25.07.2013 Views

Kicked rotor in Wigner phase space - The University of Texas at Austin

Kicked rotor in Wigner phase space - The University of Texas at Austin

Kicked rotor in Wigner phase space - The University of Texas at Austin

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

480 M. Bienert et al.: <strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

5 Quantum resonances viewed from <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

How does a quantum resonance reflect itself <strong>in</strong> <strong>phase</strong> <strong>space</strong>? In order to answer this question we consider<br />

themap, Eq. (18), <strong>of</strong> the<strong>Wigner</strong> function.<br />

5.1 <strong>Wigner</strong> function after second kick<br />

<strong>The</strong> <strong>Wigner</strong> function <strong>of</strong> our <strong>in</strong>itial momentum eigenst<strong>at</strong>e | p =0〉 reads<br />

W0(x, p) = 1<br />

2π δ(p),<br />

wherewehave<strong>in</strong>troduced thenormaliz<strong>at</strong>ion factor 1/(2π) such th<strong>at</strong> the <strong>Wigner</strong> function <strong>in</strong>tegr<strong>at</strong>ed over<br />

all momenta and over one sp<strong>at</strong>ial period is normalized to unity.<br />

After onekick, the<strong>Wigner</strong> function<br />

W1(x, p) = 1 <br />

Sr(κ; x) δ (p + rk<br />

2π<br />

- /2) . (21)<br />

r<br />

can be viewed as a stack <strong>of</strong> delta function walls aligned parallel to the x–axis. Each wall is weighted with<br />

thefunction Sr, Eq. (16), which impr<strong>in</strong>ts a x–dependent modul<strong>at</strong>ion <strong>of</strong> period 2π onto thewall.<br />

In contrast to thest<strong>at</strong>evector description the<strong>Wigner</strong> function <strong>phase</strong><strong>space</strong>not only enjoys contributions<br />

<strong>at</strong> p = lk- but also <strong>at</strong> p =(2l+1)k- /2. However, the correspond<strong>in</strong>g weight function S2l+1 displays a position<br />

dependence such th<strong>at</strong> the <strong>in</strong>tegral over it vanishes. Only for p = lk- =2lk- /2 do wef<strong>in</strong>d a nonvanish<strong>in</strong>g<br />

contribution<br />

π<br />

dx S2l(κ; x) =2πS 2 l (κ) (22)<br />

−π<br />

as shown <strong>in</strong> Appendix A. As a consequence, the result<strong>in</strong>g momentum distribution<br />

π<br />

W1(p) = dx W1(x, p) = <br />

π<br />

1<br />

dx S2l(κ; x)δ(p + lk) =<br />

2π<br />

<br />

−π<br />

l<br />

−π<br />

l<br />

S 2 l (κ)δ(p + lk - )<br />

only <strong>in</strong>volves momenta <strong>at</strong> <strong>in</strong>teger multiples <strong>of</strong> k- <strong>in</strong> complete agreement with the st<strong>at</strong>e vector description.<br />

After thesecond kick, the<strong>phase</strong><strong>space</strong>distribution<br />

W2(x, p) = <br />

Ss(κ; x) W1 (x − (p + sk- /2) ,p+ sk- /2) .<br />

s<br />

is expressed <strong>in</strong> terms <strong>of</strong> the <strong>Wigner</strong> function W1, Eq. (21), after the first kick which after substitution <strong>in</strong>to<br />

this formula yields<br />

W2(x, p) = 1 <br />

Ss(κ; x)Sr(κ; x − (p + sk<br />

2π<br />

- /2))δ (p +(r + s)k- /2) .<br />

s<br />

r<br />

Wefirst usetheδ–function to replacethemomentum p <strong>in</strong> the second expansion coefficient Sr by −(r+s)k- /2.<br />

Wethen <strong>in</strong>troducethesumm<strong>at</strong>ion <strong>in</strong>dex l ≡ r + s and arrive<strong>at</strong><br />

W2(x, p) = 1 <br />

Wl(x)δ (p + lk<br />

2π<br />

- /2) .<br />

l<br />

with thedistribution<br />

Wl(x) ≡ <br />

Sl−r(κ; x)Sr(κ; x + rk- /2). (23)<br />

r

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!