25.07.2013 Views

Kicked rotor in Wigner phase space - The University of Texas at Austin

Kicked rotor in Wigner phase space - The University of Texas at Austin

Kicked rotor in Wigner phase space - The University of Texas at Austin

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Fortschr. Phys. 51, No. 4–5 (2003) 481<br />

5.2 Resonance<br />

So far wehavenot specified thevalue<strong>of</strong> k- . When we now utilize k- =4πand recognizefrom thedef<strong>in</strong>itions,<br />

Eqs. (14) and (16), <strong>of</strong> the generalized potential V and the expansion coefficients Sl the periodicity property<br />

Sl(κ; x + r · 2π) =Sl(κ; x), the coefficient Wl reduces to<br />

<br />

≡ Sl−r(κ; x)Sr(κ; x)<br />

W (+)<br />

l<br />

r<br />

In Appendix C weevalu<strong>at</strong>ethis sum analytically and f<strong>in</strong>d<br />

W (+)<br />

l<br />

= Sl(2 · κ; x).<br />

Hence, <strong>at</strong> a resonance, th<strong>at</strong> is for k- =4π, the<strong>phase</strong><strong>space</strong>distribution after thesecond kick reads<br />

W2(x, p) = 1 <br />

Sr(2κ; x) δ (p + r · 2π) . (24)<br />

2π<br />

r<br />

It is <strong>in</strong>terest<strong>in</strong>g to comparethis expression with the<strong>phase</strong><strong>space</strong>distribution<br />

W1(x, p) = 1 <br />

Sr(κ; x)δ(p + r · 2π)<br />

2π<br />

r<br />

after the first kick which follows form Eq. (21) for k =4π. Wenoteth<strong>at</strong> theargument κ <strong>of</strong> theexpansion<br />

coefficient has been replaced by 2κ.<br />

This result has a simpleexplan<strong>at</strong>ion. Dur<strong>in</strong>g thefreetimeevolution each po<strong>in</strong>t <strong>of</strong> the<strong>phase</strong><strong>space</strong><br />

distribution follows the classical trajectory [12], th<strong>at</strong> is each po<strong>in</strong>t <strong>at</strong> the momenta lk - /2 moves with constant<br />

velocity and traverses dur<strong>in</strong>g the time t =1thecoord<strong>in</strong><strong>at</strong>edistancex = lk - /2 · 1.Fork - =4π this distance<br />

is oneor an <strong>in</strong>teger multiple<strong>of</strong> 2π. Subsequent to this movement, the next kick occurs. <strong>The</strong> associ<strong>at</strong>ed<br />

displacement with x–dependent weight functions Sl(κ; x) is therefore <strong>in</strong> <strong>phase</strong> with the freely propag<strong>at</strong>ed<br />

<strong>phase</strong><strong>space</strong>distribution and adds up coherently.<br />

Wecan cont<strong>in</strong>uetheiter<strong>at</strong>ion <strong>of</strong> the<strong>Wigner</strong> function by start<strong>in</strong>g from thedistribution, Eq. (24) after the<br />

second kick and wef<strong>in</strong>d follow<strong>in</strong>g theabovearguments thedistribution<br />

W (+)<br />

l<br />

(x) ≡ <br />

Sl−r(κ; x)Sr(2κ; x).<br />

r<br />

In Appendix C wehavecalcul<strong>at</strong>ed this sum and f<strong>in</strong>d the<strong>Wigner</strong> function<br />

W3(x, p) = 1 <br />

Sr(3κ; x) δ (p + r · 2π) .<br />

2π<br />

r<br />

By <strong>in</strong>duction the <strong>Wigner</strong> function after the N-th kick reads<br />

WN(x, p) = 1 <br />

Sr(Nκ; x) δ (p + r · 2π) .<br />

2π<br />

r<br />

Weconcludethis section by us<strong>in</strong>g this <strong>Wigner</strong> function to calcul<strong>at</strong>ethemomentum distribution WN(p)<br />

after N kicks by <strong>in</strong>tegr<strong>at</strong><strong>in</strong>g over position. We recall th<strong>at</strong> this <strong>in</strong>tegr<strong>at</strong>ion over x elim<strong>in</strong><strong>at</strong>es the odd momenta,<br />

th<strong>at</strong> is<br />

WN(p) = <br />

π<br />

1<br />

dx S2l(Nκ; x)δ(p + l · 4π) =<br />

2π<br />

<br />

S 2 l (Nκ)δ(p + l · 4π). (25)<br />

l<br />

−π<br />

Herewehaveused the<strong>in</strong>tegral rel<strong>at</strong>ion, Eq. (22), for thecoefficients S2l.<br />

<strong>The</strong> result Eq. (25) is <strong>in</strong> complete agreement with the distribution, Eq. (20), obta<strong>in</strong>ed <strong>in</strong> the st<strong>at</strong>e vector<br />

picture.<br />

l

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!