25.07.2013 Views

Hans Paerl PhD

Hans Paerl PhD

Hans Paerl PhD

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Nitrogen-Eutrophication<br />

Nitrogen Eutrophication<br />

Dynamics in Estuaries<br />

<strong>Hans</strong> <strong>Paerl</strong>, UNC-CH UNC CH Institute of Marine Sciences, Morehead City, NC<br />

www.marine.unc.edu/<strong>Paerl</strong>lab


•<br />

Key Estuarine Nutrient Issues<br />

Primary production in estuarine waters is largely N limited;<br />

however some systems are N & P co-limited co limited or P limited<br />

•<br />

•<br />

N (& P) Over-enrichment Over enrichment linked to eutrophication<br />

Sources, forms and proportions of N loading are changing<br />

*<br />

e.g. point & non-point non point surface runoff, atmospheric deposition, groundwater<br />

•<br />

Ammonium is increasing as a N source<br />

Hypoxia, Increased wastewater loads, Ag runoff<br />

•<br />

Ecological Effects?*<br />

* nuisance algal blooms, toxicity, hypoxia/anoxia, food web alterations alterations


Fisher et al. 1998<br />

Nutrient limitation in the Chesapeake Bay<br />

Chesapeake<br />

(Fisher et al. 1998)


Nutrient limitation dynamics in the Neuse<br />

R. Estuary, NC<br />

Neuse R. Estuary<br />

Gallo 2004


Nitrate (μg N L -1 )<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

200<br />

150<br />

100<br />

50<br />

0<br />

200<br />

150<br />

100<br />

50<br />

Nitrate Ammonium<br />

Nitrate and Ammonium<br />

Concentrations in the<br />

Neuse R. Estuary, NC<br />

0<br />

Jan Feb Mar Apr May Jun Jul Aug<br />

<strong>Paerl</strong> et al. 2005;<br />

ModMon Project<br />

Jan Feb Mar Apr May Jun Jul<br />

0<br />

Aug<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Ammonium (μg N L -1 )


% of total measured N uptake<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Jan Feb Mar Apr May Jun Jul<br />

Relative uptake of<br />

Ammonium, Nitrate<br />

and Urea in the NRE<br />

Ammonium<br />

Nitrate<br />

Urea<br />

Twomey et al. 2005


•<br />

•<br />

Conclusions (For Neuse R. Estuary)<br />

All forms of N are readily utilized<br />

Uptake of various N forms reflects<br />

their availability & concentrations


Ammonium is often a<br />

preferred N source,and<br />

it is increasing. What<br />

are the effects on phyto<br />

community<br />

structure?<br />

Chlorophyll a (µg L -1 )<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

C<br />

<br />

NH4<br />

NO3<br />

Nutrient Addition Bioassay Experiment, T1<br />

Neuse River, July 2003<br />

Upstream CMAX Downstream<br />

NH4 + NO3<br />

P<br />

NH4 + P<br />

NO3 + P<br />

<br />

<br />

NH4 + NO3 + P<br />

C<br />

NH4<br />

NO3<br />

<br />

NH4 + NO3<br />

P<br />

NH4 + P<br />

NO3 + P<br />

<br />

<br />

NH4 + NO3 + P<br />

C<br />

NH4<br />

NO3<br />

Twomey et al. 2005<br />

NH4 + NO3<br />

P<br />

NH4 + P<br />

NO3 + P<br />

NH4 + NO3 + P


All phytos<br />

Concentration<br />

(mg m-3 )<br />

cryptophytes<br />

15<br />

12<br />

9<br />

6<br />

3<br />

0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Bogue Sound Bioassay August, 1996<br />

Chl a Fucoxanthin<br />

12<br />

Control Nitrate Ammonium<br />

Control Nitrate Ammonium<br />

15<br />

9<br />

6<br />

3<br />

0<br />

3<br />

2<br />

1<br />

0<br />

Control Nitrate Ammonium<br />

Alloxanthin<br />

5<br />

4<br />

Zeaxanthin<br />

Treatment<br />

Control Nitrate Ammonium<br />

diatoms<br />

cyanobacteria<br />

<strong>Paerl</strong> et al. 2006


N source can affect<br />

cyanobacterial dominance:<br />

Lake Njupfatet, Sweden<br />

Blomqvist et al. 1994<br />

+ ammonium-N<br />

ammonium<br />

+ nitrate-N nitrate


Lake Taihu<br />

3 rd largest lake in China. Increased N loads (dominated by<br />

ammonium) . Blooms have grown to “pea pea soup” soup conditions within a decade


Freshwater discharge and residence time matter as well<br />

Hydrologic controls of chl-a chl chl-a production and composition:<br />

SeaWiFS (SAS II) during low flow (’95) ( (’95) 95) and high flow (’96) ( (’96) 96) years<br />

spring ‘95 spring ‘96<br />

Harding et al. 2006


Chesapeake Bay phytoplankton<br />

composition by CHEMTAX –<br />

contrasting flow years<br />

spring '95<br />

spring '96<br />

summer '95<br />

summer '96<br />

Diatoms<br />

Dinoflagellates<br />

Cryptophytes<br />

Cyanophytes<br />

Chlorophytes<br />

Prasinophytes<br />

Haptophytes<br />

Adolph et al 2007


Nutrient cycling and food web implications<br />

Nutrient and<br />

Hydrologic drivers<br />

PHYTOPLANKTON<br />

COMMUNITY<br />

FORM of Limiting Nutrient<br />

(NO 3 - , NH4 + , DON)<br />

Nutrient Ratios, Residence Time<br />

Grazed<br />

Phytoplankton<br />

Species<br />

Nuisance / Toxic<br />

Phytoplankton<br />

Species<br />

Some Dinoflagellates<br />

Cyanobacteria<br />

Nutrient Regeneration<br />

Decomposition of POM<br />

Linkages Between Nutrient Inputs, Hydrology,<br />

Phytoplankton Community Composition, Grazing,<br />

Hypoxia and Fisheries Habitat<br />

Grazing and<br />

Water Column<br />

Carbon Recycling<br />

Carbon<br />

Deposition<br />

(POC)<br />

+<br />

DECREASED<br />

O 2 Depletion<br />

Potentials<br />

INCREASED<br />

O 2 Depletion<br />

Potentials<br />

-<br />

OXIC<br />

CONDITIONS<br />

Mixing<br />

PHYSICAL<br />

CONTROLS<br />

Stratification<br />

HYPOXIA<br />

ANOXIA


•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Management Implications<br />

In most estuaries, including regions of the SFO Bay N<br />

plays role as limiting nutrient.<br />

DIN utilization reflects supply rates: However, some<br />

forms (e.g., ammonium) may be preferred.<br />

Sources of N influence algal composition: Potential<br />

food web and biogeochemical implications<br />

Light-N Light N interactions may be important, especially in<br />

turbid waters<br />

Hydrology (storms, floods, droughts) and residence<br />

time are important interactive variables, especially for<br />

slower growing phytoplankton like cyanobacteria.<br />

cyanobacteria.<br />

Develop appropriate in in situ situ response assays and<br />

indicators to assess responses and impacts


Thanks to:<br />

L. Harding<br />

A. Joyner<br />

B. Peierls<br />

M. Piehler<br />

K. Rossignol<br />

L. Valdes<br />

P. Wyrick<br />

Estuarine & Coastal Indicators of Nutrient Enrichment<br />

www.unc.edu/ims/paerllab/<br />

www.unc.edu/ims/paerllab<br />

www.unc.edu/ims/paerllab/<br />

82667701<br />

& NSF, USDA, NCDENR, NC Sea Grant


Effects of Ammonium or Nitrate (10 μg N L -1 )<br />

Blomqvist et al. 1994<br />

additions (+P) on<br />

phytoplankton biomass in eutrophic Lake Erken, Sweden


Lake Okeechobee, Florida: Nutrient enrichment,<br />

water withdrawal, drought conditions. Lots more ammonium<br />

<br />

2007<br />

Photo, K. Havens


Expansion of<br />

Cylindrospermopsis<br />

Raciborskii<br />

Raciborskii<br />

Why?


Nutrient/light strategies of Cylindrospermopsis<br />

ylindrospermopsis raciborskii raciborskii<br />

High P uptake and storage capacity<br />

(Isvanovics Isvanovics et al 2000)<br />

N 2 Fixer<br />

High NH4 NH<br />

+ uptake affinity<br />

N additions (NH4 (NH<br />

+ NO x) ) often significantly increase growth (chl ( chl a<br />

and cell counts) and productivity (Presing Presing et al 1996)<br />

Tolerates low light intensities<br />

“Tracks Tracks” eutrophication (expand in waters w/ increasing turbidity)<br />

Can coexist in water column with other cyanoHABs<br />

(Fabbro Fabbro and Duivenvoorden 1996)


N stimulation of primary production in the<br />

Coastal W. Atlantic Ocean<br />

<strong>Paerl</strong> et al., 1999<br />

14 C-CO 2 Fixation (DPM * 10 4 )<br />

*<br />

0.6<br />

*<br />

0.4<br />

0.2<br />

0<br />

7.5<br />

5<br />

2.5<br />

0<br />

Control<br />

NO3<br />

*<br />

NH4<br />

PO4<br />

Fe + EDTA<br />

Fe + EDTA + NO3<br />

*<br />

Gulf<br />

Stream<br />

Inshore


DPM/ml<br />

N (+P) stimulation of primary<br />

production in the brackish<br />

Baltic Sea<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Baltic Sea 2000, Bioassay A<br />

Primary Productivity<br />

Legend<br />

Day 1<br />

Day 2<br />

Day 3<br />

Control<br />

Mannitol<br />

N<br />

P<br />

Fe<br />

Fe+EDTA<br />

N+Fe<br />

P+Fe<br />

N+P<br />

Chlorophyll a (μg/l)<br />

0.13<br />

0.12<br />

0.11<br />

0.1<br />

0.09<br />

0.08<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

Baltic Sea 2000, Bioassay A<br />

Chlorophyll<br />

Control<br />

Mannitol<br />

N<br />

P<br />

Fe<br />

Fe+EDTA<br />

N+Fe<br />

P+Fe<br />

N+P


Distance Downstream (km)<br />

River Discharge (m 3 s -1 )<br />

40<br />

30<br />

20<br />

10<br />

0<br />

40<br />

30<br />

20<br />

10<br />

0<br />

40<br />

30<br />

20<br />

10<br />

0<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1994<br />

1995<br />

Phytoplankton functional group responses<br />

1996<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

8<br />

6<br />

4<br />

2<br />

0<br />

12<br />

9<br />

6<br />

3<br />

0<br />

16<br />

12<br />

8<br />

4<br />

0<br />

Chlorophytes<br />

(µg L-1 )<br />

Cyanobacteria<br />

(µg L-1 )<br />

Dinoflagellates<br />

(µg L-1 )<br />

Bertha<br />

Fran<br />

Bonnie<br />

Dennis<br />

Floyd<br />

Irene<br />

Isabel


DIN DI<br />

What do the data show?<br />

Loading vs. primary production in a range of N. American<br />

and European estuaries<br />

(Nixon 1996)


N loading and algal production in the Neuse R. Estuary<br />

distance downstream<br />

from Streets Ferry Bridge (km)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Salinity (psu)<br />

chl a (ug L -1 )<br />

- -1 NOx (ug L )<br />

Floyd<br />

<br />

6/97 12/97 6/98 12/98 6/99 12/99 6/00<br />

20<br />

15<br />

10<br />

0<br />

200<br />

400<br />

600<br />

800<br />

>1000<br />

>30<br />

20<br />

10<br />

0<br />

5<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!