24.07.2013 Views

Thesis defense slides

Thesis defense slides

Thesis defense slides

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

An investigation of precision and scaling issues in<br />

trapped ion and nuclear spin quantum simulators<br />

Robert J. Clark<br />

<strong>Thesis</strong> Defense<br />

Department of Physics<br />

Massachusetts Institute of Technology<br />

11 March 2009<br />

(1/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Simulation: a very useful tool<br />

Idea:<br />

Simulate one system with another that is easier to control.<br />

Target system<br />

↓<br />

Model system<br />

A great approach!<br />

Much control over<br />

parameters.<br />

Space, time resources scale<br />

linearly with system size.<br />

But with limitations...<br />

Noise<br />

Control precision<br />

(2/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Digital simulation<br />

Analog simulation is largely replaced by digital: more resilience to<br />

noise with an affordable increase in resources!<br />

http://dcoward.best.vwh.net/<br />

Digital v. analog<br />

→<br />

Analog: total error limited by accumulation of intrinsic errors.<br />

Digital: precision may be increased efficiently.<br />

(3/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Quantum simulation<br />

Quantum systems hard to simulate!<br />

Simulation of n two-level systems (qubits) on a classical computer<br />

requires ∝ 2 n bits just to write the state down!<br />

Classical computers currently limited to ∼ 36 qubits...<br />

DeRaedt et al., Comput. Phys. Commun. 176, 121 (2007).<br />

A possible way out: quantum simulation<br />

Quantum simulation maps a target quantum system to a more<br />

controllable model system.<br />

Feynman, Int. J. Theor. Phys. 21, 467 (1982); Lloyd, Science 273, 1073 (1996).<br />

(4/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Why is quantum simulation so interesting?<br />

Resources required scale efficiently with system size!<br />

Digital<br />

Analog<br />

Digital quantum simulation<br />

Discrete pulses.<br />

Error correction possible.<br />

Classical Quantum<br />

Space: 2n Time: T 22n Space: n<br />

Time: T n2 Space: 2n Space: n<br />

Time: T Time: T<br />

Here n is the number of qubits simulated<br />

Analog quantum simulation<br />

Continuous controls.<br />

Sensitive to noise.<br />

(5/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Quantum simulation: prior art<br />

Analog quantum simulation<br />

Much success with neutral atoms.<br />

Greiner et al., Nature 415, 39 (2002).<br />

Digital quantum simulation<br />

Shin et al., Nature 451, 689 (2008).<br />

NMR with small qubit numbers (examples to follow).<br />

(6/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Problems for quantum simulation<br />

1. Precision<br />

Quantum simulation generally inefficient w.r.t. precision.<br />

Why? Every time you measure, state collapses.<br />

Digital<br />

Analog<br />

Resources required:<br />

Classical Quantum<br />

Space: 2n O(log 1/ǫ)<br />

Time: T22n Space: 2n Time: T<br />

Precision: O(1/ǫfix)<br />

Space: n<br />

Time: Tn 2 O(1/ǫ)<br />

Space: n<br />

Time: T O(1/ǫ)<br />

Here n is qubit number, T is simulation time ǫ is the error, and ǫfix is the fixed error<br />

of an analog device.<br />

(7/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Problems for quantum simulation<br />

2. Scalability<br />

It’s hard to build a reliable large system from faulty components.<br />

Task grows harder, the more control is required.<br />

For instance:<br />

Optical lattice: many particles, global control.<br />

Trapped ions: ≤ 8 particles (so far), exquisite individual ion<br />

control.<br />

(8/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

<strong>Thesis</strong> outline<br />

Precision: NMR simulation of BCS model<br />

How much precision can be obtained experimentally using digital<br />

quantum simulation?<br />

Scaling: 2-D ion arrays<br />

How can we build an ion trap for analog quantum simulations of<br />

frustrated spin systems?<br />

Scaling: Electronic networking of ions<br />

Can electronic networking be used to scale up ion trap quantum<br />

simulation?<br />

(9/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

<strong>Thesis</strong> outline<br />

Precision: NMR simulation of BCS model<br />

How much precision can be obtained experimentally using digital<br />

quantum simulation?<br />

Scaling: 2-D ion arrays<br />

How can we build an ion trap for analog quantum simulations of<br />

frustrated spin systems?<br />

Scaling: Electronic networking of ions<br />

Can electronic networking be used to scale up ion trap quantum<br />

simulation?<br />

(10/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Motivation: find the spectrum of Hamiltonian HT<br />

1. Initialize<br />

{|ΨT 〉} → {|ΨM〉}<br />

Prepare |Ψ〉 = |E〉 + |G〉<br />

Goal: calculate ∆ = 〈E|HT |E〉 − 〈G|HT |G〉<br />

3. Measure some M for each t.<br />

∆ = 2<br />

2. Approximate HT<br />

Do |Ψ(t)〉 = U |Ψ0〉.<br />

(U = exp(−itHT/))<br />

4. Fourier transform<br />

∆ = 2<br />

(11/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Digital quantum simulation: prior art<br />

Most digital quantum simulations have used nuclear spins with a<br />

small number of qubits.<br />

Truncated harmonic oscillator (2<br />

qubit)<br />

Observed oscillations at<br />

simulated frequency.<br />

Somaroo et al., PRL 82, 5381 (1999).<br />

Fano-Anderson model. (2 qubit)<br />

Eigenvalues determined from this<br />

spectrum.<br />

Negrevene et al, PRA 71, 032344 (2005).<br />

(12/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Problem: what limits the precision?<br />

Previously known: Fourier sampling rate<br />

Uncertainty ǫFT ∼ 1/N.<br />

N limited by coherence time.<br />

Consequence of wave function<br />

collapse.<br />

Unknown: Effect of control errors<br />

How do control errors affect ǫ?<br />

Where do errors come from?<br />

Can they be efficiently<br />

compensated?<br />

(13/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

The NMR experiment<br />

Our experiment:<br />

Experimental system:<br />

Strong static field B0 ˆz.<br />

Rotations about ˆx and ˆy with rf<br />

radiation.<br />

Inductive readout of sample<br />

magnetization.<br />

Calculate ∆ = E(|E1〉) − E(|G〉) for BCS<br />

Hamiltonian:<br />

HBCS = n νm<br />

m=1 2 (−Zm) + Vml<br />

m


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Experiment: results<br />

One Hamiltonian simulated:<br />

1 Requires large number of<br />

single-qubit “refocusing”<br />

pulses.<br />

2 Method W2 compensates<br />

for evolution during pulses<br />

(W1 does not).<br />

3 Error within ǫFT only with<br />

error compensation!<br />

The source of these control errors:<br />

They arise from “always-on” scalar coupling during<br />

single-qubit pulses.<br />

For another Hamiltonian with fewer control pulses, method<br />

W1 resulted in error ǫFT.<br />

Brown, Clark, and Chuang, Phys. Rev. Lett. 97, 050504 (2006).<br />

(15/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Discussion<br />

Can’t we use quantum error correction?<br />

Yes. It will cost us time ∼ O(1/ǫ r ),r ≥ 2. Why?<br />

Trotter approximation needed to approximate HA, HB for<br />

[HA,HB] = 0.<br />

With this approximation, ǫ ∼ 1/N, with N number of gates.<br />

Fault-tolerant gates require roughly equal time.<br />

Can we efficiently compensate systematic errors?<br />

Yes, we need poly(n) time for practical purposes (but not to<br />

arbitrary order). Brown, Harrow, and Chuang, PRA 70 052318 (2004).<br />

Even so, compensating gates → fewer operations due to<br />

coherence time.<br />

(16/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Summary: the precision of digital quantum simulation<br />

Digital<br />

Analog<br />

Resources required:<br />

Classical Quantum<br />

Space: 2nO(log 1/ǫ)<br />

Time: T22n Space: 2n Time: T<br />

Precision: O(1/ǫfix)<br />

Space: n<br />

Time: Tn 2 O(1/ǫ r )<br />

Space: n<br />

Time: T O(1/ǫ)<br />

Here n is qubit number, T is simulation time ǫ is the error, and ǫfix is the fixed error<br />

of an analog device.<br />

Main results<br />

Quantum simulation is inefficient w.r.t. precision.<br />

Errors lead generally to Time ∼ O(1/ǫ r ), r ≥ 2.<br />

This constrains the utility of digital quantum simulation.<br />

(17/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

<strong>Thesis</strong> outline<br />

Precision: NMR simulation of BCS model<br />

How much precision can be obtained experimentally using digital<br />

quantum simulation?<br />

Error correction requires time ∼ 1/ǫ r , r ≥ 2. Control errors can dominate.<br />

Scaling: 2-D ion arrays<br />

How can we build an ion trap for analog quantum simulations of<br />

frustrated spin systems?<br />

Scaling: Electronic networking of ions<br />

Can electronic networking be used to scale up ion trap quantum<br />

simulation?<br />

(18/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

<strong>Thesis</strong> outline<br />

Precision: NMR simulation of BCS model<br />

How much precision can be obtained experimentally using digital<br />

quantum simulation?<br />

Error correction requires time ∼ 1/ǫ r , r ≥ 2. Control errors can dominate.<br />

Scaling: 2-D ion arrays<br />

How can we build an ion trap for analog quantum simulations of<br />

frustrated spin systems?<br />

Scaling: Electronic networking of ions<br />

Can electronic networking be used to scale up ion trap quantum<br />

simulation?<br />

(19/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Motivation: a scalable, controllable system<br />

Why ions?<br />

1 Potentially long (> seconds) coherence times.<br />

2 Exquisite control:<br />

> 99% two-qubit operation fidelity.<br />

> 99% measurement fidelity.<br />

3 Many ideas for scalability:<br />

Moving ions.<br />

Photonic networking.<br />

Electronic networking.<br />

Our goal: analog simulation with ions<br />

Quantum spin models, Bose-Hubbard physics, quantum fields, ...<br />

May require scaling to “only” tens of ions!<br />

(20/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Analog simulations with trapped ions: prior art<br />

Several interesting proposals:<br />

Effective spin systems Porras & Cirac PRL 92 207901 (2004).<br />

Bose-Hubbard model Porras & Cirac PRL 92 263602 (2004).<br />

Quantum fields in an expanding universe Alsing et al., PRL 94<br />

220401 (2005).<br />

But so far, few experiments:<br />

Nonlinear interferometer<br />

Leibfried et al., PRL 89, 247901 (2002).<br />

Two-spin Ising model<br />

Friedenauer et al., Nature Physics 4, 757<br />

(2008).<br />

(21/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Specific goal: quantum simulation of frustrated spins<br />

Analog simulation of spin models<br />

Spin states mapped to internal states of ions<br />

State-dependent forces from lasers + Coulomb =<br />

Effective spin system!<br />

Spin frustration<br />

observable in<br />

2-D.<br />

(22/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

2-D Ion Arrays<br />

Linear, mm-scale ion traps are well-developed. But analog<br />

quantum simulation of spin frustration requires two dimensions!<br />

Penning trap<br />

Itano et al., Science<br />

279 5351 (1998).<br />

Some previous work:<br />

Single Paul trap<br />

Block et al., J. Phys.<br />

B 33 L375 (2000).<br />

Proposed Paul trap array<br />

Chiaverini & Lybarger, PRA 77 022324<br />

(2008).<br />

(23/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Outline of 2-D ion array work<br />

Our goal<br />

Design a trap for 2-D ion arrays that is suitable for simulating spin<br />

frustration.<br />

How to evaluate suitability<br />

We focus on transverse Ising model: H = <br />

i,j Ji,jZiZj + <br />

i BiXi.<br />

We require the ability to tune J; J ∝ 1/(ω4d 3 ).<br />

J related to ion motional coupling rate ωex ∝ 1/(ωd3 ).<br />

We look at two paradigms:<br />

Array of individual Paul traps.<br />

Ion crystal in a single trapping region.<br />

(24/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

2-D Lattice ion trap<br />

The “classic” ring<br />

Paul trap.<br />

Lattice trap advantages:<br />

→ Remove top endcap to “infinity”; iterate to<br />

create a lattice.<br />

Lattice geometry determined by trap electrodes and choice of<br />

sites loaded.<br />

Amenable to proposal for using rf and magnetic fields<br />

(eschewing most lasers).<br />

(25/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Lattice ion trap experimental setup<br />

A test trap was mounted in a UHV system (O(10 −9 torr)) for<br />

trapping 88 Sr + .<br />

Steel mesh (d = 1.64 mm) mounted above CPGA with UHV epoxy and glass spacers.<br />

(26/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Lattice ion trap measurements<br />

Trapping observed; motional frequencies match simulations.<br />

Ion images: cloud and crystal<br />

Clark, Lin, Brown, and Chuang, J. Appl. Phys. 105 013114 (2009).<br />

(27/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Lattice ion trap measurements<br />

Trapping observed; motional frequencies match simulations.<br />

Secular frequency measurement<br />

Clark, Lin, Brown, and Chuang, J. Appl. Phys. 105 013114 (2009). (28/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Coupling rates I: motional coupling rate<br />

Next step: evaluate the design for quantum simulation.<br />

We need to calculate the motional coupling rate ωex vs. d.<br />

Comparison of ωex for lattice and linear traps.<br />

Stiffness of lattice trap leads to lowered coupling.<br />

Clark, Lin, Brown, and Chuang, J. Appl. Phys. 105 013114 (2009).<br />

(29/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Coupling rates II: simulated J-coupling<br />

How does this coupling translate into a simulated coupling rate?<br />

J vs. d for lattice and linear trap.<br />

Ion confined too weakly for Jlattice → Jlinear.<br />

Clark, Lin, Brown, and Chuang, J. Appl. Phys. 105 013114 (2009).<br />

(30/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Surface-electrode elliptical traps<br />

Problem:<br />

Lattice trap coupling rates scale poorly with trap size.<br />

Solution idea:<br />

Form 2-D crystal in the same trap region.<br />

One example: surface-electrode (SE)<br />

elliptical trap<br />

Three nondegenerate motional<br />

frequencies.<br />

SE amenable to microfabrication.<br />

−→ Higher coupling, lower micromotion<br />

Inclusion of B-field gradients?<br />

(31/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Experimental apparatus: 4 K closed-cycle cryostat<br />

Reasons to use a cryostat:<br />

Heating rates greatly reduced at 4 K.<br />

Cryopumping enables rapid pumpdown to UHV.<br />

(32/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Experimental measurements: ion crystals<br />

Small ion crystals have been confined in the elliptical trap. Two<br />

examples:<br />

Measured separations<br />

Two ions Four ions<br />

Two ions: dy = 16.5 µm (Camera magnification 4.5)<br />

Four ions: dy = 28±3 µm, dx = 17±3 µm.<br />

Four ions (theory): dy = 29.6 µm, dx = 17.1 µm.<br />

(33/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Micromotion and quantum simulation<br />

Micromotion is<br />

a small-amplitude, driven oscillation of the ion at the rf drive<br />

frequency.<br />

problematic, because it modulates the laser phase at the ion<br />

position, increases Doppler shifts, and in an ion cloud, it<br />

causes heating.<br />

How we model it:<br />

J coupling depends on d: J ∼ 1/(ω 4 d 3 ).<br />

Numerically integrate equations of motion (with two ions).<br />

Simulate H = J(t) (Z1Z2) + B (X1 + X2).<br />

(34/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Micromotion effects for two qubit Ising model<br />

Note: in the axial (ˆz) direction, all micromotion can be<br />

compensated! We focus on the radial (ˆx,ˆy) directions.<br />

Plot of a single trajectory of<br />

〈Z1 + Z2〉, J = −B = 1 kHz.<br />

Same plot with<br />

Javg = 1.035 kHz, B = -1 kHz.<br />

Micromotion leads to control errors that may be calculated and corrected<br />

if effective controls are available for each pair of ions.<br />

(35/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Summary of 2-D ion array work<br />

Two new paradigms for trapping 2-D arrays of ions<br />

1 Lattice trap<br />

2 Surface-electrode elliptical trap<br />

Lattice trap:<br />

Well-defined lattice structure.<br />

Some good fabrication ideas −→<br />

Coupling rates poor compared to<br />

linear/ elliptical trap.<br />

Ziliang Lin, Yufei Ge<br />

Elliptical trap:<br />

Stronger coupling rates than lattice.<br />

Micromotion → systematic errors. (36/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

<strong>Thesis</strong> outline<br />

Precision: NMR simulation of BCS model<br />

How much precision can be obtained experimentally using digital<br />

quantum simulation?<br />

Error correction requires time ∼ 1/ǫ r , r ≥ 2. Control errors can dominate.<br />

Scaling: 2-D ion arrays<br />

How can we build an ion trap for analog quantum simulations of<br />

frustrated spin systems?<br />

Ions in arrays of individual traps have poor interaction rates, rates are high with ions<br />

in the same trap (e.g. elliptical trap), as long as micromotion control errors can be<br />

compensated.<br />

Scaling: Electronic networking of ions<br />

Can electronic networking be used to scale up ion trap quantum<br />

simulation?<br />

(37/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

<strong>Thesis</strong> outline<br />

Precision: NMR simulation of BCS model<br />

How much precision can be obtained experimentally using digital<br />

quantum simulation?<br />

Error correction requires time ∼ 1/ǫ r , r ≥ 2. Control errors can dominate.<br />

Scaling: 2-D ion arrays<br />

How can we build an ion trap for analog quantum simulations of<br />

frustrated spin systems?<br />

Ions in arrays of individual traps have poor interaction rates, rates are high with ions<br />

in the same trap (e.g. elliptical trap), as long as micromotion control errors can be<br />

compensated.<br />

Scaling: Electronic networking of ions<br />

Can electronic networking be used to scale up ion trap quantum<br />

simulation?<br />

(38/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Motivation<br />

2-D static arrays only semi-scalable<br />

Electronic networking<br />

Concept: use image charges induced in a wire to connect ions in<br />

different traps.<br />

Proposed Penning trap array, with focus on<br />

interactions between single electrons<br />

(Stahl et al., EJPD 32 139 (2005)).<br />

Proposed interface between ion and<br />

superconducting qubits<br />

(Tian et al., EJPD 32 201 (2005)).<br />

(39/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Problem Statement<br />

Research questions<br />

Two trapped ions, one wire.<br />

1 What are the coupling rates (ωex,J) and decoherence rates in<br />

theory?<br />

2 How does the wire affect the electric potential seen by a single<br />

ion?<br />

(40/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

The circuit model<br />

They derived:<br />

Heinzen and Wineland treated this problem:<br />

PRA 42, 2977 (1990).<br />

For L1 = L2 = L, C1 = C2, ω = 1/ √ LC1,<br />

Motional coupling rate ωex given by<br />

ωex = <br />

1 1/2<br />

2ωLC<br />

(41/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Estimating the coupling rate<br />

System model in detail:<br />

Derivation of constants in circuit model<br />

L ∝ mH2<br />

ec ≈ 6 × 104 H.<br />

C1,2 = 1/(ω 2 L) ≈ 4 × 10 −19 F.<br />

Then C ≈ 10 −15 F gives ωex ≈ 1 kHz, J ≈ 200 Hz.<br />

Daniilidis, Lee, Clark, Narayanan, Häffner, submitted to J. Phys. B<br />

(42/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Decoherence<br />

Consider two main sources:<br />

1 Dissipation of the current.<br />

Current is ∼ 1 fA, → 2 × 10 5 s needed to dissipate one<br />

quantum with R = 0.6 Ω.<br />

2 Motional heating.<br />

1 Johnson noise: Estimated at ∼ 0.1 quantum/s at 300 K and<br />

ion-wire distance d ≡ H − h = 50 µm.<br />

2 Anomalous heating: Much higher heating rates:<br />

O(10 6 quanta/s) at 300 K, in larger traps.<br />

Again, cryogenic cooling probably needed.<br />

Daniilidis, Lee, Clark, Narayanan, Häffner, submitted to J. Phys. B<br />

(43/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Experimental apparatus<br />

1 Microfabricated surface-electrode gold trap.<br />

2 25 µm diameter gold wire.<br />

3 Stack of four piezoelectric nanopositioners.<br />

In collaboration with the University of Innsbruck, Austria.<br />

(44/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Experimental measurements<br />

We probe the dc and ac effects of the wire on the trap potential by<br />

measuring:<br />

Vertical compensation voltage vs. d.<br />

Indicates unknown stray charge on the<br />

wire.<br />

Two secular frequencies vs. d. Capacitive<br />

coupling between wire and rf drive has a<br />

significant effect.<br />

(45/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Summary: Electronic networking<br />

Theoretical results<br />

1 Coupling rates of ωex ∼ 1 kHz, J ∼ 200 Hz calculated.<br />

2 Decoherence (in theory) sufficiently low at 4 K.<br />

Experimental results<br />

1 Wire strongly influences potential:<br />

Frequencies ωx,y ∝ d −2 .<br />

Strong dc effect too.<br />

2 But this is also an opportunity!<br />

Measure charge, capacitance of the wire using the ion?<br />

(46/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Conclusions<br />

How much precision can be obtained experimentally using digital<br />

quantum simulation?<br />

Quantum simulation generally inefficient w.r.t. precision.<br />

Random and systematic errors lead to time ∼ 1/ǫ r , r ≥ 2.<br />

How can we build an ion trap for analog quantum simulations of<br />

frustrated spin systems?<br />

Ions in arrays of individual traps have poor J-coupling rates.<br />

J is high with ions in the same trap (e.g. elliptical trap), as long as<br />

micromotion control errors can be compensated.<br />

Can electronic networking be used to scale up ion trap quantum<br />

simulation?<br />

Coupling and decoherence rates promising in theory.<br />

Use a single ion as a probe of a macroscopic conductor!<br />

(47/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Outlook<br />

Digital quantum simulation<br />

Inefficiency → massive resource requirements.<br />

Solving hard problems basically requires large-scale quantum<br />

computer.<br />

Analog quantum simulation with ions<br />

A way to solve hard problems without the resources required<br />

for digital quantum simulation.<br />

Ions need to occupy the same trap → limited system size.<br />

A promising solution: interconnect ions in different traps<br />

Transmit information using photons or (in this thesis)<br />

electrons.<br />

Unlimited system size, no fundamental obstacle to scaling.<br />

(48/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Publications<br />

In this presentation<br />

1 Brown, Clark, and Chuang, Phys. Rev. Lett. 97 050504 (2006).<br />

2 Clark, Lin, Brown, and Chuang, J. Appl. Phys. 105 013114 (2009).<br />

3 Daniilidis, Lee, Clark, Narayanan, and Häffner, submitted to J.<br />

Phys. B.<br />

4 Clark, Diab, Lin, and Chuang, in preparation.<br />

5 Clark, Daniilidis, Narayanan, and Häffner, in preparation.<br />

Others<br />

1 Brown, Clark, Labaziewicz, Richerme, Leibrandt, and Chuang, Phys.<br />

Rev. A. 75 015401 (2007).<br />

2 Leibrandt, Clark, Labaziewicz, Antohi, Bakr, Brown, and Chuang,<br />

Phys. Rev. A 76 055403 (2007).<br />

3 Leibrandt, Labaziewicz, Clark, Chuang, Pei, Low, Frahm, and<br />

Slusher, in preparation.<br />

(49/50)


Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions<br />

Acknowledgements<br />

My thesis committee<br />

Isaac Chuang, Wolfgang Ketterle, Leonid Levitov<br />

Many collaborators<br />

Ken Brown, Jarek Labaziewicz, Dave Leibrandt, Tongyan Lin,<br />

Ziliang Lin, Kenan Diab, Tony Lee, Nikos Daniilidis, Sankar<br />

Narayanan, Hartmut Häffner, Rainer Blatt, Paul Antohi, Yufei Ge,<br />

Shannon Wang, ...<br />

(50/50)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!