for vertex fit ( including primary vertex fit )<br />

• User friendly interface: class CbmKFParticle / AliKFParticle ;<br />

<strong>Heidelberg</strong>, 19.10.2007 Sergey Gorbunov, GSI/KIP 12/15


CbmKFParticle performance for D 0 fit in CBM<br />

D 0<br />

10 6 events<br />

Accuracy<br />

Pull<br />

Production Vertex [µm]<br />

x<br />

0.81<br />

1.14<br />

y<br />

0.73<br />

1.10<br />

z<br />

5.50<br />

1.11<br />

x<br />

2.64<br />

1.13<br />

K -<br />

ππ ++<br />

Decay Vertex [µm]<br />

y<br />

2.64<br />

1.13<br />

• Fixed target geometry<br />

• Non-uniform magnetic field<br />

• ~500 primary tracks<br />

63.88<br />

<strong>Heidelberg</strong>, 19.10.2007 Sergey Gorbunov, GSI/KIP 13/15<br />

z<br />

1.10<br />

P [%]<br />

0.79<br />

1.20<br />

Physical Parameters<br />

M [MeV/c]<br />

11.34<br />

1.19<br />

L [µm]<br />

64.10<br />

1.11<br />

cT [µm]<br />

9.81<br />

1.11


AliKFParticle performance for D 0 fit in ALICE<br />

10 6 events<br />

Accuracy<br />

Pull<br />

x<br />

61.89 49.07<br />

0.96 0.95<br />

D 0<br />

Production Vertex [µm]<br />

y<br />

60.95 48.79<br />

0.98 0.95<br />

z<br />

87.52 67.42<br />

1.01 0.98<br />

x<br />

100.6 75.41<br />

0.97 0.92<br />

Decay Vertex [µm]<br />

y<br />

K -<br />

75.03 97.4<br />

0.97 0.92<br />

116.1 88.6<br />

• Collider geometry<br />

• Uniform magnetic field<br />

• ~5 primary tracks<br />

<strong>Heidelberg</strong>, 19.10.2007 Sergey Gorbunov, GSI/KIP 14/15<br />

ππ ++<br />

z<br />

1.00 0.97<br />

V 0 fit time: 50 µs => HLT<br />

P [%]<br />

0.78 0.75<br />

0.94 0.92<br />

Physical Parameters<br />

M [MeV/c]<br />

10.4 9.9<br />

0.95 0.94<br />

CbmKFParticle = AliKFParticle => same code!<br />

L [µm]<br />

187.3 165.5<br />

0.98 0.93<br />

cT [µm]<br />

115.3 100.4<br />

0.98 0.93


Summary<br />

• Developed <strong>and</strong> implemented:<br />

The <strong>Kalman</strong> <strong>filter</strong> utilities for CBM reconstruction [ σP = 1.2% ]<br />

Fast SIMDized <strong>Kalman</strong> <strong>filter</strong> for CBM on-line reconstruction [ 1.6 µs / 0.1 µs ]<br />

CA+KF tracker for CBM [ Eff = 97%, 78 ms / 5 ms ]<br />

CA+KF tracker for ALICE HLT [ Eff = 99%, 100 ms ]<br />

Reconstruction <strong>of</strong> decayed particles for CBM <strong>and</strong> ALICE [σcT= 9.8 µm/100 µm, 50 µs]<br />

• Related publications :<br />

• S.Gorbunov, I.Kisel, Analytic formula for track extrapolation in non-homogeneous magnetic field, NIM A 559, (2006)<br />

• S.Gorbunov, U.Kebschull, I.Kisel, V.Lindenstruth, W.F.J.Müller, Fast SIMDized <strong>Kalman</strong> <strong>filter</strong> based track fit, CPC, (2007)<br />

• S.Gorbunov, I.Kisel, Primary vertex fit based on <strong>the</strong> <strong>Kalman</strong> <strong>filter</strong>, CBM-SOFT-note-2006-001, (2006)<br />

• S.Gorbunov, I.Kisel, Secondary vertex fit based on <strong>the</strong> <strong>Kalman</strong> <strong>filter</strong>, CBM-SOFT-note-2006-002, (2006)<br />

• S.Gorbunov, I.Kisel, Reconstruction <strong>of</strong> decayed particles based on <strong>the</strong> <strong>Kalman</strong> <strong>filter</strong>, CBM-SOFT-note-2007-003, (2007)<br />

• S.Gorbunov, I.Kisel, I.Vassiliev, Analysis <strong>of</strong> D0 detection in Au+Au collisions at 25 AGeV, CBM-PHYS-note-2005-001, (2005)<br />

• S.Gorbunov, I.Kisel, Elastic net for st<strong>and</strong>-alone RICH ring finding, NIM A 559, (2006)<br />

• Future plans (ALICE HLT):<br />

Track fit investigation<br />

Speed up <strong>and</strong> SIMDization<br />

Run <strong>the</strong> reconstruction core on <strong>the</strong> Cell processor <strong>and</strong> GPU<br />

Test on heavy ion events<br />

<strong>Heidelberg</strong>, 19.10.2007 Sergey Gorbunov, GSI/KIP 15/15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!