25.07.2013 Views

Kicked rotor in Wigner phase space - The University of Texas at Austin

Kicked rotor in Wigner phase space - The University of Texas at Austin

Kicked rotor in Wigner phase space - The University of Texas at Austin

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Fortschr. Phys. 51, No. 4–5 (2003) 475<br />

<strong>of</strong> parameters. We first consider the motion <strong>of</strong> a classical particle <strong>of</strong> mass M, characterized by coord<strong>in</strong><strong>at</strong>e<br />

˜x and momentum p. <strong>The</strong>n weturn to thequantum description.<br />

<strong>The</strong>motion <strong>of</strong> theparticleis driven by a sequence<strong>of</strong> δ-function kicks with period T described by the<br />

Hamiltonian<br />

H = p2<br />

2M + K V (˜x)<br />

∞<br />

n=−∞<br />

δ(t − nT ). (1)<br />

<strong>The</strong>strength <strong>of</strong> thekick depends on theposition <strong>of</strong> theparticlevia a potential K V (˜x) where K denotes the<br />

kick amplitudeand V (˜x) conta<strong>in</strong>s the sp<strong>at</strong>ial dependence with unit amplitude. Throughout the paper we<br />

consider potentials which are periodic with period λ ≡ 2π/k0. Moreover, we also assume the symmetries<br />

˜V (−˜x) =− ˜ V (˜x) and ˜ V (˜x ± λ/2) = − ˜ V (˜x).<br />

For the further analysis it is convenient to use scaled variables. In particular, we <strong>in</strong>troduce the dimensionless<br />

coord<strong>in</strong><strong>at</strong>e x ≡ k0˜x, momentum p ≡ (k0T/M)p and time t ≡ t/T . With these variables the<br />

Hamiltonian, Eq. (1), transforms <strong>in</strong>to<br />

where<br />

H ≡ M<br />

k2 H<br />

0T 2<br />

H ≡ 1<br />

2 p2 + KV (x)<br />

∞<br />

n=−∞<br />

δ(t − n) (2)<br />

<strong>in</strong>cludes the stochasticity parameter K ≡ Kk 2 0T/M and the scaled potential V (x) ≡ V (x/k0) now enjoys<br />

theperiod 2π.<br />

We now turn to the quantum description with position and momentum oper<strong>at</strong>ors ˆ˜x and ˆ˜p. <strong>The</strong>y s<strong>at</strong>isfy<br />

thefamiliar commut<strong>at</strong>ion rel<strong>at</strong>ion [ˆ˜x, ˆ p] =i which <strong>in</strong> dimensionless variables reads [ˆx, ˆp] =ik - . Here we<br />

have<strong>in</strong>troduced thescaled Planck’s constant k - ≡ k 2 0T/M.<br />

Moreover, <strong>in</strong> these dimensionless variables the Schröd<strong>in</strong>ger equ<strong>at</strong>ion<br />

takes the form<br />

i ∂<br />

∂t | ψ 〉 = ˆ H| ψ 〉<br />

ik- ∂<br />

∂t | ψ 〉 = ˆ H| ψ 〉 (3)<br />

wherewehavereplaced <strong>in</strong> theclassical Hamiltonian H, Eq. (2), theposition and momentum x and p by<br />

thecorrespond<strong>in</strong>g oper<strong>at</strong>ors giv<strong>in</strong>g riseto thequantum mechanical Hamiltonian ˆ H.<br />

3 Time evolution<br />

Wenow turn to thediscussion <strong>of</strong> thetimeevolution <strong>of</strong> this kicked system. Herewepursuetwo different<br />

approaches: wefirst concentr<strong>at</strong>eon thedynamics <strong>of</strong> thest<strong>at</strong>evector, and then usetheseresults to derive<br />

thetimeevolution <strong>of</strong> the<strong>Wigner</strong> <strong>phase</strong><strong>space</strong>distribution. Dueto thestroboscopic behavior <strong>of</strong> thepotential<br />

energy wereducethecont<strong>in</strong>uous timeevolution to a discretemapp<strong>in</strong>g.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!