Exergy evolution of the mineral capital on earth - circe

Exergy evolution of the mineral capital on earth - circe Exergy evolution of the mineral capital on earth - circe

teide.cps.unizar.es
from teide.cps.unizar.es More from this publisher
24.07.2013 Views

26 THE GEOCHEMISTRY OF THE EARTH. KNOWN FACTS Table 2.4. Volume ong>ofong> Oceans and Seas. Adapted from [85] Name Volume, M km 3 Atlantic Ocean without marginal seas 324,6 with marginal seas 354,7 Pacific Ocean without marginal seas 707,6 with marginal seas 723,7 Indian Ocean without marginal seas 291 with marginal seas 291,9 Arctic Ocean 17 Mediterranean Sea and Black Sea 4,2 Gulf ong>ofong> Mexico and Caribbean Sea 9,6 Australasian Central Sea 9,9 Hudson Bay 0,16 Baltic Sea 0,02 North Sea 0,05 English Channel 0,004 Irish Sea 0,006 Sea ong>ofong> Okhotsk 1,3 Bering Sea 3,33 The world ocean 1.370 sources after ong>theong> process ong>ofong> desalination and as chlorine and bromine sources 2 . Neverong>theong>less, its salinity avoids seawater to have more economic uses than ong>theong> oong>theong>r types ong>ofong> water reservoirs mentioned before. In fact it is frequently considered to be a drain raong>theong>r than a resource. 2.4.1.1 The composition ong>ofong> ong>theong> sea Despite ong>theong>ir overall size, ong>theong> oceans are sufficiently uniform to make description ong>ofong> ong>theong>ir chemical nature relatively straightforward. Studies have shown that ong>theong> relative compositions ong>ofong> major components: N a + , M g2+ , Ca2+ , K + , Cl − , SO −2 4 , Sr 2+ , HBO − 3 , CO2− 3 , B(OH) 3, B(OH) − 4 , F − ong>ofong> seawater were constant [69], [37], [264] and [224]. The first six ions make up 99,4% ong>ofong> ong>theong> dissolved salts (see table 2.5). Most ong>ofong> ong>theong> chemicals in ong>theong> ocean are brought from ong>theong> water ong>ofong> rivers, which in turn receive ong>theong>m from rocks ong>ofong> ong>theong> crust that have suffered ong>theong> process ong>ofong> weaong>theong>ring. An average composition ong>ofong> river waters given by Livingstone [197] is listed in table 2.8. It is remarkable ong>theong> difference between river and ocean chemical compositions. The explanation ong>ofong> that relies on ong>theong> residence time ong>ofong> ong>theong> ions. Most abundant ions found in seawater have residence times ong>ofong> above one million years [137]. The salinity ong>ofong> ocean water is about 35 parts per thousand by mass, but 2 See sections 3.4.16 and 3.4.10 for more details.

The hydrosphere 27 Table 2.5. The composition ong>ofong> average seawater. Adapted from [224] Substance Concentration, mg/g Cl − 19,351 N a + 10,784 M g2+ 1,284 SO2− 4 Ca 2,713 2+ 0,412 K + 0,399 HCO − 3 Br 0,107 − 0,067 Sr 2+ 0,008 CO2− 3 B(OH) 0,048 − 4 F 0,003 − 0,013 B(OH) 3 0,009 Sum 35,198 variations from about 33 to 38 parts per thousand are observed in ong>theong> open oceans. The variation in salinity results from a number ong>ofong> physical processes that control ong>theong> salt content ong>ofong> seawater such as temperature, rainfall, ice melting or land runong>ofong>f. But not all seawater substances have a crustal origin. In fact, ong>theong> sea is a huge reservoir for many atmospheric substances such as carbon dioxide, a major contributor to climate change. Through ong>theong> air-sea interaction processes, all ong>theong> components ong>ofong> air can be expected to find ong>theong>ir way into ong>theong> ocean. Additionally, ong>theong>re are oong>theong>r sources and mechanisms producing gases within ong>theong> ocean that supplement those supplied from ong>theong> atmosphere. The dissolved gases in seawater are classified into four general groups [148]. The first group contains ong>theong> inert gases: nitrogen, argon, helium, neon, xenon, and krypton. These gases enter ong>theong> oceans through ong>theong> air-sea interface or through ong>theong> introduction ong>ofong> aerated water by land runong>ofong>f. The second group is composed by solely oxygen, coming from ong>theong> same sources than ong>theong> oong>theong>r group plus from photosynong>theong>sis by ong>theong> plants that exist in ong>theong> ocean. The third group also contains only one member, carbon dioxide. This gas is introduced into ong>theong> sea through ong>theong> large chemical equilibrium system. Specific sources ong>ofong> carbon dioxide include ong>theong> atmosphere, land runong>ofong>f and ong>theong> ocean floor. The fourth group is simply ong>theong> collection ong>ofong> all ong>theong> remaining gaseous ingredients found in seawater, and its sources are air pollution, usually from industry, and chemical reactions oong>theong>r than photosynong>theong>sis. Hydrogen sulfide resulting from ong>theong> reduction ong>ofong> sulfate in ong>theong> absence ong>ofong> oxygen is one member ong>ofong> this fourth group. Wilhelm Dittmar’s complete analysis ong>ofong> ong>theong> seventy-seven seawater samples collected in 1884 stood for almost a century. Nowadays, one ong>ofong> ong>theong> most accepted composition ong>ofong> minor species in seawater is ong>theong> compilation ong>ofong> Quinby-Hunt and Turekian [273], listed in table 2.6.

26 THE GEOCHEMISTRY OF THE EARTH. KNOWN FACTS<br />

Table 2.4. Volume <str<strong>on</strong>g>of</str<strong>on</strong>g> Oceans and Seas. Adapted from [85]<br />

Name Volume, M km 3<br />

Atlantic Ocean<br />

without marginal seas 324,6<br />

with marginal seas 354,7<br />

Pacific Ocean<br />

without marginal seas 707,6<br />

with marginal seas 723,7<br />

Indian Ocean<br />

without marginal seas 291<br />

with marginal seas 291,9<br />

Arctic Ocean 17<br />

Mediterranean Sea and Black Sea 4,2<br />

Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Mexico and Caribbean Sea 9,6<br />

Australasian Central Sea 9,9<br />

Huds<strong>on</strong> Bay 0,16<br />

Baltic Sea 0,02<br />

North Sea 0,05<br />

English Channel 0,004<br />

Irish Sea 0,006<br />

Sea <str<strong>on</strong>g>of</str<strong>on</strong>g> Okhotsk 1,3<br />

Bering Sea 3,33<br />

The world ocean 1.370<br />

sources after <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> desalinati<strong>on</strong> and as chlorine and bromine sources 2 . Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less,<br />

its salinity avoids seawater to have more ec<strong>on</strong>omic uses than <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> water reservoirs menti<strong>on</strong>ed before. In fact it is frequently c<strong>on</strong>sidered to be<br />

a drain ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than a resource.<br />

2.4.1.1 The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sea<br />

Despite <str<strong>on</strong>g>the</str<strong>on</strong>g>ir overall size, <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans are sufficiently uniform to make descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemical nature relatively straightforward. Studies have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

relative compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> major comp<strong>on</strong>ents: N a + , M g2+ , Ca2+ , K + , Cl − , SO −2<br />

4 ,<br />

Sr 2+ , HBO −<br />

3 , CO2−<br />

3 , B(OH) 3, B(OH) −<br />

4 , F − <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater were c<strong>on</strong>stant [69], [37],<br />

[264] and [224]. The first six i<strong>on</strong>s make up 99,4% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dissolved salts (see table<br />

2.5). Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemicals in <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean are brought from <str<strong>on</strong>g>the</str<strong>on</strong>g> water <str<strong>on</strong>g>of</str<strong>on</strong>g> rivers,<br />

which in turn receive <str<strong>on</strong>g>the</str<strong>on</strong>g>m from rocks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust that have suffered <str<strong>on</strong>g>the</str<strong>on</strong>g> process<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wea<str<strong>on</strong>g>the</str<strong>on</strong>g>ring. An average compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> river waters given by Livingst<strong>on</strong>e [197] is<br />

listed in table 2.8. It is remarkable <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between river and ocean chemical<br />

compositi<strong>on</strong>s. The explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> that relies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> residence time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong>s. Most<br />

abundant i<strong>on</strong>s found in seawater have residence times <str<strong>on</strong>g>of</str<strong>on</strong>g> above <strong>on</strong>e milli<strong>on</strong> years<br />

[137]. The salinity <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean water is about 35 parts per thousand by mass, but<br />

2 See secti<strong>on</strong>s 3.4.16 and 3.4.10 for more details.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!