25.07.2013 Views

Kicked rotor in Wigner phase space - The University of Texas at Austin

Kicked rotor in Wigner phase space - The University of Texas at Austin

Kicked rotor in Wigner phase space - The University of Texas at Austin

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Fortschr. Phys. 51, No. 4–5, 474 – 486 (2003) / DOI 10.1002/prop.200310065<br />

<strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

M. Bienert 1 , F. Haug 1 , W. P. Schleich 1,∗ , and M. G. Raizen 2<br />

1<br />

Abteilung für Quantenphysik, Universität Ulm, Albert-E<strong>in</strong>ste<strong>in</strong>-Allee 11, 89069 Ulm, Germany<br />

2<br />

Center for Nonl<strong>in</strong>ear Dynamics and Department <strong>of</strong> Physics, <strong>The</strong> <strong>University</strong> <strong>of</strong> <strong>Texas</strong> <strong>at</strong> Aust<strong>in</strong>, Aust<strong>in</strong>,<br />

TX 78712-1081, USA<br />

Received 20 June 2002, accepted 27 June 2002<br />

Published onl<strong>in</strong>e 30 April 2003<br />

We develop the <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong> represent<strong>at</strong>ion <strong>of</strong> a kicked particle for an arbitrary but periodic kick<strong>in</strong>g<br />

potential. We use this formalism to illustr<strong>at</strong>e quantum resonances and anti-resonances.<br />

1 Introduction<br />

For many years the field <strong>of</strong> quantum chaos [1–3] had been the exclusive play-ground <strong>of</strong> theoretical physics.<br />

However, the recent success <strong>in</strong> experimentally realiz<strong>in</strong>g cold <strong>at</strong>om sources and the newly emerg<strong>in</strong>g field <strong>of</strong><br />

<strong>at</strong>om optics [4–6] are slowly chang<strong>in</strong>g this situ<strong>at</strong>ion <strong>in</strong> favor <strong>of</strong> experimental physics. Indeed, a series <strong>of</strong><br />

<strong>at</strong>om optics experiments [7–10] has verified f<strong>in</strong>gerpr<strong>in</strong>ts <strong>of</strong> quantum chaos such as dynamical localiz<strong>at</strong>ion,<br />

quantum resonances, quantum dynamics <strong>in</strong> a regime <strong>of</strong> classical anomalous diffusion and acceler<strong>at</strong>or modes.<br />

Even thereconstruction <strong>of</strong> thewavefunction <strong>of</strong> thekicked particle<strong>in</strong> amplitudeand <strong>phase</strong> seems now to<br />

befeasible[11].<br />

Quantum effects are due to quantum <strong>in</strong>terference. Interference phenomena stand out most clearly <strong>in</strong> the<br />

<strong>Wigner</strong> function description <strong>of</strong> quantum theory [12]. This fe<strong>at</strong>ure serves as our motiv<strong>at</strong>ion to develop <strong>in</strong> the<br />

present paper the <strong>Wigner</strong> function tre<strong>at</strong>ment <strong>of</strong> a kicked particle. Similar steps have already been taken <strong>in</strong> [13–<br />

17]. However, our motiv<strong>at</strong>ion and ultim<strong>at</strong>e goal is slightly different: We try to ga<strong>in</strong> a deeper understand<strong>in</strong>g<br />

<strong>of</strong> dynamical localiz<strong>at</strong>ion. In this spirit thepurpose<strong>of</strong> thepresent paper is to lay thefound<strong>at</strong>ions for this<br />

long term goal and to summarizethe<strong>in</strong>evitableformalism.<br />

Our paper is organized as follows: In Sect. 2 we briefly review the essential <strong>in</strong>gredients <strong>of</strong> the delta<br />

function kicked particle. Here, we do not specify the kick<strong>in</strong>g potential but only assume th<strong>at</strong> it is periodic <strong>in</strong><br />

<strong>space</strong>. Moreover, we <strong>in</strong>troduce dimensionless variables which we use throughout the paper. In this way only<br />

two dimensionless parameters – the scaled Planck’s constant and the scaled kick<strong>in</strong>g strength – determ<strong>in</strong>e<br />

thequantum dynamics <strong>of</strong> this model. In Sect. 3 wederivethestroboscopic timeevolution, th<strong>at</strong> is themaps<br />

for thest<strong>at</strong>evector and the<strong>Wigner</strong> function. Wethen <strong>in</strong> Sect. 4 usethest<strong>at</strong>evector map to review theeffect<br />

<strong>of</strong> quantum resonances. Sect. 5 is dedic<strong>at</strong>ed to an illustr<strong>at</strong>ion <strong>of</strong> this phenomenon and <strong>of</strong> anti-resonances <strong>in</strong><br />

<strong>Wigner</strong> <strong>phase</strong> <strong>space</strong>. We conclude <strong>in</strong> Sect. 6 by summariz<strong>in</strong>g our ma<strong>in</strong> results. In order to keep the paper<br />

self-conta<strong>in</strong>ed we have <strong>in</strong>cluded the relevant calcul<strong>at</strong>ions <strong>in</strong> three Appendices.<br />

2 <strong>The</strong> model<br />

In the present section we briefly summarize the classical and quantum mechanical model <strong>of</strong> the kicked<br />

particle. In contrast to the standard tre<strong>at</strong>ments we do not specify the form <strong>of</strong> the kick<strong>in</strong>g potential, except<br />

th<strong>at</strong> it should be periodic <strong>in</strong> <strong>space</strong>. Moreover, we <strong>in</strong>troduce dimensionless variables which reduce the number<br />

∗ Correspond<strong>in</strong>g author E-mail: wolfgang.schleich@physik.uni-ulm.de<br />

c○ 2003 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 0015-8208/03/4–505-0474 $ 17.50+.50/0


Fortschr. Phys. 51, No. 4–5 (2003) 475<br />

<strong>of</strong> parameters. We first consider the motion <strong>of</strong> a classical particle <strong>of</strong> mass M, characterized by coord<strong>in</strong><strong>at</strong>e<br />

˜x and momentum p. <strong>The</strong>n weturn to thequantum description.<br />

<strong>The</strong>motion <strong>of</strong> theparticleis driven by a sequence<strong>of</strong> δ-function kicks with period T described by the<br />

Hamiltonian<br />

H = p2<br />

2M + K V (˜x)<br />

∞<br />

n=−∞<br />

δ(t − nT ). (1)<br />

<strong>The</strong>strength <strong>of</strong> thekick depends on theposition <strong>of</strong> theparticlevia a potential K V (˜x) where K denotes the<br />

kick amplitudeand V (˜x) conta<strong>in</strong>s the sp<strong>at</strong>ial dependence with unit amplitude. Throughout the paper we<br />

consider potentials which are periodic with period λ ≡ 2π/k0. Moreover, we also assume the symmetries<br />

˜V (−˜x) =− ˜ V (˜x) and ˜ V (˜x ± λ/2) = − ˜ V (˜x).<br />

For the further analysis it is convenient to use scaled variables. In particular, we <strong>in</strong>troduce the dimensionless<br />

coord<strong>in</strong><strong>at</strong>e x ≡ k0˜x, momentum p ≡ (k0T/M)p and time t ≡ t/T . With these variables the<br />

Hamiltonian, Eq. (1), transforms <strong>in</strong>to<br />

where<br />

H ≡ M<br />

k2 H<br />

0T 2<br />

H ≡ 1<br />

2 p2 + KV (x)<br />

∞<br />

n=−∞<br />

δ(t − n) (2)<br />

<strong>in</strong>cludes the stochasticity parameter K ≡ Kk 2 0T/M and the scaled potential V (x) ≡ V (x/k0) now enjoys<br />

theperiod 2π.<br />

We now turn to the quantum description with position and momentum oper<strong>at</strong>ors ˆ˜x and ˆ˜p. <strong>The</strong>y s<strong>at</strong>isfy<br />

thefamiliar commut<strong>at</strong>ion rel<strong>at</strong>ion [ˆ˜x, ˆ p] =i which <strong>in</strong> dimensionless variables reads [ˆx, ˆp] =ik - . Here we<br />

have<strong>in</strong>troduced thescaled Planck’s constant k - ≡ k 2 0T/M.<br />

Moreover, <strong>in</strong> these dimensionless variables the Schröd<strong>in</strong>ger equ<strong>at</strong>ion<br />

takes the form<br />

i ∂<br />

∂t | ψ 〉 = ˆ H| ψ 〉<br />

ik- ∂<br />

∂t | ψ 〉 = ˆ H| ψ 〉 (3)<br />

wherewehavereplaced <strong>in</strong> theclassical Hamiltonian H, Eq. (2), theposition and momentum x and p by<br />

thecorrespond<strong>in</strong>g oper<strong>at</strong>ors giv<strong>in</strong>g riseto thequantum mechanical Hamiltonian ˆ H.<br />

3 Time evolution<br />

Wenow turn to thediscussion <strong>of</strong> thetimeevolution <strong>of</strong> this kicked system. Herewepursuetwo different<br />

approaches: wefirst concentr<strong>at</strong>eon thedynamics <strong>of</strong> thest<strong>at</strong>evector, and then usetheseresults to derive<br />

thetimeevolution <strong>of</strong> the<strong>Wigner</strong> <strong>phase</strong><strong>space</strong>distribution. Dueto thestroboscopic behavior <strong>of</strong> thepotential<br />

energy wereducethecont<strong>in</strong>uous timeevolution to a discretemapp<strong>in</strong>g.


476 M. Bienert et al.: <strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

3.1 St<strong>at</strong>evector<br />

<strong>The</strong>Hamiltonian<br />

ˆH ≡ ˆp2<br />

2<br />

+ KV (ˆx)<br />

∞<br />

n=−∞<br />

δ(t − n)<br />

consists <strong>of</strong> two parts: (i) <strong>The</strong> oper<strong>at</strong>or <strong>of</strong> k<strong>in</strong>etic energy and (ii) the oper<strong>at</strong>or <strong>of</strong> potential energy which is<br />

explicitly time dependent. However, the l<strong>at</strong>ter part is only <strong>of</strong> importance for <strong>in</strong>teger t. Between two kicks<br />

it vanishes and the st<strong>at</strong>e | ψn 〉 evolves freely accord<strong>in</strong>g to<br />

| ψ ′ n 〉 = Ûfree(ˆp)| ψn 〉≡exp<br />

<br />

−i ˆp2<br />

2k -<br />

<br />

| ψn 〉. (4)<br />

Here, wehavepropag<strong>at</strong>ed thest<strong>at</strong>eover onetimeunit t =1.<br />

For <strong>in</strong>teger t, the potential energy dom<strong>in</strong><strong>at</strong>es over the k<strong>in</strong>etic energy and we can neglect the l<strong>at</strong>ter. This<br />

fe<strong>at</strong>ureallows us to <strong>in</strong>tegr<strong>at</strong>etheSchröd<strong>in</strong>ger equ<strong>at</strong>ion, Eq. (3), over one kick. <strong>The</strong> st<strong>at</strong>e | ψn+1 〉 immedi<strong>at</strong>ely<br />

after a δ–function kick is rel<strong>at</strong>ed to the st<strong>at</strong>e | ψ ′ n 〉 just beforethekick by<br />

| ψn+1 〉 = Ûkick(ˆx)| ψ ′ <br />

n 〉≡exp −i K<br />

<br />

k- V (ˆx) | ψ ′ n 〉. (5)<br />

We emphasize th<strong>at</strong> neglect<strong>in</strong>g the k<strong>in</strong>etic energy is not an approxim<strong>at</strong>ion s<strong>in</strong>ce the δ–function only acts <strong>at</strong><br />

an <strong>in</strong>stant <strong>of</strong> timewith an <strong>in</strong>f<strong>in</strong>itestrength.<br />

When wecomb<strong>in</strong>eEqs. (4) and (5) thecompletetimeevolution over oneperiod reads<br />

| ψn+1 〉 = Ûkick(ˆx) Ûfree(ˆp)|<br />

<br />

ψn 〉 = exp [−iκV (ˆx)] exp −i ˆp2<br />

2k- <br />

| ψn 〉 (6)<br />

and maps thest<strong>at</strong>e| ψn 〉 onto | ψn+1 〉. Herewehave<strong>in</strong>troduced theabbrevi<strong>at</strong>ion κ ≡ K/k - .<br />

Wef<strong>in</strong>d thequantum st<strong>at</strong>e| ψN 〉 after N kicks by apply<strong>in</strong>g the Floquet oper<strong>at</strong>or<br />

Û(ˆx, ˆp) ≡ Ûkick(ˆx) Ûfree(ˆp) (7)<br />

N times onto the <strong>in</strong>itial st<strong>at</strong>e | ψ0 〉.<br />

S<strong>in</strong>cethepotential V (x) is periodic, th<strong>at</strong> is V (x +2π) =V (x), thekick oper<strong>at</strong>or exp [−iκV (ˆx)] is also<br />

periodic and we can expand it <strong>in</strong>to Fourier series<br />

Ûkick(ˆx) =e −iκV (ˆx) =<br />

with expansion coefficients<br />

Sl (κ) ≡ 1<br />

π<br />

2π<br />

−π<br />

∞<br />

l=−∞<br />

Sl (κ)e −ilˆx<br />

dξ e ilξ e −iκV (ξ) . (9)<br />

In this Fourier represent<strong>at</strong>ion the oper<strong>at</strong>or n<strong>at</strong>ure <strong>of</strong> the Ûkick only enters through the Fourier oper<strong>at</strong>or<br />

exp[−ilˆx].<br />

With the the help <strong>of</strong> the rel<strong>at</strong>ion Eq. (8) the Floquet oper<strong>at</strong>or Eq. (7) takes the form<br />

∞<br />

Û(ˆx, ˆp) = Sl (κ)e −ilˆx <br />

exp −i ˆp2<br />

2k- <br />

.<br />

l=−∞<br />

(8)


Fortschr. Phys. 51, No. 4–5 (2003) 477<br />

We conclude this subsection by discuss<strong>in</strong>g the action <strong>of</strong> this oper<strong>at</strong>or on a momentum eigenst<strong>at</strong>e. For<br />

this purposewecalcul<strong>at</strong>etherepresent<strong>at</strong>ion <strong>of</strong> Û <strong>in</strong> the momentum basis by <strong>in</strong>sert<strong>in</strong>g the completeness<br />

rel<strong>at</strong>ion 1l = dp | p 〉〈 p | twice. When we recall the formula<br />

wearrive<strong>at</strong><br />

e −ilˆx | p 〉 = | p − lk - 〉 (10)<br />

Û =<br />

∞<br />

−∞<br />

dp<br />

∞<br />

l=−∞<br />

<br />

Sl(κ) exp −i p2<br />

2k- <br />

| p − lk- 〉〈 p |. (11)<br />

Hence, the Floquet oper<strong>at</strong>or Û couples only momentum eigenst<strong>at</strong>es separ<strong>at</strong>ed by <strong>in</strong>teger multiples <strong>of</strong> k- .<br />

3.2 <strong>Wigner</strong> function<br />

Wenow analyzethedynamics <strong>of</strong> thekicked particlefrom thepo<strong>in</strong>t <strong>of</strong> view <strong>of</strong> <strong>phase</strong><strong>space</strong>. In particular, we<br />

discuss the time evolution <strong>of</strong> the correspond<strong>in</strong>g <strong>Wigner</strong> function. Two possibilities <strong>of</strong>fer themselves: (i) We<br />

can solvethequantum Liouvilleequ<strong>at</strong>ion [12] <strong>of</strong> thekicked particle, or (ii) wecan usethemapp<strong>in</strong>g <strong>of</strong> the<br />

st<strong>at</strong>e vectors derived <strong>in</strong> the preced<strong>in</strong>g section to obta<strong>in</strong> a mapp<strong>in</strong>g <strong>of</strong> the correspond<strong>in</strong>g <strong>Wigner</strong> functions.<br />

In thepresent section wepursuethesecond approach.<br />

For this purposewerecall thedef<strong>in</strong>ition<br />

Wn+1(x, p) ≡ 1<br />

2πk- ∞<br />

−∞<br />

dξ e −ipξ/k- 1 〈x + 2ξ|ψn+1〉〈ψn+1|x − 1<br />

2<br />

ξ〉 (12)<br />

<strong>of</strong> the<strong>Wigner</strong> function <strong>of</strong> thest<strong>at</strong>e| ψn+1 〉.<br />

When wesubstitutethemapp<strong>in</strong>g, Eq. (6), <strong>in</strong>to theright-hand side<strong>of</strong> Eq. (12), wearrive<strong>at</strong><br />

Wn+1(x, p) = 1<br />

2πk- ∞<br />

dξ e −ipξ/k-<br />

Ukick(x + ξ/2)U ∗ †<br />

kick(x − ξ/2)〈x + ξ/2| Ûfree|ψn〉〈ψn| Û free |x − ξ/2〉.<br />

−∞<br />

Herewehaveused theproperty Ûkick(ˆx)| x 〉 = Ukick(x)| x 〉.<br />

S<strong>in</strong>cethepotential V (x) is periodic, the bil<strong>in</strong>ear form<br />

Ukick(x + ξ/2)U ∗ kick(x − ξ/2)=e −iκ[V (x+ξ/2)−V (x−ξ/2)] ≡ e −iκV(x,ξ/2)<br />

with the generalized potential<br />

V(x, y) ≡ V (x + y) − V (x − y) (14)<br />

is also periodic <strong>in</strong> ξ/2 with period 2π. We can therefore expand<br />

e −iκV(x,ξ/2) =<br />

∞<br />

l=−∞<br />

Sl(κ; x)e −ilξ/2<br />

<strong>in</strong>to a Fourier series where the expansion coefficients<br />

Sl(κ; x) ≡ 1<br />

π<br />

d<br />

2π<br />

−π<br />

<br />

ξ<br />

e<br />

2<br />

ilξ/2 e −iκV(x,ξ/2)<br />

still depend on the position x and are periodic with a period <strong>of</strong> 2π.<br />

(13)<br />

(15)<br />

(16)


478 M. Bienert et al.: <strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

With the help <strong>of</strong> the Fourier series, Eq. (15), the mapp<strong>in</strong>g <strong>of</strong> the <strong>Wigner</strong> function, Eq. (13), yields<br />

Wn+1(x, p) = <br />

Sl(κ; x) 1<br />

2πk- l<br />

∞<br />

−∞<br />

dξ e −i(p+lk- /2)ξ/k- †<br />

〈x+ξ/2|Ûfree|ψn〉〈ψn| Û free |x−ξ/2〉. (17)<br />

Wecan identify therema<strong>in</strong><strong>in</strong>g <strong>in</strong>tegral <strong>in</strong> Eq. (17) when werecall [12] th<strong>at</strong> thefreetimeevolution<br />

W (x, p; t) = 1<br />

2πk- ∞<br />

−∞<br />

dξ e −ipξ/k-<br />

<br />

1 〈x + 2ξ| exp<br />

−i ˆp2<br />

2k- t<br />

<br />

|ψ〉〈ψ| exp i ˆp2<br />

<br />

2k- t |x − 1<br />

2ξ〉 <strong>of</strong> the<strong>Wigner</strong> function follows from the<strong>Wigner</strong> function <strong>of</strong> the<strong>in</strong>itial st<strong>at</strong>e| ψ 〉 by replac<strong>in</strong>g the position<br />

x by x − pt, th<strong>at</strong> is<br />

W (x, p; t) =W (x − pt, p; t =0).<br />

Hence, the <strong>in</strong>tegral <strong>in</strong> Eq. (17) is the <strong>Wigner</strong> function <strong>of</strong> the st<strong>at</strong>e | ψn 〉 propag<strong>at</strong>ed for the time t =1and<br />

evalu<strong>at</strong>ed <strong>at</strong> the shifted momentum p + lk- /2.<br />

Consequently, the recursion formula, Eq. (17), for the mapp<strong>in</strong>g <strong>of</strong> the <strong>Wigner</strong> function <strong>of</strong> the kicked<br />

particletakes theform<br />

Wn+1(x, p) = <br />

Sl(κ; x) Wn (x − (p + lk- /2) ,p+ lk- /2) . (18)<br />

l<br />

We recognize th<strong>at</strong> this mapp<strong>in</strong>g describes a shear<strong>in</strong>g <strong>of</strong> the distribution Wn along the x–axis dueto the<br />

free time evolution. <strong>The</strong> successive kick causes a displacement <strong>in</strong> momentum with the position-dependent<br />

weight factor Sl(κ; x).<br />

In contrast to themapp<strong>in</strong>g <strong>of</strong> thest<strong>at</strong>evector, Eq. (6), the<strong>Wigner</strong> function map also <strong>in</strong>volves contributions<br />

<strong>at</strong> half <strong>in</strong>teger multiples <strong>of</strong> k - . <strong>The</strong>se additional terms reflect the <strong>in</strong>terference n<strong>at</strong>ure <strong>of</strong> quantum mechanics.<br />

<strong>The</strong>y aretheanalogies <strong>of</strong> thepositiveand neg<strong>at</strong>ive<strong>in</strong>terferencestructures <strong>of</strong> a Schröd<strong>in</strong>ger c<strong>at</strong> [18] which<br />

are loc<strong>at</strong>ed half way between the classical parts. Moreover, they dissappear when we <strong>in</strong>tegr<strong>at</strong>e over position<br />

<strong>space</strong> <strong>in</strong> order to obta<strong>in</strong> the momentum distribution. We show this property explicitly <strong>in</strong> Sect. 5.<br />

In the <strong>Wigner</strong> function tre<strong>at</strong>ment <strong>of</strong> the kicked particle the expansion coefficients Sl(κ; x) play thesame<br />

roleas thecoefficients Sl(κ) <strong>in</strong> the st<strong>at</strong>e vector description. For a brief comparison between these two<br />

quantities and a discussion <strong>of</strong> their properties we refer to Appendix A.<br />

4 Quantum resonances viewed from st<strong>at</strong>e <strong>space</strong><br />

In this section weusethemapp<strong>in</strong>g <strong>of</strong> thewavefunction, Eq. (6), to discuss a characteristic effect <strong>in</strong> thetime<br />

evolution <strong>of</strong> the kicked particle: the phenomenon <strong>of</strong> quantum resonances. <strong>The</strong> size <strong>of</strong> the scaled Planck’s<br />

constant k- is a decisivefactor for theoccurrence<strong>of</strong> quantum effects <strong>in</strong> thetimeevolution <strong>of</strong> thekicked<br />

particle. In particular, we obta<strong>in</strong> dram<strong>at</strong>ically different dynamics for k- be<strong>in</strong>g a r<strong>at</strong>ional and irr<strong>at</strong>ional multiple<br />

<strong>of</strong> 4π. In particular, weshow th<strong>at</strong> for k- =4πand <strong>in</strong>teger multiples resonances occur and the average k<strong>in</strong>etic<br />

energy <strong>in</strong>creases quadr<strong>at</strong>ically with the number <strong>of</strong> kicks.<br />

For thevalue<strong>of</strong> k- =4πthe mapp<strong>in</strong>g def<strong>in</strong>ed by the Floquet oper<strong>at</strong>or Û, Eq. (7), simplifies significantly.<br />

In order to illustr<strong>at</strong>e this <strong>in</strong>terest<strong>in</strong>g dynamics we consider the st<strong>at</strong>e<br />

| ψN 〉 = Û N | p =0〉 = Ûkick Ûfree ····· Ûkick Ûfree| p =0〉<br />

after N kicks where the Floquet oper<strong>at</strong>or Û ≡ Ûkick Ûfree acts N times on the <strong>in</strong>itial st<strong>at</strong>e | p =0〉.


Fortschr. Phys. 51, No. 4–5 (2003) 479<br />

<strong>The</strong> consequences <strong>of</strong> the choice k - =4π stand out most clearly when we consider the free time evolution<br />

Ûfree| lk- <br />

〉 = exp −i ˆp2<br />

2k- <br />

| lk- <br />

2 k-<br />

〉 = exp −il | lk<br />

2<br />

- 〉<br />

<strong>of</strong> momentum eigenst<strong>at</strong>es | lk - 〉 between two kicks. Indeed, for k - =4π or a <strong>in</strong>teger multiplethe<strong>phase</strong><br />

accumul<strong>at</strong>ed by the momentum eigenst<strong>at</strong>e | lk - 〉 = | l · 4π 〉 dur<strong>in</strong>g thefreepropag<strong>at</strong>ion is 2π or an <strong>in</strong>teger<br />

multiple, th<strong>at</strong> is<br />

Ûfree| l · 4π 〉 =e −2πil2<br />

| l · 4π 〉 = | l · 4π 〉. (19)<br />

Hence, for this particular value <strong>of</strong> k - the momentum eigenst<strong>at</strong>es are <strong>in</strong>variant under free time evolution.<br />

Accord<strong>in</strong>g to Eq. (11) thekick oper<strong>at</strong>or Ûkick couples momentum eigenst<strong>at</strong>es separ<strong>at</strong>ed by <strong>in</strong>teger<br />

multiples <strong>of</strong> k - . S<strong>in</strong>cewestart from themomentum eigenst<strong>at</strong>e| p =0〉 wehavea superposition <strong>of</strong> momentum<br />

eigenst<strong>at</strong>es | lk - 〉 after every kick. For k - =4π these st<strong>at</strong>es are <strong>in</strong>variant under free time evolution and the<br />

st<strong>at</strong>eafter N kicks reads<br />

| ψN 〉 = Û N kick| p =0〉 =e −iNκV (ˆx) | p =0〉 =<br />

∞<br />

l=−∞<br />

Sl (Nκ) |−l · 4π 〉<br />

where<strong>in</strong> thelast step wehaveused theFourier decomposition, Eq. (9), and theshift rel<strong>at</strong>ion, Eq. (10).<br />

With the help <strong>of</strong> the result<strong>in</strong>g momentum distribution<br />

WN(p) =|〈 p |ψN〉| 2 = <br />

S 2 l (Nκ)δ(p + l · 4π), (20)<br />

l<br />

which <strong>in</strong>volves momenta <strong>at</strong> p = l · 4π with weight factor S2 l , weevalu<strong>at</strong>ethemean energy<br />

E ≡ 1<br />

2 ˆp2 =<br />

∞<br />

−∞<br />

dp 1<br />

2 p2 WN(p) =8π 2<br />

∞<br />

l=−∞<br />

l 2 S 2 l (Nκ)<br />

<strong>of</strong> the system after N kicks.<br />

In Appendix B we calcul<strong>at</strong>e this sum over the expansion coefficients Sl and f<strong>in</strong>d<br />

E = 1<br />

2 〈F 2 〉KN 2<br />

where 〈F 2 〉 is thesquare<strong>of</strong> theforceF = −dV/dx averaged over one period. Moreover, we have recalled<br />

theabbrevi<strong>at</strong>ion κ ≡ K/k - = K/(4π).<br />

Hence, for the special choice <strong>of</strong> k - =4π the energy <strong>in</strong>creases quadr<strong>at</strong>ically with the number <strong>of</strong> kicks.<br />

From Eq. (19) wenoteth<strong>at</strong> also <strong>in</strong>teger multiples <strong>of</strong> k - =4π leave the momentum eigenst<strong>at</strong>es <strong>in</strong>variant.<br />

Consequently, the resonance also occurs <strong>in</strong> these cases.<br />

Weconcludethis section by briefly expla<strong>in</strong><strong>in</strong>g our special choice<strong>of</strong> the<strong>in</strong>itial st<strong>at</strong>e| p =0〉. In this<br />

case the Floquet oper<strong>at</strong>or, Eq. (11), only maps this <strong>in</strong>itial st<strong>at</strong>e onto discrete momentum eigenst<strong>at</strong>es p = lk - .<br />

Dur<strong>in</strong>g the dynamics we therefore always stay <strong>in</strong> a momentum ladder start<strong>in</strong>g <strong>at</strong> zero momentum. Moreover,<br />

these eigenst<strong>at</strong>es are <strong>in</strong>variant under the unitary transform<strong>at</strong>ion <strong>of</strong> the free time evolution provided k - =4π.<br />

However, thereis onemorereason for choos<strong>in</strong>g | p =0〉 as our <strong>in</strong>itial st<strong>at</strong>e. Due to the discreteness<br />

<strong>of</strong> themomentum variablethesp<strong>at</strong>ial wavefunction has always a period <strong>of</strong> 2π. Wewould havefound the<br />

same result if we had imposed periodic boundary conditions correspond<strong>in</strong>g to a kicked <strong>rotor</strong>. Hence, the<br />

m<strong>at</strong>hem<strong>at</strong>ics <strong>of</strong> the kicked particle with zero <strong>in</strong>itial momentum eigenst<strong>at</strong>e and the kicked <strong>rotor</strong> is identical.


480 M. Bienert et al.: <strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

5 Quantum resonances viewed from <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

How does a quantum resonance reflect itself <strong>in</strong> <strong>phase</strong> <strong>space</strong>? In order to answer this question we consider<br />

themap, Eq. (18), <strong>of</strong> the<strong>Wigner</strong> function.<br />

5.1 <strong>Wigner</strong> function after second kick<br />

<strong>The</strong> <strong>Wigner</strong> function <strong>of</strong> our <strong>in</strong>itial momentum eigenst<strong>at</strong>e | p =0〉 reads<br />

W0(x, p) = 1<br />

2π δ(p),<br />

wherewehave<strong>in</strong>troduced thenormaliz<strong>at</strong>ion factor 1/(2π) such th<strong>at</strong> the <strong>Wigner</strong> function <strong>in</strong>tegr<strong>at</strong>ed over<br />

all momenta and over one sp<strong>at</strong>ial period is normalized to unity.<br />

After onekick, the<strong>Wigner</strong> function<br />

W1(x, p) = 1 <br />

Sr(κ; x) δ (p + rk<br />

2π<br />

- /2) . (21)<br />

r<br />

can be viewed as a stack <strong>of</strong> delta function walls aligned parallel to the x–axis. Each wall is weighted with<br />

thefunction Sr, Eq. (16), which impr<strong>in</strong>ts a x–dependent modul<strong>at</strong>ion <strong>of</strong> period 2π onto thewall.<br />

In contrast to thest<strong>at</strong>evector description the<strong>Wigner</strong> function <strong>phase</strong><strong>space</strong>not only enjoys contributions<br />

<strong>at</strong> p = lk- but also <strong>at</strong> p =(2l+1)k- /2. However, the correspond<strong>in</strong>g weight function S2l+1 displays a position<br />

dependence such th<strong>at</strong> the <strong>in</strong>tegral over it vanishes. Only for p = lk- =2lk- /2 do wef<strong>in</strong>d a nonvanish<strong>in</strong>g<br />

contribution<br />

π<br />

dx S2l(κ; x) =2πS 2 l (κ) (22)<br />

−π<br />

as shown <strong>in</strong> Appendix A. As a consequence, the result<strong>in</strong>g momentum distribution<br />

π<br />

W1(p) = dx W1(x, p) = <br />

π<br />

1<br />

dx S2l(κ; x)δ(p + lk) =<br />

2π<br />

<br />

−π<br />

l<br />

−π<br />

l<br />

S 2 l (κ)δ(p + lk - )<br />

only <strong>in</strong>volves momenta <strong>at</strong> <strong>in</strong>teger multiples <strong>of</strong> k- <strong>in</strong> complete agreement with the st<strong>at</strong>e vector description.<br />

After thesecond kick, the<strong>phase</strong><strong>space</strong>distribution<br />

W2(x, p) = <br />

Ss(κ; x) W1 (x − (p + sk- /2) ,p+ sk- /2) .<br />

s<br />

is expressed <strong>in</strong> terms <strong>of</strong> the <strong>Wigner</strong> function W1, Eq. (21), after the first kick which after substitution <strong>in</strong>to<br />

this formula yields<br />

W2(x, p) = 1 <br />

Ss(κ; x)Sr(κ; x − (p + sk<br />

2π<br />

- /2))δ (p +(r + s)k- /2) .<br />

s<br />

r<br />

Wefirst usetheδ–function to replacethemomentum p <strong>in</strong> the second expansion coefficient Sr by −(r+s)k- /2.<br />

Wethen <strong>in</strong>troducethesumm<strong>at</strong>ion <strong>in</strong>dex l ≡ r + s and arrive<strong>at</strong><br />

W2(x, p) = 1 <br />

Wl(x)δ (p + lk<br />

2π<br />

- /2) .<br />

l<br />

with thedistribution<br />

Wl(x) ≡ <br />

Sl−r(κ; x)Sr(κ; x + rk- /2). (23)<br />

r


Fortschr. Phys. 51, No. 4–5 (2003) 481<br />

5.2 Resonance<br />

So far wehavenot specified thevalue<strong>of</strong> k- . When we now utilize k- =4πand recognizefrom thedef<strong>in</strong>itions,<br />

Eqs. (14) and (16), <strong>of</strong> the generalized potential V and the expansion coefficients Sl the periodicity property<br />

Sl(κ; x + r · 2π) =Sl(κ; x), the coefficient Wl reduces to<br />

<br />

≡ Sl−r(κ; x)Sr(κ; x)<br />

W (+)<br />

l<br />

r<br />

In Appendix C weevalu<strong>at</strong>ethis sum analytically and f<strong>in</strong>d<br />

W (+)<br />

l<br />

= Sl(2 · κ; x).<br />

Hence, <strong>at</strong> a resonance, th<strong>at</strong> is for k- =4π, the<strong>phase</strong><strong>space</strong>distribution after thesecond kick reads<br />

W2(x, p) = 1 <br />

Sr(2κ; x) δ (p + r · 2π) . (24)<br />

2π<br />

r<br />

It is <strong>in</strong>terest<strong>in</strong>g to comparethis expression with the<strong>phase</strong><strong>space</strong>distribution<br />

W1(x, p) = 1 <br />

Sr(κ; x)δ(p + r · 2π)<br />

2π<br />

r<br />

after the first kick which follows form Eq. (21) for k =4π. Wenoteth<strong>at</strong> theargument κ <strong>of</strong> theexpansion<br />

coefficient has been replaced by 2κ.<br />

This result has a simpleexplan<strong>at</strong>ion. Dur<strong>in</strong>g thefreetimeevolution each po<strong>in</strong>t <strong>of</strong> the<strong>phase</strong><strong>space</strong><br />

distribution follows the classical trajectory [12], th<strong>at</strong> is each po<strong>in</strong>t <strong>at</strong> the momenta lk - /2 moves with constant<br />

velocity and traverses dur<strong>in</strong>g the time t =1thecoord<strong>in</strong><strong>at</strong>edistancex = lk - /2 · 1.Fork - =4π this distance<br />

is oneor an <strong>in</strong>teger multiple<strong>of</strong> 2π. Subsequent to this movement, the next kick occurs. <strong>The</strong> associ<strong>at</strong>ed<br />

displacement with x–dependent weight functions Sl(κ; x) is therefore <strong>in</strong> <strong>phase</strong> with the freely propag<strong>at</strong>ed<br />

<strong>phase</strong><strong>space</strong>distribution and adds up coherently.<br />

Wecan cont<strong>in</strong>uetheiter<strong>at</strong>ion <strong>of</strong> the<strong>Wigner</strong> function by start<strong>in</strong>g from thedistribution, Eq. (24) after the<br />

second kick and wef<strong>in</strong>d follow<strong>in</strong>g theabovearguments thedistribution<br />

W (+)<br />

l<br />

(x) ≡ <br />

Sl−r(κ; x)Sr(2κ; x).<br />

r<br />

In Appendix C wehavecalcul<strong>at</strong>ed this sum and f<strong>in</strong>d the<strong>Wigner</strong> function<br />

W3(x, p) = 1 <br />

Sr(3κ; x) δ (p + r · 2π) .<br />

2π<br />

r<br />

By <strong>in</strong>duction the <strong>Wigner</strong> function after the N-th kick reads<br />

WN(x, p) = 1 <br />

Sr(Nκ; x) δ (p + r · 2π) .<br />

2π<br />

r<br />

Weconcludethis section by us<strong>in</strong>g this <strong>Wigner</strong> function to calcul<strong>at</strong>ethemomentum distribution WN(p)<br />

after N kicks by <strong>in</strong>tegr<strong>at</strong><strong>in</strong>g over position. We recall th<strong>at</strong> this <strong>in</strong>tegr<strong>at</strong>ion over x elim<strong>in</strong><strong>at</strong>es the odd momenta,<br />

th<strong>at</strong> is<br />

WN(p) = <br />

π<br />

1<br />

dx S2l(Nκ; x)δ(p + l · 4π) =<br />

2π<br />

<br />

S 2 l (Nκ)δ(p + l · 4π). (25)<br />

l<br />

−π<br />

Herewehaveused the<strong>in</strong>tegral rel<strong>at</strong>ion, Eq. (22), for thecoefficients S2l.<br />

<strong>The</strong> result Eq. (25) is <strong>in</strong> complete agreement with the distribution, Eq. (20), obta<strong>in</strong>ed <strong>in</strong> the st<strong>at</strong>e vector<br />

picture.<br />

l


482 M. Bienert et al.: <strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

5.3 Anti-resonance<br />

Another <strong>in</strong>terest<strong>in</strong>g case occurs for k- =2π. This so-called anti-resonance [19,20] results from the symmetry<br />

<strong>of</strong> the potential and manifests itself <strong>in</strong> an oscill<strong>at</strong><strong>in</strong>g mean energy E, th<strong>at</strong> is E oscill<strong>at</strong>es between the <strong>in</strong>itial<br />

energy and the energy 〈F 2 〉K/2 after thefirst kick. Aga<strong>in</strong>, weanalyzethis phenomenon <strong>in</strong> <strong>phase</strong><strong>space</strong>.<br />

Accord<strong>in</strong>g to Eq. (23) thedistribution Wl after the second kick reads for k- =2π<br />

Wl = <br />

Sl−r(κ; x)Sr(κ; x + rπ).<br />

r<br />

In Appendix C wecalcul<strong>at</strong>ethis sum and f<strong>in</strong>d Wl = δl,0 which yields the <strong>Wigner</strong> function<br />

W2(x, p) = 1<br />

2π δ(p).<br />

Hence, the <strong>Wigner</strong> function after two kicks m<strong>at</strong>ches exactly the <strong>in</strong>itial <strong>Wigner</strong> function. Indeed, the free<br />

time evolution between the first and second kick has propag<strong>at</strong>ed the contributions <strong>at</strong> the momenta lk- /2 by<br />

lπ along the x direction. When the second kick occurs, all contributions for the momenta lk- /2 <strong>in</strong>terfere<br />

destructively except for the case l =0where all contributions <strong>in</strong>terfere constructively.<br />

6 Conclusions and outlook<br />

In the present paper we have studied various aspects <strong>of</strong> the quantum dynamics <strong>of</strong> a kicked particle. In<br />

<strong>Wigner</strong> <strong>phase</strong><strong>space</strong>thetimeevolution is a sequence<strong>of</strong> shear<strong>in</strong>g the<strong>Wigner</strong> distribution along theposition<br />

axis and displac<strong>in</strong>g it along the momentum axis with position dependent weight factors Sl(κ; x). As a first<br />

applic<strong>at</strong>ion <strong>of</strong> this formalism we have revisited the physics <strong>of</strong> resonances and anti-resonances. However, this<br />

approach is also useful when we study the <strong>in</strong>fluence <strong>of</strong> corners <strong>in</strong> the kick<strong>in</strong>g potential [21] on dynamical<br />

localiz<strong>at</strong>ion.<br />

Resonances and anti-resonances occur for the special choice k - =4π and k - =2π, respectively, <strong>of</strong> the<br />

scaled Planck’s constant. However, an <strong>in</strong>terest<strong>in</strong>g situ<strong>at</strong>ion emerges for k - be<strong>in</strong>g a r<strong>at</strong>ional multiple r/s <strong>of</strong><br />

4π. Herethefreetimeevolution shifts each displaced contribution <strong>at</strong> p = lk - /2 by an amount <strong>of</strong> 2πl · r/s.<br />

<strong>The</strong>refore, consecutive contributions cannot add up fully coherently due to the different sp<strong>at</strong>ial shifts <strong>of</strong><br />

the x-dependent weight<strong>in</strong>g functions Sl(κ; x). It is <strong>in</strong>terest<strong>in</strong>g to note th<strong>at</strong> this analytical tre<strong>at</strong>ment also<br />

<strong>in</strong>cludes the limit r, s →∞with r/s ≈ const. which corresponds to the limit <strong>of</strong> localiz<strong>at</strong>ion. Here the<br />

contributions <strong>of</strong> the <strong>Wigner</strong> function can never <strong>in</strong>terfere coherently and dynamical localiz<strong>at</strong>ion appears, th<strong>at</strong><br />

is the broaden<strong>in</strong>g <strong>of</strong> the momentum distribution is com<strong>in</strong>g to a halt. However, this analysis is beyond the<br />

scope <strong>of</strong> the present paper and will be published elsewhere.<br />

A Properties <strong>of</strong> <strong>Wigner</strong> expansion coefficients<br />

In this Appendix we rel<strong>at</strong>e the coefficients<br />

Sl(κ) = 1<br />

π<br />

2π<br />

−π<br />

dξ e ilξ −iκV (ξ)<br />

e<br />

emerg<strong>in</strong>g from themap <strong>of</strong> thest<strong>at</strong>evectors to thefunctions<br />

Sl(κ; x) = 1<br />

π<br />

2π<br />

−π<br />

dy e ily e −iκV (x+y) iκV (x−y)<br />

e<br />

(26)


Fortschr. Phys. 51, No. 4–5 (2003) 483<br />

from the<strong>Wigner</strong> map. Moreover, wecalcul<strong>at</strong>ethe<strong>in</strong>tegral <strong>of</strong> Sl(κ; x) over one sp<strong>at</strong>ial period. This quantity<br />

establishes a crucial connection between Sl(κ) and Sl(κ; x).<br />

We start the discussion by first not<strong>in</strong>g th<strong>at</strong> both functions are Fourier coefficients. Indeed, the coefficients<br />

Sl result from the expansion <strong>of</strong> exp[−iκV (x)] whereas Sl comefrom exp[−iκV(x, y)] where V(x, y) ≡<br />

V (x + y) − V (x − y). For anti-symmetric potentials V (−x) =−V (x) wef<strong>in</strong>d V(0,y)=2V (y) which<br />

establishes the connection<br />

Sl (κ;0)=Sl (2κ)<br />

between the two expansion coefficients.<br />

Moreover, it is also important th<strong>at</strong> due to the anti-symmetry V (−x) =−V (x) <strong>of</strong> thepotential and the<br />

result<strong>in</strong>g anti-symmetry V(x, −y) =−V(x, y) <strong>of</strong> the generalized potential both functions Sl and Sl are<br />

purely real.<br />

<strong>The</strong><strong>in</strong>tegral<br />

Il ≡<br />

π<br />

−π<br />

dx Sl(κ; x)<br />

over the expansion coefficients Sl(κ; x) br<strong>in</strong>gs out a deep connection with Sl. Indeed, when we substitute<br />

theexpression Eq. (26) for Sl <strong>in</strong>to thedef<strong>in</strong>ition <strong>of</strong> Il and use the Fourier represent<strong>at</strong>ions, Eq. (8), <strong>of</strong><br />

exp[−iκV (x + y)] and exp[iκV (x − y)] wearrive<strong>at</strong><br />

Il = <br />

r<br />

s<br />

SrSs<br />

π<br />

1<br />

dx e<br />

2π<br />

−i(r−s)x<br />

π<br />

dy e i(l−r−s)y .<br />

<strong>The</strong><strong>in</strong>tegr<strong>at</strong>ion over x yields the condition r = s and thus<br />

Il = <br />

Hence, we f<strong>in</strong>d<br />

and<br />

r<br />

I2s+1 =<br />

I2s =<br />

π<br />

−π<br />

S 2 r<br />

π<br />

−π<br />

π<br />

−π<br />

−π<br />

dy e i(l−2r)y .<br />

dx S2s+1(κ; x) =0<br />

dx S2s(κ; x) =2πS 2 s (κ).<br />

−π<br />

For all odd values l the<strong>in</strong>tegral <strong>of</strong> Sl over one period vanishes, whereas for all even values this <strong>in</strong>tegral<br />

produces thesquare<strong>of</strong> thecoefficients Sl <strong>of</strong> thest<strong>at</strong>e<strong>space</strong>mapp<strong>in</strong>g. This fe<strong>at</strong>ureguarantees th<strong>at</strong> the<br />

<strong>in</strong>terference terms <strong>in</strong> <strong>phase</strong> <strong>space</strong> vanish when <strong>in</strong>tegr<strong>at</strong>ed over position.<br />

B Momentum spread<br />

In this Appendix weevalu<strong>at</strong>ethesum<br />

I(z) ≡<br />

∞<br />

l=−∞<br />

l 2 S 2 l (z)


484 M. Bienert et al.: <strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

conta<strong>in</strong><strong>in</strong>g the expansion coefficients<br />

Sl (z) = 1<br />

π<br />

2π<br />

−π<br />

dx e ilx −izV (x)<br />

e<br />

<strong>of</strong> the st<strong>at</strong>e vector map. This sum determ<strong>in</strong>es the spread <strong>of</strong> the momentum <strong>at</strong> the ma<strong>in</strong> resonance.<br />

When wesubstitutethedef<strong>in</strong>ition, Eq. (27), <strong>of</strong> theexpansion coefficients Sl(z) <strong>in</strong>to thesum and exchange<br />

<strong>in</strong>tegr<strong>at</strong>ion and summ<strong>at</strong>ion wearrive<strong>at</strong><br />

I(z) = 1<br />

4π2 π<br />

−π<br />

dx ′<br />

π<br />

−π<br />

dx<br />

<br />

l<br />

l 2 e il(x+x′ )<br />

(27)<br />

<br />

e −iz[V (x)+V (x′ )] . (28)<br />

<strong>The</strong> represent<strong>at</strong>ion<br />

<br />

e ilx =2π <br />

δ(x +2πν) (29)<br />

l<br />

ν<br />

<strong>of</strong> a comb <strong>of</strong> delta functions allows us to express the term <strong>in</strong> the square brackets <strong>in</strong> Eq. (28) as the second<br />

deriv<strong>at</strong>ive<strong>of</strong> thedelta function, th<strong>at</strong> is<br />

<br />

l 2 e il(x+x′ <br />

)<br />

= −2π<br />

l<br />

ν<br />

∂ 2<br />

∂x 2 δ(x + x′ +2πν).<br />

<strong>The</strong>deriv<strong>at</strong>ivecan beshifted to theother x–dependent part e −izV (x) <strong>of</strong> the<strong>in</strong>tegrand. When we<strong>in</strong>tegr<strong>at</strong>e<br />

over the rema<strong>in</strong><strong>in</strong>g delta function we f<strong>in</strong>d<br />

I(z) =− 1<br />

π<br />

2π<br />

−π<br />

−izV (−x) d2<br />

dx e<br />

dx2 e−izV (x) .<br />

Here we have recognized th<strong>at</strong> the <strong>in</strong>tegr<strong>at</strong>ion only extends over a s<strong>in</strong>gle <strong>in</strong>terval <strong>of</strong> 2π which reduces the<br />

summ<strong>at</strong>ion over ν to theterm ν =0.<br />

<strong>The</strong>symmetry V (−x) =−V (x) <strong>of</strong> the potential yields<br />

I(z) = 1<br />

π<br />

<br />

dx z<br />

2π<br />

2<br />

−π<br />

2 d<br />

V (x)<br />

dx<br />

+ iz d2<br />

<br />

V (x) .<br />

dx2 Dueto theanti-symmetry <strong>of</strong> thepotential thesecond term <strong>of</strong> the<strong>in</strong>tegral does not contributeand weobta<strong>in</strong><br />

theresult<br />

I(z) =<br />

∞<br />

l=−∞<br />

l 2 S 2 l (z) =z 2 ·〈F 2 〉.<br />

Herewehave<strong>in</strong>troduced theaverage<br />

〈F 2 〉≡ 1<br />

π<br />

2 d<br />

dx V (x)<br />

2π dx<br />

−π<br />

<strong>of</strong> thesquare<strong>of</strong> theforceF = −dV/dx act<strong>in</strong>g on theparticle.


Fortschr. Phys. 51, No. 4–5 (2003) 485<br />

C Resonance and anti-resonance<br />

For the<strong>phase</strong><strong>space</strong>analysis <strong>of</strong> theresonanceweneed to evalu<strong>at</strong>ethesum<br />

≡<br />

∞<br />

Sl−r(κ; x)Sr(κ ′ ; x). (30)<br />

W (+)<br />

l<br />

r=−∞<br />

<strong>The</strong>anti-resonance<strong>in</strong>volves thesum<br />

≡<br />

∞<br />

Sl−r(κ; x)Sr(κ; x + rπ). (31)<br />

W (−)<br />

l<br />

r=−∞<br />

Westart our discussion with thesum W (−)<br />

l and first show th<strong>at</strong> it is closely rel<strong>at</strong>ed to the sum W (+)<br />

l .For<br />

this purposewe<strong>in</strong>troducethenew <strong>in</strong>tegr<strong>at</strong>ion variable¯y ≡−y <strong>in</strong> the expansion coefficient<br />

which yields<br />

Sr(κ; x) ≡ 1<br />

π<br />

2π<br />

−π<br />

Sr(κ; x + rπ) = 1<br />

π<br />

2π<br />

dy e iry −iκ[V (x+y)−V (x−y)]<br />

e<br />

−π<br />

d¯y e i(−r)¯y e −iκ[V (x+rπ−¯y)−V (x+rπ+¯y)] .<br />

Due to the periodicity properties V (x +2mπ) =V (x) and V (x +(2m +1)π) =−V (x) <strong>of</strong> thepotential<br />

wef<strong>in</strong>d thesymmetry rel<strong>at</strong>ion<br />

Sr(κ; x + rπ) =S−r(κ; x)<br />

which br<strong>in</strong>gs thesum W (−)<br />

l<br />

W (−)<br />

l<br />

=<br />

∞<br />

r=−∞<br />

<strong>in</strong>to theform<br />

Sl−r(κ; x)S−r(κ; x).<br />

It is therefore convenient to evalu<strong>at</strong>e the sums<br />

≡<br />

∞<br />

Sl−r(κ; x)S±r(κ ′ ; x).<br />

C (±)<br />

l<br />

r=−∞<br />

For this purposewesubstitutethedef<strong>in</strong>ition <strong>of</strong> Sr, Eq. (32), <strong>in</strong>to thesum and <strong>in</strong>terchangethesumm<strong>at</strong>ion<br />

and <strong>in</strong>tegr<strong>at</strong>ion which leads to<br />

C (±)<br />

l<br />

1<br />

=<br />

4π2 π<br />

−π<br />

dy<br />

π<br />

−π<br />

dy ′<br />

<br />

r<br />

e −ir(y∓y′ )<br />

<br />

e ily e −i[κV(x,y)+κ′ V(x,y ′ )] .<br />

<strong>The</strong> sum <strong>in</strong> the curly brackets represents a comb <strong>of</strong> delta functions, Eq. (29), which allows us to perform<br />

the<strong>in</strong>tegral over y ′ , th<strong>at</strong> is<br />

C (±)<br />

l<br />

1<br />

=<br />

2π<br />

π<br />

−π<br />

(32)<br />

dy e ily e −i(κ±κ′ )V(x,y) = Sl(κ ± κ ′ ; x). (33)


486 M. Bienert et al.: <strong>Kicked</strong> <strong>rotor</strong> <strong>in</strong> <strong>Wigner</strong> <strong>phase</strong> <strong>space</strong><br />

Herewehaveused thesymmetry V(x, −y) =−V(x, y) follow<strong>in</strong>g from thedef<strong>in</strong>ition, Eq. (14), <strong>of</strong> V.<br />

Hence, <strong>in</strong> the sum W (+)<br />

l def<strong>in</strong>ed <strong>in</strong> Eq. (30) for a resonance the parameters κ and κ ′ add. At an antiresonancethesum<br />

W (−)<br />

l , Eq. (31), conta<strong>in</strong>s only thes<strong>in</strong>gleparameter κ. S<strong>in</strong>cethedifference<strong>of</strong> κ and<br />

κ ′ = κ appears <strong>in</strong> the explicit expression, Eq. (33), for C (−)<br />

l wef<strong>in</strong>d<br />

W (−)<br />

l<br />

= Sl(0; x) = 1<br />

π<br />

2π<br />

−π<br />

where δl,0 denotes the Kronecker-delta.<br />

dy e ily = δn,0<br />

Acknowledgements We thank I. Sh. Averbukh, B. G. Englert, S. Fishman, M. Freyberger, H. J. Korsch and Th. Seligman<br />

for many fruitful discussions. This work orig<strong>in</strong><strong>at</strong>ed when two <strong>of</strong> us (FH and WPS) were enjoy<strong>in</strong>g the wonderful<br />

hospitality <strong>of</strong> the <strong>University</strong> <strong>of</strong> <strong>Texas</strong> <strong>at</strong> Aust<strong>in</strong>. We thank our Texan colleagues, <strong>in</strong> particular D. Steck, for many stimul<strong>at</strong><strong>in</strong>g<br />

discussions dur<strong>in</strong>g this visit. Moreover, we are most gr<strong>at</strong>eful to F. DeMart<strong>in</strong>i and P. M<strong>at</strong>aloni for p<strong>at</strong>iently await<strong>in</strong>g<br />

the completion <strong>of</strong> this manuscript. <strong>The</strong> work <strong>of</strong> MB and WPS is supported by the Deutsche Forschungsgeme<strong>in</strong>schaft.<br />

MGR gr<strong>at</strong>efully acknowledges the support <strong>of</strong> the Welch Found<strong>at</strong>ion and the N<strong>at</strong>ional Science Found<strong>at</strong>ion.<br />

References<br />

[1] F. Haake, Quantum Sign<strong>at</strong>ures <strong>of</strong> Chaos (Spr<strong>in</strong>ger, Heidelberg, 2000).<br />

[2] R. Blümel and W. P. Re<strong>in</strong>hardt, Chaos <strong>in</strong> Atomic Physics (Cambridge <strong>University</strong> Press, Cambridge, 1997).<br />

[3] V. V. Sokolov, O. V. Zhirov, D. Alonso, and G. Cas<strong>at</strong>i, Phys. Rev. Lett. 84, 3566 (2000), and references there<strong>in</strong>.<br />

[4] A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Mechanical Action <strong>of</strong> Light on Atoms (World Scientific,<br />

S<strong>in</strong>gapore, 1990).<br />

[5] C. S. Adams, M. Sigel, and J. Mlynek, Phys. Rep. 240, 143 (1994).<br />

[6] F. L. Moore, J. C. Rob<strong>in</strong>son, C. F. Bharucha, Bala Sundaram, and M. G. Raizen, Phys. Rev. Lett. 75, 4598 (1995).<br />

[7] F. L. Moore, J. C. Rob<strong>in</strong>son, C. Bharucha, P. E. Williams, and M. G. Raizen, Phys. Rev. Lett. 73, 2974 (1994).<br />

[8] M. G. Raizen, Adv. At. Mol. Opt. Phys. 41, 43 (1999),<br />

[9] A. C. Doherty, K. M.D. Vant, G. H. Ball, N. Christensen, and R. Leonhardt, J. Opt. B: Quantum Semiclass. Opt.<br />

2, 605 (2000),<br />

[10] M. B. d’Arcy, R. M. Godun, M. K. Oberthaler, D. Cassettari, and G. S. Summy, Phys. Rev. Lett. 87, 074102<br />

(2001).<br />

[11] M. Bienert, F. Haug, W. P. Schleich, and M. G. Raizen , Phys. Rev. Lett. 89, 050403 (2002).<br />

[12] W. P. Schleich, Quantum Optics <strong>in</strong> PhaseSpace(Wiley-VCH, Berl<strong>in</strong>, 2001).<br />

[13] H. J. Korsch and M. V. Berry, Physica 3D, 627 (1981).<br />

[14] D. Cohen, Phys. Rev. A 43, 639 (1991).<br />

[15] W. H. Zurek, Physica Scripta T 76, 186 (1998).<br />

[16] S. Habib, K. Shizume, and W. H. Zurek, Phys. Rev. Lett. 80, 4361 (1998).<br />

[17] S. A. Gard<strong>in</strong>er, D. Jaksch, R. Dum, J. I. Cirac, and P. Zoller, Phys. Rev. A 62, 023612 (2000).<br />

[18] W. P. Schleich, F. Le Kien, and M. Pernigo, Phys. Rev. A 44, 2172 (1991).<br />

[19] F. M. Izrailev, Phys. Rep. 196, 299 (1990).<br />

[20] L. E. Reichl, <strong>The</strong> Transition to Chaos (Spr<strong>in</strong>ger, Berl<strong>in</strong>, 1992).<br />

[21] M. Bienert, F. Haug, W. P. Schleich, and T. H. Seligman, to be published.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!