24.07.2013 Views

Alexander Tadday Kirchhoff Institute for Physics ... - IRTG Heidelberg

Alexander Tadday Kirchhoff Institute for Physics ... - IRTG Heidelberg

Alexander Tadday Kirchhoff Institute for Physics ... - IRTG Heidelberg

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Application of Birks' law of<br />

scintillator nonlinearity in<br />

Geant4<br />

<strong>Alexander</strong> <strong>Tadday</strong><br />

<strong>Kirchhoff</strong> <strong>Institute</strong> <strong>for</strong> <strong>Physics</strong><br />

<strong>Heidelberg</strong> University<br />

<strong>Alexander</strong> <strong>Tadday</strong> <strong>Alexander</strong> - <strong>IRTG</strong> <strong>Tadday</strong> Meeting - <strong>IRTG</strong> - <strong>Heidelberg</strong> Meeting - 05.11.2010


2<br />

Outline<br />

• CALICE analogue hadronic calorimeter prototype<br />

• Birks’ law of scintillator nonlinearity<br />

• Measurement of Birks’ coefficient (MPIK <strong>Heidelberg</strong>)<br />

• Birks’ law in Geant4<br />

• Conclusion & Discussion<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


3<br />

CALICE analogue HCAL<br />

• Hadronic calorimeter prototype <strong>for</strong><br />

next e + e - collider<br />

• Sampling calorimeter with small plastic<br />

(polystyrene) tiles as active material<br />

• Monte Carlo studies<br />

➜ Scintillator properties needed<br />

• Nonlinearity: Birks’ law<br />

• Currently Birks’ coefficient from ZEUS<br />

calorimeter scintillator is used<br />

• Measure kB <strong>for</strong> the AHCAL scintillator<br />

Mirror<br />

Plastic scintillator tile (3×3×0.5cm 3 )<br />

Wavelength<br />

shifting fibre<br />

SiPM<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


4<br />

Birks’ Saturation Formula<br />

e -<br />

• Specific energy loss dE/dx is<br />

high be<strong>for</strong>e particle is stopped<br />

• High ionization density<br />

dI/dx α dE/dx<br />

• Quenching: Excited atoms<br />

can interact and may de-excite radiationless<br />

• Light yield per unit length dL/dx is reduced <strong>for</strong> high dE/dx<br />

• Non-linearity described<br />

by Birks’ <strong>for</strong>mula:<br />

scintillator<br />

dE/dX [MeV/cm]<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0.0005 0.001 0.0015 0.002<br />

kin energy [MeV]<br />

Electron collision stopping power<br />

(Berger-Seltzer eq.)<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


Experimental Setup (MPIK <strong>Heidelberg</strong>)<br />

5<br />

• PMT measures light yield<br />

• Germanium detector measures Energy<br />

of Compton scattered photon EGe<br />

• Coincidence trigger PMT and Ge-detector<br />

• Measured energy range of electrons<br />

~ 30 - 140 keV<br />

• Thanks to Christoph Aberle and Stefan<br />

Wagner <strong>for</strong> the ability to use the setup<br />

• Detailed setup description in [1]<br />

Scintillator<br />

Germanium<br />

detector<br />

137 Cs<br />

moveable rail<br />

PMT<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


Experimental Setup (MPIK <strong>Heidelberg</strong>)<br />

5<br />

• PMT measures light yield<br />

• Germanium detector measures Energy<br />

of Compton scattered photon EGe<br />

• Coincidence trigger PMT and Ge-detector<br />

• Measured energy range of electrons<br />

~ 30 - 140 keV<br />

• Thanks to Christoph Aberle and Stefan<br />

Wagner <strong>for</strong> the ability to use the setup<br />

• Detailed setup description in [1]<br />

Scintillator<br />

Germanium<br />

detector<br />

137 Cs<br />

moveable rail<br />

PMT<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


6<br />

Total Light-Yield<br />

We have measured total Light-Yield (LY)<br />

Problem: dL/dx not easily measurable<br />

divide by dE/dx<br />

Light-Yield of a particle with energy E0:<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


7<br />

kB Measurement (standalone)<br />

• Experimental data:<br />

Light-yield as function<br />

of electron energy<br />

• Fit with calculated<br />

Light yield<br />

➜ Fit parameter kB<br />

Light yield [a.u.]<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14<br />

Fit function: Kinetic energy [MeV]<br />

Fit result:<br />

kB=0.0151 cm/MeV<br />

Currently used value:<br />

kB = 0.007943 cm/MeV<br />

M. Hirschberg et. al.,<br />

IEEE Trans. Nucl. Sc., Vol. 39, No. 4, 1992<br />

Data<br />

Birks' model<br />

Linear fit (fit range > 0.12MeV)<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


8<br />

Birks’ coefficient in Geant4<br />

• Geant4 is step based:<br />

E0 E1 En-1 En=0<br />

dx1 dx2 dxn<br />

• Steps can’t be arbitrarily small because of computational<br />

ef<strong>for</strong>t<br />

• Light-Yield in Geant4 (secondaries not considered):<br />

• Converges only against integral <strong>for</strong> small steps.<br />

This is not the case <strong>for</strong> default settings in Geant4!<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


8<br />

Birks’ coefficient in Geant4<br />

• Geant4 is step based:<br />

E0 E1 En-1 En=0<br />

dx1 dx2 dxn<br />

• Steps can’t be arbitrarily small because of computational<br />

ef<strong>for</strong>t<br />

• Light-Yield in Geant4 (secondaries not considered):<br />

• Converges only against integral <strong>for</strong> small steps.<br />

This is not the case <strong>for</strong> default settings in Geant4!<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


9<br />

Birks’ coefficient in Geant4<br />

E<br />

!<br />

/<br />

vis<br />

E<br />

!<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Curve shows 120keV e - with<br />

kB=0.0151cm/MeV<br />

Area under curve<br />

represents the<br />

visible energy<br />

0 0.02 0.04 0.06 0.08 0.1 0.12<br />

Kinetic energy [MeV]<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


9<br />

Birks’ coefficient in Geant4<br />

Geant4 with default<br />

settings and<br />

kB=0.0151cm/MeV<br />

Visible energy is<br />

! E<br />

/<br />

vis<br />

! E<br />

1<br />

0.8<br />

overestimated! Area under curve<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Curve shows 120keV e - with<br />

kB=0.0151cm/MeV<br />

step 2<br />

represents the<br />

visible energy<br />

step 1<br />

0 0.02 0.04 0.06 0.08 0.1 0.12<br />

Kinetic energy [MeV]<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


9<br />

Birks’ coefficient in Geant4<br />

Geant4 with default<br />

settings and<br />

kB=0.0151cm/MeV<br />

Visible energy is<br />

Possible solution:<br />

Use “effective” Birks’<br />

coefficient to get the<br />

correct result<br />

kB=0.0186cm/MeV<br />

! E<br />

/<br />

vis<br />

! E<br />

1<br />

0.8<br />

overestimated! Area under curve<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Curve shows 120keV e - with<br />

kB=0.0151cm/MeV<br />

step 2<br />

represents the<br />

visible energy<br />

step 1<br />

0 0.02 0.04 0.06 0.08 0.1 0.12<br />

Kinetic energy [MeV]<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


10<br />

effective Birks' coefficient [cm/MeV]<br />

Birks’ coefficient in Geant4<br />

0.019<br />

0.018<br />

0.017<br />

0.016<br />

0.015<br />

0.014<br />

0.013<br />

0.012<br />

10<br />

-14<br />

-12<br />

10<br />

-10<br />

10<br />

-8<br />

10<br />

-6<br />

10<br />

-4<br />

10 10 1<br />

Final range parameter [m]<br />

qualitatively:<br />

smaller steps larger steps<br />

default Geant4<br />

settings:<br />

α = 0.2<br />

Final range = 1mm<br />

-2<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


10<br />

effective Birks' coefficient [cm/MeV]<br />

Birks’ coefficient in Geant4<br />

0.019<br />

0.018<br />

0.017<br />

0.016<br />

0.015<br />

0.014<br />

0.013<br />

0.012<br />

10<br />

qualitatively:<br />

-14<br />

Main disadvantage:<br />

need different effective Birks’<br />

coefficient <strong>for</strong> different<br />

parameter configuration<br />

-12<br />

10<br />

-10<br />

10<br />

-8<br />

10<br />

-6<br />

10<br />

-4<br />

10 10 1<br />

Final range parameter [m]<br />

smaller steps larger steps<br />

default Geant4<br />

settings:<br />

α = 0.2<br />

Final range = 1mm<br />

-2<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


11<br />

• Step-wise integral<br />

calculation of visible<br />

energy<br />

• Use method of Monte<br />

Carlo integration<br />

(VEGAS algorithm)<br />

• Use pre-calculated<br />

dE/dX to increase<br />

speed<br />

Method Improvement<br />

Default Geant4 Default Geant4<br />

E<br />

!<br />

/<br />

vis<br />

E<br />

!<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.02 0.04 0.06 0.08 0.1 0.12<br />

Kinetic energy [MeV]<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


12<br />

• Birks’ coefficient<br />

independent of final<br />

range parameter<br />

(step-size)<br />

• Residual fluctuation<br />

from production of<br />

secondaries (deltaelectrons)<br />

Method Comparison<br />

effective Birks' coefficient [cm/MeV]<br />

0.019 Default Geant4<br />

0.018<br />

0.017<br />

0.016<br />

0.015<br />

0.014<br />

0.013<br />

0.012<br />

10<br />

-14<br />

-12<br />

10<br />

Integral method<br />

-10<br />

10<br />

-8<br />

10<br />

-6<br />

10<br />

10 10 1<br />

Final range parameter [m]<br />

qualitatively:<br />

smaller steps larger steps<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010<br />

-4<br />

-2


13<br />

Conclusion & Outlook<br />

• Measured Birks’ coefficient higher than currently used one<br />

Measured value: kB = 0.0151cm/MeV (“old”: kB = 0.007943cm/MeV)<br />

• Default Geant4: Effective Birks’ coefficient needed in order to describe<br />

data correctly (kB is step-size dependent)<br />

• Integral method allows to calculate precisely the visible energy deposition<br />

<strong>for</strong> each step (kB is step-size independent)<br />

• To Do<br />

• Study influence of new kB and new method on simulated particle<br />

showers<br />

• Test per<strong>for</strong>mance of integral method<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


14<br />

Reference(s)<br />

• [1] Stefan Wagner, “Ionization Quenching by Low Energy Electrons in the Double Chooz<br />

Scintillators”, Diploma Thesis (2010)<br />

<strong>Alexander</strong> <strong>Tadday</strong> - <strong>IRTG</strong> Meeting - 05.11.2010


Backup<br />

15


16<br />

Step-limitation in GEANT4<br />

• Every registered process sets a limit on the the step-size<br />

• The smallest limit is chosen <strong>for</strong> each step<br />

• For ionization process, Stepping function determines the<br />

maximum step-size allowed Δxmax<br />

- ρ: Final range (Default value: 1mm)<br />

- α: dR/R (Default value: 0.2)<br />

(high energy)<br />

(low energy)<br />

➜ Small values of ρ and α result in a small step size<br />

<strong>Alexander</strong> <strong>Tadday</strong> - CALICE Collaboration Meeting - Casablanca - 23.09.2010


17<br />

[m]<br />

lim<br />

S<br />

!<br />

0.0035<br />

0.003<br />

0.0025<br />

0.002<br />

0.0015<br />

0.001<br />

0.0005<br />

Final range<br />

ρR=1mm<br />

Step Function<br />

“slope”<br />

αR=0.2<br />

0<br />

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009<br />

Range [m]<br />

<strong>Alexander</strong> <strong>Tadday</strong> - CALICE Collaboration Meeting - Casablanca - 23.09.2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!