25.07.2013 Views

Precision Analog Optocoupler

Precision Analog Optocoupler

Precision Analog Optocoupler

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Precision</strong> <strong>Analog</strong> <strong>Optocoupler</strong><br />

Todd P. Meyrath 1<br />

Atom Optics Laboratory<br />

Center for Nonlinear Dynamics<br />

University of Texas at Austin<br />

c○ 2004<br />

July 2002<br />

revised February 14, 2005<br />

In this note, we give a simple design for a precision analog optocoupler which may<br />

be useful for ground loop removal or voltage isolation. The circuit here is intended<br />

for precision low frequency (under 10 kHz) applications and uses a HCNR201 as the<br />

primary optocoupling device. It is based on that shown in Figure 17 of HCNR201<br />

datasheet but includes a few extra options. The circuit given in Fig 17 has a voltage<br />

range from 1 mV to over 10 V and has high accuracy and stability. For many applications<br />

this is sufficient. However, there is a drawback in that the circuit can not<br />

actually pass a 0 V signal, the ≈ 1 mV actually is a limit since the photodiode always<br />

must be slightly reverse biased. Even a slowly rising signal below ≈ 1 mV produces<br />

a non-adiabatic spike in the output (which the author found out the hard way on a<br />

critical application). The various versions of bipolar drivers given on the data sheet<br />

suffer from cross-over transition problems when using two optocouplers. Here we use<br />

a simple solution so the circuit can be made bipolar and can have 0 V signals without<br />

cross-over problems. This is to shift the input-output range down by adding to the<br />

input voltage before the optocoupler and then subtracting it back off at the output.<br />

This allows one to shift the range by anything between 0 V and 5 V. To have 0 V to<br />

10 V one need only add and subtract a few millivolts, or for −5 V to 5 V add and<br />

subtract 5 V. Naturally this does not increase the voltage range of the device which<br />

is still 10 V. As drawn on the schematic, the given voltage dividers give a voltage<br />

adjustment range between 0 V and 1.5 V, the voltage dividers may be adjusted for<br />

desired range of operation. For the full 0 V to 5 V range, one must only replace R5<br />

and R8 by 0 Ω shorts.<br />

The board layout includes several options which may be disabled when not desired.<br />

The table here gives the options and components to be omitted when options are not<br />

used. R22 and R23 are optional gain resistors which will generally not be used.<br />

Option to remove Add Jumper Omit parts<br />

Input Adder W1 D1, C19, R5-R7, R11, U1, R23<br />

Output Subtracter W2 D2, C18, R8-R10, R12, U4, R22<br />

Output Line Driver W3 R13, U5, U6, R20, C13-C17, R21<br />

1 Please send comments, questions, corrections, insults to meyrath@physics.utexas.edu<br />

1


The optional output line driver can supply currents of up to 1/4 A. This can be<br />

used when the output is supplied to common 50 Ω loads. It includes an output integrator<br />

involving R21 and C15, which may be disabled by omitting C15 and replacing<br />

R21 by a 0 Ω short. The output integrator can improve output stability when driving<br />

some loads, especially reactive loads.<br />

The device provides a linear response with a transfer slope near unity which is<br />

partially limited by the matching of R1 and R2+R3. It is advisable to use high quality<br />

resistors. If trimming is not desired, one may omit R3 and short the pads with a 0 Ω<br />

resistor and use a precision pair for R1 and R2.<br />

Layout available at http://george.ph.utexas.edu/~ meyrath/papers<br />

Revisions: Version 2.1 Added protection diodes D4 to D8. Version 2.0 Added<br />

sum and subtraction options, output line driver option.<br />

2


Figure 1: Photo of completed PCB. This implementation includes all of the options.<br />

Only the required heatsink on the BUF chip is missing.<br />

3


Parts<br />

Qu. Label Part # Manufacturer/Description<br />

1 R1 200 kΩ 1260 pkg resistor.<br />

1 R2 196 kΩ 1260 pkg resistor.<br />

2 R4,R20 1 kΩ 1260 pkg resistor.<br />

2 R5,R8 23.2 kΩ 1260 pkg resistor.<br />

3 R3,R6,R9 Bourns / 3214W series 10 kΩ trimpot.<br />

2 R7,R10 0 Ω 1260 pkg resistor.<br />

1 R13,R21 100 Ω 1260 pkg resistor.<br />

3 R11,R12,R16 2 kΩ 1260 pkg resistor.<br />

1 R17 7.5 kΩ 1260 pkg resistor.<br />

1 R18 300 Ω 1260 pkg resistor.<br />

1 R19 33 kΩ 1260 pkg resistor.<br />

0-3 W1-W3 0 Ω (jumper) 1260 pkg resistor.<br />

1 C1 68 pF cap, 1206 chip pkg.<br />

1 C2 33 pF cap, 1206 chip pkg.<br />

13 C3-C15 100 nF cap, 1206 chip pkg.<br />

12 C16-C27 T491A106M016AS Kermet / 10 µF solid tantalum surface mnt.<br />

2 U1,U4 INA128UA Texas Inst. / inst. amp, 8-SOIC pkg.<br />

3 U2,U3,U5 OPA227UA Texas Inst. / precision opamp, 8-SOIC pkg.<br />

1 U6 BUF634P † Texas Inst. / 1/4 Amp high speed buffer, 8-DIP pkg.<br />

2 U7,U8 LM78L12ACM National Semi. / +12V reg, 8-SOIC pkg.<br />

2 U9,U10 LM79L12ACM National Semi. / -12V reg, 8-SOIC pkg.<br />

1 OP1 HCNR201 Agilent Tech. / <strong>Analog</strong> optocoupler, 8-DIP wide pkg.<br />

1 Q1 2N3906 PNP Transistor, TO-92 pkg.<br />

2 D1,D2 LM336M-5.0 National Semi. / 5.0V refernce, 8-SOIC pkg.<br />

1 D3 1N4150 Diode, DO-35 pkg.<br />

5 D4-D8 20V Zener Diode, DO-35 pkg.<br />

2 J1,J2 227222-1 AMP-Tyco Elec. / Vertical PCB mnt BNC receptacle.<br />

2 J3,J4 70543-0002 Molex / 3 pin vertical header power conn.<br />

1 50-57-9403 Molex / 3 pin mate housing.<br />

16-02-0102 Molex / female crimp pins.<br />

Quantity is per board, label is on the PCB, part # is manufacturer number.<br />

Most parts obtained from www.mouser.com, www.digikey.com, or www.alliedelec.com.<br />

† Note, it is absolutely required to glue a small heat sink the buffer package.<br />

4


PRECISION ANALOG OPTOCOUPLER CIRCUIT<br />

Todd Meyrath<br />

UT-Austin<br />

July 2002<br />

updated Dec 2004<br />

<strong>Analog</strong> In<br />

BNC<br />

6<br />

U3<br />

C19<br />

10µF<br />

D4<br />

+<br />

C2, 33pF<br />

OPA227<br />

3<br />

-12V<br />

2<br />

8<br />

4<br />

R4<br />

1kΩ<br />

R6<br />

10kΩ<br />

D1<br />

R7<br />

0Ω<br />

R11<br />

2kΩ<br />

R5<br />

23.2kΩ<br />

6<br />

3<br />

2<br />

5<br />

OC1<br />

HCNR201<br />

1<br />

INA128<br />

U1<br />

W1<br />

0Ω<br />

R23<br />

5<br />

R2<br />

196kΩ<br />

8<br />

6<br />

D1, D2: LM336M-5.0<br />

D3: 1N4150<br />

R3<br />

10kΩ<br />

R1<br />

200kΩ<br />

+12V<br />

C18<br />

10µF<br />

+<br />

3<br />

4<br />

OC1<br />

HCNR201<br />

R12<br />

2kΩ R8<br />

23.2kΩ<br />

8<br />

4 D2<br />

R9<br />

10kΩ<br />

R10<br />

0Ω<br />

W2<br />

2<br />

3<br />

-<br />

OPA227<br />

+<br />

C1, 68pF<br />

U2<br />

R16<br />

2kΩ<br />

R17<br />

7.5kΩ<br />

6<br />

R19<br />

33kΩ<br />

R13<br />

100Ω<br />

D3<br />

-12V<br />

3<br />

2<br />

+12V<br />

R18<br />

300Ω<br />

Q1<br />

2N3906<br />

0Ω 0Ω<br />

R22<br />

3<br />

2<br />

1<br />

8<br />

INA128<br />

5<br />

U4<br />

6<br />

U5<br />

2<br />

1<br />

W3<br />

OC1<br />

HCNR201<br />

+15V<br />

OPA227 BUF634<br />

6<br />

3<br />

R20<br />

4<br />

1kΩ<br />

C15<br />

100nF<br />

Additional Connections:<br />

+15V<br />

External Power Connections<br />

-15V<br />

C20,21+<br />

10µF<br />

C24,25<br />

10µF<br />

+<br />

U6<br />

8<br />

7<br />

+<br />

+-15V<br />

C17<br />

10µF<br />

OPA227,<br />

INA128<br />

C16<br />

10µF<br />

6<br />

R21<br />

100Ω<br />

LM78L12M<br />

U7, U8<br />

C14<br />

100nF<br />

-<br />

2-3, 6-7<br />

+<br />

7<br />

4<br />

-12V<br />

2-3, 6-7<br />

LM79L12M<br />

U9, U10<br />

1<br />

5<br />

1<br />

+<br />

+<br />

C13<br />

100nF<br />

+12V<br />

Power Supply Connections, as on each side<br />

D5,D6<br />

D7,D8<br />

C3-C7<br />

0.1µF<br />

C8-C12<br />

0.1µF<br />

C22,23<br />

10µF<br />

C26,27<br />

10µF<br />

+12V<br />

-12V<br />

<strong>Analog</strong><br />

Output<br />

BNC

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!