25.07.2013 Views

Kicked rotor in Wigner phase space - The University of Texas at Austin

Kicked rotor in Wigner phase space - The University of Texas at Austin

Kicked rotor in Wigner phase space - The University of Texas at Austin

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Fortschr. Phys. 51, No. 4–5, 474 – 486 (2003) / DOI 10.1002/prop.200310065<br />

<strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

M. Bienert 1 , F. Haug 1 , W. P. Schleich 1,∗ , and M. G. Raizen 2<br />

1<br />

Abteilung für Quantenphysik, Universität Ulm, Albert-E<strong>in</strong>ste<strong>in</strong>-Allee 11, 89069 Ulm, Germany<br />

2<br />

Center for Nonl<strong>in</strong>ear Dynamics and Department <strong>of</strong> Physics, <strong>The</strong> <strong>University</strong> <strong>of</strong> <strong>Texas</strong> <strong>at</strong> Aust<strong>in</strong>, Aust<strong>in</strong>,<br />

TX 78712-1081, USA<br />

Received 20 June 2002, accepted 27 June 2002<br />

Published onl<strong>in</strong>e 30 April 2003<br />

We develop the <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong> represent<strong>at</strong>ion <strong>of</strong> a kicked particle for an arbitrary but periodic kick<strong>in</strong>g<br />

potential. We use this formalism to illustr<strong>at</strong>e quantum resonances and anti-resonances.<br />

1 Introduction<br />

For many years the field <strong>of</strong> quantum chaos [1–3] had been the exclusive play-ground <strong>of</strong> theoretical physics.<br />

However, the recent success <strong>in</strong> experimentally realiz<strong>in</strong>g cold <strong>at</strong>om sources and the newly emerg<strong>in</strong>g field <strong>of</strong><br />

<strong>at</strong>om optics [4–6] are slowly chang<strong>in</strong>g this situ<strong>at</strong>ion <strong>in</strong> favor <strong>of</strong> experimental physics. Indeed, a series <strong>of</strong><br />

<strong>at</strong>om optics experiments [7–10] has verified f<strong>in</strong>gerpr<strong>in</strong>ts <strong>of</strong> quantum chaos such as dynamical localiz<strong>at</strong>ion,<br />

quantum resonances, quantum dynamics <strong>in</strong> a regime <strong>of</strong> classical anomalous diffusion and acceler<strong>at</strong>or modes.<br />

Even thereconstruction <strong>of</strong> thewavefunction <strong>of</strong> thekicked particle<strong>in</strong> amplitudeand <strong>phase</strong> seems now to<br />

befeasible[11].<br />

Quantum effects are due to quantum <strong>in</strong>terference. Interference phenomena stand out most clearly <strong>in</strong> the<br />

<strong>Wigner</strong> function description <strong>of</strong> quantum theory [12]. This fe<strong>at</strong>ure serves as our motiv<strong>at</strong>ion to develop <strong>in</strong> the<br />

present paper the <strong>Wigner</strong> function tre<strong>at</strong>ment <strong>of</strong> a kicked particle. Similar steps have already been taken <strong>in</strong> [13–<br />

17]. However, our motiv<strong>at</strong>ion and ultim<strong>at</strong>e goal is slightly different: We try to ga<strong>in</strong> a deeper understand<strong>in</strong>g<br />

<strong>of</strong> dynamical localiz<strong>at</strong>ion. In this spirit thepurpose<strong>of</strong> thepresent paper is to lay thefound<strong>at</strong>ions for this<br />

long term goal and to summarizethe<strong>in</strong>evitableformalism.<br />

Our paper is organized as follows: In Sect. 2 we briefly review the essential <strong>in</strong>gredients <strong>of</strong> the delta<br />

function kicked particle. Here, we do not specify the kick<strong>in</strong>g potential but only assume th<strong>at</strong> it is periodic <strong>in</strong><br />

<strong>space</strong>. Moreover, we <strong>in</strong>troduce dimensionless variables which we use throughout the paper. In this way only<br />

two dimensionless parameters – the scaled Planck’s constant and the scaled kick<strong>in</strong>g strength – determ<strong>in</strong>e<br />

thequantum dynamics <strong>of</strong> this model. In Sect. 3 wederivethestroboscopic timeevolution, th<strong>at</strong> is themaps<br />

for thest<strong>at</strong>evector and the<strong>Wigner</strong> function. Wethen <strong>in</strong> Sect. 4 usethest<strong>at</strong>evector map to review theeffect<br />

<strong>of</strong> quantum resonances. Sect. 5 is dedic<strong>at</strong>ed to an illustr<strong>at</strong>ion <strong>of</strong> this phenomenon and <strong>of</strong> anti-resonances <strong>in</strong><br />

<strong>Wigner</strong> <strong>phase</strong> <strong>space</strong>. We conclude <strong>in</strong> Sect. 6 by summariz<strong>in</strong>g our ma<strong>in</strong> results. In order to keep the paper<br />

self-conta<strong>in</strong>ed we have <strong>in</strong>cluded the relevant calcul<strong>at</strong>ions <strong>in</strong> three Appendices.<br />

2 <strong>The</strong> model<br />

In the present section we briefly summarize the classical and quantum mechanical model <strong>of</strong> the kicked<br />

particle. In contrast to the standard tre<strong>at</strong>ments we do not specify the form <strong>of</strong> the kick<strong>in</strong>g potential, except<br />

th<strong>at</strong> it should be periodic <strong>in</strong> <strong>space</strong>. Moreover, we <strong>in</strong>troduce dimensionless variables which reduce the number<br />

∗ Correspond<strong>in</strong>g author E-mail: wolfgang.schleich@physik.uni-ulm.de<br />

c○ 2003 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 0015-8208/03/4–505-0474 $ 17.50+.50/0


Fortschr. Phys. 51, No. 4–5 (2003) 475<br />

<strong>of</strong> parameters. We first consider the motion <strong>of</strong> a classical particle <strong>of</strong> mass M, characterized by coord<strong>in</strong><strong>at</strong>e<br />

˜x and momentum p. <strong>The</strong>n weturn to thequantum description.<br />

<strong>The</strong>motion <strong>of</strong> theparticleis driven by a sequence<strong>of</strong> δ-function kicks with period T described by the<br />

Hamiltonian<br />

H = p2<br />

2M + K V (˜x)<br />

∞<br />

n=−∞<br />

δ(t − nT ). (1)<br />

<strong>The</strong>strength <strong>of</strong> thekick depends on theposition <strong>of</strong> theparticlevia a potential K V (˜x) where K denotes the<br />

kick amplitudeand V (˜x) conta<strong>in</strong>s the sp<strong>at</strong>ial dependence with unit amplitude. Throughout the paper we<br />

consider potentials which are periodic with period λ ≡ 2π/k0. Moreover, we also assume the symmetries<br />

˜V (−˜x) =− ˜ V (˜x) and ˜ V (˜x ± λ/2) = − ˜ V (˜x).<br />

For the further analysis it is convenient to use scaled variables. In particular, we <strong>in</strong>troduce the dimensionless<br />

coord<strong>in</strong><strong>at</strong>e x ≡ k0˜x, momentum p ≡ (k0T/M)p and time t ≡ t/T . With these variables the<br />

Hamiltonian, Eq. (1), transforms <strong>in</strong>to<br />

where<br />

H ≡ M<br />

k2 H<br />

0T 2<br />

H ≡ 1<br />

2 p2 + KV (x)<br />

∞<br />

n=−∞<br />

δ(t − n) (2)<br />

<strong>in</strong>cludes the stochasticity parameter K ≡ Kk 2 0T/M and the scaled potential V (x) ≡ V (x/k0) now enjoys<br />

theperiod 2π.<br />

We now turn to the quantum description with position and momentum oper<strong>at</strong>ors ˆ˜x and ˆ˜p. <strong>The</strong>y s<strong>at</strong>isfy<br />

thefamiliar commut<strong>at</strong>ion rel<strong>at</strong>ion [ˆ˜x, ˆ p] =i which <strong>in</strong> dimensionless variables reads [ˆx, ˆp] =ik - . Here we<br />

have<strong>in</strong>troduced thescaled Planck’s constant k - ≡ k 2 0T/M.<br />

Moreover, <strong>in</strong> these dimensionless variables the Schröd<strong>in</strong>ger equ<strong>at</strong>ion<br />

takes the form<br />

i ∂<br />

∂t | ψ 〉 = ˆ H| ψ 〉<br />

ik- ∂<br />

∂t | ψ 〉 = ˆ H| ψ 〉 (3)<br />

wherewehavereplaced <strong>in</strong> theclassical Hamiltonian H, Eq. (2), theposition and momentum x and p by<br />

thecorrespond<strong>in</strong>g oper<strong>at</strong>ors giv<strong>in</strong>g riseto thequantum mechanical Hamiltonian ˆ H.<br />

3 Time evolution<br />

Wenow turn to thediscussion <strong>of</strong> thetimeevolution <strong>of</strong> this kicked system. Herewepursuetwo different<br />

approaches: wefirst concentr<strong>at</strong>eon thedynamics <strong>of</strong> thest<strong>at</strong>evector, and then usetheseresults to derive<br />

thetimeevolution <strong>of</strong> the<strong>Wigner</strong> <strong>phase</strong><strong>space</strong>distribution. Dueto thestroboscopic behavior <strong>of</strong> thepotential<br />

energy wereducethecont<strong>in</strong>uous timeevolution to a discretemapp<strong>in</strong>g.


476 M. Bienert et al.: <strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

3.1 St<strong>at</strong>evector<br />

<strong>The</strong>Hamiltonian<br />

ˆH ≡ ˆp2<br />

2<br />

+ KV (ˆx)<br />

∞<br />

n=−∞<br />

δ(t − n)<br />

consists <strong>of</strong> two parts: (i) <strong>The</strong> oper<strong>at</strong>or <strong>of</strong> k<strong>in</strong>etic energy and (ii) the oper<strong>at</strong>or <strong>of</strong> potential energy which is<br />

explicitly time dependent. However, the l<strong>at</strong>ter part is only <strong>of</strong> importance for <strong>in</strong>teger t. Between two kicks<br />

it vanishes and the st<strong>at</strong>e | ψn 〉 evolves freely accord<strong>in</strong>g to<br />

| ψ ′ n 〉 = Ûfree(ˆp)| ψn 〉≡exp<br />

<br />

−i ˆp2<br />

2k -<br />

<br />

| ψn 〉. (4)<br />

Here, wehavepropag<strong>at</strong>ed thest<strong>at</strong>eover onetimeunit t =1.<br />

For <strong>in</strong>teger t, the potential energy dom<strong>in</strong><strong>at</strong>es over the k<strong>in</strong>etic energy and we can neglect the l<strong>at</strong>ter. This<br />

fe<strong>at</strong>ureallows us to <strong>in</strong>tegr<strong>at</strong>etheSchröd<strong>in</strong>ger equ<strong>at</strong>ion, Eq. (3), over one kick. <strong>The</strong> st<strong>at</strong>e | ψn+1 〉 immedi<strong>at</strong>ely<br />

after a δ–function kick is rel<strong>at</strong>ed to the st<strong>at</strong>e | ψ ′ n 〉 just beforethekick by<br />

| ψn+1 〉 = Ûkick(ˆx)| ψ ′ <br />

n 〉≡exp −i K<br />

<br />

k- V (ˆx) | ψ ′ n 〉. (5)<br />

We emphasize th<strong>at</strong> neglect<strong>in</strong>g the k<strong>in</strong>etic energy is not an approxim<strong>at</strong>ion s<strong>in</strong>ce the δ–function only acts <strong>at</strong><br />

an <strong>in</strong>stant <strong>of</strong> timewith an <strong>in</strong>f<strong>in</strong>itestrength.<br />

When wecomb<strong>in</strong>eEqs. (4) and (5) thecompletetimeevolution over oneperiod reads<br />

| ψn+1 〉 = Ûkick(ˆx) Ûfree(ˆp)|<br />

<br />

ψn 〉 = exp [−iκV (ˆx)] exp −i ˆp2<br />

2k- <br />

| ψn 〉 (6)<br />

and maps thest<strong>at</strong>e| ψn 〉 onto | ψn+1 〉. Herewehave<strong>in</strong>troduced theabbrevi<strong>at</strong>ion κ ≡ K/k - .<br />

Wef<strong>in</strong>d thequantum st<strong>at</strong>e| ψN 〉 after N kicks by apply<strong>in</strong>g the Floquet oper<strong>at</strong>or<br />

Û(ˆx, ˆp) ≡ Ûkick(ˆx) Ûfree(ˆp) (7)<br />

N times onto the <strong>in</strong>itial st<strong>at</strong>e | ψ0 〉.<br />

S<strong>in</strong>cethepotential V (x) is periodic, th<strong>at</strong> is V (x +2π) =V (x), thekick oper<strong>at</strong>or exp [−iκV (ˆx)] is also<br />

periodic and we can expand it <strong>in</strong>to Fourier series<br />

Ûkick(ˆx) =e −iκV (ˆx) =<br />

with expansion coefficients<br />

Sl (κ) ≡ 1<br />

π<br />

2π<br />

−π<br />

∞<br />

l=−∞<br />

Sl (κ)e −ilˆx<br />

dξ e ilξ e −iκV (ξ) . (9)<br />

In this Fourier represent<strong>at</strong>ion the oper<strong>at</strong>or n<strong>at</strong>ure <strong>of</strong> the Ûkick only enters through the Fourier oper<strong>at</strong>or<br />

exp[−ilˆx].<br />

With the the help <strong>of</strong> the rel<strong>at</strong>ion Eq. (8) the Floquet oper<strong>at</strong>or Eq. (7) takes the form<br />

∞<br />

Û(ˆx, ˆp) = Sl (κ)e −ilˆx <br />

exp −i ˆp2<br />

2k- <br />

.<br />

l=−∞<br />

(8)


Fortschr. Phys. 51, No. 4–5 (2003) 477<br />

We conclude this subsection by discuss<strong>in</strong>g the action <strong>of</strong> this oper<strong>at</strong>or on a momentum eigenst<strong>at</strong>e. For<br />

this purposewecalcul<strong>at</strong>etherepresent<strong>at</strong>ion <strong>of</strong> Û <strong>in</strong> the momentum basis by <strong>in</strong>sert<strong>in</strong>g the completeness<br />

rel<strong>at</strong>ion 1l = dp | p 〉〈 p | twice. When we recall the formula<br />

wearrive<strong>at</strong><br />

e −ilˆx | p 〉 = | p − lk - 〉 (10)<br />

Û =<br />

∞<br />

−∞<br />

dp<br />

∞<br />

l=−∞<br />

<br />

Sl(κ) exp −i p2<br />

2k- <br />

| p − lk- 〉〈 p |. (11)<br />

Hence, the Floquet oper<strong>at</strong>or Û couples only momentum eigenst<strong>at</strong>es separ<strong>at</strong>ed by <strong>in</strong>teger multiples <strong>of</strong> k- .<br />

3.2 <strong>Wigner</strong> function<br />

Wenow analyzethedynamics <strong>of</strong> thekicked particlefrom thepo<strong>in</strong>t <strong>of</strong> view <strong>of</strong> <strong>phase</strong><strong>space</strong>. In particular, we<br />

discuss the time evolution <strong>of</strong> the correspond<strong>in</strong>g <strong>Wigner</strong> function. Two possibilities <strong>of</strong>fer themselves: (i) We<br />

can solvethequantum Liouvilleequ<strong>at</strong>ion [12] <strong>of</strong> thekicked particle, or (ii) wecan usethemapp<strong>in</strong>g <strong>of</strong> the<br />

st<strong>at</strong>e vectors derived <strong>in</strong> the preced<strong>in</strong>g section to obta<strong>in</strong> a mapp<strong>in</strong>g <strong>of</strong> the correspond<strong>in</strong>g <strong>Wigner</strong> functions.<br />

In thepresent section wepursuethesecond approach.<br />

For this purposewerecall thedef<strong>in</strong>ition<br />

Wn+1(x, p) ≡ 1<br />

2πk- ∞<br />

−∞<br />

dξ e −ipξ/k- 1 〈x + 2ξ|ψn+1〉〈ψn+1|x − 1<br />

2<br />

ξ〉 (12)<br />

<strong>of</strong> the<strong>Wigner</strong> function <strong>of</strong> thest<strong>at</strong>e| ψn+1 〉.<br />

When wesubstitutethemapp<strong>in</strong>g, Eq. (6), <strong>in</strong>to theright-hand side<strong>of</strong> Eq. (12), wearrive<strong>at</strong><br />

Wn+1(x, p) = 1<br />

2πk- ∞<br />

dξ e −ipξ/k-<br />

Ukick(x + ξ/2)U ∗ †<br />

kick(x − ξ/2)〈x + ξ/2| Ûfree|ψn〉〈ψn| Û free |x − ξ/2〉.<br />

−∞<br />

Herewehaveused theproperty Ûkick(ˆx)| x 〉 = Ukick(x)| x 〉.<br />

S<strong>in</strong>cethepotential V (x) is periodic, the bil<strong>in</strong>ear form<br />

Ukick(x + ξ/2)U ∗ kick(x − ξ/2)=e −iκ[V (x+ξ/2)−V (x−ξ/2)] ≡ e −iκV(x,ξ/2)<br />

with the generalized potential<br />

V(x, y) ≡ V (x + y) − V (x − y) (14)<br />

is also periodic <strong>in</strong> ξ/2 with period 2π. We can therefore expand<br />

e −iκV(x,ξ/2) =<br />

∞<br />

l=−∞<br />

Sl(κ; x)e −ilξ/2<br />

<strong>in</strong>to a Fourier series where the expansion coefficients<br />

Sl(κ; x) ≡ 1<br />

π<br />

d<br />

2π<br />

−π<br />

<br />

ξ<br />

e<br />

2<br />

ilξ/2 e −iκV(x,ξ/2)<br />

still depend on the position x and are periodic with a period <strong>of</strong> 2π.<br />

(13)<br />

(15)<br />

(16)


478 M. Bienert et al.: <strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

With the help <strong>of</strong> the Fourier series, Eq. (15), the mapp<strong>in</strong>g <strong>of</strong> the <strong>Wigner</strong> function, Eq. (13), yields<br />

Wn+1(x, p) = <br />

Sl(κ; x) 1<br />

2πk- l<br />

∞<br />

−∞<br />

dξ e −i(p+lk- /2)ξ/k- †<br />

〈x+ξ/2|Ûfree|ψn〉〈ψn| Û free |x−ξ/2〉. (17)<br />

Wecan identify therema<strong>in</strong><strong>in</strong>g <strong>in</strong>tegral <strong>in</strong> Eq. (17) when werecall [12] th<strong>at</strong> thefreetimeevolution<br />

W (x, p; t) = 1<br />

2πk- ∞<br />

−∞<br />

dξ e −ipξ/k-<br />

<br />

1 〈x + 2ξ| exp<br />

−i ˆp2<br />

2k- t<br />

<br />

|ψ〉〈ψ| exp i ˆp2<br />

<br />

2k- t |x − 1<br />

2ξ〉 <strong>of</strong> the<strong>Wigner</strong> function follows from the<strong>Wigner</strong> function <strong>of</strong> the<strong>in</strong>itial st<strong>at</strong>e| ψ 〉 by replac<strong>in</strong>g the position<br />

x by x − pt, th<strong>at</strong> is<br />

W (x, p; t) =W (x − pt, p; t =0).<br />

Hence, the <strong>in</strong>tegral <strong>in</strong> Eq. (17) is the <strong>Wigner</strong> function <strong>of</strong> the st<strong>at</strong>e | ψn 〉 propag<strong>at</strong>ed for the time t =1and<br />

evalu<strong>at</strong>ed <strong>at</strong> the shifted momentum p + lk- /2.<br />

Consequently, the recursion formula, Eq. (17), for the mapp<strong>in</strong>g <strong>of</strong> the <strong>Wigner</strong> function <strong>of</strong> the kicked<br />

particletakes theform<br />

Wn+1(x, p) = <br />

Sl(κ; x) Wn (x − (p + lk- /2) ,p+ lk- /2) . (18)<br />

l<br />

We recognize th<strong>at</strong> this mapp<strong>in</strong>g describes a shear<strong>in</strong>g <strong>of</strong> the distribution Wn along the x–axis dueto the<br />

free time evolution. <strong>The</strong> successive kick causes a displacement <strong>in</strong> momentum with the position-dependent<br />

weight factor Sl(κ; x).<br />

In contrast to themapp<strong>in</strong>g <strong>of</strong> thest<strong>at</strong>evector, Eq. (6), the<strong>Wigner</strong> function map also <strong>in</strong>volves contributions<br />

<strong>at</strong> half <strong>in</strong>teger multiples <strong>of</strong> k - . <strong>The</strong>se additional terms reflect the <strong>in</strong>terference n<strong>at</strong>ure <strong>of</strong> quantum mechanics.<br />

<strong>The</strong>y aretheanalogies <strong>of</strong> thepositiveand neg<strong>at</strong>ive<strong>in</strong>terferencestructures <strong>of</strong> a Schröd<strong>in</strong>ger c<strong>at</strong> [18] which<br />

are loc<strong>at</strong>ed half way between the classical parts. Moreover, they dissappear when we <strong>in</strong>tegr<strong>at</strong>e over position<br />

<strong>space</strong> <strong>in</strong> order to obta<strong>in</strong> the momentum distribution. We show this property explicitly <strong>in</strong> Sect. 5.<br />

In the <strong>Wigner</strong> function tre<strong>at</strong>ment <strong>of</strong> the kicked particle the expansion coefficients Sl(κ; x) play thesame<br />

roleas thecoefficients Sl(κ) <strong>in</strong> the st<strong>at</strong>e vector description. For a brief comparison between these two<br />

quantities and a discussion <strong>of</strong> their properties we refer to Appendix A.<br />

4 Quantum resonances viewed from st<strong>at</strong>e <strong>space</strong><br />

In this section weusethemapp<strong>in</strong>g <strong>of</strong> thewavefunction, Eq. (6), to discuss a characteristic effect <strong>in</strong> thetime<br />

evolution <strong>of</strong> the kicked particle: the phenomenon <strong>of</strong> quantum resonances. <strong>The</strong> size <strong>of</strong> the scaled Planck’s<br />

constant k- is a decisivefactor for theoccurrence<strong>of</strong> quantum effects <strong>in</strong> thetimeevolution <strong>of</strong> thekicked<br />

particle. In particular, we obta<strong>in</strong> dram<strong>at</strong>ically different dynamics for k- be<strong>in</strong>g a r<strong>at</strong>ional and irr<strong>at</strong>ional multiple<br />

<strong>of</strong> 4π. In particular, weshow th<strong>at</strong> for k- =4πand <strong>in</strong>teger multiples resonances occur and the average k<strong>in</strong>etic<br />

energy <strong>in</strong>creases quadr<strong>at</strong>ically with the number <strong>of</strong> kicks.<br />

For thevalue<strong>of</strong> k- =4πthe mapp<strong>in</strong>g def<strong>in</strong>ed by the Floquet oper<strong>at</strong>or Û, Eq. (7), simplifies significantly.<br />

In order to illustr<strong>at</strong>e this <strong>in</strong>terest<strong>in</strong>g dynamics we consider the st<strong>at</strong>e<br />

| ψN 〉 = Û N | p =0〉 = Ûkick Ûfree ····· Ûkick Ûfree| p =0〉<br />

after N kicks where the Floquet oper<strong>at</strong>or Û ≡ Ûkick Ûfree acts N times on the <strong>in</strong>itial st<strong>at</strong>e | p =0〉.


Fortschr. Phys. 51, No. 4–5 (2003) 479<br />

<strong>The</strong> consequences <strong>of</strong> the choice k - =4π stand out most clearly when we consider the free time evolution<br />

Ûfree| lk- <br />

〉 = exp −i ˆp2<br />

2k- <br />

| lk- <br />

2 k-<br />

〉 = exp −il | lk<br />

2<br />

- 〉<br />

<strong>of</strong> momentum eigenst<strong>at</strong>es | lk - 〉 between two kicks. Indeed, for k - =4π or a <strong>in</strong>teger multiplethe<strong>phase</strong><br />

accumul<strong>at</strong>ed by the momentum eigenst<strong>at</strong>e | lk - 〉 = | l · 4π 〉 dur<strong>in</strong>g thefreepropag<strong>at</strong>ion is 2π or an <strong>in</strong>teger<br />

multiple, th<strong>at</strong> is<br />

Ûfree| l · 4π 〉 =e −2πil2<br />

| l · 4π 〉 = | l · 4π 〉. (19)<br />

Hence, for this particular value <strong>of</strong> k - the momentum eigenst<strong>at</strong>es are <strong>in</strong>variant under free time evolution.<br />

Accord<strong>in</strong>g to Eq. (11) thekick oper<strong>at</strong>or Ûkick couples momentum eigenst<strong>at</strong>es separ<strong>at</strong>ed by <strong>in</strong>teger<br />

multiples <strong>of</strong> k - . S<strong>in</strong>cewestart from themomentum eigenst<strong>at</strong>e| p =0〉 wehavea superposition <strong>of</strong> momentum<br />

eigenst<strong>at</strong>es | lk - 〉 after every kick. For k - =4π these st<strong>at</strong>es are <strong>in</strong>variant under free time evolution and the<br />

st<strong>at</strong>eafter N kicks reads<br />

| ψN 〉 = Û N kick| p =0〉 =e −iNκV (ˆx) | p =0〉 =<br />

∞<br />

l=−∞<br />

Sl (Nκ) |−l · 4π 〉<br />

where<strong>in</strong> thelast step wehaveused theFourier decomposition, Eq. (9), and theshift rel<strong>at</strong>ion, Eq. (10).<br />

With the help <strong>of</strong> the result<strong>in</strong>g momentum distribution<br />

WN(p) =|〈 p |ψN〉| 2 = <br />

S 2 l (Nκ)δ(p + l · 4π), (20)<br />

l<br />

which <strong>in</strong>volves momenta <strong>at</strong> p = l · 4π with weight factor S2 l , weevalu<strong>at</strong>ethemean energy<br />

E ≡ 1<br />

2 ˆp2 =<br />

∞<br />

−∞<br />

dp 1<br />

2 p2 WN(p) =8π 2<br />

∞<br />

l=−∞<br />

l 2 S 2 l (Nκ)<br />

<strong>of</strong> the system after N kicks.<br />

In Appendix B we calcul<strong>at</strong>e this sum over the expansion coefficients Sl and f<strong>in</strong>d<br />

E = 1<br />

2 〈F 2 〉KN 2<br />

where 〈F 2 〉 is thesquare<strong>of</strong> theforceF = −dV/dx averaged over one period. Moreover, we have recalled<br />

theabbrevi<strong>at</strong>ion κ ≡ K/k - = K/(4π).<br />

Hence, for the special choice <strong>of</strong> k - =4π the energy <strong>in</strong>creases quadr<strong>at</strong>ically with the number <strong>of</strong> kicks.<br />

From Eq. (19) wenoteth<strong>at</strong> also <strong>in</strong>teger multiples <strong>of</strong> k - =4π leave the momentum eigenst<strong>at</strong>es <strong>in</strong>variant.<br />

Consequently, the resonance also occurs <strong>in</strong> these cases.<br />

Weconcludethis section by briefly expla<strong>in</strong><strong>in</strong>g our special choice<strong>of</strong> the<strong>in</strong>itial st<strong>at</strong>e| p =0〉. In this<br />

case the Floquet oper<strong>at</strong>or, Eq. (11), only maps this <strong>in</strong>itial st<strong>at</strong>e onto discrete momentum eigenst<strong>at</strong>es p = lk - .<br />

Dur<strong>in</strong>g the dynamics we therefore always stay <strong>in</strong> a momentum ladder start<strong>in</strong>g <strong>at</strong> zero momentum. Moreover,<br />

these eigenst<strong>at</strong>es are <strong>in</strong>variant under the unitary transform<strong>at</strong>ion <strong>of</strong> the free time evolution provided k - =4π.<br />

However, thereis onemorereason for choos<strong>in</strong>g | p =0〉 as our <strong>in</strong>itial st<strong>at</strong>e. Due to the discreteness<br />

<strong>of</strong> themomentum variablethesp<strong>at</strong>ial wavefunction has always a period <strong>of</strong> 2π. Wewould havefound the<br />

same result if we had imposed periodic boundary conditions correspond<strong>in</strong>g to a kicked <strong>rotor</strong>. Hence, the<br />

m<strong>at</strong>hem<strong>at</strong>ics <strong>of</strong> the kicked particle with zero <strong>in</strong>itial momentum eigenst<strong>at</strong>e and the kicked <strong>rotor</strong> is identical.


480 M. Bienert et al.: <strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

5 Quantum resonances viewed from <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

How does a quantum resonance reflect itself <strong>in</strong> <strong>phase</strong> <strong>space</strong>? In order to answer this question we consider<br />

themap, Eq. (18), <strong>of</strong> the<strong>Wigner</strong> function.<br />

5.1 <strong>Wigner</strong> function after second kick<br />

<strong>The</strong> <strong>Wigner</strong> function <strong>of</strong> our <strong>in</strong>itial momentum eigenst<strong>at</strong>e | p =0〉 reads<br />

W0(x, p) = 1<br />

2π δ(p),<br />

wherewehave<strong>in</strong>troduced thenormaliz<strong>at</strong>ion factor 1/(2π) such th<strong>at</strong> the <strong>Wigner</strong> function <strong>in</strong>tegr<strong>at</strong>ed over<br />

all momenta and over one sp<strong>at</strong>ial period is normalized to unity.<br />

After onekick, the<strong>Wigner</strong> function<br />

W1(x, p) = 1 <br />

Sr(κ; x) δ (p + rk<br />

2π<br />

- /2) . (21)<br />

r<br />

can be viewed as a stack <strong>of</strong> delta function walls aligned parallel to the x–axis. Each wall is weighted with<br />

thefunction Sr, Eq. (16), which impr<strong>in</strong>ts a x–dependent modul<strong>at</strong>ion <strong>of</strong> period 2π onto thewall.<br />

In contrast to thest<strong>at</strong>evector description the<strong>Wigner</strong> function <strong>phase</strong><strong>space</strong>not only enjoys contributions<br />

<strong>at</strong> p = lk- but also <strong>at</strong> p =(2l+1)k- /2. However, the correspond<strong>in</strong>g weight function S2l+1 displays a position<br />

dependence such th<strong>at</strong> the <strong>in</strong>tegral over it vanishes. Only for p = lk- =2lk- /2 do wef<strong>in</strong>d a nonvanish<strong>in</strong>g<br />

contribution<br />

π<br />

dx S2l(κ; x) =2πS 2 l (κ) (22)<br />

−π<br />

as shown <strong>in</strong> Appendix A. As a consequence, the result<strong>in</strong>g momentum distribution<br />

π<br />

W1(p) = dx W1(x, p) = <br />

π<br />

1<br />

dx S2l(κ; x)δ(p + lk) =<br />

2π<br />

<br />

−π<br />

l<br />

−π<br />

l<br />

S 2 l (κ)δ(p + lk - )<br />

only <strong>in</strong>volves momenta <strong>at</strong> <strong>in</strong>teger multiples <strong>of</strong> k- <strong>in</strong> complete agreement with the st<strong>at</strong>e vector description.<br />

After thesecond kick, the<strong>phase</strong><strong>space</strong>distribution<br />

W2(x, p) = <br />

Ss(κ; x) W1 (x − (p + sk- /2) ,p+ sk- /2) .<br />

s<br />

is expressed <strong>in</strong> terms <strong>of</strong> the <strong>Wigner</strong> function W1, Eq. (21), after the first kick which after substitution <strong>in</strong>to<br />

this formula yields<br />

W2(x, p) = 1 <br />

Ss(κ; x)Sr(κ; x − (p + sk<br />

2π<br />

- /2))δ (p +(r + s)k- /2) .<br />

s<br />

r<br />

Wefirst usetheδ–function to replacethemomentum p <strong>in</strong> the second expansion coefficient Sr by −(r+s)k- /2.<br />

Wethen <strong>in</strong>troducethesumm<strong>at</strong>ion <strong>in</strong>dex l ≡ r + s and arrive<strong>at</strong><br />

W2(x, p) = 1 <br />

Wl(x)δ (p + lk<br />

2π<br />

- /2) .<br />

l<br />

with thedistribution<br />

Wl(x) ≡ <br />

Sl−r(κ; x)Sr(κ; x + rk- /2). (23)<br />

r


Fortschr. Phys. 51, No. 4–5 (2003) 481<br />

5.2 Resonance<br />

So far wehavenot specified thevalue<strong>of</strong> k- . When we now utilize k- =4πand recognizefrom thedef<strong>in</strong>itions,<br />

Eqs. (14) and (16), <strong>of</strong> the generalized potential V and the expansion coefficients Sl the periodicity property<br />

Sl(κ; x + r · 2π) =Sl(κ; x), the coefficient Wl reduces to<br />

<br />

≡ Sl−r(κ; x)Sr(κ; x)<br />

W (+)<br />

l<br />

r<br />

In Appendix C weevalu<strong>at</strong>ethis sum analytically and f<strong>in</strong>d<br />

W (+)<br />

l<br />

= Sl(2 · κ; x).<br />

Hence, <strong>at</strong> a resonance, th<strong>at</strong> is for k- =4π, the<strong>phase</strong><strong>space</strong>distribution after thesecond kick reads<br />

W2(x, p) = 1 <br />

Sr(2κ; x) δ (p + r · 2π) . (24)<br />

2π<br />

r<br />

It is <strong>in</strong>terest<strong>in</strong>g to comparethis expression with the<strong>phase</strong><strong>space</strong>distribution<br />

W1(x, p) = 1 <br />

Sr(κ; x)δ(p + r · 2π)<br />

2π<br />

r<br />

after the first kick which follows form Eq. (21) for k =4π. Wenoteth<strong>at</strong> theargument κ <strong>of</strong> theexpansion<br />

coefficient has been replaced by 2κ.<br />

This result has a simpleexplan<strong>at</strong>ion. Dur<strong>in</strong>g thefreetimeevolution each po<strong>in</strong>t <strong>of</strong> the<strong>phase</strong><strong>space</strong><br />

distribution follows the classical trajectory [12], th<strong>at</strong> is each po<strong>in</strong>t <strong>at</strong> the momenta lk - /2 moves with constant<br />

velocity and traverses dur<strong>in</strong>g the time t =1thecoord<strong>in</strong><strong>at</strong>edistancex = lk - /2 · 1.Fork - =4π this distance<br />

is oneor an <strong>in</strong>teger multiple<strong>of</strong> 2π. Subsequent to this movement, the next kick occurs. <strong>The</strong> associ<strong>at</strong>ed<br />

displacement with x–dependent weight functions Sl(κ; x) is therefore <strong>in</strong> <strong>phase</strong> with the freely propag<strong>at</strong>ed<br />

<strong>phase</strong><strong>space</strong>distribution and adds up coherently.<br />

Wecan cont<strong>in</strong>uetheiter<strong>at</strong>ion <strong>of</strong> the<strong>Wigner</strong> function by start<strong>in</strong>g from thedistribution, Eq. (24) after the<br />

second kick and wef<strong>in</strong>d follow<strong>in</strong>g theabovearguments thedistribution<br />

W (+)<br />

l<br />

(x) ≡ <br />

Sl−r(κ; x)Sr(2κ; x).<br />

r<br />

In Appendix C wehavecalcul<strong>at</strong>ed this sum and f<strong>in</strong>d the<strong>Wigner</strong> function<br />

W3(x, p) = 1 <br />

Sr(3κ; x) δ (p + r · 2π) .<br />

2π<br />

r<br />

By <strong>in</strong>duction the <strong>Wigner</strong> function after the N-th kick reads<br />

WN(x, p) = 1 <br />

Sr(Nκ; x) δ (p + r · 2π) .<br />

2π<br />

r<br />

Weconcludethis section by us<strong>in</strong>g this <strong>Wigner</strong> function to calcul<strong>at</strong>ethemomentum distribution WN(p)<br />

after N kicks by <strong>in</strong>tegr<strong>at</strong><strong>in</strong>g over position. We recall th<strong>at</strong> this <strong>in</strong>tegr<strong>at</strong>ion over x elim<strong>in</strong><strong>at</strong>es the odd momenta,<br />

th<strong>at</strong> is<br />

WN(p) = <br />

π<br />

1<br />

dx S2l(Nκ; x)δ(p + l · 4π) =<br />

2π<br />

<br />

S 2 l (Nκ)δ(p + l · 4π). (25)<br />

l<br />

−π<br />

Herewehaveused the<strong>in</strong>tegral rel<strong>at</strong>ion, Eq. (22), for thecoefficients S2l.<br />

<strong>The</strong> result Eq. (25) is <strong>in</strong> complete agreement with the distribution, Eq. (20), obta<strong>in</strong>ed <strong>in</strong> the st<strong>at</strong>e vector<br />

picture.<br />

l


482 M. Bienert et al.: <strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

5.3 Anti-resonance<br />

Another <strong>in</strong>terest<strong>in</strong>g case occurs for k- =2π. This so-called anti-resonance [19,20] results from the symmetry<br />

<strong>of</strong> the potential and manifests itself <strong>in</strong> an oscill<strong>at</strong><strong>in</strong>g mean energy E, th<strong>at</strong> is E oscill<strong>at</strong>es between the <strong>in</strong>itial<br />

energy and the energy 〈F 2 〉K/2 after thefirst kick. Aga<strong>in</strong>, weanalyzethis phenomenon <strong>in</strong> <strong>phase</strong><strong>space</strong>.<br />

Accord<strong>in</strong>g to Eq. (23) thedistribution Wl after the second kick reads for k- =2π<br />

Wl = <br />

Sl−r(κ; x)Sr(κ; x + rπ).<br />

r<br />

In Appendix C wecalcul<strong>at</strong>ethis sum and f<strong>in</strong>d Wl = δl,0 which yields the <strong>Wigner</strong> function<br />

W2(x, p) = 1<br />

2π δ(p).<br />

Hence, the <strong>Wigner</strong> function after two kicks m<strong>at</strong>ches exactly the <strong>in</strong>itial <strong>Wigner</strong> function. Indeed, the free<br />

time evolution between the first and second kick has propag<strong>at</strong>ed the contributions <strong>at</strong> the momenta lk- /2 by<br />

lπ along the x direction. When the second kick occurs, all contributions for the momenta lk- /2 <strong>in</strong>terfere<br />

destructively except for the case l =0where all contributions <strong>in</strong>terfere constructively.<br />

6 Conclusions and outlook<br />

In the present paper we have studied various aspects <strong>of</strong> the quantum dynamics <strong>of</strong> a kicked particle. In<br />

<strong>Wigner</strong> <strong>phase</strong><strong>space</strong>thetimeevolution is a sequence<strong>of</strong> shear<strong>in</strong>g the<strong>Wigner</strong> distribution along theposition<br />

axis and displac<strong>in</strong>g it along the momentum axis with position dependent weight factors Sl(κ; x). As a first<br />

applic<strong>at</strong>ion <strong>of</strong> this formalism we have revisited the physics <strong>of</strong> resonances and anti-resonances. However, this<br />

approach is also useful when we study the <strong>in</strong>fluence <strong>of</strong> corners <strong>in</strong> the kick<strong>in</strong>g potential [21] on dynamical<br />

localiz<strong>at</strong>ion.<br />

Resonances and anti-resonances occur for the special choice k - =4π and k - =2π, respectively, <strong>of</strong> the<br />

scaled Planck’s constant. However, an <strong>in</strong>terest<strong>in</strong>g situ<strong>at</strong>ion emerges for k - be<strong>in</strong>g a r<strong>at</strong>ional multiple r/s <strong>of</strong><br />

4π. Herethefreetimeevolution shifts each displaced contribution <strong>at</strong> p = lk - /2 by an amount <strong>of</strong> 2πl · r/s.<br />

<strong>The</strong>refore, consecutive contributions cannot add up fully coherently due to the different sp<strong>at</strong>ial shifts <strong>of</strong><br />

the x-dependent weight<strong>in</strong>g functions Sl(κ; x). It is <strong>in</strong>terest<strong>in</strong>g to note th<strong>at</strong> this analytical tre<strong>at</strong>ment also<br />

<strong>in</strong>cludes the limit r, s →∞with r/s ≈ const. which corresponds to the limit <strong>of</strong> localiz<strong>at</strong>ion. Here the<br />

contributions <strong>of</strong> the <strong>Wigner</strong> function can never <strong>in</strong>terfere coherently and dynamical localiz<strong>at</strong>ion appears, th<strong>at</strong><br />

is the broaden<strong>in</strong>g <strong>of</strong> the momentum distribution is com<strong>in</strong>g to a halt. However, this analysis is beyond the<br />

scope <strong>of</strong> the present paper and will be published elsewhere.<br />

A Properties <strong>of</strong> <strong>Wigner</strong> expansion coefficients<br />

In this Appendix we rel<strong>at</strong>e the coefficients<br />

Sl(κ) = 1<br />

π<br />

2π<br />

−π<br />

dξ e ilξ −iκV (ξ)<br />

e<br />

emerg<strong>in</strong>g from themap <strong>of</strong> thest<strong>at</strong>evectors to thefunctions<br />

Sl(κ; x) = 1<br />

π<br />

2π<br />

−π<br />

dy e ily e −iκV (x+y) iκV (x−y)<br />

e<br />

(26)


Fortschr. Phys. 51, No. 4–5 (2003) 483<br />

from the<strong>Wigner</strong> map. Moreover, wecalcul<strong>at</strong>ethe<strong>in</strong>tegral <strong>of</strong> Sl(κ; x) over one sp<strong>at</strong>ial period. This quantity<br />

establishes a crucial connection between Sl(κ) and Sl(κ; x).<br />

We start the discussion by first not<strong>in</strong>g th<strong>at</strong> both functions are Fourier coefficients. Indeed, the coefficients<br />

Sl result from the expansion <strong>of</strong> exp[−iκV (x)] whereas Sl comefrom exp[−iκV(x, y)] where V(x, y) ≡<br />

V (x + y) − V (x − y). For anti-symmetric potentials V (−x) =−V (x) wef<strong>in</strong>d V(0,y)=2V (y) which<br />

establishes the connection<br />

Sl (κ;0)=Sl (2κ)<br />

between the two expansion coefficients.<br />

Moreover, it is also important th<strong>at</strong> due to the anti-symmetry V (−x) =−V (x) <strong>of</strong> thepotential and the<br />

result<strong>in</strong>g anti-symmetry V(x, −y) =−V(x, y) <strong>of</strong> the generalized potential both functions Sl and Sl are<br />

purely real.<br />

<strong>The</strong><strong>in</strong>tegral<br />

Il ≡<br />

π<br />

−π<br />

dx Sl(κ; x)<br />

over the expansion coefficients Sl(κ; x) br<strong>in</strong>gs out a deep connection with Sl. Indeed, when we substitute<br />

theexpression Eq. (26) for Sl <strong>in</strong>to thedef<strong>in</strong>ition <strong>of</strong> Il and use the Fourier represent<strong>at</strong>ions, Eq. (8), <strong>of</strong><br />

exp[−iκV (x + y)] and exp[iκV (x − y)] wearrive<strong>at</strong><br />

Il = <br />

r<br />

s<br />

SrSs<br />

π<br />

1<br />

dx e<br />

2π<br />

−i(r−s)x<br />

π<br />

dy e i(l−r−s)y .<br />

<strong>The</strong><strong>in</strong>tegr<strong>at</strong>ion over x yields the condition r = s and thus<br />

Il = <br />

Hence, we f<strong>in</strong>d<br />

and<br />

r<br />

I2s+1 =<br />

I2s =<br />

π<br />

−π<br />

S 2 r<br />

π<br />

−π<br />

π<br />

−π<br />

−π<br />

dy e i(l−2r)y .<br />

dx S2s+1(κ; x) =0<br />

dx S2s(κ; x) =2πS 2 s (κ).<br />

−π<br />

For all odd values l the<strong>in</strong>tegral <strong>of</strong> Sl over one period vanishes, whereas for all even values this <strong>in</strong>tegral<br />

produces thesquare<strong>of</strong> thecoefficients Sl <strong>of</strong> thest<strong>at</strong>e<strong>space</strong>mapp<strong>in</strong>g. This fe<strong>at</strong>ureguarantees th<strong>at</strong> the<br />

<strong>in</strong>terference terms <strong>in</strong> <strong>phase</strong> <strong>space</strong> vanish when <strong>in</strong>tegr<strong>at</strong>ed over position.<br />

B Momentum spread<br />

In this Appendix weevalu<strong>at</strong>ethesum<br />

I(z) ≡<br />

∞<br />

l=−∞<br />

l 2 S 2 l (z)


484 M. Bienert et al.: <strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

conta<strong>in</strong><strong>in</strong>g the expansion coefficients<br />

Sl (z) = 1<br />

π<br />

2π<br />

−π<br />

dx e ilx −izV (x)<br />

e<br />

<strong>of</strong> the st<strong>at</strong>e vector map. This sum determ<strong>in</strong>es the spread <strong>of</strong> the momentum <strong>at</strong> the ma<strong>in</strong> resonance.<br />

When wesubstitutethedef<strong>in</strong>ition, Eq. (27), <strong>of</strong> theexpansion coefficients Sl(z) <strong>in</strong>to thesum and exchange<br />

<strong>in</strong>tegr<strong>at</strong>ion and summ<strong>at</strong>ion wearrive<strong>at</strong><br />

I(z) = 1<br />

4π2 π<br />

−π<br />

dx ′<br />

π<br />

−π<br />

dx<br />

<br />

l<br />

l 2 e il(x+x′ )<br />

(27)<br />

<br />

e −iz[V (x)+V (x′ )] . (28)<br />

<strong>The</strong> represent<strong>at</strong>ion<br />

<br />

e ilx =2π <br />

δ(x +2πν) (29)<br />

l<br />

ν<br />

<strong>of</strong> a comb <strong>of</strong> delta functions allows us to express the term <strong>in</strong> the square brackets <strong>in</strong> Eq. (28) as the second<br />

deriv<strong>at</strong>ive<strong>of</strong> thedelta function, th<strong>at</strong> is<br />

<br />

l 2 e il(x+x′ <br />

)<br />

= −2π<br />

l<br />

ν<br />

∂ 2<br />

∂x 2 δ(x + x′ +2πν).<br />

<strong>The</strong>deriv<strong>at</strong>ivecan beshifted to theother x–dependent part e −izV (x) <strong>of</strong> the<strong>in</strong>tegrand. When we<strong>in</strong>tegr<strong>at</strong>e<br />

over the rema<strong>in</strong><strong>in</strong>g delta function we f<strong>in</strong>d<br />

I(z) =− 1<br />

π<br />

2π<br />

−π<br />

−izV (−x) d2<br />

dx e<br />

dx2 e−izV (x) .<br />

Here we have recognized th<strong>at</strong> the <strong>in</strong>tegr<strong>at</strong>ion only extends over a s<strong>in</strong>gle <strong>in</strong>terval <strong>of</strong> 2π which reduces the<br />

summ<strong>at</strong>ion over ν to theterm ν =0.<br />

<strong>The</strong>symmetry V (−x) =−V (x) <strong>of</strong> the potential yields<br />

I(z) = 1<br />

π<br />

<br />

dx z<br />

2π<br />

2<br />

−π<br />

2 d<br />

V (x)<br />

dx<br />

+ iz d2<br />

<br />

V (x) .<br />

dx2 Dueto theanti-symmetry <strong>of</strong> thepotential thesecond term <strong>of</strong> the<strong>in</strong>tegral does not contributeand weobta<strong>in</strong><br />

theresult<br />

I(z) =<br />

∞<br />

l=−∞<br />

l 2 S 2 l (z) =z 2 ·〈F 2 〉.<br />

Herewehave<strong>in</strong>troduced theaverage<br />

〈F 2 〉≡ 1<br />

π<br />

2 d<br />

dx V (x)<br />

2π dx<br />

−π<br />

<strong>of</strong> thesquare<strong>of</strong> theforceF = −dV/dx act<strong>in</strong>g on theparticle.


Fortschr. Phys. 51, No. 4–5 (2003) 485<br />

C Resonance and anti-resonance<br />

For the<strong>phase</strong><strong>space</strong>analysis <strong>of</strong> theresonanceweneed to evalu<strong>at</strong>ethesum<br />

≡<br />

∞<br />

Sl−r(κ; x)Sr(κ ′ ; x). (30)<br />

W (+)<br />

l<br />

r=−∞<br />

<strong>The</strong>anti-resonance<strong>in</strong>volves thesum<br />

≡<br />

∞<br />

Sl−r(κ; x)Sr(κ; x + rπ). (31)<br />

W (−)<br />

l<br />

r=−∞<br />

Westart our discussion with thesum W (−)<br />

l and first show th<strong>at</strong> it is closely rel<strong>at</strong>ed to the sum W (+)<br />

l .For<br />

this purposewe<strong>in</strong>troducethenew <strong>in</strong>tegr<strong>at</strong>ion variable¯y ≡−y <strong>in</strong> the expansion coefficient<br />

which yields<br />

Sr(κ; x) ≡ 1<br />

π<br />

2π<br />

−π<br />

Sr(κ; x + rπ) = 1<br />

π<br />

2π<br />

dy e iry −iκ[V (x+y)−V (x−y)]<br />

e<br />

−π<br />

d¯y e i(−r)¯y e −iκ[V (x+rπ−¯y)−V (x+rπ+¯y)] .<br />

Due to the periodicity properties V (x +2mπ) =V (x) and V (x +(2m +1)π) =−V (x) <strong>of</strong> thepotential<br />

wef<strong>in</strong>d thesymmetry rel<strong>at</strong>ion<br />

Sr(κ; x + rπ) =S−r(κ; x)<br />

which br<strong>in</strong>gs thesum W (−)<br />

l<br />

W (−)<br />

l<br />

=<br />

∞<br />

r=−∞<br />

<strong>in</strong>to theform<br />

Sl−r(κ; x)S−r(κ; x).<br />

It is therefore convenient to evalu<strong>at</strong>e the sums<br />

≡<br />

∞<br />

Sl−r(κ; x)S±r(κ ′ ; x).<br />

C (±)<br />

l<br />

r=−∞<br />

For this purposewesubstitutethedef<strong>in</strong>ition <strong>of</strong> Sr, Eq. (32), <strong>in</strong>to thesum and <strong>in</strong>terchangethesumm<strong>at</strong>ion<br />

and <strong>in</strong>tegr<strong>at</strong>ion which leads to<br />

C (±)<br />

l<br />

1<br />

=<br />

4π2 π<br />

−π<br />

dy<br />

π<br />

−π<br />

dy ′<br />

<br />

r<br />

e −ir(y∓y′ )<br />

<br />

e ily e −i[κV(x,y)+κ′ V(x,y ′ )] .<br />

<strong>The</strong> sum <strong>in</strong> the curly brackets represents a comb <strong>of</strong> delta functions, Eq. (29), which allows us to perform<br />

the<strong>in</strong>tegral over y ′ , th<strong>at</strong> is<br />

C (±)<br />

l<br />

1<br />

=<br />

2π<br />

π<br />

−π<br />

(32)<br />

dy e ily e −i(κ±κ′ )V(x,y) = Sl(κ ± κ ′ ; x). (33)


486 M. Bienert et al.: <strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

Herewehaveused thesymmetry V(x, −y) =−V(x, y) follow<strong>in</strong>g from thedef<strong>in</strong>ition, Eq. (14), <strong>of</strong> V.<br />

Hence, <strong>in</strong> the sum W (+)<br />

l def<strong>in</strong>ed <strong>in</strong> Eq. (30) for a resonance the parameters κ and κ ′ add. At an antiresonancethesum<br />

W (−)<br />

l , Eq. (31), conta<strong>in</strong>s only thes<strong>in</strong>gleparameter κ. S<strong>in</strong>cethedifference<strong>of</strong> κ and<br />

κ ′ = κ appears <strong>in</strong> the explicit expression, Eq. (33), for C (−)<br />

l wef<strong>in</strong>d<br />

W (−)<br />

l<br />

= Sl(0; x) = 1<br />

π<br />

2π<br />

−π<br />

where δl,0 denotes the Kronecker-delta.<br />

dy e ily = δn,0<br />

Acknowledgements We thank I. Sh. Averbukh, B. G. Englert, S. Fishman, M. Freyberger, H. J. Korsch and Th. Seligman<br />

for many fruitful discussions. This work orig<strong>in</strong><strong>at</strong>ed when two <strong>of</strong> us (FH and WPS) were enjoy<strong>in</strong>g the wonderful<br />

hospitality <strong>of</strong> the <strong>University</strong> <strong>of</strong> <strong>Texas</strong> <strong>at</strong> Aust<strong>in</strong>. We thank our Texan colleagues, <strong>in</strong> particular D. Steck, for many stimul<strong>at</strong><strong>in</strong>g<br />

discussions dur<strong>in</strong>g this visit. Moreover, we are most gr<strong>at</strong>eful to F. DeMart<strong>in</strong>i and P. M<strong>at</strong>aloni for p<strong>at</strong>iently await<strong>in</strong>g<br />

the completion <strong>of</strong> this manuscript. <strong>The</strong> work <strong>of</strong> MB and WPS is supported by the Deutsche Forschungsgeme<strong>in</strong>schaft.<br />

MGR gr<strong>at</strong>efully acknowledges the support <strong>of</strong> the Welch Found<strong>at</strong>ion and the N<strong>at</strong>ional Science Found<strong>at</strong>ion.<br />

References<br />

[1] F. Haake, Quantum Sign<strong>at</strong>ures <strong>of</strong> Chaos (Spr<strong>in</strong>ger, Heidelberg, 2000).<br />

[2] R. Blümel and W. P. Re<strong>in</strong>hardt, Chaos <strong>in</strong> Atomic Physics (Cambridge <strong>University</strong> Press, Cambridge, 1997).<br />

[3] V. V. Sokolov, O. V. Zhirov, D. Alonso, and G. Cas<strong>at</strong>i, Phys. Rev. Lett. 84, 3566 (2000), and references there<strong>in</strong>.<br />

[4] A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Mechanical Action <strong>of</strong> Light on Atoms (World Scientific,<br />

S<strong>in</strong>gapore, 1990).<br />

[5] C. S. Adams, M. Sigel, and J. Mlynek, Phys. Rep. 240, 143 (1994).<br />

[6] F. L. Moore, J. C. Rob<strong>in</strong>son, C. F. Bharucha, Bala Sundaram, and M. G. Raizen, Phys. Rev. Lett. 75, 4598 (1995).<br />

[7] F. L. Moore, J. C. Rob<strong>in</strong>son, C. Bharucha, P. E. Williams, and M. G. Raizen, Phys. Rev. Lett. 73, 2974 (1994).<br />

[8] M. G. Raizen, Adv. At. Mol. Opt. Phys. 41, 43 (1999),<br />

[9] A. C. Doherty, K. M.D. Vant, G. H. Ball, N. Christensen, and R. Leonhardt, J. Opt. B: Quantum Semiclass. Opt.<br />

2, 605 (2000),<br />

[10] M. B. d’Arcy, R. M. Godun, M. K. Oberthaler, D. Cassettari, and G. S. Summy, Phys. Rev. Lett. 87, 074102<br />

(2001).<br />

[11] M. Bienert, F. Haug, W. P. Schleich, and M. G. Raizen , Phys. Rev. Lett. 89, 050403 (2002).<br />

[12] W. P. Schleich, Quantum Optics <strong>in</strong> PhaseSpace(Wiley-VCH, Berl<strong>in</strong>, 2001).<br />

[13] H. J. Korsch and M. V. Berry, Physica 3D, 627 (1981).<br />

[14] D. Cohen, Phys. Rev. A 43, 639 (1991).<br />

[15] W. H. Zurek, Physica Scripta T 76, 186 (1998).<br />

[16] S. Habib, K. Shizume, and W. H. Zurek, Phys. Rev. Lett. 80, 4361 (1998).<br />

[17] S. A. Gard<strong>in</strong>er, D. Jaksch, R. Dum, J. I. Cirac, and P. Zoller, Phys. Rev. A 62, 023612 (2000).<br />

[18] W. P. Schleich, F. Le Kien, and M. Pernigo, Phys. Rev. A 44, 2172 (1991).<br />

[19] F. M. Izrailev, Phys. Rep. 196, 299 (1990).<br />

[20] L. E. Reichl, <strong>The</strong> Transition to Chaos (Spr<strong>in</strong>ger, Berl<strong>in</strong>, 1992).<br />

[21] M. Bienert, F. Haug, W. P. Schleich, and T. H. Seligman, to be published.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!