25.07.2013 Views

Kicked rotor in Wigner phase space - The University of Texas at Austin

Kicked rotor in Wigner phase space - The University of Texas at Austin

Kicked rotor in Wigner phase space - The University of Texas at Austin

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

476 M. Bienert et al.: <strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

3.1 St<strong>at</strong>evector<br />

<strong>The</strong>Hamiltonian<br />

ˆH ≡ ˆp2<br />

2<br />

+ KV (ˆx)<br />

∞<br />

n=−∞<br />

δ(t − n)<br />

consists <strong>of</strong> two parts: (i) <strong>The</strong> oper<strong>at</strong>or <strong>of</strong> k<strong>in</strong>etic energy and (ii) the oper<strong>at</strong>or <strong>of</strong> potential energy which is<br />

explicitly time dependent. However, the l<strong>at</strong>ter part is only <strong>of</strong> importance for <strong>in</strong>teger t. Between two kicks<br />

it vanishes and the st<strong>at</strong>e | ψn 〉 evolves freely accord<strong>in</strong>g to<br />

| ψ ′ n 〉 = Ûfree(ˆp)| ψn 〉≡exp<br />

<br />

−i ˆp2<br />

2k -<br />

<br />

| ψn 〉. (4)<br />

Here, wehavepropag<strong>at</strong>ed thest<strong>at</strong>eover onetimeunit t =1.<br />

For <strong>in</strong>teger t, the potential energy dom<strong>in</strong><strong>at</strong>es over the k<strong>in</strong>etic energy and we can neglect the l<strong>at</strong>ter. This<br />

fe<strong>at</strong>ureallows us to <strong>in</strong>tegr<strong>at</strong>etheSchröd<strong>in</strong>ger equ<strong>at</strong>ion, Eq. (3), over one kick. <strong>The</strong> st<strong>at</strong>e | ψn+1 〉 immedi<strong>at</strong>ely<br />

after a δ–function kick is rel<strong>at</strong>ed to the st<strong>at</strong>e | ψ ′ n 〉 just beforethekick by<br />

| ψn+1 〉 = Ûkick(ˆx)| ψ ′ <br />

n 〉≡exp −i K<br />

<br />

k- V (ˆx) | ψ ′ n 〉. (5)<br />

We emphasize th<strong>at</strong> neglect<strong>in</strong>g the k<strong>in</strong>etic energy is not an approxim<strong>at</strong>ion s<strong>in</strong>ce the δ–function only acts <strong>at</strong><br />

an <strong>in</strong>stant <strong>of</strong> timewith an <strong>in</strong>f<strong>in</strong>itestrength.<br />

When wecomb<strong>in</strong>eEqs. (4) and (5) thecompletetimeevolution over oneperiod reads<br />

| ψn+1 〉 = Ûkick(ˆx) Ûfree(ˆp)|<br />

<br />

ψn 〉 = exp [−iκV (ˆx)] exp −i ˆp2<br />

2k- <br />

| ψn 〉 (6)<br />

and maps thest<strong>at</strong>e| ψn 〉 onto | ψn+1 〉. Herewehave<strong>in</strong>troduced theabbrevi<strong>at</strong>ion κ ≡ K/k - .<br />

Wef<strong>in</strong>d thequantum st<strong>at</strong>e| ψN 〉 after N kicks by apply<strong>in</strong>g the Floquet oper<strong>at</strong>or<br />

Û(ˆx, ˆp) ≡ Ûkick(ˆx) Ûfree(ˆp) (7)<br />

N times onto the <strong>in</strong>itial st<strong>at</strong>e | ψ0 〉.<br />

S<strong>in</strong>cethepotential V (x) is periodic, th<strong>at</strong> is V (x +2π) =V (x), thekick oper<strong>at</strong>or exp [−iκV (ˆx)] is also<br />

periodic and we can expand it <strong>in</strong>to Fourier series<br />

Ûkick(ˆx) =e −iκV (ˆx) =<br />

with expansion coefficients<br />

Sl (κ) ≡ 1<br />

π<br />

2π<br />

−π<br />

∞<br />

l=−∞<br />

Sl (κ)e −ilˆx<br />

dξ e ilξ e −iκV (ξ) . (9)<br />

In this Fourier represent<strong>at</strong>ion the oper<strong>at</strong>or n<strong>at</strong>ure <strong>of</strong> the Ûkick only enters through the Fourier oper<strong>at</strong>or<br />

exp[−ilˆx].<br />

With the the help <strong>of</strong> the rel<strong>at</strong>ion Eq. (8) the Floquet oper<strong>at</strong>or Eq. (7) takes the form<br />

∞<br />

Û(ˆx, ˆp) = Sl (κ)e −ilˆx <br />

exp −i ˆp2<br />

2k- <br />

.<br />

l=−∞<br />

(8)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!