24.07.2013 Views

Exergy evolution of the mineral capital on earth - circe

Exergy evolution of the mineral capital on earth - circe

Exergy evolution of the mineral capital on earth - circe

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Mechanical Engineering<br />

Ph.D. Thesis<br />

EXERGY EVOLUTION OF THE MINERAL CAPITAL<br />

ON EARTH<br />

By Alicia Valero Delgado<br />

July 2008<br />

Directed by:<br />

Ant<strong>on</strong>io Valero Capilla, Ph.D.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering<br />

Centro Politécnico Superior<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zaragoza


<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> <strong>on</strong> <strong>earth</strong><br />

Alicia Valero Delgado<br />

Thesis submitted in partial fulfilment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> requirements for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> Doctor <str<strong>on</strong>g>of</str<strong>on</strong>g> Philosophy<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zaragoza, Spain<br />

Abstract<br />

The 20th century has been characterized by <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic growth <str<strong>on</strong>g>of</str<strong>on</strong>g> many industrialized<br />

countries. This growth was mainly sustained by <str<strong>on</strong>g>the</str<strong>on</strong>g> massive extracti<strong>on</strong><br />

and use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources. The tendency observed worldwide in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

present, is that c<strong>on</strong>sumpti<strong>on</strong> will c<strong>on</strong>tinue increasing, especially due to <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> Asia, <str<strong>on</strong>g>the</str<strong>on</strong>g> desire for a higher living standard <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> developing world<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> technological progress. But <str<strong>on</strong>g>the</str<strong>on</strong>g> physical limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet might<br />

seriously restrain world ec<strong>on</strong>omies. In fact, many <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities such as oil<br />

or copper are already showing signs <str<strong>on</strong>g>of</str<strong>on</strong>g> scarcity problems, and c<strong>on</strong>sequently <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

prices are increasing sharply.<br />

Our society is based <strong>on</strong> an inefficient use <str<strong>on</strong>g>of</str<strong>on</strong>g> energy and materials, since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> awareness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> limit. If resources are limited, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir management must be<br />

carefully planned. But it is impossible to manage efficiently <str<strong>on</strong>g>the</str<strong>on</strong>g> resources <strong>on</strong> <strong>earth</strong>,<br />

if we do not know what is available and at which rate it is being depleted.<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD has been <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical stock <strong>on</strong><br />

<strong>earth</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> our <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources due to human acti<strong>on</strong>.<br />

This has been accomplished through <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy analysis under <str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecological<br />

approach. This way, <str<strong>on</strong>g>the</str<strong>on</strong>g> resources are physically assessed as <str<strong>on</strong>g>the</str<strong>on</strong>g> energy required<br />

to replace <str<strong>on</strong>g>the</str<strong>on</strong>g>m from a complete degraded state to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s in which <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

are currently presented in nature. The main advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> its use with respect to<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r physical indicators is that in a single property, all <str<strong>on</strong>g>the</str<strong>on</strong>g> physical features <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

resource are accounted for. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, exergy has <str<strong>on</strong>g>the</str<strong>on</strong>g> capability <str<strong>on</strong>g>of</str<strong>on</strong>g> aggregating<br />

heterogeneous energy and material assets. Unlike standard ec<strong>on</strong>omic valuati<strong>on</strong>s,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy analysis gives objective informati<strong>on</strong> since it is not subject to m<strong>on</strong>etary<br />

policy, or currency speculati<strong>on</strong>.<br />

i


Accordingly, in this work three imperative activities were carried out:<br />

• A systematic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main chemical comp<strong>on</strong>ents and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources<br />

<strong>on</strong> <strong>earth</strong> has been accomplished. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> first compositi<strong>on</strong> in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust has been developed, through<br />

a procedure that assures chemical coherence between species and elements.<br />

The integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g>se data has provided a global overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemistry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our planet with special attenti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> substances that compose<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s outer spheres and to that part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substances useful to man: <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources.<br />

• The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic tools required for <str<strong>on</strong>g>the</str<strong>on</strong>g> physical assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources<br />

and particularly for <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s have been provided. This way, <str<strong>on</strong>g>the</str<strong>on</strong>g> standard<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and its c<strong>on</strong>stituents (enthalpy,<br />

Gibbs free energy and exergy) have been calculated. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> (<str<strong>on</strong>g>of</str<strong>on</strong>g> fuel and n<strong>on</strong>-fuel origin) has been<br />

obtained and compared to that <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r energy resources.<br />

• With <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> different scarcity indicators developed in this PhD, an analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> our <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources has been accomplished. For that purpose<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> exergy degradati<strong>on</strong> throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century has been studied.<br />

This has allowed to estimate when <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

commodities is reached. Additi<strong>on</strong>ally, an outlook <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scarcity degree <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century has been undertaken.<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study reveal that <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s could c<strong>on</strong>stitute<br />

a universal and transparent predicti<strong>on</strong> tool for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong>-renewable resources, with dramatic c<strong>on</strong>sequences for <str<strong>on</strong>g>the</str<strong>on</strong>g> future management<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s physical stock.<br />

ii


To my beloved grandfa<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

iii


‘‘In <str<strong>on</strong>g>the</str<strong>on</strong>g> end we will c<strong>on</strong>serve <strong>on</strong>ly what we<br />

love; we will love <strong>on</strong>ly what we understand;<br />

we will understand <strong>on</strong>ly what we have been<br />

taught”<br />

v<br />

Baba Dioum. Senegalese Envir<strong>on</strong>mentalist


Acknowledgements<br />

The work with this dissertati<strong>on</strong> has been exciting, instructive, and fun, although<br />

moments <str<strong>on</strong>g>of</str<strong>on</strong>g> hardship and frustrati<strong>on</strong> have also existed. Without help, support, and<br />

encouragement from a great number pers<strong>on</strong>s, I would never have been able to<br />

finish this PhD. In this l<strong>on</strong>g ride <str<strong>on</strong>g>of</str<strong>on</strong>g> almost 5 years, I have had <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity to<br />

meet excepti<strong>on</strong>al people around <str<strong>on</strong>g>the</str<strong>on</strong>g> world.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> scientific field, many researchers have unselfishly supported me. I should<br />

start to acknowledge <str<strong>on</strong>g>the</str<strong>on</strong>g> Russian geochemist N.A. Grigor’ev, that I discovered by<br />

chance investigating <str<strong>on</strong>g>the</str<strong>on</strong>g> literature about <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. Through<br />

a quite complicated communicati<strong>on</strong> procedure (via ordinary post and in Russian<br />

language), Grigor’ev generously shared with me his not yet published results about<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust. Thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> translati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Russian teacher in <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zaragoza Helena Moradell, Grigor’ev’s<br />

excepti<strong>on</strong>al and pi<strong>on</strong>eer work has been <str<strong>on</strong>g>the</str<strong>on</strong>g> base <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinental crust<br />

developed in this PhD.<br />

A deep debt <str<strong>on</strong>g>of</str<strong>on</strong>g> thanks is also owed to Gavin Mudd from <str<strong>on</strong>g>the</str<strong>on</strong>g> Institute for Sustainable<br />

Water Resources in M<strong>on</strong>ash University (Australia), who kindly made available and<br />

prior to publicati<strong>on</strong>, his excellent and also pi<strong>on</strong>eer study about average <str<strong>on</strong>g>mineral</str<strong>on</strong>g> ore<br />

grades in his country. Thanks to Mudd’s work, a comprehensive case study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a nati<strong>on</strong> was possible.<br />

This <str<strong>on</strong>g>the</str<strong>on</strong>g>sis has required a high level <str<strong>on</strong>g>of</str<strong>on</strong>g> geological and geochemical knowledge.<br />

Therefore, my chemical engineering background had to be reinforced with <strong>earth</strong><br />

science’s fundamentals. Of essential help was <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinued support <str<strong>on</strong>g>of</str<strong>on</strong>g> Javier<br />

Gómez, from <str<strong>on</strong>g>the</str<strong>on</strong>g> department <str<strong>on</strong>g>of</str<strong>on</strong>g> petrology in <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zaragoza. From<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> very beginning, he became my un<str<strong>on</strong>g>of</str<strong>on</strong>g>ficial advisor in <str<strong>on</strong>g>the</str<strong>on</strong>g> geological field and his<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> view has been very valued for this work. I should also thank <str<strong>on</strong>g>the</str<strong>on</strong>g> “Instituto<br />

Geológico y Minero de España - IGME”, and in particular Miguel Ángel Zapatero,<br />

for making available IGME’s informati<strong>on</strong> and <str<strong>on</strong>g>mineral</str<strong>on</strong>g> statistics.<br />

Decisive for <str<strong>on</strong>g>the</str<strong>on</strong>g> accomplishment <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD, was my 3-m<strong>on</strong>th stay at <str<strong>on</strong>g>the</str<strong>on</strong>g> British<br />

Geological Survey (BGS), <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most renowned geological instituti<strong>on</strong>s in<br />

Europe. Not <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> excepti<strong>on</strong>al library and data bases <str<strong>on</strong>g>of</str<strong>on</strong>g> BGS were crucial for this<br />

work, but also <str<strong>on</strong>g>the</str<strong>on</strong>g> good advice <str<strong>on</strong>g>of</str<strong>on</strong>g> many <str<strong>on</strong>g>of</str<strong>on</strong>g> its premium researchers. I would like to<br />

express my deepest gratitude to <str<strong>on</strong>g>the</str<strong>on</strong>g> BGS’s director, John Ludden, who immediately<br />

accepted me in <str<strong>on</strong>g>the</str<strong>on</strong>g> organizati<strong>on</strong> and gave me access with no excepti<strong>on</strong> to all BGS<br />

available informati<strong>on</strong>. Thanks go also to Andrew Bloodworth, head <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Mineral’s<br />

UK department and to all his team, for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir warm welcome and for treating me as<br />

<strong>on</strong>e more <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> group. I cannot forget Tim Colman, who was always willing to help<br />

me and from which I learnt so many things. I have met at BGS many good friends<br />

that surely will remain in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

vii


The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemistry part <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD was str<strong>on</strong>gly reinforced with <str<strong>on</strong>g>the</str<strong>on</strong>g> reviews<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Philippe Vieillard, probably <str<strong>on</strong>g>the</str<strong>on</strong>g> best European expert in <str<strong>on</strong>g>the</str<strong>on</strong>g> field <str<strong>on</strong>g>of</str<strong>on</strong>g> geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemistry,<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Poitiers. In <str<strong>on</strong>g>the</str<strong>on</strong>g>se few lines, I want to express<br />

my gratitude for <str<strong>on</strong>g>the</str<strong>on</strong>g> many hours that Vieillard spent in teaching me patiently <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

different estimati<strong>on</strong> methods for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and in reviewing <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained.<br />

I would like to thank pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Jan Szargut and Wojciech Stanek from <str<strong>on</strong>g>the</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Thermal Technology in <str<strong>on</strong>g>the</str<strong>on</strong>g> Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology. It has been an h<strong>on</strong>or<br />

to interact and discuss with my Polish friends <str<strong>on</strong>g>the</str<strong>on</strong>g> different exergy approaches used.<br />

Very useful were also <str<strong>on</strong>g>the</str<strong>on</strong>g> advices <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spanish renowned ec<strong>on</strong>omist José Manuel<br />

Naredo. He has been and is being a fundamental piece in <str<strong>on</strong>g>the</str<strong>on</strong>g> integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecological approach used and fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r developed in this PhD, into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ec<strong>on</strong>omic thinking.<br />

I should not forget Juan Ignacio Pardo, from <str<strong>on</strong>g>the</str<strong>on</strong>g> department <str<strong>on</strong>g>of</str<strong>on</strong>g> physical chemistry<br />

and M a Cruz López de Silanes, from <str<strong>on</strong>g>the</str<strong>on</strong>g> department <str<strong>on</strong>g>of</str<strong>on</strong>g> applied ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics, both<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zaragoza, who were always willing to help me.<br />

If Javier Gómez was my geology advisor, César Torres, expert <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmoec<strong>on</strong>omics<br />

and collaborator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CIRCE Foundati<strong>on</strong>, was doubtless my ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics and L ATEX<br />

advisor. When I got stuck in a ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical problem, he was <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e in finding <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

best soluti<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> same way, he has solved most <str<strong>on</strong>g>of</str<strong>on</strong>g> my numerous doubts with<br />

L ATEX. In fact, he is <str<strong>on</strong>g>the</str<strong>on</strong>g> author <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> layout <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD. Thank you very much indeed<br />

for your invaluable help and time.<br />

I wish to acknowledge <str<strong>on</strong>g>the</str<strong>on</strong>g> CIRCE Foundati<strong>on</strong> for its financial support and for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

excellent working envir<strong>on</strong>ment. All its members, starting from <str<strong>on</strong>g>the</str<strong>on</strong>g> administrati<strong>on</strong><br />

staff, teachers, students and researchers make <str<strong>on</strong>g>the</str<strong>on</strong>g> work very pleasant. Special<br />

thanks are owed to my managers and fellows Javier Uche, Luis Miguel Romeo and<br />

Inmaculada Arauzo, who have giving me every facility in <str<strong>on</strong>g>the</str<strong>on</strong>g> accomplishment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this PhD. Thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir generosity and that <str<strong>on</strong>g>of</str<strong>on</strong>g> my CIRCE friends Amaya Martínez<br />

and Francisco Barrio, I could dedicate most <str<strong>on</strong>g>of</str<strong>on</strong>g> my time in <str<strong>on</strong>g>the</str<strong>on</strong>g> last year in finishing<br />

this work.<br />

I would also like to thank all my friends from Zaragoza, and from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Spain for <str<strong>on</strong>g>the</str<strong>on</strong>g> great moments that I have shared with <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

viii


This PhD is dedicated to my beloved grandfa<str<strong>on</strong>g>the</str<strong>on</strong>g>r, who has always believed in me<br />

and has supported and encouraged me. As you see I finally finished <str<strong>on</strong>g>the</str<strong>on</strong>g> work that<br />

you were impatiently waiting for. In <str<strong>on</strong>g>the</str<strong>on</strong>g> same way, I want to deeply thank my<br />

grandmo<str<strong>on</strong>g>the</str<strong>on</strong>g>r, for her endless care and affecti<strong>on</strong>. And <str<strong>on</strong>g>of</str<strong>on</strong>g> course I cannot forget my<br />

uncles, aunts and cousins, which all c<strong>on</strong>stitute an important part <str<strong>on</strong>g>of</str<strong>on</strong>g> my life.<br />

I am totally indebted to Stefan, who left family, friends and work in Germany<br />

for living with me in Spain. Probably I will never be able to reward <str<strong>on</strong>g>the</str<strong>on</strong>g> huge<br />

sacrifice you have made for me. I just hope that in some way, it has been worth.<br />

Thanks for your love, patience and understanding. Thanks also for helping me in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> programming <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> tools used in this PhD, which has resulted in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> first scientific web portal devoted to exergoecology. The great success <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

"Exergoecology Portal", which every day gains supporters around <str<strong>on</strong>g>the</str<strong>on</strong>g> world, is due<br />

to your effort and your well-doing. You are not <strong>on</strong>ly a good pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al, but an<br />

excellent pers<strong>on</strong> and I am very lucky to have you by my side.<br />

My beloved mo<str<strong>on</strong>g>the</str<strong>on</strong>g>r, your wise advise, love and care are an essential support in my<br />

pers<strong>on</strong>al and pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al life. Your firm and sincere pers<strong>on</strong>ality has affected me to<br />

be steadfast and never bend to difficulty. You have taught me many indispensable<br />

things <str<strong>on</strong>g>of</str<strong>on</strong>g> life that have helped me to face fearlessly important challenges and<br />

decisi<strong>on</strong>s in my life.<br />

I reserve my most grateful thanks to my fa<str<strong>on</strong>g>the</str<strong>on</strong>g>r and supervisor Ant<strong>on</strong>io Valero. To<br />

be h<strong>on</strong>est, at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning I was not sure whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r this combinati<strong>on</strong> would work.<br />

Today I am sure that it was worth and that you have been <str<strong>on</strong>g>the</str<strong>on</strong>g> best PhD director that<br />

I could ever had. Obviously you have been very demanding with me, probably more<br />

than with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>of</str<strong>on</strong>g> your students. But you have also been <str<strong>on</strong>g>the</str<strong>on</strong>g>re many evenings,<br />

week-ends and holidays, motivating me to work harder and to do my best. You are<br />

an inspirati<strong>on</strong> for me as a scientist, teacher, entrepreneur and most importantly as a<br />

fa<str<strong>on</strong>g>the</str<strong>on</strong>g>r. It has been a great pleasure to work with you. When <str<strong>on</strong>g>the</str<strong>on</strong>g> next <strong>on</strong>e?<br />

ix


C<strong>on</strong>tents<br />

C<strong>on</strong>tents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x<br />

1 Starting point, objectives and scope . . . . . . . . . . . . . . . . . . . . . 1<br />

1.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

1.2 Ec<strong>on</strong>omic growth and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources . . . . 1<br />

1.3 Scarcity indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

1.4 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources . . . . . . . . . . . . 7<br />

1.5 The Exergoecology approach . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

1.6 Scope, objectives and structure <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD . . . . . . . . . . . . . . . 12<br />

1.7 Scientific papers derived from this PhD . . . . . . . . . . . . . . . . . 14<br />

I The <strong>earth</strong> and its resources 17<br />

2 The geochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. Known facts . . . . . . . . . . . . . . . . 19<br />

2.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

2.2 The bulk <strong>earth</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

2.2.1 The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> . . . . . . . . . . . . . . . . . . . 19<br />

2.3 The atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

2.3.1 The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere . . . . . . . . . . . . . . . 22<br />

2.4 The hydrosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

2.4.1 Seawater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

2.4.1.1 The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sea . . . . . . . . . . . . . . 26<br />

2.4.2 Renewable water resources: surface and ground waters . . 30<br />

2.4.2.1 Stream, river and lake waters . . . . . . . . . . . . 30<br />

2.4.2.2 Ground waters . . . . . . . . . . . . . . . . . . . . . . 33<br />

2.4.3 Ice caps, ice sheets and glaciers . . . . . . . . . . . . . . . . . 33<br />

2.4.3.1 The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f . . . . . . . . . . 35<br />

2.5 The c<strong>on</strong>tinental crust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

2.5.1 The chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust . . 37<br />

2.6 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

3 The <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust . . . . 43<br />

x


3.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

3.2 The classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

3.2.1 The silica <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

3.2.2 The feldspar group . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

3.2.3 The pyroxene group . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

3.2.4 The amphibole group . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

3.2.5 The olivine group . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

3.2.6 The mica group . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

3.2.7 The chlorite group . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

3.3 Grigor’ev’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust . . . . . . . . . . . 46<br />

3.4 A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust . 54<br />

3.4.1 The mass balance . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />

3.4.2 The mass balance applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust . . . . . . 55<br />

3.4.3 Aluminium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

3.4.4 Antim<strong>on</strong>y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />

3.4.5 Arsenic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />

3.4.6 Barium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

3.4.7 Beryllium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

3.4.8 Bismuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

3.4.9 Bor<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

3.4.10 Bromine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

3.4.11 Cadmium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

3.4.12 Calcium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

3.4.13 Carb<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63<br />

3.4.14 Cerium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63<br />

3.4.15 Cesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br />

3.4.16 Chlorine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br />

3.4.17 Chromium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

3.4.18 Cobalt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

3.4.19 Copper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

3.4.20 Dysprosium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

3.4.21 Erbium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

3.4.22 Europium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

3.4.23 Fluorine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

3.4.24 Gadolinium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br />

3.4.25 Gallium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br />

3.4.26 Germanium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br />

3.4.27 Gold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68<br />

3.4.28 Hafnium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68<br />

3.4.29 Holmium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68<br />

3.4.30 Indium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

3.4.31 Iodine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

3.4.32 Iridium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

3.4.33 Ir<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

xi


3.4.34 Lanthanum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70<br />

3.4.35 Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70<br />

3.4.36 Lithium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

3.4.37 Lutetium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

3.4.38 Magnesium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

3.4.39 Manganese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72<br />

3.4.40 Mercury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72<br />

3.4.41 Molybdenum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

3.4.42 Neodymium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

3.4.43 Nickel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

3.4.44 Niobium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

3.4.45 Nitrogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

3.4.46 Osmium and Iridium . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

3.4.47 Palladium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

3.4.48 Phosphorous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

3.4.49 Platinum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

3.4.50 Potassium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

3.4.51 Praseodymium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

3.4.52 Rare Earth Elements: Praseodymium, Samarium, Europium,<br />

Gadolinium, Terbium, Dysprosium, Holmium, Erbium,<br />

Thulium and Lutetium . . . . . . . . . . . . . . . . . . . 77<br />

3.4.53 Rhenium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br />

3.4.54 Rhodium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br />

3.4.55 Rubidium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

3.4.56 Ru<str<strong>on</strong>g>the</str<strong>on</strong>g>nium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

3.4.57 Samarium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

3.4.58 Scandium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

3.4.59 Selenium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

3.4.60 Silic<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

3.4.61 Silver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

3.4.62 Sodium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

3.4.63 Str<strong>on</strong>tium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

3.4.64 Sulfur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82<br />

3.4.65 Tantalum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82<br />

3.4.66 Tellurium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83<br />

3.4.67 Terbium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83<br />

3.4.68 Thallium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83<br />

3.4.69 Thorium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84<br />

3.4.70 Thulium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84<br />

3.4.71 Tin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84<br />

3.4.72 Titanium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84<br />

3.4.73 Uranium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85<br />

3.4.74 Vanadium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85<br />

3.4.75 Wolfram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br />

xii


3.4.76 Ytterbium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br />

3.4.77 Yttrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br />

3.4.78 Zinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br />

3.4.79 Zirc<strong>on</strong>ium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br />

3.5 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical representati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . 88<br />

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91<br />

3.6.1 Discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . . . . . . . . 99<br />

3.6.2 Discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most relevant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . . . . . . . . . 100<br />

3.6.3 Discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aggregated compositi<strong>on</strong> . . . . . . . . . . . 101<br />

3.6.4 Drawbacks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model . . . . . . . . . . . . . . . . . . . . . . 102<br />

3.7 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 103<br />

4 The resources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105<br />

4.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105<br />

4.2 Natural resources: definiti<strong>on</strong>, classificati<strong>on</strong> and early assessment . 105<br />

4.3 The energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br />

4.4 Energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <strong>earth</strong> . . . . . . . . . . . . . . . . . . . . . . . . . 107<br />

4.4.1 The Geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy . . . . . . . . . . . . . . . . . . . . . . 108<br />

4.4.2 Nuclear energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

4.5 Tidal energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111<br />

4.6 Energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112<br />

4.6.1 Solar power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112<br />

4.6.2 Water power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br />

4.6.3 Wind power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114<br />

4.6.4 Ocean power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115<br />

4.6.4.1 Ocean <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal gradient . . . . . . . . . . . . . . . . 116<br />

4.6.4.2 Ocean Waves . . . . . . . . . . . . . . . . . . . . . . . 117<br />

4.6.5 Biomass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

4.6.6 Fossil fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119<br />

4.6.6.1 Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119<br />

4.6.6.2 Oil and natural gas . . . . . . . . . . . . . . . . . . . 121<br />

4.6.6.3 Unc<strong>on</strong>venti<strong>on</strong>al fossil fuels . . . . . . . . . . . . . . 124<br />

4.7 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> energy resources . . . . . . . . . . . . . . . 127<br />

4.8 N<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources . . . . . . . . . . . . . . . . . . . . . . . . . 127<br />

4.8.1 The ec<strong>on</strong>omic classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . . . . . . . . . 129<br />

4.8.2 Mineral’s average ore grades . . . . . . . . . . . . . . . . . . . 130<br />

4.8.3 Mineral’s abundance . . . . . . . . . . . . . . . . . . . . . . . . 136<br />

4.9 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 138<br />

xiii


II The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and its exergy<br />

<str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> 139<br />

5 Thermodynamic models for <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

5.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

5.2 The reference envir<strong>on</strong>ment . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />

5.2.1 Selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> best suitable reference envir<strong>on</strong>ment . . . . 142<br />

5.2.1.1 Partial reference envir<strong>on</strong>ments . . . . . . . . . . . . 142<br />

5.2.1.2 Comprehensive reference envir<strong>on</strong>ments . . . . . . 143<br />

5.2.1.3 Abundance criteri<strong>on</strong> . . . . . . . . . . . . . . . . . . 146<br />

5.2.2 Calculati<strong>on</strong> methodology: standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

chemical elements . . . . . . . . . . . . . . . . . . . . . . . . . 146<br />

5.2.2.1 Standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical compounds 146<br />

5.2.2.2 Gaseous reference substances . . . . . . . . . . . . 147<br />

5.2.2.3 Solid reference substances . . . . . . . . . . . . . . 147<br />

5.2.2.4 Reference substances dissolved in seawater . . . . 148<br />

5.2.3 Update <str<strong>on</strong>g>of</str<strong>on</strong>g> Szargut’s R.E. . . . . . . . . . . . . . . . . . . . . . . 150<br />

5.2.3.1 Update <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical<br />

compounds . . . . . . . . . . . . . . . . . . . . . . 150<br />

5.2.3.2 Update <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gaseous reference substances . . . . 150<br />

5.2.3.3 Update <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid reference substances . . . . . . 150<br />

5.2.3.4 Update <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid reference substances . . . . . 152<br />

5.2.3.5 The updated reference envir<strong>on</strong>ment. Results . . . 153<br />

5.2.4 Drawbacks <str<strong>on</strong>g>of</str<strong>on</strong>g> Szargut’s R.E. methodology . . . . . . . . . . . 156<br />

5.3 The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources . . . . . . . . . . . . . . . . . . . . . . 157<br />

5.3.1 The energy involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

deposit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

5.3.2 The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources . . . . . . . . . . . 159<br />

5.3.3 The chemical energy and exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels . . . . . . . . 160<br />

5.3.4 The exergy costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 168<br />

5.4 Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 172<br />

5.4.1 Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆H 0 or ∆G0<br />

f f from s0 5.4.2<br />

. . . . . . . . . . . . . . .<br />

The ideal mixing model . . . . . . . . . . . . . . . . . . . . . .<br />

172<br />

173<br />

5.4.3 Assuming ∆Gr and ∆Hr c<strong>on</strong>stant . . . . . . . . . . . . . . . . 174<br />

5.4.3.1 Thermochemical approximati<strong>on</strong>s for sulfosalts and<br />

complex oxides . . . . . . . . . . . . . . . . . . . . . 174<br />

5.4.3.2 The method <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>ding states . . . . . . . . 176<br />

5.4.4 The method <str<strong>on</strong>g>of</str<strong>on</strong>g> Chermak and Rimstidt for silicate <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . 177<br />

5.4.5 The ∆O−2 method . . . . . . . . . . . . . . . . . . . . . . . . . 178<br />

5.4.5.1 The ∆O−2 method for hydrated clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and<br />

for phyllosilicates . . . . . . . . . . . . . . . . . . . . 180<br />

5.4.5.2 The ∆O−2 method for different compounds with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same cati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . 181<br />

xiv


5.4.6 Assuming ∆S r zero . . . . . . . . . . . . . . . . . . . . . . . . . 181<br />

5.4.7 Assuming ∆G r and ∆H r zero . . . . . . . . . . . . . . . . . . . 181<br />

5.4.7.1 The element substituti<strong>on</strong> method . . . . . . . . . . 181<br />

5.4.7.2 The additi<strong>on</strong> method for hydrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . 182<br />

5.4.7.3 The decompositi<strong>on</strong> method . . . . . . . . . . . . . . 183<br />

5.4.8 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> methodologies . . . . . . . . . . . . . . . . . 184<br />

5.5 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 185<br />

6 The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and its <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 187<br />

6.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187<br />

6.2 The properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> . . . . . . . . . . . . . . . . . . . . . . . . . 187<br />

6.2.1 The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere . . . . . . 188<br />

6.2.2 The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere . . . . . 190<br />

6.2.3 The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust 195<br />

6.2.4 The chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> . . . . . . . . . . . . . . . . 205<br />

6.3 An approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crepuscular <strong>earth</strong> . 205<br />

6.4 The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources . . . . . . . . . . . . . . . . . . . 207<br />

6.4.1 The exergy c<strong>on</strong>tained in fossil fuels . . . . . . . . . . . . . . . 207<br />

6.4.1.1 Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208<br />

6.4.1.2 Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212<br />

6.4.1.3 Natural gas . . . . . . . . . . . . . . . . . . . . . . . . 215<br />

6.4.2 The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources . . . . . . . . . . . 218<br />

6.4.3 The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural resources <strong>on</strong> <strong>earth</strong> . . . . . . . . . 221<br />

6.5 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 225<br />

7 The time factor in <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources . . . . 227<br />

7.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227<br />

7.2 The exergy distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227<br />

7.3 The t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> equivalent . . . . . . . . . . . . . . . . . . . . . . . 230<br />

7.4 The R/P ratio applied to exergy . . . . . . . . . . . . . . . . . . . . . . 232<br />

7.5 The Hubbert peak applied to exergy . . . . . . . . . . . . . . . . . . . 232<br />

7.6 The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in <str<strong>on</strong>g>the</str<strong>on</strong>g> US . . . . . . . . . . . . . . . . . . . . . . . . . . . 235<br />

7.6.1 Copper mining features . . . . . . . . . . . . . . . . . . . . . . 235<br />

7.6.2 Chemical exergy . . . . . . . . . . . . . . . . . . . . . . . . . . . 237<br />

7.6.3 C<strong>on</strong>centrati<strong>on</strong> exergy . . . . . . . . . . . . . . . . . . . . . . . . 238<br />

7.6.4 Total exergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240<br />

7.6.5 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241<br />

7.6.6 The R/P ratio and <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposits . . . 242<br />

7.6.7 The Hubbert peak model . . . . . . . . . . . . . . . . . . . . . 242<br />

7.6.8 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results . . . . . . . . . . . . . . . . . . . . . . 244<br />

7.7 The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Australia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245<br />

7.7.1 N<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . . . . . . . . . . . . . . . . . . . . . . . 246<br />

xv


7.7.1.1 Gold . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247<br />

7.7.1.2 Copper . . . . . . . . . . . . . . . . . . . . . . . . . . 249<br />

7.7.1.3 Nickel . . . . . . . . . . . . . . . . . . . . . . . . . . . 252<br />

7.7.1.4 Silver . . . . . . . . . . . . . . . . . . . . . . . . . . . 254<br />

7.7.1.5 Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255<br />

7.7.1.6 Zinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259<br />

7.7.1.7 Ir<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261<br />

7.7.2 Fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262<br />

7.7.2.1 Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263<br />

7.7.2.2 Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264<br />

7.7.2.3 Natural gas . . . . . . . . . . . . . . . . . . . . . . . . 266<br />

7.7.3 Summary and discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results . . . . . . . . . . . . . 269<br />

7.8 C<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy costs into m<strong>on</strong>etary costs . . . . . . . . . . . . 275<br />

7.9 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 277<br />

8 The exergy <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> planet <strong>earth</strong> . . . . . . . . . . . . . . . . . . . . . 281<br />

8.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281<br />

8.2 The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century . . . 281<br />

8.2.1 N<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . . . . . . . . . . . . . . . . . . . . . . . 282<br />

8.2.2 Fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291<br />

8.3 The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s fossil fuel reserves due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse<br />

effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295<br />

8.3.1 The carb<strong>on</strong> cycle and <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect . . . . . . . . . . 297<br />

8.3.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298<br />

8.3.3 The fossil fuel exergy decrease . . . . . . . . . . . . . . . . . . 302<br />

8.4 A predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

21st century . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307<br />

8.4.1 Hubbert scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 307<br />

8.4.2 The IPCC’s B1 scenario . . . . . . . . . . . . . . . . . . . . . . . 309<br />

8.4.3 The IPCC’s A1T scenario . . . . . . . . . . . . . . . . . . . . . . 310<br />

8.4.4 The IPCC’s B2 scenario . . . . . . . . . . . . . . . . . . . . . . . 311<br />

8.4.5 The IPCC’s A1B scenario . . . . . . . . . . . . . . . . . . . . . . 314<br />

8.4.6 The IPCC’s A2 scenario . . . . . . . . . . . . . . . . . . . . . . . 315<br />

8.4.7 The IPCC’s A1FI scenario . . . . . . . . . . . . . . . . . . . . . 315<br />

8.4.8 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scenarios . . . . . . . . . . . . . . . . . . . . . 317<br />

8.5 Final reflecti<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320<br />

8.5.1 The Limits to Growth to be rec<strong>on</strong>sidered? . . . . . . . . . . . 320<br />

8.5.2 The need for global agreements <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> and use<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources . . . . . . . . . . . . . . . . . . . . . . . . . 322<br />

8.5.3 The need for an accountability <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources.<br />

The Physical Ge<strong>on</strong>omics . . . . . . . . . . . . . . . . . . . . . . 325<br />

8.6 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 327<br />

9 C<strong>on</strong>clusi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331<br />

xvi


9.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331<br />

9.2 Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PhD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331<br />

9.3 Scientific c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PhD . . . . . . . . . . . . . . . . . . . . 340<br />

9.4 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346<br />

A Additi<strong>on</strong>al calculati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351<br />

A.1 Input data. Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust . . . . . . 351<br />

A.2 Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> average <str<strong>on</strong>g>mineral</str<strong>on</strong>g> ore grades . . . . . . . . . . . . . . . . 376<br />

A.3 Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384<br />

A.4 Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> gaseous fuels . . . . . . . . . . 386<br />

A.5 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . . . . 386<br />

A.5.1 Chermak’s methodology . . . . . . . . . . . . . . . . . . . . . . 386<br />

A.5.2 Vieillard’s methodology for hydrated clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . . 387<br />

A.5.3 Estimated values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387<br />

A.6 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources . . . . . . . . . . . . . . . 397<br />

A.7 Australian fossil fuel producti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . 402<br />

A.7.1 Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402<br />

A.7.2 Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403<br />

A.7.3 Natural gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404<br />

A.8 World’s fuel producti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 404<br />

A.8.1 Uranium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404<br />

A.8.2 Coal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405<br />

A.8.3 Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406<br />

A.8.4 Natural gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407<br />

A.9 The Hubbert peak applied to world producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408<br />

A.10 Fuel c<strong>on</strong>sumpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century . . . . . . . . . . . . . . . . . . 410<br />

Nomenclature, Figures, Tables and References 413<br />

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421<br />

List <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425<br />

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431<br />

xvii


1.1 Introducti<strong>on</strong><br />

Chapter 1<br />

Starting point, objectives and<br />

scope<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this first introductory chapter is to provide an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamentals<br />

<strong>on</strong> which this PhD is based and to outline <str<strong>on</strong>g>the</str<strong>on</strong>g> main objectives and scope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

study.<br />

Since this work is focused <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>earth</strong>’s resources, <str<strong>on</strong>g>the</str<strong>on</strong>g> most relevant<br />

studies c<strong>on</strong>cerned with <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources are reviewed. The former<br />

studies reveal <str<strong>on</strong>g>the</str<strong>on</strong>g> urgent need for informati<strong>on</strong> about our natural <str<strong>on</strong>g>capital</str<strong>on</strong>g> and for<br />

appropriate indicators for its assessment. Accordingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong> scarcity indicators<br />

are outlined and compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> indicator used in this PhD: <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy indicator,<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics. Subsequently, an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

different existing approaches c<strong>on</strong>necting <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy law with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

resources is provided. The latter are compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecology approach, which<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> methodology applied in this PhD for <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources.<br />

Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> specific questi<strong>on</strong>s that this work tries to answer are outlined, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

with its scope.<br />

1.2 Ec<strong>on</strong>omic growth and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural<br />

resources<br />

The <strong>earth</strong>’s c<strong>on</strong>tinental crust is <str<strong>on</strong>g>the</str<strong>on</strong>g> source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main goods essential for industrial<br />

civilizati<strong>on</strong>. Fuels, metals and n<strong>on</strong>-metallic <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental basis for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> technological development <str<strong>on</strong>g>of</str<strong>on</strong>g> any country. As Dunham [78] states, although <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

whole c<strong>on</strong>tinental crust is composed by rocks as solid soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

1


2 STARTING POINT, OBJECTIVES AND SCOPE<br />

are not in practice recoverable. Only when a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural processes has<br />

worked toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r to produce an enrichment, is an ore to be found. And <str<strong>on</strong>g>the</str<strong>on</strong>g>se complex<br />

processes operate very slowly when compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> whole life-span <str<strong>on</strong>g>of</str<strong>on</strong>g> our species<br />

so far. Hence, it is clear <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-renewable nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources, at least from<br />

a human perspective.<br />

The 20 th century was marked by great technological innovati<strong>on</strong>s leading to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong><br />

and fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> huge amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources previously<br />

c<strong>on</strong>centrated in natural deposits. This fact pushed up <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omies <str<strong>on</strong>g>of</str<strong>on</strong>g> industrialized<br />

countries, but also raised <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cern about resources scarcity. Probably, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> running out <str<strong>on</strong>g>of</str<strong>on</strong>g> energy resources has provoked <str<strong>on</strong>g>the</str<strong>on</strong>g> most worries, especially<br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g> sharp rise <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel prices. However n<strong>on</strong>-fuel resources are also being<br />

exhausted very rapidly, as shown by Morse [230]: <strong>on</strong>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g> US, over <str<strong>on</strong>g>the</str<strong>on</strong>g> span <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> last century, <str<strong>on</strong>g>the</str<strong>on</strong>g> demand for metals grew from a little over 160 milli<strong>on</strong> t<strong>on</strong>s to<br />

about 3,3 billi<strong>on</strong> t<strong>on</strong>s.<br />

The general attitude that has governed in <str<strong>on</strong>g>the</str<strong>on</strong>g> past was that <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> is nothing<br />

more than resources to be used. Adam Smith’s invisible hand [321] has been a<br />

guiding principle for those who believe that free trade or market will ultimately lead<br />

to a natural order <str<strong>on</strong>g>of</str<strong>on</strong>g> things. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, in <str<strong>on</strong>g>the</str<strong>on</strong>g> early seventies <str<strong>on</strong>g>the</str<strong>on</strong>g> first Arab oil<br />

embargo, <str<strong>on</strong>g>the</str<strong>on</strong>g> peaking <str<strong>on</strong>g>of</str<strong>on</strong>g> oil producti<strong>on</strong>, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Club <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Rome (Forrester [96] and Meadows et al. [218]), started <str<strong>on</strong>g>the</str<strong>on</strong>g> alarm bells ringing<br />

regarding resources scarcity as <str<strong>on</strong>g>the</str<strong>on</strong>g> limit to ec<strong>on</strong>omic growth [221].<br />

In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory that ec<strong>on</strong>omic growth is irrevocably c<strong>on</strong>strained by <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources came at least 1 a century before with <str<strong>on</strong>g>the</str<strong>on</strong>g> British ec<strong>on</strong>omist<br />

Thomas Malthus [206]. The <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Malthus was that <str<strong>on</strong>g>the</str<strong>on</strong>g> efforts <str<strong>on</strong>g>of</str<strong>on</strong>g> an expanding<br />

populati<strong>on</strong> to produce food <strong>on</strong> a limited land base would suffer diminishing returns,<br />

and if reproducti<strong>on</strong> was not checked through moral restraint it would be checked<br />

by famine, war and pestilence. Malthus c<strong>on</strong>temporary David Ricardo relativized <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Malthusian’s absolute scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g> land. He showed that an expanding competitive<br />

ec<strong>on</strong>omy could always turn to lower-quality land, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> required<br />

labor to produce food and driving up its cost [302].<br />

But classical ec<strong>on</strong>omists were mainly focused <strong>on</strong> land and did not really faced <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

problem <str<strong>on</strong>g>of</str<strong>on</strong>g> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r n<strong>on</strong>-renewable resources. It was not<br />

until <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 20 th century, that <str<strong>on</strong>g>the</str<strong>on</strong>g> US c<strong>on</strong>servati<strong>on</strong> movement feared<br />

that progress would end because <str<strong>on</strong>g>the</str<strong>on</strong>g> rapacious present generati<strong>on</strong> would c<strong>on</strong>sume<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> next <str<strong>on</strong>g>of</str<strong>on</strong>g> its needed natural resources. In <str<strong>on</strong>g>the</str<strong>on</strong>g> 1930s, Harold Hotelling [145] put<br />

numbers to <str<strong>on</strong>g>the</str<strong>on</strong>g> not very rigorous statements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong>ists. According to<br />

Hotelling, resources would be depleted at a declining rate, and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir price would rise<br />

at a rate equal to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir owners’ opportunity rate <str<strong>on</strong>g>of</str<strong>on</strong>g> interest.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> seventies, <str<strong>on</strong>g>the</str<strong>on</strong>g> Club <str<strong>on</strong>g>of</str<strong>on</strong>g> Rome came into being and <str<strong>on</strong>g>the</str<strong>on</strong>g> first attempt at a global<br />

model by J. Forrester was pubilshed in World Dynamics [96]. The limits to Growth<br />

wealth.<br />

1 The French physiocrats came to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> XVIII century that land is <str<strong>on</strong>g>the</str<strong>on</strong>g> source <str<strong>on</strong>g>of</str<strong>on</strong>g> all


Ec<strong>on</strong>omic growth and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources 3<br />

by Meadows et al. [218] followed in 1972, receiving great publicity. The works <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Meadows et al. in 1972 and later updates in 1993 [217] and 2004 [219], argue that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> current exp<strong>on</strong>ential growth cannot l<strong>on</strong>ger be supported as natural goods become<br />

depleted. Through <str<strong>on</strong>g>the</str<strong>on</strong>g> World3 computer model, different scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> resources<br />

c<strong>on</strong>sumpti<strong>on</strong>, polluti<strong>on</strong>, populati<strong>on</strong>, policy, etc. were developed. The study claimed<br />

that if no immediate acti<strong>on</strong>s are undertaken, an ec<strong>on</strong>omical collapse is foreseeable<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> near future.<br />

The truth is that even if <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural <str<strong>on</strong>g>capital</str<strong>on</strong>g> has increased dramatically,<br />

evidence until to date has not really supported <str<strong>on</strong>g>the</str<strong>on</strong>g> idea that natural resources<br />

depleti<strong>on</strong> has stopped ec<strong>on</strong>omic growth. Some authors such as Barnett and Morse<br />

[20] or Scott and Pearse [302] appealed to <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> technological progress in<br />

improving <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> extractive processes and redefining available resources.<br />

They stated that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no evidence for <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis that natural resources will<br />

lead to reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic growth. Solow [326] argued that substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>capital</str<strong>on</strong>g> goods <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources in producti<strong>on</strong> processes reduces resource requirements<br />

and, in general, technical change may overcome limits imposed <strong>on</strong> ec<strong>on</strong>omic<br />

activities in <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, Costanza and Daly [65], Ayres and Nair [17] or Cleveland and Ruth<br />

[59], believe that technology will not overcome resource scarcity and envir<strong>on</strong>mental<br />

degradati<strong>on</strong>, since human <str<strong>on</strong>g>capital</str<strong>on</strong>g> ultimately is derived from and sustained by energy,<br />

materials and ecological services. Until now, natural <str<strong>on</strong>g>capital</str<strong>on</strong>g> has been treated as a<br />

free good, but nowadays it is becoming <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting factor in development. Champan<br />

and Roberts [53] argue also that resource substituti<strong>on</strong> might be valid in <str<strong>on</strong>g>the</str<strong>on</strong>g> short<br />

term, but will fail in <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g term when <str<strong>on</strong>g>the</str<strong>on</strong>g>re is equal resource scarcity <strong>on</strong> all<br />

substitutable materials.<br />

Some attempts have been made to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic costs <str<strong>on</strong>g>of</str<strong>on</strong>g> depleti<strong>on</strong> and<br />

degradati<strong>on</strong> and use <str<strong>on</strong>g>the</str<strong>on</strong>g>m to correct standard measures <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic welfare such as<br />

GDP (see for instance Ahmad, El Serafy and Lutz [2]; Daly and Cobb [70]; Costanza<br />

[64]; Van Dieren [75]). Although <str<strong>on</strong>g>the</str<strong>on</strong>g> debate <strong>on</strong> how nati<strong>on</strong>al accounting should be<br />

extended towards envir<strong>on</strong>mental accounting is still open, all approaches reflect that<br />

when depleti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> natural <str<strong>on</strong>g>capital</str<strong>on</strong>g>, polluti<strong>on</strong> costs, and income distributi<strong>on</strong> effects<br />

are accounted for, <str<strong>on</strong>g>the</str<strong>on</strong>g> improving <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omy is seriously questi<strong>on</strong>ed.<br />

As we face <str<strong>on</strong>g>the</str<strong>on</strong>g> new century, <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r resource scarcity will c<strong>on</strong>strain<br />

ec<strong>on</strong>omy is still in <str<strong>on</strong>g>the</str<strong>on</strong>g> air. But <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid ec<strong>on</strong>omic development <str<strong>on</strong>g>of</str<strong>on</strong>g> Asia and <str<strong>on</strong>g>the</str<strong>on</strong>g> desire<br />

for a higher living standard in <str<strong>on</strong>g>the</str<strong>on</strong>g> developing world demands an even greater<br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with rapid technological progress to prevent<br />

increasing scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different commodities. Our society is based <strong>on</strong> an<br />

inefficient use <str<strong>on</strong>g>of</str<strong>on</strong>g> energy and materials, since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> awareness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

limit. If resources are limited, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir management must be carefully planned in order<br />

to be c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> sustainability doctrine. But for that purpose, we need to<br />

know how many resources are available <strong>on</strong> <strong>earth</strong> and at which rate <str<strong>on</strong>g>the</str<strong>on</strong>g>y are being<br />

c<strong>on</strong>sumed. A resp<strong>on</strong>sible management can <strong>on</strong>ly be based thus <strong>on</strong> a comprehensive


4 STARTING POINT, OBJECTIVES AND SCOPE<br />

informati<strong>on</strong> source. As Faber [91] claimed, <str<strong>on</strong>g>the</str<strong>on</strong>g> true intertemporal scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

goods must be analyzed and appropriate indicators for <str<strong>on</strong>g>the</str<strong>on</strong>g> scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se goods must be found.<br />

In this PhD, we have dived in data bases <str<strong>on</strong>g>of</str<strong>on</strong>g> many different instituti<strong>on</strong>s, organizati<strong>on</strong>s,<br />

universities and journals, searching for global numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> <strong>on</strong><br />

<strong>earth</strong>. For some<strong>on</strong>e that never faced that task, it is surprising <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> existing<br />

informati<strong>on</strong> about our resources not <strong>on</strong>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g> past, but also in <str<strong>on</strong>g>the</str<strong>on</strong>g> present. This is<br />

a clear indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> little importance that humankind has placed in investigating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> resources that nature gives us for free.<br />

Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> instituti<strong>on</strong>s owning informati<strong>on</strong> about resources do not interpret <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compiled values. And ir<strong>on</strong>ically, many studies claiming <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources<br />

are rarely based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical statistics provided by <str<strong>on</strong>g>the</str<strong>on</strong>g> formers.<br />

More resources data bases, better global statistics, <str<strong>on</strong>g>the</str<strong>on</strong>g> opening <str<strong>on</strong>g>of</str<strong>on</strong>g> global informati<strong>on</strong><br />

channels and impartial and serious interpretati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> are key factors<br />

for transformati<strong>on</strong> to sustainability. And <str<strong>on</strong>g>the</str<strong>on</strong>g> data interpretati<strong>on</strong> must be undertaken<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate indicators.<br />

This PhD has tried to fill with physical c<strong>on</strong>tent some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sociological messages<br />

about resource scarcity published elsewhere. This has been accomplished by making<br />

a rigorous analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> global <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <strong>on</strong> <strong>earth</strong> through an indicator based <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics. The next secti<strong>on</strong> provides an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

different available scarcity indicators with its capabilities and drawbacks, so as to<br />

compare <str<strong>on</strong>g>the</str<strong>on</strong>g>m to <str<strong>on</strong>g>the</str<strong>on</strong>g> indicator chosen in this PhD.<br />

1.3 Scarcity indicators<br />

C<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scarcity and its measurement requires clarificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> what we mean<br />

by scarcity. As Zwartendyk et al. [414] argue, physical scarcity refers to <str<strong>on</strong>g>the</str<strong>on</strong>g> relative<br />

rarity <str<strong>on</strong>g>of</str<strong>on</strong>g> an element or <str<strong>on</strong>g>mineral</str<strong>on</strong>g> substance in nature; it has nothing to do with<br />

human effort. Ec<strong>on</strong>omic scarcity has very much to do with <str<strong>on</strong>g>the</str<strong>on</strong>g> interests and needs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> humans. It reflects that work is required to obtain <str<strong>on</strong>g>mineral</str<strong>on</strong>g> products and that we<br />

are willing to pay a price for <str<strong>on</strong>g>the</str<strong>on</strong>g>m. Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> greater <str<strong>on</strong>g>the</str<strong>on</strong>g> physical scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> costlier it will be to obtain, so its ec<strong>on</strong>omic scarcity may be greater as<br />

well.<br />

The scientific community has already started to study this issue and some physical<br />

and ec<strong>on</strong>omic indicators have been proposed.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> renowned work Scarcity and Growth 2 (1963) <str<strong>on</strong>g>of</str<strong>on</strong>g> Barnet and Morse [20], extracti<strong>on</strong><br />

costs were used as scarcity indicators. Extracti<strong>on</strong> cost is computed as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> labor and <str<strong>on</strong>g>capital</str<strong>on</strong>g> required to produce a unit <str<strong>on</strong>g>of</str<strong>on</strong>g> output. The same indicator<br />

2 Scarcity and Growth was <str<strong>on</strong>g>the</str<strong>on</strong>g> first systematic empirical examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> historical trends.


Scarcity indicators 5<br />

was used until <str<strong>on</strong>g>the</str<strong>on</strong>g> update <str<strong>on</strong>g>of</str<strong>on</strong>g> that work: Scarcity and Growth Rec<strong>on</strong>sidered [325]. This<br />

measure is founded <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> classical ec<strong>on</strong>omics view that with diminishing marginal<br />

returns and finite natural resources, <str<strong>on</strong>g>the</str<strong>on</strong>g> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resource extracti<strong>on</strong> should<br />

increase as demand increases and depleti<strong>on</strong> occurs. Krautkraemer [188] argued in<br />

Scarcity and Growth Rec<strong>on</strong>sidered that extracti<strong>on</strong> cost is an inherently static measure;<br />

it does not capture future effects that are important for indicating natural resource<br />

scarcity. In additi<strong>on</strong>, extracti<strong>on</strong> cost captures informati<strong>on</strong> about <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> supply side<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> market. If demand is growing more rapidly than extracti<strong>on</strong> cost is declining,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n extracti<strong>on</strong> cost will give a false indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> decreasing scarcity (<str<strong>on</strong>g>the</str<strong>on</strong>g> opposite<br />

is also possible).<br />

Probably <str<strong>on</strong>g>the</str<strong>on</strong>g> most used indicator nowadays is price. Price incorporates informati<strong>on</strong><br />

about <str<strong>on</strong>g>the</str<strong>on</strong>g> demand for <str<strong>on</strong>g>the</str<strong>on</strong>g> resource and possible expectati<strong>on</strong>s about future demand<br />

and availability. According to Fisher [95], <str<strong>on</strong>g>the</str<strong>on</strong>g> resource price would “summarize <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sacrifices, direct and indirect, made to obtain a unit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resource”.<br />

Naredo [237] claims though that standard ec<strong>on</strong>omy is <strong>on</strong>ly c<strong>on</strong>cerned with what<br />

being directly useful to man, is also acquirable, valuable and produce-able. For this<br />

reas<strong>on</strong>, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural resources, remain outside <str<strong>on</strong>g>the</str<strong>on</strong>g> object <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ec<strong>on</strong>omic system. And <str<strong>on</strong>g>the</str<strong>on</strong>g> price-fixing mechanisms, rarely take into account <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>crete physical characteristics which make <str<strong>on</strong>g>the</str<strong>on</strong>g>m valuable.<br />

Ruth [294] states that for prices to subsume all required informati<strong>on</strong> to make an intertemporally<br />

optimal choice about material and energy and <str<strong>on</strong>g>the</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong>,<br />

markets must be efficient, and preferences <str<strong>on</strong>g>of</str<strong>on</strong>g> current and future generati<strong>on</strong>s have to<br />

be anticipated. Additi<strong>on</strong>ally, current and future technologies must be fully described.<br />

In c<strong>on</strong>trast, prices ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r reflect <str<strong>on</strong>g>the</str<strong>on</strong>g> incomplete descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> current technologies,<br />

preferences <str<strong>on</strong>g>of</str<strong>on</strong>g> present generati<strong>on</strong>s, and current instituti<strong>on</strong>al settings.<br />

Though n<strong>on</strong> renewable resources are becoming more and more scarce, prices have<br />

not followed <str<strong>on</strong>g>the</str<strong>on</strong>g> same trend. According to Hotelling [145], prices should raise with<br />

scarcity, since low cost resources normally would be used first and quantities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extracti<strong>on</strong> normally would decrease over time. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, historical statistics<br />

show that costs <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong> and prices have mostly decreased over time [313].<br />

This apparent c<strong>on</strong>tradicti<strong>on</strong> is due to technological innovati<strong>on</strong> but also to <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

informati<strong>on</strong> about scarcity. Reynolds [277] states that true scarcity is <strong>on</strong>ly revealed<br />

through prices towards <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> exhausti<strong>on</strong>.<br />

Physical indicators are usually based ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <strong>on</strong> mass or energy. Generally, all energy<br />

resources are assessed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> its energy c<strong>on</strong>tent, what allows a direct comparis<strong>on</strong><br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g>m. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are usually physically and<br />

individually assessed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> t<strong>on</strong>nage and grade. It is obvious that <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources<br />

evaluated in that way cannot be easily compared, and a global number for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s <str<strong>on</strong>g>capital</str<strong>on</strong>g> <strong>on</strong> <strong>earth</strong> cannot be given, as mass and grade are not additive.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, assimilating such a great amount <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> for each resource is<br />

not always easy and not very useful for decisi<strong>on</strong> makers.


6 STARTING POINT, OBJECTIVES AND SCOPE<br />

Odum [245], [246] proposed an original physical unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure for assessing resources<br />

and products based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> solar emergy joule (sej). Emergy analysis is a<br />

technique <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative analysis which determines <str<strong>on</strong>g>the</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> resources, services<br />

and commodities in comm<strong>on</strong> units <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solar energy it took to make <str<strong>on</strong>g>the</str<strong>on</strong>g>m. One<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its fundamental organizing principles is <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum empower principle. It is<br />

stated as “systems that will prevail in competiti<strong>on</strong> with o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs, develop <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

useful work with inflowing emergy sources by reinforcing productive processes and<br />

overcoming limitati<strong>on</strong>s through system organizati<strong>on</strong>”. To derive solar emergy <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

resource or commodity, it is necessary to trace back through all <str<strong>on</strong>g>the</str<strong>on</strong>g> resources and<br />

energy that are used to produce it and express <str<strong>on</strong>g>the</str<strong>on</strong>g>m in <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> solar energy<br />

that went into <str<strong>on</strong>g>the</str<strong>on</strong>g>ir producti<strong>on</strong> [42]. The solar emergy per unit product or output<br />

flow is called “solar transformity”, with units <str<strong>on</strong>g>of</str<strong>on</strong>g> seJ/J. Solar transformities have to be<br />

obtained for each commodity. Most transformities cannot be c<strong>on</strong>sidered as universal,<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> processes involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities differ, depending<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> time and place c<strong>on</strong>sidered.<br />

The emergy analysis owns two fundamental capabilities that we think are required<br />

to be used as a scarcity indicator: 1) it is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

resource and 2) all resources are measured with a single unit.<br />

Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> emergy analysis can be successfully applied for renewable resources.<br />

However it is very questi<strong>on</strong>ed <str<strong>on</strong>g>the</str<strong>on</strong>g> applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> this approach for <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> sun has not played a central role in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir creati<strong>on</strong>. No matter<br />

how much solar energy is received from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun, <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> gold or ir<strong>on</strong> for<br />

instance <strong>on</strong> <strong>earth</strong>, will not change. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> rigorousness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transformities<br />

for <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resource assessment is doubtful. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> emergy analysis is not<br />

suitable for <str<strong>on</strong>g>the</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD, which is <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources.<br />

The physical features that make <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources valuable are: a particular compositi<strong>on</strong><br />

which differentiates <str<strong>on</strong>g>the</str<strong>on</strong>g>m from <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding envir<strong>on</strong>ment, and a distributi<strong>on</strong><br />

which places <str<strong>on</strong>g>the</str<strong>on</strong>g>m in a specific c<strong>on</strong>centrati<strong>on</strong>. And <str<strong>on</strong>g>the</str<strong>on</strong>g>se intrinsic properties can<br />

be in fact evaluated from a sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics point <str<strong>on</strong>g>of</str<strong>on</strong>g> view in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a single property: exergy.<br />

As it happens to emergy and unlike standard ec<strong>on</strong>omic valuati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy analysis<br />

gives objective informati<strong>on</strong> since it is not subject to m<strong>on</strong>etary policy, or currency<br />

speculati<strong>on</strong>. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, all natural resources can be assessed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy<br />

and can be summed up. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> is a property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resource and as such, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong><br />

methods are physically and ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matically supported, as opposed to emergy.<br />

As explained in <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>, exergy is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a reference envir<strong>on</strong>ment,<br />

in which <str<strong>on</strong>g>the</str<strong>on</strong>g> quality and quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> substances is fixed. Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis<br />

places value to resources depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> departure from <str<strong>on</strong>g>the</str<strong>on</strong>g> defined reference<br />

envir<strong>on</strong>ment. And, as opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> emergy analysis, whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> substances<br />

in it were created through <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sun or through o<str<strong>on</strong>g>the</str<strong>on</strong>g>r processes is irrelevant<br />

and does not affect <str<strong>on</strong>g>the</str<strong>on</strong>g> final results.


<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources 7<br />

The exergy method is chosen in this PhD for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

scarcity. In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>, an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different existing approaches c<strong>on</strong>necting<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> entropy law with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resources is provided.<br />

1.4 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources<br />

A fundamental law <str<strong>on</strong>g>of</str<strong>on</strong>g> nature (<str<strong>on</strong>g>the</str<strong>on</strong>g> first law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics), tells us that energy<br />

and matter can be nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r created nor destroyed. The sec<strong>on</strong>d law places additi<strong>on</strong>al<br />

limits <strong>on</strong> energy transformati<strong>on</strong>s and reflects qualitative characteristics. It states that<br />

energy can <strong>on</strong>ly be transformed by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quality. Locally, <str<strong>on</strong>g>the</str<strong>on</strong>g> quality<br />

can be improved, but this can <strong>on</strong>ly occur at <str<strong>on</strong>g>the</str<strong>on</strong>g> expense <str<strong>on</strong>g>of</str<strong>on</strong>g> a greater deteriorati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality elsewhere. The level <str<strong>on</strong>g>of</str<strong>on</strong>g> quality deteriorati<strong>on</strong> or disorder is measured<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> property entropy. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics can be formulated<br />

as follows. In all real processes <str<strong>on</strong>g>of</str<strong>on</strong>g> energy transformati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> total entropy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all involved bodies can <strong>on</strong>ly be increased or, in an ideal case, unchanged. Bey<strong>on</strong>d<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> process is impossible even if <str<strong>on</strong>g>the</str<strong>on</strong>g> first law is fulfilled [39].<br />

The combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both laws indicates that it is not a questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> existent<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> mass or energy, but <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> that mass or energy, or in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

words <strong>on</strong> its exergy c<strong>on</strong>tent. Technically, exergy is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> work that may <str<strong>on</strong>g>the</str<strong>on</strong>g>oretically be performed by bringing a resource into equilibrium<br />

with its surroundings by a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> reversible processes. The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> a system<br />

gives an idea <str<strong>on</strong>g>of</str<strong>on</strong>g> its <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> potential for not being in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic equilibrium<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment. Unlike mass and energy, exergy is not a c<strong>on</strong>served property. It<br />

is an extensive property, with <str<strong>on</strong>g>the</str<strong>on</strong>g> same unit as energy. In all physical transformati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> matter or energy, it is always exergy that is lost.<br />

<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> analysis is a powerful tool for improving <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> processes and systems.<br />

This leads to less resources to be used and <str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> less wastes to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment. However it is a much more useful c<strong>on</strong>cept, and can be applied<br />

for resource accounting. All materials have a definable and calculable exergy c<strong>on</strong>tent,<br />

with respect to a defined external envir<strong>on</strong>ment. The c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural<br />

resources implies destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organized systems and polluti<strong>on</strong> dispersi<strong>on</strong>, which<br />

is in fact generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy or exergy destructi<strong>on</strong>. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, exergy has <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

capability <str<strong>on</strong>g>of</str<strong>on</strong>g> aggregating heterogeneous energy and material assets. This is why <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy analysis can describe perfectly <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural <str<strong>on</strong>g>capital</str<strong>on</strong>g>. For that<br />

reas<strong>on</strong>, an increasing number <str<strong>on</strong>g>of</str<strong>on</strong>g> scientists, such as Szargut and coworkers [344],<br />

[338], [339], Brodianski [39], Wall [393], [394], [395], Rosen [289], [290], Dincer<br />

[76], Sciubba [299] or Ayres et al. [14] believe that exergy provides useful<br />

informati<strong>on</strong> within resource accounting and can adequately address certain envir<strong>on</strong>mental<br />

c<strong>on</strong>cerns.<br />

Additi<strong>on</strong>ally, different renowned studies have shown up <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> between<br />

ec<strong>on</strong>omic scarcity and <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy law. Some notable examples are briefly outlined<br />

next.


8 STARTING POINT, OBJECTIVES AND SCOPE<br />

Georgescu-Roegen was <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first authors in realizing <str<strong>on</strong>g>the</str<strong>on</strong>g> links between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ec<strong>on</strong>omic process and <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics. In his seminal work The<br />

Entropy Law and <str<strong>on</strong>g>the</str<strong>on</strong>g> Ec<strong>on</strong>omic Process [111], he states that “<str<strong>on</strong>g>the</str<strong>on</strong>g> entropy law itself<br />

emerges as <str<strong>on</strong>g>the</str<strong>on</strong>g> most ec<strong>on</strong>omic in nature <str<strong>on</strong>g>of</str<strong>on</strong>g> all natural laws [...] and this law is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omy <str<strong>on</strong>g>of</str<strong>on</strong>g> life at all levels”. Georgescu-Roegen stresses <str<strong>on</strong>g>the</str<strong>on</strong>g> importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> variable time in ec<strong>on</strong>omic activity, which is clearly shown in <str<strong>on</strong>g>the</str<strong>on</strong>g> irreversibility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resources. This author even postulated <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourth Law <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermodynamics,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> entropy law <str<strong>on</strong>g>of</str<strong>on</strong>g> matter. According to this law, matter and not energy<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting factor in ec<strong>on</strong>omic growth. Georgescu-Roegen’s Fourth Law has been<br />

criticized by a number <str<strong>on</strong>g>of</str<strong>on</strong>g> analysts in ec<strong>on</strong>omics and physical sciences. It has been<br />

pointed out that <strong>on</strong> a fundamental physical level, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no such law. In principle,<br />

it is always possible to use high quality energy to trace, collect and reassemble <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dissipated elements [59]. The <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical flaws <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourth Law, have lead some<br />

to dismiss Georgescu-Roegen’s ideas or deny <str<strong>on</strong>g>the</str<strong>on</strong>g>ir significance.<br />

Faber et al. [92] developed a model integrating <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic c<strong>on</strong>siderati<strong>on</strong>s into<br />

a model <str<strong>on</strong>g>of</str<strong>on</strong>g> optimal resource use and envir<strong>on</strong>mental management. They analyzed <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

relati<strong>on</strong>ship am<strong>on</strong>g resource use in <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic system, <str<strong>on</strong>g>capital</str<strong>on</strong>g> formati<strong>on</strong>, resource<br />

c<strong>on</strong>centrati<strong>on</strong> and entropy producti<strong>on</strong>.<br />

Ayres and Nair [17] state that <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics has certain c<strong>on</strong>sequences<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> process which are not adequately reflected in <str<strong>on</strong>g>the</str<strong>on</strong>g> standard<br />

ec<strong>on</strong>omic model. Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>sequences are that <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total<br />

output <str<strong>on</strong>g>of</str<strong>on</strong>g> a sector must be less than <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inputs and overall entropy<br />

is increased through <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> waste materials and heat. Ayres and Miller<br />

[16] developed a model that treats natural resources, physical <str<strong>on</strong>g>capital</str<strong>on</strong>g> and knowledge<br />

(measured in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> negative entropy or negentropy) as mutually substitutable<br />

inputs into <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> process. In 1988, Ayres [13] used <str<strong>on</strong>g>the</str<strong>on</strong>g> model for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> optimal investment policies and simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> optimal time paths<br />

and substituti<strong>on</strong> pattern for <str<strong>on</strong>g>the</str<strong>on</strong>g> world primary energy sources from <str<strong>on</strong>g>the</str<strong>on</strong>g> year 1869<br />

to 2050. Recently, Ayres [15], calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy performed in <str<strong>on</strong>g>the</str<strong>on</strong>g> US ec<strong>on</strong>omy<br />

during <str<strong>on</strong>g>the</str<strong>on</strong>g> twentieth century. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> his study was that growth in<br />

exergy c<strong>on</strong>sumpti<strong>on</strong> have had an enormous impact <strong>on</strong> past ec<strong>on</strong>omic growth. The<br />

increasing efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> in primary work tended to result in lower<br />

costs, which triggered increasing demand that <str<strong>on</strong>g>of</str<strong>on</strong>g>ten resulted in greater exergy c<strong>on</strong>sumpti<strong>on</strong>.<br />

This fact is known as “Jev<strong>on</strong>s paradox”.<br />

Ruth [294] stated that use in ec<strong>on</strong>omic producti<strong>on</strong> processes must c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

limits <strong>on</strong> material and energy use in order to be optimal in <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g-run.<br />

And ec<strong>on</strong>omic decisi<strong>on</strong>s must c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resources available, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

interc<strong>on</strong>nectedness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic system with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r ecosystem comp<strong>on</strong>ents, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

time preference <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sumers and producers and <str<strong>on</strong>g>the</str<strong>on</strong>g> technologies with which materials<br />

and energy are transformed in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> process. He developed a model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>renewable resource use. As an example, Ruth determined <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal extracti<strong>on</strong><br />

path and producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> ore at each period <str<strong>on</strong>g>of</str<strong>on</strong>g> time, taking into account<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic limits <strong>on</strong> material and energy efficiency, <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> endoge-


The Exergoecology approach 9<br />

nous technical change through <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> learning curves and <str<strong>on</strong>g>the</str<strong>on</strong>g> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

alternative time paths from an ec<strong>on</strong>omic and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic perspective.<br />

In this PhD <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, exergy has been used as a global scarcity indicator from <str<strong>on</strong>g>the</str<strong>on</strong>g> point<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecology paradigm. In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>, exergoecology will be<br />

explained in detail, and compared to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r approaches, where exergy is also used as<br />

an accounting tool.<br />

1.5 The Exergoecology approach<br />

Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> studies based <strong>on</strong> exergy and natural resources are focused <strong>on</strong> calculating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy required for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain good. Probably,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> better known <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-ecological cost analysis proposed by Szargut and<br />

coworkers [341], [344], [328]. The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-ecological cost analysis accounts for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cumulative c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-renewable exergy c<strong>on</strong>nected with <str<strong>on</strong>g>the</str<strong>on</strong>g> fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a particular product including <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong>al exergy c<strong>on</strong>sumpti<strong>on</strong> needed for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental losses caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> disposal <str<strong>on</strong>g>of</str<strong>on</strong>g> harmful substances<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment.<br />

A similar approach is also used by Ayres and coworkers. For example, in [14], Ayres<br />

et al. applied <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>cept for accounting for <str<strong>on</strong>g>the</str<strong>on</strong>g> materials and energy use<br />

and waste residuals <str<strong>on</strong>g>of</str<strong>on</strong>g> five basic metal industries in <str<strong>on</strong>g>the</str<strong>on</strong>g> US. This allowed to compare<br />

systems <strong>on</strong> a comm<strong>on</strong> basis, to identify major loss streams that may corresp<strong>on</strong>d to<br />

inefficiencies and to provide a first evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir envir<strong>on</strong>mental burden.<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r exergy-based approaches are for instance those from Sciubba [300], C<strong>on</strong>nely<br />

and Koshland [61] or Cornelissen and Hirs [63]. Sciubba [300] extended Szargut’s<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory, including n<strong>on</strong>-energetic quantities like <str<strong>on</strong>g>capital</str<strong>on</strong>g>, labor and envir<strong>on</strong>metal impact<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>. C<strong>on</strong>nely and Koshland [61], discussed <str<strong>on</strong>g>the</str<strong>on</strong>g> ties between<br />

exergy and industrial ecology and proposed exergy-based definiti<strong>on</strong>s and methods<br />

for addressing resource depleti<strong>on</strong>. Cornelissen and Hirs [63] applied <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy analysis<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> Life Cycle Assessment (LCA) methodology and proposed <str<strong>on</strong>g>the</str<strong>on</strong>g> exergetic life<br />

cycle assessment, which should account for <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources.<br />

All <str<strong>on</strong>g>the</str<strong>on</strong>g>se approaches provide very useful informati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> processes,<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g>y obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong>, allowing a reducti<strong>on</strong> in energy,<br />

materials and harmful emissi<strong>on</strong>s.<br />

The Exergoecology method proposed by Valero [365], which derives from <str<strong>on</strong>g>the</str<strong>on</strong>g> general<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy cost developed by <str<strong>on</strong>g>the</str<strong>on</strong>g> same author [370], uses also <str<strong>on</strong>g>the</str<strong>on</strong>g> property<br />

exergy as an accounting tool, but differs radically from <str<strong>on</strong>g>the</str<strong>on</strong>g> approaches explained<br />

above in <str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g> how resources are assessed. Exergoecology is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources, from a defined R.E. It allows to value <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

resources, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> physical cost that would require to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g>m from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> materials c<strong>on</strong>tained in a hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical <strong>earth</strong> that has reached <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum level


10 STARTING POINT, OBJECTIVES AND SCOPE<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> deteriorati<strong>on</strong>. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, it quantifies <str<strong>on</strong>g>the</str<strong>on</strong>g> physical cost <str<strong>on</strong>g>of</str<strong>on</strong>g> replacing natural<br />

resources from a degraded state in <str<strong>on</strong>g>the</str<strong>on</strong>g> so called reference envir<strong>on</strong>ment to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong>s in which <str<strong>on</strong>g>the</str<strong>on</strong>g>y are currently presented in nature. Its aim is to determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> physical stock available in <str<strong>on</strong>g>the</str<strong>on</strong>g> current c<strong>on</strong>tinental crust, how that stock is being<br />

degraded and dispersed by mankind and at which rate. As Naredo [238] states, if<br />

life came up and evolved from a primitive soup, human species pushes now str<strong>on</strong>gly<br />

towards a sort <str<strong>on</strong>g>of</str<strong>on</strong>g> crepuscular planet, whose compositi<strong>on</strong> would be hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tically<br />

equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. This methodology allows to quantify <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural resource’s<br />

potential as <str<strong>on</strong>g>the</str<strong>on</strong>g> human effect pushes it towards that sort <str<strong>on</strong>g>of</str<strong>on</strong>g> entropic planet.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> questi<strong>on</strong>s that opens <str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecology paradigm is <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> degraded planet (or entropic planet) towards which civilizati<strong>on</strong> is moving.<br />

The entropic planet could be assimilated to a dead planet where all materials have<br />

reacted, dispersed and mixed and are in a hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical chemical equilibrium. A degraded<br />

<strong>earth</strong> would still have an atmosphere, hydrosphere and c<strong>on</strong>tinental crust.<br />

Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g>re would not be any <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits, all fossil fuels would have<br />

been burned and c<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere would be<br />

much higher than it now is. Similarly, all water available in <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere would<br />

be in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> salt-water, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing processes. So far, <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources has been carried out from R.E. models designed for <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> industrial processes. It is open to questi<strong>on</strong> whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>se kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> models fit<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> degraded planet that we are searching for. This topic will<br />

be addressed in chapter 5 <str<strong>on</strong>g>of</str<strong>on</strong>g> this report.<br />

Note <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between extracti<strong>on</strong> costs and replacement costs. The former<br />

assesses <str<strong>on</strong>g>the</str<strong>on</strong>g> resource from <str<strong>on</strong>g>the</str<strong>on</strong>g> mine to market. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> latter assesses <str<strong>on</strong>g>the</str<strong>on</strong>g> resource<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> entropic planet to <str<strong>on</strong>g>the</str<strong>on</strong>g> mine. As Carpintero [50] and Naredo [238]<br />

argue, ec<strong>on</strong>omy puts value to natural goods c<strong>on</strong>sidering its extracti<strong>on</strong> costs and not<br />

its replacement costs. Therefore, extracti<strong>on</strong> and not recovery or recycling is promoted,<br />

thus enhancing <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> processes ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than saving<br />

those resources for future generati<strong>on</strong>s. Moreover, extracti<strong>on</strong> implies more emissi<strong>on</strong>s<br />

and more degradati<strong>on</strong>. The exergoecological approach quantifies <str<strong>on</strong>g>the</str<strong>on</strong>g> physical costs,<br />

both in minimum exergy terms and in actual exergy terms, required to replace <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

resources with <str<strong>on</strong>g>the</str<strong>on</strong>g> best available technology. Thereby <str<strong>on</strong>g>the</str<strong>on</strong>g> anthropogenic view <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> resources is shifted to <str<strong>on</strong>g>the</str<strong>on</strong>g> nature’s point <str<strong>on</strong>g>of</str<strong>on</strong>g> view. This way, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong><br />

is not c<strong>on</strong>sider as an infinite reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, it is seen as a<br />

warehouse with a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy resources, whose extracti<strong>on</strong> implies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r exergy resources. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, as <str<strong>on</strong>g>the</str<strong>on</strong>g> warehouse becomes depleted,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy resources required to extract more goods increases following<br />

an exp<strong>on</strong>ential behavior. In exergoecology, c<strong>on</strong>servati<strong>on</strong> ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than efficiency is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

point.<br />

Exergoecology has been developed so far for its applicati<strong>on</strong> to inorganic substances,<br />

focusing mainly <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g>. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, Jorgensen [176], [175] applies<br />

similar c<strong>on</strong>cepts for ecosystems, and introduces <str<strong>on</strong>g>the</str<strong>on</strong>g> term Eco-exergy. According<br />

to this author, eco-exergy is defined as “<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> an ecosystem but with <str<strong>on</strong>g>the</str<strong>on</strong>g> same


The Exergoecology approach 11<br />

Solar energy<br />

NATURE<br />

Resources<br />

<str<strong>on</strong>g>Exergy</str<strong>on</strong>g><br />

THERMO-ECOLOGICAL COST<br />

Life cycle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> product<br />

Services <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

products<br />

Emissi<strong>on</strong>s<br />

Technological<br />

abatement process<br />

Residues<br />

<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> distance<br />

Technological process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> materials from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Reference Envir<strong>on</strong>ment<br />

<str<strong>on</strong>g>Exergy</str<strong>on</strong>g><br />

EXERGOECOLOGICAL COST<br />

<str<strong>on</strong>g>Exergy</str<strong>on</strong>g><br />

Zero <str<strong>on</strong>g>Exergy</str<strong>on</strong>g><br />

Wastes, effluents<br />

and emissi<strong>on</strong>s<br />

Reference<br />

Envir<strong>on</strong>ment<br />

Figure 1.1. C<strong>on</strong>ceptual diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> terms exergoecology and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-ecology<br />

system at <str<strong>on</strong>g>the</str<strong>on</strong>g> same temperature and pressure but c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> dead inorganic material<br />

as reference”. Eco-exergy becomes <str<strong>on</strong>g>the</str<strong>on</strong>g>n a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> how far <str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystem is<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic equilibrium, or how developed <str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystem is.<br />

Let us outline <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecological method and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

exergy approaches (leaded by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-ecological method) through an example.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper from a deposit, Szargut’s <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-ecological analysis<br />

would account for <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy input <str<strong>on</strong>g>of</str<strong>on</strong>g> all industrial processes involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pure copper from <str<strong>on</strong>g>the</str<strong>on</strong>g> mine, including <str<strong>on</strong>g>the</str<strong>on</strong>g> abatement processes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

emissi<strong>on</strong>s and wastes (see Fig. 1.1). The exergoecology approach closes <str<strong>on</strong>g>the</str<strong>on</strong>g> cycle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Fig. 1.1, because it is c<strong>on</strong>cerned about <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy needed to return <str<strong>on</strong>g>the</str<strong>on</strong>g> copper from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> depleted state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mine where it was found. The<br />

exergy distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. and <str<strong>on</strong>g>the</str<strong>on</strong>g> mine increases with <str<strong>on</strong>g>the</str<strong>on</strong>g> mine’s quality.<br />

This means that as <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits become exhausted, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy difference<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. and <str<strong>on</strong>g>the</str<strong>on</strong>g> mine becomes lower. In <str<strong>on</strong>g>the</str<strong>on</strong>g> limit, when all natural resources<br />

have been extracted and dispersed, this distance is equal to zero or, what is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same, <str<strong>on</strong>g>the</str<strong>on</strong>g> planet has lost all its natural exergy.<br />

The exergoecology paradigm and its ideas were developed by Valero in <str<strong>on</strong>g>the</str<strong>on</strong>g> book <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Naredo and Valero [239] “Desarrollo ec<strong>on</strong>ómico y deterioro ecológico” (Ec<strong>on</strong>omical<br />

development and ecological degradati<strong>on</strong>). In that book, <str<strong>on</strong>g>the</str<strong>on</strong>g> basis for a general <str<strong>on</strong>g>the</str<strong>on</strong>g>ory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical cost <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic processes is proposed, and some examples <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy replacement costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are provided.


12 STARTING POINT, OBJECTIVES AND SCOPE<br />

Additi<strong>on</strong>ally, two PhD <str<strong>on</strong>g>the</str<strong>on</strong>g>sis accomplished in <str<strong>on</strong>g>the</str<strong>on</strong>g> CIRCE institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Zaragoza and directed by Ant<strong>on</strong>io Valero, have applied and have fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r developed<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecology approach. The first <strong>on</strong>e entitled “Análisis De Los Costes Exergéticos<br />

De La Riqueza Mineral Terrestre. Su Aplicación Para La Gestión De La Sostenibilidad”<br />

[276] (<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> cost analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> wealth <strong>on</strong> <strong>earth</strong>. Applicat<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

management <str<strong>on</strong>g>of</str<strong>on</strong>g> sustainability), was carried out by Lidia Ranz in 1999. The sec<strong>on</strong>d<br />

<strong>on</strong>e was written by Edgar Botero <strong>on</strong>e year later: “Valoración Exergética De Recursos<br />

Naturales, Minerales, Agua y Combustibles Fósiles” [34] (<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural resources, <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, water and fossil fuels).<br />

Ranz developed an approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E., based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> methodology proposed<br />

by Szargut [336] and calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> some important <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

commodities. Her reference envir<strong>on</strong>ment was chosen according to <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance<br />

criteri<strong>on</strong>, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. should be <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant <strong>on</strong>es found<br />

currently in nature. For that purpose, she carried out a comprehensive and systematic<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <strong>on</strong> <strong>earth</strong> for each chemical element. An<br />

important message <str<strong>on</strong>g>of</str<strong>on</strong>g> her study was that exergoecology is irrevocably c<strong>on</strong>nected to<br />

geology. A problem with Ranz’s proposed R.E. is that if we assign zero exergy to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most abundant substances, we are decreasing arbitrarily <str<strong>on</strong>g>the</str<strong>on</strong>g> natural <str<strong>on</strong>g>capital</str<strong>on</strong>g>, because<br />

many abundant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s like sulfides naturally evolute to <str<strong>on</strong>g>the</str<strong>on</strong>g> most stable species.<br />

Botero extended <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy analysis to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r natural resources such as water and<br />

fossil fuels. In his PhD, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy replacement costs was fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r developed,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy abatement costs, were firstly applied. The exergy replacement cost<br />

was first calculated as <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy required for replacing a resource from <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E.<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> current c<strong>on</strong>diti<strong>on</strong>s found in nature, with <str<strong>on</strong>g>the</str<strong>on</strong>g> best available technology. The<br />

exergy abatement cost was proposed as a physical way to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy cost for<br />

avoiding <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental externalities associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels, with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> best available technology.<br />

Both PhD <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, <str<strong>on</strong>g>the</str<strong>on</strong>g> book <str<strong>on</strong>g>of</str<strong>on</strong>g> Naredo and Valero [239], and <str<strong>on</strong>g>the</str<strong>on</strong>g> first paper describing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecological method (Valero [365]), c<strong>on</strong>stitute <str<strong>on</strong>g>the</str<strong>on</strong>g> basis and starting point<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present study. The fundamental c<strong>on</strong>cepts described in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous works are<br />

used in this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis and are fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r developed.<br />

1.6 Scope, objectives and structure <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD is <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s exergy <strong>on</strong> <strong>earth</strong> and<br />

its degradati<strong>on</strong> velocity, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> human acti<strong>on</strong>. As opposed to Botero’s and Ranz’s<br />

PhDs, where <str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecological analysis was applied in a static way, in this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> time factor c<strong>on</strong>stitutes a fundamental variable. For that purpose, an exhaustive<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet and its past, current and future declining<br />

resources needs to be carried out.


Scope, objectives and structure <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD 13<br />

Although an exergy analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> entropic <strong>earth</strong> remains outside <str<strong>on</strong>g>the</str<strong>on</strong>g> scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

PhD, a previous step for modeling it, is <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere, hydrosphere and c<strong>on</strong>tinental crust. While <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere and hydrosphere<br />

are well studied and its main comp<strong>on</strong>ents are reas<strong>on</strong>ably known, <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s has been barely studied. In fact,<br />

<strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> elements is approximately known,<br />

and nowadays it is still being improved and updated. Therefore, an important milest<strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD, is to develop a model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

upper c<strong>on</strong>tinental crust. With <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust’s model, an approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crepuscular <strong>earth</strong> can be provided.<br />

Once <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> is known, a closer look<br />

can be taken at its resources useful to man. The aim is to make a thorough analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance and physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> renewable and n<strong>on</strong> renewable<br />

resources <strong>on</strong> <strong>earth</strong>, stressing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g>. The whole physical stock <strong>on</strong> <strong>earth</strong><br />

will be later assessed with a single unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy.<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy as an accounting tool, requires <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> substances under analysis. We have dealt with more than 330 substances, for<br />

which a little more than 50% empirical <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic values are available from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> literature. Therefore, ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r milest<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis is <str<strong>on</strong>g>the</str<strong>on</strong>g> semi-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretical<br />

estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lacking properties.<br />

With this informati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy, Gibbs free energy and exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

comp<strong>on</strong>ents included in <str<strong>on</strong>g>the</str<strong>on</strong>g> three outer layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> will be obtained for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

first time. In <str<strong>on</strong>g>the</str<strong>on</strong>g> same way, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel and<br />

n<strong>on</strong>-fuel origin will be calculated and compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r physical resources <strong>on</strong><br />

<strong>earth</strong>.<br />

The accomplishment <str<strong>on</strong>g>of</str<strong>on</strong>g> a dynamic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resources <strong>on</strong> <strong>earth</strong>, requires <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

time factor to be introduced. The final aim is to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

resources due to <str<strong>on</strong>g>the</str<strong>on</strong>g> human acti<strong>on</strong>, from <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> industrializati<strong>on</strong> period<br />

to nowadays. For that purpose, a comprehensive review <str<strong>on</strong>g>of</str<strong>on</strong>g> historical statistics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fuel and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong> from different instituti<strong>on</strong>s needs to be carried<br />

out. Additi<strong>on</strong>ally, with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios, <str<strong>on</strong>g>the</str<strong>on</strong>g> possible degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

resources in <str<strong>on</strong>g>the</str<strong>on</strong>g> future can be provided. The representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy degradati<strong>on</strong><br />

throughout history, will allows us to introduce new c<strong>on</strong>cepts and to apply<br />

degradati<strong>on</strong> models for assessing global <str<strong>on</strong>g>mineral</str<strong>on</strong>g> scarcity. An example <str<strong>on</strong>g>of</str<strong>on</strong>g> that is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model, for determining <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

The objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD cannot be accomplished <strong>on</strong>ly with a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic perspective.<br />

We have stated throughout this work, that o<str<strong>on</strong>g>the</str<strong>on</strong>g>r disciplines such as geology,<br />

geochemistry and ec<strong>on</strong>omy are also crucial. Hence, for <str<strong>on</strong>g>the</str<strong>on</strong>g> completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

studies, interacti<strong>on</strong> with experts from different knowledge areas was required. In<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> geological field, <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> with experts from <str<strong>on</strong>g>the</str<strong>on</strong>g> British Geological Survey<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> department <str<strong>on</strong>g>of</str<strong>on</strong>g> Petrology in <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zaragoza were decisive. In


14 STARTING POINT, OBJECTIVES AND SCOPE<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same way, <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemistry part <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD was reinforced with <str<strong>on</strong>g>the</str<strong>on</strong>g> reviews <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Dr. Vieillard, from <str<strong>on</strong>g>the</str<strong>on</strong>g> “Laboratoire d’Hydrogéologie, Argiles, Sols et Altérati<strong>on</strong>s” in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Poitiers. In <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic field, <str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spanish<br />

ec<strong>on</strong>omist J.M. Naredo was especially taken into account.<br />

This PhD is structured into two differentiated parts. Part 1, which includes chapters<br />

2, 3 and 4, describes <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and its resources. Part 2 c<strong>on</strong>tains<br />

chapters 5, 6, 7, and 8 and is focused <strong>on</strong> calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and its exergy <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g>.<br />

Summarizing, this PhD tries to answer <str<strong>on</strong>g>the</str<strong>on</strong>g> following questi<strong>on</strong>s:<br />

• Chapter 2: What is <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>?<br />

• Chapter 3: What is <str<strong>on</strong>g>the</str<strong>on</strong>g> average <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental<br />

crust?<br />

• Chapter 4: What are <str<strong>on</strong>g>the</str<strong>on</strong>g> available, potential and currently in use energy resources<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>? What are <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources <strong>on</strong> <strong>earth</strong> and<br />

which is <str<strong>on</strong>g>the</str<strong>on</strong>g>ir average ore grade?<br />

• Chapter 5: Which is <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic models required for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>?<br />

• Chapter 6: What is <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy, Gibbs free energy and exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet<br />

and its resources? What is <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy replacement cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources<br />

<strong>on</strong> <strong>earth</strong>?<br />

• Chapter 7: How can we measure <str<strong>on</strong>g>the</str<strong>on</strong>g> level and <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources? How are <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>cepts applied to a specific nati<strong>on</strong>?<br />

• Chapter 8: How fast is humankind degrading <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> exergy resources <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>? Have we reached <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s?<br />

In short, <str<strong>on</strong>g>the</str<strong>on</strong>g> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD is to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and its resources,<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecological point <str<strong>on</strong>g>of</str<strong>on</strong>g> view. Because, as stated before, it is<br />

impossible to manage efficiently <str<strong>on</strong>g>the</str<strong>on</strong>g> resources <strong>on</strong> <strong>earth</strong>, if we do not know what is<br />

available and at which rate it is being depleted.<br />

1.7 Scientific papers derived from this PhD<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained in this PhD have been presented in different c<strong>on</strong>ferences<br />

and published in internati<strong>on</strong>al journals. Here is a list <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> papers developed from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> work carried out in this PhD ([343], [368],[377], [378], [375], [376], [374],<br />

[373]).


Scientific papers derived from this PhD 15<br />

1. J. Szargut, A. Valero, W. Stanek, and A. Valero D. Towards an internati<strong>on</strong>al<br />

legal reference envir<strong>on</strong>ment. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ECOS 2005, pages 409–420,<br />

Tr<strong>on</strong>dheim, Norway, June 2005.<br />

2. A. Valero, E. Botero, and A. Valero D. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> accounting <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources.<br />

<str<strong>on</strong>g>Exergy</str<strong>on</strong>g>, Energy System Analysis, and Optimizati<strong>on</strong>., from Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> Life<br />

Support Systems (EOLSS), Developed under <str<strong>on</strong>g>the</str<strong>on</strong>g> Auspices <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> UNESCO Eolss<br />

Publishers, Oxford, UK; Online encyclopedia: http://www.eolss.net, Retrieved<br />

May 19, 2005.<br />

3. A. Valero D., A. Valero, and A. Martinez. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

<str<strong>on</strong>g>capital</str<strong>on</strong>g> <strong>on</strong> Earth. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

IMECE 2005, Orlando, USA, 5-11 November 2005. ASME.<br />

4. A. Valero D., A. Valero, A. Martínez, and G. Mudd. A physical way to assess <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> through exergy. The Australian case. In Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ISEE 2006, New Delhi, India, 15-18 December 2006. Ninth Biennial C<strong>on</strong>ference<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>al Society for Ecological Ec<strong>on</strong>omics (ISEE). “Ecological<br />

Sustainability and Human Well-being”.<br />

5. A. Valero D., A. Valero, and I. Arauzo. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> as an indicator for resources<br />

scarcity. The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g>, a case study. In Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> IMECE2006, Chicago, USA, 5-10 November 2006. ASME.<br />

6. A. Valero D., A. Valero, and I. Arauzo. Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> decrease in <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

exergy throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in <str<strong>on</strong>g>the</str<strong>on</strong>g> US. Energy,<br />

33(2):107–115, 2008.<br />

7. A. Valero D. Assessing world <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits through <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics.<br />

In Inproceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Mineral Deposit Studies Group (MDSG)<br />

c<strong>on</strong>ference, Nottingham (UK), 2-4 January 2008.<br />

8. A. Valero, A. Valero D., and C. Torres. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak. An extended<br />

analysis for <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <strong>on</strong> <strong>earth</strong>. In Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> IMECE 2008, Bost<strong>on</strong>, USA, 31 October - 6 November 2008. ASME.


Part I<br />

The <strong>earth</strong> and its resources<br />

17


Chapter 2<br />

The geochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>.<br />

Known facts<br />

2.1 Introducti<strong>on</strong><br />

In this chapter a comprehensive analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> is undertaken<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> starting point for assessing its <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties. The geochemical<br />

features <str<strong>on</strong>g>of</str<strong>on</strong>g> each layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> are described: <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere; hydrosphere<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans, surface and ground waters as well as ice sheets; and <str<strong>on</strong>g>the</str<strong>on</strong>g> crust, focusing<br />

mainly <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> it.<br />

2.2 The bulk <strong>earth</strong><br />

The <strong>earth</strong> is an approximately spherical body, 12.756 km <str<strong>on</strong>g>of</str<strong>on</strong>g> diameter and 5, 98×10 24<br />

kg [23]. Its physical and chemical peculiarities have allowed <str<strong>on</strong>g>the</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> life <strong>on</strong><br />

<strong>earth</strong>. The solid <strong>earth</strong> is divided into <str<strong>on</strong>g>the</str<strong>on</strong>g> crust (c<strong>on</strong>tinental and oceanic), mantle and<br />

core. The external layers above <str<strong>on</strong>g>the</str<strong>on</strong>g> crust are <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere and <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere.<br />

From all layers, <str<strong>on</strong>g>the</str<strong>on</strong>g> mantle and core are <str<strong>on</strong>g>the</str<strong>on</strong>g> largest, accounting for 67 and 33% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> total mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> [169]. The crust, hydrosphere and atmosphere toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

make up less than 1% by mass. Only that small fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> is<br />

available for direct study and analysis, and so it is necessary to use indirect methods<br />

to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s inner compositi<strong>on</strong>. The c<strong>on</strong>tinental crust, in c<strong>on</strong>cert with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere and hydrosphere provides <str<strong>on</strong>g>the</str<strong>on</strong>g> nurturing and nourishing habitat in<br />

which our species lives.<br />

2.2.1 The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong><br />

The <strong>earth</strong> can be c<strong>on</strong>sidered as a closed system with a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> substances<br />

in it, except for <str<strong>on</strong>g>the</str<strong>on</strong>g> very occasi<strong>on</strong>al and insignificant matter c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mete-<br />

19


20 THE GEOCHEMISTRY OF THE EARTH. KNOWN FACTS<br />

orites [209]. The spheres are large reservoirs and between <str<strong>on</strong>g>the</str<strong>on</strong>g> reservoirs <str<strong>on</strong>g>the</str<strong>on</strong>g>re are<br />

flows <str<strong>on</strong>g>of</str<strong>on</strong>g> materials that balance out and keep <str<strong>on</strong>g>the</str<strong>on</strong>g> reservoir compositi<strong>on</strong>s nearly c<strong>on</strong>stant.<br />

Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere and c<strong>on</strong>tinental crust<br />

is practically c<strong>on</strong>stant.<br />

Table 2.1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main layers <strong>on</strong> <strong>earth</strong> based <strong>on</strong> Javoy’s [169]<br />

study. Only four elements c<strong>on</strong>stitute nearly 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s mass. In order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

abundance, <str<strong>on</strong>g>the</str<strong>on</strong>g>se are O, Fe, M g and Si. The relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> M g relies <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> geochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mantle, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <strong>earth</strong>,<br />

where Si and Fe predominate in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust and core, respectively. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r estimati<strong>on</strong>s<br />

were d<strong>on</strong>e by Mas<strong>on</strong> [209], Ringwood [280], Ganapathy and Anders [105]<br />

and Smith [322]. As Javoy [169] states, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly significant discrepancy between<br />

chemical models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> lies in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower mantle. All primary upper mantle<br />

compositi<strong>on</strong>s agree to within a few percent relative for major and minor elements.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> core, <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> is not so strictly defined but <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant agreement<br />

is <strong>on</strong> Fe − N i − Co − C r − M n − Si − O − S combinati<strong>on</strong>s.<br />

If we <strong>on</strong>ly take into account <str<strong>on</strong>g>the</str<strong>on</strong>g> outer layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust,<br />

hydrosphere and atmosphere, <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>stitute 92,87%, 3,15% and 0,0712% by volume,<br />

respectively.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere and upper<br />

c<strong>on</strong>tinental crust are explained in detail.<br />

2.3 The atmosphere<br />

The atmosphere is <str<strong>on</strong>g>the</str<strong>on</strong>g> colorless, odorless and tasteless gaseous layer surrounding<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and retained by it through <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s gravity. Its relative mass compared<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r spheres <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> is minuscule (see table 2.1). Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, it is a<br />

crucial geochemical reservoir, providing c<strong>on</strong>diti<strong>on</strong>s essential for sustaining life, such<br />

as supplying O 2, CO 2, moisture and many nutrients. The atmosphere plays also a<br />

very direct role in c<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s climate via <str<strong>on</strong>g>the</str<strong>on</strong>g> absorpti<strong>on</strong> and scattering<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sunlight and infrared radiati<strong>on</strong> and reducing temperature extremes between day<br />

and night.<br />

The atmosphere is made up <str<strong>on</strong>g>of</str<strong>on</strong>g> several layers with different qualities [359], [182]<br />

[331] (see figure 2.1):<br />

• The troposphere is <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest atmospheric layer. It begins at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and<br />

extends between 7 to 17 km. It c<strong>on</strong>tains over 75% <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric gases<br />

and vast quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> water and dust. Almost all phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r and<br />

climate that physically affect man take place within <str<strong>on</strong>g>the</str<strong>on</strong>g> troposphere, caused by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> churning <str<strong>on</strong>g>of</str<strong>on</strong>g> its mass. The troposphere is <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> in which <str<strong>on</strong>g>the</str<strong>on</strong>g> infrared<br />

radiati<strong>on</strong> is absorbed mainly by water vapor to raise <str<strong>on</strong>g>the</str<strong>on</strong>g> surface temperature.


The atmosphere 21<br />

Table 2.1. Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main envelopes derived from direct sampling or from<br />

a chemical translati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a direct measurement (density), in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> core,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding whole <strong>earth</strong> compositi<strong>on</strong> [169].<br />

Mantle Oceanic C<strong>on</strong>tinental Core Oceans Atmosphere Whole<br />

crust crust<br />

<strong>earth</strong><br />

% vol 81,89 0,085 0,44 17,56 0,033 1,48E-08 100<br />

% mass 67 0,072 0,36 32,54 0,023 0,842 ppm 100<br />

O 44,12 44,33 47,25 3 88,889 23,16 30,76<br />

Si 20,89 23,1 27,58 7 16,39<br />

Mg 25,09 4,66 2,65 0,0053 16,82<br />

Al 1,24 8,47 8,36 0,87<br />

Ca 1,49 8,07 4,57 0,0412 1,02<br />

Fe 6,53 8,17 5,13 80 30,43<br />

Ni 0,17 0,3 4,65 1,63<br />

Ti 0,058 0,9 0,42 0,04<br />

Cr 0,169 0,2 0,77 0,36<br />

Mn 0,081 0,11 0,09 0,57 0,24<br />

Na 0,14 2,08 2,37 1,0764 0,10<br />

S 0,01 4 0,0902 1,31<br />

K 0,03 0,12 1,58 0,0398 2,59E-02<br />

U 5E-12 2E-11 1,00E-06 6,96E-12<br />

Th 1,2E-11 4,4E-11 3,50E-06 2,07E-11<br />

Cl<br />

Br<br />

1,9383 4,46E-04<br />

B 0,0005 1,15E-07<br />

C 0,04 0,0028 2,68E-02<br />

N 75,56 6,36E-08<br />

Rare<br />

gases<br />

1,28 1,08E-09<br />

• The stratosphere extends from <str<strong>on</strong>g>the</str<strong>on</strong>g> troposphere to about 50 km. In this thin<br />

layer, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is 19% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric gases and a small quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> water vapor.<br />

Temperature increases with height because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ultraviolet<br />

light by oz<strong>on</strong>e. The oz<strong>on</strong>e layer is c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> stratosphere.<br />

• The mesosphere extends from about 50 km to <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> 80 to 85 km. The<br />

gases in <str<strong>on</strong>g>the</str<strong>on</strong>g> mesosphere are too thin to absorb much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sun’s radiati<strong>on</strong>, but<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> air is thick enough to slow down meteorites. In this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature<br />

decreases with height.<br />

• The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmosphere ranges from 80-85 km to more than 640 km.The gases <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this sphere are even thinner than in <str<strong>on</strong>g>the</str<strong>on</strong>g> mesosphere, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y absorb ultraviolet<br />

light from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun and as a c<strong>on</strong>sequence, temperature increases with<br />

height.<br />

• The i<strong>on</strong>osphere is part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmosphere and is made <str<strong>on</strong>g>of</str<strong>on</strong>g> electrically charged<br />

gas particles i<strong>on</strong>ized by solar radiati<strong>on</strong>. It plays an important role since it


22 THE GEOCHEMISTRY OF THE EARTH. KNOWN FACTS<br />

Figure 2.1. The atmospheric layers. Source: http://www.atmosphere.mpg.de (Max<br />

Plank Institute)<br />

influences radio propagati<strong>on</strong> to distant places <strong>on</strong> <strong>earth</strong>. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, it is<br />

resp<strong>on</strong>sible for auras.<br />

• And finally <str<strong>on</strong>g>the</str<strong>on</strong>g> exosphere, it is <str<strong>on</strong>g>the</str<strong>on</strong>g> outermost layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere and<br />

extends from 500 to 1000 km up to 10.000 km. It is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> free-moving<br />

particles that may migrate into and out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> magnetosphere. In this layer,<br />

gases get thinner and thinner and drift <str<strong>on</strong>g>of</str<strong>on</strong>g>f into space.<br />

The stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical and geochemical c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere is being<br />

altered by <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> man through air polluti<strong>on</strong>. The greatest source <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>s<br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g> burning <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels, emitting huge quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide, methane<br />

and fluorocarb<strong>on</strong>s, believed to c<strong>on</strong>tribute to global warming. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r man-made<br />

c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>luorocarb<strong>on</strong>s is <str<strong>on</strong>g>the</str<strong>on</strong>g> stratospheric oz<strong>on</strong>e depleti<strong>on</strong>,<br />

which lowers <str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere to protect us against UV radiati<strong>on</strong>.<br />

2.3.1 The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere<br />

In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> its c<strong>on</strong>stituent gases, <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere presents a notably uniform chemical<br />

compositi<strong>on</strong> to heights <str<strong>on</strong>g>of</str<strong>on</strong>g> about 100 km [100], except for water which varies with<br />

locati<strong>on</strong> and seas<strong>on</strong> as well as with elevati<strong>on</strong>. Above this altitude, <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere<br />

becomes layered and n<strong>on</strong> uniform in chemical compositi<strong>on</strong>.


The hydrosphere 23<br />

The atmosphere is composed roughly by (volume c<strong>on</strong>tent) 78% <str<strong>on</strong>g>of</str<strong>on</strong>g> usually inert nitrogen<br />

1 , around 21% <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen, 0,93% arg<strong>on</strong>, 380 ppm <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide, a variable<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> water vapor (average around 1%) and trace amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r gases.<br />

That mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> gases is comm<strong>on</strong>ly known as air. The latest atmospheric geochemical<br />

advances are compiled in Keeling [181]. Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> main comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

troposphere and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir origin are explained basing <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> provided by<br />

Turekian [359].<br />

Nitrogen in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen at <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans combines to form<br />

nitrate in soluti<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g> stable form. Both nitrogen and oxygen are maintained<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g>ir levels by biological processes. Oxygen is more biologically c<strong>on</strong>trolled than<br />

nitrogen but both are dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical acti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> life.<br />

The arg<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere is believed to have been produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> radioactive<br />

decay <str<strong>on</strong>g>of</str<strong>on</strong>g> potassium-40 in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and released to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere by degassing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. It is not certain whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> arg<strong>on</strong> was supplied from <str<strong>on</strong>g>the</str<strong>on</strong>g> arg<strong>on</strong><br />

produced in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> by potassium-40 decay at some major degassing epoch in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong>’s early history or by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuously generated arg<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust and<br />

mantle.<br />

Methane and carb<strong>on</strong> dioxide are closely tied to biological activity. Methane oxidized<br />

carb<strong>on</strong> dioxide and its presence is directly sustained by producti<strong>on</strong> by bacteria and<br />

animals.<br />

Man-made impurities such as sulphur dioxide and carb<strong>on</strong> m<strong>on</strong>oxide, which are resp<strong>on</strong>sible<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> physical discomforts <str<strong>on</strong>g>of</str<strong>on</strong>g> smog, are also sometimes highly c<strong>on</strong>centrated<br />

in urban areas.<br />

A summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere at <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> twenty-first<br />

century d<strong>on</strong>e by Prinn [272], from Brasseur et al. [36] and Prinn et al. [271] is<br />

given in table 2.2.<br />

2.4 The hydrosphere<br />

The hydrosphere is <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid water comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. It includes oceans, seas,<br />

lakes, rivers, rain, underground water, ice and atmospheric water vapor as in clouds.<br />

It covers about 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and is <str<strong>on</strong>g>the</str<strong>on</strong>g> home for many plants and<br />

animals.<br />

The hydrosphere is in c<strong>on</strong>tinuous moti<strong>on</strong> through <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrologic cycle, which is a<br />

c<strong>on</strong>ceptual model that describes <str<strong>on</strong>g>the</str<strong>on</strong>g> storage and movement <str<strong>on</strong>g>of</str<strong>on</strong>g> water between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

biosphere, atmosphere, lithosphere and <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere (see secti<strong>on</strong> 4.6.2 for more<br />

details).<br />

1 Normally inert except up<strong>on</strong> electrolysis by lightning and in certain biochemical processes <str<strong>on</strong>g>of</str<strong>on</strong>g> ni-<br />

trogen fixati<strong>on</strong>.


24 THE GEOCHEMISTRY OF THE EARTH. KNOWN FACTS<br />

Table 2.2. Gaseous chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere [272].<br />

Substance Chemical<br />

formula<br />

Mole fracti<strong>on</strong> in dry air Major sources<br />

Nitrogen N2 78,084 % Biological<br />

Oxygen O2 20,948 % Biological<br />

Arg<strong>on</strong> Ar 0,934 % Inert<br />

Carb<strong>on</strong> dioxide CO2 360 ppm Combusti<strong>on</strong>,<br />

sphere<br />

ocean, bio-<br />

Ne<strong>on</strong> N e 18,18 ppm Inert<br />

Helium He 5,24 ppm Inert<br />

Methane CH 4 1,7 ppm Biogenic, anthropogenic<br />

Hydrogen H2 0,55 ppm Biogenic, anthropogenic,<br />

Nitrous oxide N2O 0,31 ppm<br />

photochemical<br />

Biogenic, anthropogenic<br />

Carb<strong>on</strong> m<strong>on</strong>oxide CO 50-200 ppb Photochemical,<br />

pogenicanthro-<br />

Oz<strong>on</strong>e (troposphere) O3 10-500 ppb Photochemical<br />

Oz<strong>on</strong>e (stratosphere) O3 0,5-10 ppm Photochemical<br />

NMHC Cx H y 5,0-20 ppb Biogenic, anthropogenic<br />

Chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>luorocarb<strong>on</strong> 12 C F2Cl2 540 ppt Anthropogenic<br />

Chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>luorocarb<strong>on</strong> 11 C F Cl 3 265 ppt Anthropogenic<br />

Methylchlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm CH 3CCl 3 65 ppt Anthropogenic<br />

Carb<strong>on</strong> tetrachloride CCl 4 98 ppt Anthropogenic<br />

Nitrogen oxides NOx 0,01-1 ppm Soils,<br />

pogenic<br />

lightning, anthro-<br />

Amm<strong>on</strong>ia N H3 0,01-1 ppb Biogenic<br />

Hydroxyl radical OH 0,05 ppt Photochemical<br />

Hydroperoxyl radical HO2 2 ppt Photochemical<br />

Hydrogen peroxide H2O2 0,1-10 ppb Photochemical<br />

Formaldehyde CH 2O 0,1-1 ppb Photochemical<br />

Sulfur dioxide SO2 0,01-1 ppb Photochemical,<br />

anthropogenic<br />

volcanic,<br />

Dimethyl sulfide CH 3SCH 3 10-100 ppt Biogenic<br />

Carb<strong>on</strong> disulfide CS2 1-300 ppt Biogenic, anthropogenic<br />

Carb<strong>on</strong>yl sulfide OCS 500 ppt Biogenic, volcanic, anthropogenic<br />

Hydrogen sulfide H2S 5-500 ppt Biogenic, volcanic


The hydrosphere 25<br />

Table 2.3. Inventory <str<strong>on</strong>g>of</str<strong>on</strong>g> water at <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s surface [263].<br />

Reservoir Volume, M km 3 %<br />

Oceans 1370 97,25<br />

Ice Caps and Glaciers 29 2,05<br />

Groundwater 9,5 0,68<br />

Lakes 0,125 0,01<br />

Soil Moisture 0,065 0,005<br />

Atmosphere 0,013 0,001<br />

Streams and Rivers 0,0017 0,0001<br />

Biosphere 0,0006 0,00004<br />

Sum 1408,71 100,00<br />

The planetary water supply is dominated by <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans (see table 2.3). Approximately<br />

97% <str<strong>on</strong>g>of</str<strong>on</strong>g> all water <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans. The o<str<strong>on</strong>g>the</str<strong>on</strong>g>r 3% is held as freshwater<br />

in glaciers and icecaps, groundwater, lakes, soil, <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere and biosphere<br />

[263]. The greater porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fresh water (75%) is in <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> ice and permanent<br />

snow cover in <str<strong>on</strong>g>the</str<strong>on</strong>g> Antarctic, Arctic and mountainous regi<strong>on</strong>s. Next 25% are<br />

fresh and ground waters. Only 0,33% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh waters <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong> are c<strong>on</strong>centrated in lakes, reservoirs and river systems (surface waters), which<br />

are most accessible for ec<strong>on</strong>omic needs and very important for water ecosystems.<br />

C<strong>on</strong>sidered as a whole, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> has a comparatively stable water budget. The major<br />

problem is that most <str<strong>on</strong>g>of</str<strong>on</strong>g> it is overwhelmingly salty. Additi<strong>on</strong>ally, fresh water is not<br />

evenly distributed over <str<strong>on</strong>g>the</str<strong>on</strong>g> lands. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, industrializati<strong>on</strong> and unsustainable<br />

land uses are increasing dramatically water polluti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby threatening world<br />

water supply.<br />

Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> main water reservoirs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> are analyzed, stressing out <str<strong>on</strong>g>the</str<strong>on</strong>g>ir abundances,<br />

ec<strong>on</strong>omic uses and chemical compositi<strong>on</strong>s.<br />

2.4.1 Seawater<br />

The oceans account for a little over 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s surface and comprise more<br />

than 97% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere. The volume <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean water is about 1, 37 · 10 9 km 3<br />

[263]. The Pacific ocean is by far <str<strong>on</strong>g>the</str<strong>on</strong>g> biggest in <str<strong>on</strong>g>the</str<strong>on</strong>g> world, followed by <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> Indian oceans (see table 2.4).<br />

Oceans represent a relatively well-mixed system <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>siderable mass and potential<br />

ec<strong>on</strong>omic use. The prime functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans are those related to atmospheric<br />

behavior. The oceans c<strong>on</strong>stitute <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly major source <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric moisture for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> lands, and <str<strong>on</strong>g>the</str<strong>on</strong>g>y serve as gigantic “energy cells” for <str<strong>on</strong>g>the</str<strong>on</strong>g> receipt, storage, and release<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radiant sun energy that fuels <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s climatic and wea<str<strong>on</strong>g>the</str<strong>on</strong>g>r systems.<br />

Besides <str<strong>on</strong>g>of</str<strong>on</strong>g> being a huge food reservoir, <str<strong>on</strong>g>the</str<strong>on</strong>g>y have o<str<strong>on</strong>g>the</str<strong>on</strong>g>r uses such as pure water


26 THE GEOCHEMISTRY OF THE EARTH. KNOWN FACTS<br />

Table 2.4. Volume <str<strong>on</strong>g>of</str<strong>on</strong>g> Oceans and Seas. Adapted from [85]<br />

Name Volume, M km 3<br />

Atlantic Ocean<br />

without marginal seas 324,6<br />

with marginal seas 354,7<br />

Pacific Ocean<br />

without marginal seas 707,6<br />

with marginal seas 723,7<br />

Indian Ocean<br />

without marginal seas 291<br />

with marginal seas 291,9<br />

Arctic Ocean 17<br />

Mediterranean Sea and Black Sea 4,2<br />

Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Mexico and Caribbean Sea 9,6<br />

Australasian Central Sea 9,9<br />

Huds<strong>on</strong> Bay 0,16<br />

Baltic Sea 0,02<br />

North Sea 0,05<br />

English Channel 0,004<br />

Irish Sea 0,006<br />

Sea <str<strong>on</strong>g>of</str<strong>on</strong>g> Okhotsk 1,3<br />

Bering Sea 3,33<br />

The world ocean 1.370<br />

sources after <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> desalinati<strong>on</strong> and as chlorine and bromine sources 2 . Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less,<br />

its salinity avoids seawater to have more ec<strong>on</strong>omic uses than <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> water reservoirs menti<strong>on</strong>ed before. In fact it is frequently c<strong>on</strong>sidered to be<br />

a drain ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than a resource.<br />

2.4.1.1 The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sea<br />

Despite <str<strong>on</strong>g>the</str<strong>on</strong>g>ir overall size, <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans are sufficiently uniform to make descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemical nature relatively straightforward. Studies have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

relative compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> major comp<strong>on</strong>ents: N a + , M g2+ , Ca2+ , K + , Cl − , SO −2<br />

4 ,<br />

Sr 2+ , HBO −<br />

3 , CO2−<br />

3 , B(OH) 3, B(OH) −<br />

4 , F − <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater were c<strong>on</strong>stant [69], [37],<br />

[264] and [224]. The first six i<strong>on</strong>s make up 99,4% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dissolved salts (see table<br />

2.5). Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemicals in <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean are brought from <str<strong>on</strong>g>the</str<strong>on</strong>g> water <str<strong>on</strong>g>of</str<strong>on</strong>g> rivers,<br />

which in turn receive <str<strong>on</strong>g>the</str<strong>on</strong>g>m from rocks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust that have suffered <str<strong>on</strong>g>the</str<strong>on</strong>g> process<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wea<str<strong>on</strong>g>the</str<strong>on</strong>g>ring. An average compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> river waters given by Livingst<strong>on</strong>e [197] is<br />

listed in table 2.8. It is remarkable <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between river and ocean chemical<br />

compositi<strong>on</strong>s. The explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> that relies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> residence time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong>s. Most<br />

abundant i<strong>on</strong>s found in seawater have residence times <str<strong>on</strong>g>of</str<strong>on</strong>g> above <strong>on</strong>e milli<strong>on</strong> years<br />

[137]. The salinity <str<strong>on</strong>g>of</str<strong>on</strong>g> ocean water is about 35 parts per thousand by mass, but<br />

2 See secti<strong>on</strong>s 3.4.16 and 3.4.10 for more details.


The hydrosphere 27<br />

Table 2.5. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> average seawater. Adapted from [224]<br />

Substance C<strong>on</strong>centrati<strong>on</strong>, mg/g<br />

Cl − 19,351<br />

N a + 10,784<br />

M g2+ 1,284<br />

SO2− 4<br />

Ca<br />

2,713<br />

2+ 0,412<br />

K + 0,399<br />

HCO −<br />

3<br />

Br<br />

0,107<br />

− 0,067<br />

Sr 2+ 0,008<br />

CO2− 3<br />

B(OH)<br />

0,048<br />

−<br />

4<br />

F<br />

0,003<br />

− 0,013<br />

B(OH) 3<br />

0,009<br />

Sum 35,198<br />

variati<strong>on</strong>s from about 33 to 38 parts per thousand are observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> open oceans.<br />

The variati<strong>on</strong> in salinity results from a number <str<strong>on</strong>g>of</str<strong>on</strong>g> physical processes that c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

salt c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater such as temperature, rainfall, ice melting or land run<str<strong>on</strong>g>of</str<strong>on</strong>g>f.<br />

But not all seawater substances have a crustal origin. In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> sea is a huge reservoir<br />

for many atmospheric substances such as carb<strong>on</strong> dioxide, a major c<strong>on</strong>tributor<br />

to climate change. Through <str<strong>on</strong>g>the</str<strong>on</strong>g> air-sea interacti<strong>on</strong> processes, all <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

air can be expected to find <str<strong>on</strong>g>the</str<strong>on</strong>g>ir way into <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

sources and mechanisms producing gases within <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean that supplement those<br />

supplied from <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. The dissolved gases in seawater are classified into<br />

four general groups [148]. The first group c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> inert gases: nitrogen, arg<strong>on</strong>,<br />

helium, ne<strong>on</strong>, xen<strong>on</strong>, and krypt<strong>on</strong>. These gases enter <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

air-sea interface or through <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aerated water by land run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. The<br />

sec<strong>on</strong>d group is composed by solely oxygen, coming from <str<strong>on</strong>g>the</str<strong>on</strong>g> same sources than <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r group plus from photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis by <str<strong>on</strong>g>the</str<strong>on</strong>g> plants that exist in <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean. The third<br />

group also c<strong>on</strong>tains <strong>on</strong>ly <strong>on</strong>e member, carb<strong>on</strong> dioxide. This gas is introduced into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sea through <str<strong>on</strong>g>the</str<strong>on</strong>g> large chemical equilibrium system. Specific sources <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong><br />

dioxide include <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, land run<str<strong>on</strong>g>of</str<strong>on</strong>g>f and <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean floor. The fourth group<br />

is simply <str<strong>on</strong>g>the</str<strong>on</strong>g> collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining gaseous ingredients found in seawater,<br />

and its sources are air polluti<strong>on</strong>, usually from industry, and chemical reacti<strong>on</strong>s o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

than photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. Hydrogen sulfide resulting from <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfate in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen is <strong>on</strong>e member <str<strong>on</strong>g>of</str<strong>on</strong>g> this fourth group.<br />

Wilhelm Dittmar’s complete analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seventy-seven seawater samples collected<br />

in 1884 stood for almost a century. Nowadays, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most accepted compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> minor species in seawater is <str<strong>on</strong>g>the</str<strong>on</strong>g> compilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Quinby-Hunt and Turekian [273],<br />

listed in table 2.6.


28 THE GEOCHEMISTRY OF THE EARTH. KNOWN FACTS<br />

Table 2.6: Predicted Mean Oceanic C<strong>on</strong>centrati<strong>on</strong>s. Adapted from [273].<br />

Element Species C<strong>on</strong>centrati<strong>on</strong><br />

Hydrogen H 2<br />

Helium 1,9 nmol/kg<br />

Lithium 178 µg/kg<br />

Beryllium 0,2 ng/kg<br />

Bor<strong>on</strong> Inorganic Bor<strong>on</strong> 4,4 mg/kg<br />

Carb<strong>on</strong> ΣCO 2 2200 µg/kg<br />

Nitrogen N 2 590 µg/kg<br />

NO 3 30 µg/kg<br />

Oxygen Dissolved O 2 150 µg/kg<br />

Fluorine 1,3 mg/kg<br />

Ne<strong>on</strong> 8 nmol/kg<br />

Sodium 10,781 g/kg<br />

Magnesium 1,28 g/kg<br />

Aluminum 1 µg/kg<br />

Silic<strong>on</strong> Silicate 110 µmole/kg<br />

Phosphorous Reactive Phosphate 2 µmole/kg<br />

Sulfur Sulfate 2,712 g/kg<br />

Chlorine Chloride 19,353 g/kg<br />

Arg<strong>on</strong> 15,6 µmole/kg<br />

Potassium 399 mg/kg<br />

Calcium 415 mg/kg<br />

412 mg/kg<br />

Scandium < 1 ng/kg<br />

Titanium < 1 ng/kg<br />

Vanadium < 1 µg/kg<br />

Chromium C r (tot) 330 ng/kg<br />

330 ng/kg<br />

250 ng/kg<br />

Manganese Dissolved M n 10 ng/kg<br />

Ir<strong>on</strong> 40 ng/kg<br />

Cobalt 2 ng/kg<br />

Nickel 480 ng/kg<br />

Copper 120 ng/kg<br />

Zinc 390 ng/kg<br />

Gallium 10 20 ng/kg<br />

Germanium < 5 ng/kg<br />

Arsenic As (V) 2 µg/kg<br />

Dimethylarsenate<br />

Selenium Se (tot) 170 ng/kg<br />

Se (IV) <<br />

Se (VI)<br />

Bromine Bromide 67 mg/kg<br />

Krypt<strong>on</strong> 3,7 nmol/kg<br />

Rubidium 124 mug/kg<br />

Str<strong>on</strong>tium 7,8 mg/kg<br />

7,7 mg/kg<br />

Yttrium 13 ng/kg<br />

Zirc<strong>on</strong>ium 1 µg/kg<br />

Niobium < 1 ng/kg<br />

Molybdenum 11 µg/kg<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


The hydrosphere 29<br />

Table 2.6: Predicted Mean Oceanic C<strong>on</strong>centrati<strong>on</strong>s. Adapted from [273]. –<br />

c<strong>on</strong>tinued from previous page.<br />

Element Species C<strong>on</strong>centrati<strong>on</strong><br />

Ru<str<strong>on</strong>g>the</str<strong>on</strong>g>nium 0,5 ng/kg<br />

Rhodium<br />

Palladium<br />

Silver 3 ng/kg<br />

Cadmium 70 ng/kg<br />

Indium 0,5 ng/kg<br />

Tin 0,5 ng/kg<br />

Antim<strong>on</strong>y 0,2 µg/kg<br />

Tellurium<br />

Iodine 59 µg/kg<br />

60 µg/kg<br />

Xen<strong>on</strong> 0,5 nmol/kg<br />

Cesium 0,3 ng/kg<br />

Barium 11,7 µg/kg<br />

Lanthanum 4 ng/kg<br />

Cerium 4 ng/kg<br />

Praeseodymium 0,6 ng/kg<br />

Neodymium 4 ng/kg<br />

Promethium<br />

Samarium 0,6 ng/kg<br />

Europeum 0,1 ng/kg<br />

Gadolinium 0,8 ng/kg<br />

Terbium 0,1 ng/kg<br />

Dysprosium 1 ng/kg<br />

Holmium 0,2 ng/kg<br />

Erbium 0,9 ng/kg<br />

Thulium 0,2 ng/kg<br />

Ytterbium 0,9 ng/kg<br />

Lutetium 0,2 ng/kg<br />

Hafnium ≪ 8 ng/kg<br />

Tantalum ≪ 2,5 ng/kg<br />

Tungsten ≪ 1 ng/kg<br />

Rhenium 4 ng/kg<br />

Osmium<br />

Iridium<br />

Platinum<br />

Gold 11 ng/kg<br />

Mercury 6 ng/kg<br />

Thallium 12 ng/kg<br />

Lead 1 ng/kg<br />

Bismuth 10 ng/kg<br />

Pol<strong>on</strong>ium<br />

Rad<strong>on</strong><br />

Radium<br />

Actinium<br />

Thorium ≪ 0,7 ng/kg<br />

Proactinium<br />

Uranium 3,2 µg/kg<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table


30 THE GEOCHEMISTRY OF THE EARTH. KNOWN FACTS<br />

2.4.2 Renewable water resources: surface and ground waters<br />

The renewable water resources are <str<strong>on</strong>g>the</str<strong>on</strong>g> total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> a country’s water resources,<br />

both surface water and ground water, which are generated through <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrological<br />

cycle. It is mainly <str<strong>on</strong>g>the</str<strong>on</strong>g> river run<str<strong>on</strong>g>of</str<strong>on</strong>g>f estimated in <str<strong>on</strong>g>the</str<strong>on</strong>g> volume referred to a unit <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

time (as for instance km 3 /year) and formed in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> at issue or incoming from<br />

outside, including <str<strong>on</strong>g>the</str<strong>on</strong>g> ground water inflow to <str<strong>on</strong>g>the</str<strong>on</strong>g> river network. This kind <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

resources includes also <str<strong>on</strong>g>the</str<strong>on</strong>g> yearly renewable upper aquifer ground water not drained<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> river systems.<br />

Despite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir relative low abundance, renewable water resources <strong>on</strong> <strong>earth</strong> (see<br />

table 2.3) in forms <str<strong>on</strong>g>of</str<strong>on</strong>g> lakes, streams 3 , rivers and ground water play an important<br />

role for life and especially for human-beings, since <str<strong>on</strong>g>the</str<strong>on</strong>g>y are <str<strong>on</strong>g>the</str<strong>on</strong>g> main sources <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

freshwater. They are also an important source <str<strong>on</strong>g>of</str<strong>on</strong>g> water for agricultural and industrial<br />

c<strong>on</strong>sumpti<strong>on</strong>. Rivers and flows are comparatively small but essential source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

energy. Many rivers are avenues <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong>. They have also a great scenic and<br />

recreati<strong>on</strong>al value.<br />

The mean renewable global water resources are estimated at 42.785 km 3 /year, and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y are very variable with space and time. Table 2.7 presents <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

resources and availability by <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s c<strong>on</strong>tinents. This informati<strong>on</strong> is based <strong>on</strong><br />

a water balance approach by Shiklomanov [311], who provided country data for 51<br />

countries <strong>on</strong> available water resources. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r comprehensive world renewable publicati<strong>on</strong>s<br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g> early work <str<strong>on</strong>g>of</str<strong>on</strong>g> L’vovich [204], Gleick [115] and <str<strong>on</strong>g>the</str<strong>on</strong>g> World Resources<br />

Institute [410]. By an absolute value <str<strong>on</strong>g>the</str<strong>on</strong>g> largest water resources are characteristic<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Asia and South America. The smallest are typical for Europe and Australia with<br />

Oceania. Due to rapid <strong>earth</strong>’s populati<strong>on</strong>, growth since 1970 to 1994, <str<strong>on</strong>g>the</str<strong>on</strong>g> potential<br />

water availability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>earth</strong>’s populati<strong>on</strong> decreased form 12,9 to 7,6 km 3 per year and<br />

pers<strong>on</strong>.<br />

2.4.2.1 Stream, river and lake waters<br />

The nature <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous soluti<strong>on</strong>s that are produced or modified by <str<strong>on</strong>g>the</str<strong>on</strong>g> processes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wea<str<strong>on</strong>g>the</str<strong>on</strong>g>ring is determined by several factors, including chemical c<strong>on</strong>trols such as<br />

reacti<strong>on</strong> rate, solubility and interface reacti<strong>on</strong>s, as well as envir<strong>on</strong>mental c<strong>on</strong>trols<br />

such as climate, geology and <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrologic cycle. The soluti<strong>on</strong>s from wea<str<strong>on</strong>g>the</str<strong>on</strong>g>ring<br />

may mix with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r waters that effectively have not been involved in a wea<str<strong>on</strong>g>the</str<strong>on</strong>g>ring<br />

process. In turn, <str<strong>on</strong>g>the</str<strong>on</strong>g> mixed waters may be modified by fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r reacti<strong>on</strong>s such as by<br />

some cati<strong>on</strong> exchange with clay or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g> phases, or by <str<strong>on</strong>g>the</str<strong>on</strong>g> activities <str<strong>on</strong>g>of</str<strong>on</strong>g> man.<br />

3 Stream is defined as a body <str<strong>on</strong>g>of</str<strong>on</strong>g> water that carries rock particles and dissolved substances, and<br />

flows down a slope al<strong>on</strong>g a clearly defined path.


The hydrosphere 31<br />

Table 2.7. Renewable water resources and potential water availability by c<strong>on</strong>tinents<br />

[311].<br />

C<strong>on</strong>tinent Area, Populati<strong>on</strong>, Water resources, Water availability,<br />

M km2 Milli<strong>on</strong>s<br />

1995<br />

km3 /year 1000m3 /year<br />

Average Max. Min. per km2 per<br />

capita<br />

Europe 10,46 685 2900 3410 2254 277 4,23<br />

North<br />

America<br />

24,3 453 7890 8917 6895 324 17,4<br />

Africa 30,1 708 4050 5082 3073 134 5,72<br />

Asia 43,5 3445 13510 15008 11800 311 3,92<br />

South<br />

America<br />

17,9 315 12030 14350 10320 672 38,2<br />

Australia 8,95 28,7 2404 2880 1891 269 83,7<br />

and<br />

niaOcea-<br />

World 135 5633 42785 44751 39775 317 7,6<br />

There is <str<strong>on</strong>g>the</str<strong>on</strong>g>refore a great variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved materials in<br />

lake, stream and river water. N<strong>on</strong>e<str<strong>on</strong>g>the</str<strong>on</strong>g>less an extensive amount <str<strong>on</strong>g>of</str<strong>on</strong>g> available data<br />

allowed Livingst<strong>on</strong>e [197] to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> mean compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> world river water<br />

(see table 2.8).<br />

Table 2.8. Mean chemical c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> world river water [197]<br />

Substance C<strong>on</strong>centrati<strong>on</strong> µg/g<br />

HCO −<br />

3<br />

SO<br />

58,4<br />

2−<br />

4<br />

Cl<br />

11,2<br />

− 7,8<br />

1<br />

NO− 3<br />

Ca 2+ 15<br />

M g2+ 4,1<br />

N a + 6,3<br />

K + 2,3<br />

Fe2+ 0,67<br />

SiO2 13,1<br />

Sum 120<br />

Different compilati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> average c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main trace elements found<br />

in rivers were later d<strong>on</strong>e by Li [196] and Gaillardet et al. [102]. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Li is lited in table 2.9.<br />

Lake waters also vary greatly in compositi<strong>on</strong>, not <strong>on</strong>ly from lake to lake but <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

within a lake where marked temperature and compositi<strong>on</strong>al stratificati<strong>on</strong>s can occur.<br />

Reducing c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>ten exist in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower, more saline level <str<strong>on</strong>g>of</str<strong>on</strong>g> stratified lakes and


32 THE GEOCHEMISTRY OF THE EARTH. KNOWN FACTS<br />

Table 2.9. The average c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> elements in filtered river water. C<strong>on</strong>centrati<strong>on</strong><br />

in ppb. Adapted from Li [196].<br />

Element C<strong>on</strong>centrati<strong>on</strong> Element C<strong>on</strong>centrati<strong>on</strong><br />

Li 3 M o 0,6<br />

Be 0,01 Ag 0,3<br />

B 10 Cd 0,01<br />

F 100 In<br />

N a 6300 Sn 0,04<br />

M g 4100 S b 0,07<br />

Al 50 I 7<br />

Si 6500 Cs 0,02<br />

P 20 Ba 20<br />

S 3700 La 0,05<br />

Cl 7800 Ce 0,08<br />

K 2300 P r 0,007<br />

Ca 15000 N d 0,04<br />

Sc 0,004 Sm 0,008<br />

T i 3 Eu 0,001<br />

V 0,9 Gd 0,008<br />

C r 1 T b 0,001<br />

M n 7 Ho 0,001<br />

Fe 40 Er 0,004<br />

Co 0,1 T m 0,001<br />

N i 0,3 Y b 0,004<br />

Cu 7 Lu 0,001<br />

Zn 20 H f<br />

Ga 0,09 Ta<br />

Ge 0,005 W 0,03<br />

As 2 Re<br />

Se 0,06 Au 0,002<br />

Br 20 H g 0,07<br />

Rb 1 T l<br />

Sr 70 P b 1<br />

Y Bi<br />

Z r Th 0,1<br />

N b U 0,04


The hydrosphere 33<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se give rise to relatively high c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrite amm<strong>on</strong>ia and Fe 2+ in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

water. The reducing c<strong>on</strong>diti<strong>on</strong>s may also lead to <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen sulphide<br />

gas and <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some metal sulphides (including ir<strong>on</strong> sulphides). Silica<br />

and phosphorous may be released from <str<strong>on</strong>g>the</str<strong>on</strong>g> sediments. The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmocline z<strong>on</strong>e, which<br />

separates <str<strong>on</strong>g>the</str<strong>on</strong>g> upper and lower levels <str<strong>on</strong>g>of</str<strong>on</strong>g> a lake by a large change in temperature,<br />

prevents <str<strong>on</strong>g>the</str<strong>on</strong>g> diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric oxygen to go into <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> layer [137].<br />

2.4.2.2 Ground waters<br />

As seen from table 2.3, less than 1% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> water <strong>on</strong> <strong>earth</strong> is ground water. Although<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> total volume <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water is small, it is about 35 times greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> volume<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> water lying in fresh-water lakes <str<strong>on</strong>g>of</str<strong>on</strong>g> flowing in streams <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s surface.<br />

Nearly all <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s groundwater has its origin in rainfall. It is always slowly moving<br />

<strong>on</strong> its way back to <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r directly through <str<strong>on</strong>g>the</str<strong>on</strong>g> ground or by flowing<br />

out <strong>on</strong>to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and joining stream.<br />

The hydrogeochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> ground waters reflects <str<strong>on</strong>g>the</str<strong>on</strong>g> source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> water, <str<strong>on</strong>g>the</str<strong>on</strong>g> lithology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aquifer and <str<strong>on</strong>g>the</str<strong>on</strong>g> local chemical c<strong>on</strong>diti<strong>on</strong>s such as temperature, pressure<br />

and redox potential. White et al. [405] classified <str<strong>on</strong>g>the</str<strong>on</strong>g> source <str<strong>on</strong>g>of</str<strong>on</strong>g> ground waters as:<br />

• magmatic,<br />

• meteoric (e.g. precipitated and surface water),<br />

• c<strong>on</strong>nate (i.e. water trapped in <str<strong>on</strong>g>the</str<strong>on</strong>g> pore spaced <str<strong>on</strong>g>of</str<strong>on</strong>g> a sediment at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

depositi<strong>on</strong>),<br />

• oceanic.<br />

Extensive compilati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water compositi<strong>on</strong>s were recorded by White et al.<br />

[405]. Table 2.10 shows examples <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> ground waters in Maryland and<br />

New York from different rock types.<br />

2.4.3 Ice caps, ice sheets and glaciers<br />

Glaciers, ice sheets and ice caps are huge masses <str<strong>on</strong>g>of</str<strong>on</strong>g> ice, formed <strong>on</strong> land by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compacti<strong>on</strong> and re-crystallizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> snow, that move very slowly down slopes or<br />

move outward due to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own weight. If <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> melting is greater than <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> accumulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> glacier recedes; if it is less, <str<strong>on</strong>g>the</str<strong>on</strong>g> glacier advances. Many<br />

recent studies <strong>on</strong> glacier run<str<strong>on</strong>g>of</str<strong>on</strong>g>f around <str<strong>on</strong>g>the</str<strong>on</strong>g> world have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> first tendency<br />

is ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r happening presumably due to climate change.<br />

Around 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s surface is covered by glaciers (∼ 15, 9 × 10 6 km 2 glacierized<br />

vs 148, 8 × 10 6 <str<strong>on</strong>g>of</str<strong>on</strong>g> total land surface [185]). Approximately 91% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s<br />

land ice covers Antarctica, 8% Greenland and glaciers in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r regi<strong>on</strong>s c<strong>on</strong>tribute


34 THE GEOCHEMISTRY OF THE EARTH. KNOWN FACTS<br />

Table 2.10. C<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> ground waters from different rock types. C<strong>on</strong>centrati<strong>on</strong>s<br />

in µg/g [405].<br />

Substance Granite Serpentinite Shale<br />

Cati<strong>on</strong>s or oxide<br />

SiO 2 39 31 5,5<br />

Al 9 0,2 0<br />

Fe 1,6 0,06 3,5<br />

Ca 27 9,5 227<br />

M g 6,2 51 29<br />

N a 9,5 4 12<br />

K 1,4 2,2 2,7<br />

Ani<strong>on</strong>s<br />

HCO 3 93 276 288<br />

CO 3 0 0 0<br />

SO 4 32 2,6 439<br />

Cl 5,2 12 24<br />

F 0 0 0<br />

NO 3 7,5 6,8 0,9<br />

PO 4 0 0 0<br />

to around 1% (see table 2.11). Current annual global glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f range from<br />

0,3×10 3 km 3 to 1×10 3 km 3 [173]. Glaciers are estimated to c<strong>on</strong>tribute to 0,6 to<br />

1% to <str<strong>on</strong>g>the</str<strong>on</strong>g> global annual run<str<strong>on</strong>g>of</str<strong>on</strong>g>f.<br />

There are two types <str<strong>on</strong>g>of</str<strong>on</strong>g> glaciers, those that are unc<strong>on</strong>strained by topography and<br />

blanket <str<strong>on</strong>g>the</str<strong>on</strong>g> topography, including ice sheets and ice caps, and those that are c<strong>on</strong>strained<br />

by topography, mainly valley glaciers. Ice sheets cover areas which are<br />

typically > 5 × 10 4 km 2 (mostly found in Antarctica and Greenland), whereas ice<br />

caps cover smaller areas < 5×10 4 km 2 . Ice masses c<strong>on</strong>strained by topography cover<br />

areas between 1 and 100 km 2 . Most research <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemical wea<str<strong>on</strong>g>the</str<strong>on</strong>g>ring <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glaciers has been c<strong>on</strong>ducted mainly <strong>on</strong> valley glaciers. Fortunately it seems that to<br />

a first approximati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> biochemical processes inferred from <str<strong>on</strong>g>the</str<strong>on</strong>g> small systems are<br />

similar to those occurring in large systems [357].<br />

Glaciers are very important to <str<strong>on</strong>g>the</str<strong>on</strong>g> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment. Changes in heat and<br />

atmosphere can cause glaciers to melt, change shape and move more rapidly and<br />

as a c<strong>on</strong>sequence, more land is reformed in its movement. Glaciers exert a direct<br />

influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrologic cycle by slowing <str<strong>on</strong>g>the</str<strong>on</strong>g> passage <str<strong>on</strong>g>of</str<strong>on</strong>g> water through <str<strong>on</strong>g>the</str<strong>on</strong>g> cycle.<br />

Like ground water, glaciers are c<strong>on</strong>sidered to be key natural reservoirs <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater.<br />

They are <str<strong>on</strong>g>the</str<strong>on</strong>g>refore extremely important sources <str<strong>on</strong>g>of</str<strong>on</strong>g> water for human c<strong>on</strong>sumpti<strong>on</strong>,<br />

irrigati<strong>on</strong>, electric power and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r industrial uses, especially during <str<strong>on</strong>g>the</str<strong>on</strong>g> summer,<br />

when <str<strong>on</strong>g>the</str<strong>on</strong>g> highest rate <str<strong>on</strong>g>of</str<strong>on</strong>g> melting is reached and precipitati<strong>on</strong> is more scarce.


The hydrosphere 35<br />

Table 2.11. Area <str<strong>on</strong>g>of</str<strong>on</strong>g> land surface covered by glaciers in different regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world,<br />

toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> volume and <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent sea level rise that <str<strong>on</strong>g>the</str<strong>on</strong>g> volume<br />

implies [185].<br />

Regi<strong>on</strong> Area, km 2 Volume, km 3 Sea level equivalent,<br />

m<br />

Antarctica 13600000 25600000 64<br />

Greenland 1730000 2600000 6<br />

North America 276000<br />

Asia 185000<br />

Europe 54000 200000 0,5<br />

South America 25900<br />

Australasia 860<br />

Africa 10<br />

Total 15900000 28400000 70,5<br />

2.4.3.1 The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

The main source <str<strong>on</strong>g>of</str<strong>on</strong>g> water in most glacier systems is snow and/or ice melt. Some<br />

water is also derived from rain, and a little is derived from geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal melting and<br />

internal deformati<strong>on</strong> [257]. Table 2.12 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glacial<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f compiled by Brown [43] for different regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world. It also includes an<br />

estimati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> average compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glaciers <strong>on</strong> <strong>earth</strong>, which is <str<strong>on</strong>g>the</str<strong>on</strong>g> weighted<br />

sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> average compositi<strong>on</strong>s in each regi<strong>on</strong>. Glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f is a dilute soluti<strong>on</strong><br />

c<strong>on</strong>taining i<strong>on</strong>s Ca2+ , HCO −<br />

3 , SO2−<br />

4 , with variable N a+ and Cl − . Glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f is<br />

usually more dilute than global mean river4 .<br />

4 See table 2.8 for comparis<strong>on</strong>s between river and glacier compositi<strong>on</strong>s.


36 THE GEOCHEMISTRY OF THE EARTH. KNOWN FACTS<br />

Table 2.12. The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> major i<strong>on</strong>s in glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from different regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world. C<strong>on</strong>centrati<strong>on</strong>s are reported in<br />

mg/l. Adapted from [43]<br />

Cl −<br />

SO 2−<br />

4<br />

Regi<strong>on</strong> Ca2+ M g2+ N a + K + HCO −<br />

3<br />

Greenland 2,60-3,40 0,82-1,19 1,79-2,53 0,20-0,35 13,42-20,74 4,32-9,60 0,27-0,51<br />

Antarctica 1,44-26,01 1,45-4,07 8,28-32,2 0,03-4,30 5,55-97,62 1,63-57,61 0,01-17,01<br />

Iceland 2,20-7,00 0,36-1,45 0,69-11,0 0,11-0,47 11,59-34,78 1,25-6,24 0,51<br />

Alaska 11,00 0,44 0,57 2,39 26,24 12,48 0,03<br />

Canadian high Arctic 5,20-52,01 0,25-7,75 0,02-4,37 0,0039-1,53 12,81-42,1 2,83-187,2<br />

Canadian rockies 19,20-22,0 3,51-3,75 0,09-0,83 0,23-0,36 54,3-56,13 18,24-24,96 0,03-0,43<br />

Cascades 0,70-1,60 0,10-0,24 0,06-0,39 0,38-1,45 5,06-6,10 0,38-1,39<br />

European alps 0,40-12,8 0,07-1,69 0,11-2,11 0,23-1,29 0,67-24,41 0,48-11,52 0,02-1,56<br />

Himalayas 1,50-11,8 0,08-2,78 0,57-1,49 0,86-1,99 12,20-44,54 7,68-19,68 0,02-0,37<br />

Norway 0,18-12,5 0,02-0,80 0,19-4,83 0,04-1,13 0,09-41,49 0,34-6,72 0,02-3,23<br />

Svalbard 2,40-20,0 1,20-6,54 2,53-6,21 0,20-1,60 6,71-57,35 4,61-36,49 0,09-5,27<br />

Average 12,69 2,59 18,44 1,98 48,15 27,38 7,71


The c<strong>on</strong>tinental crust 37<br />

2.5 The c<strong>on</strong>tinental crust<br />

The solid <strong>earth</strong> is composed by several layers. These can be classified into: core,<br />

mantle and crust. Figure 2.2 shows an <strong>earth</strong> cutaway with its different layers. The<br />

inner part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> core and is about 2900 km below <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s surface.<br />

The core is fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r divided into <str<strong>on</strong>g>the</str<strong>on</strong>g> inner and outer core. The inner core, or center <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> is solid and about 1250 km thick. The outer core (approx. 2200 km thick)<br />

is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> high-density molten metals, highly c<strong>on</strong>centrated in ir<strong>on</strong> [403].<br />

The core is surrounded by a solid mantle <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong>-magnesium silicates and oxides. It<br />

c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> inner mantle (between 300 and 2890 km below <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s surface) and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> outer mantle (between 10 and 300 km below <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s surface).<br />

The outer shell covering <str<strong>on</strong>g>the</str<strong>on</strong>g> mantle is called <str<strong>on</strong>g>the</str<strong>on</strong>g> crust. According to Rudnick [291],<br />

it c<strong>on</strong>stitutes <strong>on</strong>ly 0,6% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> silicate <strong>earth</strong> and is covered by geological rock formati<strong>on</strong>s<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans. It is made up <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oceanic and c<strong>on</strong>tinental crust. The oceanic<br />

crust is 7 km <strong>on</strong> average thick and is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively rock types such as<br />

basalt. The c<strong>on</strong>tinental crust is about 40 km thick and c<strong>on</strong>tains virtually every rock<br />

type known <strong>on</strong> <strong>earth</strong>. The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust is defined to c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

upper-, middle- and lower crustal layers. The deep c<strong>on</strong>tinental crust is composed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> granulite-facies rocks and begins at 23 km depth <strong>on</strong> average. The middle crust<br />

extends from 8 to 17 km depth. Estimates indicate that it is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> rocks in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> amphibolite facies.<br />

The upper c<strong>on</strong>tinental crust is <str<strong>on</strong>g>the</str<strong>on</strong>g> reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r natural<br />

resources useful for mankind. Therefore, it will be our object <str<strong>on</strong>g>of</str<strong>on</strong>g> study. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

being <str<strong>on</strong>g>the</str<strong>on</strong>g> most accessible part <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet, <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust has l<strong>on</strong>g been <str<strong>on</strong>g>the</str<strong>on</strong>g> target<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> geochemical investigati<strong>on</strong>s. According to Yoder [411], <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper<br />

c<strong>on</strong>tinental crust is about half <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total crust, this corresp<strong>on</strong>ds to a<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 6, 55 × 10 20 cm 3 and thus a sphere with a radius <str<strong>on</strong>g>of</str<strong>on</strong>g> about 54±4 km as an<br />

upper limit.<br />

2.5.1 The chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust<br />

There are two basic methods employed to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper<br />

crust [291]:<br />

• establishing weighted averages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> rocks exposed at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surface and,<br />

• determining averages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> insoluble elements in fine-grained<br />

clastic sedimentary rocks or glacial deposits and using <str<strong>on</strong>g>the</str<strong>on</strong>g>se to infer uppercrust<br />

compositi<strong>on</strong>.<br />

The determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> major-element compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust<br />

relies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> first method. It has been used by a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> authors starting with


38 THE GEOCHEMISTRY OF THE EARTH. KNOWN FACTS<br />

Figure 2.2. Earth’s cutaway. Source: USGS [397]<br />

Clarke et al. in 1889 [58] and c<strong>on</strong>tinuing with R<strong>on</strong>ov and Yaroshevsky [287], Shaw<br />

et al. [306], [308], Eade and Fahring [80], C<strong>on</strong>die [60] and Gao et al. [106]. The<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se independent studies show a very similar compositi<strong>on</strong> for most majorelement<br />

averages, but not insignificant differences for rare <strong>earth</strong> elements (REEs).<br />

Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> trace-element compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust rely <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural<br />

sampling processes <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentati<strong>on</strong> and glaciati<strong>on</strong>. This method was suggested by<br />

Goldschmidt [116], [117], using <str<strong>on</strong>g>the</str<strong>on</strong>g> idea that glacial clays are compositi<strong>on</strong>ally representative<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust from which <str<strong>on</strong>g>the</str<strong>on</strong>g>y were derived. Elements that are insoluble<br />

during wea<str<strong>on</strong>g>the</str<strong>on</strong>g>ring are transported from <str<strong>on</strong>g>the</str<strong>on</strong>g> site <str<strong>on</strong>g>of</str<strong>on</strong>g> wea<str<strong>on</strong>g>the</str<strong>on</strong>g>ring/glacial erosi<strong>on</strong> to depositi<strong>on</strong><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>centrati<strong>on</strong>s in sedimentary rocks may provide robust estimates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> average compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir source regi<strong>on</strong>s. Relevant studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust through <str<strong>on</strong>g>the</str<strong>on</strong>g>se methods are: Taylor and McLennan [353], [354],<br />

Plank and Langmuir [267] and <str<strong>on</strong>g>the</str<strong>on</strong>g> recent work <str<strong>on</strong>g>of</str<strong>on</strong>g> McLennan [215].<br />

Table 2.13 shows average upper crustal compositi<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> compilati<strong>on</strong> works<br />

d<strong>on</strong>e by Wedepohl [404], McLennan [215] and <str<strong>on</strong>g>the</str<strong>on</strong>g> latest recommended compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Rudnick et al. [292]. Rudnick et al. presented <str<strong>on</strong>g>the</str<strong>on</strong>g>ir best estimate for <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust based mainly <strong>on</strong> averages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different<br />

surface-exposure studies such as Shaw et al. [306], Fahring and Eade [93], Plank<br />

and Langmuir [267], Taylor and McLennan [353], McLennan [215], Sims et al.<br />

[314], Gao et al. [106], Teng et al. [355] or News<strong>on</strong> et al. [243]. In <str<strong>on</strong>g>the</str<strong>on</strong>g> upper<br />

crust, <strong>on</strong>ly eight elements account for 99% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> weight; <str<strong>on</strong>g>the</str<strong>on</strong>g> most prominent am<strong>on</strong>g<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se is O, accounting for almost 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> weight.


The c<strong>on</strong>tinental crust 39<br />

Table 2.13: Average compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust according<br />

to different studies. Elements in g/g.<br />

Element Wedepohl [404] McLennan [215] Rudnick et. al. [292]<br />

O 4,72E-01 4,72E-01<br />

Si 2,88E-01 3,08E-01 3,09E-01<br />

Al 7,96E-02 8,04E-02 8,15E-02<br />

Fe 4,32E-02 3,50E-02 3,92E-02<br />

Ca 3,85E-02 3,00E-02 2,57E-02<br />

Na 2,36E-02 2,89E-02 2,73E-02<br />

Mg 2,20E-02 1,33E-02 1,50E-02<br />

K 2,14E-02 2,80E-02 2,32E-02<br />

Ti 4,01E-03 4,10E-03 3,84E-03<br />

C 1,99E-03<br />

P 7,57E-04 7,00E-04 6,55E-04<br />

Mn 7,16E-04 6,00E-04 7,74E-04<br />

S 6,97E-04 6,20E-05<br />

Ba 5,84E-04 5,50E-04 6,28E-04<br />

F 5,25E-04 5,57E-04<br />

Cl 4,72E-04 3,70E-04<br />

Sr 3,33E-04 3,50E-04 3,20E-04<br />

Zr 2,03E-04 1,90E-04 1,93E-04<br />

Cr 1,26E-04 8,30E-05 9,20E-05<br />

V 9,80E-05 1,07E-04 9,70E-05<br />

Rb 7,80E-05 1,12E-04 8,40E-05<br />

Zn 6,50E-05 7,10E-05 6,70E-05<br />

Ce 6,00E-05 6,40E-05 6,30E-05<br />

N 6,00E-05 8,30E-05<br />

Ni 5,60E-05 4,40E-05 4,70E-05<br />

La 3,00E-05 3,00E-05 3,10E-05<br />

Nd 2,70E-05 2,60E-05 2,70E-05<br />

Cu 2,50E-05 2,50E-05 2,80E-05<br />

Co 2,40E-05 1,70E-05 1,73E-05<br />

Y 2,40E-05 2,20E-05 2,10E-05<br />

Nb 1,90E-05 1,20E-05 1,20E-05<br />

Li 1,80E-05 2,00E-05 2,40E-05<br />

Sc 1,60E-05 1,36E-05 1,40E-05<br />

Ga 1,50E-05 1,70E-05 1,75E-05<br />

Pb 1,48E-05 1,70E-05 1,70E-05<br />

B 1,10E-05 1,50E-05 1,70E-05<br />

Th 8,50E-06 1,07E-05 1,05E-05<br />

Pr 6,70E-06 7,10E-06 7,10E-06<br />

Sm 5,30E-06 4,50E-06 4,70E-06<br />

Hf 4,90E-06 5,80E-06 5,30E-06<br />

Gd 4,00E-06 3,80E-06 4,00E-06<br />

Dy 3,80E-06 3,50E-06 3,90E-06<br />

Cs 3,40E-06 4,60E-06 4,90E-06<br />

Be 2,40E-06 3,00E-06 2,10E-06<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


40 THE GEOCHEMISTRY OF THE EARTH. KNOWN FACTS<br />

Table 2.13: Average compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust according<br />

to different studies. Elements in g/g. – c<strong>on</strong>tinued from previous<br />

page.<br />

Element Wedepohl [404] McLennan [215] Rudnick et. al. [292]<br />

Sn 2,30E-06 5,50E-06 2,10E-06<br />

Er 2,10E-06 2,30E-06 2,30E-06<br />

Yb 2,00E-06 2,20E-06 1,96E-06<br />

As 1,70E-06 1,50E-06 4,80E-06<br />

U 1,70E-06 2,80E-06 2,70E-06<br />

Ge 1,40E-06 1,60E-06 1,40E-06<br />

Eu 1,30E-06 8,80E-07 1,00E-06<br />

Mo 1,10E-06 1,50E-06 1,10E-06<br />

Ta 1,10E-06 1,00E-06 9,00E-07<br />

Br 1,00E-06 1,60E-06<br />

W 1,00E-06 2,00E-06 1,90E-06<br />

Ho 8,00E-07 8,00E-07 8,30E-07<br />

I 8,00E-07 1,40E-06<br />

Tb 6,50E-07 6,40E-07 7,00E-07<br />

Tl 5,20E-07 7,50E-07 9,00E-07<br />

Lu 3,50E-07 3,20E-07 3,10E-07<br />

Sb 3,00E-07 2,00E-07 4,00E-07<br />

Tm 3,00E-07 3,30E-07 3,00E-07<br />

Se 1,20E-07 5,00E-05 9,00E-08<br />

Cd 1,00E-07 9,80E-08 9,00E-08<br />

Bi 8,50E-08 1,27E-07 1,60E-07<br />

Ag 7,00E-08 5,00E-08 5,30E-08<br />

In 5,00E-08 5,00E-08 5,60E-08<br />

Hg 4,00E-08 5,00E-08<br />

Te 5,00E-09<br />

Au 2,50E-09 1,80E-09 1,50E-09<br />

Pd 4,00E-10 5,00E-10 5,20E-10<br />

Pt 4,00E-10 5,00E-10<br />

Re 4,00E-10 4,00E-10 1,98E-10<br />

Ru 1,00E-10 3,40E-10<br />

Rh 6,00E-11<br />

Ir 5,00E-11 2,00E-11 2,20E-11<br />

Os 5,00E-11 5,00E-11 3,10E-11<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

Although a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> effort has been placed in determining <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it has been barely<br />

studied. This is due mainly to <str<strong>on</strong>g>the</str<strong>on</strong>g> complexity and heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust.<br />

The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> are related to <str<strong>on</strong>g>the</str<strong>on</strong>g> species c<strong>on</strong>tained in it<br />

and not to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir elements, as we will see in later chapters. Therefore, a model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>


Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter 41<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust needs to be developed. This will be <str<strong>on</strong>g>the</str<strong>on</strong>g> aim<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chapter 3.<br />

2.6 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter<br />

In order to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemistry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> it must be analyzed in detail. For that purpose, <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each layer:<br />

atmosphere, hydrosphere and c<strong>on</strong>tinental crust has to be studied in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> substances.<br />

A comprehensive analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical and geochemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong><br />

has been undertaken in this chapter.<br />

First, a coarse compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk <strong>earth</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> relative mass proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each sphere has been presented. This overview has given way to <str<strong>on</strong>g>the</str<strong>on</strong>g> more detailed<br />

explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere and upper c<strong>on</strong>tinental<br />

crust.<br />

The atmosphere is <str<strong>on</strong>g>the</str<strong>on</strong>g> gaseous layer surrounding <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. It is fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r divided into<br />

different parts. The troposphere, being <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest <str<strong>on</strong>g>of</str<strong>on</strong>g> all, is <str<strong>on</strong>g>the</str<strong>on</strong>g> layer with which<br />

human beings have more interacti<strong>on</strong>. The chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere<br />

is ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r uniform to heights up to 100 km. Apart from <str<strong>on</strong>g>the</str<strong>on</strong>g> natural occurring gases,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re are traces <str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic substances in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere that may alter <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <strong>earth</strong>.<br />

The hydrosphere is <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid water comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and includes seas (c<strong>on</strong>stituting<br />

over 97% <str<strong>on</strong>g>of</str<strong>on</strong>g> it); renewable water resources (rivers, lakes and underground<br />

water); ice; and atmospheric water. The c<strong>on</strong>tinuous moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere is<br />

governed by <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrological cycle. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater is, as it happened<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, quite uniform. Many comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sea have a crustal origin.<br />

Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, it c<strong>on</strong>tains dissolved atmospheric gases such as CO 2, what makes<br />

oceans to be huge and crucial reservoirs <str<strong>on</strong>g>of</str<strong>on</strong>g> GhG gases. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> relative small<br />

weight proporti<strong>on</strong>, renewable water resources are essential for life <strong>on</strong> <strong>earth</strong>, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g> main sources <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater. No uniform compositi<strong>on</strong> can be applied to <str<strong>on</strong>g>the</str<strong>on</strong>g>m,<br />

but some examples and averages have been provided. Glaciers, ice sheets and ice<br />

caps are huge amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> frozen freshwater, and as a c<strong>on</strong>sequence <str<strong>on</strong>g>the</str<strong>on</strong>g>y are important<br />

water suppliers for human beings. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

different regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world has been presented.<br />

The solid <strong>earth</strong> is composed by <str<strong>on</strong>g>the</str<strong>on</strong>g> core, mantle and crust. The crust is fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

divided into <str<strong>on</strong>g>the</str<strong>on</strong>g> lower, middle and upper crust. The upper crust is <str<strong>on</strong>g>the</str<strong>on</strong>g> reservoir<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r natural resources for mankind and being <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

accessible, it is <str<strong>on</strong>g>the</str<strong>on</strong>g> best well studied part. Its chemical compositi<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elements is well known. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> has been barely<br />

studied.


42 THE GEOCHEMISTRY OF THE EARTH. KNOWN FACTS<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> next chapter, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly unknown compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s outer spheres,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust, will be analyzed in detail and a new methodology for<br />

obtaining its <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> will be developed.


Chapter 3<br />

The <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust<br />

3.1 Introducti<strong>on</strong><br />

In this chapter, a model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust is developed.<br />

The starting point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model is <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> given by <str<strong>on</strong>g>the</str<strong>on</strong>g> Russian<br />

geochemist Grigor’ev. The new <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> is c<strong>on</strong>strained by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mass statement, which must be satisfied not <strong>on</strong>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust, but in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

entire <strong>earth</strong>. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> model is given geological c<strong>on</strong>sistence, by introducing<br />

a series <str<strong>on</strong>g>of</str<strong>on</strong>g> assumpti<strong>on</strong>s based <strong>on</strong> geological observati<strong>on</strong>s. This informati<strong>on</strong>, will allow<br />

to obtain in fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r chapters, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s upper<br />

crust and to propose an approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> entropic planet.<br />

3.2 The classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

Minerals can be defined as natural occurring inorganic solids that possess an orderly<br />

internal structure and a definite chemical compositi<strong>on</strong>, whereas rocks are indefinite<br />

mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> naturally occurring substances, mainly <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>al<br />

Mineralogical Associati<strong>on</strong> 1 <str<strong>on</strong>g>the</str<strong>on</strong>g>re are more than 4000 known <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se, around 150 can be called “comm<strong>on</strong>”, 50 are occasi<strong>on</strong>al and <str<strong>on</strong>g>the</str<strong>on</strong>g> rest are “rare”<br />

or “extremely rare”.<br />

Minerals can be classified according to different criteria including hardness, crystal<br />

structure, specific gravity, color, luster or cleavage. Table 3.1 shows <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

comm<strong>on</strong>ly used <str<strong>on</strong>g>mineral</str<strong>on</strong>g> classificati<strong>on</strong>s based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong>. The most<br />

1 The Internati<strong>on</strong>al Mineralogical Associati<strong>on</strong> (IMA) is resp<strong>on</strong>sible for <str<strong>on</strong>g>the</str<strong>on</strong>g> approval <str<strong>on</strong>g>of</str<strong>on</strong>g> and naming<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> new <str<strong>on</strong>g>mineral</str<strong>on</strong>g> species found in nature.<br />

43


44 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

Table 3.1. Mineral classificati<strong>on</strong> based <strong>on</strong> Dana’s New Mineralogy [103]<br />

I Native Elements<br />

II Sulfides<br />

III Oxides<br />

Hydroxides<br />

IV Halides<br />

V Carb<strong>on</strong>ates<br />

Nitrates<br />

Borates<br />

VI Sulfates<br />

Chromates<br />

VII Phosphates<br />

Arsenates<br />

Vanadates<br />

Tungstates<br />

Molybdates<br />

VIII Silicates:<br />

- Nesosilicates<br />

- Sorosilicates<br />

- Cyclosilicates<br />

- I<strong>on</strong>osilicates<br />

- Phyllosilicates<br />

- Tectosilicates<br />

IX Organic Minerals<br />

comm<strong>on</strong> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are <str<strong>on</strong>g>the</str<strong>on</strong>g> silicates, accounting for more than 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust,<br />

whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong> n<strong>on</strong>-silicates are carb<strong>on</strong>ates, oxides and sulfides.<br />

Minerals can be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r classified into groups. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main groups found in<br />

nature are now briefly discussed, indicating <str<strong>on</strong>g>the</str<strong>on</strong>g> principal <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s included in each<br />

group. The informati<strong>on</strong> has been primarily extracted from Mas<strong>on</strong> [209].<br />

3.2.1 The silica <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

Silica (SiO 2) occurs in nature as five different <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s: quartz (including chalced<strong>on</strong>y),<br />

tridymite, cristobalite, opal and lechatelierite or silica glass. Of <str<strong>on</strong>g>the</str<strong>on</strong>g>se,<br />

quartz is very comm<strong>on</strong>, tridymite and cristobalite are widely distributed in volcanic<br />

rocks and can hardly be called rare; opal is not uncomm<strong>on</strong> and lechatelierite is very<br />

rare.<br />

3.2.2 The feldspar group<br />

The feldspar are <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. They are closely related in form<br />

and physical properties, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y fall into two groups: <str<strong>on</strong>g>the</str<strong>on</strong>g> potassium and barium<br />

feldspars, which are m<strong>on</strong>oclinic or very nearly m<strong>on</strong>oclinic in symmetry, and <str<strong>on</strong>g>the</str<strong>on</strong>g>


The classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 45<br />

sodium and calcium feldspars (plagioclases), which are triclinic. The general formula<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> feldspars can be stated as XAl(Al, Si)Si 2O 8, being X elements N a, K, Ca,<br />

and Ba. The barium-c<strong>on</strong>taining feldspars are very rare and <str<strong>on</strong>g>of</str<strong>on</strong>g> no importance as rockforming<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. The main K-feldspars are orthoclase, sanidine and microcline. In<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> plagioclase subgroup, albite, oligoclase, andesine, labradorite, bytownite and<br />

anorthite are <str<strong>on</strong>g>the</str<strong>on</strong>g> most important <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

3.2.3 The pyroxene group<br />

The pyroxenes are a group <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s closely related in crystallographic and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

principal properties, as well as in chemical compositi<strong>on</strong>, although <str<strong>on</strong>g>the</str<strong>on</strong>g>y crystallize in<br />

two different systems, orthorhombic and m<strong>on</strong>oclinic. Pyroxenes have <str<strong>on</strong>g>the</str<strong>on</strong>g> general<br />

formula X Y (Si, Al) 2O 6 (where X represents Ca, N a, Fe +2 and M g and more rarely<br />

Zn, M n and Li and Y represents i<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller size, such as C r, Al, Fe +3 , M g,<br />

M n, Sc, T i, V and even Fe +2 ). On <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical compositi<strong>on</strong> and crystal<br />

structure, <str<strong>on</strong>g>the</str<strong>on</strong>g> following species are recognized: enstatite and hyperstene (both orthorhombic),<br />

augite, clinoenstatite, clinohypers<str<strong>on</strong>g>the</str<strong>on</strong>g>ne, aegirine, diopside, pege<strong>on</strong>ite,<br />

jadeite, spodumene, pige<strong>on</strong>ite or hedenbergite (all m<strong>on</strong>oclinic).<br />

3.2.4 The amphibole group<br />

The amphibole group comprises a number <str<strong>on</strong>g>of</str<strong>on</strong>g> species, which, although falling both<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> orthorhombic and m<strong>on</strong>oclinic systems, are closely related in crystallographic<br />

and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r physical properties, as well as in chemical compositi<strong>on</strong>. They form isomorphous<br />

series, and extensive replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e i<strong>on</strong> by o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs <str<strong>on</strong>g>of</str<strong>on</strong>g> similar size can take<br />

place, giving rise to very complex chemical compositi<strong>on</strong>s. The difference in chemical<br />

compositi<strong>on</strong> between compounds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amphibole type and corresp<strong>on</strong>ding<br />

compounds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pyroxene type is not great. A general formula for all members<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amphibole group can be written (W, X , Y ) 7−8(Z 4O 11) 2(O, OH, F) 2, in which<br />

symbols W, X, Y, Z indicate elements having similar i<strong>on</strong>ic radii and capable <str<strong>on</strong>g>of</str<strong>on</strong>g> replacing<br />

each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. W stands for Ca, N a and K; X stands for M g and Fe +3 (sometimes<br />

M n); Y for T i, Al and Fe +3 ; and Z for Si and Al. The main amphibole <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

are tremolite, actinolite, cummingt<strong>on</strong>ite, hornblende, glaucophane, arfveds<strong>on</strong>ite or<br />

riebeckite.<br />

3.2.5 The olivine group<br />

The <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> olivine group are silicates <str<strong>on</strong>g>of</str<strong>on</strong>g> bivalent metals and crystallize in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> orthorhombic system. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> olivine generally corresp<strong>on</strong>ds closely<br />

to (M g, Fe) 2SiO 4, <str<strong>on</strong>g>the</str<strong>on</strong>g>re being little replacement by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r elements. Minerals included<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> olivine group are: forsterite, fayalite, olivine, tephroite, m<strong>on</strong>ticellite,<br />

glaucochroite and larsenite.


46 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

3.2.6 The mica group<br />

The <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mica group have in comm<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> perfect basal cleavage easily<br />

recognizable. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual specimens may be very complex, but a<br />

general formula <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> type W (X , Y ) 2−3Z 4O 10(OH, F) 2 can be written for <str<strong>on</strong>g>the</str<strong>on</strong>g> group<br />

as a whole. In this formula W is generally K or N a, X and Y represent Al, Li, M g,<br />

Fe 2+ , and Fe 3+ ; Z represents Si and Al, <str<strong>on</strong>g>the</str<strong>on</strong>g> Si:Al ratio being generally about 3:1.<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main mica <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are biotite, muscovite, parag<strong>on</strong>ite, phologipte and<br />

lepidolite.<br />

3.2.7 The chlorite group<br />

The chlorites are a group <str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicate <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Chlorites can be described<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> following four endmembers based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemistry via substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

M g, Fe, N i, and M n in <str<strong>on</strong>g>the</str<strong>on</strong>g> silicate lattice: clinochlore (M g 5Al)(AlSi 3)O 10(OH) 8,<br />

chamosite (Fe 5Al)(AlSi 3)O 10(OH) 8, nimite (N i 5Al)(AlSi 3)O 10(OH) 8 and pennantite<br />

(M n, Al) 6(Si, Al) 4O 10(OH) 8. The formula that emphasizes <str<strong>on</strong>g>the</str<strong>on</strong>g> group is (M g, Fe) 3<br />

(Si, Al) 4O 10(OH) 2 · (M g, Fe) 3(OH) 6. And <str<strong>on</strong>g>the</str<strong>on</strong>g> main chlorite <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are besides<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es menti<strong>on</strong>ed above, clinochlore, ripidolite, pennantite, orthochamosite,<br />

thuringite or penninite.<br />

3.3 Grigor’ev’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust<br />

As explained in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous chapter, a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> effort has been placed in determining<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust. The compositi<strong>on</strong> has been<br />

refined and improved with <str<strong>on</strong>g>the</str<strong>on</strong>g> studies <str<strong>on</strong>g>of</str<strong>on</strong>g> many different authors throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> last<br />

century. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it has been barely studied,<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> complexity and heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust.<br />

A very general average <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust was obtained by<br />

Wedepohl 2 [402], [403], and Nesbitt and Young [242] (table 3.2). According to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se studies, <strong>on</strong>ly ten types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are <str<strong>on</strong>g>the</str<strong>on</strong>g> main c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper<br />

crust.<br />

A more comprehensive study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust<br />

was recently carried out by Grigor’ev [127]. He calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> average c<strong>on</strong>tents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rock forming and accessory <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> R<strong>on</strong>ov et al. [288]. The average compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 208 <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> rocks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust was already calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g> same author for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

first time in year 2000 [124]. The calculati<strong>on</strong>s were based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quantitatively<br />

analysis published in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 3000 rock samples published mainly<br />

2 The <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust given by Wedepohl was calculated using <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magmatic rocks.


Grigor’ev’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust 47<br />

Table 3.2. Crustal abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Data in percent volume.<br />

Mineral Wedepohl [402] Nesbitt and Young [242]<br />

Quartz 21,0 23,2<br />

Plagioclase 41,0 39,9<br />

Orthoclase 21,0 12,9<br />

Biotite 4,0 8,7<br />

Muscovite 5,0<br />

Chlorite 2,2<br />

Amphiboles 6,0 2,1<br />

Pyroxenes 4,0 1,4<br />

Olivines 0,6 0,2<br />

Oxides 2,0 1,6<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>rs 0,5 3,0<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> USSR and USA. In Grigor’ev’s 2007 [127] publicati<strong>on</strong>, additi<strong>on</strong>al data was<br />

c<strong>on</strong>sidered. The average c<strong>on</strong>tent in rocks <str<strong>on</strong>g>of</str<strong>on</strong>g> 265 <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir varieties and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

n<strong>on</strong>-<str<strong>on</strong>g>mineral</str<strong>on</strong>g> materials were calculated. The c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> 80 fundamental <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> list was corrected, in order to ensure <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance with <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> rocks. The output is <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> a partiallyquantitative<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical analysis. His main bibliographical sources were [38],<br />

[119], [126], [228] and [301].<br />

Table 3.3: Average <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust<br />

according to Grigor’ev [127]. Results are given in mass percentage.<br />

Mineral Abundance, mass %<br />

Native Elements<br />

Copper 4,10E-07<br />

Silver 1,20E-07<br />

Gold 1,80E-08<br />

Lead 1,80E-07<br />

Polixene 3,00E-10<br />

I-Platinum 3,00E-10<br />

Zinc 4,70E-08<br />

Bismuth 4,90E-08<br />

Tin 4,40E-08<br />

Graphite 1,20E-01<br />

Moiss<strong>on</strong>ite 7,00E-07<br />

Sulphur 9,00E-05<br />

Sulphides<br />

Tetradymite 1,60E-08<br />

Chalcocite 1,80E-07<br />

Bornite 2,20E-06<br />

Acanthite 3,90E-08<br />

Argentite 7,10E-08<br />

Pentlandite 8,40E-05<br />

Sphalerite 4,60E-05<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


48 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

Table 3.3: Average <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust<br />

according to Grigor’ev [127]. Results are given in mass percentage. – c<strong>on</strong>tinued<br />

from previous page.<br />

Mineral Abundance, mass %<br />

Metacinnabar 7,60E-10<br />

Chalcopyrite 1,10E-04<br />

Tetrahedrite 5,70E-08<br />

Freibergite 3,90E-08<br />

Fahlerz Group<br />

Cubanite 6,00E-06<br />

Pyrrhotite 2,90E-02<br />

Troilite 2,00E-07<br />

Nickeline 5,10E-06<br />

Galena 1,90E-05<br />

Cinnabar 5,90E-08<br />

Covellite 3,60E-06<br />

Cooperite 3,00E-10<br />

Antim<strong>on</strong>ite/ Stibnite 4,40E-09<br />

Bismuthinite 9,20E-08<br />

Stephanite 3,50E-08<br />

Sams<strong>on</strong>ite 2,80E-09<br />

Boulangerite 4,00E-10<br />

Pyrargirite 7,40E-08<br />

Violarite 7,60E-06<br />

Pyrite 6,30E-02<br />

Marcasite 1,20E-03<br />

Vaesite 7,60E-06<br />

Cobaltite 8,40E-07<br />

Gersdorffite 3,00E-06<br />

Lollingite 5,00E-10<br />

Arsenopyrite 8,80E-06<br />

Molybdenite 1,20E-05<br />

Realgar 2,80E-08<br />

Orpiment 8,50E-07<br />

Halides<br />

Halite 1,90E-01<br />

Chlorargyrite 4,50E-09<br />

Sylvite 6,60E-04<br />

Fluorite 2,20E-03<br />

Bisch<str<strong>on</strong>g>of</str<strong>on</strong>g>ite 2,60E-05<br />

Carnallite 1,30E-04<br />

Oxides<br />

Periclase 2,40E-08<br />

Spinel 2,40E-03<br />

Ple<strong>on</strong>aste 1,10E-05<br />

Magnetite 6,50E-01<br />

Ulvöspinel 6,60E-02<br />

Jacobsite 3,00E-04<br />

Chromite 1,90E-04<br />

Iotsite 1,40E-06<br />

Corundum 3,80E-03<br />

Hematite 7,90E-02<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Grigor’ev’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust 49<br />

Table 3.3: Average <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust<br />

according to Grigor’ev [127]. Results are given in mass percentage. – c<strong>on</strong>tinued<br />

from previous page.<br />

Mineral Abundance, mass %<br />

Ilmenite 1,90E-01<br />

Perovskite 2,80E-05<br />

Loparite 1,00E-06<br />

Pyrochlore 1,00E-06<br />

Microlite 7,60E-09<br />

Quarz 2,40E+01<br />

Tridymite 6,60E-05<br />

Cristobalite 1,30E-03<br />

Opal 1,30E+00<br />

Pyrolusite 5,40E-04<br />

Rutile 1,10E-02<br />

Cassiterite 2,50E-06<br />

Hollandite 6,40E-04<br />

Ilmenorutile 2,50E-05<br />

Cryptomelane 2,50E-04<br />

Psilomelane 3,10E-04<br />

Todorokite 8,60E-05<br />

Vernadite 2,60E-05<br />

Anatase 1,80E-03<br />

Brookite 1,70E-05<br />

Columbite 6,60E-06<br />

Ferrotantalite 2,60E-07<br />

Delorenzite/ Tanteuxenite 6,60E-09<br />

Polycrase 4,00E-11<br />

Euxenite 6,60E-06<br />

Blomstrandite/ Betafite 9,00E-07<br />

Fergus<strong>on</strong>ite 2,40E-06<br />

Baddeleyite 3,10E-07<br />

Thorianite 3,40E-08<br />

Uraninite 6,60E-06<br />

Hydroxides<br />

Hydragillite/ Gibbsite 4,30E-02<br />

Diaspore 5,50E-02<br />

Brucite 2,50E-04<br />

Goethite 8,50E-02<br />

Manganite 1,50E-04<br />

Boehmite 1,80E-02<br />

Carb<strong>on</strong>ates<br />

Magnesite 1,50E-02<br />

Smiths<strong>on</strong>ite 3,70E-08<br />

Siderite 1,20E-01<br />

Mg-Siderite 5,90E-03<br />

Rhodochrosite 1,20E-03<br />

Calcite 3,98E+00<br />

Dolomite 7,00E-01<br />

Ankerite 3,10E-02<br />

Arag<strong>on</strong>ite 3,80E-02<br />

Str<strong>on</strong>tianite 2,00E-07<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


50 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

Table 3.3: Average <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust<br />

according to Grigor’ev [127]. Results are given in mass percentage. – c<strong>on</strong>tinued<br />

from previous page.<br />

Mineral Abundance, mass %<br />

Cerussite 6,30E-07<br />

Azurite 2,50E-06<br />

Malachite 2,00E-06<br />

Daws<strong>on</strong>ite 1,80E-04<br />

Bastnasite 3,20E-04<br />

Bismutite 1,10E-07<br />

Sulphates<br />

Anhydrite 4,50E-02<br />

Celestine 1,70E-04<br />

Anglesite 3,30E-07<br />

Barite 7,30E-04<br />

Alunite 7,60E-09<br />

Jarosite 4,00E-04<br />

Kieserite 6,70E-04<br />

Gypsum 2,40E-02<br />

Wolframates<br />

Wolframite 7,80E-07<br />

Powellite 4,00E-08<br />

Scheelite 6,50E-06<br />

Wulfenite 4,00E-09<br />

Phosphates<br />

Xenotime 3,70E-05<br />

M<strong>on</strong>azite 1,30E-03<br />

Rhabdophane 3,30E-07<br />

Amblyg<strong>on</strong>ite 4,90E-08<br />

Apatite 1,30E-01<br />

Francolite 8,30E-03<br />

Britholite 2,10E-06<br />

Vivianite 1,30E-07<br />

Weinschenkite/ Churchite 3,70E-08<br />

Metatorbenite 7,40E-09<br />

Nesosilicates (single tetrahedr<strong>on</strong>s)<br />

Phenakite 4,00E-06<br />

Forsterite 1,10E-02<br />

Olivine 3,70E-02<br />

Fayalite 3,90E-03<br />

Tephroite 1,40E-03<br />

Almandine 8,50E-01<br />

Spessartine 2,60E-03<br />

Grossular 2,50E-03<br />

Andradite 1,20E-03<br />

Zirc<strong>on</strong> 1,00E-02<br />

Naegite 3,30E-08<br />

Tsirtolite 1,90E-06<br />

Thorite 5,70E-05<br />

Uranium-Thorite 8,60E-08<br />

Sillimanite 3,10E-01<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Grigor’ev’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust 51<br />

Table 3.3: Average <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust<br />

according to Grigor’ev [127]. Results are given in mass percentage. – c<strong>on</strong>tinued<br />

from previous page.<br />

Mineral Abundance, mass %<br />

Andalusite 6,30E-02<br />

Distene/ Kyanite 2,20E-02<br />

Topaz 4,60E-04<br />

Staurolite 5,10E-02<br />

Sapphirine 2,20E-03<br />

Kornerupine 6,00E-04<br />

Ch<strong>on</strong>drodite 2,20E-05<br />

Humite 1,00E-03<br />

Clinohumite 1,50E-03<br />

Braunite 2,70E-03<br />

Gadolinite 4,00E-06<br />

Titanite 1,80E-01<br />

Leucoxene 1,50E-02<br />

Murmanite 1,70E-05<br />

Dumortierit 7,60E-09<br />

Thortveitite 7,60E-09<br />

Yttrialite 1,60E-05<br />

Wohlerite 1,30E-11<br />

Lovenite/ Lavenite 2,50E-07<br />

Rinkolite/ Mosandrite 5,30E-09<br />

Lamprophyllite 5,00E-06<br />

Bertrandite 4,00E-06<br />

Laws<strong>on</strong>ite 2,40E-01<br />

Clinozoisite 4,10E-02<br />

Epidote 1,17E+00<br />

Zoisite 3,10E-02<br />

Orthite/ Allanite 4,80E-03<br />

Chevkinite 4,20E-07<br />

Pumpellyite 1,50E-02<br />

Vesubianite/ Idocrase 2,70E-02<br />

Prehnite 1,70E-01<br />

Cyclosilicates<br />

Eudialyte 1,10E-05<br />

Neptunite 2,50E-06<br />

Axinite -Fe 1,10E-05<br />

Beryl 1,60E-04<br />

Nordite 5,50E-08<br />

Cordierite 8,80E-03<br />

Tourmaline 4,30E-03<br />

Chrysocolla 2,70E-09<br />

Inosilicates (single and double chains)<br />

Pige<strong>on</strong>ite 6,90E-02<br />

Diopside 4,80E-01<br />

Hedenbergite 8,20E-03<br />

Ferrosilite 5,00E-02<br />

Spodumene 9,60E-07<br />

Jadeite 2,90E-03<br />

Aegirine 9,00E-02<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


52 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

Table 3.3: Average <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust<br />

according to Grigor’ev [127]. Results are given in mass percentage. – c<strong>on</strong>tinued<br />

from previous page.<br />

Mineral Abundance, mass %<br />

Omphacite 2,50E-04<br />

Augite 1,21E+00<br />

Enstatite 4,40E-02<br />

Br<strong>on</strong>zite 6,50E-02<br />

Hypers<str<strong>on</strong>g>the</str<strong>on</strong>g>ne 4,30E-01<br />

Cummingt<strong>on</strong>ite 4,60E-01<br />

Tremolite 5,50E-02<br />

Actinolite 3,90E-01<br />

Riebeckite 1,70E-01<br />

Arfveds<strong>on</strong>ite 3,10E-03<br />

Glaucophane 1,50E-03<br />

Crossite 5,10E-02<br />

Hastingsite 3,10E-01<br />

Hornblende 3,16E+00<br />

Anthophyllite 3,30E-03<br />

Gedrite 5,10E-03<br />

Aenigmatite 1,10E-04<br />

Wollast<strong>on</strong>ite 5,70E-04<br />

Rhod<strong>on</strong>ite 3,30E-04<br />

Miserite 1,80E-07<br />

Ramsayite/ Lorenzenite 5,00E-06<br />

Phyllosilicates (sheets)<br />

Talc 4,60E-02<br />

Pyrophyllite 1,00E-03<br />

Parag<strong>on</strong>ite 5,60E-01<br />

Muscovite 1,99E+00<br />

Glauk<strong>on</strong>ite 1,30E-01<br />

Phengite 3,90E-02<br />

Phlogopite 1,30E-02<br />

Biotite 7,49E+00<br />

Lepidomelane/ Annite 7,60E-02<br />

Hydromuscovite/ Illite 2,51E+00<br />

Hydrobiotite 4,80E-01<br />

Stilpnomelane 2,80E-02<br />

M<strong>on</strong>tmorill<strong>on</strong>ite 4,30E-01<br />

Beidellite 1,60E-01<br />

N<strong>on</strong>tr<strong>on</strong>ite 5,70E-01<br />

Vermiculite 5,40E-02<br />

Pennine 2,70E-01<br />

Clinochlore 6,90E-01<br />

Ripidolite/ Cinochlore 1,89E+00<br />

Sepiolite 5,50E-01<br />

Thuringite/ Chamosite 1,20E-01<br />

Clementite 4,00E-03<br />

Chloritoid 3,30E-04<br />

Kaolinite 2,60E-01<br />

Serpentine/ Clinochrysotile 7,20E-02<br />

Garnierite/ Falc<strong>on</strong>doite 1,30E-05<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Grigor’ev’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust 53<br />

Table 3.3: Average <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust<br />

according to Grigor’ev [127]. Results are given in mass percentage. – c<strong>on</strong>tinued<br />

from previous page.<br />

Mineral Abundance, mass %<br />

Hisingerite 1,80E-04<br />

Palygorskite 1,80E-04<br />

Tectosilicates (framework)<br />

Nepheline 6,20E-03<br />

Analcime 6,60E-03<br />

Anorthite 3,30E-02<br />

Bytownite 3,00E-01<br />

Labradorite 3,02E+00<br />

Andesine 6,56E+00<br />

Oligoclase 1,43E+01<br />

Albite 4,00E+00<br />

Orthoclase 9,81E+00<br />

Sanidine 6,10E-02<br />

Cancrinite 2,20E-05<br />

Sodalite 6,40E-05<br />

Hydrosodalite 2,50E-05<br />

Nosean 2,50E-04<br />

Helvine/ Helvite 4,00E-06<br />

Scapolite 1,80E-02<br />

Natrolite 8,80E-02<br />

Thoms<strong>on</strong>ite 6,00E-02<br />

Palag<strong>on</strong>ite 1,70E-02<br />

Basic Crystal 3,10E-01<br />

Acid Crystal 3,10E-02<br />

C org 1,10E-01<br />

Sum 99,51<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

According to Grigor’ev’s compositi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s upper crust<br />

is 142,1 g/mole 3 . This value is important, because it will be required for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements, discussed in chapter 5.<br />

Grigor’ev’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong>, although comprehensive, does not satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mass balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>, a methodology for obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> average<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust is developed, assuring that all species comprising<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> analysis are ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matically, chemically and geologically c<strong>on</strong>sistent.<br />

3 The calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> average molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust is carried out through <str<strong>on</strong>g>the</str<strong>on</strong>g> weighted<br />

sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular weights <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>sidered. The chemical compositi<strong>on</strong> and molecular<br />

weights <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substances listed in table 3.3 are given in table 3.5.


54 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

3.4 A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong>’s crust<br />

3.4.1 The mass balance<br />

As explained in secti<strong>on</strong> 2.2, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> can be assumed to be a closed system, with<br />

a fixed number <str<strong>on</strong>g>of</str<strong>on</strong>g> substances c<strong>on</strong>tained in it. Hence, it will always be true that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

total mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> is c<strong>on</strong>stant.<br />

As an example, let us c<strong>on</strong>sider a very simplified <strong>earth</strong> c<strong>on</strong>taining ξ i species (CO 2,<br />

H 2O, O 2, N 2, CaSO 4 · 2H 2O and CaCO 3), composed by ε j chemical elements<br />

(C, H, O, N, S, Ca), where ξ i and ε j are expressed in moles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substance per<br />

gram <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>earth</strong> (mole/g). Then, <str<strong>on</strong>g>the</str<strong>on</strong>g> system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s defined in Eq. 3.1 has to be<br />

satisfied [369]:<br />

Σr j,i · ξ i = ε j<br />

(3.1)<br />

being R <str<strong>on</strong>g>the</str<strong>on</strong>g> stoichiometric coefficient matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s [ j × i], as<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> next table.<br />

i→ 1 2 3 4 5 6 j<br />

CO 2 H 2O O 2 N 2 CaSO 4 · 2H 2O CaCO 3 ↓<br />

1 0 0 0 0 1 C 1<br />

0 2 0 0 4 0 H 2<br />

R[j × i] = 4 1 2 0 6 1 O 3<br />

0 0 0 2 0 1 N 4<br />

0 0 0 0 1 0 S 5<br />

0 0 0 0 1 0 Ca 6<br />

The resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s for vector ξ gives <str<strong>on</strong>g>the</str<strong>on</strong>g> general expressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ξi = εj · r −1<br />

j,i . In our particular case, this is:<br />

(i=1) CO 2 ξ 1 = C + S − Ca<br />

(i=2) H 2O ξ 2 = H/2 − 2S<br />

(i=3) O 2 ξ 3 = −C + O/2 − H/4 − 3S/2 − Ca/2<br />

(i=4) N 2 ξ 4 = N/2<br />

(i=5) CaSO 4 · 2H 2O ξ 5 = S<br />

(i=6) CaCO 3 ξ 6 = Ca − S<br />

As it happens to <str<strong>on</strong>g>the</str<strong>on</strong>g> entire <strong>earth</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> substances c<strong>on</strong>tained in each sphere <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

planet can be c<strong>on</strong>sidered to be c<strong>on</strong>stant. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> same methodology is applied<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere and c<strong>on</strong>tinental crust.


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 55<br />

3.4.2 The mass balance applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust is assumed to be a closed system, <str<strong>on</strong>g>the</str<strong>on</strong>g> elements c<strong>on</strong>tained in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust, must be equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust. If<br />

we assume to be correct <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> defined by Rudnick et al. [292]<br />

given in table 2.13, <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. 3.1 to Grigor’ev’s analysis, should give as<br />

result Rudnick’s values.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g> output <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance between species and elements for Grigorev’s<br />

analysis does not corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper <strong>earth</strong>’s<br />

crust determined by Rudnick et al. [292], i.e. ˆε j = ε j (see table 3.4) 4 . Additi<strong>on</strong>ally,<br />

not all <str<strong>on</strong>g>the</str<strong>on</strong>g> elements compiled in <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> are taken into account in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Grigor’ev’s analysis (Grigor’ev accounts for 56 elements, as opposed<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> 78 included in Rudnick et al. study). The reas<strong>on</strong> for which many elements<br />

are missing in Grigor’ev’s analysis is because many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m are minor elements not<br />

appearing with enough c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust in order to form by <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> phases. They usually replace major elements in crystal structures. The ability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> certain different elements to exist in place <str<strong>on</strong>g>of</str<strong>on</strong>g> each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r in certain points <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

space lattice is called Diadochy.<br />

Table 3.4: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Rudnick and Gao’s [292] chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> upper <strong>earth</strong>’s crust and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e generated by Grigor’ev [127] according<br />

to Eq. 3.1.<br />

Element Rudnick and Gao [292] From Grigorev [127] Difference<br />

ˆε j · MW j, g/g ε j · MW j, g/g (ˆε j-ε j)/ˆε j, %<br />

O 4,72E-01 4,76E-01 -0,76<br />

Si 3,09E-01 2,86E-01 7,18<br />

Al 8,15E-02 7,02E-02 13,86<br />

Fe 3,92E-02 3,58E-02 8,59<br />

Na 2,73E-02 1,99E-02 27,08<br />

Ca 2,57E-02 3,86E-02 -50,54<br />

K 2,32E-02 2,43E-02 -4,68<br />

Mg 1,50E-02 2,25E-02 -50,18<br />

Ti 3,84E-03 1,50E-03 60,95<br />

C 1,99E-03 8,22E-03 -313,26<br />

Mn 7,74E-04 6,02E-05 92,22<br />

P 6,55E-04 2,53E-04 61,43<br />

Ba 6,28E-04 5,84E-06 99,07<br />

S 6,20E-04 6,13E-04 1,19<br />

F 5,57E-04 1,09E-03 -95,46<br />

Cl 3,70E-04 1,19E-03 -222,54<br />

Sr 3,20E-04 8,13E-07 99,75<br />

Zr 1,93E-04 4,98E-05 74,18<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .<br />

4 In table 3.4, <str<strong>on</strong>g>the</str<strong>on</strong>g> values are expressed in g <str<strong>on</strong>g>of</str<strong>on</strong>g> substance per g <str<strong>on</strong>g>of</str<strong>on</strong>g> crust, since this is <str<strong>on</strong>g>the</str<strong>on</strong>g> usual<br />

way found in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature <str<strong>on</strong>g>of</str<strong>on</strong>g> expressing <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust. This means that ε j is<br />

multiplied by <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substance MW j.


56 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

Table 3.4: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Rudnick and Gao’s [292] chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> upper <strong>earth</strong>’s crust and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e generated by Grigor’ev [127] according<br />

to Eq. 3.1. – c<strong>on</strong>tinued from previous page.<br />

Element Rudnick and Gao [292] From Grigorev [127] Difference<br />

ˆε j · MW j, g/g ε j · MW j, g/g (ˆε j-ε j)/ˆε j, %<br />

V 9,70E-05<br />

Cr 9,20E-05 8,83E-07 99,04<br />

Rb 8,40E-05<br />

N 8,30E-05 100,00<br />

Zn 6,70E-05 3,11E-07 99,54<br />

Ce 6,30E-05 8,18E-06 87,01<br />

Ni 4,70E-05 4,07E-07 99,13<br />

La 3,10E-05 3,91E-06 87,39<br />

Cu 2,80E-05 4,64E-07 98,34<br />

Nd 2,70E-05 1,57E-06 94,20<br />

Li 2,40E-05 5,66E-10 100,00<br />

Y 2,10E-05 9,98E-07 95,25<br />

Ga 1,75E-05<br />

Co 1,73E-05 2,98E-09 99,98<br />

B 1,70E-05 1,45E-06 91,48<br />

Pb 1,70E-05 4,84E-07 97,15<br />

Sc 1,40E-05 1,83E-11<br />

Nb 1,20E-05 1,19E-07 99,01<br />

Th 1,05E-05 1,09E-06 89,66<br />

Pr 7,10E-06<br />

Hf 5,30E-06<br />

Cs 4,90E-06<br />

As 4,80E-06 9,24E-08 98,07<br />

Sm 4,70E-06 1,22E-09 99,97<br />

Gd 4,00E-06<br />

Dy 3,90E-06<br />

U 2,70E-06 5,97E-08 97,79<br />

Er 2,30E-06<br />

Be 2,10E-06 9,64E-08 95,41<br />

Sn 2,10E-06 2,01E-08 99,04<br />

Yb 1,96E-06 2,39E-07 87,82<br />

W 1,90E-06 4,63E-08 97,56<br />

Br 1,60E-06<br />

Ge 1,40E-06<br />

I 1,40E-06<br />

Mo 1,10E-06 7,22E-08 93,44<br />

Eu 1,00E-06<br />

Ta 9,00E-07 1,60E-08 98,22<br />

Tl 9,00E-07<br />

Ho 8,30E-07<br />

Tb 7,00E-07<br />

Sb 4,00E-07 5,04E-10 99,87<br />

Lu 3,10E-07<br />

Tm 3,00E-07<br />

Bi 1,60E-07 2,23E-09 98,60<br />

Se 9,00E-08<br />

Cd 9,00E-08<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 57<br />

Table 3.4: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Rudnick and Gao’s [292] chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> upper <strong>earth</strong>’s crust and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e generated by Grigor’ev [127] according<br />

to Eq. 3.1. – c<strong>on</strong>tinued from previous page.<br />

Element Rudnick and Gao [292] From Grigorev [127] Difference<br />

ˆε j · MW j, g/g ε j · MW j, g/g (ˆε j-ε j)/ˆε j, %<br />

In 5,60E-08<br />

Ag 5,30E-08 3,04E-09 94,26<br />

Hg 5,00E-08 5,16E-10 98,97<br />

Te 5,00E-09 5,79E-11 98,84<br />

Au 1,50E-09 1,80E-10 88,00<br />

Pd 5,20E-10 5,14E-13 99,90<br />

Pt 5,00E-10 4,89E-12 99,02<br />

Ru 3,40E-10<br />

Re 1,98E-10<br />

Rh 6,00E-11<br />

Os 3,10E-11<br />

Ir 2,20E-11<br />

SUM 1,00 0,98<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

Assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> average chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Rudnick and Gao [292] is correct,<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> mass c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> a specific element given by Rudnick<br />

(ˆε j) and that included in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust given by<br />

Grigor’ev (ε j) is positive, i.e. ˆε j − ε j > 0, <str<strong>on</strong>g>the</str<strong>on</strong>g>n it can be due to two factors:<br />

1. The quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e or more <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> specific element under<br />

c<strong>on</strong>siderati<strong>on</strong> is greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> d<strong>on</strong>e by Grigor’ev.<br />

2. There are o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s not included in Grigorev’s analysis or ores c<strong>on</strong>taining<br />

not insignificant quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> element under c<strong>on</strong>siderati<strong>on</strong>.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, if <str<strong>on</strong>g>the</str<strong>on</strong>g> difference is negative (ˆε j −ε j < 0), it is clear that Grigor’ev<br />

overestimated <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> or <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> element under<br />

c<strong>on</strong>siderati<strong>on</strong>.<br />

Basing <strong>on</strong> Grigorev’s analysis, a new <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental<br />

crust m i=1 ˆ ξi will be calculated. The model will be optimized so that it<br />

complies with <str<strong>on</strong>g>the</str<strong>on</strong>g> following requirements:<br />

1. The mass balance between species and elements must be satisfied. <br />

j r j,i ·<br />

ˆξ i = ˆε j, being ˆε j <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust determined by<br />

Rudnick et al. [292].<br />

2. The mass c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> every <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust must be always greater than<br />

zero, i.e. ˆ ξ i > 0.


58 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

3. Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> relative proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Grigorev’s model will be<br />

kept if c<strong>on</strong>straints 1 and 2 are satisfied.<br />

4. If an important 5 <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain element is not c<strong>on</strong>sidered in Grigor’ev<br />

analysis, it will be included in our model, making reas<strong>on</strong>able assumpti<strong>on</strong>s <strong>on</strong><br />

its abundance based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> literature.<br />

Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> each element found in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust will be<br />

briefly described, stressing out <str<strong>on</strong>g>the</str<strong>on</strong>g>ir main uses, terrestrial abundance and distributi<strong>on</strong>.<br />

The specific optimizati<strong>on</strong> method for each element will be also outlined 6 . The<br />

informati<strong>on</strong> about uses and main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and ores <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different elements has<br />

been extracted mainly from geochemical books: Wedepohl [402], [403] and Greenwood<br />

and Earnshaw [122]; <str<strong>on</strong>g>mineral</str<strong>on</strong>g> books and databases: Hey [140], Duda [77],<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Geochemical Earth Reference Model [329], [114], Joly<strong>on</strong> [172] and Bar<str<strong>on</strong>g>the</str<strong>on</strong>g>lmy<br />

[21]; and from commodity databases: US Geological Survey (USGS) [363] and<br />

British Geological Survey (BGS) [28].<br />

The descriptive procedure for obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> shown next,<br />

is represented in a ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical way in secti<strong>on</strong> 3.5.<br />

3.4.3 Aluminium<br />

Aluminium is a light, malleable, ductile, easily machined and str<strong>on</strong>g metal used<br />

for many different applicati<strong>on</strong>s. It has excellent corrosi<strong>on</strong> resistance and durability.<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> many uses for aluminium are in transportati<strong>on</strong> (automobiles, aircraft,<br />

trucks railcars, marine vessels, etc.), packaging (cans, foil, etc.), transmissi<strong>on</strong> lines,<br />

machinery, mirrors, cooking utensils, water treatment, etc.<br />

Aluminium is <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant metal in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust. It is a major c<strong>on</strong>stituent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> many comm<strong>on</strong> igneous <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, including feldspars and micas. Aluminim is a<br />

very reactive metal and it requires a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> energy to extract it from its ore bauxite,<br />

which is composed mainly <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s gibbsite Al(OH) 3, diaspore AlO(OH) and<br />

boehmite AlO(OH). Therefore, recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> this metal from scrap has become so<br />

important and about 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> its producti<strong>on</strong> comes from recycled Al.<br />

In our model <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinental crust, we have c<strong>on</strong>sidered 84 Al-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s,<br />

<strong>on</strong>e more than in Grigorev’s analysis. Their abundance in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust will be<br />

determined applying <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>straints explained above.<br />

5A <str<strong>on</strong>g>mineral</str<strong>on</strong>g> is c<strong>on</strong>sidered to be important here, especially when it c<strong>on</strong>stitutes an ore <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain<br />

element.<br />

6Note that when we refer to percentages in <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> process, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are always based <strong>on</strong> a<br />

volume basis.


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 59<br />

3.4.4 Antim<strong>on</strong>y<br />

Antim<strong>on</strong>y is a semimetallic chemical element increasingly being used in <str<strong>on</strong>g>the</str<strong>on</strong>g> semic<strong>on</strong>ductor<br />

industry. As an alloy, it increases lead’s durability and mechanical strength.<br />

Antim<strong>on</strong>y compounds are used to make flame-pro<str<strong>on</strong>g>of</str<strong>on</strong>g>ing materials, paints, glass and<br />

pottery.<br />

Stibnite S b 2S 3 is <str<strong>on</strong>g>the</str<strong>on</strong>g> most important ore <str<strong>on</strong>g>of</str<strong>on</strong>g> antim<strong>on</strong>y and it occurs in large quantities<br />

in China, South Africa, Mexico, Bolivia and Chile. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r sulfide ores include<br />

ullmanite N iS bS, livingst<strong>on</strong>ite H gS b 4S8, boulangerite P b 5S b 4S 11 or james<strong>on</strong>ite<br />

FeP b 4S b 6S 14 and small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> oxide <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s formed by wea<str<strong>on</strong>g>the</str<strong>on</strong>g>ring are also<br />

known. C<strong>on</strong>siderable amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> S b are also obtained as a byproduct in lead and<br />

copper refining, especially from galena.<br />

Grigorev’s S b <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are stibnite, boulangerite, tetrahedrite and <str<strong>on</strong>g>the</str<strong>on</strong>g> silver <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

sams<strong>on</strong>ite, freibergite, stephanite and pyrargirite. Since stibnite is by far <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most important <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> S b, <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> that <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <strong>on</strong> <strong>earth</strong> should presumably<br />

account for a very important part <str<strong>on</strong>g>of</str<strong>on</strong>g> S b in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust. The quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> antim<strong>on</strong>y<br />

in stibnite c<strong>on</strong>sidered by Grigor’ev is about four orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude smaller than<br />

Rudnick’s S b estimati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust. Therefore, we will ignore Grigorev’s<br />

estimati<strong>on</strong>s about stibnite and assume that most S b comes at equal rates from stibnite<br />

and in soluti<strong>on</strong> with galena P bS. Grigorev’s estimati<strong>on</strong> for boulangerite and<br />

tetrahedrite will be assumed to be correct. The quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Sb-Ag-c<strong>on</strong>taining<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are fixed by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir silver c<strong>on</strong>tent.<br />

3.4.5 Arsenic<br />

Arsenic is a semi-metallic pois<strong>on</strong>ous element. Its compounds are used as insecticides<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fruit trees, as wood preservatives, in making special types <str<strong>on</strong>g>of</str<strong>on</strong>g> glass and lately, in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> semic<strong>on</strong>ductor gallium arsenade, which has <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to c<strong>on</strong>vert electric current<br />

to laser light. Many o<str<strong>on</strong>g>the</str<strong>on</strong>g>r arsenic compounds used in <str<strong>on</strong>g>the</str<strong>on</strong>g> past have fallen out <str<strong>on</strong>g>of</str<strong>on</strong>g> use<br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir toxicity and reactivity.<br />

Arsenic <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are widely distributed throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> world and small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> free element have also been found. Most arsenic is found in c<strong>on</strong>juncti<strong>on</strong> with<br />

sulphur such as realgar As 4S 4 and orpiment As 2S 3, and <str<strong>on</strong>g>the</str<strong>on</strong>g> oxidized form arsenolite<br />

As 2O 3. But n<strong>on</strong> is mined as such because it is produced as a byproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> refining<br />

ores <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r metals such as ir<strong>on</strong>, copper, cobalt or nickel. The main ec<strong>on</strong>omic<br />

source <str<strong>on</strong>g>of</str<strong>on</strong>g> As is arsenopyrite FeAsS. But it can be also recovered from loellingite<br />

FeAs 2, safflorite CoAs, nickeline N iAs, cobaltite CoAsS, gersd<str<strong>on</strong>g>of</str<strong>on</strong>g>fite N iAsS, enargite<br />

Cu 3AsS 4, etc.<br />

The arsenic-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s c<strong>on</strong>sidered by Grigor’ev are: <str<strong>on</strong>g>the</str<strong>on</strong>g> sulphides arsenopyrite,<br />

orpimnet, realgar, freibergite and <str<strong>on</strong>g>the</str<strong>on</strong>g> sulfosalt group “fahlerz group”,<br />

which will be assumed to be represented by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> tennantite Cu 11Fe 2+ As 4S 13.


60 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

Less abundant N i, Fe and Co arsenides recorded in his model are nickeline, gersdorffite,<br />

loellingite and cobaltite. In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s c<strong>on</strong>sidered by Grigor’ev,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cobalt arsenide smaltite 7 is also included. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> its oxidized<br />

form, arsenolite will be also taken into account, assuming that it is resp<strong>on</strong>sible for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> As <strong>on</strong> <strong>earth</strong> as realgar. The relative proporti<strong>on</strong>s given by Grigor’ev<br />

will be kept in our model. The abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> cobaltite, smaltite and freibergite are<br />

fixed by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir Co and Ag c<strong>on</strong>tents.<br />

3.4.6 Barium<br />

Barium is an alkaline-<strong>earth</strong> metal that is chemically similar to calcium. Barium and<br />

its compounds have many industrial uses. For instance barite BaSO 4 is extremely important<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> petroleum industry, which accounts for more than 85% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> barite<br />

c<strong>on</strong>sumpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> world. It is used as a weighting agent in petroleum well-drilling<br />

mud. Barium-nickel alloys are used for spark-plug electrodes and in vacuum tubes<br />

as drying and oxygen-removing agents. Barium nitrate and chlorate give fireworks<br />

a green color. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r compounds <str<strong>on</strong>g>of</str<strong>on</strong>g> barium are used to make bricks, tiles, glass or<br />

rubber.<br />

Barium is ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r abundant in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust. The chief mined ore is barite. A<br />

subsidiary <str<strong>on</strong>g>mineral</str<strong>on</strong>g> is barium carb<strong>on</strong>ate wi<str<strong>on</strong>g>the</str<strong>on</strong>g>rite, BaCO 3.<br />

Barium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s analyzed by Grigor’ev are barite, psilomenane, hollandite<br />

and lamprophyllite. We take into account in our model all four <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s given<br />

by Grigorev’s analysis and include additi<strong>on</strong>ally wi<str<strong>on</strong>g>the</str<strong>on</strong>g>rite, for being an important Ba<br />

ore. It will be assumed that wi<str<strong>on</strong>g>the</str<strong>on</strong>g>rite accounts for about 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ba c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all barite in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust. The relative c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Grigor’ev model<br />

will be kept. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> lamprophyllite is fixed as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

str<strong>on</strong>tium mass balance 8 .<br />

3.4.7 Beryllium<br />

Beryllium is a light alkaline-<strong>earth</strong> metal and has <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> highest melting points <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

any light metal. It is used as an alloying agent in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> beryllium-copper.<br />

Thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir electrical and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal c<strong>on</strong>ductivity, high strength and hardness, good<br />

stability over a wide temperature range, Be − Cu alloys are used in many applicati<strong>on</strong>s.<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m are in <str<strong>on</strong>g>the</str<strong>on</strong>g> defense and aerospace industries, in <str<strong>on</strong>g>the</str<strong>on</strong>g> field <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray<br />

detecti<strong>on</strong> diagnostic and in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> computer equipment.<br />

Beryllium is relatively unabundant in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust. It occurs as bertrandite<br />

Be 4Si 2O 7(OH) 2, beryl Be 3Al 2Si 6O 18, chrysoberyl BeAl 2O 4 and phenakite Be 2SiO 4.<br />

Precious forms <str<strong>on</strong>g>of</str<strong>on</strong>g> beryl are aquamarine and emerald.<br />

7 See secti<strong>on</strong> 3.4.18 for details about <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>s d<strong>on</strong>e for cobaltite and smaltite.<br />

8 See secti<strong>on</strong> 3.4.63 for details about <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> procedure for lamprohyllite


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 61<br />

Grigor’ev accounted in his model for beryl, phenakite, bertrandite and helvite<br />

M n 4Be 3(SiO4) 3. In additi<strong>on</strong> to those <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, chrysoberyl is included in our model,<br />

assuming that it has <str<strong>on</strong>g>the</str<strong>on</strong>g> same Be c<strong>on</strong>tent as beryl. The relative proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s given by Grigor’ev will be kept and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>mineral</str<strong>on</strong>g> will<br />

be obtained assuring that c<strong>on</strong>straint 1 is satisfied.<br />

3.4.8 Bismuth<br />

Bismuth is a metal used for metallurgical additives for castings and galvanizing, in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> low melting solders and fusible alloys as well as low toxicity bird<br />

shot and fishing sinkers. Additi<strong>on</strong>ally, it finds some applicati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> pharmaceutical<br />

industry.<br />

The most important ores <str<strong>on</strong>g>of</str<strong>on</strong>g> bismuth are bismuthinite Bi 2S 3, bismutite (BiO) 2CO 3<br />

and bismite B 2O 3. It occurs naturally also as <str<strong>on</strong>g>the</str<strong>on</strong>g> metal itself and is found as crystals<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> sulphide ores <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel, cobalt, silver and tin. The main commercial source <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> element is as a byproduct from lead-zinc and copper plants.<br />

Grigor’ev takes into account four <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s c<strong>on</strong>taining bismuth: bismutite, bismuthinite,<br />

native bismuth and tetradymite. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> its importance, we include in our<br />

model bismite as well, assuming that it accounts for <str<strong>on</strong>g>the</str<strong>on</strong>g> same quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> Bi as<br />

bismuthinite. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> relative proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> bismutite, bismuthinite and<br />

native bismuth as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> tetradymite 9 given by Grigor’ev will be kept<br />

in our model.<br />

3.4.9 Bor<strong>on</strong><br />

Bor<strong>on</strong> is a n<strong>on</strong> metallic element and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly n<strong>on</strong>-metal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> group 13 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> periodic<br />

table. The most ec<strong>on</strong>omically important compound <str<strong>on</strong>g>of</str<strong>on</strong>g> bor<strong>on</strong> is borax, used for<br />

insulating fiberglass and sodium perborate bleach. Boric acid is also an important<br />

compound used in textile products. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r uses <str<strong>on</strong>g>of</str<strong>on</strong>g> bor<strong>on</strong> are in syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic herbicides<br />

and fertilizers, porcelain enamels, detergents, soaps, cleaners and cosmetics, catalysts<br />

or corrosi<strong>on</strong> c<strong>on</strong>trol.<br />

More than 200 <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s c<strong>on</strong>tain bor<strong>on</strong>, but <strong>on</strong>ly a few <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial importance.<br />

Bor<strong>on</strong> is usually found combined in tincal N a 2B 4O 7·10H 2O (natural borax), sassolite<br />

H 3BO 3 (natural boric acid), colemanite Ca 2B 6O 11 · 5H 2O, kernite N a 2B 4O 7 · 4H 2O,<br />

ulexite N aCaB 5O 9 · 8H 2O and boracite M g 3B 7O 13Cl. Only four <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s make up<br />

almost 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> borates used by industry worldwide: borax, kernite, colemanite<br />

and ulexite.<br />

N<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are included in Grigorev’s model. However, bor<strong>on</strong> element<br />

is present in his analysis as <str<strong>on</strong>g>the</str<strong>on</strong>g> borate silicates tourmaline, kornerupine, axinite<br />

9 See secti<strong>on</strong> 3.4.66 for <str<strong>on</strong>g>the</str<strong>on</strong>g> derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> for tetradymite.


62 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

and dumortierite. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, we cannot forget <str<strong>on</strong>g>the</str<strong>on</strong>g> four most important bor<strong>on</strong>c<strong>on</strong>taining<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s for industrial applicati<strong>on</strong>s. Therefore, we keep in our model <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> borates given by Grigor’ev and assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> rest quantity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bor<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust is in form <str<strong>on</strong>g>of</str<strong>on</strong>g> borax, kernite, colemanite and ulexite having all<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m <str<strong>on</strong>g>the</str<strong>on</strong>g> same bor<strong>on</strong> c<strong>on</strong>tent.<br />

3.4.10 Bromine<br />

Bromine is a brownish-red liquid at ambient temperature and is used in industry to<br />

make organobromo compounds. These compounds find applicati<strong>on</strong> as insecticides,<br />

fire extinguishers, water purificati<strong>on</strong>, flame retardants, pharmaceuticals, fumigants,<br />

dyes or photography.<br />

Like chlorine, <str<strong>on</strong>g>the</str<strong>on</strong>g> largest amount <str<strong>on</strong>g>of</str<strong>on</strong>g> bromine is <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans. Salt lakes and brine wells<br />

are also rich sources <str<strong>on</strong>g>of</str<strong>on</strong>g> bromine, and <str<strong>on</strong>g>the</str<strong>on</strong>g>se are usually richer in bromine than <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oceans. It occurs in nature as bromide salts in very diffuse amounts in crustal rock,<br />

which are accumulated in sea water after leaching processes.<br />

Grigor’ev does not include any bromine-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. We will account for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>m in our model as “dispersed Br”.<br />

3.4.11 Cadmium<br />

Cadmium is used as a protective coating for ir<strong>on</strong> and steel, as a pigment, and as a<br />

stabilizer for plastics. But its main applicati<strong>on</strong> (about three-fourths <str<strong>on</strong>g>of</str<strong>on</strong>g> its producti<strong>on</strong>)<br />

is used in Ni-Cd batteries.<br />

No cadmium ore is mined for <str<strong>on</strong>g>the</str<strong>on</strong>g> metal, because more than enough is produced as a<br />

byproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> smelting <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc from its ore, sphalerite (ZnS), in which greenockite<br />

CdS is a significant impurity making up as much as 3%.<br />

No cadmium ores are recorded by Grigor’ev. We will assume in our model that<br />

greenockite is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly ore c<strong>on</strong>taining Cd.<br />

3.4.12 Calcium<br />

Calcium is a silvery white metal bel<strong>on</strong>ging to <str<strong>on</strong>g>the</str<strong>on</strong>g> alkaline <strong>earth</strong> group. The metal is<br />

used as a reducing agent in <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r metals, as a deoxidizer, desulfurizer<br />

and decarb<strong>on</strong>izer in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> many steels, as separating material for<br />

gaseous mixtures, as an alloying agent used in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium, beryllium,<br />

copper, lead and magnesium alloys as well as in <str<strong>on</strong>g>the</str<strong>on</strong>g> making <str<strong>on</strong>g>of</str<strong>on</strong>g> cements and<br />

mortars to be used in c<strong>on</strong>structi<strong>on</strong>. Calcium compounds are used in a wide variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s such as insecticides, manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> plastics, as an additive in food<br />

and vitamin pills, as a disinfectant, as a fertilizer, in paints lights and X-rays, etc.


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 63<br />

Calcium is <str<strong>on</strong>g>the</str<strong>on</strong>g> fifth most abundant element in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust and <str<strong>on</strong>g>the</str<strong>on</strong>g> third most<br />

abundant metal after Al and Fe. Vast sedimentary deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> CaCO 3, which represent<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> fossilized remains <str<strong>on</strong>g>of</str<strong>on</strong>g> earlier marine life, occur over large parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s<br />

surface. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r important <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are gypsum CaSO 4 · 2H 2O, anhydrite CaSO 4,<br />

fluorite CaF 2 and apatite Ca 5(PO 4) 3F.<br />

Sixty-six <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s c<strong>on</strong>tain Ca in our model. The mass balance between elements<br />

and species for carb<strong>on</strong> in Grigorev’s model gives a quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca greater than <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

accepted value for Ca in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust in Rudnick et al. [292]. Probably, Grigor’ev<br />

overestimated <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> some calcium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust.<br />

3.4.13 Carb<strong>on</strong><br />

Carb<strong>on</strong> is a n<strong>on</strong> metallic element that forms more chemical compounds than any<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r element except hydrogen. The major ec<strong>on</strong>omic use <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> not in living<br />

material or organisms is in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrocarb<strong>on</strong>s. The free element has a lot<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> uses, including jewelry (as diam<strong>on</strong>ds), as a black fume pigment in automobile’s<br />

rims, printer’s ink, for pencil tips, dry cell and arch electrodes and as a lubricant.<br />

Carb<strong>on</strong> compounds have also plenty <str<strong>on</strong>g>of</str<strong>on</strong>g> uses. Carb<strong>on</strong> dioxide is used in drinks, in fire<br />

extinguishers and in solid state, as a cooler. Carb<strong>on</strong> m<strong>on</strong>oxide is used as a reducti<strong>on</strong><br />

agent in many metallurgic processes. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r carb<strong>on</strong> compounds are used as solvents,<br />

cooling systems, for welding and cutting materials.<br />

Carb<strong>on</strong> occurs both as <str<strong>on</strong>g>the</str<strong>on</strong>g> free element (graphite, diam<strong>on</strong>d) and in combined form<br />

mainly as <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ates <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca, M g, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r electropositive elements. It also<br />

occurs as CO 2, a minor but very important c<strong>on</strong>stituent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its important c<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect. Additi<strong>on</strong>ally, carb<strong>on</strong> is widely<br />

distributed in <str<strong>on</strong>g>the</str<strong>on</strong>g> organic form <str<strong>on</strong>g>of</str<strong>on</strong>g> coal and petroleum.<br />

The carb<strong>on</strong>-c<strong>on</strong>taining substances included in Grigorev’s model are graphite, organic<br />

carb<strong>on</strong>, moiss<strong>on</strong>ite and <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ates calcite, dolomite, siderite, arag<strong>on</strong>ite, magnesite,<br />

daws<strong>on</strong>ite, cancrinite, str<strong>on</strong>tianite, bismutite, bastnasite, smiths<strong>on</strong>ite cerussite,<br />

azurite, malachite, ankerite and rhodocrossite. Additi<strong>on</strong>ally, we have included in<br />

our model <str<strong>on</strong>g>the</str<strong>on</strong>g> barium carb<strong>on</strong>ate wi<str<strong>on</strong>g>the</str<strong>on</strong>g>rite, for being an important Ba ore. It must<br />

be pointed out, that <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance between elements and species for carb<strong>on</strong> in<br />

Grigorev’s model gives a quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> C greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> accepted value for C in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong>’s crust in Rudnick et al. [292]. Probably, Grigor’ev overestimated <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> some carb<strong>on</strong>-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust.<br />

3.4.14 Cerium<br />

Cerium is a silvery metallic element, bel<strong>on</strong>ging to <str<strong>on</strong>g>the</str<strong>on</strong>g> lanthanide group. The metal<br />

is used as a core for <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> electrodes <str<strong>on</strong>g>of</str<strong>on</strong>g> arc lamps, in incandescent mantles for<br />

gas lighting, in aluminium and ir<strong>on</strong> alloys, in stainless steel as a hardening agent<br />

and to make permanent magnets.


64 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

Although cerium is part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> REE, it is not rare at all. In fact it is <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong><br />

rare <strong>earth</strong> and is more abundant than lead. It is comm<strong>on</strong>ly found in orthite,<br />

m<strong>on</strong>azite, bastnaesite, rhabdophane or in zirc<strong>on</strong>.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r Ce-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s c<strong>on</strong>sidered in Grigor’ev model are miserite, loparite,<br />

rhabdophane, chevkinite, tanteuxenite, euxenite rinkolite, polycrase, gadolinite,<br />

nordite britholite and fergus<strong>on</strong>ite. In additi<strong>on</strong> to those <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> cerium included<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s such as zirc<strong>on</strong>, gadolinite or bastnasite is<br />

accounted in our model as “diadochic Ce”. The quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> it will be calculated<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> cerium c<strong>on</strong>tent in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust and <str<strong>on</strong>g>the</str<strong>on</strong>g> cerium c<strong>on</strong>tent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s included in <str<strong>on</strong>g>the</str<strong>on</strong>g> model. Except for miserite, which will be assumed<br />

to have <str<strong>on</strong>g>the</str<strong>on</strong>g> same c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> <strong>earth</strong> than <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e given by Grigor’ev, all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

Ce-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are fixed by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir REE, U, Z r, Ba and Ta c<strong>on</strong>tents.<br />

3.4.15 Cesium<br />

Cesium is <str<strong>on</strong>g>the</str<strong>on</strong>g> most electropositive and least abundant <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> five naturally occurring<br />

alkali metals. The most important use for cesium has been in research and<br />

development, primarily in chemical and electrical applicati<strong>on</strong>s.<br />

Cesium occurs as <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrated aluminosilicate pollucite, Cs 0.6N a 0.2Rb 0.04Al 0.9Si 2.1O 6·<br />

(H 2O), but <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s <strong>on</strong>ly commercial source is at Bernic Lake, Manitoba. Cesium<br />

is mainly obtained as a byproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Li industry.<br />

Cesium is not included in any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s given by Grigor’ev. We will account for<br />

it in our model in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> pollucite, assuming that it is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly main Cs ore.<br />

3.4.16 Chlorine<br />

Chlorine is <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong> element <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> halogens. In pure form, it is a greenyellow<br />

diatomic gas. Chlorine is very reactive and combines with nearly all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

elements. It is used in water purificati<strong>on</strong>, disinfectants, in bleach and in mustard<br />

gas. Chlorine is also used extensively in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> many products directly<br />

or indirectly, i.e. in paper product producti<strong>on</strong>, antiseptics, food, insecticides, paints,<br />

petroleum products, plastics, medicines, etc.<br />

In nature it <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust it is found in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> halite N aCl, but<br />

also in carnallite KCl and sylvite K M gCl 3 · 6(H 2O). Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, it is so abundant<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean, that it is extracted mainly from <str<strong>on</strong>g>the</str<strong>on</strong>g> sea and underground brine deposits<br />

for commercial uses.<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s menti<strong>on</strong>ed above, Grigor’ev c<strong>on</strong>siders also <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

Cl-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s: apatite, scapolite, sodalite, bisch<str<strong>on</strong>g>of</str<strong>on</strong>g>ite, eudialyte and chlorargirite.<br />

The mass balance between elements and species for chlorine in Grigorev’s<br />

model gives a quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> Cl grater than <str<strong>on</strong>g>the</str<strong>on</strong>g> accepted value for Cl in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust<br />

in Rudnick et al. [292]. Probably, Grigor’ev overestimated <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> halite. All


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 65<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m are included in our model keeping <str<strong>on</strong>g>the</str<strong>on</strong>g>ir relative proporti<strong>on</strong>s. The quantity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> eudyalite and chlorargirite are however fixed by <str<strong>on</strong>g>the</str<strong>on</strong>g> Z r and Ag mass balance.<br />

3.4.17 Chromium<br />

Chromium is a hard transiti<strong>on</strong> metal. In ir<strong>on</strong>, steel and n<strong>on</strong>ferrous alloys it imparts<br />

hardness and resistance to corrosi<strong>on</strong> and oxidati<strong>on</strong>. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium to produce<br />

stainless steel and n<strong>on</strong>ferrous alloys are two <str<strong>on</strong>g>of</str<strong>on</strong>g> its more important applicati<strong>on</strong>s. It<br />

finds also applicati<strong>on</strong>s as dyes and paints to produce syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic rubies, as a catalyst<br />

in dyeing and in <str<strong>on</strong>g>the</str<strong>on</strong>g> tanning <str<strong>on</strong>g>of</str<strong>on</strong>g> lea<str<strong>on</strong>g>the</str<strong>on</strong>g>r or to make molds for <str<strong>on</strong>g>the</str<strong>on</strong>g> firing bricks.<br />

The <strong>on</strong>ly ore <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium <str<strong>on</strong>g>of</str<strong>on</strong>g> any commercial importance is chromite FeC r 2O 4. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

less plentiful sources are crocoite P bC rO 4 and chrome ochre C r 2O 3, while <str<strong>on</strong>g>the</str<strong>on</strong>g> gemst<strong>on</strong>es<br />

emerald and ruby owe <str<strong>on</strong>g>the</str<strong>on</strong>g>ir colors to traces <str<strong>on</strong>g>of</str<strong>on</strong>g> chromium. Like in Grigorev’s<br />

analysis, we include chromite as <str<strong>on</strong>g>the</str<strong>on</strong>g> main chromium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>, since <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r C r ores can be assumed to be insignificant when compared to chromite. Dietzeite<br />

Ca 2(IO 3) 2(C rO 4) is <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r C r-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>sidered but its c<strong>on</strong>centrati<strong>on</strong><br />

is fixed by its iodine c<strong>on</strong>tent.<br />

It must be pointed out that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are big discrepancies between chromite c<strong>on</strong>centrati<strong>on</strong><br />

in Grigorev’s model and in our model. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, we leave chromite as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sole chromium <str<strong>on</strong>g>mineral</str<strong>on</strong>g> for <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong>s explained before.<br />

3.4.18 Cobalt<br />

Cobalt is a hard ferromagnetic, silver-white transiti<strong>on</strong> metal. The largest use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cobalt is in superalloys, which are used to make parts <str<strong>on</strong>g>of</str<strong>on</strong>g> gas turbine aircraft engines.<br />

Cobalt is also used in corrosi<strong>on</strong> resistant alloys, high-speed steels, cemented<br />

carbides, in magnets and magnetic recording media, as catalysts for <str<strong>on</strong>g>the</str<strong>on</strong>g> petroleum<br />

and chemical industries and as drying agent for paints and inks.<br />

More than 200 ores are known to c<strong>on</strong>tain cobalt but <strong>on</strong>ly a few are <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial<br />

value. The more important are arsenides and sulfides such as smaltite, CoAs 2,<br />

cobaltite CoAsS and linnaeite Co 3S 4.These are invariably associated with nickel and<br />

also with copper and lead, so that Co is usually obtained as a byproduct or coproduct<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se metals.<br />

The <strong>on</strong>ly cobalt-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>sidered in Grigorev’s analysis is cobaltite. In<br />

our model, we take also into account <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r two <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s menti<strong>on</strong>ed before, assuming<br />

that all three c<strong>on</strong>tribute with <str<strong>on</strong>g>the</str<strong>on</strong>g> same amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Co to <str<strong>on</strong>g>the</str<strong>on</strong>g> cobalt c<strong>on</strong>tent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper <strong>earth</strong>’s crust. Although important, <strong>on</strong>ly those three <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are not<br />

resp<strong>on</strong>sible for <str<strong>on</strong>g>the</str<strong>on</strong>g> whole Co <strong>on</strong> <strong>earth</strong> 10 . Therefore, we will assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cobaltite given by Grigor’ev is correct and will account for <str<strong>on</strong>g>the</str<strong>on</strong>g> rest Co in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> crust as “dispersed Co”.<br />

10 If cobaltite, smaltite and linnaeite would be assumed to be <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly cobalt-carriers in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s<br />

crust, <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance for arsenic would not be satisfied.


66 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

3.4.19 Copper<br />

Copper is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coinage metals with gold and silver because <str<strong>on</strong>g>of</str<strong>on</strong>g> its former usage.<br />

It is an excellent c<strong>on</strong>ductor <str<strong>on</strong>g>of</str<strong>on</strong>g> heat and electricity and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore is a key metal<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> electric and electr<strong>on</strong>ic industry. Electrical uses <str<strong>on</strong>g>of</str<strong>on</strong>g> copper, including power<br />

transmissi<strong>on</strong> and generati<strong>on</strong>, building wiring, telecommunicati<strong>on</strong> and electrical and<br />

electr<strong>on</strong>ic products account for about three quarters <str<strong>on</strong>g>of</str<strong>on</strong>g> total copper use. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> copper are in c<strong>on</strong>structi<strong>on</strong>, such as ro<str<strong>on</strong>g>of</str<strong>on</strong>g>ing and plumbing, industrial<br />

machinery such as heat exchangers. It is also comm<strong>on</strong>ly used in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

brass and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r alloys with zinc, tin, nickel, lead aluminium, etc.<br />

Copper is found mainly as <str<strong>on</strong>g>the</str<strong>on</strong>g> sulfide, oxide or carb<strong>on</strong>ate, its major ores being copper<br />

pyrite (chalcopyrite) CuFeS 2, which is estimated to account for about 50% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all Cu deposits; copper glance (chalcocite), Cu 2S; cuprite, Cu 2O, and malachite<br />

Cu 2CO 3(OH) 2. Bornite Cu 5FeS 4, azurite Cu 3(CO 3) 2(OH) 2, and covellite CuS are<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r minor ores <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu. Native copper is found as well occasi<strong>on</strong>ally.<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s explained above, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r Cu-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Grigorev’s<br />

model are chrysocolla, metatorbenite, tennantite, freibergite and tetrahedrite.<br />

No additi<strong>on</strong>al <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s will be taken into account in our model, since <str<strong>on</strong>g>the</str<strong>on</strong>g> most important<br />

are already ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red in Grigorev’s analysis. The quantities for metatorbenite<br />

and tennantite have been fixed by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir uranium and arsenium c<strong>on</strong>tent, while for<br />

freibergite and tetrahedrite by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir silver c<strong>on</strong>tent. For <str<strong>on</strong>g>the</str<strong>on</strong>g> rest substances, <str<strong>on</strong>g>the</str<strong>on</strong>g> relative<br />

proporti<strong>on</strong>s given by Grigor’ev will be maintained, assuring <str<strong>on</strong>g>the</str<strong>on</strong>g> compliance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>straint 1.<br />

3.4.20 Dysprosium<br />

See secti<strong>on</strong> 3.4.52.<br />

3.4.21 Erbium<br />

See secti<strong>on</strong> 3.4.52.<br />

3.4.22 Europium<br />

See secti<strong>on</strong> 3.4.52.<br />

3.4.23 Fluorine<br />

Fluorine is <str<strong>on</strong>g>the</str<strong>on</strong>g> lightest and most reactive element <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> halogens. Atomic and molecular<br />

fluorine are used for plasma etching in semic<strong>on</strong>ductor manufacturing, flat panel


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 67<br />

display producti<strong>on</strong> and microelectromechanical systems fabricati<strong>on</strong>. Sodium hexafluoroaluminate<br />

(cryolite), is used in <str<strong>on</strong>g>the</str<strong>on</strong>g> electrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium. It is indirectly<br />

used for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plastics such as tefl<strong>on</strong> and hal<strong>on</strong>s such as fre<strong>on</strong>. Fluorides<br />

are added to toothpaste to prevent dental cavities. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> fluorine<br />

are used in pharmaceuticals as antibiotics, antidepressants and for <str<strong>on</strong>g>the</str<strong>on</strong>g> preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

infecti<strong>on</strong>s.<br />

The three most important <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fluorine are fluorite CaF 2, cryolite N a 3Al F 6<br />

and flourapatite Ca 5(PO 4) 3F. Of <str<strong>on</strong>g>the</str<strong>on</strong>g>se, however, <strong>on</strong>ly fluorite is extensively <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>ly commercial deposit. Cryolite is a rare <str<strong>on</strong>g>mineral</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly commercial deposit<br />

being in Greenland, and most <str<strong>on</strong>g>of</str<strong>on</strong>g> it is used in <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminium industry. But by far <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

largest amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fluorine in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust is in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluorapatite. Minor<br />

occurrences <str<strong>on</strong>g>of</str<strong>on</strong>g> fluorine are also in <str<strong>on</strong>g>the</str<strong>on</strong>g> rare elements topaz or bastanesite.<br />

The fluorine-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s taken into account by Grigor’ev are: apatite, fluorite,<br />

topaz, bastnaesite, lamprophyllite, amblyg<strong>on</strong>ite, britholite, lavenite, rinkolite,<br />

wohlerite, microlite, apatite, bastnasite, francolite, pyrochlore, miserite, biotite,<br />

muscovite, hydrobiotite, phlogopite, clinohumite, fluorite, humite and ch<strong>on</strong>drodite.<br />

In additi<strong>on</strong> to those, we include in our model cryolite because <str<strong>on</strong>g>of</str<strong>on</strong>g> its industrial relevance,<br />

assuming that it c<strong>on</strong>tributes to <str<strong>on</strong>g>the</str<strong>on</strong>g> same F c<strong>on</strong>tent to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> than topaz.<br />

3.4.24 Gadolinium<br />

See secti<strong>on</strong> 3.4.52<br />

3.4.25 Gallium<br />

Gallium is a rare element and found little use until its properties as a semic<strong>on</strong>ductor<br />

were discovered. Analog integrated circuits are <str<strong>on</strong>g>the</str<strong>on</strong>g> largest applicati<strong>on</strong> for gallium<br />

with optoelectr<strong>on</strong>ic devices (mostly laser diodes and light-emitting diodes) as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sec<strong>on</strong>d largest end use.<br />

The highest c<strong>on</strong>centrati<strong>on</strong>s (0,1-1%) are found in <str<strong>on</strong>g>the</str<strong>on</strong>g> rare <str<strong>on</strong>g>mineral</str<strong>on</strong>g> germanite<br />

(Cu 26Fe 4Ge 4S 32); c<strong>on</strong>centrati<strong>on</strong>s in sphalerite (ZnS), bauxite or coal are a hundredfold<br />

less. It was formerly recovered from flue dusts emitted during sulfide roasting or<br />

coal burning (up to 1,5% Ga), but is now obtained as a byproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Al industry.<br />

Grigor’ev does not explicitly include any <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>taining Ga. It will be included<br />

in our model as “dispersed Ga”.<br />

3.4.26 Germanium<br />

Germanium is a semic<strong>on</strong>ductor and was used for transistors, diodes and rectifiers<br />

until it was replaced by pure silic<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1970’s. Meanwhile germanium


68 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

is used in fiber optics communicati<strong>on</strong> networks, infrared night visi<strong>on</strong> systems and<br />

polymerizati<strong>on</strong> catalysts.<br />

Germanium <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are extremely rare, but <str<strong>on</strong>g>the</str<strong>on</strong>g> element is widely distributed in<br />

trace amounts am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> silicates <str<strong>on</strong>g>of</str<strong>on</strong>g> rocks, igneous as well as sedimentary and<br />

metamorphic <strong>on</strong>es. Recovery is achieved normally from <str<strong>on</strong>g>the</str<strong>on</strong>g> flue dusts <str<strong>on</strong>g>of</str<strong>on</strong>g> smelters<br />

processing Zn ores. Germanite is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly commercial <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Germanium<br />

(Cu 26Fe 4Ge 4S 32), but it is not c<strong>on</strong>sidered in Grigorev’s analysis.<br />

In order to account for Ge in our model, it will be included as “dispersed Ge”, which<br />

will represent all germanium included in <str<strong>on</strong>g>the</str<strong>on</strong>g> different ores where it is found.<br />

3.4.27 Gold<br />

Gold is mostly used in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> jewelry. However, because <str<strong>on</strong>g>of</str<strong>on</strong>g> its superior<br />

electrical c<strong>on</strong>ductivity and resistance to corrosi<strong>on</strong>, it has also emerged in <str<strong>on</strong>g>the</str<strong>on</strong>g> late<br />

20th century as an essential industrial metal in computers, communicati<strong>on</strong> equipment,<br />

spacecraft, etc.<br />

Gold is widely but sparsely distributed both native and in tellurides. Grigo’ev c<strong>on</strong>siders<br />

native gold as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly carrier <str<strong>on</strong>g>of</str<strong>on</strong>g> Au in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust.<br />

Since tellurides are also important ores for gold, we will include in our model <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

tellurides calaverite AuTe 2 and sylvanite Au 0.75Ag 0.25Te 2, assuming that 15% in volume<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Au in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust comes from <str<strong>on</strong>g>the</str<strong>on</strong>g>m at equal rates and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rest from native gold.<br />

3.4.28 Hafnium<br />

Hafnium is a transiti<strong>on</strong> metal similar to zirc<strong>on</strong>ium. It resists corrosi<strong>on</strong> and has a high<br />

melting point. Its major end uses are in nuclear c<strong>on</strong>trol rods because <str<strong>on</strong>g>of</str<strong>on</strong>g> its excellent<br />

properties in absorbing neutr<strong>on</strong>s, nickel-based superalloys, nozzles for plasma arc<br />

metal cutting and high-temperature ceramics.<br />

Hafnium ores are rare, but two are known: hafn<strong>on</strong> and alvite. However, H f is<br />

mostly found in quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> about 2% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Z r c<strong>on</strong>tent in zirc<strong>on</strong>ium ores such as<br />

zirc<strong>on</strong> Z rSiO 4 and baddeleyite Z rO 2.<br />

H f will be c<strong>on</strong>sidered in our model <strong>on</strong>ly as a diadochic element in zirc<strong>on</strong>ium ores,<br />

since Grigor’ev did not provide any informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> hafnium ores explained<br />

before.<br />

3.4.29 Holmium<br />

See secti<strong>on</strong> 3.4.52.


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 69<br />

3.4.30 Indium<br />

Indium is a rare metal used in low-melting fusible alloys, solders and electr<strong>on</strong>ics.<br />

Large-scale applicati<strong>on</strong> for indium was also as a protective coating for bearings and<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r metal surfaces in high-performance aircraft engines. Nowadays, its main applicati<strong>on</strong><br />

is in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> indium-tin-oxide thin films for Liquid Crystal Displays<br />

(LCD).<br />

Indium tends to associate with <str<strong>on</strong>g>the</str<strong>on</strong>g> similarly sized Zn in its sulfide <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, hence<br />

it is mainly produced from residues generated during zinc and lead sulfide ore processing,<br />

mainly from sphalerite ZnS. The indium metal indite Fe 2+ In 2S 4 has been<br />

found in Siberia but it is very rare.<br />

We will include In in our model as being in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> sphalerite (“diadochic<br />

In in sphalerite”).<br />

3.4.31 Iodine<br />

Iodine is <str<strong>on</strong>g>the</str<strong>on</strong>g> most electropositive halogen and is used in medical treatment as tincture<br />

and iod<str<strong>on</strong>g>of</str<strong>on</strong>g>orm. It is employed in <str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> certain drugs, and in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> printing inks and dyes. Silver iodine is used in photography and<br />

iodine is added to table salt and is used as a supplement to animal feed. It is also an<br />

ingredient <str<strong>on</strong>g>of</str<strong>on</strong>g> water purificati<strong>on</strong> tablets.<br />

Iodine is c<strong>on</strong>siderably less abundant than <str<strong>on</strong>g>the</str<strong>on</strong>g> lighter halogens. It can be found<br />

naturally in air, water and soil. But <str<strong>on</strong>g>the</str<strong>on</strong>g> most important sources are <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans. It<br />

occurs but rarely as iodide <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Commercial deposits are usually iodates, e.g.<br />

lautarite Ca(IO 3) 2 and dietzeite Ca 2(IO 3) 2(C rO 4).<br />

N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r iodine-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s were c<strong>on</strong>sidered by<br />

Grigor’ev. We will assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s above account for all I in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper<br />

c<strong>on</strong>tinental crust in <str<strong>on</strong>g>the</str<strong>on</strong>g> same proporti<strong>on</strong>.<br />

3.4.32 Iridium<br />

See secti<strong>on</strong> 3.4.46.<br />

3.4.33 Ir<strong>on</strong><br />

Ir<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> most used <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> metals, including 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> metal t<strong>on</strong>nage<br />

produced worldwide. Thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> low cost and high strength it is<br />

indispensable. Its applicati<strong>on</strong>s go from food c<strong>on</strong>tainers to cars, from screwdrivers to<br />

washing machines, from cargo ships to paper staples. Steel is <str<strong>on</strong>g>the</str<strong>on</strong>g> best known alloy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> and some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> forms that ir<strong>on</strong> takes include pig ir<strong>on</strong>, cast ir<strong>on</strong>, carb<strong>on</strong> steel,<br />

wrought ir<strong>on</strong>, alloy steels and ir<strong>on</strong> oxides.


70 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

Ir<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant element in <str<strong>on</strong>g>the</str<strong>on</strong>g> universe and <strong>on</strong> <strong>earth</strong>. widely distributed<br />

as oxides and carb<strong>on</strong>ates, <str<strong>on</strong>g>of</str<strong>on</strong>g> which <str<strong>on</strong>g>the</str<strong>on</strong>g> chief <strong>on</strong>es are haematite Fe 2O3, magnetite<br />

Fe 3O 4 and siderite FeCO 3.<br />

Eighty-two Fe-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are included in our model.<br />

3.4.34 Lanthanum<br />

Lanthanum is a rare <strong>earth</strong> element (REE) and gives its name to <str<strong>on</strong>g>the</str<strong>on</strong>g> lanthanide group.<br />

It can be found in domestic equipment such as in color televisi<strong>on</strong>s, fluorescent and<br />

energy-saving lamps and optical glasses. If added in small amounts, it improves <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

malleability and resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> steel. Lanthanum is also used as <str<strong>on</strong>g>the</str<strong>on</strong>g> core material in<br />

carb<strong>on</strong> arc electrodes and in zeolite catalysts for <str<strong>on</strong>g>the</str<strong>on</strong>g> petroleum industry.<br />

Lanthanum is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant REE. Its major ores are <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s m<strong>on</strong>azite<br />

and bastnasite, in percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 25 to 38 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total lanthanide<br />

c<strong>on</strong>tent.<br />

In additi<strong>on</strong> to m<strong>on</strong>azite and bastnasite, Grigor’ev c<strong>on</strong>siders in his analysis <str<strong>on</strong>g>the</str<strong>on</strong>g> Lac<strong>on</strong>taining<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s britholite, chevkinite, loparite, rhabdophane and nordite. All<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir respective proporti<strong>on</strong>s are included in our model assuring<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> satisfacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>straint number 1. The abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> nordite is however fixed<br />

by its Ba c<strong>on</strong>tent.<br />

3.4.35 Lead<br />

Lead is a very corrosi<strong>on</strong>-resistant, malleable and toxic bluish-white metal that has<br />

been known for at least 5000 years. Ancient romans used lead as drains from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

baths. Nowadays lead is a major c<strong>on</strong>stituent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lead-acid battery, it is used as a<br />

coloring element in ceramic glazes, as projectiles, as electrodes for electrolysis and<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> glass <str<strong>on</strong>g>of</str<strong>on</strong>g> computer and televisi<strong>on</strong> screens, shielding <str<strong>on</strong>g>the</str<strong>on</strong>g> viewer from radiati<strong>on</strong>.<br />

Lead alloys include pewter and solder. The toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> lead leaded in <str<strong>on</strong>g>the</str<strong>on</strong>g> twentieth<br />

century to str<strong>on</strong>g envir<strong>on</strong>mental regulati<strong>on</strong>s that significantly reduced or eliminated<br />

its use in n<strong>on</strong>battery products including gasoline, paints, solders and water systems.<br />

Lead is <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heavy elements. It can be found native, but its most<br />

important ore is <str<strong>on</strong>g>the</str<strong>on</strong>g> heavy black <str<strong>on</strong>g>mineral</str<strong>on</strong>g> galena P bS. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r important <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are<br />

anglesite P bSO 4 and cerussite P bCO 3. It is usually found in zinc, silver and copper<br />

ores and it is extracted toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> largest current<br />

source <str<strong>on</strong>g>of</str<strong>on</strong>g> lead is recycling, primarily <str<strong>on</strong>g>of</str<strong>on</strong>g> automobile batteries.<br />

In additi<strong>on</strong> to galena, anglesite and cerussite, Grigor’ev takes into account <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

boulangerite P b 5S b 4S 11, native lead P b and wulfenite P bM oO 4. All <str<strong>on</strong>g>the</str<strong>on</strong>g>se are included<br />

in our model keeping <str<strong>on</strong>g>the</str<strong>on</strong>g> relative proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> galena, cerussite, anglesite


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 71<br />

and native lead given by Grigor’ev. The c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> wulfenite and boulangerite<br />

are fixed by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir M o and S b c<strong>on</strong>tents respectively 11 .<br />

3.4.36 Lithium<br />

Lithium is an alkali metal <str<strong>on</strong>g>of</str<strong>on</strong>g> very high chemical reactivity. As a c<strong>on</strong>sequence, it takes<br />

part in a huge number <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>s. The carb<strong>on</strong>ate can be used in <str<strong>on</strong>g>the</str<strong>on</strong>g> pottery industry<br />

and in medicine as antidepressant. Low-density alloys are used for armor plate<br />

and for aerospace comp<strong>on</strong>ents. The bromine and chloride both form c<strong>on</strong>centrated<br />

brine, which have <str<strong>on</strong>g>the</str<strong>on</strong>g> property <str<strong>on</strong>g>of</str<strong>on</strong>g> absorbing humidity in a wide temperature range;<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se brines are also used for air c<strong>on</strong>diti<strong>on</strong>ing systems. Lithium finds additi<strong>on</strong>al use<br />

in nuclear breeder reactors as a coolant and as a source for tritium. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r important<br />

uses for lithium are as lubricants, in porcelain glaze, as an additive to extend <str<strong>on</strong>g>the</str<strong>on</strong>g> life<br />

and performance <str<strong>on</strong>g>of</str<strong>on</strong>g> alkaline storage batteries and in welding.<br />

Lithium is a moderately abundant element. Its most important <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commercially<br />

is spodumene LiAsSi 2O 6, followed by lepidolite K Li 2AlSi 4O 10F(OH). It is<br />

comm<strong>on</strong>ly found in nature as silicates and phosphates. However it is usually recovered<br />

from brines.<br />

Grigor’ev has included in his model spodumene, <str<strong>on</strong>g>the</str<strong>on</strong>g> silicate neptunite and <str<strong>on</strong>g>the</str<strong>on</strong>g> phosphate<br />

amblyg<strong>on</strong>ite. Additi<strong>on</strong>ally, we will include lepidolite in our model because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

its industrial importance, assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> Li quantity coming from it in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust is<br />

10% <str<strong>on</strong>g>of</str<strong>on</strong>g> that <str<strong>on</strong>g>of</str<strong>on</strong>g> spodumene. Our model keeps <str<strong>on</strong>g>the</str<strong>on</strong>g> relative proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different<br />

lithium <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s c<strong>on</strong>sidered by Grigor’ev, but assuring <str<strong>on</strong>g>the</str<strong>on</strong>g> satisfacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mass<br />

balance.<br />

3.4.37 Lutetium<br />

See secti<strong>on</strong> 3.4.52.<br />

3.4.38 Magnesium<br />

Magnesium is a light, chemically reactive metal, bel<strong>on</strong>ging to <str<strong>on</strong>g>the</str<strong>on</strong>g> alkaline <strong>earth</strong><br />

group. It is known as <str<strong>on</strong>g>the</str<strong>on</strong>g> lighter structural metal in <str<strong>on</strong>g>the</str<strong>on</strong>g> industry, due to its low<br />

weight and its capability <str<strong>on</strong>g>of</str<strong>on</strong>g> forming mechanically resistant alloys. Magnesium alloys<br />

are used in beverage cans, as structural comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> automobiles and machinery.<br />

Magnesium compounds, primarily magnesium oxide, are used mainly as refractory<br />

material in furnace linings for producing ir<strong>on</strong> and steel, n<strong>on</strong>ferrous metals, glass<br />

and cement. Magnesium oxide and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r compounds are also used in agricultural,<br />

chemical and c<strong>on</strong>structi<strong>on</strong> industries.<br />

11 See secti<strong>on</strong>s 3.4.41 and 3.4.4 for details about <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>s d<strong>on</strong>e for wulfenite and boulan-<br />

gerite, respectively.


72 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

Magnesium is am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> eight most abundant elements. It usually occurs in crustal<br />

rocks mainly as <str<strong>on</strong>g>the</str<strong>on</strong>g> insoluble carb<strong>on</strong>ates and sulfates and less accessibly as silicates.<br />

Important magnesium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are dolomite CaM g(CO 3) 2, magnesite<br />

M gCO 3, carnallite K 2M gCl 4 · 6H 2O, olivine (M g, Fe) 2SiO 4, talc M g 3Si 4O 10(OH) 2<br />

or spinel M gAl 2O 4.<br />

Fifty-five magnesium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s have been c<strong>on</strong>sidered in our model.<br />

3.4.39 Manganese<br />

Manganese is a grey-white chemically active metal. It resembles ir<strong>on</strong> and is essential<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> ir<strong>on</strong> and steel producti<strong>on</strong> by virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> its sulfur-fixing, deoxidizing and alloying<br />

properties. It is also widely used in aluminium alloys. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r applicati<strong>on</strong>s for<br />

manganese and its compounds are as additive in gasoline to boost octane rating, as<br />

a reagent in organic chemistry, as a colorizing and decolorizing agent for glass, as a<br />

paint, as a disinfectant and in batteries.<br />

Manganese is found over 300 different and widely distributed <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

about twelve are commercially important. It occurs in primary deposits as <str<strong>on</strong>g>the</str<strong>on</strong>g> silicate<br />

metal. Of more commercial importance are <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dary deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> oxides<br />

and carb<strong>on</strong>ates such as pyrolusite M nO 2 and to a lesser extent as rhodochrosite<br />

M nCO 3. Vast quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> manganese exist in manganese nodules (manganese, ir<strong>on</strong><br />

and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r metal-c<strong>on</strong>taining agglomerates) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean floor. But no ec<strong>on</strong>omically<br />

viable methods <str<strong>on</strong>g>of</str<strong>on</strong>g> harvesting manganese nodules have been found yet.<br />

The M n-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s included in Grigorev’s model are: rhodochrosite, pyrolusite,<br />

chloritoid, ankerite, todorokite, vernadite, spessartine, wolframite, jacobsite,<br />

cryptomelane, manganite, tephroite, braunite, rhod<strong>on</strong>ite, sams<strong>on</strong>ite, psilomelane,<br />

hollandite, neptunite, helvite, eudyalite, lavenite and nordite. The quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nine latter <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s is fixed by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir W , Ag, Ba, Li, Be, Z r and Sr c<strong>on</strong>tents. The<br />

rest <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are assumed to have in our model <str<strong>on</strong>g>the</str<strong>on</strong>g> relative proporti<strong>on</strong>s given by<br />

Grigor’ev.<br />

3.4.40 Mercury<br />

Mercury is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly comm<strong>on</strong> metal which is liquid at ordinary temperatures. Because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its high density it is used in barometers and manometers. It is extensively used in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmometers thanks to its high rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal expansi<strong>on</strong> that is fairly c<strong>on</strong>stant over<br />

a wide temperature range. Amalgams <str<strong>on</strong>g>of</str<strong>on</strong>g> silver, gold and tin (alloys <str<strong>on</strong>g>of</str<strong>on</strong>g> mercury) are<br />

used in dentistry. Most mercury is used for <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial chemicals<br />

and form electrical and electr<strong>on</strong>ic applicati<strong>on</strong>s.<br />

Cinnabar, H gS is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly important ore and source <str<strong>on</strong>g>of</str<strong>on</strong>g> mercury, being <str<strong>on</strong>g>the</str<strong>on</strong>g> deposits<br />

at Almaden in Spain <str<strong>on</strong>g>the</str<strong>on</strong>g> most famous and extensive <strong>on</strong>es.<br />

Grigor’ev records two <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mercury: cinnabar and metacinnabar. Both <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

will be kept in our model, maintaining <str<strong>on</strong>g>the</str<strong>on</strong>g>ir respective proporti<strong>on</strong>s.


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 73<br />

3.4.41 Molybdenum<br />

Molybdenum is a refractory metal able to withstand extreme temperatures without<br />

significantly expanding or s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening. Those properties make M o useful in applicati<strong>on</strong>s<br />

that involve intense heat, including aircraft parts, electrical c<strong>on</strong>tacts and filaments.<br />

Molybdenum is used in alloys, mainly in steel, cast ir<strong>on</strong> and superalloys. It is<br />

also used in electrodes, lubricants, pigments and catalysts.<br />

The most important ore <str<strong>on</strong>g>of</str<strong>on</strong>g> molybdenum is <str<strong>on</strong>g>the</str<strong>on</strong>g> sulphide molybdenite M oS 2, which<br />

can be found in tungsten and copper ores, being molybdenite a byproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> W and<br />

Cu producti<strong>on</strong>. Less important ores are wulfenite P bM oO 4 and powellite CaM oO 4.<br />

All three <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are c<strong>on</strong>sidered in Grigorev’s model and will be c<strong>on</strong>sidered in our<br />

model, keeping Grigorev’s relative proporti<strong>on</strong>s.<br />

3.4.42 Neodymium<br />

Neodymium is a member <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lanthanide series and hence has few properties<br />

which distinguish it from <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> series. Like lanthanum and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

REE, it can be found in houses equipment such as televisi<strong>on</strong>s, lamps and glasses.<br />

Neodymium forms an important alloy (neodybium), found to produce very high<br />

magnetic field strengths with small masses.<br />

Neodymium is <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d most abundant <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> REE after cerium. It is found in<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s that include o<str<strong>on</strong>g>the</str<strong>on</strong>g>r lanthanide elements such as m<strong>on</strong>azite and bastnasite.<br />

N d is included in <str<strong>on</strong>g>the</str<strong>on</strong>g> empirical formula <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s fergus<strong>on</strong>ite, britholite and<br />

m<strong>on</strong>azite given by Grigor’ev. In additi<strong>on</strong> to those <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, we include <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

N d in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust as “diadochic N d” in our model, which should<br />

account mainly for N d found as an i<strong>on</strong> soluti<strong>on</strong> in bastnaesite.<br />

3.4.43 Nickel<br />

Nickel is a transiti<strong>on</strong> metal that bel<strong>on</strong>gs to <str<strong>on</strong>g>the</str<strong>on</strong>g> ir<strong>on</strong> group. It is mainly used in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alloys, giving to <str<strong>on</strong>g>the</str<strong>on</strong>g>m good strength, ductility and resistance to<br />

corrosi<strong>on</strong> properties. About 65% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nickel c<strong>on</strong>sumed in <str<strong>on</strong>g>the</str<strong>on</strong>g> western world is used<br />

to make stainless steel. The remaining is divided between alloy steels, rechargeable<br />

batteries, catalysts, coinage, foundry products and plating.<br />

The bulk <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nickel mined comes from two types <str<strong>on</strong>g>of</str<strong>on</strong>g> ore deposits. The first are<br />

laterites where <str<strong>on</strong>g>the</str<strong>on</strong>g> principal ore <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are nickeliferous lim<strong>on</strong>ite 12 and garnierite<br />

N i 3M gSi 6O 15(OH) 2 · 6(H 2O). The sec<strong>on</strong>d are magmatic sulfide deposits where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

principal ore <str<strong>on</strong>g>mineral</str<strong>on</strong>g> is pentlandite Fe 2+<br />

4.5 N i 4.5S 8. Arsenide ores such as nickeline<br />

12 Nickeliferous lim<strong>on</strong>ite is <str<strong>on</strong>g>the</str<strong>on</strong>g> term used to describe poorly crystalline nickel-bearing ferric oxides<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> which <str<strong>on</strong>g>the</str<strong>on</strong>g> main c<strong>on</strong>stituent is goethite Fe 3+ O · OH.


74 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

N iAs or gersdorffite N iAsS can be also found. N i appears as well in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystalline<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> many o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s including pyrrhotite, chalcopyrite, pyrite, ilmenite<br />

or magnetite.<br />

The laterites group is represented in Grigorev’s model by garnierite, while <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d<br />

by pentlandite. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r arsenides and sulphides <str<strong>on</strong>g>of</str<strong>on</strong>g> N i c<strong>on</strong>sidered are violarite<br />

Fe2+ N i 3+<br />

2 S4, vaesite N iS2, cooperite P t0.6Pd 0.3N i0.1S, nickeline and gersdorffite.<br />

Additi<strong>on</strong>ally to those, we will include in our model “diadochic N i”, which should<br />

account for <str<strong>on</strong>g>the</str<strong>on</strong>g> whole N i appearing in small quantities in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s menti<strong>on</strong>ed before. It will be assumed that diadochic N i c<strong>on</strong>tributes to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same N i amount than pentlandite. The relative proporti<strong>on</strong>s given by Grigor’ev will<br />

be maintained, although cooperite13 , nickeline and gersdorffite14 are fixed by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

Pd, and As c<strong>on</strong>tents.<br />

3.4.44 Niobium<br />

Niobium, sometimes called columbium, is a rare s<str<strong>on</strong>g>of</str<strong>on</strong>g>t transiti<strong>on</strong> metal, used mainly<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high-temperature resistant alloys and special stainless steels.<br />

Small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> niobium impart greater strength to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r metals. The applicati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> those alloys are in nuclear reactors, jets, missiles, cutting tools, pipelines, super<br />

magnets, surgical implants and welding rods. Niobium is additi<strong>on</strong>ally used as a<br />

superc<strong>on</strong>ductor when lowered to cryogenic temperatures.<br />

Niobium has been mainly mined as columbite FeN b 2O 6. Two o<str<strong>on</strong>g>the</str<strong>on</strong>g>r important N bc<strong>on</strong>taining<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are euxenite (Y, Ca, Ce, U, Th)(N b, Ta, T i) 2O 6 and pyrochlore<br />

N a 1.5Ca 0.5N b 2O 6(OH) 0.75F 0.25 <str<strong>on</strong>g>the</str<strong>on</strong>g> latter is now its most important ore. Due to its<br />

similarities to tantalum, <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s that c<strong>on</strong>tain niobium also c<strong>on</strong>tain tantalum, so<br />

that columbite gets <str<strong>on</strong>g>the</str<strong>on</strong>g> name <str<strong>on</strong>g>of</str<strong>on</strong>g> tantalite when tantalum prep<strong>on</strong>derates.<br />

Besides <str<strong>on</strong>g>of</str<strong>on</strong>g> columbite, pyrochlore and tantalite, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r N b-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s included<br />

in Grigorev’s model are ilmenorutile, murmanite, loparite, tanteuxenite,<br />

lavenite rinkolite, wohlerite, polycrase, blomstrandite and fergus<strong>on</strong>ite. No additi<strong>on</strong>al<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s will be included in our model. It will be assured <str<strong>on</strong>g>the</str<strong>on</strong>g> satisfacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance, keeping <str<strong>on</strong>g>the</str<strong>on</strong>g> relative proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s given by<br />

Grigor’ev.<br />

3.4.45 Nitrogen<br />

Nitrogen is a comm<strong>on</strong> inert gas and an essential element in most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substances<br />

that make up living organisms, including proteins. Its main applicati<strong>on</strong> is as a comp<strong>on</strong>ent<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia, subsequently used as fertilizer and to produce<br />

nitric acid. It can be used also as a refrigerant for freezing and transporting<br />

food products.<br />

13 See secti<strong>on</strong> 3.4.47 for details about <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> method used for cooperite.<br />

14 see secti<strong>on</strong> 3.4.5 for details about <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> method used for nickeline and gersdorffite.


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 75<br />

Despite its ready availability in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, c<strong>on</strong>stituting 78% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> air by volume,<br />

nitrogen is relatively unabundant in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust. The <strong>on</strong>ly major<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are KNO 3 (nitre, salpetre) and N aNO 3 (sodanitre, nitratine). Both occur<br />

widespread.<br />

Grigor’ev did not c<strong>on</strong>sider any <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. We will assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>ly carriers <str<strong>on</strong>g>of</str<strong>on</strong>g> Nitrogen in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust at equal relative proporti<strong>on</strong>s.<br />

3.4.46 Osmium and Iridium<br />

Osmium is a silvery metal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> platinum group metals. It has <str<strong>on</strong>g>the</str<strong>on</strong>g> distincti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

being <str<strong>on</strong>g>the</str<strong>on</strong>g> most dense <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> naturally occurring elements. Its main applicati<strong>on</strong> is<br />

as an alloy with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r platinum metals.<br />

Iridium is a transiti<strong>on</strong> metal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> platinum family and it is notable for being <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most corrosi<strong>on</strong> resistant element known. Demand for iridium comes mainly from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

electr<strong>on</strong>ic, automotive and chemical industry, where it is used to coat <str<strong>on</strong>g>the</str<strong>on</strong>g> electrodes<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> chlor-alkali process and in catalysts.<br />

Osmium and iridum are very rare metals. Osmium is usually found in combinati<strong>on</strong><br />

with iridium and ru<str<strong>on</strong>g>the</str<strong>on</strong>g>nium. The most important ores are iridosmine and osmiridium.<br />

The same main ores are found for iridium.<br />

Grigor’ev did not account for any <str<strong>on</strong>g>of</str<strong>on</strong>g> both substances. We will include both <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong>s so that <str<strong>on</strong>g>the</str<strong>on</strong>g>y comply with <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance for elements osmium<br />

and iridium.<br />

3.4.47 Palladium<br />

Palladium is a silver-white metal bel<strong>on</strong>ging to <str<strong>on</strong>g>the</str<strong>on</strong>g> platinum group metals. Because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its corrosi<strong>on</strong> resistance, a major use <str<strong>on</strong>g>of</str<strong>on</strong>g> palladium is in alloys used in low voltage<br />

electrical c<strong>on</strong>tacts. It is also used as a catalyst, replacing platinum for reducing<br />

car exhaust emissi<strong>on</strong>s and it is alloyed with certain metals in jewelry. Palladium is<br />

nowadays being more and more used in electrical appliances in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> multilayer<br />

ceramic capacitors.<br />

Palladium is usually associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r platinum metals and occur ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r native<br />

or as sulfides or arsenides in N i, Cu and Fe sulfide ores. However, much <str<strong>on</strong>g>of</str<strong>on</strong>g> it<br />

is extracted as a by-product from copper-nickel ores such as chalcopyrite, pyrrhotite<br />

and pentlandite or chromite.<br />

The <strong>on</strong>ly <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>sidered by Grigor’ev in his model is cooperite P t 0.6Pd 0.3N i 0.1S.<br />

The rest <str<strong>on</strong>g>of</str<strong>on</strong>g> palladium found in nature will be c<strong>on</strong>sidered in our model to be included<br />

dispersed in <str<strong>on</strong>g>the</str<strong>on</strong>g> copper-nickel ores menti<strong>on</strong>ed before.


76 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

3.4.48 Phosphorous<br />

Phosphorous is a n<strong>on</strong>metal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nitrogen group. C<strong>on</strong>centrated acids are used in fertilizers<br />

for agriculture and farm producti<strong>on</strong>. Phosphates are used for special glasses,<br />

sodium lamps, in steel producti<strong>on</strong>, in military applicati<strong>on</strong>s and in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r applicati<strong>on</strong>s<br />

such as pyrotechnics, pesticides, toothpaste or detergent.<br />

Phosphorous is an abundant <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <strong>on</strong> <strong>earth</strong>. All its known terrestrial <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are<br />

orthophosphates. Some 200 crystalline phosphate <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s have been described,<br />

but by far <str<strong>on</strong>g>the</str<strong>on</strong>g> major amount <str<strong>on</strong>g>of</str<strong>on</strong>g> P occurs in <str<strong>on</strong>g>the</str<strong>on</strong>g> family <str<strong>on</strong>g>of</str<strong>on</strong>g> apatites, and <str<strong>on</strong>g>the</str<strong>on</strong>g>se are <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>ly <strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial importance. Comm<strong>on</strong> members are fluorapatite Ca 5(PO 4) 3F,<br />

chlorapatite Ca 5(PO 4) 3Cl and hydroxylapatite Ca 5(PO 4) 3OH. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

are vast deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> amorphous phosphate rock phosphorite, which approximates in<br />

compositi<strong>on</strong> to fluoroapatite.<br />

The phosphates taken into account in Grigorev’s model are: apatite, xenotime,<br />

rhabdophane, amblyg<strong>on</strong>ite, metatorbernite, m<strong>on</strong>azite, weinschenkite, francolite, vivianite.<br />

All three kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> apatite are included in <str<strong>on</strong>g>the</str<strong>on</strong>g> general formula Ca 5(PO 4) 3<br />

(OH) 0.3333F 0.3333Cl 0.3333. No o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are taken into account in our model.<br />

Except for weinschenkite and vivianite, which are assumed to have <str<strong>on</strong>g>the</str<strong>on</strong>g> same c<strong>on</strong>centrati<strong>on</strong><br />

than <str<strong>on</strong>g>the</str<strong>on</strong>g> given by Grigor’ev, <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> all those <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are fixed<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance <str<strong>on</strong>g>of</str<strong>on</strong>g> Cl,Y b, Li, U, Y , F and La. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> amorphous<br />

phosphate rock phosphorite is included in our model due to its abundance. It will<br />

be assumed to have <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> Ca 3(PO 4) 2.<br />

3.4.49 Platinum<br />

Platinum gives <str<strong>on</strong>g>the</str<strong>on</strong>g> name to <str<strong>on</strong>g>the</str<strong>on</strong>g> platinum-group metals (PGM), which comprise platinum,<br />

palladium, rhodium, ru<str<strong>on</strong>g>the</str<strong>on</strong>g>nium, iridium and osmium. It has outstanding<br />

catalytic properties and its resistance is well suited for making fine jewelry. Platinum<br />

and its alloys are used also in surgical tools, laboratory utensils, electrical<br />

resistance wires, etc. The glass industry uses platinum for optical fibers and liquid<br />

crystal display glass.<br />

Platinum occurs generally associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r platinum metals and occur<br />

also in native form or as sulfides or arsenides in N i, Cu and Fe sulfide ores.<br />

Three-quarters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s platinum comes from South Africa, where it occurs<br />

as cooperite. It is also extracted as a by-product from copper-nickel ores such as<br />

chalcopyrite, pyrrhotite and pentlandite or with chromite.<br />

Platinum is included in three <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Grigorev’s model: cooperite, ferroplatinum<br />

and native platinum. We will maintain <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s given by Grigor’ev for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

latter two and assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> rest platinum in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust is equally distributed<br />

in cooperite and in <str<strong>on</strong>g>the</str<strong>on</strong>g> copper-nickel ores menti<strong>on</strong>ed before.


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 77<br />

3.4.50 Potassium<br />

Potassium is a s<str<strong>on</strong>g>of</str<strong>on</strong>g>t, silvery-white metal, member <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alkali group. Most potassium<br />

goes into fertilizers. Potassium carb<strong>on</strong>ate is used in <str<strong>on</strong>g>the</str<strong>on</strong>g> glass manufacture for<br />

making televisi<strong>on</strong>s. Potassium hydroxide is used to make liquid soaps and detergents.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r potassium compounds are in <str<strong>on</strong>g>the</str<strong>on</strong>g> pharmaceutical<br />

industry, photography and to make iodize salts.<br />

Potassium is a very abundant element <strong>on</strong> <strong>earth</strong>. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> it occurs as <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s such as<br />

feldspars and clays. Potassium is leached from <str<strong>on</strong>g>the</str<strong>on</strong>g>se by wea<str<strong>on</strong>g>the</str<strong>on</strong>g>ring, which explains<br />

why <str<strong>on</strong>g>the</str<strong>on</strong>g>re is quite a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> this element in <str<strong>on</strong>g>the</str<strong>on</strong>g> sea. Important ores for potassium are<br />

sylvite KCl, carnallite K M gCl 3 · 6(H 2O) and alunite KAl 3(SO 4) 2(OH) 6.<br />

Potassium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Grigor’ev analysis are: orthoclase, hydromuscovite,<br />

glauc<strong>on</strong>ite, lepidomelane, nepheline, sanidine, stilpnomelane, jarosite, alunite,<br />

neptunite, sylvite, carnallite, miserite, biotite, muscovite, hydrobiotite, phlogopite,<br />

todoroskite and cryptomelane. In additi<strong>on</strong> to those, niter, carnotite and lepidomelane<br />

are o<str<strong>on</strong>g>the</str<strong>on</strong>g>r potasium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s included in our model, because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its nitrogen, uranium and lithium c<strong>on</strong>tents 15 . The quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> latter 9 <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

menti<strong>on</strong>ed above <str<strong>on</strong>g>of</str<strong>on</strong>g> Grigorev’s analysis is fixed by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir Li, U, Cl, F and M n<br />

c<strong>on</strong>tent. For <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir respective proporti<strong>on</strong>s given by Grigor’ev<br />

are kept in our model. It must be pointed out, that <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance between elements<br />

and species for potassium in Grigorev’s model gives a quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> K greater<br />

than <str<strong>on</strong>g>the</str<strong>on</strong>g> accepted value for K in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust in Rudnick et al. [292]. Probably,<br />

Grigor’ev overestimated <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> some potassium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong>’s crust.<br />

3.4.51 Praseodymium<br />

See secti<strong>on</strong> 3.4.52<br />

3.4.52 Rare Earth Elements: Praseodymium, Samarium, Europium,<br />

Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium<br />

and Lutetium<br />

All fourteen members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lanthanide series have very similar geochemical properties.<br />

Many applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> rare <strong>earth</strong> elements (REE) are characterized by high<br />

specificity and high unit value. For example, europium is used for color cathoderay<br />

tubes and liquid crystal displays used in m<strong>on</strong>itors and televisi<strong>on</strong>s. A major use<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> praseodymium is in misch metal, used in making cigarette lighters. Samarium<br />

is used as a catalyst in certain organic reacti<strong>on</strong>s. Erbium finds extensive use in<br />

15 See secti<strong>on</strong>s 3.4.73, 3.4.36 and 3.4.39 for more details about <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> process for ura-<br />

nium, lithium and manganese.


78 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

laser repeaters for fiber-optic telecommunicati<strong>on</strong> cables. Permanent magnet technology<br />

has been r<str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g>ized by alloys c<strong>on</strong>taining gadolinium, dysprosium and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

REE. Terbium, gadolinium or europium are used in new energy-efficient fluorescent<br />

lamps. Lutetium can be used as a catalyst in petroleum cracking in refineries and in<br />

alkylati<strong>on</strong>, hydrogenati<strong>on</strong> and polymerizati<strong>on</strong> applicati<strong>on</strong>s. Holmium and thulium<br />

are being used in lasers for medical applicati<strong>on</strong>s.<br />

There are over 100 <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s known to c<strong>on</strong>tain lanthanides but <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly two <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial<br />

importance are m<strong>on</strong>azite, a mixed La, Th, Ln phosphate and bastnaesite, a<br />

La, Ln fluorocarb<strong>on</strong>ate. Tamarium, terbium and erbium are also found in xenotime<br />

and euxenite, while gadolinite is also an important source for Holmium, Terbium<br />

and Thulium.<br />

Grigor’ev accounted for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> fergus<strong>on</strong>ite in his model, which c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

REE Sm and traces <str<strong>on</strong>g>of</str<strong>on</strong>g> P r. We will keep in our model <str<strong>on</strong>g>the</str<strong>on</strong>g> same c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fergus<strong>on</strong>ite<br />

<strong>on</strong> <strong>earth</strong> given by Grigor’ev. Not being specifically in <str<strong>on</strong>g>the</str<strong>on</strong>g> empirical formula<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s explained above, <str<strong>on</strong>g>the</str<strong>on</strong>g> REE Gd, T b, D y, Ho, Er, T l and Lu will be<br />

c<strong>on</strong>sidered in our model as diadochical elements.<br />

3.4.53 Rhenium<br />

Rhenium was <str<strong>on</strong>g>the</str<strong>on</strong>g> last naturally-occurring element to be discovered. Its main<br />

applicati<strong>on</strong>s in industry are found in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> tungsten-rhenium and<br />

molybdenum-rhenium alloys. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r important uses <str<strong>on</strong>g>of</str<strong>on</strong>g> rhenium are in platinumrhenium<br />

catalysts, used primarily in producing lead-free, high octane gasoline and<br />

in high-temperature superalloys used for jet engine comp<strong>on</strong>ents.<br />

The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rhenium in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust is extremely low and it is also very<br />

diffuse. Being chemically akin to molybdenum it is in molybdenites that its highest<br />

c<strong>on</strong>centrati<strong>on</strong>s (0,2%) are found.<br />

No Re <str<strong>on</strong>g>mineral</str<strong>on</strong>g> is included in Grigorev’s model. We will account for it as “diodochic<br />

Re”.<br />

3.4.54 Rhodium<br />

Rhodium is part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> platinum group metals. Most part <str<strong>on</strong>g>of</str<strong>on</strong>g> its producti<strong>on</strong> goes into<br />

catalytic c<strong>on</strong>verters for cars and in some industrial processes. It is used in alloys with<br />

platinum and iridium, giving improved high-temperature strength and oxidati<strong>on</strong> resistance<br />

to furnace windings, high-temperature <str<strong>on</strong>g>the</str<strong>on</strong>g>rmocouple and resistance wires,<br />

spark plugs, bearings, electrical c<strong>on</strong>tacts, etc.<br />

Rhodium occurs as rare deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> native element and in rare <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s associated<br />

with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r metals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> platinum group. But usually, <str<strong>on</strong>g>the</str<strong>on</strong>g> commercially available<br />

metal comes as a by product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> refining <str<strong>on</strong>g>of</str<strong>on</strong>g> copper and nickel ores which<br />

c<strong>on</strong>tain up to 0,1% rhodium.


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 79<br />

There is no rhodium <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in Grigorev’s analysis. We will account for it as being<br />

included in <str<strong>on</strong>g>the</str<strong>on</strong>g> ores menti<strong>on</strong>ed before.<br />

3.4.55 Rubidium<br />

Rubidium is a silvery white, very active metal as are <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r alkali metals. Rubidium<br />

and its salts have few commercial uses. The metal is used in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> photocells and in <str<strong>on</strong>g>the</str<strong>on</strong>g> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> residual gases from vacuum tubes. Rubidium<br />

salts are used in glasses and ceramics and in fireworks to give <str<strong>on</strong>g>the</str<strong>on</strong>g>m a purple color.<br />

Although very abundant, no purely Rb-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g> is known and much <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> commercially available material is obtained as a byproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> lepidolite processing<br />

for Li. It occurs also naturally in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s pollucite, lepodite, carnallite,<br />

zinnwaldite and leucite.<br />

All Rb <strong>on</strong> <strong>earth</strong> will be accounted in our model as “diadochic Rb”.<br />

3.4.56 Ru<str<strong>on</strong>g>the</str<strong>on</strong>g>nium<br />

Ru<str<strong>on</strong>g>the</str<strong>on</strong>g>nium is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> six platinum metals. It finds use in <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>ic and chemical<br />

industry, with smaller amounts being used in alloying for increasing hardness<br />

and corrosi<strong>on</strong> resistance. It is used in electrical c<strong>on</strong>tact alloys and filaments, in jewelry,<br />

in pen nibs and in instrument pivots. Like <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r metals <str<strong>on</strong>g>of</str<strong>on</strong>g> its group, it is a<br />

versatile catalyst used in different industrial processes.<br />

Ru<str<strong>on</strong>g>the</str<strong>on</strong>g>nium is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rarest metals <strong>on</strong> <strong>earth</strong>. It is found native and sometimes<br />

associated with platinum, osmium and iridium. Like <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r platinum metals, it is<br />

commercially extracted from nickel and copper deposits.<br />

In additi<strong>on</strong> to osmiridium, we will assume that most part <str<strong>on</strong>g>of</str<strong>on</strong>g> ru<str<strong>on</strong>g>the</str<strong>on</strong>g>nium is found in<br />

nickel and copper ores.<br />

3.4.57 Samarium<br />

See secti<strong>on</strong> 3.4.52<br />

3.4.58 Scandium<br />

The transiti<strong>on</strong> metal scandium is mainly used in aluminium alloys for sporting equipment,<br />

metallurgical research, high-intensity metal halide lamps, analytical standards,<br />

electr<strong>on</strong>ics, oil well tracers and lacers.<br />

Scandium occurs in many ores in trace amounts, but has not been found in sufficient<br />

quantities to be c<strong>on</strong>sidered as a reserve. Therefore, scandium has been produced


80 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

exclusively as a byproduct during processing <str<strong>on</strong>g>of</str<strong>on</strong>g> various ores or recovered from previously<br />

processed tailings or residues. C<strong>on</strong>siderable amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> scandium oxide<br />

Sc 2O 3 can be obtained as a byproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uranium. Its <strong>on</strong>ly rich<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> is <str<strong>on</strong>g>the</str<strong>on</strong>g> rare thortveitite Sc 2Si 2O 7.<br />

We will keep <str<strong>on</strong>g>the</str<strong>on</strong>g> value given by Grigor’ev for thortveitite, and assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

it is widely dispersed in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. The latter is called in our model “Diodochic<br />

Sc”.<br />

3.4.59 Selenium<br />

Selenium is a n<strong>on</strong> metallic chemical element, resembling sulfur and tellurium in its<br />

chemical activity and physical properties. It has good photovoltaic and photoc<strong>on</strong>ductive<br />

properties, and it is used extensively in electr<strong>on</strong>ics, such as photocells, light<br />

meters and solar cells. The sec<strong>on</strong>d largest use <str<strong>on</strong>g>of</str<strong>on</strong>g> selenium is <str<strong>on</strong>g>the</str<strong>on</strong>g> glass industry, used<br />

to remove color from glass. It finds also extensive applicati<strong>on</strong> as animal feeds and<br />

food supplements. Additi<strong>on</strong>ally, it can be used in photocopying, in <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

photographs, in metal alloys and to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> abrasi<strong>on</strong> resistance in vulcanized<br />

rubbers.<br />

Selenium is am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> rarer elements <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust. It is occasi<strong>on</strong>ally found<br />

native, but it is usually associated with sulfur, copper, zinc and lead, such as in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

form <str<strong>on</strong>g>of</str<strong>on</strong>g> clausthalite CuSe or klockmanite P bSe. Selenium is recovered commercially<br />

as a byproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electrolytic refining <str<strong>on</strong>g>of</str<strong>on</strong>g> copper where it accumulates in anode<br />

residues.<br />

There is no selenium <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>sidered in Grigorev’s analysis. We will account for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> element as being part <str<strong>on</strong>g>of</str<strong>on</strong>g> copper ores, since <str<strong>on</strong>g>the</str<strong>on</strong>g>y are its main sources.<br />

3.4.60 Silic<strong>on</strong><br />

Silic<strong>on</strong> is a brittle steel-gray metalloid. It has many industrial uses. It is <str<strong>on</strong>g>the</str<strong>on</strong>g> main<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> glass, cement, ceramics, most semic<strong>on</strong>ductor devices and silic<strong>on</strong>es.<br />

Silic<strong>on</strong> is also an important c<strong>on</strong>stituent <str<strong>on</strong>g>of</str<strong>on</strong>g> some steels and a major ingredient in<br />

bricks. It is also used as an alloy to provide resistance to aluminium, magnesium,<br />

copper and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r metals. Metallurgic silic<strong>on</strong> is used as a raw material in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organosilic and silic<strong>on</strong> resins, seals and oils. Silic<strong>on</strong> chips are used in<br />

integrated circuits and photovoltaic cells are made <str<strong>on</strong>g>of</str<strong>on</strong>g> thin cut slices <str<strong>on</strong>g>of</str<strong>on</strong>g> simple silic<strong>on</strong><br />

crystals.<br />

Silic<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant element in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust after oxygen. It never<br />

occurs free, it occurs invariably combined with oxygen and with trivial excepti<strong>on</strong>s<br />

is always 4-coordinate in nature. Sand is used as a source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> silic<strong>on</strong> produced<br />

commercially. A few silicate <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are mined, e.g. talc and mica. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r mined<br />

silicates are feldspars, nepheline, olivine, vermiculite, perlite, kaolinite, etc.<br />

Our model accounts for 136 Si-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 81<br />

3.4.61 Silver<br />

In additi<strong>on</strong> to coinage, silver is used mainly in tableware, mirrors, electr<strong>on</strong>ic products,<br />

photography, jewelry and as a catalyst in oxidati<strong>on</strong> reacti<strong>on</strong>s.<br />

Silver is widely distributed in sulfide ores <str<strong>on</strong>g>of</str<strong>on</strong>g> which argentite (Ag 2S) is <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

important. Silver can be also found native in nature and associated to chlorine as<br />

AgCl. Only about 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> all silver mined is w<strong>on</strong> from deposits primarily exploited<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> metal; 90% or more represents a by-product <str<strong>on</strong>g>of</str<strong>on</strong>g> copper, lead, zinc and gold<br />

mining.<br />

Grigor’ev accounted in his model for <str<strong>on</strong>g>the</str<strong>on</strong>g> most important compounds <str<strong>on</strong>g>of</str<strong>on</strong>g> silver found<br />

in nature, namely native silver, argentite, acanti<str<strong>on</strong>g>the</str<strong>on</strong>g>, stephanite, pyrargirite, chlorargirite,<br />

freibergite and sams<strong>on</strong>ite. In additi<strong>on</strong> to those, we take into account <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

gold-silver telluride sylvanite.<br />

3.4.62 Sodium<br />

Sodium is a white-silvery metal, bel<strong>on</strong>ging to <str<strong>on</strong>g>the</str<strong>on</strong>g> alkali group, and hence <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

reactivity. Sodium in its metallic form is very important in making esters and in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> organic compounds. Sodium is also a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> sodium chloride<br />

N aCl, a very important compound found everywhere in <str<strong>on</strong>g>the</str<strong>on</strong>g> living envir<strong>on</strong>ment.<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sodium are: in alloys to improve <str<strong>on</strong>g>the</str<strong>on</strong>g>ir structure, in soap, to purify<br />

molten metals, in sodium vapor lamps, as a heat transfer fluid and as a desiccant<br />

for drying solvents.<br />

Sodium is a very abundant element in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust. After chloride, sodium is<br />

also <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d most abundant element dissolved in seawater. Sodium occurs as<br />

rock-salt (N aCl) and as <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ate, nitrate, sulfate, borate, etc.<br />

Fifty N a-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s have been c<strong>on</strong>sidered in our model.<br />

3.4.63 Str<strong>on</strong>tium<br />

Str<strong>on</strong>tium is a bright silvery alkaline-<strong>earth</strong> metal. Principal uses <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>tium compounds<br />

are in pyrotechnics, vacuum tubes to remove <str<strong>on</strong>g>the</str<strong>on</strong>g> last traces <str<strong>on</strong>g>of</str<strong>on</strong>g> air and as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

carb<strong>on</strong>ate in special glass for televisi<strong>on</strong> screens and visual display units. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r uses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>tium and its compounds are in toothpastes, in aerosol paint or for medical<br />

treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoporosis.<br />

Str<strong>on</strong>tium comm<strong>on</strong>ly occurs in nature, averaging about 0,034% <str<strong>on</strong>g>of</str<strong>on</strong>g> all igneous rocks.<br />

It is found chiefly in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sulfate <str<strong>on</strong>g>mineral</str<strong>on</strong>g> celestine SrCO 4 and <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ate<br />

str<strong>on</strong>tianite SrCO 3.<br />

Grigorev’s str<strong>on</strong>tium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are celestine, str<strong>on</strong>tianite and <str<strong>on</strong>g>the</str<strong>on</strong>g> rare <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

lamprophyllite and nordite. Our model will keep <str<strong>on</strong>g>the</str<strong>on</strong>g> relative proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>


82 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

celestine and str<strong>on</strong>tianite given by Grigor’ev, but assuring that <str<strong>on</strong>g>the</str<strong>on</strong>g>y satisfy <str<strong>on</strong>g>the</str<strong>on</strong>g> mass<br />

balance for str<strong>on</strong>tium in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust. The abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> nordite and lamprophyllite<br />

given by Grigor’ev is assumed to be correct. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> Sr c<strong>on</strong>tent in Grigorev’s<br />

analysis does not fulfill c<strong>on</strong>straint number 4 <strong>on</strong> page 57, no more str<strong>on</strong>tiumc<strong>on</strong>taining<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s will be included in our model because celestine and str<strong>on</strong>tianite<br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g>ir most important ores should account for almost all Sn in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s upper<br />

crust.<br />

3.4.64 Sulfur<br />

Sulfur is a yellow solid n<strong>on</strong>metal. Its main compound is sulfuric acid H 2SO 4, <strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most important substance in industrial and fertilizer complexes. In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

yearly c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfuric acid is an index <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial development <str<strong>on</strong>g>of</str<strong>on</strong>g> a country.<br />

Sulfur is also used in batteries, detergents, fungicides, manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizers,<br />

gun power, matches and fireworks. It finds also applicati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

corrosi<strong>on</strong>-resistant c<strong>on</strong>crete.<br />

Sulfur is widely distributed in nature. The three most important commercial sources<br />

are: 1) elemental sulfur in <str<strong>on</strong>g>the</str<strong>on</strong>g> caprock salt domes in <str<strong>on</strong>g>the</str<strong>on</strong>g> USA and Mexico and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sedimentary evaporite deposits in eastern Poland and western Asia; 2) as H 2S in sour<br />

natural gas and as organosulfur compounds in crude oil. They represent currently<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> main commercial source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> element. 3) from pyrites FeS 2 and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r metalsulfide<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Comm<strong>on</strong> naturally occurring sulfur compounds include <str<strong>on</strong>g>the</str<strong>on</strong>g> sulfide<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s cinnabar H gS, galena P bS, sphalerite ZnS, stibnite S b 2S 3 and <str<strong>on</strong>g>the</str<strong>on</strong>g> sulfates<br />

gypsum CaSO 4 · 2H 2O, alunite KAl 3(SO 4) 2(OH) 6 and barite BaSO 4.<br />

Our model accounts for 47 S-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

3.4.65 Tantalum<br />

Tantalum is a hard transiti<strong>on</strong> metal highly corrosi<strong>on</strong>-resistant and a good c<strong>on</strong>ductor<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heat and electricity. The major use for tantalum is in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>ic<br />

comp<strong>on</strong>ents, mainly capacitors. Additi<strong>on</strong>ally, it is used in high-temperature<br />

applicati<strong>on</strong>s such as aircraft engines and for handling corrosive chemicals.<br />

Tantalum occurs invariably toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with niobium. The chief <str<strong>on</strong>g>mineral</str<strong>on</strong>g> for Ta is<br />

known as tantalite FeTa 2O 6. Deposits are widespread but rarely very c<strong>on</strong>centrated.<br />

Microlite and euxenite are o<str<strong>on</strong>g>the</str<strong>on</strong>g>r minor ores for Ta.<br />

Grigor’ev accounts for Ta in <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s ferrotantalite, microlite, tanteuxenite and euxenite,<br />

as well as in polycrase and blomstrandite. The relative proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

four <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s given by Grigor’ev are kept in our model, while <str<strong>on</strong>g>the</str<strong>on</strong>g> quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

last two are fixed by <str<strong>on</strong>g>the</str<strong>on</strong>g> uranium mass balance 16 .<br />

dite.<br />

16 See secti<strong>on</strong> 3.4.73 for details about <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> procedure used for polycrase and blomstran


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 83<br />

3.4.66 Tellurium<br />

Tellurium is a semic<strong>on</strong>ductor. Its chemistry is similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur and has properties<br />

both <str<strong>on</strong>g>of</str<strong>on</strong>g> metals and n<strong>on</strong> metals. It is used as an additive to steel and it is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

alloyed to aluminium, copper, lead or tin. It can be used for cast ir<strong>on</strong>, ceramics,<br />

blasting caps, solar panels or rubber.<br />

Tellurium is a relatively rare element. Commercial tellurium comes mainly as a<br />

byproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> copper processing. Samples <str<strong>on</strong>g>of</str<strong>on</strong>g> tellurium can be found uncombined<br />

in nature, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y are extremely rare. There are some tellurium <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s such as<br />

calaverite, sylvanite or tellurite, but n<strong>on</strong>e is mined as a source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> element.<br />

The <strong>on</strong>ly <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>taining tellurium c<strong>on</strong>sidered by Grigore’ev is tetradymite. We<br />

will keep <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> given by Grigor’ev for tetradymite and include tellurite<br />

(assuming that it has <str<strong>on</strong>g>the</str<strong>on</strong>g> same Te c<strong>on</strong>centrati<strong>on</strong> as sylvanite and calaverite) and “dispersed<br />

Te”, which should account for <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> tellurium in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust found mostly<br />

in copper ores. Remember that sylvanite and calaverite were already accounted for<br />

gold-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

3.4.67 Terbium<br />

See secti<strong>on</strong> 3.4.52<br />

3.4.68 Thallium<br />

Thallium is a s<str<strong>on</strong>g>of</str<strong>on</strong>g>t and malleable heavy metal that is used in a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s.<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m are as a semic<strong>on</strong>ductor material for selenium rectifiers, in<br />

gamma radiati<strong>on</strong> detecti<strong>on</strong> equipment, in infrared radiati<strong>on</strong> detecti<strong>on</strong> and transmissi<strong>on</strong><br />

equipment, in crystalline filters for light diffracti<strong>on</strong>, in medical diagnostic tests<br />

to detect heart diseases, etc.<br />

Although thallium is reas<strong>on</strong>able abundant in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust, it exists mostly in associati<strong>on</strong><br />

with potassium <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s such as sylvite and pollucite and is not generally c<strong>on</strong>sidered<br />

to be commercially recoverable from those forms. Very rare <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> thallium<br />

occur in nature as sulfide or selenide complexes with antim<strong>on</strong>y, arsenic, copper,<br />

lead and silver such as hutchings<strong>on</strong>ite P bT lAs 5S 9, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y have no commercial<br />

importance as sources ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Thallium is commercially recovered as a byproduct<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> flue dust and residues generated during <str<strong>on</strong>g>the</str<strong>on</strong>g> roasting and smelting <str<strong>on</strong>g>of</str<strong>on</strong>g> Zn<br />

and P b sulfide ores.<br />

No thallium <str<strong>on</strong>g>mineral</str<strong>on</strong>g> has been recorded by Grigor’ev. We will include T l in our model<br />

as “dispersed T l”, which should account for all T l in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust in <str<strong>on</strong>g>the</str<strong>on</strong>g> forms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sources menti<strong>on</strong>ed above.


84 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

3.4.69 Thorium<br />

Thorium is a silver-grey heavy metallic element <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> actinide series. Thorium<br />

demand worldwide is relatively small. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> its applicati<strong>on</strong>s are as an alloying<br />

element in magnesium, as a coating for wolfram wire used in electr<strong>on</strong>ic equipment,<br />

to c<strong>on</strong>trol grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> plut<strong>on</strong>ium used for electric lamps, as a catalyst, in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> refractory materials for <str<strong>on</strong>g>the</str<strong>on</strong>g> metallurgical industries, or as a fertile material<br />

for producing nuclear fuel.<br />

Thorium is very abundant in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust (three times more abundant than uranium).<br />

Thorium occurs naturally in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s thorite, uranothorite, thorianite<br />

and is a major comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>azite, where it is usually commercially extracted<br />

as a byproduct. It is present also in significant amounts as diodochic element in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s zirc<strong>on</strong>, titanite, gadolinite and blomstrandite.<br />

Grigor’ev records all <str<strong>on</strong>g>the</str<strong>on</strong>g> main thorium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in his model explained<br />

above, as well as britholite, polycrase, yttrialite and chevkinite. They are all included<br />

in our model, maintaining <str<strong>on</strong>g>the</str<strong>on</strong>g> relative proporti<strong>on</strong>s provided by Grigor’ev.<br />

3.4.70 Thulium<br />

See secti<strong>on</strong> 3.4.52.<br />

3.4.71 Tin<br />

Tin is a silvery-white metal that finds extensive use as a protective layer for mild<br />

steel. Alloys <str<strong>on</strong>g>of</str<strong>on</strong>g> tin are used in many ways, such as solder for joining pipes or electr<strong>on</strong>ic<br />

circuits, bell and babbit metal, dental amalgams, etc. The principal alloys <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tin are br<strong>on</strong>zite (tin and copper), s<str<strong>on</strong>g>of</str<strong>on</strong>g>t solder (tin and lead), pewter (75% tin and<br />

25% lead) and britannia metal (tin with small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> antim<strong>on</strong>y and copper).<br />

There are few tin-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, but <strong>on</strong>ly <strong>on</strong>e is <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial significance<br />

and that is cassiterite SnO 2.<br />

Grigor’ev accounts for Sn in cassiterite as well as native tin. We keep <str<strong>on</strong>g>the</str<strong>on</strong>g> relative<br />

proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s given by Grigor’ev in our model but assuring that <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

fulfill <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance <str<strong>on</strong>g>of</str<strong>on</strong>g> Sn <strong>on</strong> <strong>earth</strong>. No more tin-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s will be<br />

included because cassiterite is its most important ore and should account for almost<br />

all Sn in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s upper crust.<br />

3.4.72 Titanium<br />

Titanium is a light, str<strong>on</strong>g transiti<strong>on</strong> metal, well known for corrosi<strong>on</strong> resistance and<br />

for its high strength-to-weight ratio. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> it is c<strong>on</strong>sumed in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> titanium


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 85<br />

dioxide T iO 2, a white pigment in paints, paper and plastics. Titanium alloys are<br />

used in aircraft, pipes for power plants, armor plating, naval ships and missiles. In<br />

medicine, titanium is used to make hip and knee replacements, pace-makers, b<strong>on</strong>eplates<br />

and screws.<br />

Titanium is an abundant element <strong>on</strong> <strong>earth</strong> and is found in <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s rutile T iO 2,<br />

brookite T iO 2, anatase T iO 2, illmenite Fe 2+ T iO 3, leucoxene CaT iSiO 5 and titanite<br />

CaT iSiO 5. The chief mined ore is ilmenite, but leucoxene and rutile are also<br />

important ec<strong>on</strong>omic ores for titanium.<br />

Titanium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s c<strong>on</strong>sidered by Grigor’ev are: ilmenite, leucoxene, rutile,<br />

brookite, titanite, augite, ulvöspinel, anatase, aenigmatite, perovskite, ramsayite,<br />

lamprophyllite, neptunite, blomstrandite, polycrase, lavenite, rinkolite, delorenzite,<br />

loparite, chevkinite, murmanite, ilmenorutile and euxenite. No additi<strong>on</strong>al<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are included in our model.<br />

3.4.73 Uranium<br />

Uranium is a silvery metallic radioactive element <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> actinide group. It gained<br />

importance with <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> practical uses <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear energy. Depleted uranium<br />

is used as shielding to protect tanks and also in bullets and missiles. However,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> main use <str<strong>on</strong>g>of</str<strong>on</strong>g> uranium is to fuel commercial nuclear power plants.<br />

Uranium is widely distributed, being <str<strong>on</strong>g>the</str<strong>on</strong>g> most important ores uraninite UO 2 and<br />

carnotite K 2(UO 2) 2(VO 4)2 · 3H 2O. However, even <str<strong>on</strong>g>the</str<strong>on</strong>g>se are usually dispersed so<br />

that typical ores c<strong>on</strong>tain <strong>on</strong>ly about 0,1%, and many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> more readily exploited<br />

deposits are nearing exhausti<strong>on</strong>. Significant c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> uranium occur in<br />

some <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s such as m<strong>on</strong>azite sands or lignite.<br />

Grigor’ev c<strong>on</strong>siders five uranium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s: uraninite, betafite, metatorbenite<br />

and polycrase. In additi<strong>on</strong> to those <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, we include also carnotite in<br />

our model, assuming that it has <str<strong>on</strong>g>the</str<strong>on</strong>g> same U c<strong>on</strong>tent as uraninite. The relative proporti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s accounted by Grigor’ev are kept and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir quantities are<br />

obtained by satisfying c<strong>on</strong>straint 1.<br />

3.4.74 Vanadium<br />

Vanadium is a transiti<strong>on</strong> metal and finds extensive use in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> special<br />

steels with excepti<strong>on</strong>al strength and toughness. Steel alloys are used in axles,<br />

crankshafts, gears and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r critical comp<strong>on</strong>ents. Mixed with aluminium in titanium<br />

alloys, it is used in jet engines and high speed air-frames.<br />

Vanadium is widely, though sparsely distributed; thus although more than 60 different<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> vanadium have been characterized, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are few c<strong>on</strong>centrated<br />

deposits and most <str<strong>on</strong>g>of</str<strong>on</strong>g> it is obtained as a byproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong>, uranium, phosphor, copper,<br />

lead, zinc or titanium ores. Most important vanadium <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are patr<strong>on</strong>ite


86 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

V S 4, vanadinite P b 5(VO 4) 3Cl and carnotite K 2(UO 2) 2(VO 4) 2 · (H 2O). Vanadium is<br />

also found in some crude oils, coal, oil shale and tar sands.<br />

No vanadium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are registered by Grigor’ev. We take into account<br />

in our model carnotite, for being an uranium important ore. The rest vanadium is<br />

assumed to come from dispersed sources.<br />

3.4.75 Wolfram<br />

Wolfram, also known as Tungsten, is a transiti<strong>on</strong> metal, having <str<strong>on</strong>g>the</str<strong>on</strong>g> highest melting<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> any metal. Hence, it is used in filaments in incandescent light bulbs, in<br />

electric c<strong>on</strong>tacts and arc-welding electrodes. It imparts great strength to alloys such<br />

as steel. Tungsten is also used in X-ray tubes and in microchip technology. Its most<br />

important applicati<strong>on</strong> though is in <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> cement carbide, since its main<br />

comp<strong>on</strong>ent is wolfram carbide (W C).<br />

There are several <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> wolfram, <str<strong>on</strong>g>the</str<strong>on</strong>g> most important <strong>on</strong>es are scheelite and<br />

wolframite.<br />

Both <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s have been c<strong>on</strong>sidered by Grigor’ev and will be taken into account in<br />

our model, keeping <str<strong>on</strong>g>the</str<strong>on</strong>g> relative proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Grigorev’s analysis. The quantity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

both <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in our model almost exceeds two orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>the</str<strong>on</strong>g> values given<br />

by Grigorev. However, all references c<strong>on</strong>sulted coincide in giving most relevance<br />

<strong>on</strong>ly to those two substances. Therefore, no additi<strong>on</strong>al <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are going to be<br />

c<strong>on</strong>sidered.<br />

3.4.76 Ytterbium<br />

Ytterbium is a rare <strong>earth</strong> element used in certain steels for improving <str<strong>on</strong>g>the</str<strong>on</strong>g> grain refinement,<br />

strength and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> stainless steel. Some ytterbium<br />

alloys have been used in dentistry. Like o<str<strong>on</strong>g>the</str<strong>on</strong>g>r REE, it can be used to dope phosphors,<br />

or for ceramic capacitors and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r electr<strong>on</strong>ic devices.<br />

Ytterbium is found with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r rare <strong>earth</strong> elements in several rare <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s as gadolinite,<br />

m<strong>on</strong>azite and xenotime. It is most <str<strong>on</strong>g>of</str<strong>on</strong>g>ten recovered commercially from m<strong>on</strong>azite<br />

sand.<br />

The latter <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s have been c<strong>on</strong>sidered by Grigor’ev. We will assume that Grigorev’s<br />

quantity for xenotime is correct and will account for Y b in m<strong>on</strong>azite as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tents in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust and in xenotime.<br />

3.4.77 Yttrium<br />

Yttrium is a silver-metallic rare <strong>earth</strong> metal. The largest use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> element is as its<br />

oxide yttria Y 2O 3, which is used in making red phosphors for color televisi<strong>on</strong> picture


A new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 87<br />

tubes. It is also used in small amounts to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium and<br />

magnesium alloys. Additi<strong>on</strong>al uses <str<strong>on</strong>g>of</str<strong>on</strong>g> yttrium are in camera lenses and to make<br />

superc<strong>on</strong>ductors.<br />

Yttrium, like lanthanum is invariably associated with lanthanide elements in <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

such as xenotime, m<strong>on</strong>azite, fergus<strong>on</strong>ite or gadolinite.<br />

Yttrium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Grigorev’s model are: fergus<strong>on</strong>ite, thortveitite, polycrase,<br />

gadolinite, rinkolite, euxenite, tanteuxenite, ytriallite, orthite and weinschenkite.<br />

The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all those <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <strong>on</strong> <strong>earth</strong>, except for weinschenkite<br />

are fixed by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>tent in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r elements in our model. For weinschenkite, we will<br />

assume that it has <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> given by Grigor’ev. Additi<strong>on</strong>ally, “diodochic Y ”<br />

is included in our model in order to account for <str<strong>on</strong>g>the</str<strong>on</strong>g> Y found in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystalline structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r lanthanide <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

3.4.78 Zinc<br />

Zinc is a bluish-white transiti<strong>on</strong> metal. It is <str<strong>on</strong>g>the</str<strong>on</strong>g> fourth metal mostly c<strong>on</strong>sumed in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

world. The main use <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc is for <str<strong>on</strong>g>the</str<strong>on</strong>g> galvanizing <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> sheets or wires. Zinc is<br />

used in making alloys such as brass or br<strong>on</strong>ze. Zinc oxide is used as a white pigment<br />

in plastics, cosmetics, paper, printing inks, etc. and as an activator in <str<strong>on</strong>g>the</str<strong>on</strong>g> rubber<br />

industry.<br />

The major ores <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc are sphalerite ZnS and smiths<strong>on</strong>ite ZnCO 3. Less important<br />

ores are franklinite Zn0.6M n 2+<br />

0.3Fe2+ 0.1M n3+<br />

0.5O4, hemimorphite Zn4Si 2O7(OH) 2<br />

and wurtzite Zn0.9Fe 2+<br />

0.1S. Grigorev’s Zn-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are sphalerite, smiths<strong>on</strong>ite, nordite and native<br />

zinc. In our model we will assume that all those four <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s account for <str<strong>on</strong>g>the</str<strong>on</strong>g> majority<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> zinc found in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust and hence we will omit <str<strong>on</strong>g>the</str<strong>on</strong>g> less important<br />

ores menti<strong>on</strong>ed above. The abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> nordite is fixed by its Sr c<strong>on</strong>tent.<br />

3.4.79 Zirc<strong>on</strong>ium<br />

Zirc<strong>on</strong>ium is a silver-gray metal with chemical and physical properties similar to<br />

those <str<strong>on</strong>g>of</str<strong>on</strong>g> titanium. It is extremely resistant to heat and corrosi<strong>on</strong>. Zirc<strong>on</strong> is its most<br />

used compound and is used in refractories, ceramic opacificati<strong>on</strong> and foundry sands.<br />

It is also c<strong>on</strong>sidered as a semi-precious gemst<strong>on</strong>e used in jewelry. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r uses for<br />

zirc<strong>on</strong>ium are in alloys such as zircaloy, which is used in nuclear applicati<strong>on</strong>s since<br />

it does not absorb neutr<strong>on</strong>s. It is also used in catalytic c<strong>on</strong>verters.<br />

Zirc<strong>on</strong>ium is not particularly a rare element and occurs in nature mainly as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

silicate <str<strong>on</strong>g>mineral</str<strong>on</strong>g> zirc<strong>on</strong> Z rSiO 4. Baddeleyite Z rO 2 is also an important ore for Z r.<br />

Grigorev’s model includes eight different zirc<strong>on</strong>ium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s: zirc<strong>on</strong>,<br />

naegite (a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> zirc<strong>on</strong> that c<strong>on</strong>tains U, Th, Y and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r REE in its lattice),


88 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

sirtolite (a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> zirc<strong>on</strong> that c<strong>on</strong>tains Th and H f in its lattice), eudialyte, baddeleyite,<br />

lavenite, mosandrite and wohlerite. An interesting aspect about his analysis is<br />

that eudialyte is a more abundant <str<strong>on</strong>g>mineral</str<strong>on</strong>g> than baddeleyite, which is more comm<strong>on</strong>.<br />

All eight <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are also included in our analysis. Grigorev’s relative proporti<strong>on</strong>s<br />

are kept, but assuring <str<strong>on</strong>g>the</str<strong>on</strong>g> satisfacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>straints described before.<br />

3.5 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical representati<strong>on</strong><br />

The problem described in a qualitatively way in <str<strong>on</strong>g>the</str<strong>on</strong>g> last secti<strong>on</strong>, can be represented<br />

ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matically according to Eq. 3.2. The objective is to minimize (M in) with a<br />

least squares procedure <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

our model ( ˆ ξi) and that <str<strong>on</strong>g>of</str<strong>on</strong>g> Grigor’ev’s analysis ( ξ i). This optimizati<strong>on</strong> must be<br />

c<strong>on</strong>strained by physical and geological restricti<strong>on</strong>s.<br />

The physical restricti<strong>on</strong>s are c<strong>on</strong>straints 1 and 2 defined in secti<strong>on</strong> 3.4, namely <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

satisfacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance and <str<strong>on</strong>g>the</str<strong>on</strong>g> positiveness requirement for all <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

The geological restricti<strong>on</strong>s are based <strong>on</strong> reas<strong>on</strong>able assumpti<strong>on</strong>s and, as opposed to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> physical <strong>on</strong>es, may change with new <str<strong>on</strong>g>mineral</str<strong>on</strong>g> discoveries and with <str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> analyst. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> model that we have developed must not be c<strong>on</strong>sidered<br />

as final and closed. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, it is <str<strong>on</strong>g>the</str<strong>on</strong>g> first step for obtaining a comprehensive,<br />

physically and geologically coherent <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

upper <strong>earth</strong>’s crust. Remember that <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust has been<br />

improved throughout decades and is still under research.<br />

Vector ˆε j, c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> elements that compose <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in our model are<br />

showed in table A.1 (page 351). Vector ξ i, c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s described by<br />

Grigor’ev’s analysis is represented in table A.2 (page 352). Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coefficients R[ j × i] is showed in tables A.3 and A.4 17 (page 360).<br />

The objective functi<strong>on</strong> is showed in equati<strong>on</strong> 3.2:<br />

M in ˆ ξ i − ξ i 2<br />

The physical restricti<strong>on</strong>s to be applied are:<br />

• Σr j,i · ˆ ξ i = ˆε j<br />

• ˆ ξ i > 0<br />

(3.2)<br />

The geological restricti<strong>on</strong>s based <strong>on</strong> reas<strong>on</strong>able assumpti<strong>on</strong>s and described in secti<strong>on</strong>s<br />

3.4.3 through 3.4.79 for each substance are <str<strong>on</strong>g>the</str<strong>on</strong>g> following:<br />

17 For <str<strong>on</strong>g>the</str<strong>on</strong>g> sake <str<strong>on</strong>g>of</str<strong>on</strong>g> a more flexible representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix R[ j × i], its transposed is given R ′ [i × j].


Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical representati<strong>on</strong> 89<br />

• Gold: ˆ ξ 1 = ˆε 1 · 0, 85/r 1,1<br />

• Calaverite: ˆ ξ 2 = ˆε 1 · 0, 075/r 1,2<br />

• Sylavanite: ˆ ξ 3 = ˆε 1 · 0, 075/r 1,3<br />

• Thortveitite: ˆ ξ 6 = ξ 6<br />

• Lautarite: ˆ ξ 22 = ˆε 28/(r 28,22 + r 28,23)<br />

• Dietzeite: ˆ ξ 23 = ˆε 28/(r 28,22 + r 28,23)<br />

• Nitratine: ˆ ξ 25 = ˆε 31/(r 31,25 + r 31,26)<br />

• Niter: ˆ ξ 26 = ˆε 31/(r 31,25 + r 31,26)<br />

• Xenotime: ˆ ξ 31 = ξ 31<br />

• Tetradymite: ˆ ξ 35 = ξ 35<br />

• Tellurite: ˆ ξ 36 = (r 2,2 · ˆ ξ 2)/(r 2,36)<br />

• Polixene: ˆ ξ 40 = ξ 40<br />

• I-Platinum: ˆ ξ 41 = ξ 41<br />

• Cooperite: ˆ ξ 42 = (ˆε 46 − r 46,40 · ˆ ξ 40 − r 46,41 · ˆ ξ 41)/(2 · r 46,42)<br />

• P t in N i-Cu ores ˆ ξ 43 = (ˆε 46 − r 46,40 · ˆ ξ 40 − r 46,41 · ˆ ξ 41)/(2 · r 46,43)<br />

• Fergus<strong>on</strong>ite: ˆ ξ 47 = ξ 47<br />

• Stibnite: ˆ ξ 50 = (ˆε 41 − r 41,34 · ˆ ξ 34 − r 41,51 · ˆ ξ 51 − r 41,309 · ˆ ξ 309 − r 41,310 · ˆ ξ 310 −<br />

r 41,312 · ˆ ξ 312)/(2 · r 41,50)<br />

• Boulangerite: ˆ ξ 51 = ξ 51<br />

• S b in galena: ˆ ξ 52 = (ˆε 41 − r 41,34 · ˆ ξ 34 − r 41,51 · ˆ ξ 51 − r 41,309 · ˆ ξ 309 − r 41,310 ·<br />

ˆξ 310 − r 41,312 · ˆ ξ 312)/(2 · r 41,52)<br />

• Lamprophyllite: ˆ ξ 55 = ξ 55<br />

• Tourmaline: ˆ ξ 58 = ξ 58<br />

• Kornerupine: ˆ ξ 59 = ξ 59<br />

• Axinite - Fe: ˆ ξ 60 = ξ 60<br />

• Dumortierite: ˆ ξ 61 = ξ 61<br />

• Sassolite: ˆ ξ 62 = (ˆε 62−r 62,58· ˆ ξ 58−r 62,59· ˆ ξ 59−r 62,60· ˆ ξ 60−r 62,61· ˆ ξ 61)/(4·r 62,62)


90 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

• Colemanite: ˆ ξ 63 = (ˆε 62 − r 62,58 · ˆ ξ 58 − r 62,59 · ˆ ξ 59 − r 62,60 · ˆ ξ 60 − r 62,61 · ˆ ξ 61)/(4 ·<br />

r 62,63)<br />

• Kernite: ˆ ξ 64 = (ˆε 62−r 62,58· ˆ ξ 58−r 62,59· ˆ ξ 59−r 62,60· ˆ ξ 60−r 62,61· ˆ ξ 61)/(4·r 62,64)<br />

• Ulexite: ˆ ξ 65 = (ˆε 62−r 62,58· ˆ ξ 58−r 62,59· ˆ ξ 59−r 62,60· ˆ ξ 60−r 62,61· ˆ ξ 61)/(4· r 62,65)<br />

• Wi<str<strong>on</strong>g>the</str<strong>on</strong>g>rite: ˆ ξ 68 = 0, 1 · ˆ ξ 67<br />

• Bismutite: ˆ ξ 72 = (r 42,70 · ˆ ξ 70)/(r 42,72)<br />

• Carnotite: ˆ ξ 85 = (r 66,81 · ˆ ξ 81)/(r 66,85)<br />

• Chyroberyl: ˆ ξ 90 = (r 71,86 · ˆ ξ 86)/(r 71,90)<br />

• Cobaltite: ˆ ξ 125 = ξ 125<br />

• Smaltite: ˆ ξ 126 = ˆ ξ 125<br />

• Linnaeite: ˆ ξ 127 = (r 76,125 · ˆ ξ 125)/(r 76,127)<br />

• Arsenolite: ˆ ξ 136 = (r 77,131 · ˆ ξ 131)/(r 77,136)<br />

• Diadochic N i: ˆ ξ 141 = (r 48,137 · ˆ ξ 137)/(r 48,141)<br />

• Miserite: ˆ ξ 151 = ξ 151<br />

• Weinschenkite: ˆ ξ 153 = ξ 153<br />

• Vivianite: ˆ ξ 155 = ξ 155<br />

• Cryotile: ˆ ξ 165 = (r 60,163 · ˆ ξ 163)/(r 60,165)<br />

• Lepidolite: ˆ ξ 179 = (r 64,73 · ξ 73 · 0, 1)/r 64,179<br />

• Tetrahedrite: ˆ ξ 313 = ξ 313<br />

• Nordite: ˆ ξ 314 = ξ 314<br />

The problem described above was not able to be solved with a ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware<br />

18 . The reas<strong>on</strong>s for which <str<strong>on</strong>g>the</str<strong>on</strong>g> ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical applicati<strong>on</strong>s could not solve it<br />

might have been:<br />

• Matrix R [ j × i] is a sparce matrix, composed mainly by zeros.<br />

• There are differences between <str<strong>on</strong>g>the</str<strong>on</strong>g> orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

factor <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 10 12 .<br />

18 The problem was tried to be solved with <str<strong>on</strong>g>the</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware Matlab 7.0. The functi<strong>on</strong> used was lsqlin<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>straints described previously.


Results 91<br />

• The orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude are very small (down to 10 −15 ) and may be below<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> significant figures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> programmes.<br />

The resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system through a ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical applicati<strong>on</strong> is open for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

studies. Probably, more powerful s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware will be required.<br />

3.6 Results<br />

Fortunately, <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> problem was solved in a manual way through a trial<br />

and error procedure. For that purpose, <str<strong>on</strong>g>the</str<strong>on</strong>g> relative proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in<br />

Grigorev’s model were always tried to be kept. The fitting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements, i.e.<br />

assuring that ˆε j −ε j = 0, was carried out gradually in increasing order <str<strong>on</strong>g>of</str<strong>on</strong>g> appearance<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s recorded by Grigor’ev. This way, element Au was <str<strong>on</strong>g>the</str<strong>on</strong>g> first to be<br />

fitted, since native gold is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly Au-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in Grigor’ev’s model. The<br />

last element to be adjusted was Si, since it is <str<strong>on</strong>g>the</str<strong>on</strong>g> element mostly c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust. It must be pointed out that elements O and H have been left<br />

free, i.e. without c<strong>on</strong>straints.<br />

Table 3.5 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust obtained in order<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> abundance. The abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in mass terms, is calculated with Eq.<br />

3.3.<br />

ˆξ i · MWi Abundance(%) = m i=1 (ˆ · 100 (3.3)<br />

ξi · MWi) In table A.2 in page 352, <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between our <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> and<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> Grigor’ev is shown. It c<strong>on</strong>tains 324 species, 57 more than in Grigor’ev’s<br />

model 19 . Of <str<strong>on</strong>g>the</str<strong>on</strong>g> 324 substances, 292 are <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> rest are mainly diadochic<br />

elements included in <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. That is <str<strong>on</strong>g>the</str<strong>on</strong>g> case for<br />

elements Ce, N d, N i, Y , Rb, Co, D y, Er, Eu, Ga, Gd, Ge, Ho, Lu, Re, Sc, T b, T l,<br />

T m, V , H f , In, Pd, P r, P t, Rh, Ru, S b, Se, Sm, Te, Y b. The resulting molecular<br />

weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust according to this model is 157,7 g/mole 20 .<br />

Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained are discussed, stressing out <str<strong>on</strong>g>the</str<strong>on</strong>g> differences for <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

abundant and relevant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s with Grigor’ev’s model. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

are aggregated into <str<strong>on</strong>g>the</str<strong>on</strong>g> main groups explained in secti<strong>on</strong> 3.2 and are compared to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> values given by Wedepohl [402], [403] and Nesbitt and Young [242]. Finally<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> drawbacks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model are also explained.<br />

19 The n<strong>on</strong>-<str<strong>on</strong>g>mineral</str<strong>on</strong>g> materials <str<strong>on</strong>g>of</str<strong>on</strong>g> Grigor’ev’s model have not been taken into account.<br />

20 Remember that <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust in Grigor’ev’s model was MWcr = 142, 1 g/mole.


92 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

Table 3.5: Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this study<br />

Mineral Formula MW Abundance<br />

g/mole mass, %<br />

Quarz SiO2 60,08 2,29E+01<br />

Albite N aAlSi 3O8 263,02 1,35E+01<br />

Oligoclase N a0.8Ca 0.2Al1.2Si2.8O8 265,42 1,19E+01<br />

Orthoclase KAlSi 3O8 278,33 1,18E+01<br />

Andesine N a0.6Ca 0.4Al1.4Si2.6O8 268,62 5,46E+00<br />

Parag<strong>on</strong>ite<br />

Biotite<br />

N aAl3Si 3O10(OH) 2<br />

K M g2.5Fe 800,00 3,96E+00<br />

2+<br />

0.5AlSi Hydromuscovite/<br />

Illite<br />

3O10(OH) 1.75F0.25 K0.6(H3O) 0.4Al2M g0.4Fe 433,53 3,82E+00<br />

2+<br />

0.1Si3.5O10(OH) 2 392,65 3,03E+00<br />

Augite Ca0.9N a0.1M g0.9Fe 2+<br />

0.2Al Hornblende<br />

(Fe)<br />

0.4T i0.1Si1.9O6 Ca2Fe 236,35 3,00E+00<br />

2+<br />

4 Al0.75Fe 3+<br />

0.25 (Si7AlO 22)(OH) 2 947,32 2,63E+00<br />

Labradorite<br />

N<strong>on</strong>tr<strong>on</strong>ite<br />

N a0.5Ca 0.5Al1.5Si2.5O8 N a0.3Fe 270,21 2,50E+00<br />

3+<br />

2 Si Opal<br />

Ripidolite<br />

3.7Al0.3O10(OH) 2 · 4(H2O) SiO2 · 1.5(H2O) M g3.75Fe 496,67<br />

87,11<br />

1,93E+00<br />

1,24E+00<br />

2+<br />

1.25Si Almandine<br />

3Al2O10(OH) 8<br />

Fe<br />

595,22 1,20E+00<br />

2+<br />

3 Al Muscovite<br />

2(SiO 4) 3<br />

KAl3Si 3O10(OH) 1.8F0.2 497,75<br />

398,71<br />

1,04E+00<br />

1,01E+00<br />

Sillimanite<br />

Epidote<br />

Al2SiO 5<br />

Ca2Fe 162,05 9,97E-01<br />

3+ Al2(SiO 4) 3(OH) 483,23 9,06E-01<br />

Kaolinite Al2Si 2O5(OH) 4 258,16 8,36E-01<br />

Calcite<br />

Magnetite<br />

CaCO 3<br />

Fe<br />

100,09 8,00E-01<br />

3+<br />

2 Fe2+ Riebeckite<br />

O4 N a2Fe 231,54 7,95E-01<br />

2+<br />

3 Fe3+<br />

2 (Si Beidellite<br />

Ilmenite<br />

8O22)(OH) 2<br />

N a0.33Al2.33Si3.67O10(OH) 2<br />

Fe<br />

935,90<br />

367,54<br />

5,74E-01<br />

5,10E-01<br />

2+ T iO3 151,73 4,71E-01<br />

Titanite<br />

Clinochlore<br />

CaT iSiO 5<br />

M g3.75Fe 196,04 4,46E-01<br />

2+<br />

1.25Si Sepiolite<br />

Aegirine<br />

3Al2O10(OH) 8<br />

M g4Si6O 15(OH) 2 · 6(H2O) N aFe<br />

595,22<br />

613,82<br />

4,37E-01<br />

3,48E-01<br />

3+ Si2O6 231,00 3,04E-01<br />

Diopside CaM gSi2O6 216,55 3,04E-01<br />

Natrolite N a2Al2Si 3O10 · 2(H2O) 380,22 2,97E-01<br />

Cummingt<strong>on</strong>ite<br />

Ankerite<br />

M g7(Si8O 22)(OH) 2<br />

CaFe<br />

780,82 2,91E-01<br />

2+<br />

0.6M g0.3M n2+ 0.1 (CO Phosphate rock<br />

Hypers<str<strong>on</strong>g>the</str<strong>on</strong>g>ne<br />

3) 2<br />

Ca3(PO 4) 2<br />

M gFe<br />

206,39<br />

310,00<br />

2,82E-01<br />

2,79E-01<br />

2+ Hastingsite<br />

Si2O6 N aCa 2Fe<br />

232,32 2,72E-01<br />

2+<br />

4 Fe3+ Bytownite<br />

Actinolite<br />

(Si6Al 2O22)(OH) 2<br />

N a0.2Ca 0.8Al1.8Si2.2O8 Ca2M g3Si8O 22(OH) 2Fe<br />

990,86<br />

275,01<br />

2,58E-01<br />

2,50E-01<br />

2+<br />

Hydrobiotite<br />

2<br />

M g2.3Fe 875,45 2,47E-01<br />

3+<br />

0.6K M<strong>on</strong>tmorill<strong>on</strong>ite<br />

0.3Ca 0.1Si2.8Al1.3O10(OH) 1.8F0.2· 3(H2O) N a0.165Ca 0.0835Al2.33Si3.67O10(OH) 2<br />

463,51<br />

367,09<br />

2,44E-01<br />

2,39E-01<br />

Andalusite Al2SiO 5 162,05 2,03E-01<br />

Lawsenite CaAl 2Si2O 7 314,24 2,00E-01<br />

Diaspore AlO(OH) 59,99 1,77E-01<br />

Pennine M g3.75Fe 2+<br />

1.25Si Glauc<strong>on</strong>ite<br />

3Al2O10(OH) 8<br />

K0.6N a0.05Fe 595,22 1,71E-01<br />

3+<br />

1.3M g0.4Fe 2+<br />

0.2Al Prehnite<br />

0.3Si3.8O10(OH) 2<br />

Ca2Al2Si 3O10(OH) 2<br />

426,93<br />

395,38<br />

1,56E-01<br />

1,41E-01<br />

Dolomite CaM g(CO 3) 2<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .<br />

184,40 1,41E-01


Results 93<br />

Table 3.5: Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this study. – c<strong>on</strong>tinued from previous page.<br />

Mineral Formula MW Abundance<br />

g/mole mass, %<br />

Hydragillite/<br />

Gibbsite<br />

Al(OH) 3 78,00 1,38E-01<br />

Ulvöspinel T iFe 2+<br />

2 O Goethite<br />

4<br />

Fe<br />

223,57 1,16E-01<br />

3+ O(OH) 88,85 1,04E-01<br />

Neptunite KN a2 LiFe 2+ M n2+<br />

1.5 0.5T i Hematite<br />

Lepidomelane/<br />

Annite<br />

2Si8O 24<br />

Fe2O3 K Fe<br />

907,69<br />

159,69<br />

9,97E-02<br />

9,66E-02<br />

2+<br />

2.5M g0.5Fe 3+<br />

0.75Al0.25Si3O 10(OH) 2 512,40 9,11E-02<br />

Sanidine K0.75N a0.25AlSi 3O8 274,30 7,31E-02<br />

Barite BaSO4 233,39 7,09E-02<br />

Distene/ Kyanite<br />

Al2SiO 5 162,05 7,08E-02<br />

Celestine<br />

Staurolite<br />

SrSO 4<br />

Fe<br />

183,68 6,70E-02<br />

2+ Thuringite/<br />

Chamosite<br />

Al9Si 4O23(OH) Fe<br />

851,86 6,54E-02<br />

2+<br />

3 M g2Al 3+<br />

0.5 Fe3+<br />

0.5Si3AlO 10(OH) 2 562,80 6,43E-02<br />

Ferrosilite Fe2+ M gSi2O 6 263,86 6,11E-02<br />

Halite N aCl 58,44 5,89E-02<br />

Boehmite AlO(OH) 59,99 5,79E-02<br />

Thoms<strong>on</strong>ite N aCa 2Al5Si 5O20 · 6(H2O) 806,56 4,99E-02<br />

Serpentine/<br />

Clinochrysotile<br />

M g3Si2O 5(OH) 4 277,11 4,56E-02<br />

Pige<strong>on</strong>ite M g1.35Fe 2+<br />

0.55Ca Br<strong>on</strong>zite<br />

0.1Si2O 6<br />

M gFe<br />

219,70 4,37E-02<br />

2+ Si2O6 232,32 4,11E-02<br />

Apatite Ca5(PO 4) 3(OH) 0.33F0.33Cl 0.33 509,12 4,03E-02<br />

Zirc<strong>on</strong><br />

Stilpnomelane<br />

Z rSiO 4<br />

K0.8Fe 183,31 3,88E-02<br />

2+<br />

8 Al Spodumene<br />

Psilomelane<br />

0.8Si11.1O21(OH) 8.6 · 6(H2O) LiAlSi 2O6 Ba2M n<br />

1391,50<br />

186,09<br />

3,85E-02<br />

3,83E-02<br />

3+<br />

5 O Leucoxene<br />

10 · H2O CaT iSiO 5<br />

745,37<br />

196,04<br />

3,80E-02<br />

3,72E-02<br />

Tremolite Ca2M g5Si8O 22(OH) 2 812,37 3,48E-02<br />

Clinozoisite<br />

Crossite<br />

Ca2Al3(SiO 4) 3(OH)<br />

N a2M g2Fe 454,36 3,41E-02<br />

2+ Al2(Si 8O22)(OH) 2 815,09 3,31E-02<br />

Pyrite FeS?2 119,98 3,30E-02<br />

Niter KNO 3 101,10 3,00E-02<br />

Talc M g3Si4O 10(OH) 2 379,27 2,91E-02<br />

Vermiculite M g3Si4O 10(OH) 2 · 2(H2O) 415,30 2,81E-02<br />

Enstatite M g2Si2O 6 200,78 2,78E-02<br />

Anorthite CaAl 2Si2O 8 277,41 2,75E-02<br />

Rutile T iO2 79,88 2,73E-02<br />

Zoisite Ca2Al3Si 3O12(OH) 454,36 2,58E-02<br />

Nitratine<br />

Braunite<br />

N aNO3 M n<br />

84,99 2,52E-02<br />

2+ M n 3+<br />

6 SiO Siderite<br />

12<br />

Fe<br />

604,64 2,45E-02<br />

2+ CO3 115,86 2,41E-02<br />

Graphite C 12,01 2,41E-02<br />

Spessartine M n2+ 3Al2(SiO4)3 495,03 2,36E-02<br />

Anhydrite<br />

Olivine<br />

CaSO 4<br />

M g1.6Fe 136,14 2,36E-02<br />

2+<br />

0.4 (SiO4) C<strong>on</strong>tinued <strong>on</strong> next page . . .<br />

153,31 2,34E-02


94 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

Table 3.5: Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this study. – c<strong>on</strong>tinued from previous page.<br />

Mineral Formula MW Abundance<br />

g/mole mass, %<br />

Hollandite Ba0.8P b0.2N a0.125M n 4+<br />

6 Fe3+ M n2+<br />

1.3 0.5Al Analcime<br />

0.2Si0.1O16 N aAlSi2O6 · (H2O) 848,06<br />

220,15<br />

2,23E-02<br />

2,23E-02<br />

C org C 12,01 2,21E-02<br />

Chromite Fe2+ C r2O4 223,84 1,98E-02<br />

Vesuvianite/<br />

Idocrase<br />

Ca10M g2Al4(SiO 4) 5(Si2O 7) 2(OH) 4 1422,09 1,71E-02<br />

Pyrrhotite Fe2+ S 87,91 1,57E-02<br />

Tephroite M n2+ 2 (SiO Gypsum<br />

4)<br />

CaSO 4 · 2H2O 201,96<br />

158,14<br />

1,27E-02<br />

1,26E-02<br />

Corundum Al2O3 101,96 1,22E-02<br />

Rhodochrosite<br />

Arfveds<strong>on</strong>ite<br />

M nCO3 N a3Fe 114,95 1,09E-02<br />

2+<br />

4 Fe3+ M<strong>on</strong>azite (Ce)<br />

(Si8O22)(OH) 2<br />

Ce0.5 La0.25N d0.2Th 0.05(PO 4)<br />

958,89<br />

240,21<br />

1,05E-02<br />

1,03E-02<br />

Sphalerite ZnS 97,44 9,96E-03<br />

Jadeite N aAl0.9Fe 3+<br />

0.1 (Si Dispersed V<br />

2O6) V<br />

205,03<br />

51,00<br />

9,80E-03<br />

9,71E-03<br />

Pumpellyite Ca2M gAl2(SiO 4)(Si2O7)(OH) 2 · (H2O) 502,25 9,49E-03<br />

Diodochic Rb Rb 85,00 8,30E-03<br />

Arag<strong>on</strong>ite CaCO 3 100,09 7,64E-03<br />

Nepheline N a0.75K0.25Al(SiO 4) 146,08 7,43E-03<br />

Forsterite<br />

Hedenbergite<br />

M g2SiO 4<br />

CaFe<br />

140,69 6,96E-03<br />

2+ Si2O6 248,09 6,82E-03<br />

Chalcopyrite CuFeS 2 183,53 6,64E-03<br />

Phlogopite K M g3AlSi 3O10F(OH) 419,25 6,62E-03<br />

Wi<str<strong>on</strong>g>the</str<strong>on</strong>g>rite<br />

Pentlandite<br />

BaCO 3<br />

Fe<br />

197,34 5,99E-03<br />

2+<br />

4.5N i Cordierite<br />

4.5S8 M g2Al4Si 5O18 771,94<br />

584,95<br />

5,75E-03<br />

5,57E-03<br />

Pyrolusite<br />

Fayalite<br />

M nO2 Fe<br />

86,94 4,90E-03<br />

2+<br />

2 SiO Anatase<br />

4<br />

T iO2 203,78<br />

79,88<br />

4,77E-03<br />

4,46E-03<br />

Francolite<br />

Tourmaline<br />

Ca5(PO 4) 2.63(CO 3) 0.5F1.11 N aFe<br />

501,26 4,35E-03<br />

2+<br />

3 Al Orthite-Ce/ Allanite<br />

6(BO3) 3Si6O 18(OH) 4<br />

Ca1.2Ce 0.4Y0.133Al2Fe 1053,38 4,30E-03<br />

3+ (Si3O12)(OH) 519,03 4,05E-03<br />

Lepidolite K Li2AlSi 4O10F(OH) 388,30 3,99E-03<br />

Gedrite M g5Al2(Si 6Al2O22)(OH) 2 783,97 3,23E-03<br />

Beryl Be3Al 2Si6O 18 537,50 3,22E-03<br />

Pyrophyllite<br />

Rhod<strong>on</strong>ite<br />

Al2Si 4O10(OH) 2<br />

M n<br />

360,31 3,22E-03<br />

2+ SiO3 131,02 3,04E-03<br />

Magnesite<br />

Chloritoid<br />

M gCO 3<br />

Fe<br />

84,31 3,02E-03<br />

2+<br />

1.2M g0.6M n2+ 0.2Al Ilmenorutile<br />

4Si2O 10(OH) 4<br />

T i0.7N b0.15Fe 484,71 3,00E-03<br />

2+<br />

0.225O Ulexite<br />

2<br />

N aCaB 5O9 · 8H2O 92,01<br />

405,23<br />

2,96E-03<br />

2,92E-03<br />

Diadochic Ce Ce 140,00 2,83E-03<br />

Jacobsite M n 2+<br />

0.6Fe2+ 0.3M g0.1Fe 3+ M n3+<br />

1.5 0.5O Clementite<br />

4<br />

Fe<br />

227,38 2,72E-03<br />

2+<br />

3 M g1.5AlFe 3+ Kernite<br />

Si3AlO 12(OH) 6<br />

N a2B4O7 · 4H2O 692,09<br />

290,28<br />

2,64E-03<br />

2,61E-03<br />

Bastnaesite La(CO 3)F<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .<br />

219,12 2,54E-03


Results 95<br />

Table 3.5: Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this study. – c<strong>on</strong>tinued from previous page.<br />

Mineral Formula MW Abundance<br />

g/mole mass, %<br />

Colemanite Ca2B6O11 · 5H2O 411,09 2,46E-03<br />

Sassolite (natural<br />

boric acid)<br />

H3BO 3 61,83 2,22E-03<br />

Cryptomelane K M n 4+<br />

7.5<br />

M n2+<br />

0.5 O 16 707,12 2,19E-03<br />

Murmanite N a 4T i 3.6N b 0.4(Si 2O 7) 2O 4 · 4(H 2O) 773,84 2,15E-03<br />

Anthophyllite M g 7Si 8O 22(OH) 2 780,82 2,09E-03<br />

Grossular Ca 3Al 2(SiO 4) 3 450,45 2,08E-03<br />

Diadochic Ni N i 59,00 1,98E-03<br />

Amblyg<strong>on</strong>ite Li 0.75N a 0.25Al(PO 4)F 0.75(OH) 0.25 151,41 1,95E-03<br />

Diadochic Y Y 89,00 1,86E-03<br />

Scapolite N a 2Ca 2Al 3Si 9O 24Cl 287,93 1,83E-03<br />

Pollucite Cs 0.6N a 0.2Rb 0.1Al 0.9Si 2.1O 6 · (H 2O) 290,16 1,78E-03<br />

Dispersed Ga Ga 70,00 1,76E-03<br />

Dispersed Co Co 59,00 1,73E-03<br />

Spinel M gAl 2O 4 142,27 1,52E-03<br />

Diadochic Nd N d 144,00 1,46E-03<br />

Sapphirine M g 4Al 6.5Si 1.5O 20 689,23 1,40E-03<br />

Dispersed Sc Sc 45,00 1,40E-03<br />

Manganite M nO(OH) 87,94 1,36E-03<br />

Cristobalite SiO 2 60,08 1,24E-03<br />

Fluorite CaF 2 78,07 1,12E-03<br />

Andradite Ca3Fe 2+<br />

2 (SiO4) 3 508,18 9,99E-04<br />

Glaucophane N a2(M g3Al2)Si 8O22(OH) 2 783,54 9,49E-04<br />

Todorokite N a 2M n 4+<br />

4<br />

M n3+<br />

2 O 12 · 3(H 2O) 621,65 8,33E-04<br />

Ferrocolumbite Fe 2+ N b 2O 6 337,66 8,10E-04<br />

Clinohumite M g6.75Fe 2+<br />

2.25 (SiO Pr in M<strong>on</strong>azite<br />

and Bastnasite<br />

4) 4F1.5(OH) 0.5<br />

P r<br />

695,05<br />

141,00<br />

7,64E-04<br />

7,10E-04<br />

Thorite ThSiO 4 324,12 6,91E-04<br />

Galena P bS 239,27 6,67E-04<br />

Marcasite FeS2 119,98 6,29E-04<br />

Kornerupine M g3.5Fe 2+<br />

0.2Al Hf in Zr ores<br />

5.7(SiO 4) 3.7(BO4) 0.3O1.2(OH) H f<br />

649,39<br />

178,00<br />

6,00E-04<br />

5,29E-04<br />

Vaesite<br />

Violarite<br />

N iS2 Fe<br />

122,82 5,20E-04<br />

2+ Humite<br />

N i2S4 M g5.25Fe 301,49 5,20E-04<br />

2+<br />

1.75 (SiO Jarosite<br />

4) 3F1.5(OH) 0.5<br />

K Fe<br />

538,58 5,09E-04<br />

3+<br />

3 (SO Wollast<strong>on</strong>ite<br />

4) 2(OH) 6<br />

CaSiO 3<br />

500,81<br />

116,16<br />

4,79E-04<br />

4,74E-04<br />

Arsenopyrite FeAsS 162,83 4,71E-04<br />

Sm in M<strong>on</strong>azite<br />

and Bastnasite<br />

Sm 150,00 4,69E-04<br />

Kieserite M gSO4 · (H2O) 138,38 4,24E-04<br />

Garnierite N i2M gSi2O 5(OH) 4 345,92 4,10E-04<br />

Euxenite Y0.7Ca 0.2Ce 0.1(Ta0.2) 2(N b0.7) 2(T i0.025)O6 385,10 3,93E-04<br />

Dispersed Dy D y 163,00 3,91E-04<br />

Cubanite CuFe 2S3 271,44 3,62E-04<br />

Dispersed Gd Gd 157,00 3,19E-04<br />

Nickeline N iAs<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .<br />

133,61 2,73E-04


96 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

Table 3.5: Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this study. – c<strong>on</strong>tinued from previous page.<br />

Mineral Formula MW Abundance<br />

g/mole mass, %<br />

Aenigmatite N a2Fe 2+<br />

5 T iSi Scheelite<br />

6O20 CaW O4 861,60<br />

287,93<br />

2,73E-04<br />

2,67E-04<br />

Cassiterite SnO2 150,71 2,61E-04<br />

Carnotite<br />

Vernadite<br />

K2(UO 2) 2(VO 4) 2 · 3H2O M n<br />

902,18 2,52E-04<br />

4+<br />

0.6Fe3+ 0.2Ca Topaz<br />

0.2N a0.1O1.5(OH) 0.5 · 1.4(H2O) Al2(SiO 4)F1.1(OH) 0.9<br />

112,17<br />

182,25<br />

2,45E-04<br />

2,34E-04<br />

Dispersed Er Er 167,00 2,30E-04<br />

Chrysoberyl<br />

Hisingerite<br />

BeAl2O 4<br />

Fe<br />

126,97 2,28E-04<br />

3+<br />

2 Si Covellite<br />

2O5(OH) 4 · 2(H2O) CuS<br />

351,92<br />

95,61<br />

2,20E-04<br />

2,17E-04<br />

Sylvite KCl 74,55 2,05E-04<br />

Yttrialite Y1.5Th 0.5Si2O 7 417,54 1,94E-04<br />

Molybdenite M oS2 160,07 1,83E-04<br />

Yb in m<strong>on</strong>azite Y b 173,00 1,72E-04<br />

Gersdorffite N iAsS 165,68 1,61E-04<br />

Dispersed Br Br 80,00 1,60E-04<br />

Omphacite Ca0.6N a0.4M g0.6Al0.3Fe 2+<br />

0.1Si Brucite<br />

2O6 M g(OH) 2<br />

213,67<br />

58,32<br />

1,60E-04<br />

1,58E-04<br />

Uraninite UO2 270,03 1,51E-04<br />

Azurite Cu3(CO 3) 2(OH) 2 344,67 1,51E-04<br />

Dietzeite Ca2(IO 3) 2(C rO4) 545,96 1,51E-04<br />

Sb in galena Sb 879,29 1,42E-04<br />

Dispersed Ge Ge 73,00 1,41E-04<br />

Bornite Cu5FeS 4 501,84 1,33E-04<br />

Nosean N a8Al6Si 6O24(SO4) 1012,38 1,31E-04<br />

Pyrochlore N a1.5Ca 0.5N b2O6(OH) 0.75F0.25 362,38 1,26E-04<br />

Malachite Cu2(CO 3)(OH) 2 221,12 1,21E-04<br />

Palygorskite M gAlSi 4O10(OH) · 4(H2O) 412,69 1,14E-04<br />

Lautarite Ca(IO 3) 2 389,88 1,08E-04<br />

Dispersed Eu Eu 152,00 1,00E-04<br />

Dispersed Tl T l 204,00 8,98E-05<br />

Hydrosodalite N a8(AlSiO 4) 6(OH) 2 932,00 8,44E-05<br />

Dispersed Ho Ho 165,00 8,30E-05<br />

Gadolinite Y2Fe 2+ Be2(Si 2O10) 569,31 8,05E-05<br />

Phenakite Be2SiO 4 110,11 8,05E-05<br />

Bertrandite Be4Si 2O7(OH) 2 238,23 8,05E-05<br />

Helvine/<br />

Helvite<br />

M n4Be3(SiO 4) 3S 555,10 8,05E-05<br />

Str<strong>on</strong>tianite SrCO 3 147,63 7,88E-05<br />

Dispersed Tb T b 159,00 7,00E-05<br />

Perovskite CaT iO3 135,96 6,94E-05<br />

Tridymite SiO2 60,08 6,30E-05<br />

Cryolite N a3AlF 6 209,94 4,95E-05<br />

Sulphur S8 256,53 4,72E-05<br />

Orpiment As2S3 246,04 4,55E-05<br />

Brookite T iO2 79,88 4,21E-05<br />

Eudialyte N a 4Ca 2Ce 0.5Fe 2+<br />

0.7<br />

M n2+<br />

0.3 Y 0.1Z rSi 8O 22(OH) 1.5Cl 0.5 938,82 4,04E-05<br />

Carnallite K M gCl 3 · 6(H 2O) 277,85 4,03E-05<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Results 97<br />

Table 3.5: Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this study. – c<strong>on</strong>tinued from previous page.<br />

Mineral Formula MW Abundance<br />

g/mole mass, %<br />

Xenotime Y bPO4 268,01 3,70E-05<br />

Daws<strong>on</strong>ite N aAl(CO 3)(OH) 2 144,00 3,62E-05<br />

Wolframite Fe 2+<br />

0.5<br />

M n2+<br />

0.5 (W O 4) 303,24 3,21E-05<br />

Dispersed Lu Lu 175,00 3,10E-05<br />

Dispersed Tm T m 169,00 3,00E-05<br />

Stibnite Sb 2S 3 339,70 2,75E-05<br />

Copper Cu 63,55 2,48E-05<br />

Cerussite<br />

Blomstrandite/<br />

Betafite<br />

P bCO3 U0.3Ca 0.2N b0.9T i0.8Al0.1Fe 267,21 2,21E-05<br />

3+<br />

0.1Ta0.5O6(OH) 413,09 2,05E-05<br />

Sodalite N a8Al6Si 6O24Cl 2 969,21 1,98E-05<br />

Britholite<br />

Ferrotantalite<br />

Ca2.9Ce 0.9Th 0.6 La0.4N d0.2Si2.7P0.5O12(OH) 1.8F0.2 Fe<br />

783,69 1,71E-05<br />

2+ Ta2O6 513,74 1,58E-05<br />

Ramsayite/<br />

Lorenzenite<br />

N a2T i2Si2O 9 341,91 1,24E-05<br />

Anglesite P bSO4 303,26 1,16E-05<br />

Greenockite CdS 144,48 1,16E-05<br />

Ch<strong>on</strong>drodite M g3.75Fe 2+<br />

1.25 (SiO Axinite -Fe<br />

4) 2F1.5(OH) 0.5<br />

Ca2Fe 382,12 1,12E-05<br />

2+ Al2BO 3Si4O 12(OH) 570,12 1,10E-05<br />

Chalcocite Cu2S 159,16 1,09E-05<br />

Zinc Zn 65,39 1,01E-05<br />

Se<br />

ores<br />

in copper Se 79,00 9,00E-06<br />

Loparite (Ce) N a0.6Ce 0.22 La0.11Ca 0.1T i0.8N b0.2O3 168,78 8,13E-06<br />

Bisch<str<strong>on</strong>g>of</str<strong>on</strong>g>ite M gCl 2 · 6(H2O) 203,30 8,06E-06<br />

Smiths<strong>on</strong>ite ZnCO 3 125,40 7,98E-06<br />

Sirtolite<br />

Ple<strong>on</strong>aste/<br />

Magnesi<str<strong>on</strong>g>of</str<strong>on</strong>g>errite<br />

Z rSiO 4<br />

M gFe<br />

183,31 7,37E-06<br />

3+<br />

2 O4 158,04 6,96E-06<br />

Lead P b 207,20 6,32E-06<br />

Bismutite Bi2(CO 3)O2 509,97 6,09E-06<br />

Cinnabar H gS 232,66 5,73E-06<br />

In in ZnS In 115,00 5,61E-06<br />

Arsenolite As2O3 197,84 5,55E-06<br />

Bismuthinite Bi2S3 514,16 5,10E-06<br />

Bismite Bi2O3 465,96 4,62E-06<br />

Tin Sn 118,69 4,59E-06<br />

Cancrinite<br />

Chevkinite<br />

N a6Ca 2Al6Si 6O24(CO 3) 2<br />

Ce1.7 La1.4Ca 0.8Th 0.1Fe<br />

1052,50 4,42E-06<br />

2+<br />

1.8M g0.5T i2.5Fe 3+<br />

0.5Si Bismuth<br />

4O22 Bi<br />

1212,52<br />

208,98<br />

3,35E-06<br />

2,71E-06<br />

Rhabdophane-<br />

Ce<br />

Ce0.75 La0.25(PO 4) · (H2O) 252,80 2,62E-06<br />

Fergus<strong>on</strong>ite N d0.4Ce 0.4Sm0.1Y0.1N bO4 294,57 2,38E-06<br />

Native silver Ag 107,87 2,09E-06<br />

Iotsite FeO 71,80 1,71E-06<br />

Realgar As4S4 106,99 1,50E-06<br />

Pyrargirite Ag3SbS 3 541,55 1,29E-06<br />

Argentite Ag2S C<strong>on</strong>tinued <strong>on</strong> next page . . .<br />

247,80 1,24E-06


98 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

Table 3.5: Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this study. – c<strong>on</strong>tinued from previous page.<br />

Mineral Formula MW Abundance<br />

g/mole mass, %<br />

Baddeleyite Z rO2 123,22 1,20E-06<br />

Uranium- Thorite<br />

ThSiO 4 327,12 1,04E-06<br />

Lavenite N a0.5Ca 0.5M n2+ 0.5Fe2+ 0.5Z r0.8T i0.1 388,58 1,01E-06<br />

N b 0.1(Si 2O 7)O 0.6(OH) 0.3F 0.1<br />

Cobaltite CoAsS 165,92 8,40E-07<br />

Acanthite<br />

Freibergite<br />

Ag2S Ag7.2Cu 3.6Fe<br />

247,80 6,79E-07<br />

2+<br />

1.2Sb Smaltite<br />

3AsS13 CoAs 2<br />

1929,46<br />

125,40<br />

6,79E-07<br />

6,35E-07<br />

Powellite CaM oO4 200,02 6,10E-07<br />

Stephanite Ag5SbS 4 789,36 6,09E-07<br />

Linnaeite Co3S4 305,06 5,15E-07<br />

Microlite N a0.4Ca 1.6Ta2O 6.6(OH) 0.3F0.1 547,81 4,77E-07<br />

Lamprophyllite N a2SrBaT i3Si4O 16(OH)F 818,87 4,59E-07<br />

Te in Cu ores Te 128,00 4,47E-07<br />

Thorianite ThO2 264,04 4,12E-07<br />

Delorenzite/<br />

Tanteuxenite<br />

Y0.7Ca 0.2Ce 0.12(Ta0.7) 2(N b0.2) 2(T i0.1)O5.5(OH) 0.5 480,83 4,00E-07<br />

Miserite<br />

Fahlerz Group:<br />

Tennantite<br />

KCa 2Ce 3Si8O 22(OH) 1.5F0.5 Cu11Fe 1151,28 2,30E-07<br />

2+ As4S13 1471,40 1,82E-07<br />

Metatorbenite Cu(UO 2)2(PO 4)2 · 8(H2O) 937,67 1,69E-07<br />

Moissanite SiC 40,10 1,41E-07<br />

Vivianite Fe3+ 3 (PO Naegite<br />

4) 2 · 8(H2O) Z rSiO 4<br />

501,61<br />

183,31<br />

1,30E-07<br />

1,28E-07<br />

Gold Au 196,97 1,28E-07<br />

Chrysocolla Cu2Si 2O6 · (H2O) 4 351,32 1,25E-07<br />

Troilite FeS 87,91 1,05E-07<br />

Chlorargirite AgCl 143,32 7,83E-08<br />

Metacinnabar H gS 232,66 7,38E-08<br />

Wulfenite P bM oO4 367,14 6,10E-08<br />

Tetrahedrite<br />

Nordite<br />

Cu9Fe 3Sb 4S13 N a2.8M n<br />

1643,31 5,70E-08<br />

2+<br />

0.2Sr Sams<strong>on</strong>ite<br />

0.5Ca 0.5 La0.33Ce 0.6Zn 0.6 M g0.4Si6O 17<br />

Ag4M nSb2S 6<br />

758,57<br />

922,31<br />

5,46E-08<br />

4,87E-08<br />

Pd<br />

ores<br />

in Ni-Cu Pd 106,00 4,51E-08<br />

Cooperite P t0.6Pd 0.3N i0.1S 186,91 3,95E-08<br />

Weinschenkite Y PO4 · 2(H2O) 219,91 3,70E-08<br />

Ru<br />

ores<br />

in Ni-Cu Ru 101,00 3,37E-08<br />

Sylvanite Au0,75Ag0,25Te2 429,89 3,27E-08<br />

Lollingite FeAs2 205,69 2,68E-08<br />

Calaverite AuTe2 452,17 2,58E-08<br />

Pt in Ni-Cu ores P t 195,00 2,47E-08<br />

Rinkolite/<br />

Mosandrite<br />

N a2Ca 3Ce 1.5Y0.5T i0.4N b0.5Z r0.1(Si2O 7) 2O1.5F3.5 922,39 2,07E-08<br />

Dispersed Re Re 186,00 1,98E-08<br />

Tellurite TeO2 C<strong>on</strong>tinued <strong>on</strong> next page . . .<br />

159,60 1,82E-08


Results 99<br />

Table 3.5: Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this study. – c<strong>on</strong>tinued from previous page.<br />

Mineral Formula MW Abundance<br />

g/mole mass, %<br />

Tetradymite Bi2Te 2S 705,23 1,60E-08<br />

Periclase M gO 40,30 1,52E-08<br />

Alunite KAl3(SO 4)2(OH) 6 414,21 9,11E-09<br />

Thortveitite Sc1.5Y0.5Si2O 7 280,05 7,60E-09<br />

Dumortierite Al6.9(BO3)(SiO 4) 3O2.5(OH) 0.5 569,73 7,60E-09<br />

Rh<br />

ores<br />

in Ni-Cu Rh 103,00 6,01E-09<br />

Osmium Os0.75I r0.25 190,71 3,00E-09<br />

Iridium I r0.5Os0.3Ru0.2 173,39 2,61E-09<br />

Polycrase (Y) Y0.5Ca 0.1Ce 0.1U0.1Th 0.1T i1.2N b0.6Ta0.2O6 354,85 8,71E-10<br />

Boulangerite P b5Sb 4S11 1887,90 4,00E-10<br />

I-Platinum P t 195,08 3,00E-10<br />

Polixene/ Tetraferroplatinum<br />

P t Fe 167,00 2,00E-10<br />

Wohlerite N aCa 2Z r0.6N b0.4Si2O 8.4(OH) 0.3F0.3 396,41 5,05E-11<br />

Sum<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

155,2 105,0<br />

3.6.1 Discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

The 10 most abundant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s according to our calculati<strong>on</strong>s are: quartz, albite,<br />

oligoclase, orthoclase, andensine, parag<strong>on</strong>ite, biotite, hydromuscovite, augite, and<br />

hornblende. Grigor’ev’s 10 most abundant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are quartz, oligoclase, orthoclase,<br />

biotite, andesine, albite, calcite, hornblende, labradorite and hydromuscovite.<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> top ten most abundant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Grigor’ev’s model, calcite and labradorite<br />

do not appear in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1 to 10 ranking <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance in our model. They appear in<br />

positi<strong>on</strong>s 20 and 11, respectively. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s parag<strong>on</strong>ite and augite<br />

appearing in our model as most abundant, are in Grigor’ev’s compositi<strong>on</strong> in positi<strong>on</strong>s:<br />

15 and 14. The difference for labradorite in both models is very small, around<br />

17%. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> significant difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calcite in<br />

both models (75%) is because its quantity is fixed by element C. The quantity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carb<strong>on</strong> generated by Grigor’ev’s model in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper <strong>earth</strong>’s crust is much greater<br />

than <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e given by Wedepohl 21 [404] (see table 3.4). According to Grigor’ev’s<br />

compositi<strong>on</strong>, calcite would account for around 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> all carb<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust,<br />

what seems to be very unlikely, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> vast amount <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r important substances<br />

c<strong>on</strong>taining that element 22 . It could also be possible, that Wedepohl’s c<strong>on</strong>centrati<strong>on</strong><br />

21 Rudnick and Gao [292] or McLennan [215] did not provide any number for element C and hence,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> Wedepohl [404] was c<strong>on</strong>sidered.<br />

22 For instance all carb<strong>on</strong>ates.


100 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

for element C was underestimated. In that case, calcite would occupy a more relevant<br />

positi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> ranking <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust, according to our<br />

model.<br />

Parag<strong>on</strong>ite and augite are about 2,5 and 1,5 times more abundant in our model<br />

than in Grigor’ev’s, respectively. This is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>tents are fixed<br />

by elements N a and M g. The discrepancy between both models for M g and N ac<strong>on</strong>taining<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s is explained in <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>.<br />

3.6.2 Discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most relevant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> abundances <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most important <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s for industrial uses<br />

are discussed and compared to Grigor’ev’s analysis. Those are <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gold,<br />

silver, copper, ir<strong>on</strong>, aluminium, titanium, magnesium, calcium, sodium, sulfur, mercury,<br />

zinc, lead and uranium.<br />

The abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> gold obtained in our model is around <strong>on</strong>e order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude<br />

greater than that <str<strong>on</strong>g>of</str<strong>on</strong>g> Grigor’ev’s. As explained in secti<strong>on</strong> 3.4.27, it is widely found as<br />

native gold and in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> tellurides. The number given by Grigor’ev for gold,<br />

would imply that <strong>on</strong>ly 12% <str<strong>on</strong>g>of</str<strong>on</strong>g> Au comes from native gold, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 85% that<br />

we assumed. It is believed that <str<strong>on</strong>g>the</str<strong>on</strong>g> main source <str<strong>on</strong>g>of</str<strong>on</strong>g> element Au is native gold and not<br />

tellurides, and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore we keep <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>s made.<br />

Grigorev’s silver <str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s c<strong>on</strong>centrati<strong>on</strong> are also about <strong>on</strong>e order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude<br />

greater than in our model. It is c<strong>on</strong>sidered, that most important Ag-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

are included in both models. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g>m should be around <strong>on</strong>e order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude greater.<br />

We have assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s for copper c<strong>on</strong>sidered in Grigor’ev’s model are<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> most important and no additi<strong>on</strong>al substances were taken into account. The mass<br />

balance for Cu brought <str<strong>on</strong>g>the</str<strong>on</strong>g> result that <str<strong>on</strong>g>the</str<strong>on</strong>g> Cu-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in our model are<br />

around two orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude greater than in Grigor’ev’s analysis.<br />

A great amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Fe-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s was c<strong>on</strong>sidered in both models. The differences<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g>m are usually less than 25% for <str<strong>on</strong>g>the</str<strong>on</strong>g> oxides and <str<strong>on</strong>g>the</str<strong>on</strong>g> most important<br />

silicates, being <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers given by Grigor’ev greater. For sulfates, Grigorev’s<br />

ir<strong>on</strong>-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are around 50% greater.<br />

The most important Al-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s show a difference between both models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> around 220%, such as for sillimanite or boehmite.<br />

The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T i-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in our model is about 1,5 times greater<br />

than in Grigor’ev’s compositi<strong>on</strong>. Since most important titanium <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s have been<br />

c<strong>on</strong>sidered, <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance for T i indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> values estimated by Grigor’ev<br />

are slightly low.<br />

The difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> main M g and Ca-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in both models<br />

is around 37% and 17% respectively, being <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our study smaller


Results 101<br />

Table 3.6. Crustal abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s according to this and Grigor’ev’s model in<br />

mass % [127]<br />

Mineral This study Grigor’ev [127]<br />

Quartz 56,7 58,8<br />

Plagioclase 18,9 15,6<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>rs 6,5 11,6<br />

Orthoclase 6,3 5,2<br />

Oxides 4,3 3,2<br />

Micas 3,7 2,9<br />

Pyroxene 2,5 1,4<br />

Amphibole 0,6 0,6<br />

Chlorite 0,5 0,7<br />

than in Grigor’ev’s model, since <str<strong>on</strong>g>the</str<strong>on</strong>g> latter overestimated <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> magnesium<br />

and calcium <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, as revealed by <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> ε j, greater than ˆε j.<br />

Sodium-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in our model are around 2,5 times greater than in<br />

Grigor’ev’s analysis for <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s like albite, n<strong>on</strong>tr<strong>on</strong>ite, riebeckite or aegirine, where<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> limiting element is N a, but are around 17% smaller for those <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s that also<br />

c<strong>on</strong>tain Ca. That is <str<strong>on</strong>g>the</str<strong>on</strong>g> case for oligoclase, andesine or labradorite.<br />

The abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in our model differ from Grigor’ev’s study in less<br />

than 50% for native sulfur, gypsum or pyrite, but in two orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude in<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs, such as cinnabar. The differences depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting element that c<strong>on</strong>tain<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> substance. For <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> cinnabar, <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting element is H g and not S. The<br />

discrepancy for <str<strong>on</strong>g>the</str<strong>on</strong>g> latter <str<strong>on</strong>g>mineral</str<strong>on</strong>g> and that for metacinnabar is because <strong>on</strong>ly two<br />

H g-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s were c<strong>on</strong>sidered (<str<strong>on</strong>g>the</str<strong>on</strong>g> most important <strong>on</strong>es).<br />

Zinc-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in our model are more than two orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude<br />

greater than in Grigor’ev’s studies. This is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <strong>on</strong>ly a few zinc <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

were c<strong>on</strong>sidered: sphalerite, smiths<strong>on</strong>ite, nordite and native zinc. Probably,<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc should be taken into account, such as franklinite, hemimorphite<br />

or wurtzite.<br />

We have c<strong>on</strong>sidered <strong>on</strong>ly 6 uranium and 6 lead-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and that might<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong> why <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>centrati<strong>on</strong>s in our model are around <strong>on</strong>e and two orders<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude greater than in Grigor’ev’s study, respectively. As in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc,<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> uranium and lead are likely to be taken into account.<br />

3.6.3 Discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aggregated compositi<strong>on</strong><br />

A comparis<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> aggregated compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust (as<br />

carried out by Wedepohl [402], [403] and Nesbitt and Young [242], table 3.2)<br />

obtained in this and in Grigor’ev’s study, is shown in table 3.6.


102 THE MINERALOGICAL COMPOSITION OF THE UPPER CONTINENTAL CRUST<br />

The most significant differences between <str<strong>on</strong>g>the</str<strong>on</strong>g>se two new models and <str<strong>on</strong>g>the</str<strong>on</strong>g> older <strong>on</strong>es<br />

from Wedepohl and Nesbitt and Young are <str<strong>on</strong>g>the</str<strong>on</strong>g> abundances <str<strong>on</strong>g>of</str<strong>on</strong>g> quartz and plagioclase.<br />

According to <str<strong>on</strong>g>the</str<strong>on</strong>g> recent models, quartz accounts for nearly 60% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper <strong>earth</strong>’s crust. Plagioclase occupies <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d positi<strong>on</strong> in abundance<br />

(representing more than 15%) and not <str<strong>on</strong>g>the</str<strong>on</strong>g> first, like in <str<strong>on</strong>g>the</str<strong>on</strong>g> older models. All four<br />

studies agree in that orthoclase is <str<strong>on</strong>g>the</str<strong>on</strong>g> third group <str<strong>on</strong>g>of</str<strong>on</strong>g> importance, although <str<strong>on</strong>g>the</str<strong>on</strong>g> new<br />

calculated values are significantly lower than <str<strong>on</strong>g>the</str<strong>on</strong>g> older <strong>on</strong>es, especially between<br />

Wedepohl’s and Grigor’ev’s. The relative proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> micas (including biotite and<br />

muscovite) are much lower than in <str<strong>on</strong>g>the</str<strong>on</strong>g> older analysis. The same thing happens to<br />

chlorites, amphiboles and olivine, <str<strong>on</strong>g>the</str<strong>on</strong>g> latter with imperceptible abundance. However<br />

oxides are more abundant in <str<strong>on</strong>g>the</str<strong>on</strong>g> recent models, while <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> pyroxenes<br />

is close to <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Nesbitt and Young.<br />

3.6.4 Drawbacks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model<br />

The first thing to me noted in <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> table 3.5 is that <str<strong>on</strong>g>the</str<strong>on</strong>g> total mass<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust is greater than 100%. As menti<strong>on</strong>ed<br />

above, <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen and hydrogen quantities in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust have been left free. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust given by Rudnick et al. [292], Wedepohl [404]<br />

or McLennan [215], no H or O values are provided. However <str<strong>on</strong>g>the</str<strong>on</strong>g> value for O can<br />

be determined from <str<strong>on</strong>g>the</str<strong>on</strong>g> first two authors, as some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements are given as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

corresp<strong>on</strong>ding oxides. That is <str<strong>on</strong>g>the</str<strong>on</strong>g> case for SiO 2, T iO 2, Al 2O 3, FeO, M nO, M gO,<br />

CaO, N a 2O, K 2O and P 2O 5. The oxygen c<strong>on</strong>centrati<strong>on</strong> resulting from those oxides<br />

gives in Rudnick’s and Wedepohl’s models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust 2, 95 × 10 −2 mole/g. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

model developed in this PhD, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen is 4,8% greater: 3, 10 ×<br />

10 −2 mole/g, while in Grigor’ev’s 0,7% greater: 2, 97 × 10 −2 mole/g. Hence, if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust is right, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an excess <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our model and that <str<strong>on</strong>g>of</str<strong>on</strong>g> Grigor’ev. This oxygen could be in <str<strong>on</strong>g>the</str<strong>on</strong>g> form<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> molecules O 2 or H 2O, which would be in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1, 5 × 10 −2 and<br />

1, 1 × 10 −3 mole/g, respectively. An excess <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen could be attributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s c<strong>on</strong>sidered may not be electr<strong>on</strong>egatively neutral. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, we<br />

have assured <str<strong>on</strong>g>the</str<strong>on</strong>g> neutrality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> charges <str<strong>on</strong>g>of</str<strong>on</strong>g> every <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>sidered. If <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen<br />

quantity is fixed in our model, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> Si c<strong>on</strong>tent is significantly smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>e given by Rudnick: 1, 01×10 −2 instead <str<strong>on</strong>g>of</str<strong>on</strong>g> 1, 10×10 −2 g/mole. With <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s given in table 3.5, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no possible soluti<strong>on</strong> to Eq. 3.2<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen is also fixed. Hence, it seems that <str<strong>on</strong>g>the</str<strong>on</strong>g> problem comes<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical formulae used. It must be pointed out, that many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

given by Grigor’ev do not have a fixed chemical compositi<strong>on</strong>. They represent a<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s with changing c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> certain elements. That is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case for biotite, apatite, phosphate rock, etc. We have tried to take into account an<br />

average chemical formula, given by <str<strong>on</strong>g>the</str<strong>on</strong>g> empirical formula recorded under [172],<br />

but assuring <str<strong>on</strong>g>the</str<strong>on</strong>g> neutrality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> charges and <str<strong>on</strong>g>the</str<strong>on</strong>g> general molecular structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>


Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter 103<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, many different formulas are possible. Therefore, this aspect<br />

should be checked in fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r developments <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r aspect that should be taken into account, is that <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> elements has been assumed to be correct and not <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e<br />

generated by Grigor’ev. The decisi<strong>on</strong> to do so was because <str<strong>on</strong>g>the</str<strong>on</strong>g> first <strong>on</strong>e has been<br />

subject <str<strong>on</strong>g>of</str<strong>on</strong>g> many research studies throughout history, while <str<strong>on</strong>g>the</str<strong>on</strong>g> last <strong>on</strong>e has just begun<br />

to be analyzed. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, in some cases <str<strong>on</strong>g>the</str<strong>on</strong>g> procedure developed in this PhD<br />

could serve as a tool for assuring <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust. The low<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calcite obtained in our model for example, has set <str<strong>on</strong>g>the</str<strong>on</strong>g> alarms for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> C in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust, which might have been underestimated by<br />

Wedepohl.<br />

3.7 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter<br />

In this chapter, a revisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> studies c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust has been carried out. It has been verified, that <str<strong>on</strong>g>the</str<strong>on</strong>g> literature about<br />

this topic is very limited and inaccurate, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> heterogeneity and complexity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <strong>on</strong>e single author, <str<strong>on</strong>g>the</str<strong>on</strong>g> Russian geochemist Grigor’ev has<br />

been very recently <str<strong>on</strong>g>the</str<strong>on</strong>g> first <strong>on</strong>e in giving a comprehensive <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. 3.1, we were able to check <str<strong>on</strong>g>the</str<strong>on</strong>g> satisfacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s proposed by Grigor’ev and <str<strong>on</strong>g>the</str<strong>on</strong>g> better known chemical compositi<strong>on</strong><br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust. The no satisfacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance, lead<br />

us to propose a new compositi<strong>on</strong>, based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Grigor’ev’s semi-empirical analysis.<br />

The methodology used minimizes <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between Grigor’ev’s and our proposed<br />

compositi<strong>on</strong>s under <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>straint <str<strong>on</strong>g>of</str<strong>on</strong>g> assuring chemical coherence with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

average chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> elements. We have<br />

made assumpti<strong>on</strong>s based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> literature for those important <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s not taken<br />

into account in Grigor’ev’s analysis, and included <str<strong>on</strong>g>the</str<strong>on</strong>g>m in our model. As a result,<br />

we have obtained a mean <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust, c<strong>on</strong>sisting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 292 most abundant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

This compositi<strong>on</strong> does not have to be taken as final and closed, since many assumpti<strong>on</strong>s<br />

had to be made. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, it is <str<strong>on</strong>g>the</str<strong>on</strong>g> first step for obtaining a coherent<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust.<br />

In chapters 2 and 3, we have tried to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> as a<br />

whole. From <str<strong>on</strong>g>the</str<strong>on</strong>g> global comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>, <strong>on</strong>ly a few are used by man. The<br />

next chapter is focused <strong>on</strong> describing that part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> useful to man: <str<strong>on</strong>g>the</str<strong>on</strong>g> natural<br />

resources.


4.1 Introducti<strong>on</strong><br />

Chapter 4<br />

The resources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong><br />

In this chapter, a deeper look at <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s comp<strong>on</strong>ents useful to man is undertaken.<br />

For that purpose, a revisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy and n<strong>on</strong>-energy resources is carried out. The<br />

energy resources have been divided into energy coming from <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <strong>earth</strong>, i.e.<br />

nuclear and geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy; tidal energy; and energy coming from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun, including<br />

solar, water, wind, ocean power and hydrocarb<strong>on</strong>s.<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> energy resources, <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources are also studied, stressing out<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir abundance and average crustal c<strong>on</strong>centrati<strong>on</strong>.<br />

4.2 Natural resources: definiti<strong>on</strong>, classificati<strong>on</strong> and early<br />

assessment<br />

A natural resource can be defined as any form <str<strong>on</strong>g>of</str<strong>on</strong>g> matter or energy obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

envir<strong>on</strong>ment that meets human needs. Therefore water, air, oil, biomass or <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

are classified as natural resources. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, Costanza [65], defines <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

natural <str<strong>on</strong>g>capital</str<strong>on</strong>g> as a stock that yields a flow <str<strong>on</strong>g>of</str<strong>on</strong>g> variable goods in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

Natural resources are frequently classified as renewable or n<strong>on</strong>-renewable. Renewable<br />

resources are defined as resources that are regenerated <strong>on</strong> a human time scale.<br />

Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> renewable resources are water, biomass or <str<strong>on</strong>g>the</str<strong>on</strong>g> energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun.<br />

N<strong>on</strong>-renewable resources can be c<strong>on</strong>sidered as a stock that has a regenerati<strong>on</strong> rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> zero over a relatively l<strong>on</strong>g period. That is <str<strong>on</strong>g>the</str<strong>on</strong>g> case for <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s [203].<br />

Minerals can be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r classified as fuel and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources. Fuel resources<br />

are those from which energy can be potentially extracted. That is <str<strong>on</strong>g>the</str<strong>on</strong>g> case<br />

for coal, fuel or uranium. The rest are n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, including c<strong>on</strong>structi<strong>on</strong><br />

materials, metals, etc.<br />

105


106 THE RESOURCES OF THE EARTH<br />

Table 4.1. World energy use in 1984 [130]<br />

Fuel source Current use Proven re- Resources Resource un-<br />

(EJ/y)<br />

serves (EJ) (EJ)<br />

certainty<br />

Coal 97,6 21500 238000 ±20%<br />

Oil 127,3 4300 10000 -30% + 60%<br />

Gas 63,1 3700 10000 -40% + 70%<br />

Uranium 12,6 813 1324 ±50<br />

Tar sands+Oil shale - 550+ 1600+ highly<br />

tainuncer-<br />

Approx. total 300,6 30850+ 260900+<br />

Fluxes (EJ/year) Practical Ultimate potential<br />

Hydro 21,7 100 200 little<br />

taintyuncer-<br />

Biomass 47 80 720 highly<br />

tainuncer-<br />

Wind v. small 30 100 speculative<br />

Photovoltaic v. small infinite infinite rapidly<br />

ing price<br />

reduc-<br />

Geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal 0,1 large large<br />

Approx. total 63,8 210 1020+<br />

Overall total 368,4<br />

An early assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> renewable and n<strong>on</strong>renewable energy resources <strong>on</strong> <strong>earth</strong><br />

was d<strong>on</strong>e by Hall et al. [130] and can be seen in table 4.1.<br />

The degree <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge about resources and technological development has improved<br />

notably since <str<strong>on</strong>g>the</str<strong>on</strong>g> eighties, what has lead to better estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> available<br />

resources <strong>on</strong> <strong>earth</strong>.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers given in table 4.1 are updated and new figures are<br />

provided for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r types <str<strong>on</strong>g>of</str<strong>on</strong>g> resources. The results are summarized in secti<strong>on</strong> 4.7,<br />

table 4.8.<br />

4.3 The energy balance<br />

The sun is <str<strong>on</strong>g>the</str<strong>on</strong>g> main source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy sustaining life <strong>on</strong> <strong>earth</strong>. According to Skinner<br />

[317], [318] <str<strong>on</strong>g>the</str<strong>on</strong>g> sun sends around 17, 3 × 10 16 W <str<strong>on</strong>g>of</str<strong>on</strong>g> power in form <str<strong>on</strong>g>of</str<strong>on</strong>g> shortwavelength<br />

solar radiati<strong>on</strong> towards <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. From this, approximately 30% is directly<br />

reflected by clouds and by <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s surface, but most rays pass through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere, heating <str<strong>on</strong>g>the</str<strong>on</strong>g> layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and causing winds, rains, snowfalls and<br />

ocean currents. These transformati<strong>on</strong>s lead to progressive depreciati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy<br />

quality, and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, to exergy losses. The devaluated energy in form <str<strong>on</strong>g>of</str<strong>on</strong>g> heat is<br />

however sent back to space and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s surface remains in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal balance. One<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> solar radiati<strong>on</strong> is used for photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis and is temporarily stored in <str<strong>on</strong>g>the</str<strong>on</strong>g> bio-


Energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <strong>earth</strong> 107<br />

Short wavelength<br />

solar radiati<strong>on</strong><br />

17,3x10 16 W<br />

Direct reflecti<strong>on</strong><br />

5,2x1016 W<br />

Comm<strong>on</strong><br />

sedimentary rocks<br />

10 26 J<br />

Direct c<strong>on</strong>versi<strong>on</strong> to heat<br />

8,1x1016 W<br />

Evaporati<strong>on</strong> and precipitati<strong>on</strong><br />

4x10 16 W<br />

Recoverable<br />

fossil fuels<br />

2,5x1023 J<br />

Short wavelength<br />

radiati<strong>on</strong><br />

Winds, ocean currents, waves, etc.<br />

0,035x10 16 W<br />

Water<br />

storage<br />

bank<br />

Photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis<br />

Plant<br />

storage<br />

0,004x10 bank<br />

16 W Decay<br />

Organic matter<br />

Thermal energy<br />

1,3x10 27 J to 10<br />

km depth<br />

L<strong>on</strong>g wavelength<br />

radiati<strong>on</strong><br />

C<strong>on</strong>ducti<strong>on</strong> 21x10 12 W<br />

Submarine volcanism<br />

11x1012 W<br />

Sp<strong>on</strong>taneous<br />

nuclear decay<br />

Tidal energy<br />

27,3x10 12<br />

Tides, tidal energy, currents, etc.<br />

2,7x1012 W<br />

Volcanoes, hot springs <strong>on</strong> land<br />

0,3x1012 W<br />

Earth’s <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy<br />

32,3x1012 W<br />

GEOTHERMAL ENERGY<br />

Uranium and<br />

Thorium withing 1<br />

km <str<strong>on</strong>g>of</str<strong>on</strong>g> surface<br />

5x10 29 J<br />

Figure 4.1. Energy flow sheet for <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> [317]<br />

sphere as organic matter and eventually as coal, oil and natural gas. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r small<br />

fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solar-derived energy is stored in water reservoirs such as lakes and<br />

rivers. But <str<strong>on</strong>g>the</str<strong>on</strong>g> sun is not <str<strong>on</strong>g>the</str<strong>on</strong>g> solely source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy <strong>on</strong> <strong>earth</strong>, geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d most powerful source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy, at 23 TW or 0,013 % <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total. This<br />

energy reaches <str<strong>on</strong>g>the</str<strong>on</strong>g> surface in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> volcanoes, hot springs or c<strong>on</strong>ducti<strong>on</strong> and<br />

plays an important role in <str<strong>on</strong>g>the</str<strong>on</strong>g> rock cycle. The third and smallest source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy<br />

<strong>on</strong> <strong>earth</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal energy produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>al potential<br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mo<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s rotati<strong>on</strong>. The transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal energy accounts<br />

for about 3 TW or 0,002 % <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total energy budget. Figure 4.1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

cycle <strong>on</strong> <strong>earth</strong> according to Skinner [317], which was adapted in part from Hubbert<br />

[147].<br />

4.4 Energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <strong>earth</strong><br />

Two different sources <str<strong>on</strong>g>of</str<strong>on</strong>g> energy come from <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <strong>earth</strong>. The first <strong>on</strong>e is geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

energy, which is c<strong>on</strong>sidered as a renewable resource, but it has found less applicability<br />

<strong>on</strong> a global scale. The sec<strong>on</strong>d <strong>on</strong>e is <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-renewable nuclear energy,<br />

coming from <str<strong>on</strong>g>the</str<strong>on</strong>g> mining <str<strong>on</strong>g>of</str<strong>on</strong>g> radioactive <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s found <strong>on</strong> <strong>earth</strong>, mainly from uranium<br />

isotopes. The latter, although socially and politically c<strong>on</strong>troversial c<strong>on</strong>stitutes


108 THE RESOURCES OF THE EARTH<br />

nowadays a key source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy for many countries. Next, both sources <str<strong>on</strong>g>of</str<strong>on</strong>g> energy<br />

will be explained in detail.<br />

4.4.1 The Geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy<br />

The temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s interior increases with depth. The geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal gradient<br />

varies in different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world from 15 to 75 o C/km. The geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

gradient creates obviously a heat flow leading to a heat loss escaping <str<strong>on</strong>g>the</str<strong>on</strong>g> crust. The<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> heat that escapes through <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s surface is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> superpositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> four comp<strong>on</strong>ents [168]:<br />

Q = Q C + Q L + Q B + Q T<br />

(4.1)<br />

where Q B is <str<strong>on</strong>g>the</str<strong>on</strong>g> heat input at <str<strong>on</strong>g>the</str<strong>on</strong>g> base <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lithosphere 1 due to mantle c<strong>on</strong>vecti<strong>on</strong>,<br />

Q T is a l<strong>on</strong>g-term transient due to cooling after a major tect<strong>on</strong>ic or magmatic perturbati<strong>on</strong>,<br />

Q L is <str<strong>on</strong>g>the</str<strong>on</strong>g> radiogenic heat producti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> mantle part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lithosphere,<br />

and Q C is <str<strong>on</strong>g>the</str<strong>on</strong>g> radiogenic heat producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust.<br />

The radiogenic heat producti<strong>on</strong> is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> decay <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> radioactive elements<br />

238 U, 235 U, 232 U and 40 K ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust or in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper mantle. For geological<br />

provinces older than ∼100 milli<strong>on</strong> years, Q L, Q B and Q T are lumped toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

into a single parameter called mantle heat flow Q M. There are different ways to<br />

estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk crustal heat flow <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. Some estimates [251], [7], [104]<br />

are obtained by redistributing <str<strong>on</strong>g>the</str<strong>on</strong>g> heat producing elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk silicate <strong>earth</strong><br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust and various reservoirs in <str<strong>on</strong>g>the</str<strong>on</strong>g> mantle. They require<br />

assumpti<strong>on</strong>s regarding <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vecting mantle, <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reservoirs. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r estimates are based <strong>on</strong> measurements ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

from representative rock types and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir proporti<strong>on</strong>s in crustal columns derived<br />

from geophysical pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles [129], [60], [404], [32] or <strong>on</strong> large-scale producti<strong>on</strong> data<br />

sets [81], [307] [106].<br />

Jaupart [168] suggested to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk crustal heat producti<strong>on</strong> directly from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> heat flow data and local studies <str<strong>on</strong>g>of</str<strong>on</strong>g> crustal structure and estimating <str<strong>on</strong>g>the</str<strong>on</strong>g> mantle<br />

heat flow Q M with different ways. He obtained <str<strong>on</strong>g>the</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> heat producti<strong>on</strong> for<br />

three age groups: Archean, Proterozoic, and Phanerozoic (see table 4.2). The average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heat producti<strong>on</strong> was estimated to be between 0,79 and 0,95 µW m −3 and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

crustal heat flow comp<strong>on</strong>ent ranges from 32 to 38 mW m −2 , c<strong>on</strong>sidering an average<br />

crustal thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 40 km. According to <str<strong>on</strong>g>the</str<strong>on</strong>g>se numbers, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust c<strong>on</strong>tributes<br />

to 5,8 to 6,9 TW to <str<strong>on</strong>g>the</str<strong>on</strong>g> total energy budget <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> 2 . Active provinces<br />

and c<strong>on</strong>tinental margins now represent 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust; 50%<br />

error <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir heat producti<strong>on</strong> would lead to a 15% error in <str<strong>on</strong>g>the</str<strong>on</strong>g> global budget. These<br />

1The lithosphere is <str<strong>on</strong>g>the</str<strong>on</strong>g> rigid str<strong>on</strong>g outer layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>, c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust and upper<br />

mantle, approximately 100 km thick.<br />

2 18 3 For a total volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust <str<strong>on</strong>g>of</str<strong>on</strong>g> 7,3×10 m .


Energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <strong>earth</strong> 109<br />

Table 4.2. Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> bulk c<strong>on</strong>tinental crust heat producti<strong>on</strong> from heat flow data<br />

[168].<br />

Age group Range <str<strong>on</strong>g>of</str<strong>on</strong>g> heat producti<strong>on</strong><br />

µW m−3 Range <str<strong>on</strong>g>of</str<strong>on</strong>g> crustal heat Fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> total c<strong>on</strong>-<br />

flow, mW m−2 tinental surface, %<br />

Archean 0,56-0,73 23-30 9<br />

Proterozoic 0,73-0,90 30-37 56<br />

Phanerozoic 0,95-1,10 37-43 35<br />

Total c<strong>on</strong>tinents 0,79-0,95 32-38<br />

numbers differ from <str<strong>on</strong>g>the</str<strong>on</strong>g> values given by Skinner [317], in which <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flow is estimated<br />

to be 63 mW m −2 or 32,3 TW across <str<strong>on</strong>g>the</str<strong>on</strong>g> entire <strong>earth</strong>’s surface (not <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

crust). It seems though that <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers given by Jaupart are more updated and in<br />

c<strong>on</strong>s<strong>on</strong>ance with <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal studies menti<strong>on</strong>ed before.<br />

Extrapolating Jaupart’s values to <str<strong>on</strong>g>the</str<strong>on</strong>g> entire surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>, would lead to<br />

an average geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy c<strong>on</strong>tributi<strong>on</strong> 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> 17,9 TW.<br />

Geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy c<strong>on</strong>stitutes a renewable source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy. However, its reserves<br />

represent <strong>on</strong>ly a tiny fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal heat. Besides, like tidal energy,<br />

geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy can be important locally but will be minor <strong>on</strong> a global scale. According<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> Renewables Global Status Report [208], <str<strong>on</strong>g>the</str<strong>on</strong>g> 2005 worldwide geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

capacity was 28 GWth for direct <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal use and 9,3 GW for electricity producti<strong>on</strong>.<br />

The Geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal Energy Associati<strong>on</strong> [109] reports that geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal resources<br />

using today’s technology have <str<strong>on</strong>g>the</str<strong>on</strong>g> potential to support between 35.448 and 72.392<br />

MW <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical generati<strong>on</strong> capacity. Using enhanced technology currently under<br />

development (permeability enhancement, drilling improvements), <str<strong>on</strong>g>the</str<strong>on</strong>g> geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

resources could support between 65.576 and 138.131 MW <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical generati<strong>on</strong><br />

capacity. Assuming a 90% availability factor, which is well within <str<strong>on</strong>g>the</str<strong>on</strong>g> range experienced<br />

by geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal power plants, this electric capacity could produce as much as<br />

1, 09 × 10 9 MWh <str<strong>on</strong>g>of</str<strong>on</strong>g> electricity annually (124 GW) (Table 4.8). Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

values need to be taken with precauti<strong>on</strong>, until <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS submits its geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

energy report updating <str<strong>on</strong>g>the</str<strong>on</strong>g>se numbers.<br />

4.4.2 Nuclear energy<br />

Nuclear energy derives from <str<strong>on</strong>g>the</str<strong>on</strong>g> huge binding force <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleus <str<strong>on</strong>g>of</str<strong>on</strong>g> elements. Theoretically,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re are two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> processes that can release nuclear energy: fusi<strong>on</strong><br />

and fissi<strong>on</strong>.<br />

Fusi<strong>on</strong> c<strong>on</strong>sists in binding light elements, such as hydrogen and lithium, and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby<br />

forming heavier elements. This is <str<strong>on</strong>g>the</str<strong>on</strong>g> process that goes <strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> sun. Fusi<strong>on</strong> has not<br />

yet been achieved in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory under c<strong>on</strong>diti<strong>on</strong>s such that <str<strong>on</strong>g>the</str<strong>on</strong>g> energy produced<br />

3 For a total surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 5,12×10 14 m 2


110 THE RESOURCES OF THE EARTH<br />

exceeds <str<strong>on</strong>g>the</str<strong>on</strong>g> energy used. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, many scientists believe that it might be <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> future energy supply. Hermann [138] estimated <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy reservoir<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> fusi<strong>on</strong> cycle between deuterium (coming from <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean) and tritium (bred<br />

from an isotope <str<strong>on</strong>g>of</str<strong>on</strong>g> lithium) as around 74 Ttoe. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, if deuterium, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

isotope <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 in every 5000 hydrogen atoms, is fused with ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r deuterium nucleus<br />

at higher temperatures, <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting resource c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean is <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> order<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 milli<strong>on</strong> YJ.<br />

Fissi<strong>on</strong> nuclear energy is produced during c<strong>on</strong>trolled transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable radioactive<br />

isotopes, when neutr<strong>on</strong>s are fired into <str<strong>on</strong>g>the</str<strong>on</strong>g> nucleus, making <str<strong>on</strong>g>the</str<strong>on</strong>g> atoms<br />

unstable and subject to sp<strong>on</strong>taneous disintegrati<strong>on</strong>. Uranium is <str<strong>on</strong>g>the</str<strong>on</strong>g> crucial fissi<strong>on</strong><br />

energy raw material due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that as mined it c<strong>on</strong>tains 0,71% <str<strong>on</strong>g>of</str<strong>on</strong>g> 235 U (<str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>ly naturally occurring fissi<strong>on</strong>able atom). Thorium, beryllium, lithium and zirc<strong>on</strong>ium<br />

are o<str<strong>on</strong>g>the</str<strong>on</strong>g>r low-demand raw materials with potential or specific uses in nuclear<br />

power producti<strong>on</strong> [71]. When 235 U undergoes fissi<strong>on</strong>, it releases heat and forms<br />

new elements and ejects some neutr<strong>on</strong>s from its nucleus. These neutr<strong>on</strong>s are <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

used to induce more 235 U to fissi<strong>on</strong>. According to Skinner [317], <strong>on</strong>ce separated<br />

235 U from 238 U (an energy intensive process), <str<strong>on</strong>g>the</str<strong>on</strong>g> disintegrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a single atom releases<br />

3, 2×10 −11 J; because <strong>on</strong>e gram <str<strong>on</strong>g>of</str<strong>on</strong>g> 235 U c<strong>on</strong>tains 2, 56×10 21 atoms, fissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a gram <str<strong>on</strong>g>of</str<strong>on</strong>g> uranium produces 8, 19 × 10 10 J (equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> energy released when<br />

2,7 metric t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coal are burned). Eq. 4.2 shows a representative fissi<strong>on</strong> process<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 235 U.<br />

1<br />

0n +235<br />

92 U →137<br />

37 Cs +95<br />

37 Rb + 3n + 3, 2 × 10−11J (4.2)<br />

Estimated uranium resources in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust amounted in year 1986 to<br />

3.457 kt<strong>on</strong> [317] (see table 4.3), representing an exergy reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> 2, 8×10 14 GJ or<br />

6.741 Gtoe. More recent estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> uranium sources indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g>se amount<br />

to about 13 Mt according to Grubler [128] and 14,8 Mt according to <str<strong>on</strong>g>the</str<strong>on</strong>g> OECD<br />

[247], which represent an exergy reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> around 23.800 and 27.100 Gtoe, respectively.<br />

With current state <str<strong>on</strong>g>of</str<strong>on</strong>g> technology, which makes use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly 0,7% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

natural fuel in a “<strong>on</strong>ce-through” fuel cycle, <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves would last <strong>on</strong>ly a few hundred<br />

years (174 Gtoe). With fast spectrum reactors operated in a “closed” fuel cycle<br />

by reprocessing <str<strong>on</strong>g>the</str<strong>on</strong>g> spent fuel and extracting <str<strong>on</strong>g>the</str<strong>on</strong>g> un-utilized uranium and plut<strong>on</strong>ium<br />

produced, <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> natural uranium may exceed 5.200 Gtoe (Table 4.8).<br />

However, if advanced breeder reactors could be designed in <str<strong>on</strong>g>the</str<strong>on</strong>g> future to efficiently<br />

utilize recycled or depleted uranium and all actinides, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> natural<br />

uranium may be extended to several thousand years at current c<strong>on</strong>sumpti<strong>on</strong> levels<br />

[249].<br />

Additi<strong>on</strong>ally, Hermann [138], estimated <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> thorium as around<br />

7.500 Gtoe and <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater uranium as around 8.350 Ttoe.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> year <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006, 6% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s primary energy c<strong>on</strong>sumpti<strong>on</strong> was<br />

derived from nuclear power plants (see figure 4.4), and amounted to 635,5 Mtoe. In


Tidal energy 111<br />

Table 4.3. Estimated uranium resources in ores rich enough to be mined for use<br />

in 235 U power plants [317], toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with estimated rates <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> for 2005<br />

according to <str<strong>on</strong>g>the</str<strong>on</strong>g> BGS [139]. Data reported as kt<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> metal c<strong>on</strong>tent. No distincti<strong>on</strong>s<br />

are drawn between reserves and resources, and no data for resources are reported<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> former URSS countries.<br />

Country Reas<strong>on</strong>ably assured Producti<strong>on</strong> rate in<br />

resources, kt<strong>on</strong> 2005, kt<strong>on</strong><br />

Australia 1357 9,516<br />

USA 758 1,034<br />

Rep. Of South Africa 332 0,674<br />

Canada 199 11,627<br />

Niger 136 3,093<br />

Namibia 113 3,08<br />

France 47 -<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r 516 12,876<br />

Total 3457 42<br />

France, more than half <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> electrical power comes from nuclear plants and in<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r European countries and Japan, <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong> is high too. Nuclear power capacity<br />

forecasts out to 2030 vary between 279 - 740 GWe when proposed new plants and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> decommissi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> old plants are both c<strong>on</strong>sidered [163]. Nuclear energy has<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> advantage against fossil fuels that it does not emit greenhouse gases and its<br />

reserves are greater (see table 4.3). Some renowned scientists such as Lovelock<br />

[200] claim that: “<str<strong>on</strong>g>the</str<strong>on</strong>g>re is no alternative but nuclear fissi<strong>on</strong> energy until fusi<strong>on</strong><br />

energy and sensible forms <str<strong>on</strong>g>of</str<strong>on</strong>g> renewable energy arrive as a truly l<strong>on</strong>g-term provider”.<br />

However, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r problems are associated with nuclear energy. The isotopes used in<br />

power plants are <str<strong>on</strong>g>the</str<strong>on</strong>g> same used in atomic weap<strong>on</strong>s, so a political problem exists. The<br />

possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> a power plant failing in some unexpected way creates a safety problem<br />

as it happened in <str<strong>on</strong>g>the</str<strong>on</strong>g> Chernobyl disaster in 1986. Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g> safe burial<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dangerous radioactive waste matter must be faced, since some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> waste matter<br />

will retain dangerous levels <str<strong>on</strong>g>of</str<strong>on</strong>g> radioactivity for thousand years.<br />

4.5 Tidal energy<br />

Tidal energy is <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy <strong>on</strong> <strong>earth</strong>. Tides result from <str<strong>on</strong>g>the</str<strong>on</strong>g> gravitati<strong>on</strong>al<br />

attracti<strong>on</strong> exerted up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> mo<strong>on</strong> and to a lesser extent by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sun [346]. As <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> spins <strong>on</strong> its axis, <str<strong>on</strong>g>the</str<strong>on</strong>g> bulges move and produce two high<br />

and two low tides everywhere each day. Tidal heights are not uniform everywhere.<br />

They rarely exceed a meter in <str<strong>on</strong>g>the</str<strong>on</strong>g> deep ocean, but over c<strong>on</strong>tinental shelves, <str<strong>on</strong>g>the</str<strong>on</strong>g>y may<br />

reach 20 meters. Movement <str<strong>on</strong>g>of</str<strong>on</strong>g> such vast masses <str<strong>on</strong>g>of</str<strong>on</strong>g> water requires a great deal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

exergy, which is estimated to be 2,7 TW. Through a year, this amounts to 0, 85×10 20<br />

J, according to Skinner [317].


112 THE RESOURCES OF THE EARTH<br />

Tidal electricity generati<strong>on</strong> involves <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a barrage across a delta, estuaries,<br />

beaches, or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r places that are affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> tides. Like in a hydraulic<br />

power plant, normal turbines will produce electricity as <str<strong>on</strong>g>the</str<strong>on</strong>g> water flows out. However,<br />

tidal stati<strong>on</strong>s differ from hydraulic <strong>on</strong>es in <str<strong>on</strong>g>the</str<strong>on</strong>g> two-dimensi<strong>on</strong>al flow. They<br />

are able to produce electricity when both water enters <str<strong>on</strong>g>the</str<strong>on</strong>g> basin and when it leaves<br />

[54]. Tidal energy provides a n<strong>on</strong>-polluting and inexhaustible supply <str<strong>on</strong>g>of</str<strong>on</strong>g> energy and<br />

assures <str<strong>on</strong>g>the</str<strong>on</strong>g> regularity <str<strong>on</strong>g>of</str<strong>on</strong>g> power producti<strong>on</strong> from year to year with less than 5% annual<br />

variati<strong>on</strong>. The specific tidal exergy is about 10 kJ for each m 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> reservoir and<br />

each meter <str<strong>on</strong>g>of</str<strong>on</strong>g> height difference, according to Hermann [138]. The high <str<strong>on</strong>g>capital</str<strong>on</strong>g> cost<br />

for c<strong>on</strong>structi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> potential sites (about 20) are its main<br />

drawbacks. Tidal heights <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 meters or more and easily dammed bays or estuaries<br />

are needed in order for tidal plants to operate effectively. To date, relatively few<br />

tidal power plants have been c<strong>on</strong>structed. Of <str<strong>on</strong>g>the</str<strong>on</strong>g>se, <str<strong>on</strong>g>the</str<strong>on</strong>g> oldest and by far <str<strong>on</strong>g>the</str<strong>on</strong>g> largest<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> La Rance 240 megawatt barrage located near St. Malo, in Brittany, Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn<br />

France. The worldwide tidal power producti<strong>on</strong> is about 300 MW [208]. Tidal<br />

projects worldwide have been estimated to have a potential energy output <str<strong>on</strong>g>of</str<strong>on</strong>g> around<br />

166 GW, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> World Energy Council.<br />

4.6 Energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun<br />

According to Skinner [317], solar radiati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> largest energy input <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>,<br />

accounting for about 99,985 % <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total. From <str<strong>on</strong>g>the</str<strong>on</strong>g> 173.000 TW <str<strong>on</strong>g>of</str<strong>on</strong>g> incoming solar<br />

radiati<strong>on</strong>, about 30% is directly reflected unchanged, back into space, by <str<strong>on</strong>g>the</str<strong>on</strong>g> clouds,<br />

sea, c<strong>on</strong>tinents, and ice and snow. Around 350 TW are used for causing winds,<br />

ocean currents, waves, etc. Evaporati<strong>on</strong> and precipitati<strong>on</strong> use approximately 4.000<br />

TW <str<strong>on</strong>g>of</str<strong>on</strong>g> sun’s energy, which will lead to <str<strong>on</strong>g>the</str<strong>on</strong>g> storage <str<strong>on</strong>g>of</str<strong>on</strong>g> water and ice. Only 40 TW<br />

are effectively used in <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis, leading to <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

biomass and eventually <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels.<br />

4.6.1 Solar power<br />

The exergy flow <str<strong>on</strong>g>of</str<strong>on</strong>g> solar radiati<strong>on</strong> heating <str<strong>on</strong>g>the</str<strong>on</strong>g> land and oceans amounts to 43.200<br />

TW (Szargut [337]), that is about three thousand times more than <str<strong>on</strong>g>the</str<strong>on</strong>g> present power<br />

needs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> whole world: 14 TW in 2006 and 17 TW in 2010. Energy supplied by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sun in <strong>on</strong>e minute is enough to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> global power need for <strong>on</strong>e year (Khan<br />

[184]). Unfortunately, technology is not developed enough to make use <str<strong>on</strong>g>of</str<strong>on</strong>g> this huge<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy provided directly by <str<strong>on</strong>g>the</str<strong>on</strong>g> sun.<br />

Solar power density at <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s surface is 125-375 W/m 2 and an average photovoltaic<br />

panel, with 15% efficiency, may deliver 15-60 W/m 2 . But solar cell c<strong>on</strong>versi<strong>on</strong><br />

efficiency has increased from 6% in 1954 to 40% in 2006 and thus <str<strong>on</strong>g>the</str<strong>on</strong>g> size<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> solar power stati<strong>on</strong>s has exp<strong>on</strong>entially increased form 500 kW in 1977 to more<br />

than 3 GW in 2005 [208]. Electricity generated directly by utilizing solar phot<strong>on</strong>s to


Energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun 113<br />

create free electr<strong>on</strong>s in a PV cell is estimated to have a technical potential <str<strong>on</strong>g>of</str<strong>on</strong>g> at least<br />

450.000 TWh/year or around 51 TW [170], [297] (Table 4.8).<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> direct use <str<strong>on</strong>g>of</str<strong>on</strong>g> solar radiati<strong>on</strong> through photovoltaic panels, solar<br />

heating collectors use <str<strong>on</strong>g>the</str<strong>on</strong>g> sun’s energy to heat water. Solar <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal power capacity<br />

was 88 GWth in 2005 [208] and is expected to increase dramatically due to new<br />

building regulati<strong>on</strong>s, especially in Europe 4 .<br />

Additi<strong>on</strong>ally, promising experiences with c<strong>on</strong>centrating solar <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal power plants<br />

(CSP) show that this technology could be an alternative way <str<strong>on</strong>g>of</str<strong>on</strong>g> producing clean<br />

electricity from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun. In CSPs, <str<strong>on</strong>g>the</str<strong>on</strong>g> solar flux is c<strong>on</strong>centrated by parabolic troughshaped<br />

mirror reflectors (30 - 100 suns c<strong>on</strong>centrati<strong>on</strong>), central tower receivers requiring<br />

numerous heliostats (500 - 1000 suns), or parabolic dish-shaped reflectors<br />

(1000 - 10.000 suns) to heat a working fluid, which in turn transfers <str<strong>on</strong>g>the</str<strong>on</strong>g> heat to a<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal power c<strong>on</strong>versi<strong>on</strong> system. According to Philibert [261], 1 km 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> land sited<br />

at lower latitudes in areas receiving high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> direct insolati<strong>on</strong>, such as desserts<br />

is enough to generate around 125 GWh/year from a 50 MW plant at 10% c<strong>on</strong>versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> solar energy to electricity. Thus about 1% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s desert areas (240.000<br />

km 2 ), if linked to demand centers by high voltage DC cables, could in <str<strong>on</strong>g>the</str<strong>on</strong>g>ory be<br />

sufficient to meet total global electricity demand as forecast out to 2030. Installed<br />

capacity is 354 MWe from nine plants in California. New projects totalling over 1400<br />

MW are being c<strong>on</strong>structed in different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world [208]. Technical potential<br />

estimates for global CSP vary widely from 630 GWe installed by 2040 [10] to 4700<br />

GWe by 2030 [149] (Table 4.8).<br />

4.6.2 Water power<br />

About 23% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> incoming solar radiati<strong>on</strong> (around 40 PW) is <str<strong>on</strong>g>the</str<strong>on</strong>g> driving force <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hydrologic cycle, which is a c<strong>on</strong>ceptual model that describes <str<strong>on</strong>g>the</str<strong>on</strong>g> storage and movement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> water between <str<strong>on</strong>g>the</str<strong>on</strong>g> biosphere, atmosphere, lithosphere and <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere<br />

(see figure 4.2). About 320.000 km 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> water are evaporated each year form <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oceans, while evaporati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> land (including lakes and streams) c<strong>on</strong>tributes<br />

to 60.000 km 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> water. Of this total, about 284.000 km 3 fall back to <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining 96.000 km 3 fall <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s land surface. Since 60.000 km 3<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> water evaporate from <str<strong>on</strong>g>the</str<strong>on</strong>g> land, 36.000 km 3 <str<strong>on</strong>g>of</str<strong>on</strong>g> water remain to erode <str<strong>on</strong>g>the</str<strong>on</strong>g> land<br />

during <str<strong>on</strong>g>the</str<strong>on</strong>g> journey back to <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans [346].<br />

According to Szargut [337], <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy flow used for <str<strong>on</strong>g>the</str<strong>on</strong>g> evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water is<br />

around 38.100 TW. This exergy is transformed into <str<strong>on</strong>g>the</str<strong>on</strong>g> potential exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> clouds<br />

(300 TW) and <strong>on</strong>ly a small part (5 TW) is transformed into <str<strong>on</strong>g>the</str<strong>on</strong>g> potential exergy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rivers. Additi<strong>on</strong>ally, he calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh water reaching <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

land with <str<strong>on</strong>g>the</str<strong>on</strong>g> rain and snow as about 6 TW. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> total water power is 11 TW,<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g> potential and chemical exergy comp<strong>on</strong>ents are summed (Table 4.8). Valero et<br />

4 See <str<strong>on</strong>g>the</str<strong>on</strong>g> Directive 2002/91/EC <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy performance <str<strong>on</strong>g>of</str<strong>on</strong>g> buildings.


114 THE RESOURCES OF THE EARTH<br />

al. [371] calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy replacement costs <str<strong>on</strong>g>of</str<strong>on</strong>g> renewable water resources and<br />

world’s ice sheets 5 c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemical and potential comp<strong>on</strong>ents as between<br />

3.592 and 53.304 Mtoe/year for freshwater and 3, 84 × 10 8 and 7.210 × 10 9 Mtoe<br />

for ice sheets.<br />

Humans use <strong>on</strong>ly part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> renewable exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> water. That is <str<strong>on</strong>g>the</str<strong>on</strong>g> potential exergy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rivers in form <str<strong>on</strong>g>of</str<strong>on</strong>g> hydropower. The chemical and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> freshwater<br />

in rivers or ice sheets cannot be transformed into useful energy yet, at least with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

current state <str<strong>on</strong>g>of</str<strong>on</strong>g> technology.<br />

Hydropower is <str<strong>on</strong>g>the</str<strong>on</strong>g> most highly developed renewable energy resource. The power<br />

present in water that runs <str<strong>on</strong>g>of</str<strong>on</strong>g>f c<strong>on</strong>tinents was calculated in 1962 as 2,9 TW [317].<br />

The Internati<strong>on</strong>al Water Power & Dam C<strong>on</strong>structi<strong>on</strong> (IWP&DC) classified and calculated<br />

more recently <str<strong>on</strong>g>the</str<strong>on</strong>g> world hydroelectric potentials according to <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

criteria [166]:<br />

• Gross Hydroelectric Potential: <str<strong>on</strong>g>the</str<strong>on</strong>g> hydroelectric potential <str<strong>on</strong>g>of</str<strong>on</strong>g> a country if all<br />

its water flows were turbined until sea level or to <str<strong>on</strong>g>the</str<strong>on</strong>g> country borders (if <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

flow c<strong>on</strong>tinues into o<str<strong>on</strong>g>the</str<strong>on</strong>g>r countries) under 100% system efficiency. It has been<br />

estimated as 4.200 GW.<br />

• Technically Useful Hydroelectric Potential: <str<strong>on</strong>g>the</str<strong>on</strong>g> hydroelectric energy obtained<br />

from all <str<strong>on</strong>g>the</str<strong>on</strong>g> exploitable or exploited places under existing technological limits,<br />

without taking into account envir<strong>on</strong>mental, ec<strong>on</strong>omic or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r restricti<strong>on</strong>s. It<br />

has been estimated as 1.800 GW (Table 4.8).<br />

• Ec<strong>on</strong>omically Exploitable Hydroelectric Potential: part <str<strong>on</strong>g>of</str<strong>on</strong>g> technically feasible<br />

potential that can be or that has been developed under <str<strong>on</strong>g>the</str<strong>on</strong>g> local ec<strong>on</strong>omic<br />

c<strong>on</strong>diti<strong>on</strong>s and in a competitive way with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r energy supply sources. Some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> places that can be exploited ec<strong>on</strong>omically can have restricti<strong>on</strong>s from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental point <str<strong>on</strong>g>of</str<strong>on</strong>g> view. N<strong>on</strong>e<str<strong>on</strong>g>the</str<strong>on</strong>g>less, this limitati<strong>on</strong> is not taken into<br />

account when determining this potential. It has been estimated as around<br />

1.200 GW.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006, worldwide hydropower c<strong>on</strong>sumpti<strong>on</strong> was 688,1 Mtoe, accounting<br />

for about 6% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total energy c<strong>on</strong>sumpti<strong>on</strong> [35].<br />

4.6.3 Wind power<br />

According to Skinner [317], around 350 TW <str<strong>on</strong>g>of</str<strong>on</strong>g> solar energy is used for driving winds<br />

and ocean waves. Wind is horiz<strong>on</strong>tal air movement arising from differences in air<br />

pressure created by <str<strong>on</strong>g>the</str<strong>on</strong>g> uneven heating <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. It always flows from a<br />

5 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> replacement costs are defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> energy required by <str<strong>on</strong>g>the</str<strong>on</strong>g> best available technologies to<br />

return a resource to <str<strong>on</strong>g>the</str<strong>on</strong>g> same c<strong>on</strong>diti<strong>on</strong>s as it was delivered by <str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystem(s).


Energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun 115<br />

Figure 4.2. The hydrologic cycle. Source: http://www.ec.gc.ca/water (Envir<strong>on</strong>ment<br />

Canada)<br />

place <str<strong>on</strong>g>of</str<strong>on</strong>g> high pressure to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> low pressure. Wind’s speed and directi<strong>on</strong> are also<br />

affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> Coriolis effect 6 and fricti<strong>on</strong> occurring between wind and solid objects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> any kind such as <str<strong>on</strong>g>the</str<strong>on</strong>g> ground, trees, etc. Most places around <str<strong>on</strong>g>the</str<strong>on</strong>g> world have wind<br />

speeds that average between 10 and 30 km/h [318]. The average global wind speed<br />

at 50 m is 6,6 m/s (23,7 km/h) [240] and with an exergy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> about 336<br />

W /m 2 perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g> wind directi<strong>on</strong>, according to Hermann [138].<br />

Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total global wind power are very large (<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 15 W) but<br />

much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> power is in high altitude winds and is not recoverable by devices <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

land surface [317]. Global wind power generated at locati<strong>on</strong>s with mean annual<br />

wind speeds ≥ 6,9 m/s at 80 m is found to be ∼ 72 TW [9]. A technical potential<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 72 TW installed global capacity at 20% average capacity factor would generate<br />

126.000 TWh/yr or around 14,5 TW (Table 4.8). In 2005, <str<strong>on</strong>g>the</str<strong>on</strong>g> existing exergy power<br />

capacity worldwide was 59 GW [208].<br />

4.6.4 Ocean power<br />

The sun is resp<strong>on</strong>sible for three effects occurring in <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans: an ocean <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

gradient, from which <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy could be eventually extracted; <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmohaline<br />

circulati<strong>on</strong>, which is in part caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal gradient and causing vast<br />

6 The Coriolis effect is <str<strong>on</strong>g>the</str<strong>on</strong>g> deviati<strong>on</strong> from a straight line in <str<strong>on</strong>g>the</str<strong>on</strong>g> path <str<strong>on</strong>g>of</str<strong>on</strong>g> a moving body due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong>’s rotati<strong>on</strong>.


116 THE RESOURCES OF THE EARTH<br />

volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> water to move around <str<strong>on</strong>g>the</str<strong>on</strong>g> globe; and ocean waves, indirectly generated<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> sun through blowing <str<strong>on</strong>g>of</str<strong>on</strong>g> winds.<br />

4.6.4.1 Ocean <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal gradient<br />

The sun heats <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean, generating a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal gradient that varies<br />

from around 22 ◦ C to 2 ◦ C in <str<strong>on</strong>g>the</str<strong>on</strong>g> deep ocean. This temperature difference gives<br />

a specific exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> about 800 J/kg seawater [138]. C<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oceans equal to 1, 37 × 10 23 kg, this gives an absolute exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> 1, 13 × 10 8 Gtoe<br />

(Table 4.8). Theoretically, this <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal gradient could be used for drawing energy<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> small temperature difference involved makes ocean<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal power to be unpracticable with current technology and no commercial plant<br />

exists. However, if this source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy would be used with an efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> less than<br />

1%, <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean’s <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy potential would exceed <str<strong>on</strong>g>the</str<strong>on</strong>g> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels<br />

[317].<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> oceans is <str<strong>on</strong>g>the</str<strong>on</strong>g> so called <str<strong>on</strong>g>the</str<strong>on</strong>g>rmohaline<br />

circulati<strong>on</strong> (THC) or “<str<strong>on</strong>g>the</str<strong>on</strong>g> great ocean c<strong>on</strong>veyor belt” [40]. This global ocean circulati<strong>on</strong><br />

is driven by density differences, which depend <strong>on</strong> temperature and salinity. The<br />

salinity and temperature differences arise from heating/cooling at <str<strong>on</strong>g>the</str<strong>on</strong>g> sea surface<br />

and from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface freshwater fluxes (evaporati<strong>on</strong> and sea ice formati<strong>on</strong> enhance<br />

salinity; precipitati<strong>on</strong>, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f and ice-melt decrease salinity). It transports enormous<br />

volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> cold, salty water from <str<strong>on</strong>g>the</str<strong>on</strong>g> North Atlantic to <str<strong>on</strong>g>the</str<strong>on</strong>g> Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Pacific, and<br />

brings warmer, fresher water in return.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> North Atlantic warm and salty water that has been transported north from<br />

tropical regi<strong>on</strong>s is cooled, forming frozen water without salts, and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby, increasing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> salinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining, unfrozen water. The dense, saline waters drop to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> floor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean. This water begins a great circuit through <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s oceans<br />

(see <str<strong>on</strong>g>the</str<strong>on</strong>g> path <str<strong>on</strong>g>of</str<strong>on</strong>g> this circuit in fig. 4.3). In <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific, <str<strong>on</strong>g>the</str<strong>on</strong>g> current mixes with warmer<br />

water, where it undergoes upwelling and warming <strong>on</strong>ce again. When this warmer,<br />

saltier water reaches again <str<strong>on</strong>g>the</str<strong>on</strong>g> high nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn latitudes, it chills, and eventually becomes<br />

North Atlantic deep water, completing <str<strong>on</strong>g>the</str<strong>on</strong>g> circuit.<br />

The volume transport <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> overturning circulati<strong>on</strong> at 24 N has been estimated<br />

from hydrographic secti<strong>on</strong> data as around 17 × 10 16 m 3 /s [286], its heat transport<br />

as 1.200 TW. The heat transport was estimated as well by Munk et al. [235] as<br />

2.000 TW. The corresp<strong>on</strong>ding exergy flow assuming a difference <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 K is about<br />

100 TW transferred to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal gradient [138]. Unfortunately, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is currently<br />

no energy-c<strong>on</strong>versi<strong>on</strong> technology <str<strong>on</strong>g>of</str<strong>on</strong>g> this nature.<br />

The climatic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> THC is still to some extent under discussi<strong>on</strong>, and is due to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> heat transport <str<strong>on</strong>g>of</str<strong>on</strong>g> this circulati<strong>on</strong> [274]. This amount <str<strong>on</strong>g>of</str<strong>on</strong>g> heat transported into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn North Atlantic (north <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 N) should warm this regi<strong>on</strong> by around 5 o C (<str<strong>on</strong>g>the</str<strong>on</strong>g><br />

difference sea surface temperature in <str<strong>on</strong>g>the</str<strong>on</strong>g> North Atlantic as compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> North<br />

Pacific at similar latitudes). Global surface air temperatures show that over <str<strong>on</strong>g>the</str<strong>on</strong>g> three


Energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun 117<br />

Figure 4.3. A simplified summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> path <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Thermohaline Ocean Circulati<strong>on</strong><br />

[274]<br />

main deep water formati<strong>on</strong> regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world ocean, air temperatures are warmer<br />

by up to around 10 o C compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> latitudinal mean.<br />

The c<strong>on</strong>cerns about <str<strong>on</strong>g>the</str<strong>on</strong>g> possible collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> THC through <str<strong>on</strong>g>the</str<strong>on</strong>g> anthropogenic<br />

greenhouse effect have increased recently. When <str<strong>on</strong>g>the</str<strong>on</strong>g> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> haline forcing<br />

increases due to excess precipitati<strong>on</strong>, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, or ice melt, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>veyor belt will<br />

weaken or even shut down. The variability in <str<strong>on</strong>g>the</str<strong>on</strong>g> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>veyor belt will<br />

lead to climate change in Europe (decreasing <str<strong>on</strong>g>the</str<strong>on</strong>g> temperatures down to 9 o C) and it<br />

could also influence o<str<strong>on</strong>g>the</str<strong>on</strong>g>r areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> global ocean.<br />

4.6.4.2 Ocean Waves<br />

Waves are ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solar energy. They are formed from winds blowing<br />

over <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean, and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir energy c<strong>on</strong>tent is many thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> times greater than<br />

that in tides. The momentum to currents and surface gravity waves transferred by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> wind is estimated as 60 TW [396], but <str<strong>on</strong>g>the</str<strong>on</strong>g> wave breaking and internal fricti<strong>on</strong><br />

reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> wave exergy flow to 3 TW breaking <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s coast [138]. For<br />

example, a single wave that is 1,8 meters high and moving in water 9 meters deep<br />

generates around 10 kW for each meter <str<strong>on</strong>g>of</str<strong>on</strong>g> wave fr<strong>on</strong>t [317]. Different wave energy<br />

c<strong>on</strong>versi<strong>on</strong> schemes have been developed, but n<strong>on</strong>e are currently in large-scale use.<br />

The <strong>on</strong>ly two commercial wave power projects total 750 kW [163].


118 THE RESOURCES OF THE EARTH<br />

Table 4.4. Specific exergy <strong>on</strong> a dry basis <str<strong>on</strong>g>of</str<strong>on</strong>g> representative biomass samples [138]<br />

Biomass type <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> (dry),<br />

MJ/kg<br />

Eucalyptus 19,9<br />

Poplar 19,2<br />

Corn stover 18,2<br />

Bagasse 17,8<br />

Water hyacinth 15,2<br />

Brown kelp 10,9<br />

The best wave energy climates have deep water power densities <str<strong>on</strong>g>of</str<strong>on</strong>g> 60-70 kW/m but<br />

fall to about 20 kW/m at <str<strong>on</strong>g>the</str<strong>on</strong>g> foreshore. Around 2% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s 800.000 km <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coastline exceeds 30kW/m giving a technical potential <str<strong>on</strong>g>of</str<strong>on</strong>g> around 500 GW assuming<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f-shore wave energy devices have 40% efficiency [163].<br />

4.6.5 Biomass<br />

Plants depend <strong>on</strong> sunlight <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis and hence biomass is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r expressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> solar power. The radiati<strong>on</strong> flow absorbed by <str<strong>on</strong>g>the</str<strong>on</strong>g> vegetati<strong>on</strong> has an energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

about 40 TW according to Skinner [317] and an exergy about 37 TW, according to<br />

Szargut [337].<br />

Biomass is a term used for plant and animal derived material and includes wood,<br />

energy crops, crop residues and animal dung. It c<strong>on</strong>sists mostly <str<strong>on</strong>g>of</str<strong>on</strong>g> cellulose, lignin,<br />

protein and ash. Specific exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass ranges form 15 to 20 MJ/kg <strong>on</strong> a dry<br />

basis depending <strong>on</strong> carb<strong>on</strong> and ash c<strong>on</strong>tent. Woody biomass tends to have a higher<br />

carb<strong>on</strong> c<strong>on</strong>tent, as opposed to marine biomass [138] (see table 4.4).<br />

The photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>verting solar energy into energy-rich organic<br />

compounds averages around 1%. And <strong>on</strong>ly 2,5 TW <str<strong>on</strong>g>of</str<strong>on</strong>g> energy and 2,9 TW <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy is<br />

transformed into <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> plants [337]. Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dry weight <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all living plant matter <strong>on</strong> <strong>earth</strong>’s land surface vary but average about 2×10 12 metric<br />

t<strong>on</strong>s [317]. C<strong>on</strong>sidering a specific exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> 17 MJ/kg, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>tent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dry biomass <strong>on</strong> <strong>earth</strong> is around 810 Gtoe 7 The <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical biomass potential was<br />

estimated by Johanss<strong>on</strong> [170] as around 92 TW, what implies an available exergy<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> 70 Gtoe each year (Table 4.8).<br />

Humans own about 16 TW <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> land productivity. From <str<strong>on</strong>g>the</str<strong>on</strong>g>se, about 5 TW c<strong>on</strong>tributes<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,5 TW in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> wood fuel and around 0,2 TW<br />

goes into <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 GW <str<strong>on</strong>g>of</str<strong>on</strong>g> ethanol [138]. The world biomass producti<strong>on</strong><br />

energy potential vary greatly depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>s taken into account. Fult<strong>on</strong><br />

and Howes [98] compiled <str<strong>on</strong>g>the</str<strong>on</strong>g> different estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> world biomass producti<strong>on</strong>.<br />

7 This number represents <str<strong>on</strong>g>the</str<strong>on</strong>g> total exergy we could extract from biomass, if it were not renewable.


Energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun 119<br />

The IPCC [161] estimates a raw biomass energy potential <str<strong>on</strong>g>of</str<strong>on</strong>g> 10,4 Gtoe/year (14<br />

TW) and a liquid bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels energy potential <str<strong>on</strong>g>of</str<strong>on</strong>g> 3,6 Gtoe/year (4,8 TW), while Moreira<br />

[229] 31,2 Gtoe/year (41,5 TW) and 10,8 Gtoe/year (14,4 TW), respectively<br />

(Table 4.8).<br />

4.6.6 Fossil fuels<br />

Fossil fuels represent <str<strong>on</strong>g>the</str<strong>on</strong>g> remains <str<strong>on</strong>g>of</str<strong>on</strong>g> plants or animals that ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red <str<strong>on</strong>g>the</str<strong>on</strong>g>ir energy<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> years ago and c<strong>on</strong>stitute reservoirs <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical exergy.<br />

Around 40 GW <str<strong>on</strong>g>of</str<strong>on</strong>g> biological matter are buried under sediments and will eventually<br />

form fossil fuels [26]. Like <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are n<strong>on</strong>renewable resources,<br />

since <str<strong>on</strong>g>the</str<strong>on</strong>g>y cannot be replenished at least in our lifetime. The main commercial types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels are coal, oil and natural gas. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r unc<strong>on</strong>venti<strong>on</strong>al fossil fuels include<br />

tight gas sands, coal bed methane, clathrate hydrates, shale and heavy oil and tar<br />

sands, but no commercial way <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong> has been discovered yet.<br />

The specific exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels vary with <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong> c<strong>on</strong>tent and <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> inert comp<strong>on</strong>ents. Different authors such as Shieh and Fan [310] or Stepanov<br />

[330] have derived expressi<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels. In many cases,<br />

especially for substances c<strong>on</strong>taining mainly C, H, O and N, <str<strong>on</strong>g>the</str<strong>on</strong>g> High Heating Value<br />

(HHV) is essentially identical to <str<strong>on</strong>g>the</str<strong>on</strong>g> specific exergy.<br />

Fossil fuels are by far <str<strong>on</strong>g>the</str<strong>on</strong>g> most important sources <str<strong>on</strong>g>of</str<strong>on</strong>g> energy nowadays, accounting for<br />

87,8% <str<strong>on</strong>g>of</str<strong>on</strong>g> world energy c<strong>on</strong>sumpti<strong>on</strong>. Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels reached at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2006 over 9.500 Mtoe [35]. The remaining 12% is distributed at almost equal rates<br />

into nuclear and hydroelectrical power. See figure 4.4 for <str<strong>on</strong>g>the</str<strong>on</strong>g> world distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

energy c<strong>on</strong>sumpti<strong>on</strong>.<br />

4.6.6.1 Coal<br />

Coal is a sedimentary and metamorphic rock. It is formed from plants that grew in<br />

ancient swamps. The remains <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plants accumulated in a n<strong>on</strong>oxidizing envir<strong>on</strong>ment<br />

and were eventually buried by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r sediments, usually sand or mud, which are<br />

now <str<strong>on</strong>g>the</str<strong>on</strong>g> sandst<strong>on</strong>e and shale typically associated with coal beds. The coal deposits<br />

start <str<strong>on</strong>g>of</str<strong>on</strong>g>f as organic materials made chiefly <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>, oxygen and hydrogen. With<br />

rising <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature and pressure, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> burial <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposits, <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrogen<br />

and oxygen are gradually lost [195].<br />

In additi<strong>on</strong> to carb<strong>on</strong>, oxygen and hydrogen, coal c<strong>on</strong>tains many o<str<strong>on</strong>g>the</str<strong>on</strong>g>r elements in<br />

small amounts. Sulfur is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its most comm<strong>on</strong> impurities, making coal a dangerous<br />

pollutant <str<strong>on</strong>g>of</str<strong>on</strong>g> air and water. Table 4.5 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> ASTM D388 coal-rank classificati<strong>on</strong><br />

according to <str<strong>on</strong>g>the</str<strong>on</strong>g> high heating value (HHV). Coal’s specific exergy varies from<br />

about 20 to 30 MJ/kg [138], although some low-carb<strong>on</strong> coals such as lignites may<br />

have specific exergies as low as 15 MJ/kg.


120 THE RESOURCES OF THE EARTH<br />

Coal; 3090,1;<br />

28%<br />

Oil; 3889,8; 36%<br />

Nuclear Energy;<br />

688,1; 6%<br />

Natural Gas;<br />

2574,9; 24%<br />

Hydroelectric;<br />

688,1; 6%<br />

Figure 4.4. Primary world energy c<strong>on</strong>sumpti<strong>on</strong> by fuel type at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006.<br />

Values in Mtoe [35].<br />

Coal accounts for about 28% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy c<strong>on</strong>sumpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> world. World proved 8<br />

reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> coal at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006 were estimated by British Petroleum [35] to<br />

be 909.064 milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> t<strong>on</strong>s (see figure 4.5) and by <str<strong>on</strong>g>the</str<strong>on</strong>g> WEC [401], 847.488 Mt.<br />

C<strong>on</strong>sidering an average heating value <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 MJ/kg, <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s coal proven reserves<br />

are about 523 Gtoe, taking <str<strong>on</strong>g>the</str<strong>on</strong>g> average reserves given by BP and <str<strong>on</strong>g>the</str<strong>on</strong>g> WEC. The exact<br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coal reserves will be calculated later in chapter 6.<br />

The WEC [401] estimates additi<strong>on</strong>al resources amount in place as around 1770<br />

Mt<strong>on</strong>s or 1100 Gtoe. From <str<strong>on</strong>g>the</str<strong>on</strong>g>se, additi<strong>on</strong>al recoverable reserves are estimated at<br />

180 Mt<strong>on</strong>s or 110 Gtoe.<br />

Unlike oil or natural gas, coal is more evenly distributed worldwide and c<strong>on</strong>sumpti<strong>on</strong><br />

and producti<strong>on</strong> rates are ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r equilibrated (see figure 4.6). At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006,<br />

world coal c<strong>on</strong>sumpti<strong>on</strong> was 3.090,1 Mtoe [35]. The demand for coal is expected<br />

to more than double by 2030 and <str<strong>on</strong>g>the</str<strong>on</strong>g> IEA has estimated that more than 4.500 GW<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> new power plants (half in developing countries) will be required in this period<br />

[150].<br />

8 Proved reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> coal - Generally taken to be those quantities that geological and engineering<br />

informati<strong>on</strong> indicates with reas<strong>on</strong>able certainty can be recovered in <str<strong>on</strong>g>the</str<strong>on</strong>g> future from known deposits<br />

under existing ec<strong>on</strong>omic and operating c<strong>on</strong>diti<strong>on</strong>s.


Energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun 121<br />

Table 4.5. Rank <str<strong>on</strong>g>of</str<strong>on</strong>g> coal according to <str<strong>on</strong>g>the</str<strong>on</strong>g> norm ASTM D388.<br />

Class rank Fix carb<strong>on</strong> limits Volatile limits HHV Limits, MJ/kg<br />

≥ < ≥ < ≥ <<br />

Anthracite<br />

Anthracite 98 2<br />

Meta-anthracite 92 98 2 8<br />

Semianthracite 86 92 8 14<br />

Bituminous<br />

Low-volatile 78 86 14 22<br />

Medium volatile 69 78 22 31<br />

High-volatile A - 69 31 - 32,56<br />

High-volatile B 30,24 32,56<br />

High-volatile C 26,75 30,24<br />

Subbituminous<br />

Subbituminous A 24,42 26,75<br />

Subbituminous B 22,1 24,42<br />

Subbituminous C 19,31 22,1<br />

Lignite<br />

Lignite A 14,65 19,31<br />

Lignite B 14,65<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r young form <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, peat, (partially decayed plant matter toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s)<br />

has been used as a fuel for thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> years and is still in use, particularly<br />

in Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Europe. The reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> peat have not been estimated but are very large.<br />

4.6.6.2 Oil and natural gas<br />

Oil and natural gas have proved to be ec<strong>on</strong>omical, efficient and relative clean fuels.<br />

As a result, by 1950, <str<strong>on</strong>g>the</str<strong>on</strong>g>y had overtaken coal as <str<strong>on</strong>g>the</str<strong>on</strong>g> primary source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy.<br />

Almost without excepti<strong>on</strong>, petroleum and natural gas are associated with sedimentary<br />

rocks <str<strong>on</strong>g>of</str<strong>on</strong>g> marine origin. Both are mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrocarb<strong>on</strong> compounds (composed<br />

largely <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen and carb<strong>on</strong>) with minor amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> sulphur, nitrogen and<br />

oxygen. Hydrocarb<strong>on</strong> producti<strong>on</strong> takes place in two stages [195]. First, biological,<br />

chemical and physical processes begin to break down <str<strong>on</strong>g>the</str<strong>on</strong>g> organic matter into<br />

what is called kerogen, a precursor <str<strong>on</strong>g>of</str<strong>on</strong>g> oil and gas. The sec<strong>on</strong>d stage is marked by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> kerogen to hydrocarb<strong>on</strong>s as <str<strong>on</strong>g>the</str<strong>on</strong>g> deposit is buried deeper<br />

by younger, overlying sediments. The producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrocarb<strong>on</strong>s begins at a temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> about 50 to 60 o C and a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 to 2,5 km. Hydrocarb<strong>on</strong> formati<strong>on</strong><br />

c<strong>on</strong>tinues to depths <str<strong>on</strong>g>of</str<strong>on</strong>g> 6 to 7 km and temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 to 250 o C. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oil<br />

dominates in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower range <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature and burial and gas in <str<strong>on</strong>g>the</str<strong>on</strong>g> higher range.<br />

The British standard BS2869:1998 classifies fuel oil into six classes according to its<br />

boiling temperature, compositi<strong>on</strong> and purpose. No. 1 and No. 2 are referred to as<br />

distillate fuel oils, while No. 4, No. 5 and No. 6 are labelled residual fuel oils. In


122 THE RESOURCES OF THE EARTH<br />

Figure 4.5. Coal proved reserves at <str<strong>on</strong>g>the</str<strong>on</strong>g> end 2006. Values in thousand milli<strong>on</strong>s t<strong>on</strong>nes<br />

(share <str<strong>on</strong>g>of</str<strong>on</strong>g> anthracite and bituminous coal in brackets) [35].<br />

Table 4.6. Rank <str<strong>on</strong>g>of</str<strong>on</strong>g> oil according to <str<strong>on</strong>g>the</str<strong>on</strong>g> British standard BS2869:1998<br />

Class rank No. 1 No. 2 No. 4 No .5 No. 6<br />

Density (kg/l) 0,824 0,864 0,927 0,952 1<br />

Residual carb<strong>on</strong> (%) Traces Traces 2,5 5 12<br />

Sulphur (%) 0,1 0,4-0,7 0,4-1,5 2,0 max. 2,8 max.<br />

Oxygen and Nitrogen (%) 0,2 0,2 0,48 0,7 0,92<br />

Hydrogen (%) 13,2 12,7 11,9 11,7 10,5<br />

Carb<strong>on</strong> (%) 86,5 86,4 86,1 85,55 85,7<br />

Water and sediments (%) Traces Traces 0,5 max. 1,0 max. 2,0 max.<br />

Ashes (%) Traces Traces 0,02 0,05 0,08<br />

HHV (kJ/kg) 46.365 45.509 43.920 43.353 42.467<br />

a more commercial sense: No. 1 fuel oil is kerosene; No. 2 is diesel oil and No. 4,<br />

5 and 6 are heavy fuel oils. Table 4.6 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong>, density and<br />

high heating value <str<strong>on</strong>g>of</str<strong>on</strong>g> classes 1, 2, 4, 5 and 6. Low molecular weight petroleum has<br />

an exergy c<strong>on</strong>tent between 40 to 46 MJ/kg. Higher molecular weight petroleum and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> hydrocarb<strong>on</strong> porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inorganic mixtures have a chemical exergy close to<br />

40 MJ/kg [138].<br />

Natural gas c<strong>on</strong>sists primarily <str<strong>on</strong>g>of</str<strong>on</strong>g> methane but including significant quantities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ethane, butane, propane, carb<strong>on</strong> dioxide, nitrogen, helium and hydrogen sulfide.


Energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun 123<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Mtoe<br />

Total North<br />

America<br />

Total S. &<br />

Cent.<br />

America<br />

Total Europe<br />

& Eurasia<br />

Total Middle<br />

East<br />

Coal: Producti<strong>on</strong> Coal: C<strong>on</strong>sumpti<strong>on</strong><br />

Total Africa Total Asia<br />

Pacific<br />

Figure 4.6. Coal producti<strong>on</strong> and c<strong>on</strong>sumpti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006. Elaborated from<br />

data included in [35].<br />

Table 4.7. Physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> different compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas [34]<br />

Compositi<strong>on</strong> Density HHV<br />

CO 2 N 2 H 2S CH 4 C 2H 6 C 3H 8 C 4H 10 C 5H 12 kg/N m 3 kJ/N m 3 kJ/kg<br />

5,5 - 7 77,7 5,5 2,4 1,18 0,63 0,9 39.575 43.915<br />

3,51 32 0,5 52,5 3,7 2,2 2,02 3,44 1,06 32.600 30.750<br />

26,2 0,7 - 59,2 13,9 - - - 1,08 31.668 29.261<br />

0,17 87,7 - 10,5 1,6 - - - 1,14 5.073 2.552<br />

0,2 0,6 - 99,2 - - - - 0,72 37.524 52.126<br />

- 0,6 - - 79,4 20 - - 1,41 72.176 51.079<br />

- 0,5 - - 21,8 77,7 - - 1,77 89.110 50.049<br />

The main properties <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas are listed in table 4.7. The specific exergy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural gas is around 50 MJ/kg [138].<br />

Oil accounts for 36% <str<strong>on</strong>g>of</str<strong>on</strong>g> world energy c<strong>on</strong>sumpti<strong>on</strong>, while natural gas for about 24%.<br />

World proved reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> oil and gas are much smaller than those <str<strong>on</strong>g>of</str<strong>on</strong>g> coal. At <str<strong>on</strong>g>the</str<strong>on</strong>g> end<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 2006, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were estimated as 1.208,2 thousand milli<strong>on</strong> barrels or 164,8 Gt<strong>on</strong>s<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> gas 181,46 trilli<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cubic meters or 163,4 Gtoe, c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong><br />

factor given in <str<strong>on</strong>g>the</str<strong>on</strong>g> BP report [35] (see figures 4.7 and 4.9).


124 THE RESOURCES OF THE EARTH<br />

In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> explorati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> oil industry is relatively mature and <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al<br />

reserves that remain to be discovered is unclear. The general and ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

pessimistic believe c<strong>on</strong>cerning oil discoveries is that few new oil fields are being<br />

discovered, and that most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> increases in reserves results from revisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> underestimated<br />

existing reserves (Ivanhoe and Leckie [165], Laherre [190], Campbell<br />

[45] or Hatfield [133]). The optimistic views appeal to improvements in technology,<br />

such as 3D seismic surveys and extended reach (e.g. horiz<strong>on</strong>tal) drilling, that<br />

have improved recovery rates from existing reservoirs and made pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itable <str<strong>on</strong>g>the</str<strong>on</strong>g> development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fields previously regarded as unec<strong>on</strong>omic (Smith and Robins<strong>on</strong> [324]).<br />

Masters et al. [211] reflect <str<strong>on</strong>g>the</str<strong>on</strong>g> current state <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge as to <str<strong>on</strong>g>the</str<strong>on</strong>g> uncertainties in<br />

future potentials for c<strong>on</strong>venti<strong>on</strong>al oil resources. These estimates assess in additi<strong>on</strong><br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al oil reserves a corresp<strong>on</strong>ding range <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>ally recoverable<br />

resources between 38 and 141 Gtoe.<br />

Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> gas reserves and resources are being revised c<strong>on</strong>tinuously. The Internati<strong>on</strong>al<br />

Gas Uni<strong>on</strong> (IGU) estimates that additi<strong>on</strong>al reserves, including gas yet to be<br />

discovered could be as high as 200 Gtoe [156]. Gregory and Rogner [123] suggest<br />

an optimistic estimate for ultimately recoverable reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al 500 Gtoe .<br />

World major oil suppliers are by far middle-east countries. Except <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m, south<br />

and central America and Africa, <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world is a net importer <str<strong>on</strong>g>of</str<strong>on</strong>g> oil, even if<br />

some countries like north America produce c<strong>on</strong>siderable amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resource as<br />

well (see figure 4.8). Oil world c<strong>on</strong>sumpti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006 was 3889,8 Mt<strong>on</strong>s<br />

[35].<br />

Major natural gas c<strong>on</strong>sumers in <str<strong>on</strong>g>the</str<strong>on</strong>g> world are Asian-Pacific countries, and most part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> it has to be imported. The largest producers in <str<strong>on</strong>g>the</str<strong>on</strong>g> world are <str<strong>on</strong>g>the</str<strong>on</strong>g> Russian federati<strong>on</strong>,<br />

followed by north America, Iran, Norway and Algeria (see figure 4.10). Natural<br />

gas world c<strong>on</strong>sumpti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006 was 2574,9 Mtoe [35].<br />

4.6.6.3 Unc<strong>on</strong>venti<strong>on</strong>al fossil fuels<br />

Besides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fossil fuels menti<strong>on</strong>ed before, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a great quantity and variety <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

unc<strong>on</strong>venti<strong>on</strong>al fossil fuel resources, not <strong>on</strong> a large-scale commercially recoverable.<br />

Oil that requires extra processing such as from shales, heavy oils, and oil (tar) sands,<br />

is classified as unc<strong>on</strong>venti<strong>on</strong>al. Toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>tributed around 3% <str<strong>on</strong>g>of</str<strong>on</strong>g> world oil producti<strong>on</strong><br />

in 2005 (66 Mtoe) and could reach 110 Mtoe by 2020 [230] and up to 140 Mtoe<br />

by 2030 [151]. Resource estimates are uncertain but could have a potential <str<strong>on</strong>g>of</str<strong>on</strong>g> over<br />

830 Gtoe [163].<br />

Methane stored in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> geologically complex, unc<strong>on</strong>venti<strong>on</strong>al reservoirs, such<br />

as tight gas sands, fractured shales, coal beds and hydrates, is even more abundant<br />

than c<strong>on</strong>venti<strong>on</strong>al gas. Worldwide coal bed methane may be larger than 190,5 Gtoe<br />

but a scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g> basic informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> gas c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> coal resources makes this<br />

number highly speculative [163]. A similar quantity is estimated to be in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g>


Energy from <str<strong>on</strong>g>the</str<strong>on</strong>g> sun 125<br />

Figure 4.7. Oil proved reserves at <str<strong>on</strong>g>the</str<strong>on</strong>g> end 2006. Values in thousand milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

barrels [35].<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Mtoe<br />

Total North<br />

America<br />

Total S. &<br />

Cent.<br />

America<br />

Total Europe<br />

& Eurasia<br />

Total Middle<br />

East<br />

Oil: Producti<strong>on</strong> Oil: C<strong>on</strong>sumpti<strong>on</strong><br />

Total Africa Total Asia<br />

Pacific<br />

Figure 4.8. Oil producti<strong>on</strong> and c<strong>on</strong>sumpti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006. Elaborated from<br />

data included in [35].


126 THE RESOURCES OF THE EARTH<br />

Figure 4.9. Natural gas proved reserves at <str<strong>on</strong>g>the</str<strong>on</strong>g> end 2006. Values in trilli<strong>on</strong> cubic<br />

meters [35].<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Mtoe<br />

Total North<br />

America<br />

Total S. &<br />

Cent.<br />

America<br />

Total Europe<br />

& Eurasia<br />

Total Middle<br />

East<br />

Total Africa Total Asia<br />

Pacific<br />

Natural Gas: Producti<strong>on</strong> Natural Gas: C<strong>on</strong>sumpti<strong>on</strong><br />

Figure 4.10. Natural gas producti<strong>on</strong> and c<strong>on</strong>sumpti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006. Elaborated<br />

from data included in [35].


Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> energy resources 127<br />

tight sands. Methane clathrate is a solid form <str<strong>on</strong>g>of</str<strong>on</strong>g> water that c<strong>on</strong>tains a large amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> methane within its crystal structure. It is usually found in vast quantities under<br />

sediments <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean floor. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC [160], technologies to recover<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se resources ec<strong>on</strong>omically could be developed in <str<strong>on</strong>g>the</str<strong>on</strong>g> future, if demand for natural<br />

gas c<strong>on</strong>tinues to grow in <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>ger run, in which case gas resource availability would<br />

increase enormously. The reserves are estimated by <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS [360] to be greater<br />

than 1.400 Gtoe.<br />

The great drawback <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> unc<strong>on</strong>venti<strong>on</strong>al fuels is <str<strong>on</strong>g>the</str<strong>on</strong>g> elevated quantity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

energy required for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir extracti<strong>on</strong>. The refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> oil shale for instance, needs<br />

two or three times more energy than <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al fuel oil. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> associated envir<strong>on</strong>mental footprint is huge, since usually vast forest<br />

areas need to be destroyed and <str<strong>on</strong>g>the</str<strong>on</strong>g> important amount <str<strong>on</strong>g>of</str<strong>on</strong>g> water used and emissi<strong>on</strong>s<br />

produced threatens <str<strong>on</strong>g>the</str<strong>on</strong>g> biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surroundings.<br />

4.7 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> energy resources<br />

Table 4.8 summarizes <str<strong>on</strong>g>the</str<strong>on</strong>g> results discussed in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous secti<strong>on</strong>s. It shows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

available energy, potential energy use and current energy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> most important<br />

energy resources <strong>on</strong> <strong>earth</strong>. With potential energy, we mean probable energy<br />

capacity using advanced technology, not necessarily developed nowadays. C<strong>on</strong>sumpti<strong>on</strong><br />

values are referred to <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006, except for geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal, PV, wind, biomass<br />

and tidal energy, which are 2005 values.<br />

It must be pointed out that <str<strong>on</strong>g>the</str<strong>on</strong>g> data must be still c<strong>on</strong>sidered as an approximati<strong>on</strong><br />

and in any case, it might increase, as technology allows to make a more efficient use<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resources and to exploit n<strong>on</strong> currently recoverable fuels.<br />

The detailed analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results will be carried out in chapter 6, when all resources,<br />

including n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are assessed with <str<strong>on</strong>g>the</str<strong>on</strong>g> same unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining type <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources will be studied. Namely,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources.<br />

4.8 N<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources<br />

In additi<strong>on</strong> to energy resources, n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r kind <str<strong>on</strong>g>of</str<strong>on</strong>g> resources<br />

essential for civilizati<strong>on</strong>. The quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <strong>on</strong> <strong>earth</strong> is finite and hence <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

are classified as n<strong>on</strong>-renewable. The physical and chemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

are directly influenced by <str<strong>on</strong>g>the</str<strong>on</strong>g> two major energy sources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>: <str<strong>on</strong>g>the</str<strong>on</strong>g> sun and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal power. They are resp<strong>on</strong>sible for <str<strong>on</strong>g>the</str<strong>on</strong>g> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> materials from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong>’s interior, to <str<strong>on</strong>g>the</str<strong>on</strong>g> crust, from <str<strong>on</strong>g>the</str<strong>on</strong>g>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> sea or to rivers through currents and<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> sea to form rocks in <str<strong>on</strong>g>the</str<strong>on</strong>g> so called geochemical cycle. The resulting dynamic<br />

equilibrium is called <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemical balance [68].


128 THE RESOURCES OF THE EARTH<br />

Table 4.8. Available energy, potential energy use and current c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural<br />

resources <strong>on</strong> <strong>earth</strong>.<br />

Resource Available energy Potential energy Current energy<br />

use<br />

c<strong>on</strong>sumpti<strong>on</strong><br />

Geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal 17,9 TW 59 - 124 GWe 9,3 GWe / 28<br />

Uranium - fissi<strong>on</strong> 27.100 Gtoe 5.200 Gtoe<br />

GWth<br />

635,5 Mtoe<br />

Thorium - fissi<strong>on</strong> 7.500 Gtoe - -<br />

Deutorium + Tritium (fusi<strong>on</strong>) 74 Ttoe - -<br />

Tidal power 2,7 TW 166 GW 300 MW<br />

Solar PV 43,2 PW 51,4 TW 3 GWe<br />

Solar <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal power 43,2 PW 630 - 4700 GWe 354 MWe<br />

Water power 11 TW 1.800 GW 688,1 Mtoe<br />

Wind power 1000 TW 14,5 TW 59 GW<br />

Ocean <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal gradient 1, 4 × 108 Gtoe - -<br />

Ocean c<strong>on</strong>veyor belt 1.200 - 2.000 TW - -<br />

Ocean waves 3 TW 500 GW 750 kW<br />

Biomass 92 TW 19 - 56 TW 1,7 TW<br />

Coal 1615 Gtoe 523 Gtoe 3090 Mtoe<br />

Natural gas 365-665 Gtoe 163,4 Gtoe 2574,9 Mtoe<br />

Oil 200-300 Gt<strong>on</strong> 164,8 Gt<strong>on</strong> 3889,8 Mt<strong>on</strong><br />

Unc<strong>on</strong>venti<strong>on</strong>al fuels ∼ 2600 Gtoe - 66 Mtoe<br />

In chapter 3 we obtained an estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> average <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> crust. The figures given in table 3.3 show <str<strong>on</strong>g>the</str<strong>on</strong>g> relative abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

<strong>on</strong> <strong>earth</strong>. Of course <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are not found in <str<strong>on</strong>g>the</str<strong>on</strong>g> same c<strong>on</strong>centrati<strong>on</strong> everywhere<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust. Fortunately for mankind, nature provides us with areas accounting for<br />

high-c<strong>on</strong>centrated deposits, that allow us to extract <str<strong>on</strong>g>the</str<strong>on</strong>g>m in a relatively cost-effective<br />

way. Minerals become c<strong>on</strong>centrated in five ways [318]:<br />

1. C<strong>on</strong>centrati<strong>on</strong> by hot, aqueous soluti<strong>on</strong>s flowing through fractures and pore<br />

spaces in crustal rock to form hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits.<br />

2. C<strong>on</strong>centrati<strong>on</strong> by magmatic processes within a body <str<strong>on</strong>g>of</str<strong>on</strong>g> igneous rock to form<br />

magmatic <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits.<br />

3. C<strong>on</strong>centrati<strong>on</strong> by precipitati<strong>on</strong> from lake water or seawater to form sedimentary<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits.<br />

4. C<strong>on</strong>centrati<strong>on</strong> by flowing surface water in streams or al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> shore to form<br />

placers.<br />

5. C<strong>on</strong>centrati<strong>on</strong> by wea<str<strong>on</strong>g>the</str<strong>on</strong>g>ring processes to form residual <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits.<br />

Besides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical way <str<strong>on</strong>g>of</str<strong>on</strong>g> classifying <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an ec<strong>on</strong>omical<br />

way <str<strong>on</strong>g>of</str<strong>on</strong>g> classifying <str<strong>on</strong>g>the</str<strong>on</strong>g>m. This is explained in <str<strong>on</strong>g>the</str<strong>on</strong>g> following secti<strong>on</strong>.


N<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 129<br />

4.8.1 The ec<strong>on</strong>omic classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

C<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s can be classified as resources, reserves and reserve base,<br />

depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> different factors explained next.<br />

The US Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Mines defines a resource as a c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> naturally occurring<br />

solid, liquid, or gaseous material in or <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust in such form and amount<br />

that ec<strong>on</strong>omic extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a commodity from <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> is currently or potentially<br />

feasible.<br />

Reserve base is defined as that part <str<strong>on</strong>g>of</str<strong>on</strong>g> an identified resource 9 that meets specified<br />

minimum physical and chemical criteria related to current mining and producti<strong>on</strong><br />

practices, including those for grade, quality, thickness, and depth. And reserves are<br />

that part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base which could be ec<strong>on</strong>omically extracted or produced at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> determinati<strong>on</strong>. Reserve base and reserves are subdivided in order <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing<br />

c<strong>on</strong>fidence into dem<strong>on</strong>strated and inferred. The latter are estimates based<br />

<strong>on</strong> an assumed c<strong>on</strong>tinuity bey<strong>on</strong>d indicated resources, for which <str<strong>on</strong>g>the</str<strong>on</strong>g>re is geologic<br />

evidence. There may be no samples or measurements. Dem<strong>on</strong>strated reserves are<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> measured and indicated. If <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity is computed from dimensi<strong>on</strong>s<br />

revealed in outcrops, trenches, workings or drill holes; grade and or quality are computed<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> detailed sampling; <str<strong>on</strong>g>the</str<strong>on</strong>g> sites <str<strong>on</strong>g>of</str<strong>on</strong>g> inspecti<strong>on</strong> are spaced closely<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> geologic character is so well defined that size, shape, depth and <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resource are well established, <str<strong>on</strong>g>the</str<strong>on</strong>g>n we talk about measured resources.<br />

Indicated resources are those in which <str<strong>on</strong>g>the</str<strong>on</strong>g> grade and or quality are computed from<br />

informati<strong>on</strong> similar to that used for measured resources, but <str<strong>on</strong>g>the</str<strong>on</strong>g> sites for inspecti<strong>on</strong>,<br />

sampling, measurement are far<str<strong>on</strong>g>the</str<strong>on</strong>g>r apart or are o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise less adequately spaced.<br />

It is clear <str<strong>on</strong>g>the</str<strong>on</strong>g>n, that all <str<strong>on</strong>g>the</str<strong>on</strong>g> classificati<strong>on</strong>s listed above are related to ec<strong>on</strong>omy, especially<br />

reserves. Figure 4.11 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources and reserves classificati<strong>on</strong><br />

after McKelvey [214]. Increasing geological informati<strong>on</strong> expands <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> reserves.<br />

So do commodity prices and development <str<strong>on</strong>g>of</str<strong>on</strong>g> efficient technologies, as lower<br />

grades become ec<strong>on</strong>omically pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itable.<br />

Hence, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r reserve base, nor reserves are good indicators for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g>. In fact, total world reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> most <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities are larger<br />

now than at any time in <str<strong>on</strong>g>the</str<strong>on</strong>g> past [141] due to wider geological informati<strong>on</strong>, more<br />

efficient technologies and price changes. The best approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers compiling<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> would be using resources data. However, for being indeed <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most comprehensive classificati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten scarce, inaccurate and<br />

incomplete as it can be seen in table 4.10. Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> resources are necessarily dynamic.<br />

For example, <str<strong>on</strong>g>the</str<strong>on</strong>g> realizati<strong>on</strong> that it was ec<strong>on</strong>omic to mine copper porphyry<br />

deposits for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir ore in <str<strong>on</strong>g>the</str<strong>on</strong>g> early part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century increased <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s<br />

known copper reserves, and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore resources, by several hundred per cent [121].<br />

Too little is known about <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust, since explorati<strong>on</strong> costs are extremely high.<br />

9 Identified resources: resources whose locati<strong>on</strong>, grade, quality and quantity are known or esti-<br />

mated from specific geologic evidence.


130 THE RESOURCES OF THE EARTH<br />

Figure 4.11. A classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources and reserves [141].<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposits worked at present are close to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface but <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust<br />

is <strong>on</strong> average 40 km thick and <str<strong>on</strong>g>the</str<strong>on</strong>g> deepest open-pit mine is less than 1 km deep,<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> deepest underground mine goes down to 3,5 km to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface and few<br />

exceed 2 km [29]. Thus <strong>on</strong>ly approximately <str<strong>on</strong>g>the</str<strong>on</strong>g> outer <strong>on</strong>e-tenth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental<br />

crust is <str<strong>on</strong>g>of</str<strong>on</strong>g> present interest [78]. Besides, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are many <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and metals such<br />

as bismuth, cesium, germanium, gallium, etc. that are just byproducts <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r more<br />

demanded metals such as gold, copper, zinc, lead, etc. No explorati<strong>on</strong> efforts will be<br />

undertaken for those specific <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s until demand significantly increases.<br />

4.8.2 Mineral’s average ore grades<br />

For some time, many geologists have assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> less comm<strong>on</strong><br />

metals existing at different grades in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust could be represented by lognormal<br />

or similar unimodal frequency distributi<strong>on</strong>s. This assumpti<strong>on</strong> was questi<strong>on</strong>ed by<br />

Skinner [316] for <str<strong>on</strong>g>the</str<strong>on</strong>g> metals that make up less than 0,1% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust. He<br />

suggested that for <str<strong>on</strong>g>the</str<strong>on</strong>g>se scarce metals <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> might be bimodal and that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> small mode at higher grades would represent metal c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>silicate<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s localized in <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits [73] (see fig. 4.12).<br />

There are ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical procedures that correlate <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ore with its<br />

mean grade. Much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> original work <strong>on</strong> this problem was carried out by Lasky<br />

[193]. He argued that a linear relati<strong>on</strong> is obtained if <str<strong>on</strong>g>the</str<strong>on</strong>g> logarithm <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ore with grades above a specified value is plotted against grade. Cargill et al.<br />

[48] suggested that a linear relati<strong>on</strong> was obtained if <str<strong>on</strong>g>the</str<strong>on</strong>g> logarithm <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage


N<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 131<br />

T<strong>on</strong>nage<br />

T<strong>on</strong>nage<br />

a. Unimodal<br />

Grade<br />

b. Bimodal<br />

Grade<br />

Figure 4.12. Two possible relati<strong>on</strong>ships between ore grade and <str<strong>on</strong>g>the</str<strong>on</strong>g> metal, <str<strong>on</strong>g>mineral</str<strong>on</strong>g>,<br />

or energy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resource base [316].<br />

was plotted against <str<strong>on</strong>g>the</str<strong>on</strong>g> logarithm <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> grade. Later <strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> fractal relati<strong>on</strong>ship,<br />

exhibited by a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> natural processes, was proved to be better applicable to<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits. Turcotte [358], showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage <str<strong>on</strong>g>of</str<strong>on</strong>g> ore with a mean<br />

grade was proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> mean grade raised to a power for mercury, copper<br />

and uranium deposits in <str<strong>on</strong>g>the</str<strong>on</strong>g> US. This fractal relati<strong>on</strong>ship follows <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Eq. 4.3.<br />

¯x m<br />

=<br />

x c<br />

Mc<br />

M<br />

F<br />

3<br />

(4.3)<br />

Where ¯x m is <str<strong>on</strong>g>the</str<strong>on</strong>g> average c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> deposit; x c <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong>’s crust; M <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposit; M c <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> piece <str<strong>on</strong>g>of</str<strong>on</strong>g> land<br />

under c<strong>on</strong>siderati<strong>on</strong> and F <str<strong>on</strong>g>the</str<strong>on</strong>g> fractal relati<strong>on</strong>ship to be determined.<br />

These <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical methodologies have mainly <str<strong>on</strong>g>the</str<strong>on</strong>g> objective to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ore with grades above a specified value, providing thus a basis for estimating<br />

ore reserves. But <str<strong>on</strong>g>the</str<strong>on</strong>g>y require as input for estimating F, informati<strong>on</strong> about already<br />

existing deposits with ore grades and t<strong>on</strong>nage, which is what we are searching for.<br />

A comprehensive study <str<strong>on</strong>g>of</str<strong>on</strong>g> average ore grades was undertaken by Cox and Singer<br />

[66]. In <str<strong>on</strong>g>the</str<strong>on</strong>g>ir study, a compendium <str<strong>on</strong>g>of</str<strong>on</strong>g> geologic models was presented, includ-


132 THE RESOURCES OF THE EARTH<br />

ing 85 descriptive models identifying attributes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposit type and 60 gradet<strong>on</strong>nage<br />

models giving estimated pre-mining t<strong>on</strong>nage’s grades from over 3900 wellcharacterized<br />

deposits all over <str<strong>on</strong>g>the</str<strong>on</strong>g> world.<br />

We have calculated with Eq. 4.4 <str<strong>on</strong>g>the</str<strong>on</strong>g> weighted average grades (¯x m) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> models <str<strong>on</strong>g>of</str<strong>on</strong>g> Cox and Singer [66], c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> average t<strong>on</strong>nage (M) and<br />

grade (x m) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different deposits c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> particular <str<strong>on</strong>g>mineral</str<strong>on</strong>g> (see secti<strong>on</strong><br />

A.2 in <str<strong>on</strong>g>the</str<strong>on</strong>g> appendix). The <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s under c<strong>on</strong>siderati<strong>on</strong> in Cox and Singer’s study<br />

were: rare <strong>earth</strong>s, uranium oxide, zirc<strong>on</strong>, niobium oxide, barite, alumina, phosphorous,<br />

potash, titanium, chromium, manganese, ir<strong>on</strong>, cobalt, nickel, copper, molybdenum,<br />

wolfram, palladium, platinum, rhodium, iridium, ru<str<strong>on</strong>g>the</str<strong>on</strong>g>nium, osmium, silver,<br />

gold, zinc, mercury, tin, lead and antim<strong>on</strong>y. Table 4.9 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> final average grade<br />

obtained.<br />

¯x m =<br />

M<br />

0 x md M<br />

M<br />

0<br />

d M<br />

(4.4)<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> values may appear to be quite low. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, it must be pointed<br />

out that <str<strong>on</strong>g>the</str<strong>on</strong>g> figures are averages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> deposits. Most deposits<br />

extract many <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s as byproducts, with a relatively low grade which would not<br />

be cost-effective if <str<strong>on</strong>g>the</str<strong>on</strong>g>y were to be extracted al<strong>on</strong>e.<br />

Table 4.9: Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models. After [66]<br />

Deposit ¯x m Deposit ¯x m<br />

RE 2O 5 (%) 0,10 Cu (%) 0,58<br />

M<strong>on</strong>azite (%) 0,03 M o (%) 0,03<br />

U 3O 8 (%) 0,33 W O 3 (%) 0,72<br />

Zirc<strong>on</strong> (% Z rO 2) 0,27 Pd (ppb) 158,51<br />

N b 2O 5 (%) 0,64 P t (ppb) 802,39<br />

Barite (%) 83,02 Rh (ppb) 12,92<br />

Al 2O 3(%) 45,97 I r (ppb) 20,62<br />

P (%) 0,11 Ru (ppb) 220,02<br />

P 2O 5 (%) 24,01 Os (ppb) 82,22<br />

Ilmenite (% T iO 2) 1,27 Ag (g/t) 4,27<br />

Rutile (% T iO 2) 0,21 Au (g/t) 0,22<br />

Leucocite (% T iO 2) 0,23 Zn (%) 4,06<br />

C r 2O 3 (%) 43,52 H g (%) 0,38<br />

M n (%) 31,49 Sn (%) 0,48<br />

Fe (%) 51,05 P b (%) 2,05<br />

Co (%) 0,11 S b (%) 3,78<br />

N i (%) 1,30


N<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 133<br />

No average numbers have been found in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature for <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

not included in Cox and Singer [66]. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> those <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are not mined as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

principal product and are <strong>on</strong>ly commercially produced in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>the</str<strong>on</strong>g>y are found<br />

as reas<strong>on</strong>able byproducts <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r important <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. In those cases, values found<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature (as in Carr [51]) <str<strong>on</strong>g>of</str<strong>on</strong>g> certain deposits have been taken as reference.<br />

We are aware that those figures cannot be c<strong>on</strong>sidered as global <str<strong>on</strong>g>mineral</str<strong>on</strong>g> ore grades.<br />

Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are good enough for giving an order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude.<br />

The following assumpti<strong>on</strong>s have been made in order to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> average <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

ore grades not included in Cox and Singer:<br />

• Arsenic: Northparkes copper-gold ore grade for arsenic is 0,11% [323]; Mt<br />

Piper Gold Project in Victoria (Australia) c<strong>on</strong>tains 3% [252]. We will assume<br />

an average grade <str<strong>on</strong>g>of</str<strong>on</strong>g> 1%.<br />

• Beryllium: ore grades range from 0,2 to 3,5 % <str<strong>on</strong>g>of</str<strong>on</strong>g> beryllium oxide [260]. We<br />

will assume an average grade <str<strong>on</strong>g>of</str<strong>on</strong>g> 1%.<br />

• Bismuth: B<strong>on</strong>fim W-Au-Bi-Te Skarn deposit (Brazil) c<strong>on</strong>tains 475 to > 2000<br />

ppm [327]. We assume <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> 2000 ppm.<br />

• Bor<strong>on</strong>: According to <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS [363], average grades <str<strong>on</strong>g>of</str<strong>on</strong>g> bor<strong>on</strong> oxide mined<br />

all over <str<strong>on</strong>g>the</str<strong>on</strong>g> world range from 11 to 39%. We will assume an average grade <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

20%.<br />

• Bromine: an important source <str<strong>on</strong>g>of</str<strong>on</strong>g> bromine is <str<strong>on</strong>g>the</str<strong>on</strong>g> Dead Sea. Its bromine c<strong>on</strong>centrati<strong>on</strong><br />

is around 5000 ppm [406].<br />

• Cadmium: cadmium is usually found in zinc ores. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> Mineral<br />

Informati<strong>on</strong> Institute 10 , zinc ores around <str<strong>on</strong>g>the</str<strong>on</strong>g> world average about 1/400 th as<br />

much cadmium as zinc. Hence, if Zn average grade is 4,06%, Cd grade is<br />

estimated to be around 100 ppm.<br />

• Cesium: it is usually found in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> pollucite. The world largest pollucite<br />

deposit is in a z<strong>on</strong>ed pegmatite at Bernic Lake, Canada, grading 23,3% cesium<br />

oxide 11 .<br />

• Feldspar: <str<strong>on</strong>g>the</str<strong>on</strong>g> major commercial feldspar deposits occur in pegmatites, granitic<br />

rocks, granitic rock types known as alaskite and aplite and certain river, dune<br />

and beach sands. The feldspar c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se deposits range from 15 to up<br />

to 75% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different feldspar <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s [180]. We will assume an average <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

45%.<br />

10 Mineral Informati<strong>on</strong> Institute: http://www.mii.org/Minerals/photocad.html<br />

11 Source: Houst<strong>on</strong> Lake Mining Inc. http://www.houst<strong>on</strong>lakemining.com


134 THE RESOURCES OF THE EARTH<br />

• Fluorite (fluorspar): The compilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fult<strong>on</strong> and M<strong>on</strong>tgomery [99], gives<br />

averages for <str<strong>on</strong>g>the</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> deposits where fluorite is found: fissure<br />

veins (from 25 to 80%), statiform deposits (from 15% upward), stockworks<br />

(about 14%), gangue <str<strong>on</strong>g>mineral</str<strong>on</strong>g> (from 10 to 20%), lake sediments (50 to 60%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> clayey parts and 15% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sandy parts). Specific examples <str<strong>on</strong>g>of</str<strong>on</strong>g> fluorite<br />

deposits are for example in <str<strong>on</strong>g>the</str<strong>on</strong>g> southwestern United States, deposits <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

assay less than 10% fluorite [131] and in <str<strong>on</strong>g>the</str<strong>on</strong>g> Pöhrenk deposit <str<strong>on</strong>g>of</str<strong>on</strong>g> Turkey ore<br />

grades range from a few to more than 40% CaF 2 [110]. We will assume an<br />

average fluorite grade <str<strong>on</strong>g>of</str<strong>on</strong>g> 25%.<br />

• Gallium: <str<strong>on</strong>g>the</str<strong>on</strong>g> most important ore in which gallium is found as a trace element<br />

is bauxite in an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 ppm, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> Mineral Informati<strong>on</strong> Institute.<br />

Assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> average grade <str<strong>on</strong>g>of</str<strong>on</strong>g> alumina alumina in laterite bauxite<br />

is 45,97% [66], gallium grade is estimated here as about 23 ppm.<br />

• Germanium: grades <str<strong>on</strong>g>of</str<strong>on</strong>g> a few tens to several hundred ppm Ge are known in<br />

sulphide deposits [142], [220]. We will assume an average grade <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 ppm.<br />

• Graphite: ec<strong>on</strong>omic deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> graphite include five main geological types:<br />

flake graphite disseminated in metamorphosed (with an average deposit <str<strong>on</strong>g>of</str<strong>on</strong>g> 10<br />

to 12%), silica-rich sedimentary rocks (1-10%), flake graphite disseminated in<br />

marble amorphous deposits formed by metamorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> coal or carb<strong>on</strong>-rich<br />

sediments (50-95%), veins filling fractures (85-98%) and c<strong>on</strong>tact metasomatic<br />

or hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal deposits in marble (irregular c<strong>on</strong>centrated). We will assume<br />

an average grade <str<strong>on</strong>g>of</str<strong>on</strong>g> 50%.<br />

• Gypsum: it is usually found in very high grades, ranging from 45 to 95%<br />

[174]. We will assume an average grade <str<strong>on</strong>g>of</str<strong>on</strong>g> 80%.<br />

• Hafnium: it is always present in 1,5 to 3,0 % in zirc<strong>on</strong>ium compounds [315].<br />

Assuming an average <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc <str<strong>on</strong>g>of</str<strong>on</strong>g> 0,27% [66], <str<strong>on</strong>g>the</str<strong>on</strong>g> hafnium average grade ranges<br />

from 40,5 to 81 ppm. We will assume an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 60 ppm.<br />

• Helium: it is recovered usually as a byproduct in natural gas producti<strong>on</strong>. Some<br />

natural gas deposits have as much as 7% helium, found in Texas, Russia,<br />

Poland, Algeria, China and Canada 12 .<br />

• Indium: <str<strong>on</strong>g>the</str<strong>on</strong>g> average value in ore deposits varies drastically up to percent levels.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> Kuroko deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, <str<strong>on</strong>g>the</str<strong>on</strong>g> In-c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu-c<strong>on</strong>centrates had<br />

been reported at about 10 ppm and in Zn c<strong>on</strong>centrates is 100 ppm. Some<br />

skarn deposits and Pb-Zn veins have ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> In c<strong>on</strong>centrati<strong>on</strong> similar to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se. Atypical maximum c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> In are up to 3000 ppm. We will<br />

assume an average c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> 140 g/t which is reported for <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

well known In deposits in Japan, <str<strong>on</strong>g>the</str<strong>on</strong>g> Toyoha mine in Hokkaido [236].<br />

12 Source: Mineral Informati<strong>on</strong> Institute (http://www.mii.org/Minerals/photohelium.html


N<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 135<br />

• Iodine: iodine is primarily retrieved from underground brines. Dried seaweeds,<br />

particularly those <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Liminaria family, c<strong>on</strong>tain as much as 0,45%<br />

iodine. Japan is <str<strong>on</strong>g>the</str<strong>on</strong>g> largest iodine producing country. The maximum iodine<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> brines is about 160 ppm [171].<br />

• Lithium: some lithium is recovered from <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> spodumene with an Li<br />

grade <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 to 4%. But most lithium is recovered from brine. Lithium grades in<br />

brine range from 0,015 to 0,06% [260]. We will assume an average grade <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0,04%.<br />

• Magnesium compounds: <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most important magnesium <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s is<br />

magnesite, M gCO 3, which represents <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s largest source <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesia,<br />

M gO. The next most used sources for magnesia are magnesia-rich brines and<br />

seawater. Dolomite is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r important source for industrial magnesium. The<br />

crude ore <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesite c<strong>on</strong>tains typically around 45% <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesia.<br />

• Potash: potash oxide grades in Canada, <str<strong>on</strong>g>the</str<strong>on</strong>g> most important producer in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

world, range from 14 to 32% [407]. In Saskatchewan, ore grades range between<br />

23 and 27% 13 . We assume an average grade <str<strong>on</strong>g>of</str<strong>on</strong>g> K 2O <str<strong>on</strong>g>of</str<strong>on</strong>g> 25%.<br />

• Rhenium is a very rare element produced mainly as a byproduct in <str<strong>on</strong>g>the</str<strong>on</strong>g> processing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> porphyry copper-molybdenum ores. The Re c<strong>on</strong>tents in <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrates range from 6 to 460 ppm [27]. We assume an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 233<br />

ppm.<br />

• Selenium: it is widely distributed within <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust and does not occur<br />

in c<strong>on</strong>centrati<strong>on</strong>s high enough to justify solely for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>tent. It is recovered<br />

as byproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>ferrous metal mining, mostly from <str<strong>on</strong>g>the</str<strong>on</strong>g> anode slimes<br />

associated with electrolytic refining copper. The ec<strong>on</strong>omic c<strong>on</strong>centrati<strong>on</strong> 14 is<br />

2,5% [34].<br />

• Str<strong>on</strong>tium: celestine and str<strong>on</strong>tianite are <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly Sr-c<strong>on</strong>taining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s having<br />

sufficient quantities to make its recoveral practical. From <str<strong>on</strong>g>the</str<strong>on</strong>g>se, <strong>on</strong>ly celestine<br />

has been found to occur in deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> sufficient size. Celestine is mined<br />

in many countries all over <str<strong>on</strong>g>the</str<strong>on</strong>g> world. Reported average ore grades <str<strong>on</strong>g>of</str<strong>on</strong>g> SrSO 4<br />

range from 54% in Cyprus to more than 90% in Iran [244]. We will assume<br />

an average grade <str<strong>on</strong>g>of</str<strong>on</strong>g> 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> celestine or 34% <str<strong>on</strong>g>of</str<strong>on</strong>g> Sr c<strong>on</strong>tent.<br />

• Tantalum: it is recovered from tantalite and columbite ores. The average ore<br />

grades are similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g> niobium, since it is recovered from <str<strong>on</strong>g>the</str<strong>on</strong>g> same ores.<br />

Therefore, we assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> average grade <str<strong>on</strong>g>of</str<strong>on</strong>g> tantalum oxide is 0,64%, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same as <str<strong>on</strong>g>the</str<strong>on</strong>g> grade <str<strong>on</strong>g>of</str<strong>on</strong>g> niobium oxide recorded by Cox and Singer [66].<br />

13 Source: <str<strong>on</strong>g>the</str<strong>on</strong>g> Canadian Encyclopedia (http://<str<strong>on</strong>g>the</str<strong>on</strong>g>canadianencyclopedia.com)<br />

14 Ec<strong>on</strong>omic c<strong>on</strong>centrati<strong>on</strong>: c<strong>on</strong>centrati<strong>on</strong> at which a <str<strong>on</strong>g>mineral</str<strong>on</strong>g> is ec<strong>on</strong>omically producible


136 THE RESOURCES OF THE EARTH<br />

• Tellurium: it is widely distributed within <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust and does not occur<br />

in c<strong>on</strong>centrati<strong>on</strong>s high enough to justify solely for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>tent. It is recovered<br />

as byproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>ferrous metal mining, mostly from <str<strong>on</strong>g>the</str<strong>on</strong>g> anode slimes<br />

associated with electrolytic refining copper. The ec<strong>on</strong>omic c<strong>on</strong>centrati<strong>on</strong> is 1<br />

ppm [34].<br />

• Thorium: it has been mined at an average grade <str<strong>on</strong>g>of</str<strong>on</strong>g> nearly 3% <str<strong>on</strong>g>of</str<strong>on</strong>g> ThO 2 in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Bokan Mountain in Alaska [356].<br />

• Vanadium: average ore grades for vanadium range from 0,3 to 5% [260]. We<br />

will assume an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 2%.<br />

4.8.3 Mineral’s abundance<br />

Table 4.10 shows world reserves, reserve base, and resources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main naturaloccurring<br />

n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic importance according to <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS [362].<br />

It shows also <str<strong>on</strong>g>the</str<strong>on</strong>g> average ore grades obtained in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous secti<strong>on</strong>. The most<br />

abundant ores in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust are those <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong>, followed by phosphate rock, potash,<br />

manganese and aluminium. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, <str<strong>on</strong>g>the</str<strong>on</strong>g> ores <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> platinum group metals,<br />

thallium, tellurium and rhenium are <str<strong>on</strong>g>the</str<strong>on</strong>g> scarcest in <str<strong>on</strong>g>the</str<strong>on</strong>g> world.<br />

Table 4.10: Mineral world reserves, reserve base and world resources in 2006<br />

Producti<strong>on</strong> Reserves Reserve base World<br />

sourcesre-<br />

Ore grades<br />

Resource t<strong>on</strong>s t<strong>on</strong>s t<strong>on</strong>s t<strong>on</strong>s %<br />

Aluminium 3,37E+07 4,55E+09 5,82E+09 1,36E+10 45,97<br />

Antim<strong>on</strong>y 1,34E+05 2,10E+06 4,30E+06 N.A. 3,78<br />

Arsenic 5,98E+04 1,20E+06 1,20E+06 > 11000000 1,00<br />

Barite 7,96E+06 1,90E+08 8,80E+08 2,00E+09 83,02<br />

Beryllium 1,79E+02 N.A. N.A. > 8E+04 1,00<br />

Bismuth 5,70E+03 3,20E+05 6,80E+05 N.A. 0,50<br />

Bor<strong>on</strong><br />

B2O3) (as 4,26E+06 1,70E+08 4,10E+08 N.A. 20,00<br />

Bromine 5,45E+05 Large Large Unlimited 0,50<br />

(dead sea<br />

c<strong>on</strong>tains 1<br />

Cadmium 1,93E+04 4,90E+05 1,20E+06<br />

billi<strong>on</strong> t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bromine)<br />

6,00E+06 100 ppm<br />

Cesium N.A. 7,00E+04 1,10E+05 N.A. 23,30<br />

Chromium 5,85E+06 N.A. N.A. 3,80E+09 43,52<br />

Cobalt 6,75E+04 7,00E+06 1,30E+07 1,50E+07 0,11<br />

Copper 1,51E+07 4,90E+08 9,40E+08 > 3,00E+09 0,58<br />

Feldspar 1,54E+07 Large Large Large 45,00<br />

Fluorspar 5,33E+06 2,40E+08 4,80E+08 5,00E+08 25,00<br />

Gallium 7,30E+01 N.A. N.A. 1,00E+06 23 ppm<br />

Germanium 9,00E+01 N.A. N.A. N.A. 50 ppm<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


N<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 137<br />

Table 4.10: Mineral world reserves, reserve base and world resources in 2006<br />

– c<strong>on</strong>tinued from previous page.<br />

Producti<strong>on</strong> Reserves Reserve base World re- Ore grades<br />

(year 2006)<br />

sources<br />

Resource t<strong>on</strong>s t<strong>on</strong>s t<strong>on</strong>s t<strong>on</strong>s %<br />

Gold 2,46E+03 4,20E+04 9,00E+04 N.A. 0,22 g/t<br />

Graphite 1,03E+06 8,60E+07 2,10E+08 > 8,00E+08 50,00<br />

Gypsum 1,25E+08 Large Large Large 80,00<br />

Hafnium<br />

H f O2) (as N.A. 6,10E+05 1,10E+06 N.A. 60 ppm<br />

Helium 2,81E+04 N.A. 6,47E+06 N.A. 7,00<br />

Indium 5,81E+02 1,10E+04 1,60E+04 N.A. 140 g/t<br />

Iodine 2,50E+04 1,50E+07 2,70E+07 3,40E+07 160 ppm<br />

Iridium N.A. N.A. N.A. N.A. 20,6 ppb<br />

Ir<strong>on</strong> ore 8,66E+08 7,30E+10 1,60E+11 2,30E+11 51,05<br />

Lead 3,47E+06 7,90E+07 1,70E+08 > 1,50E+09 2,05<br />

Lithium 3,33E+05 4,10E+06 1,10E+07 >1,3E+07 0,04 (Lithium<br />

Magnesium 6,89E+05 N.A. N.A. Large to unlimited<br />

brines)<br />

45 as MgO<br />

Manganese 1,19E+07 4,60E+08 5,20E+09 Large 31,49<br />

Mercury 1,48E+03 4,60E+04 2,40E+05 6,00E+05 0,38<br />

Molybdenum 1,84E+05 8,60E+06 1,90E+07 1,30E+07 0,03<br />

Nickel 1,58E+06 6,70E+07 1,50E+08 N.A. 1,30<br />

Niobium 4,45E+04 2,70E+06 3,00E+06 N.A. 0,64<br />

Osmium N.A. N.A. N.A. N.A. 82,2 ppb<br />

Palladium 2,24E+02 N.A. N.A. N.A. 158,5 ppb<br />

Phosphate<br />

rock<br />

1,42E+08 1,80E+10 5,00E+10 N.A. 0,11<br />

Platinum 5,18E+02 7,10E+04 8,00E+04 > 1,00E+05 See Pt, Pd, Rh,<br />

group metals<br />

Ru, Ir and Os<br />

Platinum 2,21E+02 N.A. N.A. N.A. 802,4 ppb<br />

Potash 2,91E+07 8,30E+09 1,80E+10 2,50E+11 25,00<br />

Rare Earths 1,23E+05 8,80E+07 1,50E+08 Undiscovered<br />

resources<br />

0,10<br />

are thought<br />

to be very<br />

large relative<br />

to expected<br />

Rhenium 4,72E+01 2,50E+03 1,00E+04<br />

demand<br />

1,10E+04 223 ppm<br />

Ru<str<strong>on</strong>g>the</str<strong>on</strong>g>nium N.A. N.A. N.A. N.A. 220,0 ppb<br />

Selenium 1,54E+03 8,20E+04 1,70E+05 N.A. 2,50<br />

Silic<strong>on</strong> 3,87E+06 N.A. N.A. N.A. N.A.<br />

Silver 2,02E+04 2,70E+05 5,70E+05 Large 4,3 g/t<br />

Str<strong>on</strong>tium 5,85E+05 6,80E+06 1,20E+07 > 1,00E+09 34,00<br />

Tantalum 1,39E+03 1,30E+05 1,80E+05 N.A. 0,65<br />

Tellurium 1,32E+02 2,10E+04 4,70E+04 N.A. 1 ppm<br />

Thallium 1,00E+01 3,80E+02 6,50E+02 6,47E+05 N.A.<br />

Thorium N.A. 1,05E+06 1,23E+06 N.A. 3,00<br />

Tin 3,02E+05 6,10E+06 1,10E+07 N.A. 0,48<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


138 THE RESOURCES OF THE EARTH<br />

Table 4.10: Mineral world reserves, reserve base and world resources in 2006<br />

– c<strong>on</strong>tinued from previous page.<br />

Producti<strong>on</strong> Reserves Reserve base World re- Ore grades<br />

(year 2006)<br />

sources<br />

Resource t<strong>on</strong>s t<strong>on</strong>s t<strong>on</strong>s t<strong>on</strong>s %<br />

Titanium<br />

T iO2) (as 5,80E+06 7,30E+08 1,50E+09 N.A. 0,69<br />

Vanadium 5,63E+04 1,30E+07 3,80E+07 > 6,30E+07 2,00<br />

Wolfram 9,08E+04 2,90E+06 6,30E+06 N.A. 0,72<br />

Yttrium<br />

Y2O3) (as 8,90E+03 5,40E+05 6,10E+05 N.A. N.A.<br />

Zinc 1,00E+07 1,80E+08 4,80E+08 1,90E+09 4,06<br />

Zirc<strong>on</strong>ium<br />

Z rO2) (as 1,18E+06 3,80E+07 7,20E+07 N.A. 0,27<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

4.9 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter<br />

This chapter closes <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s comp<strong>on</strong>ents (Part I <str<strong>on</strong>g>of</str<strong>on</strong>g> this report), by<br />

undertaking a review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different natural resources, useful to man.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> most updated informati<strong>on</strong> sources, <str<strong>on</strong>g>the</str<strong>on</strong>g> available energy, potential energy<br />

use and current energy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all known renewable and n<strong>on</strong>-renewable<br />

energy resources has been obtained. That is for geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal, nuclear, tidal, solar,<br />

wind and ocean power, as well as for biomass, coal, natural gas, oil and unc<strong>on</strong>venti<strong>on</strong>al<br />

fuels.<br />

In additi<strong>on</strong> to energy resources, n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s have been analyzed. As opposed<br />

to fossil fuels, <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s is not important if <str<strong>on</strong>g>the</str<strong>on</strong>g>se are dispersed<br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> crust. Hence, besides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> available resources registered, which<br />

are very uncertain, average ore grades for <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources have been<br />

provided. Both figures (abundance and c<strong>on</strong>centrati<strong>on</strong>), will allow us to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> next chapter, begins Part II <str<strong>on</strong>g>of</str<strong>on</strong>g> this report, whose aim is to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and its resources. Chapter 5, provides <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic tools required<br />

for calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>, including <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources (<str<strong>on</strong>g>of</str<strong>on</strong>g> fuel and<br />

n<strong>on</strong>-fuel nature) just reviewed. C<strong>on</strong>sequently, all resources will be able to be evaluated<br />

with a single unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure, allowing us to compare <str<strong>on</strong>g>the</str<strong>on</strong>g>m and to analyze<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir scarcity.


Part II<br />

The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and its exergy <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g><br />

139


Chapter 5<br />

Thermodynamic models for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> natural<br />

resources<br />

5.1 Introducti<strong>on</strong><br />

This aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter is to provide <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic tools for <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy assessment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources and particularly for <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> any substance or process is always fixed by <str<strong>on</strong>g>the</str<strong>on</strong>g> so called reference<br />

envir<strong>on</strong>ment (R.E.). Therefore, for calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> any natural resource,<br />

an appropriate R.E. should be defined. In secti<strong>on</strong> 5.2, <str<strong>on</strong>g>the</str<strong>on</strong>g> different reference envir<strong>on</strong>ments<br />

proposed in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature are reviewed and <str<strong>on</strong>g>the</str<strong>on</strong>g> best suitable R.E. so far,<br />

for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> natural <str<strong>on</strong>g>capital</str<strong>on</strong>g> is chosen.<br />

Once <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. is fixed, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources can be calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic models provided in secti<strong>on</strong> 5.3. For that purpose, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposit is described. Next,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> formulas for obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy and exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources (including<br />

fossil fuels) are provided. And finally, 12 models for estimating <str<strong>on</strong>g>the</str<strong>on</strong>g> Gibbs free energy<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources, required for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s, is shown.<br />

5.2 The reference envir<strong>on</strong>ment<br />

The R.E. can be assumed as being a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamically dead planet where all materials<br />

have reacted, dispersed and mixed. This R.E. must be determined by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

natural envir<strong>on</strong>ment and is fixed by its chemical compositi<strong>on</strong>. In past years, <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

141


142 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

have been many c<strong>on</strong>tributi<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> best suitable R.E. The divergences<br />

between standard chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements obtained from different<br />

R.E. c<strong>on</strong>cepti<strong>on</strong>s can be very significant. Each R.E. definiti<strong>on</strong> generate different<br />

exergies, what implies that <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural <str<strong>on</strong>g>capital</str<strong>on</strong>g>’s exergy is necessarily<br />

linked to <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. In order<br />

to correctly evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> natural resources, it is necessary to know how does <str<strong>on</strong>g>the</str<strong>on</strong>g> modificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reference substances or physical variables <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. change <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a system. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong>s c<strong>on</strong>cerned with that topic deal<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> processes according to physical parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment<br />

such as pressure or temperature (see for instance Brodianski et al. [304]<br />

[39]). O<str<strong>on</strong>g>the</str<strong>on</strong>g>r authors have studied <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>ment CO 2 or temperature<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels (Valero and Arauzo [366]) and hydrocarb<strong>on</strong>s (Rivero<br />

et al. [282]). Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, it is crucial to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference<br />

envir<strong>on</strong>ment’s chemical compositi<strong>on</strong> if <str<strong>on</strong>g>the</str<strong>on</strong>g> point is to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> natural <str<strong>on</strong>g>capital</str<strong>on</strong>g>’s<br />

exergy.<br />

Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> different models <str<strong>on</strong>g>of</str<strong>on</strong>g> reference envir<strong>on</strong>ments are reviewed, and <str<strong>on</strong>g>the</str<strong>on</strong>g> best<br />

suitable R.E. is selected and improved for <str<strong>on</strong>g>the</str<strong>on</strong>g> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources.<br />

5.2.1 Selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> best suitable reference envir<strong>on</strong>ment<br />

The different R.E. c<strong>on</strong>cepti<strong>on</strong>s can be divided into two main groups:<br />

• Partial reference envir<strong>on</strong>ments<br />

• Comprehensive reference envir<strong>on</strong>ments<br />

5.2.1.1 Partial reference envir<strong>on</strong>ments<br />

Some authors such as Bosjankovich [33], Gaggioli and Petit [101] and Sussman<br />

[332] established that <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. should be defined according to <str<strong>on</strong>g>the</str<strong>on</strong>g> specific characteristics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> analyzed process. This criteri<strong>on</strong> is based <strong>on</strong> that being <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy a<br />

parameter that quantifies <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a system with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

R.E., some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> possible <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system, cannot be attained because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

process limitati<strong>on</strong>s. Hence, <strong>on</strong>ly possibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> that <str<strong>on</strong>g>the</str<strong>on</strong>g> system can practically<br />

attain are analyzed. The c<strong>on</strong>cepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se R.E. are very far removed from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> idea <str<strong>on</strong>g>of</str<strong>on</strong>g> degraded <strong>earth</strong>. For computing exergy changes <str<strong>on</strong>g>of</str<strong>on</strong>g> variable compositi<strong>on</strong><br />

or chemically reactive steady flow processes, a Comprehensive reference envir<strong>on</strong>ment<br />

is generally unnecessary.<br />

However, this is not <str<strong>on</strong>g>the</str<strong>on</strong>g> case when <str<strong>on</strong>g>the</str<strong>on</strong>g> point is to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> natural <str<strong>on</strong>g>capital</str<strong>on</strong>g> <strong>on</strong><br />

<strong>earth</strong>. In that case, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no process limitati<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> resources can follow an<br />

<str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> process towards <str<strong>on</strong>g>the</str<strong>on</strong>g> dead state. Thus a comprehensive R.E. is required.


The reference envir<strong>on</strong>ment 143<br />

5.2.1.2 Comprehensive reference envir<strong>on</strong>ments<br />

Within <str<strong>on</strong>g>the</str<strong>on</strong>g> known Comprehensive reference envir<strong>on</strong>ments, all authors agree in dividing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Reference Substances (R.S.) that compose <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. into gaseous comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric air, solid comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> external layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s<br />

crust, and molecular comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are also criteri<strong>on</strong><br />

differences between <str<strong>on</strong>g>the</str<strong>on</strong>g> different authors. They can be classified into envir<strong>on</strong>ments<br />

based <strong>on</strong>:<br />

• Szargut’s criteri<strong>on</strong><br />

• Chemical equilibrium<br />

• Abundance<br />

Szargut’s R.E. could be c<strong>on</strong>sidered as an envir<strong>on</strong>ment based <strong>on</strong> partial abundance,<br />

even though Szargut itself regards his R.E. as based <strong>on</strong>ly <strong>on</strong> abundance. We will<br />

show next, that his R.E. is not <strong>on</strong>ly based <strong>on</strong> abundance, as opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> criteri<strong>on</strong><br />

taken by Ranz [276].<br />

According to Szargut’s criteri<strong>on</strong>, am<strong>on</strong>g a group <str<strong>on</strong>g>of</str<strong>on</strong>g> reas<strong>on</strong>able abundant substances,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> most stable will be chosen if <str<strong>on</strong>g>the</str<strong>on</strong>g>y also fulfill <str<strong>on</strong>g>the</str<strong>on</strong>g> “<strong>earth</strong> similarity criteri<strong>on</strong>”. That<br />

is, if <str<strong>on</strong>g>the</str<strong>on</strong>g> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> possible different reference substances for a specific element<br />

(measured in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> Gibbs energy) is within a certain threshold, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant R.S. will be chosen. If <str<strong>on</strong>g>the</str<strong>on</strong>g> differences exceed this threshold, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most stable substance will be taken as R.S. as l<strong>on</strong>g as <str<strong>on</strong>g>the</str<strong>on</strong>g> “<strong>earth</strong> similarity criteri<strong>on</strong>”<br />

is not c<strong>on</strong>tradicted. The stability threshold has not a fix value and depends <strong>on</strong> each<br />

element c<strong>on</strong>sidered, since it is subject to geological uncertainties. Thus for example<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> S b, <str<strong>on</strong>g>the</str<strong>on</strong>g> substance S b 2S 3 is more abundant than S b 2O 5, never<str<strong>on</strong>g>the</str<strong>on</strong>g>less,<br />

according to Szargut’s criteri<strong>on</strong>, S b 2O 5, which is much more stable, will be taken<br />

as reference substance. This happens also with <str<strong>on</strong>g>the</str<strong>on</strong>g> substances listed in table 5.1.<br />

Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less nitrates such as Ca(NO 3) 2, N aNO 3, KNO 3 are discarded, because being<br />

most stable but not abundant in <str<strong>on</strong>g>the</str<strong>on</strong>g> natural envir<strong>on</strong>ment, <str<strong>on</strong>g>the</str<strong>on</strong>g>y would break <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

similarity criteri<strong>on</strong> if <str<strong>on</strong>g>the</str<strong>on</strong>g>y are taken as R.S. Therefore, Szargut’s [333] dead envir<strong>on</strong>ment<br />

is similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> real physical envir<strong>on</strong>ment and should represent <str<strong>on</strong>g>the</str<strong>on</strong>g> products<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an interacti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural envir<strong>on</strong>ment and <str<strong>on</strong>g>the</str<strong>on</strong>g> waste<br />

products <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> processes. The most probable products <str<strong>on</strong>g>of</str<strong>on</strong>g> this interacti<strong>on</strong> should<br />

be chosen as reference species. Secti<strong>on</strong> 5.2.2 explains purposively <str<strong>on</strong>g>the</str<strong>on</strong>g> well known<br />

Szargut’s methodology for obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

R.E.


144 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

Table 5.1: <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> difference <str<strong>on</strong>g>of</str<strong>on</strong>g> selected elements c<strong>on</strong>sidering ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r as reference<br />

species <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant or <str<strong>on</strong>g>the</str<strong>on</strong>g> most stable substances in <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E.<br />

[367]<br />

Element Most abundant<br />

species<br />

Most stable<br />

species<br />

Sb Sb2S 3 S b2O5 1235,58<br />

As<br />

S<br />

FeAsS<br />

FeS2 As2O5 SO<br />

1201,32<br />

−2<br />

4<br />

963,63<br />

Bi Bi BiO + 228,88<br />

Cd CdS CdCl 2 745,75<br />

Ce<br />

Zn<br />

CePO 4<br />

ZnS<br />

CeO2 Zn<br />

258,33<br />

+2 717,22<br />

Co<br />

Cu<br />

Co3S 4<br />

CuFeS 2<br />

Co3O4 Cu<br />

967,70<br />

+2 1423,18<br />

M o M oS2 M oO−2 Os<br />

Ag<br />

Os<br />

Ag2S 4<br />

OsO4 AgCl<br />

1675,9<br />

306,81<br />

−<br />

P t P t<br />

2<br />

P tO2 330,65<br />

84,59<br />

P b P bS P bCl 2 710,34<br />

Re ReS2 Re2O7 1556,65<br />

Ru Ru RuO2 254,82<br />

U UO2 UO3.H 2O 127,49<br />

<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> difference<br />

between both<br />

R.E. (kJ/mole)<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r group <str<strong>on</strong>g>of</str<strong>on</strong>g> authors derive <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements from <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical<br />

chemical equilibrium that could be attained <strong>on</strong> <strong>earth</strong> in a very distant future.<br />

Ahrendts [3], [4] and Diederichsen [74] for example, stated that if <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> reference system is known and <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system is fixed, <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> each chemical compound and <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> each chemical<br />

potential is uniquely determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical equilibrium. This<br />

criteri<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamically c<strong>on</strong>sistent and thus does not generate any negative<br />

exergies as it happens with <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r two comprehensive R.E. classificati<strong>on</strong>s.<br />

Ahrendt’s R.E. relied <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> R<strong>on</strong>ov and Yaroshevsky [287] to ascertain 15<br />

elements, making up more than 99% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust: H, C, N, O, N a, M g,<br />

Al, Si, P, S, Cl, Ar, K, Ca, T i, M n and Fe. These elements were allowed to react<br />

until chemical equilibrium was attained. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this envir<strong>on</strong>ment in<br />

chemical equilibrium, had as a variable parameter <str<strong>on</strong>g>the</str<strong>on</strong>g> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust layer<br />

(between δ = 1 m and δ = 1000 m). The resulting equilibrium reference system<br />

based <strong>on</strong> an <strong>earth</strong>’s crust <str<strong>on</strong>g>of</str<strong>on</strong>g> δ = 1000 m, showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen was even<br />

smaller than that <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels. He found that <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen increased, when <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>sidered thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust was smaller. In order to overcome this paradox,<br />

Ahrendts c<strong>on</strong>sidered a crust layer <strong>on</strong> <strong>on</strong>ly 1 m.<br />

Szargut criticizes Ahrendt’s model, stressing that it is not possible to attain an equilibrium<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> system being not in <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> internal equilibrium (and <str<strong>on</strong>g>the</str<strong>on</strong>g> natural


The reference envir<strong>on</strong>ment 145<br />

envir<strong>on</strong>ment is far removed from such equilibrium). Valero, Ranz and Botero [371],<br />

explained already why Ahrendt’s R.E. was not suitable to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> natural <str<strong>on</strong>g>capital</str<strong>on</strong>g><br />

<strong>on</strong> <strong>earth</strong>. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metals cannot be evaluated because <str<strong>on</strong>g>the</str<strong>on</strong>g>y form part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust neglected by Ahrendts. His obtained R.E. is very different from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> real envir<strong>on</strong>ment and it is very unlikely an eventual <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> towards it, since<br />

some processes are kinetically, biologically and/or geologically blocked.<br />

Diederichsen updated and extended Ahrendt’s model with new geochemical data<br />

and obtained am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs, a R.E. including 75 elements. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, he allowed<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this envir<strong>on</strong>ment to change with two variable parameters: thickness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust and ocean’s depth. The final chosen envir<strong>on</strong>ment should<br />

fulfill <str<strong>on</strong>g>the</str<strong>on</strong>g> “<strong>earth</strong> similarity criteri<strong>on</strong>”. The similarity with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> was measured<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium pressure, <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen and nitrogen c<strong>on</strong>tent in <str<strong>on</strong>g>the</str<strong>on</strong>g> gas-phase<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium salt c<strong>on</strong>tent in <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans.<br />

Even though Diederichsen [74] added more elements than Ahrendts [4] and included<br />

a new variable parameter, <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> his new reference envir<strong>on</strong>ment<br />

was still too different from <str<strong>on</strong>g>the</str<strong>on</strong>g> real <strong>earth</strong>. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> “<strong>earth</strong> similarity criteri<strong>on</strong>”,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. that best fits with <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s envir<strong>on</strong>ment takes a crust thickness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>on</strong>ly 0,1 m and an ocean’s depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 m. Greater values would move fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r away<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. from <str<strong>on</strong>g>the</str<strong>on</strong>g> real <strong>earth</strong>, and would have am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>r features, reduced pressures<br />

and oxygen c<strong>on</strong>tents. As it happened with Ahrendt’s model before, Diederichsen<br />

obtained high exergy values for oxygen. This happens because nearly all <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxygen <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> air is c<strong>on</strong>sumed basically by <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrates and <strong>on</strong>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

limit, for a crustal thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 0 m, <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <strong>earth</strong> pressure matches with that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

model. It seems <str<strong>on</strong>g>the</str<strong>on</strong>g>refore that achieving a R.E. in chemical equilibrium is in disagreement<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> “<strong>earth</strong> similarity criteri<strong>on</strong>” and is not appropriate for <str<strong>on</strong>g>the</str<strong>on</strong>g> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural <str<strong>on</strong>g>capital</str<strong>on</strong>g> <strong>on</strong> <strong>earth</strong>. This idea fully fits with Lovelock’s Gaia hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis [199]:<br />

“<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> is a life being and fights against <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic stable equilibrium.”<br />

Van Gool’s methodology [379] assures as well a R.E. in which all <str<strong>on</strong>g>the</str<strong>on</strong>g> substances<br />

have positive exergy values. However as he discards <str<strong>on</strong>g>the</str<strong>on</strong>g> geological informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> abundance, his R.E. does not guarantee a good model for a dissipated <strong>earth</strong>,<br />

which is critical in our research.<br />

Kameyama et al. [177] proposed a reference envir<strong>on</strong>ment with <str<strong>on</strong>g>the</str<strong>on</strong>g> criteri<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical<br />

stability. The references are <str<strong>on</strong>g>the</str<strong>on</strong>g> most stable compounds am<strong>on</strong>g those with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-chemical data and can be integrated in <str<strong>on</strong>g>the</str<strong>on</strong>g> solid, liquid and gaseous envir<strong>on</strong>ments.<br />

As Szargut stated in [336], some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most stable compounds selected<br />

by Kameyama et al. like nitrates, compounds between rare elements (e.g. P tBr 2) or<br />

compounds with F r as <str<strong>on</strong>g>the</str<strong>on</strong>g> reference species for <str<strong>on</strong>g>the</str<strong>on</strong>g> elements F, Cl, Br or I should<br />

not be recommended, because <str<strong>on</strong>g>the</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir formati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment<br />

is very small. Therefore, Kameyama et al. R.E. is not very suitable ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r to evaluate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural <str<strong>on</strong>g>capital</str<strong>on</strong>g>.


146 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

5.2.1.3 Abundance criteri<strong>on</strong><br />

According to Ranz [276], lots <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are compounds with <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong><br />

comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust, but are not very stable and do not represent<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> products <str<strong>on</strong>g>of</str<strong>on</strong>g> an interacti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural envir<strong>on</strong>ment<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> waste products <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial processes. Hence, Ranz [276] proposes<br />

a new R.E. very close to <str<strong>on</strong>g>the</str<strong>on</strong>g> real envir<strong>on</strong>ment based <strong>on</strong> abundance and following<br />

Szargut’s methodology. The solid phase <str<strong>on</strong>g>of</str<strong>on</strong>g> this new R.E. reproduces accurately <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong>’s upper c<strong>on</strong>tinental crust, since <str<strong>on</strong>g>the</str<strong>on</strong>g> solid reference species that make up this<br />

envir<strong>on</strong>ment are <str<strong>on</strong>g>the</str<strong>on</strong>g> same as <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant types found in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s upper<br />

c<strong>on</strong>tinental crust. A problem with Ranz’s proposed R.E. is that if we assign zero<br />

exergy to <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant substances, we are decreasing arbitrarily <str<strong>on</strong>g>the</str<strong>on</strong>g> natural<br />

<str<strong>on</strong>g>capital</str<strong>on</strong>g>, because many abundant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s like sulfides naturally evolute to <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

stable oxides. Therefore, as proposed by Valero, Ranz and Botero [371], we must return<br />

to Szargut’s criteri<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> using <str<strong>on</strong>g>the</str<strong>on</strong>g> most stable substance, within <str<strong>on</strong>g>the</str<strong>on</strong>g> limits fixed<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> “<strong>earth</strong> similarity criteri<strong>on</strong>”.<br />

Hence, our first goal is to obtain a reference state for evaluating <str<strong>on</strong>g>the</str<strong>on</strong>g> natural resources<br />

<strong>on</strong> <strong>earth</strong>, based <strong>on</strong> Szargut’s criteri<strong>on</strong> and methodology and using <str<strong>on</strong>g>the</str<strong>on</strong>g> more<br />

precise data used by Ranz and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r authors such as Rivero [281], as well as new<br />

geochemical updates.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>, Szargut’s methodology for obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> standard chemical<br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical elements is explained and <str<strong>on</strong>g>the</str<strong>on</strong>g> variables used are discussed.<br />

5.2.2 Calculati<strong>on</strong> methodology: standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

chemical elements<br />

5.2.2.1 Standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical compounds<br />

The chemical exergy expresses <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> a substance at ambient temperature<br />

and pressure. It is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum work which can be obtained when<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered substance is brought in a reversible way to <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> reference<br />

substances present in <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment, using <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment as a source <str<strong>on</strong>g>of</str<strong>on</strong>g> heat<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> reference substances necessary for <str<strong>on</strong>g>the</str<strong>on</strong>g> realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> described process.<br />

Standard chemical exergy results from a c<strong>on</strong>venti<strong>on</strong>al assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a standard ambient<br />

temperature and pressure and standard c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reference substances<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> natural envir<strong>on</strong>ment.<br />

The chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> any chemical compound (b ch i), can be calculated by means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy balance <str<strong>on</strong>g>of</str<strong>on</strong>g> a reversible formati<strong>on</strong> reacti<strong>on</strong>;.<br />

<br />

bch i = ∆G f i + r j,i bch j<br />

j<br />

(5.1)


The reference envir<strong>on</strong>ment 147<br />

where:<br />

∆G f i<br />

r j,i<br />

bch j<br />

Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> substance i<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> mole <str<strong>on</strong>g>of</str<strong>on</strong>g> element j per mole <str<strong>on</strong>g>of</str<strong>on</strong>g> substance i<br />

standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> element j c<strong>on</strong>tained in substance i.<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical element does not bel<strong>on</strong>g to <str<strong>on</strong>g>the</str<strong>on</strong>g> reference substances, its standard<br />

chemical exergy can also be calculated from Eq. 5.1. The standard chemical exergy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference substances are calculated prior to <str<strong>on</strong>g>the</str<strong>on</strong>g> standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> element.<br />

5.2.2.2 Gaseous reference substances<br />

Free chemical elements present in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric air (O 2, N 2, Ar, He, N e, K r, X e)<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> compounds H 2O, CO 2 are assumed as reference substances. Their standard<br />

chemical exergy results from <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al standard c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere.<br />

bch i = −¯R T 0 ln P0<br />

i<br />

P0 = −¯R T 0 ln xi where:<br />

¯R universal gas c<strong>on</strong>stant (8,314E-3 kJ/(mole K)),<br />

T 0 standard ambient temperature (298,15 K),<br />

P0 i<br />

P<br />

c<strong>on</strong>venti<strong>on</strong>al mean ideal gas partial pressure in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere (kPa),<br />

0 standard pressure (101,325 kPa),<br />

xi molar fracti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment.<br />

(5.2)<br />

The values <str<strong>on</strong>g>of</str<strong>on</strong>g> standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> gaseous reference substances O 2, H 2O,<br />

CO 2, N 2 are calculated before o<str<strong>on</strong>g>the</str<strong>on</strong>g>r values because <str<strong>on</strong>g>the</str<strong>on</strong>g>y are necessary in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-gaseous reference substances.<br />

5.2.2.3 Solid reference substances<br />

For a prevailing part <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical elements, solid R.S. comm<strong>on</strong>ly appearing in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

external layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>earth</strong>’s crust, are assumed. However, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong>’s crust is a very complicated mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> solid soluti<strong>on</strong>s and an exact calculati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> its comp<strong>on</strong>ents is impossible. We can <strong>on</strong>ly approximately<br />

evaluate that exergy, assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> reference species behave as comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an ideal soluti<strong>on</strong>. Hence, Eq. 5.2 can be applied also in this case.<br />

The evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standard molar c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid R.S. in <str<strong>on</strong>g>the</str<strong>on</strong>g> external<br />

layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust is difficult and as stated in chapter 3, <str<strong>on</strong>g>the</str<strong>on</strong>g>re wasn’t any<br />

average <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> until <str<strong>on</strong>g>the</str<strong>on</strong>g> recent publicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Grigor’ev [124],<br />

[127] arrived. In past geochemical publicati<strong>on</strong>s (such as Allègre [6], [8], Shan Gao<br />

[106], Rudnick [291], C<strong>on</strong>die [60], Javoy [169], McD<strong>on</strong>ough [212], Taylor and


148 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

McLennan [353], [216], [215], or Wedepohl [404]) <strong>on</strong>e can <strong>on</strong>ly find mean mass<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particular chemical elements and <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong> oxides found<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust, namely SiO 2, T iO 2, Al 2O 3, FeO, M nO, M gO, CaO, N a 2O,<br />

K 2O and P 2O 5. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> best c<strong>on</strong>sidered way so far to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> standard molar<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> R.S. in <str<strong>on</strong>g>the</str<strong>on</strong>g> solid envir<strong>on</strong>ment, has been with <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong><br />

suggested by Szargut in [336].<br />

where:<br />

ε j<br />

l j<br />

c j<br />

MWcr xi = 1<br />

εj c j MWcr l j<br />

(5.3)<br />

mean molar c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> j-th element in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong>’s crust (mole/g),<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> j-th element in <str<strong>on</strong>g>the</str<strong>on</strong>g> molecule <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference<br />

species,<br />

fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> j-th element appearing in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> reference species,<br />

mean molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust (g/mole).<br />

The reference reacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements having solid reference substances c<strong>on</strong>tain<br />

usually gaseous reference substances such as O for example. Sometimes <str<strong>on</strong>g>the</str<strong>on</strong>g>re appear<br />

also solid or liquid reference species. In such case <str<strong>on</strong>g>the</str<strong>on</strong>g> standard chemical exergy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> appearing solid or liquid reference substance should be calculated prior to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered element.<br />

5.2.2.4 Reference substances dissolved in seawater<br />

Assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>ic or molecular R.S. dissolved in seawater ensures in many cases<br />

more exact determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical elements when<br />

compared with solid R.S. The calculati<strong>on</strong> methods <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

m<strong>on</strong>ocharged and bicharged i<strong>on</strong>s are relatively exact. This is <str<strong>on</strong>g>the</str<strong>on</strong>g> case also when<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reference substance is dissolved in molecular form with a very small degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

i<strong>on</strong>izati<strong>on</strong>.<br />

The method <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> elements with R.S. dissolved<br />

in seawater was developed by Morris [340]:<br />

<br />

bch j = −∆ Gf i + 0, 5 z + <br />

bch H2 − rk,i bch k −<br />

− ¯R T 0 [2, 303 z + (pH) + ln m i γ i]<br />

k<br />

<br />

(5.4)


The reference envir<strong>on</strong>ment 149<br />

where:<br />

∆G f i Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.S.,<br />

z + number <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary positive charges <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference i<strong>on</strong>,<br />

rk,i number <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al elements k present in <str<strong>on</strong>g>the</str<strong>on</strong>g> molecule <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reference substance i,<br />

bch H2 , bch k standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen gas and <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> k-th additi<strong>on</strong>al element.<br />

mi c<strong>on</strong>venti<strong>on</strong>al standard molarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference substance i in seawater,<br />

γi activity coefficient (molarity scale) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference substance in seawater,<br />

pH exp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen i<strong>on</strong> in seawater (=8,1)<br />

Eq. 5.4 should be multiplied by 2 for <str<strong>on</strong>g>the</str<strong>on</strong>g> diatomic elements Br 2, Cl 2 and I 2.<br />

The activity coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> a single i<strong>on</strong> can be calculated by means <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Debye-<br />

Huckel equati<strong>on</strong>:<br />

− log γi = A1 (z + ) 2 I<br />

<br />

1 + ai A2 I<br />

(5.5)<br />

where:<br />

A1 A2 ai = 0,51 kg1/2 mole−1/2 for water at 25oC, = 3,287 * 109 kg1/2 m−1 mole−1/2 for water at 25oC, effective diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong>,<br />

I i<strong>on</strong>ic strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electrolyte.<br />

The i<strong>on</strong>ic strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electrolyte results from <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>:<br />

I = 1 <br />

mi (z<br />

2<br />

i<br />

+ ) 2<br />

where:<br />

mi molarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong>, mole/kg H2O, z + number <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary electric charges <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong>.<br />

(5.6)<br />

The i<strong>on</strong> Cl − prevails am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> negative i<strong>on</strong>s in seawater. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> data <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chlorides can be assumed for activity coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> positive i<strong>on</strong>s N a + and K + .<br />

The activity coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> negative i<strong>on</strong>s Cl − and SO −2<br />

4 can be estimated in reference<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> predominant positive i<strong>on</strong> N a + . The positive i<strong>on</strong>ic reference substances<br />

were assumed for <str<strong>on</strong>g>the</str<strong>on</strong>g> elements from <str<strong>on</strong>g>the</str<strong>on</strong>g> first column <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> periodic system and<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>ocharged and bicharged negative i<strong>on</strong>s formed from acids. The elements<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d column <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> periodic system appear in seawater in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

positive bicharged i<strong>on</strong>s, however, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are not recommended as R.S., because <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

so calculated standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements leads to negative values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> some solid compounds comm<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust.


150 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

5.2.3 Update <str<strong>on</strong>g>of</str<strong>on</strong>g> Szargut’s R.E.<br />

Next, Szargut’s R.E. will be updated with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> new geochemical data and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

informati<strong>on</strong> provided by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r authors such as Ranz [276] or Rivero [281].<br />

5.2.3.1 Update <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical compounds<br />

The <strong>on</strong>ly variable included in Eq. 5.1 that is subject to be updated is ∆G f . The Gibbs<br />

free energy used by Szargut [336] was revised by Rivero [281] using [258], [391],<br />

[194], [19] and [399]. No substantial differences were found, except for sillimanite<br />

(Al 2SiO 5), whose new value was ∆G f = 2440, 9 kJ/mole. The informati<strong>on</strong> source<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ranz [276] for obtaining ∆G f , was Faure [94], which is a compilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

literature from several authors. This source corroborates Rivero’s revisi<strong>on</strong> and thus,<br />

it will be c<strong>on</strong>sidered for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this particular R.E.<br />

5.2.3.2 Update <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gaseous reference substances<br />

Rivero and Garfias [281] accepted <str<strong>on</strong>g>the</str<strong>on</strong>g> reference pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. 5.2 according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>venti<strong>on</strong>al unit “physical atmosphere”, thus 101,325 kPa. We are assuming <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mean partial pressure calculated by Szargut and used by Ranz [276], which is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

really appearing mean value and is equal to 99,31 kPa.<br />

5.2.3.3 Update <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid reference substances<br />

The mean molar c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust ε j <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Eq. 5.3 used in Szargut [336], was <str<strong>on</strong>g>the</str<strong>on</strong>g> recommended by Polanski and Smulikowski<br />

[268]. Ranz [276] used updated values mainly from Taylor and McLennan [354],<br />

[353]. For <str<strong>on</strong>g>the</str<strong>on</strong>g> elements: Br, C, Cl, F, S, P t, Pu, Ra, Rh, Ru, Te, I, H g and N,<br />

Taylor and McLennan did not provide any informati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, Ranz used <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

values given by Wedepohl [404] for S, Br, C, F, I, H g, N and for <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining<br />

elements, <str<strong>on</strong>g>the</str<strong>on</strong>g> values used by Szargut [336]. Some authors like Plank and Langmuir<br />

[267] basing <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir studies <strong>on</strong> marine sediments, suggested already in 1998 some<br />

revisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated values by Taylor and McLennan [354], [353] for N b,<br />

Cs,T i, Ta. As a c<strong>on</strong>sequence, McLennan [215] published in year 2001 new mean<br />

molar c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust for <str<strong>on</strong>g>the</str<strong>on</strong>g> elements: Sc, T i, V , Co,<br />

N i, N b, Cs, P b, Ta. The most recent data about <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

upper c<strong>on</strong>tinental crust has been published by Rudnick and Gao [292], taking into<br />

account <str<strong>on</strong>g>the</str<strong>on</strong>g> studies published so far.<br />

The recent values provided by Rudnick and Gao will be used for <str<strong>on</strong>g>the</str<strong>on</strong>g> update <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Szargut’s R.E. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, values for Pu and Ra that are not provided in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

tables, will be assumed to be <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es given by Polanski [268].


The reference envir<strong>on</strong>ment 151<br />

As explained in chapter 3, Grigor’ev published in year 2000 [125] <str<strong>on</strong>g>the</str<strong>on</strong>g> average <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust obtained through a great number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quantitative <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> important rocks. In 2007, Grigor’ev updated<br />

this informati<strong>on</strong>; <str<strong>on</strong>g>the</str<strong>on</strong>g> new analysis comprises 265 <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir varieties and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

n<strong>on</strong>-<str<strong>on</strong>g>mineral</str<strong>on</strong>g> materials, corresp<strong>on</strong>ding to 99,13% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

upper c<strong>on</strong>tinental crust. With this valuable informati<strong>on</strong>, we have been able to propose<br />

a new model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust, based <strong>on</strong> Grigor’ev’s compositi<strong>on</strong>, but<br />

assuring <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. This informati<strong>on</strong> allows to obtain directly<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> standard molar c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following 14 reference substances in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

solid envir<strong>on</strong>ment without using Eq. 5.3: Al 2SiO 5, BaSO 4, Be 2SiO 4, CaCO 3, Au,<br />

Fe 2O 3, M g 3Si 4O 10(OH) 2, M nO 2, SiO 2, SrCO 3, ThO 2, SnO 2, T iO 2, Z rSiO 4. For <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rest substances, Eq. 5.3 must be used, taking ε j from <str<strong>on</strong>g>the</str<strong>on</strong>g> latest geochemical publicati<strong>on</strong>s<br />

explained before.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> j-th element appearing in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> reference species (coefficient<br />

c j), Szargut [335] associates values comprised between 0,5 for more abundant<br />

substances and 0,001 for less frequent substances from geochemical data given by<br />

Polanski and Smulikowski [268]. Ranz [276] obtained more accurate c j coefficients<br />

for solid R.S. c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust.<br />

For this purpose, she used <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s upper layer<br />

obtained with <str<strong>on</strong>g>the</str<strong>on</strong>g> CIPW norm before and updated geochemical informati<strong>on</strong>, mainly<br />

from Taylor and McLennan [354]. For minority elements, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong>,<br />

Szargut’s [335] values were used. As l<strong>on</strong>g as a better <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust is not developed and <str<strong>on</strong>g>the</str<strong>on</strong>g> c j coefficients are recalculated with this<br />

informati<strong>on</strong>, we will assume <str<strong>on</strong>g>the</str<strong>on</strong>g> c j values obtained by Ranz [276].<br />

The mean molecular mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s<br />

crust, was first estimated by Szargut [334]. The obtained value was MW cr= 135,5<br />

kg/kmole, applying <str<strong>on</strong>g>the</str<strong>on</strong>g> following estimati<strong>on</strong> method: according to <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemical<br />

data, <str<strong>on</strong>g>the</str<strong>on</strong>g> mean c<strong>on</strong>centrati<strong>on</strong> values (in mole/kg) <str<strong>on</strong>g>of</str<strong>on</strong>g> particular chemical groups<br />

or elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> external layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental <strong>earth</strong>’s crust and <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical<br />

compound formed from <str<strong>on</strong>g>the</str<strong>on</strong>g>se groups were assumed. The first c<strong>on</strong>sidered group was<br />

CO 2, which appears in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust mainly as <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong>ates <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca, M g and Fe.<br />

Per 1 mole <str<strong>on</strong>g>of</str<strong>on</strong>g> (CaO + M gO + FeO) 0,035 mole <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 is present. The group CO 2<br />

was partiti<strong>on</strong>ed between <str<strong>on</strong>g>the</str<strong>on</strong>g> menti<strong>on</strong>ed groups and elements Zn, Cu, P b and Cd,<br />

appearing also in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>ates. The group SO 3 was partiti<strong>on</strong>ed between<br />

CaO and M gO forming sulphates. It was assumed that a prevailing part <str<strong>on</strong>g>of</str<strong>on</strong>g> metals<br />

(Sn, Co, M n, Fe, N i) appears in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> different oxides (Co 2O 3, Co 3O 4, Fe 2O 3,<br />

Fe 3O 4). It was also assumed that 8% <str<strong>on</strong>g>of</str<strong>on</strong>g> Fe appears in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> free oxide<br />

Fe 2O 3. The remaining part appears in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> FeT iO 3, FeC r 2O 3 and silicates. For<br />

example, <str<strong>on</strong>g>the</str<strong>on</strong>g> following silicates were assumed: N aAlSi 3O 8, KAlSi 3O 8, N aFeSi 2O 6,<br />

M gSiO 3, CaO.Al 2Si 2O 7. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> large c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> SiO 2, a c<strong>on</strong>siderable part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

it was assumed in <str<strong>on</strong>g>the</str<strong>on</strong>g> free form. After estimating <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a mean sample<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lithosphere, its molecular mass was calculated.


152 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

Ranz [276] updated <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust using more<br />

recent geochemical informati<strong>on</strong> and adopting not <strong>on</strong>ly a geochemical approach, but<br />

also a geological <strong>on</strong>e. The methodology used was as follows: <str<strong>on</strong>g>the</str<strong>on</strong>g> internati<strong>on</strong>al accepted<br />

norm CIPW [262] was applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> mass fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> principal oxide<br />

groups obtained by Carmichael [49] for <str<strong>on</strong>g>the</str<strong>on</strong>g> crat<strong>on</strong>ic and sedimentary layers, in order<br />

to redistribute <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical comp<strong>on</strong>ents from <str<strong>on</strong>g>the</str<strong>on</strong>g> oxides to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> molecules<br />

that are representative in real <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s appearing in a rock. Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> norm and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir respective relative masses were modified to adjust <str<strong>on</strong>g>the</str<strong>on</strong>g>m to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

real volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> principal groups <str<strong>on</strong>g>of</str<strong>on</strong>g> each rock. Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir molar fracti<strong>on</strong>s were<br />

calculated and <str<strong>on</strong>g>the</str<strong>on</strong>g> mean molecular mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> whole was obtained. The resulting<br />

MW cr was equal to 145,5 g/mole. Even though this methodology used better<br />

geochemical values than <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es in Szargut [334], and included <str<strong>on</strong>g>the</str<strong>on</strong>g> geological<br />

approach, we cannot forget that <str<strong>on</strong>g>the</str<strong>on</strong>g> CIPW norm is an artificial way to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

possible <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s that can appear in a rock. It is <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <strong>on</strong>ly an approximati<strong>on</strong> as<br />

well.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> light <str<strong>on</strong>g>of</str<strong>on</strong>g> Grigor’ev’s analysis, a more accurate molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper<br />

c<strong>on</strong>tinental crust, based <strong>on</strong> experimental results ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than assumpti<strong>on</strong>s, can be<br />

easily obtained. The new calculated value is MW cr= 142,1 g/mole, which is very<br />

close to <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> d<strong>on</strong>e by Ranz. Our model threw up a mean molecular weight<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust <str<strong>on</strong>g>of</str<strong>on</strong>g> MW cr=155,2 g/mole.<br />

5.2.3.4 Update <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid reference substances<br />

Rivero and Garfias [281] have found <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> salinity <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculated values <str<strong>on</strong>g>of</str<strong>on</strong>g> standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> elements calculated by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reference substances dissolved in seawater. However, an increased salinity (greater<br />

than 35 per thousand) appears seldom (Red Sea), and <str<strong>on</strong>g>the</str<strong>on</strong>g> deviati<strong>on</strong>s are not large<br />

(usually less than 1,6%). Every introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid reference substances can decrease<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong>s. Therefore we are assuming <str<strong>on</strong>g>the</str<strong>on</strong>g> solid reference<br />

substances <strong>on</strong>ly for <str<strong>on</strong>g>the</str<strong>on</strong>g> elements from <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d column <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> periodic system.<br />

Following i<strong>on</strong>ic and molecular reference substances dissolved in seawater have been<br />

accepted in <str<strong>on</strong>g>the</str<strong>on</strong>g> recent publicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Szargut [338] and will be used for this proposal:<br />

Cl − , AgCl −<br />

H gCl −2<br />

4 , IO−<br />

Zn +2 .<br />

2 , B(OH) 3 (aq), BiO + , Br − , CdCl 2 (aq), Cs + , Cu +2 , H PO −2<br />

4<br />

3 , K+ , Li + , M oO −2<br />

4 , N a+ , N i +2 , P bCl 2 (aq), Rb + , SO −2<br />

4 4<br />

, HAsO−2<br />

, SeO−2,<br />

W O−2<br />

Major i<strong>on</strong>s in seawater are i<strong>on</strong>s with fracti<strong>on</strong>s greater than 1 ppm. The seawater<br />

reference envir<strong>on</strong>ment taken into account in this proposal comprises <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

major i<strong>on</strong>s: N a + , K + , HAsO −2<br />

4 , BiO+ , Cl − , SO −2<br />

4 , Br− , B(OH) 3. Values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

activity coefficients and molarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se species basing <strong>on</strong> informati<strong>on</strong> presented<br />

in Millero [224], [225], Pils<strong>on</strong> [264] and Mottl [231] were reviewed and compared<br />

with those which Ranz and Rivero took into account.<br />

4 ,<br />

4 ,


The reference envir<strong>on</strong>ment 153<br />

5.2.3.5 The updated reference envir<strong>on</strong>ment. Results<br />

Table 5.4 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained in this study for <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

elements with <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemical informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust (MW cr and z 0i) obtained<br />

in this PhD (This study 1) and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e provided by Grigor’ev [127] (This study 2).<br />

The solid R.S. assumed are those taken by Szargut [336], basing <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Szargut’s<br />

criteri<strong>on</strong> menti<strong>on</strong>ed before. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> values are compared to those given by<br />

Szargut [336], Valero, Ranz and Botero [371] and Rivero and Garfias [281]. The<br />

different reference substances divided into liquid, gaseous and solid R.S. and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

values required for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s are shown in tables A.13, A.14 and A.15 in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

appendix, page 384.<br />

The average difference between our study (1) and Szargut’s values is around 0,66%<br />

<strong>on</strong> average, while between study (2) with Grigor’ev’s model and Szarguts’, about<br />

0,93%. Hence, in both cases, <str<strong>on</strong>g>the</str<strong>on</strong>g> average differences are very small. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less,<br />

small differences multiplied by huge numbers, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

<strong>on</strong> <strong>earth</strong>, make <str<strong>on</strong>g>the</str<strong>on</strong>g>se discrepancies to be not so insignificant. Next, each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

three subsystems (gaseous, liquid and solid R.S.) is analyzed, stressing <str<strong>on</strong>g>the</str<strong>on</strong>g> biggest<br />

differences found in <str<strong>on</strong>g>the</str<strong>on</strong>g> different models.<br />

The obtained values for gaseous R.S. are <str<strong>on</strong>g>the</str<strong>on</strong>g> same <str<strong>on</strong>g>of</str<strong>on</strong>g> those obtained by Szargut<br />

[336] and Valero, Ranz and Botero [371], since <str<strong>on</strong>g>the</str<strong>on</strong>g> methodology and <str<strong>on</strong>g>the</str<strong>on</strong>g> values<br />

used for this R.E. have been <str<strong>on</strong>g>the</str<strong>on</strong>g> same. The differences between this study (1) and<br />

(2) and that <str<strong>on</strong>g>of</str<strong>on</strong>g> Rivero and Garfias [281] are due to <str<strong>on</strong>g>the</str<strong>on</strong>g> different partial pressures in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere assumed.<br />

The new chemical exergies obtained differ in 0,5% in average for study (1) and<br />

1% for study (2) with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> values obtained by Szargut in [336] for solid<br />

reference substances. Taking <str<strong>on</strong>g>the</str<strong>on</strong>g> empirical standard molar c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid<br />

R.S. from our model instead <str<strong>on</strong>g>of</str<strong>on</strong>g> obtaining it with Eq. 5.3, implies a difference in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

element chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> about 0,2% except for Au (9,5%) and F (6,7%). For<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> latter elements, <str<strong>on</strong>g>the</str<strong>on</strong>g> greater difference is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greater sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> Au to<br />

x i (since its ∆G f is equal to zero) and <str<strong>on</strong>g>the</str<strong>on</strong>g> great proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reference substance <str<strong>on</strong>g>of</str<strong>on</strong>g> F (CaF 2), respectively. It must be stressed that choosing a<br />

certain c j or ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r a 100 times greater, throws less differences in <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical<br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements than choosing ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r R.S., as can be seen in <str<strong>on</strong>g>the</str<strong>on</strong>g> models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Valero et al. [371] and Rivero et al. [281], when o<str<strong>on</strong>g>the</str<strong>on</strong>g>r R.S. are c<strong>on</strong>sidered. The<br />

same thing happens with <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust. An MW cr <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

142,1 or 155,2 <strong>on</strong>ly modifies <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements in 0,03%, and<br />

hence that parameter is not crucial at all.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid R.S., with <str<strong>on</strong>g>the</str<strong>on</strong>g> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SO −2<br />

4 <str<strong>on</strong>g>the</str<strong>on</strong>g> differences are negligible from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> final exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered element. In<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> SO −<br />

4 , Szargut and Valero et al. assumed a value <str<strong>on</strong>g>of</str<strong>on</strong>g> mSO −2 = 1,17E-2, and<br />

4<br />

Rivero m −2<br />

SO = 1,24E-2. The molarity calculated basing <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> three independent<br />

4<br />

sources [225], [264] and [231] is estimated as m −2<br />

SO = 2,93E-2 and is almost 2,5<br />

4


154 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

times greater. This difference decreases <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur <strong>on</strong>ly about 2<br />

kJ/mole. The rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> obtained results are very similar to previous investigati<strong>on</strong>s<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> differences are negligible.<br />

Table 5.4: Standard chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements<br />

Standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements, bch j (kJ/mole)<br />

Element This study This study Szargut Valero et al. Rivero et al.<br />

1<br />

2<br />

[336] [371] [281]<br />

Ag 69,7 69,7 70,2 70,3 R.S.=AgCl<br />

99,3<br />

Al 794,3 795,8 888,2 R.S. =Al2O3 796,7<br />

795,7<br />

Ar 11,7 11,7 11,7 11,7 11,6<br />

As 494,1 494,1 494,6 R.S.=As2O5 411,5<br />

492,6<br />

Au 51,5 56,4 50,5 53,4 50,6<br />

B 628,6 628,6 628,5 628,5 628,1<br />

Ba 765,5 777,2 775,1 774,3 775,4<br />

Be 602,6 606,4 604,4 R.S.=BeO<br />

615,6<br />

604,3<br />

Bi 274,8 274,8 274,5 274,6 274,8<br />

Br2 101,1 101,1 101,2 101,3 101,0<br />

C 410,3 410,3 410,3 410,3 410,3<br />

Ca 723,8 719,9 729,1 R.S.=Ca 2+<br />

712,4<br />

729,1<br />

Cd 293,2 293,2 293,8 293,8 R.S.=CdCO 3<br />

298,4<br />

Ce 1054,2 1054,5 1054,6 1054,4 1054,7<br />

Cl 2 124,2 124,2 123,6 123,7 123,7<br />

Co 308,9 308,6 312,0 R.S.=Co3O4 270,4<br />

313,4<br />

C r 584,4 584,5 584,3 R.S.=C r2O3 559,1<br />

584,4<br />

Cs 404,5 404,5 404,4 404,6 404,6<br />

Cu 134,0 134,0 134,2 134,2 R.S.=CuCO 3<br />

132,6<br />

D y 974,9 975,1 975,9 975,3 976,0<br />

Er 973,0 973,2 972,8 973,1 972,8<br />

Eu 1003,9 1004,1 1003,8 1004,4 1003,8<br />

F2 556,1 595,5 504,9 R.S.=CaF 2<br />

482,7<br />

505,8<br />

Fe 376,8 377,1 374,8 374,8 374,3<br />

Ga 514,6 514,7 514,9 514,7 515,0<br />

Gd 969,9 970,1 969,0 969,6 969,0<br />

Ge 556,5 556,7 557,6 556,3 557,7<br />

H2 236,1 236,1 236,1 236,1 236,1<br />

He 30,4 30,4 30,4 30,4 31,3<br />

H f 1061,3 1061,5 1062,9 1061,3 1063,1<br />

H g 114,8 114,8 115,9 115,9 R.S.=H gCl 2<br />

107,9<br />

Ho 979,3 979,5 978,6 979,5 978,7<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


The reference envir<strong>on</strong>ment 155<br />

Table 5.4: Standard chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements – c<strong>on</strong>tinued from previous<br />

page<br />

Standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements, bch j (kJ/mole)<br />

Element This study This study Szargut Valero et al. Rivero et al.<br />

1<br />

2<br />

[336] [371] [281]<br />

I2 175,0 175,0 174,7 174,8 175,7<br />

In 437,4 437,5 436,8 437,6 436,9<br />

I r 256,1 256,4 246,8 256,5 247,0<br />

K 366,5 366,5 366,6 366,7 366,7<br />

K r 34,4 34,4 34,4 34,4 34,3<br />

La 994,3 994,5 994,6 994,5 994,7<br />

Li 392,9 392,9 393,0 393,0 392,7<br />

Lu 946,6 946,9 945,7 946,7 945,8<br />

M g 629,6 629,4 626,1 R.S.=M g +2<br />

611,0<br />

626,9<br />

M n 484,6 490,1 482,0 482,9 487,7<br />

M o 730,5 730,5 730,3 730,3 731,3<br />

N2 0,7 0,7 0,7 0,7 0,7<br />

N a 336,6 336,6 336,6 336,7 336,7<br />

N b 900,2 900,3 899,7 899,4 899,7<br />

N d 969,8 970,0 970,1 970,1 970,1<br />

N e 27,2 27,2 27,2 27,2 27,1<br />

N i 232,5 232,5 232,7 232,7 R.S.=N iO<br />

242,6<br />

O2 4,0 4,0 4,0 4,0 3,9<br />

Os 370,8 371,0 368,1 369,8 368,4<br />

P 861,6 861,6 861,4 861,4 861,3<br />

P b 232,2 232,2 232,8 232,8 R.S.=P bCO3 249,2<br />

Pd 145,7 145,9 138,6 146,0 138,7<br />

P r 963,8 964,1 963,8 964,0 963,9<br />

P t 146,5 146,7 141,0 140,9 141,2<br />

Pu 1099,7 1099,9 1100,0 1099,8 1100,1<br />

Ra 825,8 826,1 823,9 823,7 824,2<br />

Rb 388,8 388,8 388,6 388,9 388,7<br />

Re 561,3 561,4 559,5 560,3 559,6<br />

Rh 183,0 183,1 179,7 176,6 179,7<br />

Ru 315,2 315,5 318,6 318,4 318,6<br />

S 607,3 607,3 609,6 609,6 609,3<br />

Sb 437,1 437,2 438,0 438,0 438,2<br />

Sc 923,8 923,9 925,2 924,1 925,3<br />

Se 346,7 346,7 346,5 346,5 347,5<br />

Si 854,2 854,1 854,9 854,2 855,0<br />

Sm 993,9 994,1 993,6 994,2 993,7<br />

Sn 547,6 536,8 551,9 549,2 551,8<br />

Sr 758,8 773,6 749,8 748,6 749,8<br />

Ta 974,8 975,0 974,0 973,8 974,1<br />

T b 999,0 999,2 998,4 999,4 998,5<br />

Te 326,4 326,6 329,2 329,1 329,3<br />

Th 1214,5 1220,7 1202,6 1202,1 1202,7<br />

T i 904,4 902,0 907,2 902,9 907,2<br />

T l 193,8 194,0 194,9 194,2 194,9<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


156 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

Table 5.4: Standard chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements – c<strong>on</strong>tinued from previous<br />

page<br />

Standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements, bch j (kJ/mole)<br />

Element This study This study Szargut Valero et al. Rivero et al.<br />

1<br />

2<br />

[336] [371] [281]<br />

T m 952,5 952,7 951,7 952,5 951,8<br />

U 1196,1 1196,3 1196,6 1196,2 1196,6<br />

V 721,5 721,6 720,4 722,2 721,3<br />

W 827,7 827,7 827,5 827,5 828,5<br />

X e 40,3 40,3 40,3 40,3 40,3<br />

Y 966,3 966,5 965,5 966,4 965,6<br />

Y b 944,9 945,2 944,3 944,8 944,3<br />

Zn 339,0 339,0 339,2 339,2 R.S.=ZnCO 3<br />

344,7<br />

Z r 1077,4 1080,9 1083,4 R.S.=Z rO2 1060,7<br />

1083,0<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

5.2.4 Drawbacks <str<strong>on</strong>g>of</str<strong>on</strong>g> Szargut’s R.E. methodology<br />

As stated in secti<strong>on</strong> 5.2, <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. can be c<strong>on</strong>sidered as <strong>on</strong>e, in which all <str<strong>on</strong>g>the</str<strong>on</strong>g> substances<br />

c<strong>on</strong>tained in it have reacted, dispersed and mixed. Such an envir<strong>on</strong>ment, would<br />

have probably a hydrosphere with a compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwaters, rivers, lakes, etc.<br />

similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sea. The atmosphere would have a much greater CO 2 and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

pollutant’s c<strong>on</strong>tent than it does now, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> complete burning <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels. And<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust would have likely a very similar compositi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> current <strong>on</strong>e<br />

(except for <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels), but completely dispersed with no enriched<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits.<br />

Szargut’s and subsequent reference envir<strong>on</strong>ments are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e reference<br />

substance per element, i.e. 85 R.S. Obviously a degraded <strong>earth</strong> would c<strong>on</strong>tain<br />

many more substances. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> variables used in Szargut’s and subsequent<br />

models are based <strong>on</strong> current and not eventual values 1 . Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, many <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

that are more stable than <str<strong>on</strong>g>the</str<strong>on</strong>g> R.S. have negative exergies. This fact occurs not that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten than with Ranz’s abundance criteri<strong>on</strong>, but it still happens, as we will see later<br />

in chapter 6. A chemically inactive R.E. would be <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e created by Ahrendts [4]<br />

and fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r developed by Diederichsen [74]. In both models <str<strong>on</strong>g>the</str<strong>on</strong>g> positiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> any<br />

substance is assured. But as stated before, <str<strong>on</strong>g>the</str<strong>on</strong>g>se reference envir<strong>on</strong>ment’s compositi<strong>on</strong>s<br />

are far removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> currently known and from an eventually degraded<br />

<strong>earth</strong>.<br />

1 For instance partial pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> gaseous R.S., temperatures or molalities are taken as those ap-<br />

pearing currently in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere and <str<strong>on</strong>g>the</str<strong>on</strong>g> sea.


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 157<br />

Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment based <strong>on</strong> Szargut’s criteri<strong>on</strong> should not be c<strong>on</strong>sidered<br />

as a dead R.E., but ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r as a ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical tool for obtaining standard<br />

chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, it is always subject to updates, as<br />

new geochemical informati<strong>on</strong> is more available.<br />

5.3 The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources<br />

5.3.1 The energy involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

deposit<br />

As stated in Ranz’s PhD [276], a <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposit can be seen as a very unfrequent<br />

aggregates <str<strong>on</strong>g>of</str<strong>on</strong>g> rocks, which in turn rocks are aggregate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, and <str<strong>on</strong>g>the</str<strong>on</strong>g>se are<br />

aggregates <str<strong>on</strong>g>of</str<strong>on</strong>g> certain molecular substances, which are composed by aggregates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

atoms. This definiti<strong>on</strong> can be summarized as in Eq. 5.7:<br />

Deposit = rocks = <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s =<br />

molecules = atoms<br />

(5.7)<br />

Each aggregate is characterized by two different properties: a cohesi<strong>on</strong> energy or<br />

binding energy, represented by its enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mixture or <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong>, which indicates <str<strong>on</strong>g>the</str<strong>on</strong>g> probability degree <str<strong>on</strong>g>of</str<strong>on</strong>g> forming <str<strong>on</strong>g>the</str<strong>on</strong>g> substance<br />

under c<strong>on</strong>siderati<strong>on</strong>. The four steps implicated in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

deposit are outlined as follows [276]:<br />

Step I: Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> molecule: Σ Atoms (g) → Molecule (g)+ ∆ H, ∆ S<br />

Step II: Solidificati<strong>on</strong>: Molecule (g) → Molecule (s)+ ∆ H, ∆ S<br />

Step III: Solid 1 + Solid 2 → Mineral+ ∆ H, ∆ S<br />

Step IV: Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposit: % Mineral + Rocks → Mine + ∆ H, ∆ S<br />

The first two steps are basically chemical processes, in which <str<strong>on</strong>g>the</str<strong>on</strong>g> energies involved<br />

are determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> enthalpy and entropy that accompanies <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 1 mole <str<strong>on</strong>g>of</str<strong>on</strong>g> a substance from its c<strong>on</strong>stituent elements. The solidificati<strong>on</strong><br />

energy is much smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic process <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>.<br />

Usually, <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>mineral</str<strong>on</strong>g> proceeds directly to its solid<br />

phase.<br />

The third step is subdivided into two processes: <str<strong>on</strong>g>mineral</str<strong>on</strong>g>izati<strong>on</strong> and formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rock. The <str<strong>on</strong>g>mineral</str<strong>on</strong>g>izati<strong>on</strong> stage is a chemical process, in which <str<strong>on</strong>g>the</str<strong>on</strong>g> molecules<br />

combine to form <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>. The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rock is a physical process, where<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> solids (or <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s) are mixed to form a c<strong>on</strong>glomerati<strong>on</strong>. The general expressi<strong>on</strong><br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy generated in a mixture process <str<strong>on</strong>g>of</str<strong>on</strong>g> two ideal gases, solids or liquids is<br />

expressed as in Eq. 5.8.<br />

∆S = ∆S 1 + ∆S 2 = −n 1 ¯R<br />

x1P<br />

P<br />

d P<br />

P − n2 ¯R<br />

x2P<br />

d P<br />

P P<br />

= −¯R <br />

n1lnx 1 + n2lnx 2 (5.8)


158 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy in mixtures, and especially in solid soluti<strong>on</strong>s,<br />

is much smaller than that for <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal exchanges associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

compound, temperature increases or phase changes.<br />

Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> fourth step deals with <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposit. Mineral<br />

deposits have <str<strong>on</strong>g>the</str<strong>on</strong>g> special feature that c<strong>on</strong>tain certain <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s at much greater c<strong>on</strong>centrati<strong>on</strong>s<br />

than in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust.<br />

According to Faber [90], if <str<strong>on</strong>g>the</str<strong>on</strong>g> resource <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposit at a c<strong>on</strong>centrati<strong>on</strong><br />

x i is extracted, <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy will decrease, and <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy change per mole <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

resource is given by Eq. 5.9.<br />

<br />

∆S = ¯R lnx i + (1 − x <br />

i)<br />

ln(1 − xi) < 0 (5.9)<br />

xi According to <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics, this negative entropy flux is <strong>on</strong>ly<br />

possible if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r system to which it flows. Hence, an external energy<br />

supply is needed. The standard energy involved in separating <str<strong>on</strong>g>the</str<strong>on</strong>g> resource from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposit is <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> exergy b c, in kJ/mole:<br />

bc i = −¯RT 0<br />

<br />

lnx i + (1 − x <br />

i)<br />

ln(1 − xi) xi (5.10)<br />

where ¯R is <str<strong>on</strong>g>the</str<strong>on</strong>g> universal gas c<strong>on</strong>stant (8,314 kJ/kmole K), T 0 is <str<strong>on</strong>g>the</str<strong>on</strong>g> standard ambient<br />

temperature (298,15 K) and x is <str<strong>on</strong>g>the</str<strong>on</strong>g> molar c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substance.<br />

Additi<strong>on</strong>ally to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> exergy, which accounts for a minimum, <str<strong>on</strong>g>the</str<strong>on</strong>g> binding<br />

forces in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal should be accounted for [276]. The b<strong>on</strong>ds<br />

generated are <str<strong>on</strong>g>of</str<strong>on</strong>g> different nature. 1) Covalent or i<strong>on</strong>ic b<strong>on</strong>ds, forming a threedimensi<strong>on</strong>al<br />

crystalline structure. In <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> crystalline defects, <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

needed to separate <str<strong>on</strong>g>the</str<strong>on</strong>g>m is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> interatomic b<strong>on</strong>ding energy. 2) Cohesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interphase forces and capillarity sucti<strong>on</strong>, which is comm<strong>on</strong>ly found in <str<strong>on</strong>g>the</str<strong>on</strong>g> agglomerati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a solid by a liquid, acting as an adhesive cement. 3) Intermolecular and<br />

electrostatic forces, binding very thin particles. 4) Mechanical interpenetrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particles, typically formed by compressi<strong>on</strong>.<br />

The energy needed to separate a solid particle from o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller size depend <strong>on</strong><br />

different physical aspects such as size, hardness or surface area. Some expressi<strong>on</strong>s<br />

have been developed for relating <str<strong>on</strong>g>the</str<strong>on</strong>g> particle size with <str<strong>on</strong>g>the</str<strong>on</strong>g> grinding energy. Kicks’s<br />

law or B<strong>on</strong>d’s law are two <str<strong>on</strong>g>of</str<strong>on</strong>g> those studies (see for instance, [259] for more details).<br />

Both laws indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> grinding energy increases exp<strong>on</strong>entially as <str<strong>on</strong>g>the</str<strong>on</strong>g> particle<br />

size decreases.<br />

As we will see in later secti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical energies involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> deposit are c<strong>on</strong>siderably higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> physical energies explained in this last<br />

step.


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 159<br />

5.3.2 The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources<br />

The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic value <str<strong>on</strong>g>of</str<strong>on</strong>g> a natural resource can be defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum<br />

work necessary to produce it with a specific structure and c<strong>on</strong>centrati<strong>on</strong> from comm<strong>on</strong><br />

materials in <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment. This minimum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> work is <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical<br />

by definiti<strong>on</strong> and is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> material’s exergy (Riekert [278]). The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a system gives an idea <str<strong>on</strong>g>of</str<strong>on</strong>g> its <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> potential for not being in <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

equilibrium with <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment, or what is <str<strong>on</strong>g>the</str<strong>on</strong>g> same, for not being in a dead state<br />

related to <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment (R.E.).<br />

The physical features that make <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s valuable are mainly <str<strong>on</strong>g>the</str<strong>on</strong>g>ir specific compositi<strong>on</strong><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> greater c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> ores in which <str<strong>on</strong>g>the</str<strong>on</strong>g>y are found [371]. The<br />

energy involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>mineral</str<strong>on</strong>g> comprises <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> compound from its elements, and <str<strong>on</strong>g>the</str<strong>on</strong>g> cohesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> molecules to form <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s<br />

crystal structure (step 1 to 3 in secti<strong>on</strong> 5.3.1). The minimum <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical work<br />

that nature should invest to provide <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s at a specific compositi<strong>on</strong> and structure<br />

from a degraded <strong>earth</strong> is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> standard chemical exergy [336] and it can be<br />

calculated by means <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy balance <str<strong>on</strong>g>of</str<strong>on</strong>g> a reversible formati<strong>on</strong> reacti<strong>on</strong> as in<br />

Eq. 5.1.<br />

<br />

bch i = ∆G f i + r j,i bch j<br />

Once <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> has been created, it mixes with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s to form rocks, which<br />

in turn, are combined with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r rocks forming <str<strong>on</strong>g>the</str<strong>on</strong>g> deposit (step 4 in secti<strong>on</strong> 5.3.1).<br />

The minimum <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical work needed to c<strong>on</strong>centrate a substance from an ideal<br />

mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> two comp<strong>on</strong>ents is given by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> exergy (b c), as in Eq. 5.10.<br />

The binding energy between <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and rocks is not c<strong>on</strong>sidered in <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal case.<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy needed to separate <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> deposit is <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy to mix <str<strong>on</strong>g>the</str<strong>on</strong>g>m. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less this binding exergy is taken into account<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> unit exergy costs explained in secti<strong>on</strong> 5.3.4.<br />

The difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> exergies obtained with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

in a mine (x m) 2 and with <str<strong>on</strong>g>the</str<strong>on</strong>g> average c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust<br />

(x c) 3 is <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum energy that nature had to spend to bring <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> reference state to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> mine. The c<strong>on</strong>centrati<strong>on</strong><br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in a completely degraded planet is zero, and it increases,<br />

as its c<strong>on</strong>centrati<strong>on</strong> increases. The work needed to separate a substance from a<br />

mixture does not follow a linear behavior with its c<strong>on</strong>centrati<strong>on</strong>. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics, reflected in Eq. 5.10 and represented in Fig.<br />

5.1 dictates that <str<strong>on</strong>g>the</str<strong>on</strong>g> effort required to separate <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> from <str<strong>on</strong>g>the</str<strong>on</strong>g> mine follows<br />

a negative logarithmic pattern with its ore grade. This means that as <str<strong>on</strong>g>the</str<strong>on</strong>g> ore grade<br />

2 xm replaces x in Eq. 5.3.4 for obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> mine<br />

3 xc replaces x in Eq. 5.3.4 for obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E.<br />

j


160 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

b c, MJ/kmole<br />

0<br />

0,00001 0,15 0,4 0,65 0,9<br />

xi<br />

Figure 5.1. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> required for separating a substance from a mixture, according to<br />

Eq. 5.10.<br />

tends to zero, <str<strong>on</strong>g>the</str<strong>on</strong>g> energy needed to extract <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> tends to infinity. Right that<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s exergy is what makes exergy a more realistic measure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnitude than mass, for instance [392]. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, it invalidates <str<strong>on</strong>g>the</str<strong>on</strong>g> statement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Brooks and Andrews [41] that exhausti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s is ridiculous because <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

entire planet is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. The energy that nature saves us when c<strong>on</strong>centrating<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in high grade ores, is too elevated to reproduce it with current<br />

technology.<br />

The unit exergies are c<strong>on</strong>verted into absolute <strong>on</strong>es (here denoted by B ch and B c), by<br />

multiplying b ch and b c with <str<strong>on</strong>g>the</str<strong>on</strong>g> moles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resource under c<strong>on</strong>siderati<strong>on</strong> (n). The<br />

sum <str<strong>on</strong>g>of</str<strong>on</strong>g> B ch and B c, indicates <str<strong>on</strong>g>the</str<strong>on</strong>g> total exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposit (B t), including<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> chemical and c<strong>on</strong>centrati<strong>on</strong> comp<strong>on</strong>ents (see Eq. 5.11).<br />

B t i = n i · b ch i + n i · b c i = B ch i + B c i<br />

5.3.3 The chemical energy and exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels<br />

(5.11)<br />

Fossil fuels are a type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemical and c<strong>on</strong>centrati<strong>on</strong><br />

exergies can be calculated with Eqs. 5.1 and 5.10. Liquid and gaseous fuels have<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> particularity, that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir quality (grade) keeps nearly c<strong>on</strong>stant with extracti<strong>on</strong>,


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 161<br />

whereas solid <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s d<strong>on</strong>’t (<str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s c<strong>on</strong>centrati<strong>on</strong> decreases as <str<strong>on</strong>g>the</str<strong>on</strong>g> deposit is<br />

being exploited). Hence, for those cases, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> exergy is not so relevant<br />

than with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources and it will not be taken into account for<br />

our calculati<strong>on</strong>s. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels is tightly related to its chemical<br />

exergy c<strong>on</strong>tent.<br />

The heterogeneity and complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels make <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy<br />

to be very difficult to predict with Eq. 5.1. But different <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic models<br />

have been proposed to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels. Stepanov [330], compiles<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different methodologies proposed. Rant [275], for instance, calculated<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> exergies to heating values and <str<strong>on</strong>g>the</str<strong>on</strong>g>n estimated average values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

ratios for liquid and gaseous fuels 4 . Szargut and Styrylska [342] corrected Rant’s<br />

formulas by taking into c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels. Shieh and<br />

Fan [310] obtained expressi<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> materials with complex<br />

structures. We will focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> models developed by Valero and Lozano [369]<br />

for obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels, but it must be pointed out, that<br />

more complex calculati<strong>on</strong> procedures, do not mean more reliable results. Both, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experimental error associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heating values and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

error associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> correlati<strong>on</strong>s are comprised reas<strong>on</strong>ably in an interval close to<br />

±2 %. Additi<strong>on</strong>ally, it has been largely dem<strong>on</strong>strated, that <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fuels can, in many cases, be satisfactorily approximated to <str<strong>on</strong>g>the</str<strong>on</strong>g> HHV.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> gaseous fuels, Valero and Lozano [369], showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical<br />

exergy can be estimated as <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> ideal gases (Eq. 5.12).<br />

<br />

bch gas = xi(b 0<br />

ch i + ¯RT 0lnx i) (5.12)<br />

Where xi is <str<strong>on</strong>g>the</str<strong>on</strong>g> molar fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical substance i and b0 chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> substance i.<br />

ch i<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> standard<br />

The exergy for gaseous fuels can thus be calculated with Eq. 5.12, or with <str<strong>on</strong>g>the</str<strong>on</strong>g> general<br />

methodology applied to liquid and solid fuels, explained next.<br />

The procedure is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> general molecular formula <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. 5.13.<br />

CH hO oN nS s + W w + Z z<br />

(5.13)<br />

Where W represents <str<strong>on</strong>g>the</str<strong>on</strong>g> moles <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid water (moisture) and Z <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ashes. Coefficients<br />

h, o, n, s, w and z are <str<strong>on</strong>g>the</str<strong>on</strong>g> moles <str<strong>on</strong>g>of</str<strong>on</strong>g> elements H, O, N, S, water and ashes<br />

c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel, per mole <str<strong>on</strong>g>of</str<strong>on</strong>g> C c<strong>on</strong>tent, respectively:<br />

h = H 12,011<br />

C 1,008<br />

s = S 12,011<br />

C 32,064<br />

o = O 12,011<br />

C 15,999<br />

W 12,011<br />

w =<br />

C 18,015<br />

n = N 12,011<br />

C 14,007<br />

z = Z 12,011<br />

C 1,000<br />

4 The ratios determined by Rant were 0,975 for liquid fuels and 0,95 for gaseous fuels. This<br />

indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy is very close to <str<strong>on</strong>g>the</str<strong>on</strong>g> high heating value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substance.


162 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

Note that W and Z apply <strong>on</strong>ly to solid fossil fuels and s = 0 in gaseous fuels. The<br />

standard average energy and exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel <strong>on</strong> a molar basis is <str<strong>on</strong>g>the</str<strong>on</strong>g>n:<br />

And e 0<br />

i<br />

and b0<br />

i<br />

Where ∆H 0<br />

f ,i<br />

e 0<br />

f uel = e0<br />

CH + we<br />

hOoNnS s 0<br />

W + ze0 Z<br />

b 0<br />

f uel = b0<br />

CH + w b<br />

hOoNnS s 0<br />

W + z b0<br />

Z<br />

are calculated as follows:<br />

b 0<br />

i<br />

e 0<br />

i<br />

= ∆H0 f ,i −<br />

<br />

f jH j,00<br />

= ∆H0 f ,i − T 0 s 0<br />

i −<br />

<br />

f jµ j,00<br />

(5.14)<br />

(5.15)<br />

(5.16)<br />

(5.17)<br />

and s0<br />

i are <str<strong>on</strong>g>the</str<strong>on</strong>g> standard enthalpy and entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel, T 0 <str<strong>on</strong>g>the</str<strong>on</strong>g> stan-<br />

dard ambient temperature, f j <str<strong>on</strong>g>the</str<strong>on</strong>g> elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atomic compositi<strong>on</strong> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

fuel f = [1, h, o, n, s] ′ , and H j,00 and µ j,00 <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy and <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical potential<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> dead state.<br />

The atomic compositi<strong>on</strong> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> a gaseous fuel f j,gas, can be obtained with Eq.<br />

5.18:<br />

f j,gas =<br />

n<br />

i=1 r j,i · ξ i<br />

d 1<br />

(5.18)<br />

Being r j,i <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms j c<strong>on</strong>tained in comp<strong>on</strong>ent i <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> gases<br />

and ξ i <str<strong>on</strong>g>the</str<strong>on</strong>g> molar compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> substance i in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel 5 . The moles <str<strong>on</strong>g>of</str<strong>on</strong>g> C c<strong>on</strong>tained<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel is expressed as d 1 and is calculated as n<br />

i=1 r C,i · ξ i.<br />

The formati<strong>on</strong> enthalpy can be calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> high or low heating values (HHV,<br />

LHV), using <str<strong>on</strong>g>the</str<strong>on</strong>g> following expressi<strong>on</strong>s:<br />

∆H 0<br />

f ,f uel = HHV + ∆H f ,CO 2 + h<br />

2 ∆H0<br />

f ,(H 2O) l + s∆H 0<br />

f ,SO 2<br />

<br />

h<br />

HHV = LHV +<br />

2<br />

<br />

+ w ∆H 0<br />

− ∆H f ,(H2O) g 0<br />

<br />

f ,(H2O) l<br />

(5.19)<br />

(5.20)<br />

In case <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental heating values are not available, <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be approximated<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> following expressi<strong>on</strong>s:<br />

5 Gaseous fuels are assumed to c<strong>on</strong>tain <str<strong>on</strong>g>the</str<strong>on</strong>g> following 7 gases: CH4, C 2H 6, C 3H 8, C 4H 10, C 5H 12, N 2<br />

and CO 2.


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 163<br />

Liquid fossil fuels. Lloyd’s correlati<strong>on</strong> [198] in cal/mole C:<br />

HHV = 102720 + 27360 · h − 32320 · o + 19890 · n + 85740 · s (5.21)<br />

Solid fossil fuels. Boie correlati<strong>on</strong> [279] in cal/ mole C:<br />

HHV = 100890 + 27990 · h − 42400 · o + 21010 · n + 80160 · s (5.22)<br />

For gaseous fuels, ∆H 0<br />

f<br />

can be calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>:<br />

∆H 0<br />

f ,f uel =<br />

ξi · ∆H 0<br />

f ,i<br />

d 1<br />

(5.23)<br />

The standard entropy is calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> correlati<strong>on</strong>s proposed by Ikumi [158]<br />

for liquid fossil fuels and those <str<strong>on</strong>g>of</str<strong>on</strong>g> Eisermann, Johns<strong>on</strong> and C<strong>on</strong>ger [83] for solid<br />

fuels.<br />

Liquid fossil fuels, in cal/(mole C· K):<br />

s 0<br />

f uel = 1, 12 + 4, 40 · h + 10, 66 · o + 20, 56 · n + 20, 70 · s (5.24)<br />

Solid fossil fuels, in cal/(mole C· K):<br />

s 0<br />

<br />

<br />

h<br />

o<br />

<br />

<br />

n<br />

<br />

<br />

s<br />

<br />

= 8, 88272 − 7, 5231e−0,56482 1+n + 4, 80748 + 12, 9807 + 10, 6767<br />

f uel 1 + n<br />

1 + n<br />

1 + n<br />

(5.25)<br />

Gaseous fossil fuels, in cal/(mole C· K):<br />

s 0<br />

f uel =<br />

<br />

0<br />

ξi si − ¯Rln( Pi P0 ) <br />

d 1<br />

(5.26)<br />

The calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy and chemical potential for each element (H j,00 and<br />

µ j,00) are calculated with Eqs. 5.27 and 5.28 and depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> species composing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment.<br />

H j,00 = ∆H f , j + ∆C p, j<br />

T0 − T 0<br />

<br />

µ j,00 = ∆H f , j − T0∆s j + ∆Cp, j T0 − T 0 − T0ln T0 T 0<br />

<br />

x j,00 · P0 + ¯RT 0ln<br />

P0 <br />

(5.27)<br />

(5.28)


164 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

Where x j,00 is a vector, including <str<strong>on</strong>g>the</str<strong>on</strong>g> molar c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gases in <str<strong>on</strong>g>the</str<strong>on</strong>g> reference<br />

envir<strong>on</strong>ment, ∆H f ,j, ∆s j and ∆C p,j are <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy and entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> specific heat change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species in <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment required to<br />

form <str<strong>on</strong>g>the</str<strong>on</strong>g> element as in equati<strong>on</strong>s 5.29 and 5.30. Subscript 0 denotes <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment,<br />

while superscript 0, <str<strong>on</strong>g>the</str<strong>on</strong>g> standard reference envir<strong>on</strong>ment.<br />

Lozano [201] proposed <str<strong>on</strong>g>the</str<strong>on</strong>g> three R.E. (I, II and III) shown in table 5.5, for calculating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> chemical energy and exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substances:<br />

Table 5.5. Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three R.E. proposed<br />

I II III<br />

(j=1) C ↔(jj=1) CO 2 (g) CO 2 (g) CO 2 (g)<br />

(j=2) H ↔(jj=2) H 2O (g) H 2O (l) H 2O (l)<br />

(j=3) O ↔(jj=3) O 2 (g) O 2 (g) O 2 (g)<br />

(j=4) N ↔(jj=4) N 2 (g) N 2 (g) N 2 (g)<br />

(j=5) S ↔(jj=5) SO 2 (g) SO 2 (g) CaSO 4 · 2H 2O (s)<br />

(j=6) Ca ↔(jj=6) CaCO 3 (s)<br />

For R.E. I and II, ∆H f ,j is calculated as in Eqs. 5.29. The expressi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ∆s j and ∆C p, j are analogous to that <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆H f , j. Note that for element H, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

enthalpy and specific heat taken for H 2O must be in <str<strong>on</strong>g>the</str<strong>on</strong>g> gaseous and liquid state for<br />

R.E. I and II, respectively.<br />

(j = 1) C : ∆H f ,C = ∆H f ,CO2 − ∆H f ,O2<br />

(j = 2) H : ∆H f ,H = ∆H f ,H 2O<br />

2<br />

(j = 3) O : ∆H f ,O = ∆H f ,O 2<br />

2<br />

− ∆H f ,O 2<br />

4<br />

(j = 4) N : ∆H f ,N = ∆H f ,N 2<br />

2<br />

(j = 5) S : ∆H f ,S = −∆H f ,O2 + ∆H f ,SO2<br />

For R.E. III, <str<strong>on</strong>g>the</str<strong>on</strong>g> following expressi<strong>on</strong>s are valid:<br />

(5.29)


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 165<br />

(j = 1) C : ∆H f ,C = ∆H f ,CO2 − ∆H f ,O2<br />

(j = 2) H : ∆H f ,H = ∆H f ,H 2O<br />

2<br />

(j = 3) O : ∆H f ,O = ∆H f ,O 2<br />

2<br />

(j = 4) N : ∆H f ,N = ∆H f ,N 2<br />

2<br />

− ∆H f ,O 2<br />

4<br />

(j = 5) S : ∆H f ,S = ∆H f ,CO2 − 2∆H f ,H2O − 3∆H f ,O 2<br />

2<br />

(j = 6) Ca : ∆H f ,Ca = −∆H f ,CO2 − ∆H f ,O 2<br />

2<br />

The resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. 5.28 is given in table 5.6.<br />

+ ∆H f ,CaCO3<br />

(5.30)<br />

+ ∆H f ,CaSO4·2H2O − ∆H f ,CaCO3


166 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

Table 5.6. Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements according to three different R.E.<br />

Element j C H O N S Ca C H O N S Ca C H O N S Ca<br />

∆H f ,j, cal/mole ∆Cp, j, cal/(mole K) ∆s j, (cal/ mole K)<br />

R.E. I -94052 -28898 0 0 -70960 0 1,855 2,259 3,508 3,481 2,515 0 2,065 10,302 24,502 22,885 10,285 0<br />

R.E. II -94052 -34158 0 0 -70960 0 1,855 7,245 3,508 3,481 2,515 0 2,065 -3,876 24,502 22,885 10,285 0<br />

R.E. III -94052 -34158 0 0 -152032 -194398 1,855 7,245 3,508 3,481 -12,717 1,702 2,065 -3,876 24,502 22,885 -31,77 -53,373<br />

e1 e2 e3<br />

R.E. I 1 0 0 0 0 0 0 0,5 0 0 0 0 -1 -0,25 0,5 0 -1 0<br />

R.E. II 1 0 0 0 0 0 0 0 0 0 0 0 -1 -0,25 0,5 0 -1 0<br />

R.E. III 1 0 0 0 1 -1 0 0 0 0 0 0 -1 -0,25 0,5 0 -1,5 -0,5<br />

e4 e5 µ j,00, cal/mole<br />

R.E. I 0 0 0 0,5 0 0 0 0 0 0 1 0 -98546 -32760 -7777 -6902 -85372 0<br />

R.E. II 0 0 0 0,5 0 0 0 0 0 0 1 0 -98546 -32767 -7777 -6902 -85372 0<br />

R.E. III 0 0 0 0,5 0 0 0 0 0 0 0 0 -98546 -32767 -7777 -6902 -145967 -173192<br />

<br />

(5.31)<br />

+ ¯RT 0ln (x CO2,00 · P 0) e1 · (x H2O,00 · P 0) e2 · (x O2,00 · P 0) e3 · (x N2,00 · P 0) e4 · (x SO2,00 · P 0) e5<br />

<br />

T0 − T 0 − T0ln T0 T 0<br />

µ j,00 = ∆H f , j − T 0∆s j + ∆C p, j<br />

Where: e1, e2, e3, e4 and e5 are <str<strong>on</strong>g>the</str<strong>on</strong>g> exp<strong>on</strong>entials used to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy change for gaseous reference substances. x j,00 is calculated<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>s for each gaseous comp<strong>on</strong>ent [11]: xCO2,00 = 0, 0003(1 − xH2O,00); xO2,00 = 0, 2099(1 − xH2O,00); xN2,00 = 0, 7898(1 − xH2O,00); xSO2,00 = 10−9 <br />

0,01<br />

(1 − xH2O,00); xH2O,00 = Pv,H2O(T 0) = 217, 99ex p (374, 16 − t0) 8 i=1 Fi(0, 65 − 0, 01τ0) 1−1<br />

<br />

T 0<br />

τ 0 = T 0 − 273, 15; F 1 = −741, 9242; F 2 = −29, 7210; F 3 = −11, 55286; F 4 = −0, 868535; F 5 = 0, 1094098; F 6 = 0, 439993; F 7 = 0, 2520658


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 167<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> ambient temperature is different to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standard, <str<strong>on</strong>g>the</str<strong>on</strong>g>n b 0<br />

i is replaced<br />

by b i in Eq. 5.15 (see Eq. 5.32). And b i is calculated with Eq. 5.33. Similarly, e 0<br />

i is<br />

replaced by e i in Eq. 5.14 and e i is calculated with Eq. 5.34.<br />

b f uel = b CHhO oN nS s + w · b W + z · b Z<br />

<br />

bi = ∆H f ,i − T0si − f jµ j,00<br />

<br />

ei = ∆H f ,i − f jµ j,00<br />

(5.32)<br />

(5.33)<br />

(5.34)<br />

The enthalpy and entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> clean fuel and <str<strong>on</strong>g>the</str<strong>on</strong>g> moisture for liquid and solid fuels<br />

is obtained with Eqs. 5.35 and 5.36.<br />

∆H f ,i = ∆H 0<br />

f ,i +<br />

s i = s 0<br />

i +<br />

T<br />

T 0<br />

T<br />

T 0<br />

C p(T)d T (5.35)<br />

Cp(T) d T (5.36)<br />

T<br />

The specific heat for liquid fuels at a density <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 ◦ C (ρ 15) comprised in an interval<br />

between 0,75 and 0,96 kg/dm 3 , can be obtained through Eq. 5.37 in cal/(kgK)<br />

[258].<br />

Cp,L(T) = 1<br />

(181 − 0, 81T) (5.37)<br />

ρ15<br />

The specific heats in cal/(kgK) for <str<strong>on</strong>g>the</str<strong>on</strong>g> clean solid fuel, <str<strong>on</strong>g>the</str<strong>on</strong>g> moisture W and <str<strong>on</strong>g>the</str<strong>on</strong>g> ashes<br />

Z are calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> correlati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Kirov 6 [258]:<br />

C p,F(T) = −52 + 0, 909T − 0, 420 · 1 −3 T 2<br />

C p,W (T) = 703 + 0, 632T + 9, 610 · 10 6 /T 2<br />

(5.38)<br />

(5.39)<br />

C p,Z(T) = 142 + 0, 140T (5.40)<br />

The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ashes Z is obtained directly through Eq. 5.41:<br />

6 Note that Cp,L, C p,F and C p,W must be c<strong>on</strong>verted into cal/mole K for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy<br />

and entropy.


168 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

b Z =<br />

T<br />

CZ T0 The enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> gaseous fuels can be calculated with Eq. 5.42:<br />

∆H f ,i = ∆H 0<br />

f ,i +<br />

<br />

1 − T <br />

0<br />

d T (5.41)<br />

T<br />

n<br />

i=1 x i<br />

<br />

∗ hi (T) − h∗<br />

i (T 0 ) <br />

d1 (5.42)<br />

Where h∗ i (T) is obtained with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> Zelenik and Gord<strong>on</strong> [413]:<br />

h ∗<br />

<br />

T<br />

i (T) = RT a1 + a2 2 + a T<br />

3<br />

2<br />

3 + a T<br />

4<br />

3<br />

4 + a5 T 4<br />

5 + a6 T<br />

The entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gaseous fuel can be calculated with Eq. 5.44:<br />

s =<br />

n i=1 x <br />

∗<br />

i si (T) − Rln Pi P0 <br />

d1 Where s∗ i (T) is obtained through [413] with Eq. 5.45<br />

s ∗<br />

i (T) = R<br />

<br />

a 1lnT + a 2T + a 3<br />

T 2<br />

2 + a 4<br />

T 3<br />

3 + a 5<br />

T 4<br />

4 + a 7<br />

<br />

<br />

(5.43)<br />

(5.44)<br />

(5.45)<br />

Coefficients a1 through a7 for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> h∗ (T) and s∗ i (T) are provided in<br />

table A.16 in <str<strong>on</strong>g>the</str<strong>on</strong>g> appendix for <str<strong>on</strong>g>the</str<strong>on</strong>g> different gases composing <str<strong>on</strong>g>the</str<strong>on</strong>g> gaseous fuel.<br />

From Eqs. 5.17 through 5.32, <strong>on</strong>e can c<strong>on</strong>clude that <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels is a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ambient. This means, that if <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature, pressure or <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> for instance CO 2 change, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels will do so accordingly.<br />

5.3.4 The exergy costs<br />

The sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical and c<strong>on</strong>centrati<strong>on</strong> comp<strong>on</strong>ents defined previously in secti<strong>on</strong><br />

5.3.2 represents <str<strong>on</strong>g>the</str<strong>on</strong>g> total exergy that can be understood as <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum energy<br />

required for restoring <str<strong>on</strong>g>the</str<strong>on</strong>g> resource from <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment.<br />

As stated before, fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are useful for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir inherent chemical exergy. C<strong>on</strong>sequently,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> value associated to fossil fuels is tightly related to its exergy. However,<br />

n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are not necessarily useful for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemical exergy c<strong>on</strong>tent. The<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resource is ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> costs. A<br />

very abundant and c<strong>on</strong>centrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust, such as ir<strong>on</strong>, will have a high<br />

exergy value and a low exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong>. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, a very dispersed


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 169<br />

and scarce <str<strong>on</strong>g>mineral</str<strong>on</strong>g> such as gold, has a low exergy value, but a very high exergy cost<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong>. Obviously, <str<strong>on</strong>g>the</str<strong>on</strong>g> cost is a very important ingredient <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> final price in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> market and that is why scarce <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s tend to be <str<strong>on</strong>g>the</str<strong>on</strong>g> most expensive <strong>on</strong>es.<br />

The exergy replacement cost (B ∗ ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s measures something similar to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

natural cost. It was defined by Valero et al. [370] as <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy required by <str<strong>on</strong>g>the</str<strong>on</strong>g> given<br />

available technology to return a resource from <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersed state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference<br />

envir<strong>on</strong>ment, into <str<strong>on</strong>g>the</str<strong>on</strong>g> physical and chemical c<strong>on</strong>diti<strong>on</strong>s in which it was delivered by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystems. Actual energy requirements to obtain a resource are always greater<br />

than those dictated by <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d law.<br />

For instance, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic energy required to separate two substances such<br />

as sugar and salt, is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> energy to mix <str<strong>on</strong>g>the</str<strong>on</strong>g>m, which is in fact very low.<br />

This is <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong> why c<strong>on</strong>centrati<strong>on</strong> exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are usually <strong>on</strong>e order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

magnitude greater than chemical <strong>on</strong>es. However, current processes are far from ideal<br />

c<strong>on</strong>diti<strong>on</strong>s because <str<strong>on</strong>g>of</str<strong>on</strong>g> inefficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g> our technology resulting in irreversibilities.<br />

In order to overcome that problem, we must include <str<strong>on</strong>g>the</str<strong>on</strong>g> actual physical unit costs,<br />

here named as unit exergy replacement costs, in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

resources. Valero et al. [370] defined <str<strong>on</strong>g>the</str<strong>on</strong>g>m as <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

invested in <str<strong>on</strong>g>the</str<strong>on</strong>g> actual process for obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> resource and <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum energy<br />

required if <str<strong>on</strong>g>the</str<strong>on</strong>g> process were reversible. Unit exergy replacement costs are dimensi<strong>on</strong>less<br />

and measure <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy units needed to obtain <strong>on</strong>e unit <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> product.<br />

The actual exergy value <str<strong>on</strong>g>of</str<strong>on</strong>g> a resource (total exergy replacement cost) B ∗ is determined<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n by <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> B c and B ch multiplied respectively by <str<strong>on</strong>g>the</str<strong>on</strong>g> unit exergy<br />

replacement costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> processes to obtain it (k ch and k c) as in Eq. 5.46.<br />

B ∗<br />

t = k ch · B ch + k c · B c<br />

(5.46)<br />

Where k c is <str<strong>on</strong>g>the</str<strong>on</strong>g> physical unit exergy replacement cost <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>, calculated as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ratio between <str<strong>on</strong>g>the</str<strong>on</strong>g> real energy invested in <str<strong>on</strong>g>the</str<strong>on</strong>g> process and <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum c<strong>on</strong>centrati<strong>on</strong><br />

exergy (B c). It has to be determined for each type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>. It is assumed<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> same technology is applied in all c<strong>on</strong>centrati<strong>on</strong> ranges, including <str<strong>on</strong>g>the</str<strong>on</strong>g> range<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment and <str<strong>on</strong>g>the</str<strong>on</strong>g> average c<strong>on</strong>centrati<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits.<br />

And k ch is <str<strong>on</strong>g>the</str<strong>on</strong>g> physical unit exergy replacement cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> refining process, calculated<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio between <str<strong>on</strong>g>the</str<strong>on</strong>g> real energy invested in <str<strong>on</strong>g>the</str<strong>on</strong>g> process, and <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum<br />

chemical exergy (B ch). As opposed to k c, <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical unit cost <str<strong>on</strong>g>of</str<strong>on</strong>g> refining a <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> mine to <str<strong>on</strong>g>the</str<strong>on</strong>g> metallic state cannot be applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> refining <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> from <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. to <str<strong>on</strong>g>the</str<strong>on</strong>g> mine, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> differences <str<strong>on</strong>g>of</str<strong>on</strong>g> both processes. However,<br />

<strong>on</strong>ce <str<strong>on</strong>g>the</str<strong>on</strong>g> refining costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> oxides and sulfides were analyzed, Valero and<br />

Botero [371] realized that <strong>on</strong> average, <str<strong>on</strong>g>the</str<strong>on</strong>g> energy expenditure for obtaining a t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pure element from <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide was about 80 GJ greater than from <str<strong>on</strong>g>the</str<strong>on</strong>g> sulfide. This


170 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

is as if sulfides would have a natural b<strong>on</strong>us <str<strong>on</strong>g>of</str<strong>on</strong>g> 80 GJ/t<strong>on</strong> and a chemical unit exergy<br />

replacement cost k ch <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 <strong>on</strong> average. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r side, oxides and m<strong>on</strong>atomic<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are assumed to have a k ch at least equal to <strong>on</strong>e.<br />

The c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical and c<strong>on</strong>centrati<strong>on</strong> comp<strong>on</strong>ents to <str<strong>on</strong>g>the</str<strong>on</strong>g> actual exergy<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> a resource is usually well balanced, since unit chemical exergy costs are <strong>on</strong>e<br />

or two orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude smaller than unit c<strong>on</strong>centrati<strong>on</strong> exergy costs.<br />

Note that it has no sense to apply exergy replacement costs to fossil fuels, due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

impossibility <str<strong>on</strong>g>of</str<strong>on</strong>g> current technology to replace <str<strong>on</strong>g>the</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic process that <strong>on</strong>ce<br />

created <str<strong>on</strong>g>the</str<strong>on</strong>g> resource.<br />

Table 5.7 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> unit exergy replacement costs <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, according to<br />

Valero and Botero [371], which in turn were improved from <str<strong>on</strong>g>the</str<strong>on</strong>g> initial <strong>on</strong>es given<br />

by Botero [34]. Martínez et al. [207] studied additi<strong>on</strong>ally <str<strong>on</strong>g>the</str<strong>on</strong>g> unit exergy costs for<br />

some <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial importance and updated Botero’s values <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium,<br />

gold, ir<strong>on</strong>, zinc, lead, copper, nickel and silver.<br />

Table 5.7: <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> costs <str<strong>on</strong>g>of</str<strong>on</strong>g> selected substances [371] & [207]<br />

Substance k c k ch Substance k c k ch<br />

Ag 7042 10 M n 284 1<br />

Al 2250 8,0 M o 947 1<br />

As 80 10 N a 38 1<br />

Au 422879 1 N b N.A. 1<br />

Ba N.A. 1 N i 432 58,2<br />

Be 112 1 P 44 1<br />

Bi 90 10 P b 219 25,4<br />

Cd 804 10 P t N.A. 1<br />

Co 1261 10 Re 1939 10<br />

C r 37 1 S b 28 10<br />

Cs N.A. 1 Se N.A. 1<br />

Cu 343 80,2 Si 2 1<br />

F 2 1 Sn 1493 1<br />

Fe 97 5,3 Ta 12509 1<br />

Ga N.A. 1 Te N.A. 1<br />

Ge N.A. 1 T i 348 1<br />

H f N.A. 1 U 7723 188,3<br />

H g 1707 10 V 572 1<br />

In N.A. 10 W 3105 1<br />

K 39 1 Zn 126 13,2<br />

Li 158 1 Z r 7744 1<br />

M g 1 1<br />

<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> replacement costs represent a suitable indicator for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y integrate in <strong>on</strong>e parameter, c<strong>on</strong>centrati<strong>on</strong>, compositi<strong>on</strong><br />

and also <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> technology. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, as opposed to exergy, <str<strong>on</strong>g>the</str<strong>on</strong>g>y


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 171<br />

cannot be c<strong>on</strong>sidered as a property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resource, since unit exergy costs introduce<br />

to some extent an uncertain factor to <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>. Something similar happens to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> emergy analysis, explained in secti<strong>on</strong> 1.3, through <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transformities.<br />

It should be noted that as stated by Naredo and Valero [239], unit exergy<br />

replacement costs are a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> technology and hence vary with time.<br />

A way to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> technological development, is through <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

learning curves. With learning-by-doing, increases in material and energy efficiency<br />

increase with cumulative producti<strong>on</strong>. Alchian [5] was <str<strong>on</strong>g>the</str<strong>on</strong>g> first to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cumulative producti<strong>on</strong> <strong>on</strong> changes in efficiency. He found a linear relati<strong>on</strong>ship<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> logarithm <str<strong>on</strong>g>of</str<strong>on</strong>g> direct labor inputs per unit output and <str<strong>on</strong>g>the</str<strong>on</strong>g> logarithm <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cumulative producti<strong>on</strong>, as in Eqs. 5.47.<br />

ln j(t) = a j1 − a j2lnΓ(t)<br />

lne(t) = a e1 − a e2lnΓ(t) (5.47)<br />

With j(t) and e(t), <str<strong>on</strong>g>the</str<strong>on</strong>g> flows <str<strong>on</strong>g>of</str<strong>on</strong>g> materials and energy used to perform a certain<br />

process; a j1 and a e1 <str<strong>on</strong>g>the</str<strong>on</strong>g> intercepts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> learning curve with <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical axes and<br />

a j2 and a e2 parameters relating material and energy inputs per unit output at time<br />

period t to cumulative producti<strong>on</strong> in period t, Γ(t).<br />

Ruth [294] argued that such a specificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> learning curves, allows materials<br />

and energy input per unit output to approach zero as cumulative producti<strong>on</strong> approaches<br />

infinity, thus violating <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic lower limits <strong>on</strong> j(t) and e(t). The<br />

expressi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Eqs. 5.48 are according to Ruth more realistic in <str<strong>on</strong>g>the</str<strong>on</strong>g> sense that material<br />

and energy efficiencies decrease asymptotically towards zero in double-log space<br />

as Γ(t) approaches infinity. Thus as cumulative producti<strong>on</strong> increases, material and<br />

energy use per unit output can at best assume <str<strong>on</strong>g>the</str<strong>on</strong>g> value <strong>on</strong>e, indicating perfect efficiency.<br />

ln j(t) = a j1ex p(−a j2lnΓ(t))<br />

lne(t) = a e1ex p(−a e2lnΓ(t)) (5.48)<br />

In this PhD, we have c<strong>on</strong>sidered unit exergy replacement costs c<strong>on</strong>stant, i.e. we have<br />

assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> technology has been <str<strong>on</strong>g>the</str<strong>on</strong>g> same throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20 th century.<br />

A more exact determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s throughout history would<br />

imply changing unit exergy replacement costs. These could be calculated through<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> learning curves explained above. But this task remains outside <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD and is open for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r refinements.


172 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

5.4 Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

The determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substances requires <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir corresp<strong>on</strong>ding enthalpies and Gibbs free energies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong>.<br />

Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se have been already estimated through empirical and semi-empirical<br />

processes 7 and are tabulated. Comprehensive compilati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> inorganic substances can be found in Faure [94], Wagman [391], Robie<br />

et al. [284], [285] or Weast et al. [400].<br />

Unfortunately, not all <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpies and Gibbs free energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s that<br />

we have taken into account in our model are recorded in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less,<br />

many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m can be predicted satisfactorily through different semi-empirical<br />

methods. In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> methods <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties<br />

used to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> standard enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust developed in chapter 3 will be provided.<br />

5.4.1 Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆H 0<br />

f<br />

or ∆G0<br />

f<br />

from s0<br />

If ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r ∆H 0 or ∆G0<br />

f f and <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy (s0 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> under c<strong>on</strong>siderati<strong>on</strong> are<br />

available, <str<strong>on</strong>g>the</str<strong>on</strong>g> unknown property can be easily calculated applying Eq. 5.49.<br />

∆G 0<br />

f<br />

= ∆H0<br />

f − T 0 · ∆S (5.49)<br />

Where <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy change ∆S is calculated from <str<strong>on</strong>g>the</str<strong>on</strong>g> standard entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

and its c<strong>on</strong>stituent elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> standard state (T 0 = 298, 15 K and 1 bar), as in<br />

Eq. 5.50:<br />

∆S = s 0<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> −<br />

<br />

s 0<br />

elements<br />

(5.50)<br />

Note that this procedure does not have associated any error, since it is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆G f .<br />

Example: for <str<strong>on</strong>g>mineral</str<strong>on</strong>g> br<strong>on</strong>zite FeM gSi2O 6, <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy and entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong><br />

is known from [309]: ∆H 0<br />

f = −2753, 38 kJ/mole and s0 = 149, 13 J/(mole K). The<br />

entropy change <str<strong>on</strong>g>of</str<strong>on</strong>g> br<strong>on</strong>zite is calculated as:<br />

∆sFeM gSi2O 6 = s 0<br />

FeM gSi − (s<br />

2O6 0<br />

M g + s0<br />

Fe + 2 · s0<br />

Si + 3 · s0<br />

O )<br />

2<br />

= 149, 13 − (27, 09 + 32, 67 + 2 · 18, 81 + 3 · 205, 15)<br />

= −563, 70 J/(mole.K)<br />

7 Such as calorimetric or solubility measurements.


Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 173<br />

Where s0 are obtained from [284]. The Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elements<br />

br<strong>on</strong>zite can be finally calculated with Eq 5.49:<br />

∆G 0<br />

563, 70<br />

f ,FeM gSi = −2753, 38 − 298, 15 · = −2585, 31 kJ/mole<br />

2O6 1000<br />

5.4.2 The ideal mixing model<br />

An ideal solid soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i comp<strong>on</strong>ents with x i molar fracti<strong>on</strong>s obeys <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s:<br />

and<br />

∆G m = +RT<br />

∆H m = 0 (5.51)<br />

<br />

x ilnx i<br />

(5.52)<br />

Where ∆H m and ∆G m, are <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing. This<br />

means that <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal mixing will take place without any heat loss or heat producti<strong>on</strong>.<br />

Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> different cati<strong>on</strong>s will be fully interchangeable [254]. The enthalpy<br />

and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid soluti<strong>on</strong> is calculated <str<strong>on</strong>g>the</str<strong>on</strong>g>n with Eqs.<br />

5.53:<br />

∆G 0<br />

f ,soluti<strong>on</strong> =<br />

∆H 0<br />

f ,soluti<strong>on</strong> =<br />

<br />

i<br />

xi∆G 0<br />

f ,i + RT<br />

<br />

i<br />

x i∆H 0<br />

f ,i<br />

<br />

x ilnx i<br />

(5.53)<br />

The error associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> as an ideal solid soluti<strong>on</strong> varies<br />

greatly with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> under c<strong>on</strong>siderati<strong>on</strong> and decreases with <str<strong>on</strong>g>the</str<strong>on</strong>g> disorder am<strong>on</strong>g<br />

comp<strong>on</strong>ents. We will assume a maximum error <str<strong>on</strong>g>of</str<strong>on</strong>g> ±1%.<br />

Example: <str<strong>on</strong>g>mineral</str<strong>on</strong>g> tetradymite Bi2Te 2S can be c<strong>on</strong>sidered as a solid soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Bi2Te 3, and Bi2S3, for which ∆H 0 and ∆G0 are well known from [226] and [94]:<br />

f f<br />

Bi 2Te 2S ⇔ 2<br />

3 Bi 2Te 3 + 1<br />

3 Bi 2S 3<br />

Hence, ∆H 0 and ∆G0 are calculated as follows with Eqs: 5.53:<br />

f ,tet rad ymite f ,tet rad ymite


174 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

∆G 0<br />

f ,tet rad ymite<br />

∆H 0<br />

f ,tet rad ymite<br />

2<br />

=<br />

3 · ∆H f ,Bi + 2Te3 1<br />

3 ∆H f ,Bi2S3 = 2<br />

1<br />

· (−78, 7) + (−143, 2)<br />

3 3<br />

= −100, 2 kJ/mole<br />

2<br />

=<br />

3 · ∆G f ,Bi + 2Te3 1<br />

3 ∆G <br />

2<br />

f ,Bi + RT<br />

2S3 3 ln<br />

<br />

2<br />

+<br />

3<br />

1<br />

3 ln<br />

<br />

1<br />

3<br />

= 2<br />

1<br />

8, 314<br />

· (−78, 3) + (−140, 7) + · 298, 15(−0, 63)<br />

3 3 1000<br />

= −100, 6 kJ/mole<br />

5.4.3 Assuming ∆G r and ∆H r c<strong>on</strong>stant<br />

5.4.3.1 Thermochemical approximati<strong>on</strong>s for sulfosalts and complex oxides<br />

Craig and Bart<strong>on</strong> [67] developed an approximati<strong>on</strong> method for estimating <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfosalts in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simple sulfides. The<br />

ideal mixing model does not apply correctly to most sulfosalts, because <str<strong>on</strong>g>the</str<strong>on</strong>g> mixtures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> layers are ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r ordered. The modified ideal mixing model <str<strong>on</strong>g>of</str<strong>on</strong>g> Craig and Bart<strong>on</strong><br />

involves a mixing term (∆G m) in <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sulfosalt per gram atom <str<strong>on</strong>g>of</str<strong>on</strong>g> S that is added to <str<strong>on</strong>g>the</str<strong>on</strong>g> weighted sum <str<strong>on</strong>g>of</str<strong>on</strong>g> free<br />

energies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simple sulfides:<br />

∆G m = (1, 2 ± 0, 8)(+RT<br />

<br />

x ilnx i) (5.54)<br />

The mixing term can be divided into two parts, <strong>on</strong>e estimated from <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal structure<br />

as an entropy change, and <str<strong>on</strong>g>the</str<strong>on</strong>g> reminder as a n<strong>on</strong>-ideal term. The n<strong>on</strong>-ideal<br />

term <str<strong>on</strong>g>of</str<strong>on</strong>g> this model was assumed to be c<strong>on</strong>stant for all sulfosalts. However, Vieillard<br />

[387] showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> complex sulfides with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir simple<br />

sulfides are a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>egativity difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> cati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sulfosalt.<br />

The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfosalts may <str<strong>on</strong>g>the</str<strong>on</strong>g>n be calculated by adding a term<br />

(∆H r or ∆G r) to <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriately weighted sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpies or free energies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simple comp<strong>on</strong>ent sulfides i (Eq. 5.55).<br />

<br />

∆H f sul f osal t = xi∆H f i + nS sul f osal t∆H r<br />

<br />

∆G f sul f osal t = xi∆G f i + nS sul f osal t∆G r<br />

(5.55)


Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 175<br />

The reacti<strong>on</strong> term, which is analogous to <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing term <str<strong>on</strong>g>of</str<strong>on</strong>g> Craig and Bart<strong>on</strong> is<br />

associated to <strong>on</strong>e atom <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> (n S,sul f osal t) and is obtained from a<br />

sulfosalt for which its <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties and those <str<strong>on</strong>g>of</str<strong>on</strong>g> its simple sulfides are<br />

known. The calculated reacti<strong>on</strong> terms can be applied to a family <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfosalts formed<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> same cati<strong>on</strong>s and with partial element substituti<strong>on</strong>s.<br />

Example: <str<strong>on</strong>g>mineral</str<strong>on</strong>g> cubanite CuFe 2S 3 can be decomposed into <str<strong>on</strong>g>the</str<strong>on</strong>g> sulfides CuFeS 2<br />

and FeS, for which <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties are provided [226]. The properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cubanite can be calculated with Eq. 5.55, <strong>on</strong>ce ∆H r and ∆G r are known. The<br />

reacti<strong>on</strong> terms are obtained from <str<strong>on</strong>g>mineral</str<strong>on</strong>g> bornite Cu 5FeS 4 as follows:<br />

∆H r,Cu5FeS 4 = ∆H f ,Cu 5FeS 4 − ( 5<br />

2 ∆H f ,Cu 2S + 1<br />

2 ∆H f ,Fe 2S 3 )<br />

= (−371, 6) − [ 5<br />

2<br />

= −5, 48 kJ/mole S<br />

4<br />

(−83, 9) + 1<br />

2<br />

4<br />

(−279, 91)]<br />

∆Gr,Cu5FeS 4 =<br />

5<br />

1<br />

(−394, 7) − [ (−89, 2) + (−280, 75)]<br />

2 2<br />

4<br />

= −7, 83 kJ/mole S<br />

Where <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> bornite and its c<strong>on</strong>stituents are provided in [284] and [241].<br />

Hence, ∆H f and ∆G f <str<strong>on</strong>g>of</str<strong>on</strong>g> cubanite are calculated as:<br />

∆H f ,CuFe2S 3 = ∆H f ,CuFeS2 + ∆H f ,FeS + 3 · ∆H r<br />

= (−176, 8) + (−99, 98) + 3 · (−5, 48)<br />

= −293, 22 kJ/mole<br />

∆G f ,CuFe2S 3 = (−178, 49) + (−100, 40) + 3 · (−7, 83)<br />

= −302, 38 kJ/mole<br />

Vieillard et al. [387] dem<strong>on</strong>strated <str<strong>on</strong>g>the</str<strong>on</strong>g> analogy between <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>egativity scale<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong>s with respect to sulfur and to oxygen. They showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> methodology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfosalts from simple sulfides can<br />

be equally applied to complex oxides able to be decomposed into simple oxides. As<br />

for sulfosalts, <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> terms ∆H r and ∆G r (for this case denoted as ∆H ox and<br />

∆G ox) should be obtained for an oxide <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same family <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> under<br />

analysis. The maximum error associated to this methodology is assumed to be ±1%.


176 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

5.4.3.2 The method <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>ding states<br />

Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> ∆H r and ∆G r can be assumed to be c<strong>on</strong>stant in <str<strong>on</strong>g>the</str<strong>on</strong>g> substituti<strong>on</strong> reacti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s A-x and B-x into A-y and B-y, if A-x and B-y are isomorphous (Eq.<br />

5.56). The associated error is assumed to be equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> previous method, hence<br />

±1%.<br />

A − x + y → A − y + x (∆H r, ∆G r)<br />

B − x + y → B − y + x (∆H r, ∆G r) (5.56)<br />

C<strong>on</strong>sider <str<strong>on</strong>g>mineral</str<strong>on</strong>g> fluor-annite K Fe 3(Si 3Al)O 10(F) 2 as an example, for which no<br />

empirical <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic values are available. Fluor-annite can be formed from<br />

hydroxy-annite K Fe 3(Si 3Al)O 10(OH) 2 as in <str<strong>on</strong>g>the</str<strong>on</strong>g> following reacti<strong>on</strong>:<br />

K Fe 3(Si 3Al)O 10(OH) 2 + 2H F → K Fe 3(Si 3Al)O 10(F) 2 + 2H 2O<br />

Similarly, fluor-phlogopite can be formed from hydroxy-phlogopite. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> both substances are known, <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> substituti<strong>on</strong><br />

can be calculated:<br />

K M g 3(Si 3Al)O 10(OH) 2 + 2H F → K M g 3(Si 3Al)O 10(F) 2 + 2H 2O<br />

∆Hr = ∆H 0<br />

+ 2∆H f ,K M g3(Si3Al)O 10(F) 2 0<br />

f ,H − ∆H0<br />

− 2∆H<br />

2O f ,K M g3(Si3Al)O 10(OH) 2 0<br />

f ,H F<br />

= (−6375, 5) + 2 · (−285, 8) − (−6246, 0) − 2 · (−332, 6)<br />

= −17, 9 kJ/mole H F<br />

∆Gr = ∆G 0<br />

+ 2∆G f ,K M g3(Si3Al)O 10(F) 2 0<br />

f ,H − ∆G0<br />

− 2∆G<br />

2O f ,K M g3(Si3Al)O 10(OH) 2 0<br />

f ,H F<br />

= (−6030, 1) + 2 · (−237, 1) − (−5860, 5) − 2 · (−278, 8)<br />

= −43, 11 kJ/mole H F<br />

Where <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties are obtained from [391]. Fluor-annite can<br />

now be calculated, assuming <str<strong>on</strong>g>the</str<strong>on</strong>g> same reacti<strong>on</strong> energy calculated with phlogopite:


Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 177<br />

∆H 0<br />

f ,K Fe3(Si 3Al)O10(F) 2<br />

= ∆H 0<br />

+ 2∆H f ,K Fe3(Si 3Al)O10(OH) 2 0<br />

f ,H F − 2∆H0 f ,H2O + 2∆Hr = (−5149, 3) + 2 · (−332, 6) − 2 · (−285, 8) + 2 · (−17, 9)<br />

= −5278, 8 kJ/mole<br />

∆G 0<br />

f ,K Fe3(Si 3Al)O10(F) 2<br />

= ∆G 0<br />

+ 2∆G f ,K Fe3(Si 3Al)O10(OH) 2 0<br />

f ,H F − 2∆G0 f ,H2O + 2∆Gr = (−4798, 3) + 2 · (−278, 8) − 2 · (−237, 1) + 2 · (−43, 11)<br />

= −4967, 9 kJ/mole<br />

The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxy-annite are obtained from [383].<br />

5.4.4 The method <str<strong>on</strong>g>of</str<strong>on</strong>g> Chermak and Rimstidt for silicate <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

The method proposed by Chermak and Rimstidt [55] predicts <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

properties (∆G0 and ∆H0)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> silicate <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> polyhedral oxide and<br />

f<br />

f<br />

hydroxide c<strong>on</strong>tributi<strong>on</strong>s. The technique is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong> that silicate <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

have been shown to act as a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> basic polyhedral units. Chermak<br />

and Rimstidt determined by multiple linear regressi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Al 2O [4]<br />

3 ,<br />

, Al(OH)[6] 3 , SiO[4]<br />

2 , M gO[6] , M g(OH) [6]<br />

2 , CaO[6] , CaO [8−z] , N a2O [6−8] ,<br />

K2O [8−12] , H2O, FeO [6] , Fe(OH) [6]<br />

2 and Fe2O [6]<br />

3 to <str<strong>on</strong>g>the</str<strong>on</strong>g> total ∆G0 and ∆H0 <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

f f<br />

Al 2O [6]<br />

3<br />

selected group <str<strong>on</strong>g>of</str<strong>on</strong>g> silicate <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 8 . The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

are calculated with Eqs. 5.57 and 5.58:<br />

∆H 0<br />

f =<br />

<br />

xi · hi ∆G 0<br />

f =<br />

<br />

xi · gi (5.57)<br />

(5.58)<br />

Where x i is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> moles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide or hydroxide per formula unit and h i<br />

and g i are <str<strong>on</strong>g>the</str<strong>on</strong>g> respective molar enthalpy and free energy c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 mole <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each oxide or hydroxide comp<strong>on</strong>ent. Table A.17 in <str<strong>on</strong>g>the</str<strong>on</strong>g> appendix shows <str<strong>on</strong>g>the</str<strong>on</strong>g> values<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> h i and g i for <str<strong>on</strong>g>the</str<strong>on</strong>g> different polyhedral comp<strong>on</strong>ents described in <str<strong>on</strong>g>the</str<strong>on</strong>g> methodology<br />

[55].<br />

The errors associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated vs. experimentally measured values can reach<br />

±1% for ∆G0 and ∆H0,<br />

depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compounds. Note that this<br />

f f<br />

methodology can <strong>on</strong>ly be applied to those <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s able to be decomposed by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

oxides and hydroxides menti<strong>on</strong>ed before.<br />

8 The brackets next to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical formulas <str<strong>on</strong>g>of</str<strong>on</strong>g> oxides and hydroxides indicate <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinati<strong>on</strong><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polyhedral structure.


178 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

Example: <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> thoms<strong>on</strong>ite N aCa2Al 5Si5O20 · 6H2O are calculated<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gi and hi from its c<strong>on</strong>stituent oxides (N a2O [6−8] , CaO [8−z] ,<br />

Al2O [4]<br />

3 , SiO[4]<br />

2 and H2O): ∆H 0<br />

f ,N aCa 2Al 5Si 5O 20·6H 2O<br />

∆G 0<br />

f ,N aCa 2Al 5Si 5O 20·6H 2O<br />

5.4.5 The ∆O −2 method<br />

1<br />

=<br />

2 hN a2O [6−8] + 2h 5<br />

CaO [8−z] +<br />

2 h Al2O [4] + 5h [4] + 6h<br />

3 SiO H2O<br />

2<br />

= 1<br />

5<br />

(−683, 00) + 2(−736, 04) + (−1716, 4)<br />

2 2<br />

+5(−910, 97) + 6(−239, 91)<br />

= −11543, 92 kJ/mole<br />

1<br />

5<br />

= (−672, 50) + 2(−710, 08) + (−1631, 32)<br />

2 2<br />

5 + (−853, 95) + 6(−292, 37)<br />

= −12413, 65 kJ/mole<br />

The linear additivity procedures based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ∆O −2 parameter were developed by<br />

Yves Tardy and colleagues [348], [349], [350], [351], [352], [347], [108], [380],<br />

[383]. The parameter ∆O −2 , corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy ∆ HO −2 or Gibbs free<br />

energy ∆ GO −2 <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a generic oxide MO x(c) from its aqueous i<strong>on</strong>, where<br />

z + is <str<strong>on</strong>g>the</str<strong>on</strong>g> charge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong> and x <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen atoms combined with <strong>on</strong>e<br />

atom M in <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide (x = z + /2):<br />

∆ HO −2 M z+ = 1<br />

x [∆H0<br />

∆ GO −2 M z+ = 1<br />

x [∆G0<br />

f MOx(c) − ∆H 0<br />

f<br />

f MOx(c) − ∆G 0<br />

f<br />

z+<br />

M ] (5.59)<br />

(aq)<br />

z+<br />

M ] (5.60)<br />

(aq)<br />

For hydroxides, silicates, phosphates, nitrates and carb<strong>on</strong>ates involving two cati<strong>on</strong>s,<br />

it was found that <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a given compound<br />

from its c<strong>on</strong>stituent oxides vary linearly with ∆O −2 and have <str<strong>on</strong>g>the</str<strong>on</strong>g> general<br />

expressi<strong>on</strong>s [347]:<br />

and<br />

∆H 0<br />

ox = α H<br />

∆G 0<br />

<br />

ni · nj ∆HO ni + nj 2− M z+<br />

i<br />

i (aq) − ∆HO 2− M z+<br />

j<br />

ox = α <br />

ni · n j<br />

G ∆GO ni + nj 2− M z+<br />

i<br />

i (aq) − ∆GO 2− M z+<br />

j<br />

j (aq)<br />

j (aq)<br />

<br />

<br />

(5.61)<br />

(5.62)


Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 179<br />

Being ∆H 0<br />

ox and ∆G0 ox :<br />

∆H 0<br />

ox [(M i) ni (M j) nj O N ] = ∆H 0<br />

f [(M i) ni (M j) nj O N ](c) − n i∆H 0<br />

f M iO xi (c)<br />

−n j∆H 0<br />

f M jO x j (c) (5.63)<br />

∆G 0<br />

ox [(M i) ni (M j) nj O N ] = ∆G 0<br />

f [(M i) ni (M j) n j O N ](c) − n 1∆G 0<br />

f M iO xi (c)<br />

−n 2∆G 0<br />

f M jO x j (c) (5.64)<br />

Where ni and nj are <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen i<strong>on</strong>s linked, respectively, to <str<strong>on</strong>g>the</str<strong>on</strong>g> M z+<br />

i<br />

i and<br />

M z+<br />

j<br />

j cati<strong>on</strong>s; and N is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygens linked to <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> double oxide (N = xi + x j). Parameters αH and αG are empirical coefficients<br />

variable from <strong>on</strong>e family <str<strong>on</strong>g>of</str<strong>on</strong>g> compounds to ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r <strong>on</strong>e (αG is 0,84 for hydroxides,<br />

1,01 for silicates, 1,15 for carb<strong>on</strong>ates, 1,30 for nitrates, etc.).<br />

Equati<strong>on</strong> 5.62, yields a statistical deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 35 kJ/mole for <str<strong>on</strong>g>the</str<strong>on</strong>g> Gibbs free energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> and depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> family <str<strong>on</strong>g>of</str<strong>on</strong>g> compounds. We will assume a maximum<br />

error associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> ∆O 2− general method <str<strong>on</strong>g>of</str<strong>on</strong>g> ±1% 9 .<br />

Example: for <str<strong>on</strong>g>the</str<strong>on</strong>g> silicate Ca3Si 2O7, <str<strong>on</strong>g>the</str<strong>on</strong>g> α parameter was determined at -1,01 and<br />

∆GO−2 Ca2+ = −50, 31 and ∆GO−2Si 4+ = −188, 08 kJ/mole [350]; so that ∆G0 ox<br />

can be calculated with Eq. 5.64 as:<br />

And<br />

∆G 0<br />

ox (Ca3Si 2O7) =<br />

3 · 4<br />

(−1, 01)<br />

3 + 4 · [∆GO −2 Ca 2+ (aq) − ∆GO −2 Si 4+ (aq)]<br />

= −238, 5 kJ/mole<br />

∆G 0<br />

f (Ca3Si 2O7)(c) = 3∆G 0<br />

f CaO(c) + 2∆G0 f SiO2(c) +∆G 0<br />

ox (Ca3Si 2O7)(c) = −3748, 1 kJ/mole<br />

The value is close to ∆G 0<br />

f (Ca 3Si 2O 7) = −3760, 4 kJ/mole from Robie and Hemingway<br />

[284].<br />

9 This methodology was later <strong>on</strong> improved by Vieillard ([380], [390], [381]) and Vieillard and<br />

Tardy [389], by introducing a new empirical parameter representing <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>egativity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cati<strong>on</strong><br />

M z+ (comp).


180 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

5.4.5.1 The ∆O −2 method for hydrated clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and for phyllosilicates<br />

Vieillard extended <str<strong>on</strong>g>the</str<strong>on</strong>g> methodology described above for <str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrated<br />

clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s [382] and for phyllosilicates [383].<br />

Hydrated clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, have formulas expressed as:<br />

(Ml1 , Ml2 , Ml3 ) (M go1 , Fe2+ o , Alo3 , Fe<br />

2 3+<br />

o ) (Si (4−t)Al t)O10(OH) 2. Layer silicates can be<br />

4<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two types: (a) 2:1 layer type, (Mli , Moj )(Si (4−t)Al t)O10(OH) 2, with li <str<strong>on</strong>g>the</str<strong>on</strong>g> number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interlayer atom which varies from 0 (pyrophyllite, talc) to 1 (micas, if<br />

M = K + or N a + , brittle micas, if M = Ca2+ , or Ba2+ ) and (b) 2:1:1 layer type<br />

(Mo )Si j (4−t)Al t)O10(OH) 2 · (Mbk (OH) 6), where bk is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> brucitic cati<strong>on</strong>s.<br />

Subscripts l, o, and t denote, respectively, <str<strong>on</strong>g>the</str<strong>on</strong>g> interlayer, octahedral, and tetrahedral<br />

sites. The possible cati<strong>on</strong>s occupying each site <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> can be seen in table<br />

A.18 for clays and phyllosilicates.<br />

The Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a hydrated clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g> or a phyllosilicate<br />

composed by n s cati<strong>on</strong>s located in different sites and with n s(n s − 1)/2 interacti<strong>on</strong><br />

terms is calculated as:<br />

∆G 0<br />

f =<br />

i=n s<br />

(ni)∆G 0<br />

f (MiOxi ) + ∆G 0<br />

ox<br />

The Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> oxides ∆G0 which is analogous to Eq. 5.64:<br />

∆G 0<br />

ox = −N<br />

⎧<br />

⎨<br />

⎩<br />

<br />

i=n s−1<br />

i=i<br />

j=n s<br />

j=i+1<br />

i=1<br />

ox<br />

(5.65)<br />

is calculated with Eq. 5.66,<br />

<br />

X iX j ∆GO 2− M zi+ i (cla y) − ∆GO 2− M z ⎬<br />

j+<br />

j (cla y)<br />

⎭<br />

where N is <str<strong>on</strong>g>the</str<strong>on</strong>g> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> O atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> all oxides; X i and X j are <str<strong>on</strong>g>the</str<strong>on</strong>g> molar<br />

fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen related to <str<strong>on</strong>g>the</str<strong>on</strong>g> cati<strong>on</strong>s M zi+ i and M z j+<br />

j in <str<strong>on</strong>g>the</str<strong>on</strong>g> individual oxides<br />

MiOxi and MjO x , respectively (X j i = (1/N)(ni xi) and X j = (1/N)(n j x j)). Parameters<br />

M zi+ i (clay) and M z j+<br />

j (clay) characterize <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>egativity <str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong>s M zi+ i<br />

and M z j+<br />

j in a specific site and are calculated by minimizing <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between<br />

experimental Gibbs free energies and calculated <strong>on</strong>es from c<strong>on</strong>stituent oxides. Table<br />

A.18 in <str<strong>on</strong>g>the</str<strong>on</strong>g> appendix shows M zi+ i (clay) values for some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main i<strong>on</strong>s for hydrated<br />

clays and phyllosilicates.<br />

The predicted Gibbs free energy values showed an error between 0,0 and 0,6 %.<br />


Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 181<br />

5.4.5.2 The ∆O −2 method for different compounds with <str<strong>on</strong>g>the</str<strong>on</strong>g> same cati<strong>on</strong>s<br />

Tardy [347] showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a compound from<br />

its two c<strong>on</strong>stituent oxides calculated per <strong>on</strong>e oxygen in <str<strong>on</strong>g>the</str<strong>on</strong>g> formula was a parabolic<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mean ∆O −2 compound. Subsequently, an expressi<strong>on</strong> for calculating <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a compound C intermediate in compositi<strong>on</strong> to two<br />

compounds A and B, A + B → C was developed:<br />

<br />

∆Gox,A+B→C = +αG ∆GO 2− M z+<br />

i<br />

i − ∆GO 2− M z+<br />

<br />

j<br />

j nC(X C<br />

i<br />

A C<br />

− X i )(X i<br />

B<br />

− X i ) (5.66)<br />

where nc designates <str<strong>on</strong>g>the</str<strong>on</strong>g> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygens <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compound C and X A B<br />

i , X i ,<br />

X C<br />

i <str<strong>on</strong>g>the</str<strong>on</strong>g> mole fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen that balance cati<strong>on</strong> M z+<br />

i<br />

i in compounds A, B, and C<br />

and α <str<strong>on</strong>g>the</str<strong>on</strong>g> correlati<strong>on</strong> parameter for a given class <str<strong>on</strong>g>of</str<strong>on</strong>g> compounds, as in Eq. 5.62.<br />

5.4.6 Assuming ∆S r zero<br />

Helges<strong>on</strong> et al. [134] showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> B can be<br />

determined, assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> is zero (Helges<strong>on</strong>’s algorithm). Helges<strong>on</strong> algorithm is useful when ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

∆G 0<br />

f<br />

or ∆H0<br />

f<br />

are known. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> is known, ∆G0 f<br />

(or ∆G0<br />

f f<br />

can be calculated with ∆H 0<br />

approximati<strong>on</strong> is up to 5%.<br />

Example:<br />

(or ∆H0<br />

f )<br />

) through Eq. 5.49. The error associated to this<br />

ThSiO 4 + UO 2 → USiO 4 + ThO 2<br />

s 0 ThSiO 4 = s 0<br />

USiO 4 + s 0<br />

ThO 2 − s 0<br />

UO 2<br />

= 118, 0 + 62, 2 − 77, 0<br />

= 106, 2<br />

5.4.7 Assuming ∆G r and ∆H r zero<br />

5.4.7.1 The element substituti<strong>on</strong> method<br />

In some cases, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties are available for a certain <str<strong>on</strong>g>mineral</str<strong>on</strong>g> (A),<br />

bel<strong>on</strong>ging to <str<strong>on</strong>g>the</str<strong>on</strong>g> same family <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substance under c<strong>on</strong>siderati<strong>on</strong> (B), but with<br />

partial element substituti<strong>on</strong>s. In such a case, <str<strong>on</strong>g>the</str<strong>on</strong>g> ∆H 0 and ∆G0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> B can<br />

f f<br />

be calculated from <str<strong>on</strong>g>mineral</str<strong>on</strong>g> A, assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> enthalpy or free energy


182 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> B from A is zero. This approximati<strong>on</strong> increases with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> substituti<strong>on</strong> and may yield to associated errors <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 5%, although<br />

it rarely exceeds ±2%. We will outline this method with an example.<br />

C<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> hydrosodalite N a 8Al 6Si 6O 24(OH) 2, for which no empirical<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic values are available. Hydrosodalite can be formed from sodalite<br />

N a 8Al 6Si 6O 24(Cl) 2 as in <str<strong>on</strong>g>the</str<strong>on</strong>g> following reacti<strong>on</strong>:<br />

N a 8Al 6Si 6O 24(OH) 2 + 2HCl → N a 8Al 6Si 6O 24(Cl) 2 + 2H 2O<br />

Assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> is zero, ∆H 0<br />

f<br />

calculated as:<br />

and ∆G0<br />

f<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hydrosodalite are<br />

∆H 0<br />

f ,N a8Al6Si 6O24(OH) 2<br />

= ∆H 0<br />

+ 2 · ∆H f ,N a8Al6Si 6O24(Cl) 2 0<br />

f ,2H − 2∆H0<br />

2O f ,HCl<br />

= (−13457) + 2 · (−285, 8) − 2 · (−167, 2)<br />

= −13408, 5 kJ/mole<br />

∆G 0<br />

f ,N a8Al6Si 6O24(OH) 2<br />

= ∆G 0<br />

+ 2 · ∆G f ,N a8Al6Si 6O24(Cl) 2 0<br />

f ,2H − 2∆G0<br />

2O f ,HCl<br />

= (−12703, 6) + 2 · (−237, 1) − 2 · (−131, 1)<br />

= −12678, 2 kJ/mole<br />

Where <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> sodalite, H 2O and H F are obtained from<br />

[187] and [391], respectively.<br />

5.4.7.2 The additi<strong>on</strong> method for hydrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

Hydrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s have <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to absorb n w water molecules, forming part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir crystal structure:<br />

A + n w · H 2O → A · n wH 2O<br />

Usually, <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties are available for <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-hydrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g>. But<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrated substance can be<br />

estimated by additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrati<strong>on</strong> enthalpy and Gibbs free energy ∆G0 hyd r or<br />

∆H 0 to those <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dehydrated substance, as in Eqs. 5.67.<br />

hydr<br />

∆H 0<br />

f ,A·nw H = ∆H0<br />

2O f ,A + nw · ∆H 0<br />

hyd r,A<br />

∆G 0<br />

f ,A·nw H = ∆G0<br />

2O f ,A + nw · ∆G 0<br />

hyd r,A<br />

(5.67)


Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 183<br />

If ∆G0 and ∆H0 are not available, <strong>on</strong>e can assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy and<br />

hydr hydr<br />

Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrati<strong>on</strong> reacti<strong>on</strong> are zero (as in secti<strong>on</strong> 5.4.7.1). And<br />

hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> liquid water molecules c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrated substance<br />

must be added in place <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆G0 and ∆H0 . This is not rigourously exact,<br />

hyd r hyd r<br />

as dem<strong>on</strong>strated by Vieillard and Jenkins ([386], [384], [385]) and <str<strong>on</strong>g>the</str<strong>on</strong>g> error associated<br />

depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dehydrated comp<strong>on</strong>ent10 . We will assume an<br />

associated error <str<strong>on</strong>g>of</str<strong>on</strong>g> ±5%, although it rarely exceeds ±2%.<br />

Example: <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tetrahedral silica Si4+ to <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrati<strong>on</strong> energy is<br />

not known, so <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> opal SiO2 · 0, 5H2O is calculated assuming that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrati<strong>on</strong> process is zero. Hence, ∆H 0<br />

f ,SiO2·0,5H2O =<br />

∆H 0 +0, 5∆H f ,SiO2 0 = −901, 6 + 0, 5 · (−285, 8) = −1044, 5 kJ/mole. The en-<br />

f ,H2O(l) thalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SiO2 (amorph.) and H2O (l) are obtained from [284].<br />

5.4.7.3 The decompositi<strong>on</strong> method<br />

If n<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> previously described methods can be applied, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a certain <str<strong>on</strong>g>mineral</str<strong>on</strong>g> can be estimated as <str<strong>on</strong>g>the</str<strong>on</strong>g> last resort by decomposing it into<br />

its major c<strong>on</strong>stituents for which <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> are<br />

known. It will be assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stituents to form<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> under c<strong>on</strong>siderati<strong>on</strong> is zero. The error associated to this methodology is<br />

significantly greater than with <str<strong>on</strong>g>the</str<strong>on</strong>g> substituti<strong>on</strong> and additi<strong>on</strong> methods, since in this<br />

case we are not dealing with partial substituti<strong>on</strong>s or additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a known <str<strong>on</strong>g>mineral</str<strong>on</strong>g>,<br />

but with <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a completely new <str<strong>on</strong>g>mineral</str<strong>on</strong>g> from its building blocks. The <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

under analysis will be decomposed into its most complex compounds (usually<br />

double silicates). If this is not possible, most <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s can be decomposed into its<br />

simple oxides, sulfides, carb<strong>on</strong>ates, etc. We will assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong><br />

method throws an error <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 10%.<br />

Example: <str<strong>on</strong>g>mineral</str<strong>on</strong>g> pyroxene CaAl 2SiO 6 can be decomposed into 1: CaO and<br />

Al 2Si 2O5. Alternatively, into 2: CaO, SiO 2 and Al 2O 3.<br />

CaAl 2SiO 6 → CaO + Al 2Si 2O5<br />

→ CaO + Al 2O 5 + SiO 2<br />

10 This methodology is not applied for hydrated clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and phyllosilicates. In those cases,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ∆O 2− method is applied.


184 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> pyroxene is estimated as follows, with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties tabulated in [94]:<br />

∆G 0<br />

f ,CaAl 2SiO 6<br />

= ∆G 0<br />

f ,CaO + ∆G0 f ,Al2Si 2O5<br />

= (−603, 1) + (−2440, 1)<br />

or<br />

= −3043, 2 kJ/mole<br />

∆G 0<br />

f ,CaAl 2SiO 6<br />

= ∆G 0<br />

f ,CaO + ∆G0 f ,Al + ∆G<br />

2O3 0<br />

f ,SiO2 = (−603, 1) + (−1583, 4) − (−856, 3)<br />

= −3042, 8 kJ/mole<br />

The measured Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> pyroxene reported in [94] is ∆G0 = −3119, 7,<br />

f<br />

what gives an error <str<strong>on</strong>g>of</str<strong>on</strong>g> 2,4 and 2,5% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated values with decompositi<strong>on</strong>s 1<br />

and 2, respectively.<br />

5.4.8 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> methodologies<br />

The described methodologies in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous secti<strong>on</strong>s, will be used for calculating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s upper<br />

crust. Each methodology is given a number so as to specify in <str<strong>on</strong>g>the</str<strong>on</strong>g> next chapter,<br />

which methodology has been used for determining <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy or free energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s (see table 5.8). Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> assumed maximum errors<br />

associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> methods (± Error %) are given.<br />

Table 5.8. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> methodologies used to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

Method Nr. ±Error, %<br />

Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆H 0<br />

f<br />

or ∆G0<br />

f from s0 1 0<br />

The ideal mixing model 2 1<br />

Thermochemical approximati<strong>on</strong>s for sulfosalts and complex oxides 3 1<br />

The method <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>ding states 4 1<br />

The method <str<strong>on</strong>g>of</str<strong>on</strong>g> Chermak and Rimstidt for silicate <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 5 1<br />

The ∆O −2 method 6 1<br />

The ∆O −2 method for hydrated clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and for phyllosilicates 7 0,6<br />

The ∆O −2 method for different compounds with <str<strong>on</strong>g>the</str<strong>on</strong>g> same cati<strong>on</strong>s 8 1<br />

Assuming ∆S r zero 9 5<br />

The element substituti<strong>on</strong> method 10 5<br />

The additi<strong>on</strong> method for hydrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 11 5<br />

The decompositi<strong>on</strong> method 12 10


Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter 185<br />

5.5 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter<br />

This chapter has provided <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic tools required for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural resources, especially for <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. We have seen, that <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> any<br />

substance is always associated to a reference envir<strong>on</strong>ment. The c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reference envir<strong>on</strong>ment determine <str<strong>on</strong>g>the</str<strong>on</strong>g> final exergy value, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. had to<br />

be carefully selected. For that purpose, <str<strong>on</strong>g>the</str<strong>on</strong>g> different R.E. proposed so far have been<br />

reviewed. It has been stated, that <str<strong>on</strong>g>the</str<strong>on</strong>g> best suitable R.E. for determining <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e based <strong>on</strong> Szargut’s criteri<strong>on</strong>. The model developed<br />

by Szargut has been adapted to our requirements with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> new geochemical<br />

informati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> updates carried out by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r authors. As a result, two different<br />

R.E. have been proposed, <str<strong>on</strong>g>the</str<strong>on</strong>g> first <strong>on</strong>e, taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental<br />

crust developed in chapter 3, and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <strong>on</strong>e, c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters<br />

included in Grigor’ev’s model [127]. It has been stated, that <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se R.E. and Szargut’s original envir<strong>on</strong>ment, differ for both cases in less than 1%.<br />

Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, when <str<strong>on</strong>g>the</str<strong>on</strong>g> whole c<strong>on</strong>tinental crust is c<strong>on</strong>sidered, <str<strong>on</strong>g>the</str<strong>on</strong>g>se small numbers<br />

become not so insignificant.<br />

Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> energy involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposit has been<br />

shown. The most energy intensive processes are those related to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>. The physical processes associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing and binding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crystal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> are not so energy-intensive.<br />

We have seen that <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum exergy embedded in a <str<strong>on</strong>g>mineral</str<strong>on</strong>g> has two comp<strong>on</strong>ents:<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> chemical and c<strong>on</strong>centrati<strong>on</strong> comp<strong>on</strong>ents. The first parameter accounts for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> from <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. The c<strong>on</strong>centrati<strong>on</strong> exergy expresses <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum<br />

energy that nature had to spend to bring <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> reference state to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> mine. We have seen, that <str<strong>on</strong>g>the</str<strong>on</strong>g> latter<br />

shows a negative logarithmic pattern with <str<strong>on</strong>g>the</str<strong>on</strong>g> grade. This means that as <str<strong>on</strong>g>the</str<strong>on</strong>g> ore<br />

grade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mine tends to zero, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposit approaches also zero and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy required for replacing <str<strong>on</strong>g>the</str<strong>on</strong>g> mine tends to infinity.<br />

Fossil fuels are a type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, in which <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> exergy is not so relevant.<br />

The chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels is difficult to obtain with <str<strong>on</strong>g>the</str<strong>on</strong>g> formulas provided<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemical structure. Hence,<br />

special calculati<strong>on</strong> procedures are applied. It has been seen, that <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels can be in many cases approximated to its HHV. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> different<br />

formulas developed by Valero and Lozano [369] have been provided, because<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g>m, we can calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ambient<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels.<br />

The exergy values are very small, if compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> real energy required for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir original state. In order to account for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inefficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g> man-made processes, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy values are multiplied by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

unit exergy replacement costs. These are dimensi<strong>on</strong>less and measure <str<strong>on</strong>g>the</str<strong>on</strong>g> number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> exergy units needed to obtain <strong>on</strong>e unit <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> product. The resulting


186 THERMODYNAMIC MODELS FOR THE EXERGY ASSESSMENT OF NATURAL RESOURCES<br />

exergy costs represent <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy required by <str<strong>on</strong>g>the</str<strong>on</strong>g> given available technology to return<br />

a resource into <str<strong>on</strong>g>the</str<strong>on</strong>g> physical and chemical c<strong>on</strong>diti<strong>on</strong>s in which it was delivered<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystem. As opposed to exergy, exergy costs cannot be c<strong>on</strong>sidered as a property<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resource, since unit exergy costs introduce to some extent an uncertain<br />

factor to <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be used as a suitable indicator for<br />

assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y integrate in <strong>on</strong>e parameter,<br />

c<strong>on</strong>centrati<strong>on</strong>, compositi<strong>on</strong> and also <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> technology. Although unit exergy<br />

replacement costs are c<strong>on</strong>sidered in this PhD to be c<strong>on</strong>stant, in reality <str<strong>on</strong>g>the</str<strong>on</strong>g>y vary with<br />

time, as technology is being developed. The assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> unit exergy replacement<br />

costs as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> learning curves is a task that remains<br />

open for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies.<br />

The chapter ends with <str<strong>on</strong>g>the</str<strong>on</strong>g> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> twelve semi-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enthalpies and Gibbs free energies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong>, required for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

All <str<strong>on</strong>g>the</str<strong>on</strong>g>se tools, will allow us to assess in subsequent chapters, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

substances that compose <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>, previously described in chapters 2, 3 and 4.


Chapter 6<br />

The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and its <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

resources<br />

6.1 Introducti<strong>on</strong><br />

This chapter is devoted to <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standard <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> (enthalpy, Gibbs free energy and exergy) focusing <strong>on</strong> each <str<strong>on</strong>g>of</str<strong>on</strong>g> its outer<br />

layers: <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere and upper c<strong>on</strong>tinental crust. For that purpose,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> geochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet described in Part I is required, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic tools provided in chapter 5.<br />

Additi<strong>on</strong>ally, a first approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> entropic <strong>earth</strong> is<br />

provided.<br />

Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> (<str<strong>on</strong>g>of</str<strong>on</strong>g> fuel and n<strong>on</strong>-fuel origin)<br />

will be calculated and added to <str<strong>on</strong>g>the</str<strong>on</strong>g> energy sources described in chapter 4. The<br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural resources will be analyzed and compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> global chemical<br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> calculated before.<br />

6.2 The properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong><br />

As we anticipated in previous chapters, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong><br />

are related to <str<strong>on</strong>g>the</str<strong>on</strong>g> species c<strong>on</strong>tained in it and not to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir elements. In <str<strong>on</strong>g>the</str<strong>on</strong>g> model<br />

developed in secti<strong>on</strong> 3.4.1, this implies that <str<strong>on</strong>g>the</str<strong>on</strong>g> average Enthalpy (∆H f ), Gibbs free<br />

energy (∆G f ) or Chemical <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> (b ch) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> expressed as kJ/g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>earth</strong>, are<br />

calculated as:<br />

187


188 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

∆H f =<br />

∆G f =<br />

b ch =<br />

m<br />

(ξi · ∆H f i) (6.1)<br />

i=1<br />

m<br />

(ξi · ∆G f i) (6.2)<br />

i=1<br />

m<br />

(ξi · bch i) (6.3)<br />

i=1<br />

Being ξ i, <str<strong>on</strong>g>the</str<strong>on</strong>g> specific quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species composing <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>, expressed in<br />

mole/g, and ∆H f i, ∆G f i and b ch i, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir enthalpy, Gibbs free energy and chemical<br />

exergy in kJ/mole, respectively.<br />

The enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substances are obtained ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r through<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> literature or through <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> methods described in secti<strong>on</strong> 5.4.<br />

Remember also that <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substance (bch i) in kJ/mole is calculated<br />

with Eq. 5.1:<br />

<br />

bch i = ∆G f + rj,i bch j<br />

where b ch j is <str<strong>on</strong>g>the</str<strong>on</strong>g> standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements that compose substance<br />

i. In our case we will use <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements obtained with <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E.<br />

developed in this study and shown in table 5.4.<br />

Since we have divided <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> into three subsystems, its average properties will<br />

be first calculated separately for <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere and c<strong>on</strong>tinental crust.<br />

The average enthalpy, Gibbs free energy and exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s layers, can be<br />

expressed in molar units by substituting ξ i with <str<strong>on</strong>g>the</str<strong>on</strong>g> molar fracti<strong>on</strong> x i for <str<strong>on</strong>g>the</str<strong>on</strong>g> i c<strong>on</strong>stituents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each sphere. Equati<strong>on</strong> 6.4 relates both properties through <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular<br />

weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sphere c<strong>on</strong>sidered (MW sphere):<br />

x i = ξ i · MW sphere<br />

j<br />

(6.4)<br />

Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> specific and global standard properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substances composing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere, hydrosphere and upper c<strong>on</strong>tinental crust are shown.<br />

6.2.1 The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere<br />

Table 6.1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> standard <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substances c<strong>on</strong>tained<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere (<strong>on</strong> a dry basis), according to <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> provided in secti<strong>on</strong><br />

are taken from Weast et al. [400].<br />

2.3.1. Values for ∆H 0<br />

f ,i<br />

and ∆G0<br />

f ,i


The properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> 189<br />

Table 6.1: Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. Values<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ∆H 0 , ∆G0 , b0 in kJ/mole<br />

f i f i ch i<br />

Substance Formula x i [-] ∆H 0<br />

f i<br />

∆G0<br />

f i<br />

Nitrogen N 2 7,81E-01 0,0 0,0 0,72<br />

Oxygen O 2 2,09E-01 0,0 0,0 3,97<br />

Arg<strong>on</strong> Ar 9,34E-03 0,0 0,0 11,7<br />

Carb<strong>on</strong> dioxide CO 2 3,60E-04 -393,7 -394,4 19,9<br />

Ne<strong>on</strong> N e 1,82E-05 0,0 0,0 27,2<br />

Helium He 5,24E-06 0,0 0,0 30,4<br />

Methane CH 4 1,70E-06 -74,8 -50,8 831,7<br />

Hydrogen H 2 5,50E-07 0,0 0,0 236,1<br />

Nitrogen oxides NO 2 5,05E-07 33,2 51,3 55,7<br />

Nitrous oxide N 2O 3,10E-07 82,1 104,2 106,9<br />

Oz<strong>on</strong>e (troposphere) O 3 2,55E-07 142,7 163,3 169,2<br />

Carb<strong>on</strong> m<strong>on</strong>oxide CO 1,25E-07 -137,2 -110,6 301,7<br />

NMHC (assuming ethylene) C 2H 4 1,25E-08 52,3 70,3 1363,0<br />

Oz<strong>on</strong>e (stratosphere) O 3 5,25E-09 142,7 163,3 169,2<br />

Hydrogen peroxide H 2O 2 5,05E-09 -191,3 -131,9 108,2<br />

Formaldehyde CH 2O 5,50E-10 -117,2 -113,0 535,3<br />

Chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>luorocarb<strong>on</strong> 12 C F2Cl 2 5,40E-10 -477,2 -439,5 651,1<br />

Amm<strong>on</strong>ia N H 3 5,05E-10 -46,1 -16,5 338,0<br />

Sulfur dioxide SO 2 5,05E-10 -297,0 -300,3 310,9<br />

Carb<strong>on</strong>yl sulfide OCS 5,00E-10 -142,2 -169,4 850,1<br />

Chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>luorocarb<strong>on</strong> 11 C F Cl 3 2,65E-10 -276,3 -238,6 636,1<br />

Hydrogen sulfide H 2S 2,53E-10 -20,6 -27,9 815,5<br />

Carb<strong>on</strong> disulfide CS 2 1,51E-10 117,4 67,2 1692,0<br />

Carb<strong>on</strong> tetrachloride CCl 4 9,80E-11 -103,0 -60,7 598,1<br />

Methylchlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm CH 3CCl 3 6,50E-11 35,6 51,9 1412,9<br />

Dimethyl sulfide CH 3SCH 3 5,50E-11 -45,8 -4,4 2131,7<br />

Hydroperoxyl radical HO 2 2,00E-12 20,9 22,6 144,6<br />

Hydroxyl radical OH 5,00E-14 39,0 34,2 154,3<br />

Sum 1,00<br />

According to table 6.1, <str<strong>on</strong>g>the</str<strong>on</strong>g> average standard enthalpy, Gibbs free energy and chemical<br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere can be obtained as:<br />

b 0<br />

ch i


190 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

(∆H 0<br />

f ) atm =<br />

(∆G 0<br />

f ) atm =<br />

(b 0<br />

ch ) atm =<br />

m<br />

i=1<br />

m<br />

i=1<br />

m<br />

i=1<br />

(x i · ∆H 0<br />

f ,i ) = −1, 42E − 01 kJ/mole<br />

(x i · ∆G 0<br />

f ,i ) = −1, 42E − 01 kJ/mole<br />

(x i · b 0<br />

ch i ) = 1, 51 kJ/mole<br />

Obviously, <str<strong>on</strong>g>the</str<strong>on</strong>g> average properties are very close to those <str<strong>on</strong>g>of</str<strong>on</strong>g> N 2 and O 2, for being both<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> major c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere.<br />

6.2.2 The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere<br />

In this secti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> oceans,<br />

rivers, groundwaters and glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f are provided. For all subsystems, values for<br />

∆H 0 and ∆G0 are taken from Weast et al. [400].<br />

f i f i<br />

Table 6.2 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> major substances that compose<br />

seawater. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e listed in table 2.5. The more<br />

comprehensive compositi<strong>on</strong> given in table 2.6 could not be used, since although <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> minor elements found in seawater are listed, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir specific molecular<br />

formulas are not specified 1 . It should be noted however, that <str<strong>on</strong>g>the</str<strong>on</strong>g> first compositi<strong>on</strong><br />

comprises more than 99% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total substances included in seawater and hence,<br />

its uncertainty cannot be compared to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust, which had to be<br />

estimated in this PhD.<br />

Table 6.2: Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater. Values in<br />

kJ/mole<br />

Substance x i [-] ∆H 0<br />

f i<br />

∆G 0<br />

f i<br />

b 0<br />

ch i<br />

H 2O 9,80E-01 -286,0 -237,3 0,79<br />

Cl − 9,98E-03 -167,2 -131,3 -69,2<br />

N a + 8,57E-03 -240,2 -262,0 74,6<br />

M g 2+ 9,65E-04 -467,1 -455,0 174,6<br />

SO4 −2 5,16E-04 -909,7 -745,0 -129,8<br />

Ca 2+ 1,88E-04 -543,1 -553,8 170,0<br />

K + 1,87E-04 -252,5 -283,4 83,2<br />

HCO −<br />

3 3,20E-05 -692,3 -587,1 -52,9<br />

1 For instance, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vanadium is given, but this element could be in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

VO +<br />

2 , V + , V 3+ , etc. Obviously, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different forms <str<strong>on</strong>g>of</str<strong>on</strong>g> vanadium are<br />

different.


The properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> 191<br />

Table 6.2: Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater. Values in<br />

kJ/mole. – c<strong>on</strong>tinued from previous page.<br />

Substance x i [-] ∆H 0<br />

f i<br />

∆G 0<br />

f i<br />

b ch i 0<br />

Br − 1,54E-05 -121,6 -104,0 -53,5<br />

F − 1,24E-05 -332,8 -279,0 -0,9<br />

B(OH) 3 5,67E-06 -1072,8 -969,3 19,4<br />

CO 2−<br />

3 4,93E-06 -677,5 -528,1 -111,9<br />

B(OH) −<br />

4 1,83E-06 -1344,7 -1153,9 -45,1<br />

Sr 2+ 1,64E-06 -547,2 -560,0 198,8<br />

SUM 1,00<br />

The average standard enthalpy, Gibbs free energy and chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater<br />

(sw) can now be obtained as:<br />

(∆H 0<br />

f ) sw = −284, 9 kJ/mole<br />

(∆G 0<br />

f ) sw = −237, 0 kJ/mole<br />

(b 0<br />

ch ) sw<br />

= 0, 87 kJ/mole<br />

The average standard <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> rivers, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong><br />

given by Livingst<strong>on</strong>e [197] are shown in table 6.3.<br />

Table 6.3: Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> average rivers. Values<br />

in kJ/mole<br />

Substance x i [-] ∆H 0<br />

f i<br />

∆G0<br />

f i<br />

b 0<br />

ch i<br />

H 2O 1,00E+00 -286,0 -237,2 0,79<br />

HCO3 − 1,72E-05 -692,3 -586,9 -52,9<br />

Ca 2+ 6,74E-06 -543,1 -553,5 170,0<br />

N a + 4,93E-06 -240,2 -261,9 74,6<br />

Cl − 3,96E-06 -167,2 -131,0 -69,2<br />

SiO 2 3,92E-06 -911,4 -856,7 174,6<br />

M g +2 3,04E-06 -467,1 -454,8 174,6<br />

SO4 −2 2,10E-06 -909,7 -774,5 -129,8<br />

K + 1,06E-06 -252,5 -283,3 83,2<br />

NO3 − 2,90E-07 -207,5 -111,3 -105,1<br />

Fe 2+ 2,16E-07 -89,2 -78,9 297,9<br />

SUM 1,00


192 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

The average standard enthalpy, Gibbs free energy and chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> rivers (rw)<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g>n:<br />

(∆H 0<br />

f ) rw = −286, 0 kJ/mole<br />

(∆G 0<br />

f ) rw = −237, 2 kJ/mole<br />

(b 0<br />

ch ) rw<br />

= 0, 79 kJ/mole<br />

The average standard properties <str<strong>on</strong>g>of</str<strong>on</strong>g> glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong><br />

provided in secti<strong>on</strong> 2.4.3.1, are given in table 6.4.<br />

Table 6.4: Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Values<br />

in kJ/mole<br />

Substance x i [-] ∆H 0<br />

f i<br />

∆G0<br />

f i<br />

b 0<br />

ch i<br />

H 2O 1,00E+00 -286,0 -237,2 0,79<br />

N a + 1,44E-05 -240,2 -261,9 74,6<br />

HCO3 − 1,42E-05 -692,3 -586,9 -52,9<br />

Ca +2 5,71E-06 -543,1 -553,5 170,0<br />

SO4 −2 5,13E-06 -909,7 -774,5 -129,8<br />

Cl − 3,92E-06 -167,2 -131,0 -69,2<br />

M g +2 1,92E-06 -467,1 -454,8 174,6<br />

K + 9,13E-07 -252,5 -283,3 83,2<br />

SUM 1,00<br />

The average standard enthalpy, Gibbs free energy and chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> glacial<br />

run<str<strong>on</strong>g>of</str<strong>on</strong>g>f (gl) is:<br />

(∆H 0<br />

f ) gl = −286, 0 kJ/mole<br />

(∆G 0<br />

f ) gl = −237, 2 kJ/mole<br />

(b 0<br />

ch ) gl<br />

= 0, 79 kJ/mole<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> river waters and glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f is very close, similar <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> both types <str<strong>on</strong>g>of</str<strong>on</strong>g> waters were expected, as corroborated by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

figures provided above.


The properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> 193<br />

Table 6.5. Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwaters. Values in kJ/mole<br />

Substance x i [-] ∆H 0<br />

f i<br />

∆G0<br />

f i<br />

b 0<br />

ch i<br />

H 2O 1,00E+00 -286,0 -237,3 0,79<br />

HCO3 − 6,46E-05 -692,3 -587,1 -52,9<br />

Ca 2+ 3,95E-05 -543,1 -553,8 170,0<br />

SO4 −2 2,96E-05 -909,7 -745,0 -129,8<br />

M g +2 2,13E-05 -467,1 -455,0 174,6<br />

SiO 2 7,54E-06 -911,4 -857,1 1,1<br />

Cl − 6,98E-06 -167,2 -131,3 -69,2<br />

N a + 6,66E-06 -240,2 -262,0 74,6<br />

Al +3 2,05E-06 -531,6 -485,6 308,7<br />

NO3 − 1,47E-06 -207,5 -111,4 -105,1<br />

K + 9,67E-07 -252,5 -283,4 83,2<br />

Fe 2+ 5,55E-07 -89,2 -78,9 297,9<br />

SUM 1,00<br />

Table 6.5 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated average standard <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

groundwaters <strong>on</strong> <strong>earth</strong>. The mean compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwaters has been assumed<br />

to be equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> average <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong>s for granite, shale and serpentinite<br />

groundwaters given in table 2.10.<br />

According to table 6.5, <str<strong>on</strong>g>the</str<strong>on</strong>g> average standard enthalpy, Gibbs free energy and chemical<br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater (gw) is <str<strong>on</strong>g>the</str<strong>on</strong>g>n:<br />

(∆H 0<br />

f ) gw = −286, 0 kJ/mole<br />

(∆G 0<br />

f ) gw = −237, 4 kJ/mole<br />

(b 0<br />

ch ) gw<br />

= 0, 80 kJ/mole<br />

Summarizing, table 6.6 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> standard <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere.<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean accounts for 97% <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>earth</strong>’s waters, <str<strong>on</strong>g>the</str<strong>on</strong>g> global enthalpy,<br />

Gibbs free energy and exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere can be approximated to that <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater.<br />

It has been assumed, that <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lakes is equal to that <str<strong>on</strong>g>of</str<strong>on</strong>g> average<br />

rivers.<br />

It is remarkable in <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere’s tables presented above, that <str<strong>on</strong>g>the</str<strong>on</strong>g> specific exergy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all negative i<strong>on</strong>s is also negative. As explained in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous chapter, <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical<br />

exergy expresses <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum work required for combining chemically <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reference substances dispersed in <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> resource.<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> reference species are more stable than <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered substance, <str<strong>on</strong>g>the</str<strong>on</strong>g>n its chemical<br />

exergy will be negative. In Ranz’s R.E. [276], this situati<strong>on</strong> came up very


194 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

Table 6.6. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere. Values in<br />

kJ/mole<br />

Reservoir Volume (M km3 ) xi ∆H 0<br />

f i<br />

xi.b ch i<br />

Oceans 1370 9,73E-01 -284,9 -237,0 0,87 -2,77E+02 -2,30E+02 8,47E-01<br />

Ice Caps and<br />

Glaciers<br />

29 2,05E-02 -286,0 -237,2 0,79 -5,86E+00 -4,86E+00 1,63E-02<br />

Groundwater 9,5 6,80E-03 -286,0 -237,4 0,80 -1,94E+00 -1,61E+00 5,41E-03<br />

Lakes 0,125 1,00E-04 -286,0 -237,2 0,79 -2,86E-02 -2,37E-02 7,93E-05<br />

Streams<br />

Rivers<br />

and 0,0017 1,00E-06 -286,0 -237,2 0,79 -2,86E-04 -2,37E-04 7,93E-07<br />

SUM 1408,63 1,00 -284,9 -237,0 0,87<br />

∆G 0<br />

f i b ch i x i.∆H 0<br />

f i<br />

x i. ∆G 0<br />

f i<br />

frequently, as she chose reference substances according to <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance criteri<strong>on</strong>.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. developed in this PhD, which is based <strong>on</strong> partial stability, we have selected<br />

reference substances trying to avoid negative chemical exergies. However, in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> light <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere’s results, we have not succeeded in that task.<br />

A deeper analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium substances found in seawater should be carried<br />

out. A good starting point would be <str<strong>on</strong>g>the</str<strong>on</strong>g> work <str<strong>on</strong>g>of</str<strong>on</strong>g> Pinaev [266], [265]. Pinaev calculated<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> elements, assuming that all reference substances are in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ocean medium, with <str<strong>on</strong>g>the</str<strong>on</strong>g> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gas reference substances, which were <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same as in this PhD. As opposed to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r methodologies, for Pinaev, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

element is not obtained from a single reference substance. He takes into account not<br />

<strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant, but also <str<strong>on</strong>g>the</str<strong>on</strong>g> main sec<strong>on</strong>dary species found in <str<strong>on</strong>g>the</str<strong>on</strong>g> ocean medium<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each element, at <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> ruled by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir equilibrium c<strong>on</strong>stants. This<br />

way, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> an element is calculated as <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> element<br />

previously obtained with <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant reference substance and <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

sec<strong>on</strong>dary species, obtained through <str<strong>on</strong>g>the</str<strong>on</strong>g>ir equilibrium c<strong>on</strong>centrati<strong>on</strong>s.<br />

Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, Pinaev’s element exergies generate also negative chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

negative i<strong>on</strong>s, as corroborated by <str<strong>on</strong>g>the</str<strong>on</strong>g> next example.<br />

Example: standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> Cl − , calculated from <str<strong>on</strong>g>the</str<strong>on</strong>g> standard chemical<br />

= 60, 8 kJ/mole).<br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements proposed by Pinaev [265]: (b 0<br />

ch Cl<br />

b 0<br />

ch Cl − = ∆G 0<br />

f ,Cl − + b 0<br />

ch Cl<br />

= −131, 3 + 60, 8 = −70, 5 kJ/mole<br />

It is not <str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD to show <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> all substances <strong>on</strong> <strong>earth</strong> calculated<br />

with Pinaev’s R.E. But it has been stated, that <str<strong>on</strong>g>the</str<strong>on</strong>g> results are very close to ours. In<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> example, Pinaev’s exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> Cl − is -70,5 kJ/mole, versus -69,2 kJ/mole obtained<br />

here. That is because his methodology is based in outline <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al calculati<strong>on</strong><br />

procedures, also used in this PhD. This makes us to questi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> validity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al methodology, when <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural <str<strong>on</strong>g>capital</str<strong>on</strong>g> is<br />

assessed.


The properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> 195<br />

6.2.3 The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust<br />

Table 6.7 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> standard <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> major <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s that<br />

compose <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> model developed in chapter 3.<br />

Only <str<strong>on</strong>g>the</str<strong>on</strong>g> references (Re f .) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental values <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆H 0 and ∆G0 are pro-<br />

f i f i<br />

vided in <str<strong>on</strong>g>the</str<strong>on</strong>g> table. For those <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s where <str<strong>on</strong>g>the</str<strong>on</strong>g> latter values have been estimated<br />

in this PhD, <str<strong>on</strong>g>the</str<strong>on</strong>g> method used for its estimati<strong>on</strong> (M eth.) 2 , as well as its associated<br />

error (±ɛ %) is given. The detailed calculati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s<br />

properties is shown in <str<strong>on</strong>g>the</str<strong>on</strong>g> appendix (secti<strong>on</strong> A.5.3).<br />

2 See table 5.8 for details about <str<strong>on</strong>g>the</str<strong>on</strong>g> different estimati<strong>on</strong> methods.


196 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

Table 6.7: Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust<br />

Mineral Formula ξi, ∆H<br />

mole/g<br />

0<br />

f i , ∆G<br />

kJ/mole<br />

0<br />

f i , Reference Method ±ε, % bch i,<br />

kJ/mole<br />

kJ/mole<br />

Quartz SiO2 3,81E-03 -911,6 -857,2 [94] 1,0<br />

Albite N aAlSi 3O8 5,14E-04 -3927,6 -3704,5 [94] 4,8<br />

Oligoclase N a0.8Ca 0.2Al1.2Si2.8O8 4,49E-04 -796,0 -750,9 [94] 3023,9<br />

Orthoclase/ K- KAlSi 3O8 4,22E-04 -3977,5 -3752,1 1 0 -12,8<br />

feldspar<br />

Andesine N a0.6Ca 0.4Al1.4Si2.6O8 2,03E-04 -808,9 -763,7 [94] 3076,6<br />

Opal SiO2· 0, 5H2O 1,42E-04 -1044,5 -967,9 11 5 9,3<br />

Augite Ca0.9N a0.1M g0.9Fe 2+<br />

0.2Al0.4Ti 0.1Si1.9O6 1,27E-04 -3201,5 -3026,8 [284] -446,9<br />

Labradorite N a0.5Ca 0.5Al1.5Si2.5O8 9,25E-05 -815,0 -769,8 [94] 3103,2<br />

Biotite K(M g2,5Fe 0,5)(Si3Al)O 10 (OH) 1,75F0,25 8,80E-05 -6079,4 -5706,7 2; 4 1 78,6<br />

Calcite CaCO 3 8,00E-05 -1207,7 -1129,0 [94] 11,0<br />

Hydromusco- K0,6(H3O) 0,4Al2 M g0,4Fe vite/ Illite<br />

2+<br />

0,1 Si3,5O10(OH) 2 7,73E-05 -5886,2 -5499,1 5 1 325,2<br />

Sillimanite Al2SiO 5 6,15E-05 -2587,4 -2441,0 [94] 11,7<br />

Parag<strong>on</strong>ite N aAl3Si 3O10(OH) 2 4,95E-05 -5932,5 -5557,6 [94] -15,7<br />

N<strong>on</strong>tr<strong>on</strong>ite N a0.3Fe 3+<br />

2 (Si3,7 Al0,3)O10(OH) 2 · 4(H2O) 3,88E-05 -6841,0 -5447,7 1; 7 0,6 738,2<br />

Magnetite Fe 3+<br />

2 Fe2+ O4 3,43E-05 -1118,3 -1015,9 [94] 122,6<br />

Kaolinite Al2Si 2O5(OH) 4 3,24E-05 -4117,7 -3796,0 [94] -9,0<br />

Ilmenite Fe2+ T iO3 3,10E-05 -1237,2 -1163,5 [94] 123,7<br />

Diaspore AlO(OH) 2,95E-05 -998,1 -917,6 [94] -1,3<br />

Hornblende- Ca2Fe Fe<br />

2+<br />

4 Al0,75Fe 3+<br />

0,25 (Si7AlO 22)(OH) 2 2,78E-05 -10976,4 -10303,7 3 398,5<br />

Muscovite KAl3Si 3O10(OH) 1,8F0,2 2,54E-05 -5991,3 -5616,6 4 1 -13,1<br />

Titanite CaT iSiO5 2,28E-05 -2597,1 -2455,1 1 0 37,2<br />

Almandine Fe 2+<br />

3 Al2(SiO 4) 3 2,09E-05 -5305,5 -4969,8 [94] 335,7<br />

Graphite C 2,01E-05 0,0 0,0 [94] 410,3<br />

Ripidolite (M g3,75Fe 1,25Al) (Si3Al)O 10(OH) 2(OH) 6 2,01E-05 -8429,2 -7788,2 7 0,6 175,2<br />

Epidote Ca2Fe 3+ Al2(SiO 4) 3(OH) 1,87E-05 -6466,1 -6076,3 [94] 43,1<br />

C org C 1,84E-05 N.A. N.A. N.A.<br />

Hydragillite/ Al(OH) 3 1,77E-05 -1282,2 -1155,8 [94] -1,4<br />

Gibbsite<br />

Diopside CaM gSi2O 6 1,40E-05 -3031,2 -3026,3 [94] 47,4<br />

Beidellite N a0,33Al2,33Si3,67 O10(OH) 2 1,39E-05 -5691,6 -5317,2 3 1 39,4<br />

Ankerite CaFe 2+<br />

0,6M g0,3Mn 2+<br />

0,1 (CO3) 2 1,36E-05 -2076,8 -1923,1 12 10 96,6<br />

Aegirine N aFe 3+ Si2O6 1,32E-05 -2585,5 -2417,2 [284] 16,5<br />

Andalusite Al2SiO 5 1,25E-05 -2590,4 -24443,0 [94] 9,7<br />

Hyperstene M gFe 2+ Si2O6 1,17E-05 -2757,4 -2594,6 [94] 132,2<br />

Goethite Fe3+ O(OH) 1,17E-05 -559,4 -489,2 [94] 9,7<br />

Halite N aCl 1,01E-05 -386,3 -384,4 [94] 14,3<br />

Boehmite AlO(OH) 9,65E-06 -988,1 -914,1 [94] 2,2<br />

Bytownite N a0.2Ca 0.8Al1.8Si2.2O8 9,08E-06 -4186,8 -3960,7 [94] 10,5<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


The properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> 197<br />

Table 6.7: Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust. – c<strong>on</strong>tinued from previous<br />

page.<br />

Mineral Formula ξi, ∆H<br />

mole/g<br />

0<br />

f i , ∆G<br />

kJ/mole<br />

0<br />

f i , Reference Method ±ε, % bch i,<br />

kJ/mole<br />

kJ/mole<br />

Phosphate Ca3(PO 4) 2 8,99E-06 -3886,6 -3878,2 [94] 32,4<br />

rock<br />

Natrolite N a2Al2Si 3O10 · 2(H2O) 7,82E-06 -5722,1 -5316,6 [94] 3,8<br />

Dolomite CaM g(CO 3) 2 7,63E-06 -2327,9 -2167,9 [94] 18,0<br />

Clinochlore M g3,75Fe 1,25Al2 Si3O10(OH) 8 7,33E-06 -8435,5 -7796,6 3 1 166,8<br />

M<strong>on</strong>tmori- N a0,165Ca 0,084Al2,33 Si3,67O10(OH) 2 6,52E-06 -5523,8 -5354,5 2 1 39,6<br />

ll<strong>on</strong>ite<br />

Lawsenite CaAl 2Si2O 7(OH) 2 · H2O 6,36E-06 -4812,8 -4510,6 3; 11 5 2,2<br />

Riebeckite N a2Fe 2+<br />

3 Fe3+<br />

2 (Si8O22)(OH) 2 6,14E-06 -10087,1 -9399,5 1 0 318,9<br />

Hematite Fe2O3 6,05E-06 -826,1 -742,2 [94] 17,4<br />

Sepiolite M g4Si6O 15(OH) 2 · 6(H2O) 5,67E-06 -10123,7 -9257,8 [94] 1284,5<br />

Hydrobiotite (K0,3Ca 0,1)(M g2,3Fe 3+<br />

0,6 Al0,1)(Si2,8Al1,2) O10((OH) 1,8F0,2) · 5,26E-06 -7362,2 -6238,9 1; 7; 10 5 46,2<br />

3(H2O) Ulvöspinel T iFe 2+<br />

2 O4 5,21E-06 -1489,4 -1392,9 12 10 273,1<br />

Distene/Kyanite Al2SiO 5 4,37E-06 -2593,7 -2442,0 [94] 10,7<br />

Cummingt<strong>on</strong>ite/ M g7(Si8O 22)(OH) 2 3,73E-06 -12070,0 -11343,0 [284] 181,6<br />

Anthopyllite<br />

Glaucophane N a2(M g3Al2)Si 8O22(OH) 2 3,65E-06 -12080,6 -11346,7 [94] -78,8<br />

Celestine SrSO 4 3,65E-06 -1454,1 -1341,6 [94] 32,4<br />

Prehnite Ca2Al 2Si3O 10(OH) 2 3,58E-06 -6197,3 -5823,0 [94] 35,7<br />

Rutile T iO2 3,41E-06 -945,4 -890,1 [94] 18,3<br />

Barite BaSO4 3,04E-06 -1470,4 -1361,9 [94] 18,8<br />

Niter KNO 3 2,96E-06 -495,0 -395,2 [94] -22,3<br />

Nitratine N aNO3 2,96E-06 -468,2 -367,1 [94] -24,2<br />

Pennine (M g3,75Fe 1,25Al) (Si3Al)O 10(OH) 2(OH) 6 2,87E-06 -8429,2 -7788,2 7 0,6 175,2<br />

Actinolite Ca2M g3Fe 2Si8O 22(OH) 2 2,82E-06 -11519,4 -10801,5 3 1 405,9<br />

Pyrite FeS2 2,75E-06 -175,0 -163,3 [94] 1428,1<br />

Sanidine K0,75N a0,25AlSi 3O8 2,67E-06 -3860,7 -3715,9 3 1 15,9<br />

Hastingsite N aCa2Fe 2+<br />

4 Fe3+ (Si6Al 2O22)(OH) 2 2,60E-06 -11926,3 -11343,4 [178] 289,2<br />

Ferrosilite Fe2+ M gSi2O 6 2,32E-06 -2757,4 -2594,6 [94] 132,2<br />

Zirc<strong>on</strong> Z rSiO 4 2,11E-06 -2034,8 -1919,5 [94] 20,0<br />

Siderite Fe2+ CO3 2,08E-06 -742,3 -671,1 [94] 122,0<br />

Spodumene LiAlSi 2O6 2,06E-06 -3056,8 -2882,9 [94] 24,6<br />

Pige<strong>on</strong>ite M g1,35Fe 0,55Ca 0,1(Si2O 6) 1,99E-06 -1535,4 -1448,8 2 1 1401,1<br />

Leucoxene CaT iSiO5 1,90E-06 -2591,6 -2454,8 [94] 37,5<br />

Pyrrhotite Fe2+ S 1,79E-06 -105,5 -100,5 [94] 883,6<br />

Lepidomelane/ K Fe<br />

Annite<br />

2+<br />

2,5M g0,5Fe 3+<br />

0,75 Al0,25Si3O 10(OH) 2 1,78E-06 -4995,0 -4642,3 3 1 284,8<br />

Br<strong>on</strong>zite M gFeSi 2O6 1,77E-06 -2753,4 -2585,3 1 0 141,5<br />

Anhydrite CaSO 4 1,73E-06 -1435,1 -1322,7 [94] 16,3<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


198 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

Table 6.7: Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust. – c<strong>on</strong>tinued from previous<br />

page.<br />

Mineral Formula ξi, ∆H<br />

mole/g<br />

0<br />

f i , ∆G<br />

kJ/mole<br />

0<br />

f i , Reference Method ±ε, % bch i,<br />

kJ/mole<br />

kJ/mole<br />

Serpentine/ M g3Si2O 5(OH) 4 1,64E-06 -4363,4 -4035,4 1 0 51,9<br />

Clinochrysotile<br />

Olivine M g1,6Fe 2+<br />

0.4 (SiO4) 1,53E-06 -2083,3 -1925,0 ∆G0 : [94] ∆H0 : 5 1 95,3<br />

f f<br />

Enstatite M g2Si2O 6 1,39E-06 -3055,5 -2919,9 [94] 59,6<br />

Corundum Al2O3 1,20E-06 -1668,9 -1563,0 [94] 31,5<br />

Thuringite- (Fe3M g2Fe Chamosite<br />

3+<br />

0,5Al3+ 0,5 ) (Si3Al)O 10(OH) 2 1,14E-06 -7596,0 -6981,9 7 0,6 -389,8<br />

Neptunite KN a2 LiFe 2+<br />

1,5M n2+<br />

0,5 T i2Si8O 24 1,10E-06 -10724,6 -10061,3 12 10 868,9<br />

Sphalerite ZnS 1,02E-06 -206,1 -201,4 [94] 744,9<br />

Analcime N aAlSi2O 6∆(H2O) 1,01E-06 -3310,2 -3088,5 [94] 0,8<br />

Anorthite CaAl 2Si2O 8 9,90E-07 -4274,4 -4021,0 [94] ∆H 0:<br />

5 1 15,6<br />

f<br />

Rhodochrosite M nCO3 9,48E-07 -894,7 -817,1 [94] 83,8<br />

Chromite Fe2+ C r2O4 8,83E-07 -1445,7 -1358,4 [94] 195,1<br />

Gypsum CaSO 4 · 2H2O 7,96E-07 -2024,0 -1798,6 [94] 16,6<br />

Apatite Ca5(PO 4) 3(OH) 0,33 F0,33Cl 0,33 7,91E-07 -6773,4 -6386,9 3; 10 5 -23,2<br />

Staurolite Fe2+ Al9Si 4O23(OH) 7,68E-07 -12066,8 -11215,6 [94] 269,1<br />

Talc M g3Si4O 10(OH) 2 7,67E-07 -5907,2 -5543,0 [94] 22,6<br />

Arag<strong>on</strong>ite CaCO 3 7,64E-07 -1207,9 -1128,6 [94] 11,4<br />

Clinozoisite Ca2Al 3(SiO 4) 3(OH) 7,51E-07 -6883,9 -6483,9 [94] 53,0<br />

Vermiculite M g3Si4O 10(OH) 2 · 2(H2O) 6,78E-07 -7018,8 -5957,2 [94] ∆H 0:<br />

12 10 1717,4<br />

f<br />

Tephroite M n 2+<br />

2 (SiO4) 6,30E-07 -1733,3 -1632,1 [94] 199,3<br />

Thoms<strong>on</strong>ite N aCa2Al5Si 5O20 · 6H2O 6,19E-07 -12413,7 -11543,9 5 1 -49,1<br />

Zoisite Ca2Al 3Si3O 12(OH) 5,68E-07 -6883,9 -5416,5 [94] 1120,4<br />

Pyrolusite M nO2 5,64E-07 -520,4 -465,2 [94] 23,4<br />

Anatase T iO2 5,59E-07 -940,4 -883,7 [94] 24,7<br />

Psilomelane Ba2Mn 2+<br />

2 M n4+<br />

3 O10 · 2H2O 5,10E-07 -2569,1 -2347,2 3 1 2103,1<br />

Nepheline N a0,75K0,25Al(SiO 4) 5,09E-07 -2087,6 -1972,4 3 1 28,1<br />

Forsterite M g2SiO 4 4,95E-07 -2175,5 -2057,8 [94] 63,6<br />

Jadeite N aAl0,9Fe 3+<br />

0,1 (Si2O6) 4,78E-07 -2990,4 -2812,1 3 1 -2,7<br />

Spessartine M n2 + 3Al2(SiO4)3 4,77E-07 -5646,3 -5326,3 [144] 302,6<br />

M<strong>on</strong>azite (Ce) Ce0,5 La0,25N d0,2 Th0,05(PO 4) 4,29E-07 -2074,0 -1943,3 12 10 -43,3<br />

Tremolite Ca2M g5Si8O 22(OH) 2 4,28E-07 -12367,8 -11639,3 [94] 73,7<br />

Crossite N a2M g2Fe 2+ Al2 (Si8O22)(OH) 2 4,06E-07 -11600,3 -10925,8 1; 2 1 133,0<br />

Braunite M n2+ M n 3+<br />

6 SiO12 4,06E-07 -4260,0 -3944,7 [284] 325,8<br />

Chalcopyrite CuFeS 2 3,62E-07 -194,6 -195,1 [284] 1530,3<br />

Sassolite H3BO 3 3,60E-07 -1095,1 -969,0 [94] 19,7<br />

Magnesite M gCO 3 3,58E-07 -1114,1 -1030,2 [94] 15,6<br />

Ilmenorutile T i0,7N b0,15Fe 2+<br />

0,225O2 3,22E-07 -864,6 -813,2 1; 2 1 45,5<br />

Wi<str<strong>on</strong>g>the</str<strong>on</strong>g>rite BaCO 3 3,04E-07 -1217,1 -1137,6 [94] 44,1<br />

Stilplomelane K0,8Fe 8Al0,85Si11,1 O21(OH)8 · 6H2O 2,77E-07 -16655,5 -15197,0 1 0 5459,7<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


The properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> 199<br />

Table 6.7: Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust. – c<strong>on</strong>tinued from previous<br />

page.<br />

Reference Method ±ε, % bch i,<br />

kJ/mole<br />

Mineral Formula ξi, ∆H<br />

mole/g<br />

0<br />

f i , ∆G<br />

kJ/mole<br />

0<br />

f i ,<br />

kJ/mole<br />

Hedenbergite CaFe 2+ Si2O6 2,75E-07 -2842,4 -2676,1 [94] 8651,4<br />

Hollandite Ba0,8P b0,2N a0,125 Fe1,3Al0,2Si0,1 M n 2+<br />

0,5M n4+<br />

6 O16 2,63E-07 -4733,3 -4330,4 3 1 288,3<br />

Fayalite Fe 2+<br />

2 SiO4 2,34E-07 -1480,9 -1369,2 [94] 246,6<br />

Rhod<strong>on</strong>ite M n2+ SiO3 2,32E-07 -1321,6 -1243,1 [94] 101,7<br />

Cristobalite SiO2 2,06E-07 -910,1 -855,5 [94] 2,7<br />

Pumpellyte Ca2M gAl2(SiO 4) (Si2O7)(OH) 2 · H2O 1,89E-07 -7148,6 -6672,5 3 1 57,9<br />

Phlogopite K M g3AlSi 3O10F(OH) 1,58E-07 -6292,8 -5902,2 4 1 128,1<br />

Manganite M nO(OH) 1,55E-07 -622,4 -557,3 ∆H 0:<br />

12 10 49,4<br />

f<br />

Fluorite CaF 2 1,44E-07 -1220,5 -1168,1 [94] 111,9<br />

Amblyg<strong>on</strong>ite Li0,75N a0,25Al(PO 4) F0,75(OH) 0,25 1,29E-07 -307,1 -282,7 10; 12 10 1992,6<br />

Vesuvianite Ca10M g2Al4(SiO 4) 5(Si2O 7) 2(OH) 4 1,20E-07 -21175,8 -19948,7 [144] 219,0<br />

Jacobsite M n 2+<br />

0,6Fe2+ 0,3M g2+ Fe 3+<br />

1,5M n3+<br />

0,5O4 1,20E-07 -1237,4 -1137,5 1; 2; 9 5 711,5<br />

Bastnaesite La(CO 3)F 1,16E-07 -1660,9 -1527,8 1; 8; 10 5 160,8<br />

Arfveds<strong>on</strong>ite N a3Fe 2+<br />

4 Fe3+ (Si8O22)(OH) 2 1,09E-07 -11926,3 -11201,5 [178] -1146,5<br />

Spinel M gAl2O 4 1,07E-07 -2281,0 -2172,5 [94] 53,6<br />

Lepidolite K Li2AlSi 4O10F(OH) 1,03E-07 -6003,2 -5654,7 7; 4 1 126,7<br />

Cordierite M g2Al4Si 5O18 9,52E-08 -9114,7 -8603,9 [94] 139,2<br />

Kernite N a2O · 2B2O3 · 4H2O 8,99E-08 -4104,9 -3713,1 10 5 440,8<br />

Pyrophyllite Al2Si 4O10(OH) 2 8,93E-08 -5632,5 -5257,6 [94] 7,6<br />

Francolite Ca5(PO4) 2,63 (CO3) 0,5F1,11 8,68E-08 -5984,4 -5698,1 1; 3; 9 1 714,3<br />

Ca(Ce 0,4Ca 0,2Y0,133) (Al2Fe 3+ )Si3O12(OH) 7,81E-08 -6481,6 -6055,4 3 1 32,3<br />

Orthite- Allanite<br />

Pentlandite Fe 2+<br />

4,5N i4,5S8 7,44E-08 -778,3 -766,2 12 10 6833,9<br />

Ulexite N aCa(B 5O6(OH) 6)· 5H2O 7,19E-08 -6762,2 -6151,5 1 0 2855,3<br />

Scapolite- N a4Al3Si 9O24Cl 6,34E-08 -12197,4 -11504,2 1 0 22,5<br />

Marialite<br />

Chloritoid Fe 2+<br />

1,2M g0,6Mn 2+<br />

0,2 Al4Si 2O10(OH) 4 6,18E-08 -6606,9 -6152,6 3 1 159,8<br />

Pollucite Cs0,6N a0,2Rb0,1Al0,9 Si2,1O6 · (H2O) 6,14E-08 -3297,1 -3074,2 12 10 10,0<br />

Colemanite Ca2B 6O11· 5H2O 5,99E-08 -6949,7 -6277,0 1; 6; 11 5 -796,8<br />

Beryl Be3Al 2Si6O 18 5,99E-08 -9006,5 -8500,4 1 0 56,9<br />

Marcasite FeS2 5,24E-08 -154,9 -156,6 [400] 1434,8<br />

Grossular Ca3Al 2(SiO 4) 3 4,62E-08 -6631,1 -6281,0 [94] 65,4<br />

Vaesite N iS2 4,23E-08 -134,2 -126,4 [409] 1320,6<br />

Gedrite M g5Al2(Si 6Al2O 22)(OH) 2 4,12E-08 -12319,7 -11584,2 1 0 149,9<br />

Tourmaline- N aFe<br />

Schorl<br />

2+<br />

3 Al6(BO 3) 3Si6 O18(OH) 4 4,09E-08 -14401,4 -13453,5 1 0 377,6<br />

Wollast<strong>on</strong>ite CaSiO 3 4,08E-08 -1631,6 -1550,9 [94] 33,1<br />

Clementite Fe 2+<br />

3 M g1,5Al Fe3+ Si3AlO 12(OH) 6 3,81E-08 -7657,8 -7043,1 5 1 504,6<br />

Cryptomelane K8(M n 4+<br />

7,5M n2+<br />

0,5 ) O16 3,09E-08 -3743,6 -3432,2 3 1 3409,1<br />

Kieserite M gSO4 · (H2O) 3,06E-08 -1602,1 -1428,7 [391] 54,2<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


200 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

Table 6.7: Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust. – c<strong>on</strong>tinued from previous<br />

page.<br />

Mineral Formula ξi, ∆H<br />

mole/g<br />

0<br />

f i , ∆G<br />

kJ/mole<br />

0<br />

f i , Reference Method ±ε, % bch i,<br />

kJ/mole<br />

kJ/mole<br />

Arsenopyrite FeAsS 2,89E-08 -41,9 -50,2 [94] 1428,0<br />

Galena P bS 2,79E-08 -100,5 -95,9 [94] 743,6<br />

Murmanite N a4Ti 3,6N b0,4(Si2O 7) 2O4 · 4(H2O) 2,78E-08 -9804,0 -9096,6 12 10 354,0<br />

Sylvite KCl 2,74E-08 -437,0 -410,2 [94] 18,5<br />

Brucite M g(OH) 2 2,71E-08 -925,9 -834,8 [94] 34,9<br />

Anthophyllite M g7Si8O 22(OH) 2 2,67E-08 -12094,6 -11396,0 [94] 128,6<br />

Ferrocolum- Fe<br />

bite<br />

2+ N b2O6 2,40E-08 -2172,8 -2018,6 12 10 170,5<br />

Covellite CuS 2,27E-08 -53,2 -53,6 [94] 687,7<br />

Vernadite M n 4+<br />

0,6Fe3+ 0,2Ca 0,2 N a0,1O1,5(OH) 0,5 · 1, 4(H2O) 2,18E-08 -637,8 -571,4 3 1 393,5<br />

Thorite ThSiO 4 2,13E-08 -2160,5 -2048,8 1; 9 5 27,8<br />

Nickeline N iAs 2,04E-08 N.A. N.A. N.A.<br />

Sapphirine M g4Al6.5Si1.5O20 2,04E-08 -10563,3 -9962,9 [94] 2366,3<br />

Andradite Ca3Fe 2+<br />

2 (SiO4) 3 1,96E-08 -5764,4 -5419,4 [94] 92,1<br />

Chrysoberyl BeAl2O 4 1,80E-08 -2302,3 -2178,2 [94] 20,9<br />

Cassiterite SnO2 1,73E-08 -581,1 -519,6 [94] 32,0<br />

Violarite Fe2+ N i2S4 1,72E-08 -378,0 -368,9 1; 9 1 2902,0<br />

Todorokite N a2Mn 4+<br />

4 M n3+<br />

2 O12· 3H2O 1,34E-08 -4037,4 -3576,5 3 1 742,6<br />

Cubanite CuFe 2S3 1,33E-08 -293,7 -302,8 3 1 2406,7<br />

Topaz Al2(SiO 4)F1,1(OH) 0,9 1,29E-08 -3044,4 -2875,2 10 5 -11,4<br />

Glauc<strong>on</strong>ite (K0,6N a0,05)(Fe 3+<br />

1,3 M g0,4Fe 2+<br />

0,2Al3+ 0,15 ) (Si3,8Al0,2)O10(OH) 2 1,21E-08 -5150,3 -4785,6 7 0,6 52,1<br />

Garnierite (N i2M g)Si2O 5(OH) 4 1,18E-08 -3494,6 -3267,1 1; 7; 9 1 25,9<br />

Molybdenite M oS2 1,14E-08 -271,8 -262,8 [284] 1682,2<br />

Clinohumite M g6,75Fe 2,25Si4O 16 (OH) 0,5F1,5 1,10E-08 -8966,4 -8410,0 10 1 613,5<br />

Tridymite SiO2 1,05E-08 -909,7 -855,9 [94] 2,3<br />

Euxenite Y0,7Ca 0,2Ce 0,1(Ta0,2) 2 (N b0,7) 2(T i0,025)O6 1,02E-08 -2671,5 -2506,3 12 10 136,7<br />

Gersdorffite N iAsS 9,70E-09 N.A. -144,3 [205] 1189,5<br />

Jarosite K Fe 3+<br />

3 (SO4) 2(OH) 6 9,57E-09 -3521,7 -3318,7 ∆G0 : [94] ∆H0 : 12 10 208,5<br />

f f<br />

Humite M g5,25Fe 2+<br />

1,75 (SiO4) 3 F1,5(OH) 0,5 9,46E-09 -6953,7 -6512,3 3; 10 5 504,3<br />

Scheelite CaW O4 9,28E-09 -1646,2 -1419,6 [94] 139,8<br />

Kornerupine M g1,1Fe 0,2Al5,7 (Si3,7B0,3)O17,2(OH) 9,24E-09 -9172,9 -8624,8 3 1 173,8<br />

Omphacite Ca0,6N a0,4M g0,6Al0,3 Fe0,1Si2O 6 7,48E-09 -3075,5 -2904,3 2 1 38,7<br />

Phenakite Be2SiO 4 7,31E-09 -2146,2 -2033,3 [94] 34,1<br />

Hisingerite Fe 3+<br />

2 Si2O5(OH) 4 · 2(H2O) 6,25E-09 -3229,6 -2895,6 [383] 1012,8<br />

Uraninite UO2 5,60E-09 -1085,6 -1032,5 [94] 167,6<br />

Malachite Cu2(CO 3)(OH) 2 5,46E-09 -1052,1 -906,0 [94] 24,3<br />

Str<strong>on</strong>tianite SrCO 3 5,34E-09 -1220,9 -1140,1 [94] 34,9<br />

Brookite T iO2 5,27E-09 -942,4 -821,9 [94] 86,5<br />

Perovskite CaT iO3 5,10E-09 -1662,2 -1575,7 [94] 58,5<br />

Yttrialite Y1.5Th 0.5Si2O 7 4,64E-09 N.A. N.A. N.A.<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


The properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> 201<br />

Table 6.7: Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust. – c<strong>on</strong>tinued from previous<br />

page.<br />

Mineral Formula ξi, ∆H<br />

mole/g<br />

0<br />

f i , ∆G<br />

kJ/mole<br />

0<br />

f i , Reference Method ±ε, % bch i,<br />

kJ/mole<br />

kJ/mole<br />

Azurite Cu3(CO 3) 2(OH) 2 4,38E-09 -1633,3 -1447,5 [94] 39,0<br />

Copper Cu 3,90E-09 0,0 0,0 [94] 134,0<br />

Pyrochlore N aCaN b2O6(OH) 0,75F0,25 3,47E-09 -2897,9 -2687,3 10; 12 10 345,0<br />

Bertrandite Be4Si 2O7(OH) 2 3,38E-09 -4586,1 -4300,6 1 0 72,3<br />

Aenigmatite N a2Fe 2+<br />

5 T iSi6O20 3,16E-09 -8184,4 -7660,9 12 10 -164,8<br />

Carnotite K2(UO 2) 2(VO 4) 2 · 3H2O 2,80E-09 -4907,3 -4585,5 [191] 792,4<br />

Palygorskite M gAlSi 4O10(OH) · 4(H2O) 2,77E-09 -6477,8 -5939,9 5 1 440,4<br />

Dietzeite Ca2(IO 3) 2(C rO4) 2,76E-09 -2425,4 -2148,1 12 10 78,7<br />

Lautarite Ca(IO 3) 2 2,76E-09 -1002,5 -839,3 [391] 71,4<br />

Bornite Cu5FeS 4 2,65E-09 -334,5 -393,1 [94] 3083,0<br />

Daws<strong>on</strong>ite N aAl(CO 3)(OH) 2 2,51E-09 -1965,3 -1787,3 [94] -0,1<br />

Cryolite N a3AlF 6 2,36E-09 -3311,3 -3144,7 [94] 327,9<br />

Orpiment As2S3 1,85E-09 -169,1 -168,7 [94] 2641,2<br />

Sulphur S8 1,84E-09 0,0 0,0 [94] 4858,2<br />

Zinc Zn 1,55E-09 0,0 0,0 [94] 339,0<br />

Helvine/ M n4Be3(SiO 4) 3S 1,45E-09 -5843,9 -5532,4 12 10 1407,7<br />

Helvite<br />

Carnallite K M gCl 3 · 6(H2O) 1,45E-09 -2946,7 N.A. [132] N.A.<br />

Gadolinite Y2Fe 2+ Be2(Si 2O10) 1,41E-09 -5220,0 -4943,3 12 10 299,7<br />

Xenotime Y bPO4 1,38E-09 -1868,6 -1790,3 [388] 24,2<br />

Nosean N a8Al6Si 6O24 SO4 1,29E-09 -13936,7 -13131,5 10 5 115,0<br />

Wolframite Fe 2+<br />

0,5M n0,5W O4 1,06E-09 -1246,2 -1146,4 2 1 120,0<br />

Hydrosodalite N a8Al6Si 6O24 (OH) 2 9,06E-10 -13408,5 -12678,2 3, 10 5 193,1<br />

Cerussite P bCO3 8,27E-10 -700,0 -627,5 [94] 20,9<br />

Stibnite Sb2S 3 8,10E-10 -175,0 -173,7 [94] 2522,3<br />

Greenockite CdS 8,01E-10 -162,0 -156,5 [94] 743,9<br />

Chalcocite Cu2S 6,83E-10 -79,5 -86,2 [94] 789,1<br />

Smiths<strong>on</strong>ite ZnCO 3 6,36E-10 -813,3 -731,9 [94] 23,3<br />

Blomstran- U0,3Ca 0,2N b0,9Ti 0,8Al0,1 Fe<br />

dite/ Betafite<br />

3+<br />

0,1Ta0,5O6(OH) 4,96E-10 -2884,5 -2683,8 12 10 90,0<br />

Loparite - (Ce) N a0,6Ce 0,22 La0,11 Ca0,1Ti 0,8N b0,2O3 4,81E-10 -1430,8 -1343,6 12 10 181,6<br />

Ple<strong>on</strong>aste/ M gFe<br />

Magnesi<str<strong>on</strong>g>of</str<strong>on</strong>g>errite<br />

3+<br />

2 O4 4,40E-10 -1429,4 -1351,0 [94] 40,2<br />

Eudyalite N a4Ca 2Fe 2+<br />

0,7M n0,3Z r Si8O22(OH) 1,5Cl 1,5 4,30E-10 -11859,9 -11062,9 1; 3; 10 1 335,0<br />

Sirtolite Z rSiO 4 4,02E-10 -2034,8 -1919,2 [94] 20,3<br />

Bisch<str<strong>on</strong>g>of</str<strong>on</strong>g>ite M gCl 2 · 6(H2O) 3,96E-10 -2500,7 -2116,4 [94] 66,0<br />

Tin Sn 3,87E-10 0,0 0,0 [94] 547,6<br />

Anglesite P bSO4 3,82E-10 -920,0 -784,5 [94] 62,9<br />

Ramsayite/ N a2Ti 2Si2O 9 3,62E-10 -4360,1 -4103,9 12 10 104,3<br />

Lorenzenite<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


202 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

Table 6.7: Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust. – c<strong>on</strong>tinued from previous<br />

page.<br />

Mineral Formula ξi, ∆H<br />

mole/g<br />

0<br />

f i , ∆G<br />

kJ/mole<br />

0<br />

f i , Reference Method ±ε, % bch i,<br />

kJ/mole<br />

kJ/mole<br />

Ferrotantalite Fe2+ Ta2O6 3,07E-10 -2319,3 -2163,9 12 10 174,5<br />

Lead P b 3,05E-10 0,0 0,0 [94] 232,2<br />

Ch<strong>on</strong>drodite M g3,75Fe 2+<br />

1,25 (SiO4) 2 F1,5(OH) 0,5 2,93E-10 -5023,0 -4701,4 10; 5 5 564,2<br />

Arsenolite As2O3 2,80E-10 -659,8 -579,1 [94] 415,0<br />

Cinnabar H gS 2,46E-10 -58,2 -50,7 [94] 671,3<br />

Iotsite FeO 2,38E-10 -272,1 -251,5 [94] 127,3<br />

Britholite Ca2,9Ce 0,9Th 0,6 La0,4N d0,2 Si2,7P0,5O12(OH) 0,8F0,2 2,18E-10 -7057,3 -6666,9 10; 12 10 734,0<br />

Sodalite N a8Al6Si 6O24Cl 2 2,05E-10 -13457,0 -12703,6 [187] 51,9<br />

Native silver Ag 1,94E-10 0,0 0,0 [94] 69,7<br />

Axinite- Fe Ca2Fe 2+ Al2BO 3 Si4O12(OH) 1,93E-10 -7640,4 -7180,9 12 10 427,3<br />

Realgar As4S4 1,40E-10 -140,3 -132,7 1 0 4272,6<br />

Bismuth Bi 1,30E-10 0,0 0,0 [94] 274,8<br />

Bismutite Bi2(CO 3)O2 1,19E-10 -968,0 -888,7 12 10 81,1<br />

Rhabdophane Ce0,75 La0,25(PO 4) · H2O 1,03E-10 -1964,9 -1821,9 2 1 325,0<br />

Bismite Bi2O3 9,91E-11 -574,3 -493,7 [94] 61,9<br />

Bismuthinite Bi2S3 9,91E-11 -143,2 -140,6 [94] 2230,8<br />

Baddeleyite Z rO2 9,75E-11 -1101,3 -1043,3 [94] 38,1<br />

Fergus<strong>on</strong>ite N d0,4Ce 0,4Sm0,1Y0,1N bO4 8,08E-11 -2808,3 -2631,2 12 10 -717,4<br />

Cobaltite CoAsS 5,06E-11 -163,1 N.A. 3 1 N.A.<br />

Smaltite CoAs 2 5,06E-11 -61,5 N.A. [391] N.A.<br />

Argentite Ag2S 4,99E-11 -29,4 -39,4 [94] 707,3<br />

Cancrinite N a6Ca 2Al6Si 6O24(CO 3) 2 4,20E-11 -14980,9 -14136,3 12 10 101,8<br />

Moissanite SiC 3,51E-11 -62,8 -60,3 [94] 1204,1<br />

Uranium- ThSiO 4 3,18E-11 -2160,5 -2048,8 1; 9 5 27,8<br />

Thorite<br />

Powellite CaM oO4 3,05E-11 -1542,4 -1434,7 [94] 27,6<br />

Chevkinite Ce1,7 La1,4Ca 0,8Th 0,1 Fe 2+<br />

1,8M g0,5 T i2,5Fe 3+<br />

0,5Si4O 22 2,76E-11 -10499,8 -9894,5 12 10 1006,2<br />

Acanthite Ag2S 2,74E-11 -32,4 -40,3 [94] 706,4<br />

Lavenite N a1,1Ca 0,9Mn 2+<br />

0,5Fe2+ 0,5Z r0,8Ti 0,1N b0,1(Si2O 7)<br />

2,59E-11 -4191,1 -3925,1 10; 12 10 604,8<br />

O0,6(OH) 0,3F0,1 Pyrargirite Ag3S bS3 2,38E-11 -131,5 -142,2 9 5 2325,9<br />

Linnaeite Co3S 4 1,69E-11 -307,3 -323,6 [94] 3032,2<br />

Thorianite ThO2 1,56E-11 -1227,2 -1169,6 [94] 48,8<br />

Troilite FeS 1,19E-11 -100,5 -99,9 [94] 884,2<br />

Microlite N a0,4Ca 1,6Ta2O 6,6 (OH) 0,3F0,1 8,71E-12 -3208,3 -3004,3 10; 12 10 315,1<br />

Delorenzite/ Y0,7Ca 0,2Ce 0,12(Ta0,7) 2 (N b0,2) 2(T i0,1)O5,5(OH) 0,5 8,33E-12 -2721,2 -2549,9 12 10 54,6<br />

Tanteuxenite<br />

Stephanite Ag5S bS4 7,72E-12 -166,1 -184,5 3 5 3030,3<br />

Naegite Z rSiO 4 6,98E-12 -2034,8 -1919,2 [94] 20,3<br />

Gold Au 6,47E-12 0,0 0,0 [94] 51,5<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


The properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> 203<br />

Table 6.7: Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust. – c<strong>on</strong>tinued from previous<br />

page.<br />

Mineral Formula ξi, ∆H<br />

mole/g<br />

0<br />

f i , ∆G<br />

kJ/mole<br />

0<br />

f i , Reference Method ±ε, % bch i,<br />

kJ/mole<br />

kJ/mole<br />

Lampro- phyl- N a2SrBaT i3Si4O 16(OH)F 5,61E-12 -8401,2 -7865,3 10; 12 10 892,0<br />

lite<br />

Chlorargirite AgCl 5,47E-12 -127,2 -109,9 [94] 22,0<br />

Periclase M gO 3,77E-12 -602,2 -569,5 [94] 62,1<br />

Chrysocolla Cu2Si 2O6(H 2O) 4 3,54E-12 -3279,4 -2964,6 ∆G0 : [94] ∆H0 :12 10 -23,9<br />

f f<br />

Freibergite Ag7,2Cu 3,6Fe 2+<br />

1,2 Sb3AsS 13 3,52E-12 -703,2 -727,5 3 5 10786,0<br />

Metacinnabar H gS 3,17E-12 -53,6 -47,7 [94] 674,3<br />

Vivianite Fe3(PO 4) 2(H2O) 8 2,59E-12 -4608,4 -4428,2 ∆H 0:<br />

12 10 457,4<br />

f<br />

Cooperite P t0,6Pd 0,3N i0,1S 2,11E-12 -79,8 -73,8 3 1 688,3<br />

Miserite KCa 2Ce 3Si8O 22 (OH) 1,5F0,5 2,00E-12 -11738,2 -11035,1 10; 12 10 1138,1<br />

Tortbernite Cu(UO 2)2(PO 4)2 · 8(H2O) 1,81E-12 -4455,9 -4129,8 [191] 151,6<br />

Weinschenkite Y PO4 1,68E-12 -1987,7 -1871,1 1 0 -35,2<br />

Wulfenite P bM oO4 1,66E-12 -1112,9 -952,8 [94] 17,8<br />

Loellingite FeAs2 1,30E-12 -85,7 -80,2 1 0 1284,7<br />

Tennantite Cu10Fe 2As4S 13 1,24E-12 -1968,6 -1999,6 1 0 9965,1<br />

Tellurite TeO2 1,14E-12 -322,8 -270,3 [94] 60,0<br />

Sylvanite Au0,75Ag0,25Te2 7,62E-13 N.A. N.A. N.A.<br />

Nordite N a2,8Mn 2+<br />

0,2Sr0,5Ca 0,5 La0,33Ce 0,6Zn 0,6 M g0,4Si6O 17 7,20E-13 -8020,8 -7532,2 12 10 958,5<br />

Calaverite AuTe2 5,71E-13 -19,0 -17,4 1 0 686,8<br />

Sams<strong>on</strong>ite Ag4MnSb2S 6 5,29E-13 -444,9 -463,5 3 5 4817,9<br />

Tetrahedrite Cu10Fe 2S b4S13 3,47E-13 -1909,5 -1939,7 1 0 9797,1<br />

Thortveitite Sc1,5Y0,5Si2O 7 2,71E-13 -3740,2 -3540,6 2; 9 5 50,5<br />

Tetradymite Bi2Te 2S 2,27E-13 -100,2 -100,6 2 1 1709,0<br />

Rinkolite/ N a2Ca 3Ce 1,5Y0,5 T i0,4N b0,5Z r0,1(Si2O 7) 2 O1,5F3,5 2,25E-13 -9415,1 -8808,5 10; 12 10 1441,1<br />

Mosandrite<br />

Alunite KAl3(SO 4)2(OH) 6 2,20E-13 -5173,2 -4652,2 [94] 127,3<br />

Osmium Os0.75I r0.25 1,57E-13 N.A. N.A. 342,1<br />

Iridium I r0.5Os0.3Ru0.2 1,50E-13 N.A. N.A. N.A.<br />

Dumortierite Al6.9(BO3)(SiO4) 3O2.5(OH) 0.5 1,33E-13 -9109,0 -8568,0 [135] 108,9<br />

Polycrase (Y) Y0,5Ca 0,1Ce 0,1U0,1 Th0,1Ti 1,2N b0,6Ta0,2O6 2,46E-14 -2847,7 -2681,3 12 10 125,4<br />

I-Platinum P t 1,54E-14 0,0 0,0 [94] 146,5<br />

Polixene/ P t Fe 1,20E-14 N.A. N.A. N.A.<br />

Tetraferroplatinum<br />

Boulangerite P b5S b4S11 2,12E-15 -1034,5 -1023,7 1; 9 5 8565,5<br />

Wohlerite N aCa2Z r0,6N b0,4 Si2O8,4(OH) 0,3F0,3 1,27E-15 -4439,7 -4170,0 10; 12 10 466,6<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table


204 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

According to table 6.7, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 291 main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s included<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust have been obtained. About a half <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> properties (159) were<br />

compiled directly from <str<strong>on</strong>g>the</str<strong>on</strong>g> literature. The remaining were obtained with <str<strong>on</strong>g>the</str<strong>on</strong>g> 12<br />

different estimati<strong>on</strong> methods described in secti<strong>on</strong> 5.4. From <str<strong>on</strong>g>the</str<strong>on</strong>g> latter, 18 <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

were calculated with method 1, and hence without committing any associated error.<br />

Five <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s were estimated with <str<strong>on</strong>g>the</str<strong>on</strong>g> method for hydrated clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and for<br />

phyllosilicates (M.7), committing a maximum error <str<strong>on</strong>g>of</str<strong>on</strong>g> ε < 0, 6%. Thirty-eight <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

were estimated with an error smaller than 1%, 20 substances with ε < 5%,<br />

and 44 <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s with ε < 10%. Only <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> 6 <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 3 : iridium, osmium<br />

4 , nickeline, polixene, sylvanite and yttrialite were not able to be estimated.<br />

Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gersdorffite and <str<strong>on</strong>g>the</str<strong>on</strong>g> Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

smaltite are missing. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, all toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r account for <strong>on</strong>ly 3, 5 × 10 −6 % <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>tinental crust.<br />

The average standard enthalpy, Gibbs free energy and chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper<br />

c<strong>on</strong>tinental crust, for an average molecular weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust 5 equal to MW cr =<br />

157, 7 g/mole is:<br />

(∆H 0<br />

f ) cr =<br />

(∆G 0<br />

f ) cr =<br />

(b 0<br />

ch ) cr =<br />

m<br />

(ξi · ∆H 0<br />

f ,i ) · MWcr = −1958, 92 kJ/mole<br />

i=1<br />

m<br />

(ξi · ∆G 0<br />

f ,i ) · MWcr = −1835, 82 kJ/mole<br />

i=1<br />

m<br />

(ξi · b 0<br />

ch i ) · MWcr = 372, 60 kJ/mole<br />

i=1<br />

As it happened to <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere, our R.E. generates some negative exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, but far less than with Ranz’s R.E [276]. This is because, as stated above,<br />

we chose our R.E. based <strong>on</strong> Szargut’s criteri<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> partial stability. According to this,<br />

am<strong>on</strong>g a group <str<strong>on</strong>g>of</str<strong>on</strong>g> reas<strong>on</strong>able abundant substances, <str<strong>on</strong>g>the</str<strong>on</strong>g> most stable will be chosen<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g>y also complain with <str<strong>on</strong>g>the</str<strong>on</strong>g> “<strong>earth</strong> similarity criteri<strong>on</strong>”. This criterium is different<br />

from that <str<strong>on</strong>g>of</str<strong>on</strong>g> Ahrendt’s [4] or Diederichsen [74], where complete stability was<br />

assumed. As a c<strong>on</strong>sequence, <str<strong>on</strong>g>the</str<strong>on</strong>g> latter R.E. do not generate any negative exergies,<br />

but <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting envir<strong>on</strong>ment is completely different from that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> current <strong>earth</strong>.<br />

3 Excluding Cor g, since no exact compositi<strong>on</strong> can be applied.<br />

4 The standard enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> iridium and osmium (Os0,5I r 0,3Ru 0,2 and<br />

Os 0,75I r 0,25) could be estimated c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> compunds as solid soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> elements Os, I r, and<br />

Re. Since for all three substances ∆G f =0 and ∆H f =0, <str<strong>on</strong>g>the</str<strong>on</strong>g> standard enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> iridium<br />

and osmium would be also ∆H f =0, applying <str<strong>on</strong>g>the</str<strong>on</strong>g> solid soluti<strong>on</strong> method. Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> standard Gibbs<br />

free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> would corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture. Hence, ∆G f =2,5 kJ/mole<br />

for iridium and ∆G f =5,1 kJ/mole for osmium. We do not include <str<strong>on</strong>g>the</str<strong>on</strong>g>se values in <str<strong>on</strong>g>the</str<strong>on</strong>g> table, since <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

errors associated might be very significant.<br />

5 As calculated in this study (secti<strong>on</strong> 3.6).


An approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crepuscular <strong>earth</strong> 205<br />

Our chosen R.E. obeys in principle <str<strong>on</strong>g>the</str<strong>on</strong>g> “<strong>earth</strong> similarity criteri<strong>on</strong>”, but does generate<br />

some negative exergies. Hence, this leads us to questi<strong>on</strong> again <str<strong>on</strong>g>the</str<strong>on</strong>g> methodology<br />

used and <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed R.E.<br />

6.2.4 The chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong><br />

In chapter 2, we described some physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk <strong>earth</strong> that are now<br />

required for our calculati<strong>on</strong>s. According to Beichner [23], <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> has a mass <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

around 5, 98 × 10 24 kg. The <strong>earth</strong>’s relative mass proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s<br />

spheres are according to Javoy [169]: core (35,5%), mantle (67%), oceanic crust<br />

(0,072%), c<strong>on</strong>tinental crust (0,36%), hydrosphere (0,023%) and atmosphere (0,842<br />

ppm). The upper layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust c<strong>on</strong>stitutes a mass <str<strong>on</strong>g>of</str<strong>on</strong>g> around 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> whole<br />

c<strong>on</strong>tinental crust [411]. With <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> provided in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous secti<strong>on</strong>s,<br />

we are now able to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outer layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>,<br />

namely <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere and upper c<strong>on</strong>tinental crust. Table 6.8 shows<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aforementi<strong>on</strong>ed layers and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir sum.<br />

Table 6.8. The standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s outer layers<br />

, kJ/mole B0<br />

ch , Gtoe<br />

Atmosphere 5,04E+18 28,96 1,51 6,27E+03<br />

Hydrosphere 1,38E+21 18,29 0,87 7,80E+05<br />

Upper c<strong>on</strong>tinental crust 1,08E+22 157,7 372,60 1,21E+09<br />

SUM 1,22E+09<br />

Layer Mass, kg MW, g/mole b 0<br />

ch<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> table 6.8 indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s<br />

outer spheres is 1, 22 × 10 9 Gtoe. This can be c<strong>on</strong>sidered as a rough number, and is<br />

subject to updates, especially when a more appropriate R.E. is found. But <str<strong>on</strong>g>the</str<strong>on</strong>g> order<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude is good enough for realizing <str<strong>on</strong>g>the</str<strong>on</strong>g> huge chemical exergy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong>. From all layers, <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust is resp<strong>on</strong>sible for most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy (99,9%), due to its greater mass porti<strong>on</strong> and specific exergy. Although <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

relative proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere and hydrosphere is small when compared to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> whole, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemical exergies are also huge: 6, 27 × 10 3 Gtoe and 7, 80 × 10 5<br />

Gtoe, respectively. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> can be c<strong>on</strong>sidered as a closed system, its chemical<br />

exergy is c<strong>on</strong>sidered as a n<strong>on</strong>-renewable reservoir.<br />

6.3 An approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

crepuscular <strong>earth</strong><br />

As stated before, <str<strong>on</strong>g>the</str<strong>on</strong>g> crepuscular or entropic planet, is a completely degraded <strong>earth</strong>,<br />

where all materials have reacted, dispersed and mixed. And this degraded <strong>earth</strong> is


206 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

not necessarily equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ments used so far. The crepuscular<br />

<strong>earth</strong> represents a planet towards we are inexorably approaching, as <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

resources are extracted and dispersed, fossil fuels are burned, and waters are polluted<br />

by humankind. The model <str<strong>on</strong>g>of</str<strong>on</strong>g> crepuscular <strong>earth</strong> is composed by an atmosphere,<br />

hydrosphere and c<strong>on</strong>tinental crust, but differs from <str<strong>on</strong>g>the</str<strong>on</strong>g> current <strong>on</strong>e in <str<strong>on</strong>g>the</str<strong>on</strong>g> absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and freshwater. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere c<strong>on</strong>tains a<br />

higher CO 2 c<strong>on</strong>centrati<strong>on</strong> due to <str<strong>on</strong>g>the</str<strong>on</strong>g> complete burning <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels.<br />

According to table 4.10, <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> world resources<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS is in <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 15 kg. When <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are<br />

c<strong>on</strong>sidered, <str<strong>on</strong>g>the</str<strong>on</strong>g> total quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s might increase in <strong>on</strong>e or two<br />

orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude, hence to around 10 17 kg. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> possible available<br />

fuels, according to table 6.19 is around 10 16 kg 6 . This means that all c<strong>on</strong>centrated<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel and n<strong>on</strong> fuel origin <strong>on</strong>ly represent 0,001% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total<br />

mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s upper crust. Therefore, we can state with no significant error,<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> entropic planet can be approximated to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

average <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust. And this in turn can be approximated<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> estimated in this PhD (table 3.5), at least until it is<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r improved with better geochemical informati<strong>on</strong>.<br />

C<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere, we saw that <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater <strong>on</strong> <strong>earth</strong> stored<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> rivers, lakes, glaciers and groundwater represents <strong>on</strong>ly 3%. Therefore,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> final compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crepuscular planet when all waters<br />

are mixed, can be very well approximated to that <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater, which is well known<br />

(tables 2.5 and 2.6).<br />

Finally <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> entropic planet will be composed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same substances<br />

appearing in <str<strong>on</strong>g>the</str<strong>on</strong>g> current atmosphere (table 2.2), but presumably with a<br />

higher c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r anthropogenic gases. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC<br />

SRES report [160], in <str<strong>on</strong>g>the</str<strong>on</strong>g> worst scenario <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>s, where practically all available<br />

c<strong>on</strong>venti<strong>on</strong>al fossil fuels are burned, <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere will<br />

increase to 710 ppm. Assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio 7 , <str<strong>on</strong>g>of</str<strong>on</strong>g> burned fuel to increase <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 c<strong>on</strong>centrati<strong>on</strong><br />

is 4 Gtoe/CO 2 ppm, <str<strong>on</strong>g>the</str<strong>on</strong>g> burning <str<strong>on</strong>g>of</str<strong>on</strong>g> available unc<strong>on</strong>venti<strong>on</strong>al fossil fuels<br />

(around 2600 Gtoe), would imply an additi<strong>on</strong>al increase <str<strong>on</strong>g>of</str<strong>on</strong>g> 650 ppm in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere.<br />

C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> final carb<strong>on</strong> dioxide c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

crepuscular planet would be around 1400 ppm. This value is <strong>on</strong>ly approximative,<br />

since it has been assumed a linear relati<strong>on</strong>ship between <str<strong>on</strong>g>the</str<strong>on</strong>g> burning <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> processes that rule <str<strong>on</strong>g>the</str<strong>on</strong>g> carb<strong>on</strong><br />

cycle and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s climate are very complex and in many cases unpredictable.<br />

It should be noted, that an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 c<strong>on</strong>centrati<strong>on</strong> would imply an equivalent<br />

reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> O 2 c<strong>on</strong>tent in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. Hence, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> being 20,94%<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, this would be 20,83%, since 1100<br />

6This corresp<strong>on</strong>ds to around 300 Gt<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oil, 3000 Gt<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, 500 Gt<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas and<br />

7000 Gt<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> unc<strong>on</strong>venti<strong>on</strong>al fossil fuels.<br />

7According to <str<strong>on</strong>g>the</str<strong>on</strong>g> trends observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> SRES report [160] for all six different scenarios analyzed.


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 207<br />

ppm would be included in <str<strong>on</strong>g>the</str<strong>on</strong>g> molecules <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extra CO 2 appearing in <str<strong>on</strong>g>the</str<strong>on</strong>g> entropic<br />

<strong>earth</strong>. In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> latter, increases in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> methane, nitrous<br />

oxide, carb<strong>on</strong> m<strong>on</strong>oxide, nitrogen oxides, chlorides, sulphides, etc. are expected in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> crepuscular planet, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> anthropogenic acti<strong>on</strong>. But <str<strong>on</strong>g>the</str<strong>on</strong>g> latter figures cannot<br />

be easily estimated and remain open for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies.<br />

With this preliminary model <str<strong>on</strong>g>of</str<strong>on</strong>g> crepuscular planet, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> all its c<strong>on</strong>stituents estimated in this PhD, a new reference envir<strong>on</strong>ment<br />

could be proposed, for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements. A<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> degraded <strong>earth</strong> would not c<strong>on</strong>tain <strong>on</strong>ly a reference substance per element,<br />

as it happens to <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. in which we have based our calculati<strong>on</strong>s. The new model<br />

should calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements, taking into account all <str<strong>on</strong>g>the</str<strong>on</strong>g> substances<br />

appearing in <str<strong>on</strong>g>the</str<strong>on</strong>g> planet that c<strong>on</strong>tain that element. Hence, we think that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong> procedures and even <str<strong>on</strong>g>the</str<strong>on</strong>g> philosophy for obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements should be reviewed, since <str<strong>on</strong>g>the</str<strong>on</strong>g> selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an appropriate R.E. is a<br />

required but not a sufficient c<strong>on</strong>diti<strong>on</strong>, as seen with Pinaev’s envir<strong>on</strong>ment. But this<br />

activity remains open for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

6.4 The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> last secti<strong>on</strong>s, we have obtained <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main substances<br />

that compose <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. We will now focus <strong>on</strong> a very small part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s c<strong>on</strong>stituents:<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources.<br />

For that purpose, <str<strong>on</strong>g>the</str<strong>on</strong>g> average exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s (coal, oil and natural<br />

gas) is obtained, so as to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s proven fuel reserves. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves, reserve base and world resources is<br />

obtained.<br />

This informati<strong>on</strong>, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> data provided in chapter 4 about o<str<strong>on</strong>g>the</str<strong>on</strong>g>r energy<br />

sources, will allow us to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> current state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main natural resources <strong>on</strong><br />

<strong>earth</strong>.<br />

6.4.1 The exergy c<strong>on</strong>tained in fossil fuels<br />

We saw in chapter 5, that <str<strong>on</strong>g>the</str<strong>on</strong>g> physical value <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels is tightly related to its chemical<br />

exergy c<strong>on</strong>tent. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> physical value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s proven fuel reserves can<br />

be approximated to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemical exergy 8 , which is obtained with <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s<br />

provided in secti<strong>on</strong> 5.3.3. It must be remembered, that <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fuels is undertaken with <str<strong>on</strong>g>the</str<strong>on</strong>g> models developed by Valero and Lozano [369] and not<br />

with Eq. 5.1, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> complexity and heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel’s compositi<strong>on</strong>.<br />

8 It must be remembered that in chapter 4, an approximative exergy value in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> Gtoe was<br />

given for <str<strong>on</strong>g>the</str<strong>on</strong>g> proven reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, oil and natural gas.


208 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

Table 6.9. High heating value and elementary analysis (% by weight) c<strong>on</strong>sidered in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> Valero and Arauzo [366] to define different types <str<strong>on</strong>g>of</str<strong>on</strong>g> coal.<br />

RANK HHV,<br />

kJ/kg<br />

O H C N S Z W<br />

Anthracite 30675 2,4 3,0 80,9 1,0 0,5 10,1 2,1<br />

Bituminous 28241 7,6 4,5 68,7 1,6 1,2 8,4 8,0<br />

Subbitum. 23590 12,2 3,8 58,8 1,3 0,3 4,0 19,6<br />

Lignite 16400 8,9 2,7 38,9 0,6 5,3 19,8 23,8<br />

Table 6.10. Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> coal. Values in<br />

kJ/kg, except for s 0 (kJ/kgK)<br />

Type HHV ∆H 0<br />

f s 0 e I e I I e I I I b I b I I b I I I<br />

Anthrac. 30675 -136,2 0,9 29980,2 30687,1 30739,9 31583,8 31584,7 31624,2<br />

Bitum. 28241 -757,7 1,1 27083,4 28262,1 28389,3 28950,6 28952,1 29047,1<br />

Subitum. 23590 -1125,0 1,0 22264,5 23574,2 23606,0 24251,0 24252,7 24276,5<br />

Lignite 16400 -662,7 0,8 15241,9 16413,9 16975,0 16930,2 16931,6 17351,1<br />

The calculati<strong>on</strong>s will be carried out, assuming an average compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, oil and natural gas. A mean compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuels, was already<br />

studied by Valero and Arauzo [366], taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> factors reported<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> IEA assigned to <str<strong>on</strong>g>the</str<strong>on</strong>g> fuels in each country. Their analysis will be used in<br />

this study. It must be pointed out, that although <str<strong>on</strong>g>the</str<strong>on</strong>g> latter analysis was carried out<br />

with quite old data (statistics from 1989), and that <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves figures have changed<br />

since <str<strong>on</strong>g>the</str<strong>on</strong>g>n, <str<strong>on</strong>g>the</str<strong>on</strong>g> average compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuels should not have varied significantly.<br />

6.4.1.1 Coal<br />

The elementary analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> each rank <str<strong>on</strong>g>of</str<strong>on</strong>g> coal chosen by Valero and Arauzo [366] is<br />

shown in table 6.9.<br />

The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuels listed in table 6.9, throw up <str<strong>on</strong>g>the</str<strong>on</strong>g> properties shown in<br />

table 6.10, where ∆H 0<br />

f and s0 are <str<strong>on</strong>g>the</str<strong>on</strong>g> standard enthalpy and entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong>,<br />

eI, eI I and eI I I, <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. I, II and III<br />

from table 5.5, and bI, bI I and bI I I <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy for <str<strong>on</strong>g>the</str<strong>on</strong>g> three R.E., respectively.<br />

As can be seen from <str<strong>on</strong>g>the</str<strong>on</strong>g> table, R.E. III produces <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest exergy values, although<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> three is very small (around 0,3% and a maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> 2,5%<br />

for lignite between I and III). Assuming an exergy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> coal equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> HHV,<br />

implies an associated error <str<strong>on</strong>g>of</str<strong>on</strong>g> about 3%, although for lignite, this could be up to 6%.<br />

Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> proven reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> coal is calculated. The main sources <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

data for coal reserves come from BP and WEC. The WEC study complements <str<strong>on</strong>g>the</str<strong>on</strong>g>


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 209<br />

BP Statistical Review and <str<strong>on</strong>g>the</str<strong>on</strong>g> World Energy Outlook. It collects <str<strong>on</strong>g>the</str<strong>on</strong>g>se data from 96<br />

WEC Member Committees worldwide. The difference <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> proven reserve figures<br />

between both entities (WEC and BP) is 7,3%. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> Energy Watch Group<br />

[89], <str<strong>on</strong>g>the</str<strong>on</strong>g> BP report just reproduces <str<strong>on</strong>g>the</str<strong>on</strong>g> data which are collected by <str<strong>on</strong>g>the</str<strong>on</strong>g> World Energy<br />

Council. Therefore, we will take into account <str<strong>on</strong>g>the</str<strong>on</strong>g> figures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> WEC’s Survey <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Energy Resources 2007 [401].<br />

The proven reserves data are provided for <str<strong>on</strong>g>the</str<strong>on</strong>g> different countries, reported as three<br />

different types <str<strong>on</strong>g>of</str<strong>on</strong>g> coal: 1) anthracite and bituminous, 2) subbituminous and 3) lignite.<br />

Since we need to know <str<strong>on</strong>g>the</str<strong>on</strong>g> separate quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> anthracite and bituminous in<br />

order to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy, we will assume that <strong>on</strong>ly hard coal 9 coming from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

USA is anthracite 10 .<br />

The exergy values shown in table 6.11, are generated from R.E. III, which is <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

comm<strong>on</strong>ly used for fuel calculati<strong>on</strong>s (Lozano and Valero [202]).<br />

Table 6.11: The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s coal proven reserves reported<br />

in [401]. Values in milli<strong>on</strong> t<strong>on</strong>nes if not specified<br />

Country Anthracite Bitumin. Subbitum. Lignite Exegy, Mtoe<br />

Algeria 59 40,8<br />

Botswana 40 27,7<br />

Central<br />

3 1,2<br />

African<br />

publicRe-<br />

C<strong>on</strong>go<br />

(Democratic<br />

Rep.)<br />

88 60,9<br />

Egypt<br />

Rep.)<br />

(Arab<br />

21 14,5<br />

Malawi 2 1,2<br />

Morocco N.A. N.A.<br />

Mozambique 212 146,6<br />

Niger 70 48,4<br />

Nigeria 21 169 112,2<br />

South Africa 48000 33196,7<br />

Swaziland 208 143,9<br />

Tanzania 200 138,3<br />

Zambia 10 6,9<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .<br />

9Hard coal is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r name given to anthracite and bituminous, as opposed to brown coal, which<br />

is given to subbituminous and lignite.<br />

10The c<strong>on</strong>versi<strong>on</strong> factors reported by <str<strong>on</strong>g>the</str<strong>on</strong>g> IEA [153] for coal in <str<strong>on</strong>g>the</str<strong>on</strong>g> different countries indicates that<br />

US coal is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e with <str<strong>on</strong>g>the</str<strong>on</strong>g> highest heating capacity.


210 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

Table 6.11: The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s coal proven reserves reported<br />

in [401]. Values in milli<strong>on</strong> t<strong>on</strong>nes if not specified. –<br />

c<strong>on</strong>tinued from previous page.<br />

Country Anthracite Bitumin. Subbitum. Lignite Exegy, Mtoe<br />

Zimbabwe 502 347,2<br />

Total Africa 49431 171 3 34286,5<br />

Canada 3471 871 2236 3827,7<br />

Greenland 183 105,8<br />

Mexico 860 300 51 789,2<br />

USA 112261 100086 30374 154926,6<br />

Total<br />

America<br />

N. 112261 4331 101440 32661 159649,3<br />

Argentina 424 245,1<br />

Bolivia 1 0,7<br />

Brazil 7068 4085,4<br />

Chile 31 1150 686,2<br />

Colombia 6578 381 4769,6<br />

Ecuador 24 9,9<br />

Peru 140 96,8<br />

Venezuela 479 331,3<br />

Total<br />

America<br />

S.<br />

7229 9023 24 10224,9<br />

Afghanistan 66 45,6<br />

China 62200 33700 18600 70180,4<br />

India 52240 4258 37888,2<br />

Ind<strong>on</strong>esia 1721 1809 798 2565,5<br />

Japan 355 245,5<br />

Kazakhstan 28170 3130 20775,4<br />

Korea<br />

(Democratic<br />

People’s<br />

Rep.)<br />

300 300 380,9<br />

Korea<br />

public)(Re-<br />

135 78,0<br />

Kyrgyzstan 812 335,5<br />

Malaysia<br />

M<strong>on</strong>golia<br />

4 2,8<br />

Myanmar<br />

(Burma)<br />

2 1,4<br />

Nepal 1 0,6<br />

Pakistan 1 167 1814 846,6<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 211<br />

Table 6.11: The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s coal proven reserves reported<br />

in [401]. Values in milli<strong>on</strong> t<strong>on</strong>nes if not specified. –<br />

c<strong>on</strong>tinued from previous page.<br />

Country Anthracite Bitumin. Subbitum. Lignite Exegy, Mtoe<br />

Philippines 41 170 105 170,0<br />

Taiwan,<br />

China<br />

1 0,7<br />

Thailand 1354 559,4<br />

Turkey 1814 749,4<br />

Uzbekistan 1000 2000 1517,8<br />

Vietnam 150 103,7<br />

Total Asia 146251 36282 34685 136447,4<br />

Albania 794 328,0<br />

Bulgaria 5 63 1928 836,4<br />

Czech Republic<br />

1673 2617 211 2756,9<br />

Germany 152 6556 2813,5<br />

Greece 3900 1611,2<br />

Hungary 199 170 2933 1447,6<br />

Ireland 14 9,7<br />

Italy 10 5,8<br />

M<strong>on</strong>tenegro 0,0<br />

Norway 5 2,9<br />

Poland 6012 1490 4773,4<br />

Portugal 3 33 15,7<br />

Romania 12 2 408 178,0<br />

Russian<br />

erati<strong>on</strong>Fed-<br />

49088 97472 10450 94606,2<br />

Serbia 6 379 13500 5800,4<br />

Slovakia 2 260 108,8<br />

Slovenia 21 211 99,3<br />

Spain 200 300 30 324,1<br />

Ukraine 15351 16577 1945 21001,9<br />

United Kingdom<br />

155 107,2<br />

Total Europe 72872 117616 44649 136826,9<br />

Iran (Islamic<br />

Rep.)<br />

1386 958,6<br />

Total Middle<br />

East<br />

1386 0 0 958,6<br />

Australia 37100 2100 37400 42322,9<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


212 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

Table 6.11: The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s coal proven reserves reported<br />

in [401]. Values in milli<strong>on</strong> t<strong>on</strong>nes if not specified. –<br />

c<strong>on</strong>tinued from previous page.<br />

Country Anthracite Bitumin. Subbitum. Lignite Exegy, Mtoe<br />

New Caled<strong>on</strong>ia<br />

2 1,4<br />

New Zealand 33 205 333 278,9<br />

Total<br />

niaOcea-<br />

37135 2305 37733 42603,1<br />

TOTAL<br />

WORLD<br />

112261 318635 266837 149755 520996,7<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

According to table 6.11, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> coal proven reserves is 521 Gtoe, which is very<br />

similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> previous calculated value in chapter 4 (523 Gtoe). The 2006 producti<strong>on</strong><br />

data in exergy terms is equal 3,3 Gtoe 11 . Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> WEC [401] estimated<br />

additi<strong>on</strong>al resources amount in place and <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated additi<strong>on</strong>al recoverable reserves<br />

are 1025,7 and 108,6 Gtoe, respectively.<br />

It must be stressed, that different assumpti<strong>on</strong>s had to be made, such as c<strong>on</strong>sidering<br />

<strong>on</strong>ly four different classes <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, with <str<strong>on</strong>g>the</str<strong>on</strong>g> same compositi<strong>on</strong> and high heating values.<br />

Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> error introduced with <str<strong>on</strong>g>the</str<strong>on</strong>g> previous assumpti<strong>on</strong> is most likely<br />

much smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e made estimating <str<strong>on</strong>g>the</str<strong>on</strong>g> proven reserves. The Energy Watch<br />

Group [89], after analyzing present and historical trends, stated that data quality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coal reserves is poor, both <strong>on</strong> global and nati<strong>on</strong>al levels. But <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no objective<br />

way to determine how reliable <str<strong>on</strong>g>the</str<strong>on</strong>g> available data actually are.<br />

6.4.1.2 Oil<br />

The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main types <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> British standard<br />

BS2869:1998 (see secti<strong>on</strong> 4.6.6.2), is listed in table 6.12. Only Fuels 1, 2 and 4<br />

are c<strong>on</strong>sidered, since <str<strong>on</strong>g>the</str<strong>on</strong>g>y are <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong>ly used.<br />

The chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuels described above, throw up <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> table 6.13.<br />

As it happened to coal, <str<strong>on</strong>g>the</str<strong>on</strong>g> energy and exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuels increase from R.E. I to III.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> oil, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy can be approximated with no significant error to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

HHV <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel, since <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum error introduced is 0,26%.<br />

kJ/kg.<br />

11 An average coal is c<strong>on</strong>sidered to have an exergy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> 22692 kJ/kg and a HHV <str<strong>on</strong>g>of</str<strong>on</strong>g> 21876


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 213<br />

Table 6.12. High heating value and elementary analysis (% by weight) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> oil, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> British standard BS2869:1998<br />

RANK HHV, kJ/kg O H C N S<br />

Fuel-Oil 1 46.365 0,2 13,2 86,5 0 0,1<br />

Fuel-Oil 2 45.509 0,2 12,7 86,4 0,1 0,6<br />

Fuel-Oil 4 43.920 0,4 11,9 86,1 0,2 1,4<br />

Table 6.13. Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> oil. Values in kJ/kg,<br />

except for s 0 (kJ/kgK)<br />

Type HHV ∆H 0<br />

f s 0 e I e I I e I I I b I b I I b I I I<br />

Fuel-Oil 1 46365 -622,1 2,8 43591,5 46475,6 46486,2 46247,4 46251,3 46259,1<br />

Fuel-Oil 2 45509 -763,7 2,7 42859,4 45633,9 45697,2 45466,2 45469,8 45517,4<br />

Fuel-Oil 4 43920 -1279,1 2,6 41359,3 43958,9 44107,1 43888,4 43891,7 44002,4<br />

Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s proven reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> oil will be calculated (table 6.14).<br />

For that purpose, <str<strong>on</strong>g>the</str<strong>on</strong>g> figures provided by BP in <str<strong>on</strong>g>the</str<strong>on</strong>g> Statistical Review 2007 will be<br />

used [35]. The estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> BP are compiled using a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> primary <str<strong>on</strong>g>of</str<strong>on</strong>g>ficial<br />

sources, third-party data from <str<strong>on</strong>g>the</str<strong>on</strong>g> OPEC Secretariat, World Oil, Oil & Gas Journal<br />

and an independent estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> Russian reserves based <strong>on</strong> informati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> public<br />

domain. The WEC publishes regularly also reserve figures for oil in <str<strong>on</strong>g>the</str<strong>on</strong>g> Survey <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Energy Resources. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> latest WEC publicati<strong>on</strong> [401] includes reserve<br />

values for <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2005 and not for 2006, as opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> BP report. The<br />

classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s oil proven reserves into <str<strong>on</strong>g>the</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel (1, 2<br />

and 4) is taken from <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> Valero and Arauzo [366].<br />

Table 6.14: The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s oil proven reserves reported in [35].<br />

Values in thousand milli<strong>on</strong> t<strong>on</strong>nes if not specified<br />

Country Fuel-Oil 1 Fuel-Oil 2 Fuel-Oil 3 Exegy, Mtoe<br />

USA 3,7 3999,9<br />

Canada 2,4 2586,0<br />

Mexico 1,7 1884,0<br />

Total<br />

America<br />

North - 7,8 - 8469,9<br />

Argentina 0,3 294,7<br />

Brazil 1,7 1813,5<br />

Colombia 0,2 224,2<br />

Ecuador 0,7 709,9<br />

Peru 0,1 157,9<br />

Trinidad<br />

bago<br />

& To-<br />

0,1 125,4<br />

Venezuela 11,5<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .<br />

12494,6


214 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

Table 6.14: The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s oil proven reserves reported in [35].<br />

Values in thousand milli<strong>on</strong> t<strong>on</strong>nes if not specified. – c<strong>on</strong>tinued from previous<br />

page.<br />

Country Fuel-Oil 1 Fuel-Oil 2 Fuel-Oil 3 Exegy, Mtoe<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r S. & Cent.<br />

America<br />

0,2 195,6<br />

Total S. & Cent.<br />

America<br />

- 14,8 - 16015,9<br />

Azerbaijan 1,0 1039,2<br />

Denmark 0,2 167,5<br />

Italy 0,1 113,9<br />

Kazakhstan 5,5 5912,8<br />

Norway 1,1 1231,4<br />

Romania 0,1 64,6<br />

Russian Federati<strong>on</strong><br />

10,9 11415,4<br />

Turkmenistan 0,1 81,1<br />

United Kingdom 0,5 559,2<br />

Uzbekistan 0,1 88,2<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Europe &<br />

Eurasia<br />

0,3 332,1<br />

Total Europe &<br />

Eurasia<br />

- 8,8 10,9 21005,3<br />

0,0<br />

Iran 18,9 20467,6<br />

Iraq 15,5 16819,3<br />

Kuwait 14,0 15151,6<br />

Oman 0,8 819,4<br />

Qatar 2,0 2162,8<br />

Saudi Arabia 36,3 39338,1<br />

Syria 0,4 443,6<br />

United<br />

Emirates<br />

Arab<br />

13,0 14038,5<br />

Yemen 0,4 404,8<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

East<br />

Middle<br />

0,1 54,2<br />

Total<br />

East<br />

Middle - 101,2 - 109699,8<br />

Algeria 1,5 1702,0<br />

Angola 1,2 1321,4<br />

Chad 0,1 140,3<br />

Rep. <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>go<br />

0,3 291,6<br />

(Brazzaville)<br />

Egypt 0,5 567,8<br />

Equatorial<br />

Guinea<br />

0,2 266,5<br />

Gab<strong>on</strong> 0,3 318,2<br />

Libya 5,4 5851,1<br />

Nigeria 4,9 5297,3<br />

Sudan 0,9 936,3<br />

Tunisia 0,1<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .<br />

99,0


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 215<br />

Table 6.14: The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s oil proven reserves reported in [35].<br />

Values in thousand milli<strong>on</strong> t<strong>on</strong>nes if not specified. – c<strong>on</strong>tinued from previous<br />

page.<br />

Country Fuel-Oil 1 Fuel-Oil 2 Fuel-Oil 3 Exegy, Mtoe<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Africa 0,1 85,2<br />

Total Africa 1,6 13,9 - 16876,8<br />

Australia 0,5 592,3<br />

Brunei 0,2 163,2<br />

China 2,2 2409,0<br />

India 0,8 851,8<br />

Ind<strong>on</strong>esia 0,6 644,7<br />

Malaysia 0,5 595,8<br />

Thailand 0,1 63,8<br />

Vietnam 0,4 456,8<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

cific<br />

Asia Pa-<br />

0,1 116,5<br />

Total<br />

cific<br />

Asia Pa- 0,5 4,9 - 5893,9<br />

TOTAL WORLD 2,2 151,5 10,9 177961,6<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

According to table 6.14, <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s proven oil exergy reserves generated from R.E.<br />

III are 177,9 Gtoe. This means, that <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> oil have around <strong>on</strong>e third <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coal’s exergy reserves. The 2006 producti<strong>on</strong> data in exergy terms <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel-oil is equal<br />

3,9 Gtoe 12<br />

It should be remembered, that in additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al oil reserves, a corresp<strong>on</strong>ding<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>ally recoverable resources in exergy terms between 40 and<br />

150 Gtoe should be taken into account [211].<br />

6.4.1.3 Natural gas<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas, Valero and Arauzo [366] took into account <str<strong>on</strong>g>the</str<strong>on</strong>g> average<br />

standard compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> table 6.15.<br />

Table 6.15. Standard volumetric compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas c<strong>on</strong>sidered in [366]<br />

HHV, kJ/N m 3 CH 4 C 2H 6 C 3H 8 C 4H 10 C 5H 12 CO 2 N 2<br />

42110 0,9225 0,0653 0,0055 0,0007 0,0001 0,0001 0,0058<br />

The chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> average natural gas described above, throw up <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> table 6.16.<br />

kJ/kg.<br />

12 An average fuel-oil is c<strong>on</strong>sidered to have an exergy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> 45664 kJ/kg and a HHV <str<strong>on</strong>g>of</str<strong>on</strong>g> 45455


216 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

Table 6.16. Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas. Values in kJ/N m 3 , except for<br />

∆H f (kJ/kg) and s 0 (kJ/kgK)<br />

HHV ∆H 0<br />

f s 0 e I e I I e I I I b I b I I b I I I<br />

N. Gas 42110 -3117,4 8,6 38047,1 42108,7 42108,7 39388,6 39393,8 39393,8<br />

R.E. II and III generate for <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas, <str<strong>on</strong>g>the</str<strong>on</strong>g> same values <str<strong>on</strong>g>of</str<strong>on</strong>g> energy and<br />

exergy, since no sulphur is c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel. The difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

generated with I and III is very small, <strong>on</strong>ly 0,01%. For <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas,<br />

assuming <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy as <str<strong>on</strong>g>the</str<strong>on</strong>g> HHV, introduces an error <str<strong>on</strong>g>of</str<strong>on</strong>g> around 6,5%, and hence this<br />

approximati<strong>on</strong> should be taken with more precauti<strong>on</strong> than for fuel-oil or coal.<br />

The calculated proven exergy reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas are given in table 6.17. The<br />

values for <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves are obtained from BP [35], because it presents more comprehensive<br />

and up-to-date data than <str<strong>on</strong>g>the</str<strong>on</strong>g> figures provided by <str<strong>on</strong>g>the</str<strong>on</strong>g> WEC.<br />

Table 6.17: The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s natural gas proven reserves reported in<br />

[35]<br />

Country Trilli<strong>on</strong> N m 3 Exegy, Mtoe<br />

USA 5,93 5557,3<br />

Canada 1,67 1561,7<br />

Mexico 0,39 363,9<br />

Total North America 7,98 7482,9<br />

Argentina 0,42 389,2<br />

Bolivia 0,74 694,1<br />

Brazil 0,35 326,3<br />

Colombia 0,12 115,4<br />

Peru 0,34 318,9<br />

Trinidad & Tobago 0,53 497,1<br />

Venezuela 4,32 4047,2<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r S. & Cent. America 0,07 63,8<br />

Total S. & Cent. America 6,88 6452,0<br />

Azerbaijan 1,35 1266,2<br />

Denmark 0,08 72,2<br />

Germany 0,16 145,4<br />

Italy 0,16 149,6<br />

Kazakhstan 3,00 2813,8<br />

Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands 1,35 1263,4<br />

Norway 2,89 2712,5<br />

Poland 0,10 97,5<br />

Romania 0,63 589,0<br />

Russian Federati<strong>on</strong> 47,65 44693,9<br />

Turkmenistan 2,86 2682,5<br />

Ukraine 1,10 1031,7<br />

United Kingdom 0,48 451,2<br />

Uzbekistan 1,87 1754,0<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Europe & Eurasia 0,45 424,8<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 217<br />

Table 6.17: The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s natural gas proven reserves reported in<br />

[35]. – c<strong>on</strong>tinued from previous page.<br />

Country Trilli<strong>on</strong> N m 3 Exegy, Mtoe<br />

Total Europe & Eurasia 64,13 60148,0<br />

Bahrain 0,09 84,4<br />

Iran 28,13 26384,4<br />

Iraq 3,17 2973,3<br />

Kuwait 1,78 1669,5<br />

Oman 0,98 919,2<br />

Qatar 25,36 23787,3<br />

Saudi Arabia 7,07 6634,1<br />

Syria 0,29 272,0<br />

United Arab Emirates 6,06 5684,9<br />

Yemen 0,49 454,9<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Middle East 0,05 47,8<br />

Total Middle East 73,47 68911,9<br />

Algeria 4,50 4224,7<br />

Egypt 1,94 1819,6<br />

Libya 1,32 1234,3<br />

Nigeria 5,21 4886,7<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Africa 1,21 1137,7<br />

Total Africa 14,18 13303,1<br />

Australia 2,61 2443,4<br />

Bangladesh 0,44 408,0<br />

Brunei 0,34 314,2<br />

China 2,45 2297,0<br />

India 1,08 1008,3<br />

Ind<strong>on</strong>esia 2,63 2468,7<br />

Malaysia 2,48 2326,1<br />

Myanmar 0,54 504,6<br />

Pakistan 0,80 748,5<br />

Papua New Guinea 0,44 408,0<br />

Thailand 0,30 282,3<br />

Vietnam 0,40 375,2<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Asia Pacific 0,34 316,1<br />

Total Asia Pacific 14,82 13900,4<br />

TOTAL WORLD 181,46 170198,3<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

According to table 6.17, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas are around 170 Gtoe, as<br />

opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> 163,4 estimated in chapter 4 with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> data provided by<br />

BP. This indicates, that <str<strong>on</strong>g>the</str<strong>on</strong>g> natural gas exergy reserves are very close to those <str<strong>on</strong>g>of</str<strong>on</strong>g> fueloil.<br />

The 2006 producti<strong>on</strong> data in exergy terms <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas is equal 2,4 Gtoe 13 . It<br />

should be remembered, that additi<strong>on</strong>al available natural gas resources are estimated<br />

13 An average natural gas is c<strong>on</strong>sidered to have an exergy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> 51276 kJ/kg and a HHV <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

54811 kJ/kg.


218 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

in exergy terms as between 210 and 520 Gtoe, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>al Gas<br />

Uni<strong>on</strong> [156] and to Gregory and Rogner [123].<br />

6.4.2 The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources<br />

As opposed to fossil fuels, n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are physically valued not <strong>on</strong>ly by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

chemical exergy c<strong>on</strong>tent, but also by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>centrati<strong>on</strong> exergy. From <str<strong>on</strong>g>the</str<strong>on</strong>g> point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

view <str<strong>on</strong>g>of</str<strong>on</strong>g> man, <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s is also associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> costs.<br />

A very abundant and c<strong>on</strong>centrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> crust, such as ir<strong>on</strong>, has a high<br />

exergy value and a low exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong>. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, a very dispersed<br />

and scarce <str<strong>on</strong>g>mineral</str<strong>on</strong>g> such as gold, has a low exergy value, but a very high exergy cost<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong>.<br />

This is why <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy replacement costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, explained in secti<strong>on</strong> 5.3.4<br />

provide additi<strong>on</strong>al and interesting informati<strong>on</strong> for assigning a physical value to n<strong>on</strong>fuel<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> costs are obviously closer to price than <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum exergies.<br />

In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy cost could be c<strong>on</strong>sidered as a fundamental ingredient <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> final<br />

price <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

In this secti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> total minimum exergy Bt and total exergy cost B∗ t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s<br />

reserve, base reserve and world resources compiled by <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS and described in<br />

chapter 4 are calculated (Table 6.18). The total minimum exergy Bt is <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> chemical Bch and c<strong>on</strong>centrati<strong>on</strong> exergy Bc, which are calculated with Eqs. 5.1<br />

and 5.10, from <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. developed in this PhD (secti<strong>on</strong> 5.2). The total exergy cost14 ,<br />

which represents <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy required for restoring <str<strong>on</strong>g>the</str<strong>on</strong>g> resource with <str<strong>on</strong>g>the</str<strong>on</strong>g> best available<br />

technology from <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. to <str<strong>on</strong>g>the</str<strong>on</strong>g> current c<strong>on</strong>diti<strong>on</strong>s found in nature, is obtained<br />

with Eq. 5.46. The unit exergy costs are <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es shown in table 5.7. The detailed<br />

calculati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical and c<strong>on</strong>centrati<strong>on</strong> exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources are<br />

shown in table A.20 and A.21 in <str<strong>on</strong>g>the</str<strong>on</strong>g> appendix.<br />

14 Remember that <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy costs to fossil fuels has no sense, since it is impossible<br />

with current technology to reproduce <str<strong>on</strong>g>the</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic process that <strong>on</strong>ce created <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel resource.


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 219<br />

Table 6.18: The exergy and exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves, base reserve<br />

and world resources. Values are expressed in ktoe<br />

Producti<strong>on</strong> Reserves Reserve base Resources<br />

Bt B∗ B t t B∗ B t t B∗ B t t B∗ t<br />

Aluminium 2,39E+04 5,19E+05 3,22E+06 6,99E+07 4,13E+06 8,95E+07 9,67E+06 2,10E+08<br />

Antim<strong>on</strong>y 1,22E+01 1,36E+02 1,92E+02 2,13E+03 3,93E+02 4,37E+03 N.A. N.A.<br />

Arsenic 9,78E+00 1,23E+02 1,96E+02 2,46E+03 2,93E+02 3,69E+03 1,80E+03 2,26E+04<br />

Barite 4,09E+01 N.A. 9,77E+02 N.A. 4,53E+03 N.A. 1,03E+04 N.A.<br />

Beryllium 7,75E-03 4,05E-01 N.A. N.A. N.A. N.A. N.A. N.A.<br />

Bismuth 1,94E-01 3,16E+00 1,09E+01 1,77E+02 2,32E+01 3,77E+02 N.A. N.A.<br />

Bor<strong>on</strong> oxide 1,57E+02 N.A. 6,28E+03 N.A. 1,51E+04 N.A. N.A. N.A.<br />

Bromine 8,24E+00 N.A. N.A. N.A. N.A. N.A. N.A. N.A.<br />

Cadmium 1,27E+00 6,93E+01 3,23E+01 1,76E+03 7,92E+01 4,31E+03 3,96E+02 2,16E+04<br />

Cesium 0,00E+00 N.A. 5,43E+00 5,09E+00 8,53E+00 8,00E+00 N.A. N.A.<br />

Chromium 1,63E+03 3,70E+03 N.A. N.A. N.A. N.A. 1,06E+06 2,40E+06<br />

Cobalt 8,73E+00 4,38E+02 9,06E+02 4,55E+04 1,68E+03 8,44E+04 1,94E+03 9,74E+04<br />

Copper 9,01E+02 9,35E+04 2,92E+04 3,04E+06 5,61E+04 5,82E+06 1,79E+05 1,86E+07<br />

Feldspar 5,06E+01 N.A. N.A. N.A. N.A. N.A. N.A. N.A.<br />

Fluorspar 2,33E+02 N.A. 1,05E+04 N.A. 2,10E+04 N.A. 2,19E+04 N.A.<br />

Gallium 1,29E-02 1,29E-02 N.A. N.A. N.A. N.A. 1,77E+02 1,76E+02<br />

Germanium 1,67E-02 1,65E-02 N.A. N.A. N.A. N.A. N.A. N.A.<br />

Gold 1,91E-02 1,56E+03 3,25E-01 2,66E+04 6,97E-01 5,71E+04 N.A. N.A.<br />

Graphite 8,70E+02 N.A. 7,26E+04 N.A. 1,77E+05 N.A. 6,76E+05 N.A.<br />

Gypsum 4,02E+02 N.A. N.A. N.A. N.A. N.A. N.A. N.A.<br />

Hafnium N.A. N.A. 8,68E+01 N.A. 1,57E+02 N.A. N.A. N.A.<br />

Helium 5,09E+00 5,09E+00 N.A. N.A. 1,17E+03 1,17E+03 N.A. N.A.<br />

Indium 5,52E-02 5,29E-01 1,05E+00 1,00E+01 1,52E+00 1,46E+01 N.A. N.A.<br />

Iodine 4,67E-01 N.A. 2,80E+02 N.A. 5,04E+02 N.A. 6,35E+02 N.A.<br />

Ir<strong>on</strong> 1,42E+05 9,97E+05 1,20E+07 8,40E+07 2,63E+07 1,84E+08 3,78E+07 2,65E+08<br />

Lead 9,99E+01 3,90E+03 2,28E+03 8,88E+04 4,90E+03 1,91E+05 4,32E+04 1,69E+06<br />

Lithium N.A. N.A. 5,64E+03 2,11E+04 1,51E+04 5,66E+04 1,79E+04 6,69E+04<br />

Magnesium 4,33E+02 4,33E+02 N.A. N.A. N.A. N.A. N.A. N.A.<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


220 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

Table 6.18: The exergy and exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves, base reserve<br />

and world resources. Values are expressed in ktoe.– c<strong>on</strong>tinued from previous<br />

page.<br />

Producti<strong>on</strong> Reserves Reserve base Resources<br />

Bt B∗ B t t B∗ B t t B∗ B t t B∗ t<br />

Manganese 2,59E+03 2,50E+04 1,00E+05 9,68E+05 1,13E+06 1,09E+07 N.A. N.A.<br />

Mercury 2,51E-02 8,59E+00 7,82E-01 2,67E+02 4,08E+00 1,39E+03 1,02E+01 3,48E+03<br />

Molybdenum 3,41E+01 6,40E+02 1,59E+03 2,99E+04 3,52E+03 6,61E+04 2,41E+03 4,52E+04<br />

Nickel 1,58E+02 1,26E+04 6,72E+03 5,33E+05 1,50E+04 1,19E+06 N.A. N.A.<br />

Niobium 1,05E+01 1,03E+01 6,36E+02 6,25E+02 7,06E+02 6,94E+02 N.A. N.A.<br />

Phosphate rock (as fosforite) 1,22E+03 1,58E+03 1,55E+05 2,00E+05 4,30E+05 5,56E+05 N.A. N.A.<br />

PGM 1,05E-02 N.A. 1,43E+00 N.A. 1,61E+00 N.A. 2,02E+00 N.A.<br />

Potash (K2O) 3,12E+03 4,84E+03 8,89E+05 1,38E+06 1,93E+06 2,99E+06 2,68E+07 4,16E+07<br />

REE (as Ce2O 3) 3,72E+00 N.A. 2,66E+03 N.A. 4,53E+03 N.A. N.A. N.A.<br />

Rhenium 3,61E-03 4,40E-01 1,91E-01 2,33E+01 7,65E-01 9,31E+01 8,41E-01 1,02E+02<br />

Selenium 1,76E-01 1,62E-01 9,37E+00 8,60E+00 1,94E+01 1,78E+01 N.A. N.A.<br />

Silver 3,61E-01 3,46E+02 4,82E+00 4,63E+03 1,02E+01 9,78E+03 N.A. N.A.<br />

Str<strong>on</strong>tium 1,24E+02 N.A. 1,44E+03 N.A. 2,54E+03 N.A. 2,12E+05 N.A.<br />

Tantalum 3,03E-01 8,42E+01 2,84E+01 7,88E+03 3,93E+01 1,09E+04 N.A. N.A.<br />

Tellurium 8,39E-03 8,07E-03 1,33E+00 1,28E+00 2,99E+00 2,87E+00 N.A. N.A.<br />

Thorium N.A. N.A. 1,34E+02 N.A. 1,56E+02 N.A. N.A. N.A.<br />

Tin 3,45E+01 1,77E+03 6,96E+02 3,58E+04 1,25E+03 6,46E+04 N.A. N.A.<br />

Titanium (T iO2) 3,52E+01 9,13E+02 4,43E+03 1,15E+05 9,10E+03 2,36E+05 1,21E+04 3,15E+05<br />

Vanadium 1,94E+01 2,19E+02 4,48E+03 5,05E+04 1,31E+04 1,48E+05 2,17E+04 2,45E+05<br />

Wolfram 1,00E+01 7,58E+02 3,20E+02 2,42E+04 6,94E+02 5,26E+04 N.A. N.A.<br />

Zinc 1,30E+03 2,37E+04 2,33E+04 4,26E+05 6,23E+04 1,14E+06 2,46E+05 4,50E+06<br />

Zirc<strong>on</strong> (Z rO2) 1,21E+01 1,16E+04 3,89E+02 3,73E+05 7,36E+02 7,07E+05 N.A. N.A.<br />

Sum 1,80E+05 1,70E+06 1,65E+07 1,61E+08 3,43E+07 2,98E+08 7,67E+07 5,44E+08<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 221<br />

According to table 6.18, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s reserves, reserve base and world<br />

resources studied is at least 16,5, 34,3 and 76,7 Gtoe, respectively. Their associated<br />

exergy costs increase to 161, 298 and 544 Gtoe, respectively, what highlights how far<br />

is our technology from reversibility. The exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base and world<br />

resources are comparable to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels: 19%, 34% and 63%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total available fossil fuels in 2006 (869 Gtoe), while <str<strong>on</strong>g>the</str<strong>on</strong>g>ir exergy represent<br />

<strong>on</strong>ly 2, 4 and 9%, respectively.<br />

The latest c<strong>on</strong>sumpti<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s recorded in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy cost<br />

is 1,7 Gtoe/yr or around 0,6% (0,2 Gtoe/yr <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total reserve base.<br />

Only four <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s account for near 96% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total exergy cost c<strong>on</strong>sumpti<strong>on</strong>: ir<strong>on</strong><br />

(58,5%), aluminium (30,4%), copper (5,5%) and zinc (1,4%). However, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

which are c<strong>on</strong>sumed at <str<strong>on</strong>g>the</str<strong>on</strong>g> highest rates compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> available reserves are<br />

in decreasing order indium, silver, arsenic, antim<strong>on</strong>y, tin and gold, with a rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

between 3,5 and 2,5% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves c<strong>on</strong>sumed yearly.<br />

As opposed to fossil fuels, <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s do not lose <str<strong>on</strong>g>the</str<strong>on</strong>g>ir exergy when <str<strong>on</strong>g>the</str<strong>on</strong>g>y are c<strong>on</strong>sumed.<br />

In fact, through <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> refining and c<strong>on</strong>centrating <str<strong>on</strong>g>of</str<strong>on</strong>g> ores, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

final product increases. The problem arises when <str<strong>on</strong>g>the</str<strong>on</strong>g> already refined <str<strong>on</strong>g>mineral</str<strong>on</strong>g> is<br />

dumped in landfills or becomes dispersed when <str<strong>on</strong>g>the</str<strong>on</strong>g> life cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> product has<br />

finished. In that case, <str<strong>on</strong>g>the</str<strong>on</strong>g> demand for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> must be satisfied by extracting<br />

new ore from <str<strong>on</strong>g>the</str<strong>on</strong>g> mine, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby exhausting <str<strong>on</strong>g>the</str<strong>on</strong>g> resource and reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> grade <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposit. As stated before, <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics, reflected<br />

in Eq. 5.10 dictates that <str<strong>on</strong>g>the</str<strong>on</strong>g> effort required to separate <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> from <str<strong>on</strong>g>the</str<strong>on</strong>g> mine<br />

follows a negative logarithmic pattern with its ore grade. This means that as <str<strong>on</strong>g>the</str<strong>on</strong>g> ore<br />

grade tends to zero, <str<strong>on</strong>g>the</str<strong>on</strong>g> energy needed to extract <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> tends to infinity. This<br />

is why recycling is essential to our society.<br />

It must be stressed that nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r reserves, nor reserve base are good indicators for<br />

assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g>. As stated by Highley [141], total world reserve<br />

base <str<strong>on</strong>g>of</str<strong>on</strong>g> most <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities are larger now than at any time in <str<strong>on</strong>g>the</str<strong>on</strong>g> past due<br />

to wider geological informati<strong>on</strong>, more efficient technologies and price changes. The<br />

world resources data would be <str<strong>on</strong>g>the</str<strong>on</strong>g> best approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers compiling <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> <strong>on</strong> <strong>earth</strong>. However, for being indeed <str<strong>on</strong>g>the</str<strong>on</strong>g> most comprehensive classificati<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten scarce, inaccurate and incomplete, as can be seen<br />

in table 6.18. The fact is that too little is still known about <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust, since<br />

explorati<strong>on</strong> costs are extremely high.<br />

6.4.3 The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural resources <strong>on</strong> <strong>earth</strong><br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> previous secti<strong>on</strong>s we have expressed all <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel and n<strong>on</strong>-fuel<br />

origin with <str<strong>on</strong>g>the</str<strong>on</strong>g> same units, using <str<strong>on</strong>g>the</str<strong>on</strong>g> property exergy. We are now in a positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>


222 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

analyzing and comparing <str<strong>on</strong>g>the</str<strong>on</strong>g> global exergy resources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>, with <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rest energy resources 15 provided in chapter 4.<br />

Table 6.19 summarizes <str<strong>on</strong>g>the</str<strong>on</strong>g> results, showing <str<strong>on</strong>g>the</str<strong>on</strong>g> available exergy, potential exergy use<br />

and current exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources <strong>on</strong> <strong>earth</strong>. As stated in chapter<br />

4, with potential exergy, we mean probable exergy capacity using advanced technology,<br />

not necessarily developed nowadays. C<strong>on</strong>sumpti<strong>on</strong> values are referred to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006, except for geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal, PV, wind, biomass and tidal energy, which are<br />

2005 values. The informati<strong>on</strong> is divided into renewable (RW) and n<strong>on</strong>-renewable<br />

resources (N<strong>on</strong>-RW). For <str<strong>on</strong>g>the</str<strong>on</strong>g> group <str<strong>on</strong>g>of</str<strong>on</strong>g> renewables, <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio between <str<strong>on</strong>g>the</str<strong>on</strong>g> current<br />

exergy c<strong>on</strong>sumpti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> potential exergy use (RW use %) is provided. For n<strong>on</strong>renewables,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> base reserve to producti<strong>on</strong> ratio (R/P, yrs) is given, as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered <str<strong>on</strong>g>mineral</str<strong>on</strong>g>.<br />

According to table 6.19, <str<strong>on</strong>g>the</str<strong>on</strong>g> available renewable resources <strong>on</strong> <strong>earth</strong>, which are <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sum <str<strong>on</strong>g>of</str<strong>on</strong>g> solar, tidal and geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy is huge: around 32.537 Gtoe/year 16 . Of<br />

course this value is <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical, since currently and in <str<strong>on</strong>g>the</str<strong>on</strong>g> near future, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

no way to technologically recover so much energy.<br />

Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> potential exergy use is not insignificant ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r: 62 Gtoe/year. This<br />

means, that with a feasible improve <str<strong>on</strong>g>of</str<strong>on</strong>g> our technology, we could supply with renewable<br />

energy more than 6 times <str<strong>on</strong>g>the</str<strong>on</strong>g> energy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> entire world nowadays<br />

(10,9 Gtoe in 2006). The RW use indicator, shows that with <str<strong>on</strong>g>the</str<strong>on</strong>g> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water<br />

power, which is being used at 54% <str<strong>on</strong>g>of</str<strong>on</strong>g> its potential, <str<strong>on</strong>g>the</str<strong>on</strong>g> rest energy sources are<br />

barely exploited. Geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal electricity is using 7,5% <str<strong>on</strong>g>of</str<strong>on</strong>g> its potential 17 , biomass 3%,<br />

wind power 0,4%, tidal energy 0,2% and solar and ocean waves current energy use<br />

is practically imperceptible with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir capacities. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an<br />

enormous improving potential in <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> renewables.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> renewable resources, including nuclear energy, fossil fuels and<br />

n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> available exergy is at least around 114.000 Gtoe, from which<br />

65% come from <str<strong>on</strong>g>the</str<strong>on</strong>g> not yet technologically developed fusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> deuterium and tritium.<br />

The potential exergy use <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-renewable resources is around 6.103 Gtoe.<br />

In fact, with <str<strong>on</strong>g>the</str<strong>on</strong>g> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear energies and unc<strong>on</strong>venti<strong>on</strong>al<br />

fossil fuels, our technology is developed enough to extract <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

available n<strong>on</strong>-renewable resources <strong>on</strong> <strong>earth</strong>. And that is exactly what humankind<br />

has been doing since especially <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> industrializati<strong>on</strong> period.<br />

The R/P ratios show that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is enough uranium for at least 8667 years, coal for<br />

156, natural gas for 63, oil for 42 and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s for 191, if <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sump-<br />

15Note that <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical energy is equivalent to its energy c<strong>on</strong>tent. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> figures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal, solar, wind, water and oceans power are <str<strong>on</strong>g>the</str<strong>on</strong>g> same expressed in energy or exergy<br />

terms. The rest energy sources: nuclear and unc<strong>on</strong>venti<strong>on</strong>al fuels were already expressed in table 6.19<br />

through its exergy c<strong>on</strong>tent.<br />

16Note that wind, water, ocean and biomass power are sun-driven. Obviously, solar energy is <strong>on</strong>ly<br />

accounted <strong>on</strong>ce.<br />

17The potential <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal use <str<strong>on</strong>g>of</str<strong>on</strong>g> geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy is not quantified, but is presumably much higher<br />

than its potential for electricity generati<strong>on</strong>. Hence, global geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal RW use indicator is even smaller.


The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 223<br />

ti<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities remain as in 2006. The total n<strong>on</strong>-renewable energy<br />

resources, would last for at least 595 years.<br />

Taking up again <str<strong>on</strong>g>the</str<strong>on</strong>g> global chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> obtained in secti<strong>on</strong> 6.2.4, we<br />

can now compare <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resources, with <str<strong>on</strong>g>the</str<strong>on</strong>g> whole chemical<br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet.<br />

The chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere and c<strong>on</strong>tinental crust, is equivalent<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> renewables potential during more than 38.000 years. This value allows<br />

us to put into perspective <str<strong>on</strong>g>the</str<strong>on</strong>g> huge physical value <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet.<br />

In fact, n<strong>on</strong>-renewable available resources c<strong>on</strong>tribute to a very small fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

total chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>: less than 0,01%. The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al<br />

fossil fuels and n<strong>on</strong> energy <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources, c<strong>on</strong>stitute <strong>on</strong>ly 0,0001% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper<br />

c<strong>on</strong>tinental crust’s chemical exergy. And <str<strong>on</strong>g>the</str<strong>on</strong>g>ir exergy is equivalent to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere, which is <str<strong>on</strong>g>the</str<strong>on</strong>g> layer with <str<strong>on</strong>g>the</str<strong>on</strong>g> least chemical exergy c<strong>on</strong>tent.<br />

The wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet is enormous, but man can <strong>on</strong>ly take advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> a very<br />

small part <str<strong>on</strong>g>of</str<strong>on</strong>g> it: <str<strong>on</strong>g>the</str<strong>on</strong>g> resources. With current technology, it is impossible to use <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersed substances. N<strong>on</strong>-renewable resources are c<strong>on</strong>sidered as<br />

such, because <str<strong>on</strong>g>the</str<strong>on</strong>g>y represent a stock <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrated chemical exergy. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong>’s 1, 22 × 10 9 Gtoe <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical exergy c<strong>on</strong>stitutes nowadays a useless reservoir<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> exergy. C<strong>on</strong>sequently, we should resign ourselves with <strong>on</strong>ly 0,01% <str<strong>on</strong>g>of</str<strong>on</strong>g> that amount.<br />

The results obtained lead us to c<strong>on</strong>clude that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no energy scarcity, but <str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s<br />

scarcity. Vast amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> energy are available <strong>on</strong> <strong>earth</strong>, much more than we could<br />

ever use. The depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels should not be a problem at least in <str<strong>on</strong>g>the</str<strong>on</strong>g> medium<br />

term, as <str<strong>on</strong>g>the</str<strong>on</strong>g>re are many energy alternatives. Obviously, <str<strong>on</strong>g>the</str<strong>on</strong>g> way <str<strong>on</strong>g>of</str<strong>on</strong>g> recovering <str<strong>on</strong>g>the</str<strong>on</strong>g>m<br />

needs to be developed, so as to be ec<strong>on</strong>omically competitive. Hence we cannot speak<br />

about energy crisis, but ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r material’s and envir<strong>on</strong>mental crisis.<br />

Unfortunately n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s cannot be replaced by renewable resources. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

short term, substituti<strong>on</strong> am<strong>on</strong>g <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s will be possible with technological development,<br />

but this can <strong>on</strong>ly last whenever o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources are available. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s produce a c<strong>on</strong>siderable quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> waste rock, pollutant<br />

emissi<strong>on</strong>s and c<strong>on</strong>sume c<strong>on</strong>siderable amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> water, energy and in many<br />

cases toxic chemicals for refining processes. The c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se resources implies<br />

an even greater additi<strong>on</strong>al loss <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resource wealth. Therefore, recycling<br />

and especially, <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>of</str<strong>on</strong>g> a dematerialized society becomes essential.<br />

Surprisingly, this fact that seems to be unquesti<strong>on</strong>able has not really started <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

alarms bells ringing regarding resources scarcity, at least for n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Many<br />

instituti<strong>on</strong>s, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> European Commissi<strong>on</strong>, do not regard it as a prioritized issue<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir envir<strong>on</strong>mental acti<strong>on</strong> plan [88], and claim that <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental impacts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> using n<strong>on</strong>-renewable resources like metals, <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s or fossil fuels are <str<strong>on</strong>g>of</str<strong>on</strong>g> greater<br />

c<strong>on</strong>cern than <str<strong>on</strong>g>the</str<strong>on</strong>g>ir possible scarcity. Probably <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> about resource<br />

scarcity avoids assigning this problem <str<strong>on</strong>g>the</str<strong>on</strong>g> priority that deserves.


224 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

Table 6.19. Available exergy, potential exergy use and current exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources <strong>on</strong> <strong>earth</strong>. Letter e denotes<br />

electrical c<strong>on</strong>sumpti<strong>on</strong>, while th <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal c<strong>on</strong>sumpti<strong>on</strong>.<br />

RESOURCE AVAILABLE POTENTIAL CURRENT<br />

Renewable resources TW Gtoe/yr TW Gtoe/yr TW Gtoe/yr RW use %<br />

Geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal 17,9 13,5 0,06 - 0,04 - 9,3E-03 e / 0,007 e / 7,5 e<br />

0,12 e 0,09 e 0,03 th 0,02 th<br />

Tidal power 2,7 2 0,166 0,13 3,00E-04 2,00E-04 0,2<br />

Solar PV 43200 32521 51,4 38,7 0,003 0,002 5,8E-03<br />

Solar <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal power 43200 32521 0,63 - 4,7 0,47 - 3,5 0,00035 e 0,00026 e 7,4E-06<br />

Water power 11 8,2 1,8 1,3 0,92 0,7 53,8<br />

Wind power 1000 753 14,5 10,9 0,06 0,045 0,4<br />

Ocean <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal gradient 1,4E+08 Gtoe - - - - -<br />

Ocean c<strong>on</strong>veyor belt 2.000 1506 - - - - -<br />

Ocean waves 3 2,3 0,5 0,4 7,50E-07 5,60E-06 1,5E-04<br />

Biomass 92 70 19 - 56 14 - 42 1,7 1,3 3,0<br />

N<strong>on</strong> renewable resources Gtoe Gtoe Gtoe R/P, yrs<br />

Uranium - fissi<strong>on</strong> 27.100 5.200 0,6 8667<br />

Thorium - fissi<strong>on</strong> 7.500 - -<br />

Deutorium + Tritium (fusi<strong>on</strong>) 74000 - -<br />

Coal 1549 521 3,3 156<br />

Natural gas 380-690 170,2 2,4 63<br />

Oil 220-330 177,9 3,9 42<br />

Unc<strong>on</strong>venti<strong>on</strong>al fuels ∼ 2600 - 0,07 -<br />

N<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 76,7 34,3 0,18 191<br />

RW w/o ocean th. grad. 32537 Gtoe/yr 62Gtoe/yr 1,33 Gtoe/yr RW use: 1,9%<br />

N<strong>on</strong> RW >114000 Gtoe 6103 Gtoe 10,3 Gtoe R/P: 595 yrs<br />

C<strong>on</strong>v. fuels + Min. ∼2800 Gtoe 903 Gtoe 9,6 Gtoe R/P: 94 yrs


Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter 225<br />

6.5 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> first part <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter, <str<strong>on</strong>g>the</str<strong>on</strong>g> standard <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main<br />

c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outer <strong>earth</strong>’s spheres have been provided for <str<strong>on</strong>g>the</str<strong>on</strong>g> first time. That<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> standard enthalpy, Gibbs free energy and chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 330<br />

natural substances.<br />

The enthalpies and Gibbs free energies, have been obtained ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r from <str<strong>on</strong>g>the</str<strong>on</strong>g> literature,<br />

or have been calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> 12 estimati<strong>on</strong> methods described in secti<strong>on</strong><br />

5.4. The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substances has been calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> elements, generated with <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. developed in this PhD.<br />

The average <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere (divided<br />

into seawater, rivers, glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f and groundwater) and upper c<strong>on</strong>tinental crust<br />

have been calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> molar fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substances in each layer.<br />

It has been stated, that all negative i<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere throw up negative chemical<br />

exergies. Additi<strong>on</strong>ally, some substances <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust show also<br />

negative exergy values. This is because <str<strong>on</strong>g>the</str<strong>on</strong>g> reference species <str<strong>on</strong>g>of</str<strong>on</strong>g> our R.E. are more<br />

stable than <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered substance. This leads us to questi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> suitability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. developed in this PhD, for natural resource accounting. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, this<br />

R.E. differs substantially from <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> degraded <strong>earth</strong> (or entropic planet) that<br />

should become.<br />

A first approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crepuscular planet has been provided. It has been stated,<br />

that this degraded <strong>earth</strong> c<strong>on</strong>tains an atmosphere similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> current <strong>on</strong>e, but with<br />

a higher CO 2 c<strong>on</strong>centrati<strong>on</strong> due to <str<strong>on</strong>g>the</str<strong>on</strong>g> burning <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels, a hydrosphere were<br />

all fresh waters are mixed with salt water, and a c<strong>on</strong>tinental crust without fossil fuels<br />

or c<strong>on</strong>centrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> relative quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater with<br />

respect to saltwater <strong>on</strong> <strong>earth</strong> is irrelevant, <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere <str<strong>on</strong>g>of</str<strong>on</strong>g> this hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical <strong>earth</strong><br />

has <str<strong>on</strong>g>the</str<strong>on</strong>g> same compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans. Something similar occurs with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental<br />

crust, <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits and fossil fuels is negligible when<br />

compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> whole c<strong>on</strong>tinental crust. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> degraded<br />

crust can be approximated to <str<strong>on</strong>g>the</str<strong>on</strong>g> model developed in this PhD. This preliminary<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> entropic planet, and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each sphere, are <str<strong>on</strong>g>the</str<strong>on</strong>g> starting point <str<strong>on</strong>g>of</str<strong>on</strong>g> a new c<strong>on</strong>cepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reference envir<strong>on</strong>ment for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements. But this task remains open for<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies.<br />

Despite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. developed in this study, it still c<strong>on</strong>stitutes a tool<br />

for obtaining chemical exergies. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g> its spheres is<br />

known, we were able to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> absolute chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere,<br />

hydrosphere and upper c<strong>on</strong>tinental crust: 6, 27 × 10 3 , 7, 80 × 10 5 and 1, 21 × 10 9<br />

Gtoe, respectively. Of course <str<strong>on</strong>g>the</str<strong>on</strong>g>se are very rough numbers, and are subject to ulterior<br />

updates, especially when a more appropriate R.E. is found. But <str<strong>on</strong>g>the</str<strong>on</strong>g>y are good<br />

enough, for providing an order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> huge chemical wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

planet.


226 THE THERMODYNAMIC PROPERTIES OF THE EARTH AND ITS MINERAL RESOURCES<br />

The sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter has provided an inventory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most important<br />

resources <strong>on</strong> <strong>earth</strong>, expressed through a single unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure: exergy. The main<br />

novelty introduced in <str<strong>on</strong>g>the</str<strong>on</strong>g> inventory is <str<strong>on</strong>g>the</str<strong>on</strong>g> combined assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> energy resources<br />

with n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy indicator.<br />

We have stated that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a huge amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy sources <strong>on</strong> <strong>earth</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> both<br />

renewable and n<strong>on</strong>-renewable nature. There are many energy alternatives that could<br />

replace fossil fuels when <str<strong>on</strong>g>the</str<strong>on</strong>g>y become depleted. But obviously <str<strong>on</strong>g>the</str<strong>on</strong>g> technology for<br />

recovering <str<strong>on</strong>g>the</str<strong>on</strong>g>se alternatives needs to be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r developed.<br />

Despite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> enormous chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet, <strong>on</strong>ly 0,01% <str<strong>on</strong>g>of</str<strong>on</strong>g> that amount<br />

can be c<strong>on</strong>sidered as available for human use. With current technology, it is impossible<br />

to use <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersed substances. And <strong>on</strong>ly those <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

that are c<strong>on</strong>centrated, can be c<strong>on</strong>sidered as resources.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> short run, technological development will allow substituti<strong>on</strong> am<strong>on</strong>g <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s,<br />

but this can <strong>on</strong>ly last whenever o<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>centrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g> stocks are available.<br />

Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> scarcity problems that man could be facing are based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> materials,<br />

ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> energy sources. This is why recycling and especially,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>of</str<strong>on</strong>g> a dematerialized society becomes essential, in order to be c<strong>on</strong>sistent<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> sustainability doctrine.


Chapter 7<br />

The time factor in <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources<br />

7.1 Introducti<strong>on</strong><br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter is to include a new dimensi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural <str<strong>on</strong>g>capital</str<strong>on</strong>g>: time. A new c<strong>on</strong>cept called “<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> distance” is presented. By means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> distance, we will be able to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

resources <strong>on</strong> <strong>earth</strong> and to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g>.<br />

The degradati<strong>on</strong> might be assessed for <str<strong>on</strong>g>the</str<strong>on</strong>g> entire <strong>earth</strong>, as well as for local areas in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> past, present and in <str<strong>on</strong>g>the</str<strong>on</strong>g> future with <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> models. This way, for example, we<br />

will be able to see how climate change or <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources affect<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural <str<strong>on</strong>g>capital</str<strong>on</strong>g> by <str<strong>on</strong>g>the</str<strong>on</strong>g> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> its exergy.<br />

Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model is proposed for evaluating <str<strong>on</strong>g>the</str<strong>on</strong>g> peaking producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities. The model is applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy producti<strong>on</strong> and<br />

not to <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby introducing <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> factor not included in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>venti<strong>on</strong>al estimati<strong>on</strong>s.<br />

The <str<strong>on</strong>g>the</str<strong>on</strong>g>ory behind <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance and <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model applied to exergy<br />

is described, and two case studies are presented: 1) <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

US, and 2) <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Australia.<br />

7.2 The exergy distance<br />

As explained in chapter 2, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> can be c<strong>on</strong>sidered as a closed system with a finite<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> substances in it, regardless <str<strong>on</strong>g>the</str<strong>on</strong>g> occasi<strong>on</strong>al input <str<strong>on</strong>g>of</str<strong>on</strong>g> meteorites. There<br />

is a c<strong>on</strong>stant mass and energy transfer am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> different layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. These<br />

kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> transfers can be <str<strong>on</strong>g>of</str<strong>on</strong>g> natural or anthropogenic nature. Usually, mass transfers<br />

227


228 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> natural origin between <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s layers follow cycles that are stabilized by negative<br />

feedbacks. These are at a stati<strong>on</strong>ary state, from a planetary perspective. This<br />

means that materials and energy flow from <strong>on</strong>e system to ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r, but <str<strong>on</strong>g>the</str<strong>on</strong>g> systems<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>mselves do not change much because <str<strong>on</strong>g>the</str<strong>on</strong>g> different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flow paths balance<br />

each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Most natural processes such as <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrological cycle or photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis<br />

are essential for life and do not alter <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological equilibrium <strong>on</strong> <strong>earth</strong>.<br />

However human interacti<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment may be changing <str<strong>on</strong>g>the</str<strong>on</strong>g> natural<br />

fluxes. Industrial processes c<strong>on</strong>sume natural resources and return <str<strong>on</strong>g>the</str<strong>on</strong>g>m to nature as<br />

n<strong>on</strong>-useful wastes mostly harmful for <str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystem. A very clear case <str<strong>on</strong>g>of</str<strong>on</strong>g> this fact is<br />

for instance <str<strong>on</strong>g>the</str<strong>on</strong>g> burning <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels and <str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere.<br />

The clearing <str<strong>on</strong>g>of</str<strong>on</strong>g> forests, intensive agriculture with massive additi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizers to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> soil and <str<strong>on</strong>g>the</str<strong>on</strong>g> mining <str<strong>on</strong>g>of</str<strong>on</strong>g> ever-larger amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources are o<str<strong>on</strong>g>the</str<strong>on</strong>g>r cases<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> human alterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, according to Skinner, [318] if<br />

changes are made in <strong>on</strong>e part <str<strong>on</strong>g>of</str<strong>on</strong>g> a closed system, <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> those changes will<br />

eventually affect o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system.<br />

Following <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> mass principle, it will be true that <str<strong>on</strong>g>the</str<strong>on</strong>g> total mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

elements (ε j) in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere plus hydrosphere plus c<strong>on</strong>tinental crust will remain<br />

c<strong>on</strong>stant, at any situati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet. C<strong>on</strong>sidering two different situati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

planet, (1) and (2), where (2) represents a more degraded <strong>earth</strong> due to <str<strong>on</strong>g>the</str<strong>on</strong>g> human<br />

acti<strong>on</strong>, and taking into account that r j,i · ξ i = ε j (Eq. 3.1) 1 , <str<strong>on</strong>g>the</str<strong>on</strong>g>n:<br />

⎡<br />

⎤<br />

⎢<br />

<br />

<br />

<br />

⎥<br />

⎣( r j,i · ξi) atm + ( r j,i · ξi) hyd r + ( r j,i · ξi) cr ⎦<br />

j<br />

j<br />

⎡<br />

⎤<br />

⎢<br />

<br />

<br />

<br />

⎥<br />

⎣( r j,i · ξi) atm + ( r j,i · ξi) hyd r + ( rj,i · ξi) cr ⎦<br />

j<br />

j<br />

This means that regardless <str<strong>on</strong>g>the</str<strong>on</strong>g> human acti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> total budget <str<strong>on</strong>g>of</str<strong>on</strong>g> elements in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong> will be c<strong>on</strong>stant.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> same way, <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy (e i) c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> three spheres <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong> will be also c<strong>on</strong>served in both situati<strong>on</strong>s:<br />

⎡<br />

⎣ <br />

⎤<br />

<br />

<br />

(ξi · ei) atm + (ξi · ei) hyd r + (ξi · ei) cr) ⎦<br />

i<br />

i<br />

⎡<br />

⎣ <br />

⎤<br />

<br />

<br />

(ξi · ei) atm + (ξi · ei) hyd r + (ξi · ei) ⎦<br />

cr<br />

i<br />

i<br />

1 Remember that rj,i represents <str<strong>on</strong>g>the</str<strong>on</strong>g> stoichiometric coefficient matrix between species ξ i and<br />

elements ε j.<br />

i<br />

j<br />

i<br />

j<br />

1<br />

1<br />

=<br />

2<br />

=<br />

2


The exergy distance 229<br />

However, and regardless <str<strong>on</strong>g>the</str<strong>on</strong>g> small amount <str<strong>on</strong>g>of</str<strong>on</strong>g> solar energy that <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> c<strong>on</strong>verts<br />

into biomass through photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis (<strong>on</strong>ly a 0,023%), this is not true if <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter<br />

measured is exergy (b i):<br />

⎡<br />

⎣ <br />

⎤<br />

<br />

<br />

(ξi · bi) atm + (ξi · bi) hyd r + (ξi · bi) cr) ⎦<br />

i<br />

i<br />

⎡<br />

⎣ <br />

⎤<br />

<br />

<br />

(ξi · bi) atm + (ξi · bi) hyd r + (ξi · bi) ⎦<br />

cr<br />

i<br />

i<br />

In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, even if mass and energy are c<strong>on</strong>served in all processes according<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> first law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics, <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d law states that as resources are c<strong>on</strong>sumed,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> useful energy or exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> will decrease.<br />

The degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a natural resource can come from three effects:<br />

• an alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its compositi<strong>on</strong>,<br />

• a change <str<strong>on</strong>g>of</str<strong>on</strong>g> its c<strong>on</strong>centrati<strong>on</strong> 2 ,<br />

• a variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment.<br />

And all three effects can be detected by a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> its exergy. Hence, for instance,<br />

when a fossil fuel is burned with oxygen, its chemical compositi<strong>on</strong> is transformed<br />

into water, carb<strong>on</strong> dioxide and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r gases, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby, losing chemical exergy. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same way, when <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are extracted from a deposit, <str<strong>on</strong>g>the</str<strong>on</strong>g> mine decreases its ore<br />

grade, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby losing c<strong>on</strong>centrati<strong>on</strong> exergy. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> current exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong> and its exergy <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> over time can be an objective measure for <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong><br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet.<br />

We define <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance (D) between two situati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet as <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

difference between both states, as in Eq. 7.1:<br />

<br />

<br />

<br />

D = ξi · bi i=1<br />

1<br />

i<br />

<br />

<br />

− ξi · bi i=1<br />

i<br />

2<br />

1<br />

><br />

2<br />

(7.1)<br />

The exergy distance can be applied <strong>on</strong> a global scale to <str<strong>on</strong>g>the</str<strong>on</strong>g> total quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> substances<br />

<strong>on</strong> <strong>earth</strong>, or to a certain natural resource, if <str<strong>on</strong>g>the</str<strong>on</strong>g> aim is to assess its specific<br />

degradati<strong>on</strong>. In fact, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> very small relative weight <str<strong>on</strong>g>of</str<strong>on</strong>g> what we c<strong>on</strong>sider resources<br />

with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r substances <strong>on</strong> <strong>earth</strong>, it makes more sense to apply<br />

2 Note that a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> its quantity is not c<strong>on</strong>sidered as a degradati<strong>on</strong>, since <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mass statement must be obeyed. The matter is not lost, it is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r chemically transformed or dispersed.


230 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance c<strong>on</strong>cept to <str<strong>on</strong>g>the</str<strong>on</strong>g> resources <strong>on</strong>ly, separating <str<strong>on</strong>g>the</str<strong>on</strong>g>m from <str<strong>on</strong>g>the</str<strong>on</strong>g> rest<br />

comp<strong>on</strong>ents <strong>on</strong> <strong>earth</strong>.<br />

Additi<strong>on</strong>ally, we define <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy degradati<strong>on</strong> velocity (˙D) between two states as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> states (D) divided by <str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> time separating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>m (∆t), as in Eq. 7.2:<br />

˙D = ∆B<br />

∆t =<br />

<br />

i=1 ξ <br />

i · bi −<br />

1 i=1 ξ <br />

i · bi ∆t<br />

2<br />

(7.2)<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> same way, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance and exergy degradati<strong>on</strong> velocity can be applied<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy replacement costs 3 , obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> irreversible exergy distance (D ∗ ) and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> irreversible exergy degradati<strong>on</strong> velocity (˙D ∗ ). Through <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy replacement<br />

costs, we introduce <str<strong>on</strong>g>the</str<strong>on</strong>g> irreversibility factor not included in <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy parameter,<br />

since <str<strong>on</strong>g>the</str<strong>on</strong>g> latter <strong>on</strong>ly c<strong>on</strong>siders minimum energies.<br />

D ∗ =<br />

<br />

i=1<br />

ξ i · b ∗<br />

i<br />

<br />

1<br />

−<br />

<br />

i=1<br />

˙D ∗ = ∆B∗<br />

∆t =<br />

<br />

i=1 ξi · b∗ <br />

i 1<br />

∆t<br />

− <br />

ξ i · b ∗<br />

i<br />

<br />

2<br />

i=1 ξ i · b ∗<br />

i<br />

<br />

2<br />

(7.3)<br />

(7.4)<br />

Figure 7.1 shows a c<strong>on</strong>ceptual diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance and exergy degradati<strong>on</strong><br />

velocity terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves.<br />

7.3 The t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> equivalent<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> drawbacks that could be attributed to exergy is that most people and<br />

policy makers are not familiar with energy units for natural resource accounting.<br />

So anybody can understand how much is a kg or a t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain material, but<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent amount in kJ or kcal does not give any practical informati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>.<br />

Fortunately exergy can be measured in different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> units, not <strong>on</strong>ly kJ or kcal,<br />

but also in t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oil equivalent -toe- (<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>tained in <strong>on</strong>e t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oil).<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> same principle can be applied to n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s as with oil. Since<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> a resource, and particularly <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposit changes with <str<strong>on</strong>g>the</str<strong>on</strong>g> ore<br />

grade and <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment, <str<strong>on</strong>g>the</str<strong>on</strong>g> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> equivalent<br />

has to be fixed to a specific year and a specific place. Hence, we define <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter<br />

t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Mineral equivalent t M e as <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in a certain<br />

time and place, as in Eq. 7.5.<br />

3 Explained in secti<strong>on</strong> 5.3.4


The t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> equivalent 231<br />

Degradati<strong>on</strong> <str<strong>on</strong>g>Exergy</str<strong>on</strong>g><br />

Resources<br />

.<br />

D D=dD/dt<br />

Figure 7.1. C<strong>on</strong>ceptual diagram for <str<strong>on</strong>g>the</str<strong>on</strong>g> terms exergy distance and exergy degradati<strong>on</strong><br />

velocity<br />

t M e =<br />

Δt<br />

BM<br />

m M<br />

<br />

t<br />

Time<br />

(7.5)<br />

Being B M <str<strong>on</strong>g>the</str<strong>on</strong>g> absolute exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> M, and m M <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> M<br />

c<strong>on</strong>sidered. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> time and place has been specified and taken as reference<br />

(situati<strong>on</strong> 1), <strong>on</strong>e can calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Mineral equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposit<br />

at ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r situati<strong>on</strong> (2). Then <str<strong>on</strong>g>the</str<strong>on</strong>g> t M e <str<strong>on</strong>g>of</str<strong>on</strong>g> situati<strong>on</strong> 2 will be:<br />

(t M e) 2 = (B M) 2<br />

(t M e) 1<br />

(7.6)<br />

Again, this c<strong>on</strong>cept can be applied ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r to exergy or to exergy replacement costs.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> latter, <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Mineral equivalent will be calculated as:<br />

t M e ∗ =<br />

<br />

∗ BM mM t<br />

(7.7)<br />

The t M e can be also used for comparing <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> different <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits,<br />

c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> same resource. This is clarified next through a simple example.<br />

Mine A c<strong>on</strong>tains in year 2007 m A t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gold and B A toe <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy. If mine A is taken<br />

as reference in that year, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <strong>on</strong>e t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gold equivalent has an exergy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g>:


232 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

t Aue = B A/m A. Mine B has <str<strong>on</strong>g>the</str<strong>on</strong>g> same amount <str<strong>on</strong>g>of</str<strong>on</strong>g> gold than mine A (m A = m B) but with<br />

a worse quality (lower ore grade) than that <str<strong>on</strong>g>of</str<strong>on</strong>g> A (B B < B A). In mass terms, mine B<br />

would be as good as mine A. But if we use <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy indicator, mine B has less t<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gold equivalent than <str<strong>on</strong>g>the</str<strong>on</strong>g> reference: (tAue) B = B B/(tAue) = m A · (B B/B A).<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> same way, <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in a country could be expressed<br />

in a practical and elegant way as t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Mineral equivalent. This combines <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> both indicators: <strong>on</strong> <strong>on</strong>e hand <str<strong>on</strong>g>the</str<strong>on</strong>g> more comprehensive unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure<br />

exergy and <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand <str<strong>on</strong>g>the</str<strong>on</strong>g> more understandable unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure mass.<br />

Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, as <str<strong>on</strong>g>the</str<strong>on</strong>g> property mass is involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> t M e loses <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

additive capacity that characterizes <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy indicator.<br />

7.4 The R/P ratio applied to exergy<br />

The resources to producti<strong>on</strong> ratio (R/P) is an estimative measure for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

years until depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain resource. For that purpose, <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

estimated reserves is divided into <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> year under c<strong>on</strong>siderati<strong>on</strong>.<br />

Since both, producti<strong>on</strong> and reserves fluctuate throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> years, R/P ratios may<br />

increase or decrease accordingly. Remember that <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves might increase if new<br />

deposits are discovered or if technological development or <str<strong>on</strong>g>mineral</str<strong>on</strong>g> prices allow to<br />

extract lower grade deposits not c<strong>on</strong>sidered as pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itable before. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> R/P<br />

ratio should always be accompanied by <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> year.<br />

In this PhD, we calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> resources to producti<strong>on</strong> ratio in exergy terms. This<br />

allows to include additi<strong>on</strong>al informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposit, not<br />

taken into account with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al calculati<strong>on</strong> in mass terms.<br />

7.5 The Hubbert peak applied to exergy<br />

M. King Hubbert ([146], [147]) found in <str<strong>on</strong>g>the</str<strong>on</strong>g> mid-fifties that <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil<br />

fuel trends had a str<strong>on</strong>g family resemblance. The curves started slowly and <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

rose more steeply tending to increase exp<strong>on</strong>entially with time, until finally an inflecti<strong>on</strong><br />

point was reached after it became c<strong>on</strong>cave downward. The observed trends<br />

are based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that no finite resource can sustain for l<strong>on</strong>ger than a brief period<br />

such a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong>; <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, although producti<strong>on</strong> rates tend<br />

initially to increase exp<strong>on</strong>entially, physical limits prevent <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>tinuing to do so.<br />

So for any producti<strong>on</strong> curve <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite resource <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed amount, two points <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

curve are known at <str<strong>on</strong>g>the</str<strong>on</strong>g> outset, namely that at t = 0 and again at t = ∞. The producti<strong>on</strong><br />

rate will be zero when <str<strong>on</strong>g>the</str<strong>on</strong>g> reference time is zero, and <str<strong>on</strong>g>the</str<strong>on</strong>g> rate will again be<br />

zero when <str<strong>on</strong>g>the</str<strong>on</strong>g> resource is exhausted, after passing through <strong>on</strong>e or several maxima.<br />

The sec<strong>on</strong>d c<strong>on</strong>siderati<strong>on</strong> is that <str<strong>on</strong>g>the</str<strong>on</strong>g> area under <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> curve must equal <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resource available (R). In this way, <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> curve <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain


The Hubbert peak applied to exergy 233<br />

Producti<strong>on</strong> (P)<br />

∞<br />

Q= Pdt<br />

0<br />

Time (t)<br />

Figure 7.2. The Hubbert’s bell shape curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> any exhaustible<br />

resource [146].<br />

resource throughout history takes <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bell-shape curve shown in<br />

Fig. 7.2.<br />

The model was successful in predicting <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> oil extracti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> US lower<br />

48 states and <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent decline in producti<strong>on</strong>. Recently, several authors used<br />

Hubbert’s model to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> crude oil extracti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> planetary<br />

level (Deffeyes [72], Bentley [24], Campbell and Laherre [47], [46]). According to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se estimates, <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding producti<strong>on</strong> peak could take place within <str<strong>on</strong>g>the</str<strong>on</strong>g> first<br />

decade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century or not much later. And as Campbell and Laherre [47]<br />

argue, from an ec<strong>on</strong>omic perspective, when <str<strong>on</strong>g>the</str<strong>on</strong>g> world runs completely out <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels is<br />

not directly relevant: what matters is when producti<strong>on</strong> begins to taper <str<strong>on</strong>g>of</str<strong>on</strong>g>f. Bey<strong>on</strong>d<br />

that point, prices will rise unless demand declines commensurately.<br />

It must be pointed out that <str<strong>on</strong>g>the</str<strong>on</strong>g> successful predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model depends <strong>on</strong> many<br />

factors, being <str<strong>on</strong>g>the</str<strong>on</strong>g> most important <strong>on</strong>e, <str<strong>on</strong>g>the</str<strong>on</strong>g> reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated reserves. Forrester/Meadows<br />

models [96], [218] are almost always asymmetric with <str<strong>on</strong>g>the</str<strong>on</strong>g> decline<br />

much sharper than <str<strong>on</strong>g>the</str<strong>on</strong>g> growth. Bardi [18] showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> bell-shaped curve may<br />

turn out to be str<strong>on</strong>gly asymmetric depending <strong>on</strong> extracti<strong>on</strong> strategies. As Bartlett<br />

argues [22], actual producti<strong>on</strong> curves will be probably modified by ec<strong>on</strong>omic, geological,<br />

political, technological, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r factors, which may result in a deteriorati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fit between <str<strong>on</strong>g>the</str<strong>on</strong>g> data and <str<strong>on</strong>g>the</str<strong>on</strong>g> Gaussian, but <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se<br />

important factors is limited to changing <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> this fit.<br />

Basically, <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert model can be applied to those <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, where <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

factor is not important, i.e. to liquid and gaseous fossil fuels. Roberts and<br />

Torrens [283] applied also <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert model in 1974 to examine <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> copper. At that time, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was not so much informati<strong>on</strong> as today regarding<br />

c<strong>on</strong>sumpti<strong>on</strong> rates or future reserve estimates, which are essential ingredients for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> methodology. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> model had to be applied making quite lot assump-


234 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

ti<strong>on</strong>s. Nowadays, <str<strong>on</strong>g>the</str<strong>on</strong>g> curve can be defined through more points and <str<strong>on</strong>g>the</str<strong>on</strong>g>re are more<br />

reliable estimati<strong>on</strong>s for <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves (as for instance <str<strong>on</strong>g>the</str<strong>on</strong>g> data provided by <str<strong>on</strong>g>the</str<strong>on</strong>g> US<br />

Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Mines).<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, we think that <str<strong>on</strong>g>the</str<strong>on</strong>g> bell-shape curve is better suited to <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, if it<br />

is fitted with exergy over time instead <str<strong>on</strong>g>of</str<strong>on</strong>g> mass over time. Oil quality keeps nearly<br />

c<strong>on</strong>stant with extracti<strong>on</strong>, whereas o<str<strong>on</strong>g>the</str<strong>on</strong>g>r n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s d<strong>on</strong>’t (<str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s c<strong>on</strong>centrati<strong>on</strong><br />

decreases as <str<strong>on</strong>g>the</str<strong>on</strong>g> mine is being exploited). Therefore exergy is a much better<br />

unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure than mass, since it accounts not <strong>on</strong>ly for quantity, but also for ore<br />

grades and compositi<strong>on</strong>. The well known bell-shaped curve can be fitted to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy c<strong>on</strong>sumpti<strong>on</strong> data provided, in order to estimate when <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong><br />

will start declining. Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical procedure for <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

model is explained.<br />

Hubbert’s bell-shape curve can be described through <str<strong>on</strong>g>the</str<strong>on</strong>g> generic gaussian curve described<br />

in Eq. 7.8.<br />

f (t) = y 0e −<br />

<br />

t−t0<br />

The integral <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gaussian curve is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves (R) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodity:<br />

+∞<br />

−∞<br />

And <str<strong>on</strong>g>the</str<strong>on</strong>g> integral <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. 7.8 is given by Eq. 7.10.<br />

∞<br />

e −<br />

<br />

t−t0<br />

b0 0<br />

b 0<br />

(7.8)<br />

f (t)d t = R (7.9)<br />

d t = b <br />

0 π<br />

2<br />

(7.10)<br />

Combining Eqs. 7.9 and 7.10, and taking into account that <str<strong>on</strong>g>the</str<strong>on</strong>g> curve is symmetric,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reserves can be expressed as:<br />

<br />

y0b0 π = R (7.11)<br />

Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> curve to be adjusted is given by Eq. 7.12:<br />

f (t) = R<br />

e<br />

b0 π −<br />

Where parameters b 0 and t 0 are <str<strong>on</strong>g>the</str<strong>on</strong>g> unknowns.<br />

<br />

t−t0<br />

b 0<br />

(7.12)<br />

In our case, we will represent <str<strong>on</strong>g>the</str<strong>on</strong>g> yearly exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodity vs. time.<br />

With a least squares procedure, <str<strong>on</strong>g>the</str<strong>on</strong>g> points will be adjusted to <str<strong>on</strong>g>the</str<strong>on</strong>g> curve given by Eq.<br />

7.12. The maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> is given by parameter t 0, and it verifies that<br />

f (t0) = R<br />

.<br />

b0 π


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> US 235<br />

7.6 The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in <str<strong>on</strong>g>the</str<strong>on</strong>g> US<br />

Before explaining <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits, it must be pointed out<br />

that extracti<strong>on</strong> does not necessarily mean that <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

is being lost. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, through <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> mining and c<strong>on</strong>centrating<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ores, we are increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy per unit <str<strong>on</strong>g>of</str<strong>on</strong>g> resource and in fact, that exergy<br />

will remain in wires, buildings, industrial machinery and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r products were <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are used. The problem arises when <str<strong>on</strong>g>the</str<strong>on</strong>g> objects made <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> refined <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

are disposed <str<strong>on</strong>g>of</str<strong>on</strong>g> in landfills at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir useful life. In that case, <str<strong>on</strong>g>the</str<strong>on</strong>g> demand<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> must be satisfied by extracting new <strong>on</strong>e from <str<strong>on</strong>g>the</str<strong>on</strong>g> mine, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby<br />

exhausting <str<strong>on</strong>g>the</str<strong>on</strong>g> resource and reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mine (<str<strong>on</strong>g>the</str<strong>on</strong>g> mine c<strong>on</strong>tains a<br />

lower quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> at a lower grade). Fortunately, recycling reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> need<br />

for so much new <str<strong>on</strong>g>mineral</str<strong>on</strong>g> to be extracted. Therefore, recycling is very important to<br />

our society, by preventing dispersi<strong>on</strong> <strong>on</strong>ce a material has been c<strong>on</strong>centrated.<br />

Hence, when we refer to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits, we are indicating <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy that <str<strong>on</strong>g>the</str<strong>on</strong>g> mines are losing through <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. In practice, this exergy<br />

is <strong>on</strong>ly lost when <str<strong>on</strong>g>the</str<strong>on</strong>g> refined <str<strong>on</strong>g>mineral</str<strong>on</strong>g> is dumped in landfills or becomes dispersed.<br />

The calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s requires a great amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

informati<strong>on</strong>: world trends <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources producti<strong>on</strong> and c<strong>on</strong>sumpti<strong>on</strong>, trends<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ore grades and <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserve projecti<strong>on</strong>s. Unfortunately, <str<strong>on</strong>g>the</str<strong>on</strong>g>se data is not always<br />

available and requires a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> effort to ga<str<strong>on</strong>g>the</str<strong>on</strong>g>r it. The US Geological Survey,<br />

British Geological Survey, British Petroleum and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r entities publish periodically<br />

new informati<strong>on</strong> about world <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> data is usually<br />

insufficient, since for most commodities, ore grade trends are not studied.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>s, we will present <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy analysis to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper mines. The calculati<strong>on</strong>s will be explained<br />

in detail, so as to serve as an example for <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian case, presented in secti<strong>on</strong><br />

7.7.<br />

7.6.1 Copper mining features<br />

Copper has been mined in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States at an industrial scale, at least from<br />

1709, in Simbsbury, C<strong>on</strong>necticut. The industrial r<str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> intensified <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

copper in <str<strong>on</strong>g>the</str<strong>on</strong>g> mid <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nineteenth century, and c<strong>on</strong>sequently its producti<strong>on</strong>. The<br />

USGS provides historical producti<strong>on</strong> and grades data since year 1900. The published<br />

reserves and reserve base <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper, as well as ore grade trends throughout <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

20th century by <str<strong>on</strong>g>the</str<strong>on</strong>g> US Geological Survey [361], allow us to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper mines in <str<strong>on</strong>g>the</str<strong>on</strong>g> last century.<br />

Copper in <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits is usually found in nature in associati<strong>on</strong> with sulfur, as<br />

chalcopyrite (CuFeS 2), but it can be also found as an oxide. The most important


236 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

(0)<br />

Dispersed<br />

<strong>earth</strong> with<br />

R.S.<br />

[xc]<br />

Cu +2 + 2SO4 -2 +1/2 Fe2O3<br />

(0)<br />

Cu is dispersed <strong>on</strong><br />

Earth in form <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu +2<br />

(aq)<br />

Naturally occurring<br />

chemical process<br />

(1)<br />

Dispersed<br />

<strong>earth</strong> with<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

A chemical reacti<strong>on</strong> takes<br />

place, forming CuFeS2 from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir corresp<strong>on</strong>ding reference<br />

substances<br />

[xc]<br />

CuFeS2 + 19/2O2<br />

(1)<br />

Naturally<br />

occurring<br />

c<strong>on</strong>centrati<strong>on</strong><br />

process<br />

(2)<br />

Actual<br />

Earth<br />

[xm]<br />

CuFeS2<br />

(2)<br />

Minerals<br />

c<strong>on</strong>centrated in<br />

mines<br />

The dispersed CuFeS2 at<br />

xc is c<strong>on</strong>centrated into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mines at xm.<br />

Figure 7.3. Hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical processes involved in obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment<br />

copper ore deposits (<str<strong>on</strong>g>the</str<strong>on</strong>g> “porphyry coppers”) normally have quite low c<strong>on</strong>centrati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> copper (0,3 to 0,6% Cu) but this is compensated by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir size (hundreds to<br />

thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> milli<strong>on</strong> t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ore).<br />

The producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pure copper from <str<strong>on</strong>g>the</str<strong>on</strong>g> ore can be summarized in two processes.<br />

The first <strong>on</strong>e is c<strong>on</strong>cerned with <str<strong>on</strong>g>the</str<strong>on</strong>g> mining and c<strong>on</strong>centrating <str<strong>on</strong>g>of</str<strong>on</strong>g> low grade ores<br />

c<strong>on</strong>taining copper <str<strong>on</strong>g>mineral</str<strong>on</strong>g>. The sec<strong>on</strong>d <strong>on</strong>e is fundamentally a chemical process<br />

in which <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrated ore is smelted and <str<strong>on</strong>g>the</str<strong>on</strong>g>n refined through an electrolytic<br />

process.<br />

The hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical processes needed for replacing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> from <str<strong>on</strong>g>the</str<strong>on</strong>g> reference <strong>earth</strong><br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> mine are outlined in Fig. 7.3. As a first approximati<strong>on</strong>, it<br />

has been assumed, that all <str<strong>on</strong>g>the</str<strong>on</strong>g> copper occurs in <str<strong>on</strong>g>the</str<strong>on</strong>g> mines as chalcopyrite. These<br />

processes are needed to replace <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> from <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E.<br />

At state 0, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly reference substances (R.S.) dispersed in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> three subsystems <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E.: c<strong>on</strong>tinental crust, atmosphere and hydrosphere.<br />

At state 1, <str<strong>on</strong>g>the</str<strong>on</strong>g> reference substances <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment defined in this<br />

PhD (secti<strong>on</strong> 5.2) composing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> (Cu +2 and SO −2<br />

4 from <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere<br />

and Fe 2O 3 from <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust), react to form CuFeS 2. Finally, at state 2,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> dispersed chalcopyrite is c<strong>on</strong>centrated from x c to <str<strong>on</strong>g>the</str<strong>on</strong>g> ore grade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mine x m.


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> US 237<br />

The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment x c is assumed to be equal<br />

to 2,8E-5 g/g, which is <str<strong>on</strong>g>the</str<strong>on</strong>g> average c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust,<br />

according to Rudnick and Gao [292].<br />

The unit c<strong>on</strong>centrati<strong>on</strong> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> copper i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> energy required to c<strong>on</strong>centrate copper<br />

from x c to x m with today’s technology was estimated by Valero and Botero [371] as<br />

k c = 385, 61. This value 4 was obtained c<strong>on</strong>sidering that <str<strong>on</strong>g>the</str<strong>on</strong>g> unit c<strong>on</strong>centrati<strong>on</strong> cost<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> real process <str<strong>on</strong>g>of</str<strong>on</strong>g> mining and c<strong>on</strong>centrating is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as in <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical<br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. and <str<strong>on</strong>g>the</str<strong>on</strong>g> mine c<strong>on</strong>diti<strong>on</strong>s. The energy<br />

requirement for mining and c<strong>on</strong>centrating c<strong>on</strong>sidered (e c) was <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e obtained<br />

by Chapman and Roberts [53]: 66,7 GJ/t<strong>on</strong> for an ore grade <str<strong>on</strong>g>of</str<strong>on</strong>g> 0,5% Cu. The<br />

ratio between <str<strong>on</strong>g>the</str<strong>on</strong>g> real energy required and <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum exergy to c<strong>on</strong>centrate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust to <str<strong>on</strong>g>the</str<strong>on</strong>g> ore grade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mine gives <str<strong>on</strong>g>the</str<strong>on</strong>g> unit exergy cost<br />

menti<strong>on</strong>ed before. The result obtained means that with current technology, we have<br />

to invest 385,61 times more energy for c<strong>on</strong>centrating copper from <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mine than in <str<strong>on</strong>g>the</str<strong>on</strong>g> reversible process. Martínez et al. [207] updated <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> k c<br />

for copper with more recent informati<strong>on</strong>. The value obtained, which is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e used<br />

for our calculati<strong>on</strong>s was: k c,Cu = 343, 1.<br />

The real quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> energy required for “refining” <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> between <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s<br />

crust (as in <str<strong>on</strong>g>the</str<strong>on</strong>g> Reference Envir<strong>on</strong>ment) and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> mine is also usually<br />

greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> standard chemical exergy given by Eq. 5.1. As explained in secti<strong>on</strong><br />

5.3.4, Valero and Botero estimated <str<strong>on</strong>g>the</str<strong>on</strong>g> unit chemical exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfides as being<br />

at least k ch = 10. Martínez et al. [207] updated that value for copper, obtaining<br />

k ch,Cu = 80, 2. Remember that in chapter 5, table 5.7 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> unit exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

selected <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, according to Valero and Botero [371] and Martínez et al. [207].<br />

7.6.2 Chemical exergy<br />

The reserves and reserve base <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in <str<strong>on</strong>g>the</str<strong>on</strong>g> US in year 2000 were 45.000 kt and<br />

90.000 kt respectively [362].<br />

The chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> copper mines will be calculated assuming that Cu is found in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> deposit as <str<strong>on</strong>g>the</str<strong>on</strong>g> metal. This approximati<strong>on</strong> is used as <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong><br />

about <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> copper extracted from chalcopyrite and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r copper ores<br />

such as oxides and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r sulfides. Hence, our first goal is to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

state 1 in Fig. 7.3. The chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu, calculated with Eq. 5.1 (b ch i =<br />

∆G f i + r j,i b ch j), being ∆G f Cu = −190, 9 kJ/mole and obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical<br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements from <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. developed in this study and described in secti<strong>on</strong><br />

5.2.3.5 is: b ch Cu = 134, 0 MJ/kmole.<br />

Surprisingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> is higher than that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pure element:<br />

b ch CuFeS2 = 1534, 5 MJ/kmole (11,45 times greater). This is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact<br />

racy.<br />

4 Although 5 significant figures are given for kc, <str<strong>on</strong>g>the</str<strong>on</strong>g> number cannot be c<strong>on</strong>sidered with that accu


238 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

that since stability (criteri<strong>on</strong> taken partially by Szargut et al. [343] and in this study<br />

for choosing <str<strong>on</strong>g>the</str<strong>on</strong>g> reference substances) does not coincide with abundance in a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cases, some <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s that are quite abundant in nature, such as sulfides, have<br />

a fairly high chemical exergy that can be c<strong>on</strong>sidered as an exergy reservoir that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong> provides us for free. This helps our technology to avoid <str<strong>on</strong>g>the</str<strong>on</strong>g> expenditure huge<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial energy during <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding<br />

pure element.<br />

The comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> a substance remains c<strong>on</strong>stant<br />

over time, since it <strong>on</strong>ly depends <strong>on</strong> its chemical compositi<strong>on</strong>. Hence, in absolute<br />

terms, <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> any substance is proporti<strong>on</strong>al to its producti<strong>on</strong><br />

rate.<br />

The chemical exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> copper mines in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century<br />

(B), can be calculated by multiplying <str<strong>on</strong>g>the</str<strong>on</strong>g> molar copper primary producti<strong>on</strong> ( ˙m)<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> copper obtained before: B = ˙m · b. The producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> US during <str<strong>on</strong>g>the</str<strong>on</strong>g> past century (see Fig. 7.4), was obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> Historical<br />

Statistics for Mineral and Material Commodities in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States [361], which is a<br />

compilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> data from publicati<strong>on</strong>s primarily <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS and USBM, such as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Minerals Yearbook [363].<br />

Figure 7.5 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> cumulative chemical exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> copper mines in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

US ( B ch). At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> year 2000, <str<strong>on</strong>g>the</str<strong>on</strong>g> total chemical exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> copper<br />

mines from <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> century, was D ch = 5, 66 Mtoe. This exergy was<br />

c<strong>on</strong>sumed at an average degradati<strong>on</strong> velocity ˙D ch = 56, 04 ktoe/year, although <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

trend since <str<strong>on</strong>g>the</str<strong>on</strong>g> seventies shows an average degradati<strong>on</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> around 77,39<br />

ktoe/year. The maximum velocity was attained in year 1998 (107,81 ktoe/year),<br />

while <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum was in 1900 (14,66 ktoe/year). Copper producti<strong>on</strong> has shown a<br />

c<strong>on</strong>tinuous growth, since it is str<strong>on</strong>gly linked to <str<strong>on</strong>g>the</str<strong>on</strong>g> electrical and telecommunicati<strong>on</strong><br />

industries. The chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> copper reserves, calculated as pure copper at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> year 2000, was 2,27 Mtoe. If we add <str<strong>on</strong>g>the</str<strong>on</strong>g> cumulative chemical exergy<br />

c<strong>on</strong>sumpti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy reserves at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> year 2000, we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

reserves at year 1900: 7,93 Mtoe. Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> copper reserve<br />

base at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning and end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> century were 10,19 and 4,53 Mtoe, respectively.<br />

7.6.3 C<strong>on</strong>centrati<strong>on</strong> exergy<br />

Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mine (step 3 in Fig. 7.3) will be obtained as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> exergies obtained with <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

in a mine (x m) and with <str<strong>on</strong>g>the</str<strong>on</strong>g> average c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust (x c). The<br />

latter are calculated with Eq. 5.10 (bc i = −¯RT 0 lnx i + (1−x <br />

i)<br />

ln(1 − x<br />

x i) ). Since no<br />

i<br />

ore grades are provided between years 1901 and 1905, it has been assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> those years is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as in 1900. The c<strong>on</strong>centrati<strong>on</strong> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mine, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum energy that nature had to spend to bring <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s from xc to xm, is not c<strong>on</strong>stant over time, because it changes with <str<strong>on</strong>g>the</str<strong>on</strong>g> ore grade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mine


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> US 239<br />

B ch, ktoe<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000<br />

Year<br />

Bch (ktoe) bch (MJ/kmol)<br />

Figure 7.4. Yearly chemical exergy c<strong>on</strong>sumpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> US <str<strong>on</strong>g>of</str<strong>on</strong>g> pure copper due to<br />

copper producti<strong>on</strong> throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century<br />

ΣB ch, ktoe<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000<br />

Figure 7.5. Cumulative chemical exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> copper mines in <str<strong>on</strong>g>the</str<strong>on</strong>g> US throughout<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century<br />

(see Fig. 7.6). The mine has <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest exergy c<strong>on</strong>centrati<strong>on</strong>, when <str<strong>on</strong>g>the</str<strong>on</strong>g> ore grade<br />

is at <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum and becomes lower as <str<strong>on</strong>g>the</str<strong>on</strong>g> ore grade decreases. At <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> century, when <str<strong>on</strong>g>the</str<strong>on</strong>g> ore grades were at above 2% Cu, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> exergy<br />

was <str<strong>on</strong>g>the</str<strong>on</strong>g> highest, namely b c Cu > 18 MJ/kmole. In <str<strong>on</strong>g>the</str<strong>on</strong>g> last years, <str<strong>on</strong>g>the</str<strong>on</strong>g> ore grades have<br />

declined to values less than 0,45% Cu and hence <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mine has decreased accordingly: b c Cu < 15 MJ/kmole. Copper ore grade trends in<br />

Year<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

bch,MJ/kmol


240 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

B c, ktoe<br />

12,0<br />

10,0<br />

8,0<br />

6,0<br />

4,0<br />

2,0<br />

0,0<br />

13<br />

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000<br />

Year<br />

Bc (ktoe) bc (MJ/kmol)<br />

Figure 7.6. Yearly c<strong>on</strong>centrati<strong>on</strong> exergy c<strong>on</strong>sumpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> US <str<strong>on</strong>g>of</str<strong>on</strong>g> pure copper due<br />

to copper producti<strong>on</strong> throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> US are obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> work d<strong>on</strong>e by Ruth [295] and completed and updated<br />

with informati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> Minerals Yearbook [363].<br />

Figure 7.7 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> cumulative c<strong>on</strong>centrati<strong>on</strong> exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> copper mines in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> US ( B c). The total c<strong>on</strong>centrati<strong>on</strong> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> copper mines between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> beginning and end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> century was D c = 628, 98 ktoe. This exergy was c<strong>on</strong>sumed<br />

at an average degradati<strong>on</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> ˙D c = 6, 22 ktoe/year. The maximum<br />

degradati<strong>on</strong> velocity was attained in year 2000 (10,56 ktoe/year), while <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum<br />

in year 1906 (1,89 ktoe/year). The c<strong>on</strong>centrati<strong>on</strong> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> copper reserves<br />

and reserve base in year 1900 were 875,3 and 1121,71 ktoe respectively, while in<br />

year 2000, 246,36 and 492,73 ktoe.<br />

Figure 7.7 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> cumulative c<strong>on</strong>centrati<strong>on</strong> exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> copper mines in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> US.<br />

7.6.4 Total exergy<br />

We can now calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> total exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper mines between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

beginning and end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> century:<br />

D = (B t,1900 − B t,2000) = (D ch + D c) = (5660, 37 + 628, 98) = 6289, 35 ktoe.<br />

Dividing this quantity into <str<strong>on</strong>g>the</str<strong>on</strong>g> years c<strong>on</strong>sidered, we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> average exergy degradati<strong>on</strong><br />

velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper: ˙D = 62, 2 ktoe/year.<br />

As can be seen, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>centrati<strong>on</strong> comp<strong>on</strong>ent is much lower than <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical<br />

<strong>on</strong>e. For more abundant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s than copper, such as aluminium or ir<strong>on</strong>,<br />

20<br />

19<br />

18<br />

17<br />

16<br />

15<br />

14<br />

b c , MJ/kmol


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> US 241<br />

ΣB c, ktoe<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000<br />

Figure 7.7. Cumulative c<strong>on</strong>centrati<strong>on</strong> exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> copper mines in <str<strong>on</strong>g>the</str<strong>on</strong>g> US<br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century<br />

Year<br />

this fact is even more enhanced. The minimum <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic energy required to<br />

separate two substances such as sugar and salt for example, is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

to mix <str<strong>on</strong>g>the</str<strong>on</strong>g>m, which is in fact very low. This is <str<strong>on</strong>g>of</str<strong>on</strong>g> course not true and <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

required to separate substances is much greater than in <str<strong>on</strong>g>the</str<strong>on</strong>g> reversible case. In order<br />

to overcome that problem, we need to resort to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mine.<br />

7.6.5 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> costs<br />

Through unit exergy costs, reversible exergies are c<strong>on</strong>verted into real exergies with<br />

Eq. 5.46 (B∗ t = kch · Bch + kc · Bc). That equati<strong>on</strong> assumes that exergy costs are c<strong>on</strong>stant<br />

over time. In fact this is not completely correct, because <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two factors<br />

that must be taken into account. The first <strong>on</strong>e is that technological development<br />

improves <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> mining and refining processes and thus costs tend to decrease<br />

(<str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> learning curves). The sec<strong>on</strong>d factor is that as extracti<strong>on</strong> c<strong>on</strong>tinues<br />

and technology is being improved, lower quality resources can be extracted. However,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> lower quality resources requires an increase in energy input, which<br />

increases costs.<br />

If we c<strong>on</strong>vert <str<strong>on</strong>g>the</str<strong>on</strong>g> total minimum exergy c<strong>on</strong>sumpti<strong>on</strong> into real exergy, making <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong><br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> costs are c<strong>on</strong>stant, we obtain that <str<strong>on</strong>g>the</str<strong>on</strong>g> irreversible exergy distance<br />

D ∗ is:<br />

D∗ = (B∗ t,1900 − B∗<br />

t,2000 ) = Dch · kch + Dc · kc = 5660, 37 ∗ 80, 2 + 628, 98 ∗ 343, 1 =<br />

669.764, 7 ktoe<br />

And <str<strong>on</strong>g>the</str<strong>on</strong>g> average irreversible exergy degradati<strong>on</strong> velocity ˙D ∗ = 6631, 3 ktoe/year.


242 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Around 68% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy costs are due to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> copper and 32%<br />

to its c<strong>on</strong>centrati<strong>on</strong> exergy. The cost represents <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>sumed <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper<br />

mines during <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century and is equivalent to 71,3% <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006 oil c<strong>on</strong>sumpti<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> US (938,8 Mtoe [35]). This figure gives an idea <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> huge amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy<br />

that we are degrading by extracting <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. It must be remembered, that this<br />

study <strong>on</strong>ly applies to copper mines in <str<strong>on</strong>g>the</str<strong>on</strong>g> US.<br />

Additi<strong>on</strong>ally, we can calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> copper equivalent (tCue ∗ ) associated to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves and reserve base. For that purpose, we take as<br />

reference, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy cost B∗ t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves in 1900 (5,95 toe/t <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu extracted).<br />

The M tCue ∗ is slightly lower than <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage due to <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

exergy (44,7 M tCue ∗ vs 45 Mt for <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves and 89,5 M tCue ∗ vs 90 Mt for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reserve base).<br />

7.6.6 The R/P ratio and <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposits<br />

The resources to producti<strong>on</strong> ratio for US copper, is calculated by dividing <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve<br />

base’s exergy in year 2000 (5027 ktoe), with <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metal produced in<br />

that year (90,16 ktoe). The resulting R/P ratio indicates that if producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> US Cu<br />

remains as in year 2000, and <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base does not increase after that year, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reserves would be completely depleted in 56 years.<br />

The depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper deposits (%R loss and %R.B. loss) is calculated<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio between <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance D, and <str<strong>on</strong>g>the</str<strong>on</strong>g> total reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodity.<br />

The latter are obtained as <str<strong>on</strong>g>the</str<strong>on</strong>g> published reserves or reserve base <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodity in<br />

2000, plus <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance D from 1900 to 2000. Accordingly, copper producti<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> US throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century has leaded to <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 71% and 56%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its nati<strong>on</strong>al copper reserves and reserve base, respectively.<br />

7.6.7 The Hubbert peak model<br />

We are now going to apply <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model to US copper mining, in order<br />

to estimate its peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong>. For that purpose, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy producti<strong>on</strong> has to be<br />

plotted against <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding years. At a first stage, we are going to adjust <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

points to <str<strong>on</strong>g>the</str<strong>on</strong>g> gaussian curve, given by Eq. 7.8, i.e. without applying <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>straint<br />

about a fixed amount <str<strong>on</strong>g>of</str<strong>on</strong>g> reserves. The resulting curve represented in Fig. 7.8 is<br />

described by Eq. 7.13:<br />

f (t) = 107, 1e<br />

<br />

1 t−2041<br />

−<br />

2 87,08<br />

(7.13)<br />

The maximum is reached at t = t0 in year 2041. The integral <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. 7.13 represents<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reserves: +∞<br />

f (t) = 24.053, 4 ktoe. The regressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> curve is quite low:<br />

−∞<br />

RF = 0, 7532.


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> US 243<br />

Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper is associated to available reserves<br />

equal to around 24 Mtoe, assuming that it follows <str<strong>on</strong>g>the</str<strong>on</strong>g> bell-shaped curve defined by<br />

Hubbert.<br />

Bt<br />

Integral Bt<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

x 104<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

2041<br />

0<br />

1700 1800 1900 2000 2100 2200 2300 2400<br />

Figure 7.8. The Hubbert peak applied to US copper producti<strong>on</strong>. Best fitting curve.<br />

Values in ktoe.<br />

Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS, <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base in year 2000 is equal to 5,02<br />

Mtoe. Adding <str<strong>on</strong>g>the</str<strong>on</strong>g> already exergy extracted from 1900 to 2000, <str<strong>on</strong>g>the</str<strong>on</strong>g> base reserves increase<br />

to 11,3 Mtoe. Since no data is provided before 1900 and <str<strong>on</strong>g>the</str<strong>on</strong>g>re were certainly<br />

important amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> copper extracted at least in <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d half <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nineteenth<br />

century, we will make <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>, that Cu extracti<strong>on</strong> from 1700 to 1900 followed<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> curve <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. 7.13. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> 1700 reserve base are approximated to:<br />

2000 <br />

R1700 = R2000 + Bt +<br />

1900<br />

1900<br />

1700<br />

107, 1e<br />

<br />

1 t−2041<br />

−<br />

2 87,08 = 5026, 7 + 6289, 4 + 1233, 8<br />

= 12549, 9ktoe (7.14)


244 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Therefore, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 24 Mtoe <str<strong>on</strong>g>of</str<strong>on</strong>g> reserves obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> model without c<strong>on</strong>straints,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> US total base reserves amount to around <strong>on</strong>e half <str<strong>on</strong>g>of</str<strong>on</strong>g> that: 12,55 Mtoe.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>straint <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves, we can now apply <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model,<br />

adjusting <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> points to Eq. 7.12.<br />

Figure 7.9 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> final curve, with again a low regressi<strong>on</strong> factor RF = 0, 7305.<br />

According to <str<strong>on</strong>g>the</str<strong>on</strong>g> model, <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> would have reached <str<strong>on</strong>g>the</str<strong>on</strong>g> peak in year 1994.<br />

In fact, recent data about copper producti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> US reveals that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak was<br />

reached in year 1998 with 2,1 Mt extracted. Since <str<strong>on</strong>g>the</str<strong>on</strong>g>n producti<strong>on</strong> has decreased<br />

more rapidly than it increased before reaching <str<strong>on</strong>g>the</str<strong>on</strong>g> peak. This indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Meadows [218], where producti<strong>on</strong> follows asymmetric curves with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

decline much sharper than <str<strong>on</strong>g>the</str<strong>on</strong>g> growth, apply better at least for US copper producti<strong>on</strong>.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>clusi<strong>on</strong> that can be extracted from <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model is that if<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> curves are generally asymmetrical, <str<strong>on</strong>g>the</str<strong>on</strong>g> peak will be reached after <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

year predicted by <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert model. During a short period <str<strong>on</strong>g>of</str<strong>on</strong>g> time, <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities<br />

will be probably over-exploited and <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> points will appear over <str<strong>on</strong>g>the</str<strong>on</strong>g> bellshaped<br />

curve. The compensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> overproducti<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> much sharper decrease<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> after <str<strong>on</strong>g>the</str<strong>on</strong>g> peak, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> a gradual and steady reducti<strong>on</strong>.<br />

Applying <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model to producti<strong>on</strong> in mass terms, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy<br />

terms gives 1993 as <str<strong>on</strong>g>the</str<strong>on</strong>g> peaking year for US copper. As can be seen, <str<strong>on</strong>g>the</str<strong>on</strong>g> difference<br />

between both approaches is very small, since as stated before, in minimum exergy<br />

terms, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> comp<strong>on</strong>ent is c<strong>on</strong>siderably less important than <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical<br />

<strong>on</strong>e. And it should be remembered, that as opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> exergy,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy is proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracted. The effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> decreasing ore grades with producti<strong>on</strong> would be better observed if exergy costs,<br />

ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than minimum exergies are used for <str<strong>on</strong>g>the</str<strong>on</strong>g> plotting. In such a case, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy terms are well balanced. However, in this study<br />

we have assumed that unit exergy costs remain c<strong>on</strong>stant over time. For a correct<br />

representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy costs vs. time, we would require that <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy costs are<br />

calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding unit exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> time c<strong>on</strong>sidered,<br />

incorporating <str<strong>on</strong>g>the</str<strong>on</strong>g> learning curves <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> technologies. But this task remains open for<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies.<br />

7.6.8 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

Table 7.1 summarizes <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained, showing <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy and exergy costs,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance, average degradati<strong>on</strong> velocity, <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> equivalent,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> R/P ratio, depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves and reserve base (% R. loss and %<br />

R.B. loss) and <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated and real peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper reserves and<br />

reserve base during <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century.


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 245<br />

Integral Bt<br />

Bt<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

1994<br />

0<br />

1800 1900 2000 2100 2200<br />

Figure 7.9. The Hubbert peak applied to US copper base reserves. Values in ktoe.<br />

7.7 The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>.<br />

The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> example above, we have applied <str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecological method to a single<br />

commodity <str<strong>on</strong>g>of</str<strong>on</strong>g> a country. Since exergy is an additive property, we can analyze <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy loss due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all commodities in a regi<strong>on</strong>, country or even<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> entire world.<br />

The objective now it to assess from <str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecological point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel and n<strong>on</strong>-fuel origin <str<strong>on</strong>g>of</str<strong>on</strong>g> a country throughout<br />

its mining history.<br />

Australia is <str<strong>on</strong>g>the</str<strong>on</strong>g> country chosen for our purpose for two reas<strong>on</strong>s: 1) a comprehensive<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian mining data was provided by Mudd [234], [232], [233] and<br />

2) Australia is a major <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producer and exports numerous commodities around


246 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Table 7.1. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper mines during<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century.<br />

RESERVES BASE RESERVE<br />

Year 1900 2000 1900 2000<br />

Minimum exergy, Mtoe<br />

B ch 7,93 2,27 10,19 4,53<br />

B c 0,86 0,25 1,11 0,49<br />

B t 8,79 2,51 11,30 5,03<br />

D 6,28<br />

˙D, ktoe/yr 62,25<br />

N<strong>on</strong>-reversible exergy, Mtoe<br />

B ∗<br />

ch 635,77 181,81 817,58 363,62<br />

B ∗<br />

c 300,33 84,53 384,86 169,05<br />

B ∗<br />

t 936,10 266,34 1202,44 532,68<br />

D ∗ 669,76<br />

˙D ∗ , ktoe/yr 6631,33<br />

m Cu, Mt<strong>on</strong>s 157,36 45,00 202,36 90,00<br />

M tCue ∗ 157,36 44,77 202,13 89,54<br />

R/P, yrs 56<br />

% R. loss 71 56<br />

Hubbert’s peak 1994<br />

Real peak 1998<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> world. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, its resources are periodically updated and published in<br />

Geoscience Australia [112].<br />

The study <str<strong>on</strong>g>of</str<strong>on</strong>g> Mudd aims to shed light <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> current debate <strong>on</strong> sustainable mining in<br />

Australia, establishing <str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> changes in ore grades for various <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

and metals as well as quantifying <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wastes. Mudd provides valuable<br />

informati<strong>on</strong> am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs, about historical producti<strong>on</strong> data, ore grades and<br />

ec<strong>on</strong>omic dem<strong>on</strong>strated reserves. For some commodities such as copper, <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong><br />

dates back to 1844.<br />

Assimilating such a great amount <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> for each commodity is not always<br />

easy and not very useful for decisi<strong>on</strong> makers. However, all <str<strong>on</strong>g>the</str<strong>on</strong>g>se data can be easily<br />

processed and summarized in <strong>on</strong>e indicator, namely <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy indicator.<br />

7.7.1 N<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> is to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy and exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main Australian<br />

metals throughout <str<strong>on</strong>g>the</str<strong>on</strong>g>ir mining history: Au, Cu, N i, Ag, P b, Zn and Fe.<br />

The reversible and irreversible exergy distances D and D∗ , <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy degradati<strong>on</strong><br />

velocities ˙D and ˙D ∗ , and <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> equivalent t M e∗ lost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic<br />

dem<strong>on</strong>strated reserves are provided. The t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> equivalent are calculated<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g> average exergy cost B∗ t <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 247<br />

in year 1900 (whenever data is available for that year). The reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mine<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mining period are c<strong>on</strong>sidered to be equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> cumulated<br />

producti<strong>on</strong> throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> mining history until 2004, plus <str<strong>on</strong>g>the</str<strong>on</strong>g> published reserves in<br />

2004 (<str<strong>on</strong>g>the</str<strong>on</strong>g> same principle is applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy costs).<br />

The peaking <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong> is estimated with <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert<br />

peak model described in secti<strong>on</strong> 7.5. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> R/P ratio assessed in exergy<br />

terms is given as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated years until depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different<br />

commodities.<br />

The same equati<strong>on</strong>s, data sources and ideas used for US copper mines are here applied.<br />

For calculating b ch, Eq. 5.1 is used, taking as input <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> elements generated from <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. defined in this study (Table 5.4). The c<strong>on</strong>centrati<strong>on</strong><br />

exergy b c is calculated with Eq. 5.10. The value <str<strong>on</strong>g>of</str<strong>on</strong>g> x c is taken from <str<strong>on</strong>g>the</str<strong>on</strong>g> latest<br />

geochemical study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s c<strong>on</strong>tinental crust from Rudnick and Gao [292]. Finally,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> unit exergy costs applied are those obtained by Valero and Botero [371]<br />

and updated by Martínez et al. [207].<br />

Figures 7.10 through 7.22 show <str<strong>on</strong>g>the</str<strong>on</strong>g> cumulated minimum c<strong>on</strong>centrati<strong>on</strong> and chemical<br />

exergy c<strong>on</strong>sumpti<strong>on</strong> over time <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> left axis and <str<strong>on</strong>g>the</str<strong>on</strong>g> ore grade trend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

right axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main base-precious metals extracted in Australia. As can be seen<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> figures, and as it happened to <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in <str<strong>on</strong>g>the</str<strong>on</strong>g> US, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

exergy Bc is usually much smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical <strong>on</strong>e Bch. But this fact<br />

changes when <str<strong>on</strong>g>the</str<strong>on</strong>g> values are c<strong>on</strong>verted into exergy costs B∗ c and B∗ , as shown in<br />

ch<br />

tables 7.2 to 7.8. The graphs reveal as well that c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all commodities has<br />

increased c<strong>on</strong>tinuously, following a general exp<strong>on</strong>ential trend. The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian<br />

mines, or in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir ore grade trends, have been notably reduced<br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> last century. This implies an even greater loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mine’s exergy<br />

and an important producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> waste rock.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> sake <str<strong>on</strong>g>of</str<strong>on</strong>g> simplicity, <str<strong>on</strong>g>the</str<strong>on</strong>g> direct results are provided.<br />

7.7.1.1 Gold<br />

Gold has played an important role in Australia’s history, influencing <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic,<br />

social, envir<strong>on</strong>mental and political life <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> country. The decade <str<strong>on</strong>g>of</str<strong>on</strong>g> 1850’s is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

denoted as <str<strong>on</strong>g>the</str<strong>on</strong>g> gold rush decade and since <str<strong>on</strong>g>the</str<strong>on</strong>g>n, great amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> gold have been<br />

extracted from all states. Australian gold industry is characterized as having c<strong>on</strong>tinuous<br />

cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> boom and bust. The most representative inflecti<strong>on</strong> points occurred<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> late 1800’s and around 1980. In both cases, <str<strong>on</strong>g>the</str<strong>on</strong>g> discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> new fields caused<br />

that producti<strong>on</strong>, which had gradually declined before those dates, rose to new highs<br />

(see Fig. 7.10).<br />

Gold’s ore grade has followed a general declining trend, even though <str<strong>on</strong>g>the</str<strong>on</strong>g>re have<br />

been various intermediate peaks coinciding with new discoveries. Ore grades have<br />

descended from 37,27 g/t in 1859, to <str<strong>on</strong>g>the</str<strong>on</strong>g> current 2,02 g/t. The c<strong>on</strong>centrati<strong>on</strong> exergy<br />

) decreased respectively from 1,28 to 0,91 toe/kg.<br />

costs <str<strong>on</strong>g>of</str<strong>on</strong>g> gold mines (b ∗<br />

c


248 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Cumulative total exergy Bt, toe<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0<br />

1859 1869 1879 1889 1899 1909 1919 1929 1939 1949 1959 1969 1979 1989 1999<br />

Year<br />

Bc Bch Xm<br />

Figure 7.10. Ore grade and cumulated exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian gold mines<br />

The exergy distance (D) between Australian gold mines in 2004 and 1859 is equal<br />

to 88,97 toe, while <str<strong>on</strong>g>the</str<strong>on</strong>g> irreversible exergy distance D ∗ : 10.683 ktoe. The great<br />

difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> reversible and irreversible exergy distances are due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extremely high unit c<strong>on</strong>centrati<strong>on</strong> costs for gold: 422.879 [207]. The average exergy<br />

degradati<strong>on</strong> velocity (˙D) <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian gold mines is 0,61 toe/year, ranging from<br />

0,12 toe/year reached in 1929, to <str<strong>on</strong>g>the</str<strong>on</strong>g> last high <str<strong>on</strong>g>of</str<strong>on</strong>g> 2,64 toe/year in 1997. This figure<br />

has fluctuated frequently due to changing gold prices, available resources, policy,<br />

technology and socioec<strong>on</strong>omic factors. The average irreversible degradati<strong>on</strong> velocity<br />

˙D ∗ is equal to 73,17 ktoe/year.<br />

The kt<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gold equivalent in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy costs extracted in <str<strong>on</strong>g>the</str<strong>on</strong>g> mining period<br />

from 1859 to 2004 was 11,06 ktAue ∗ , being <str<strong>on</strong>g>the</str<strong>on</strong>g> reference actual exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gold in year 1900 equal to 0,97 ktoe. The ec<strong>on</strong>omic dem<strong>on</strong>strated reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> gold<br />

in year 2004 are estimated as 5,59 kt, or 5,30 ktAue ∗ (B∗ t = 5118,61 ktoe), although<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y might probably increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> future, since explorati<strong>on</strong> c<strong>on</strong>tinues to take place<br />

and technological development will probably allow to mine low grade deposits.<br />

Note that since year 1900 was taken as reference for estimating <str<strong>on</strong>g>the</str<strong>on</strong>g> kt<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gold<br />

equivalent, <str<strong>on</strong>g>the</str<strong>on</strong>g> ktAue ∗ before that year will be greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage, since <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ores were more c<strong>on</strong>centrated. The c<strong>on</strong>trary happens after <str<strong>on</strong>g>the</str<strong>on</strong>g> reference year.<br />

The R/P ratio for Australian gold deposits is estimated as 22 years, being 2004 <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reference year for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s. Additi<strong>on</strong>ally, gold producti<strong>on</strong> in Australia has<br />

depleted around 65% <str<strong>on</strong>g>of</str<strong>on</strong>g> its ec<strong>on</strong>omic dem<strong>on</strong>strated reserves.<br />

The Hubbert peak is applied for Australian gold deposits since year 1943. Previous<br />

years are discarded in <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> rates,<br />

as new gold fields were found. Since 1943, it is assumed that most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Ore grade Xm, g/t


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 249<br />

have been found. The value for R in that year is calculated as <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

reserves in 2004, plus <str<strong>on</strong>g>the</str<strong>on</strong>g> cumulated exergy between 1943 and 2004 (R 1943 = 96, 02<br />

toe). Accordingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> peak is reached in year 2006 (see Fig. 7.11), with<br />

a regressi<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fitting curve <str<strong>on</strong>g>of</str<strong>on</strong>g> RF = 0, 9014. This implies, that although<br />

producti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> last years has decreased, it was not caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> resource limitati<strong>on</strong><br />

and ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r by external factors such as company’s strategies.<br />

Bt<br />

Integral Bt 1943<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

2006<br />

0<br />

1940 1960 1980 2000 2020 2040 2060 2080<br />

Figure 7.11. The Hubbert peak applied to Australian gold reserves. Values in toe.<br />

The results for Australian Gold deposits is summarized in table 7.2.<br />

7.7.1.2 Copper<br />

Copper has been also a relevant c<strong>on</strong>tributor to <str<strong>on</strong>g>the</str<strong>on</strong>g> country’s richness, since Australia<br />

is a major copper producer in <str<strong>on</strong>g>the</str<strong>on</strong>g> world. Their metal deposits were discovered and<br />

worked <strong>on</strong> a significant and pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itable scale from 1842. The producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper<br />

has been c<strong>on</strong>tinuous ever since.


250 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Table 7.2. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian gold mines.<br />

Reserves<br />

Year 1859 2004<br />

Minimum exergy, toe<br />

B ch 98,62 34,91<br />

B c 37,37 12,10<br />

B t 135,99 47,02<br />

D 88,97<br />

˙D, toe/yr 0,61<br />

N<strong>on</strong>-reversible exergy, ktoe<br />

B ∗<br />

ch 0,10 0,03<br />

B ∗<br />

c 15801,82 5118,57<br />

B ∗<br />

t 15801,92 5118,61<br />

D ∗ 10.683,31<br />

˙D ∗ , ktoe/yr 73,17<br />

t Au 15.789 5.589<br />

tAue ∗<br />

1900 16.358 5.299<br />

R/P, yrs 22<br />

% R. loss 65<br />

Year <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peak 2006<br />

Australian copper ore grades have declined from over 26% to 1,33%, accordingly, its<br />

c<strong>on</strong>centrati<strong>on</strong> exergy costs decreased from a maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> 2,97E-3 toe/kg reached<br />

in year 1849 to 1,97E-3 toe/kg in 2004. Despite <str<strong>on</strong>g>the</str<strong>on</strong>g> 33% <str<strong>on</strong>g>of</str<strong>on</strong>g> b∗ c decrease, Australian<br />

copper ore grades are still greater than in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r countries (according to <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS<br />

[363] in <str<strong>on</strong>g>the</str<strong>on</strong>g> US, <str<strong>on</strong>g>the</str<strong>on</strong>g> current ore grade is around 0,5%). Additi<strong>on</strong>ally, a significant<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> copper mines have been discovered throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> past century and<br />

prospects for <str<strong>on</strong>g>the</str<strong>on</strong>g> current scale <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian copper industry to c<strong>on</strong>tinue remain<br />

promising.<br />

The exergy distance D from 1844 to 2004 is 956,12 ktoe, and <str<strong>on</strong>g>the</str<strong>on</strong>g> irreversible <strong>on</strong>e<br />

D ∗ : 103,93 Mtoe. The exergy degradati<strong>on</strong> velocity (˙D) increased from less than 1<br />

ktoe/year before year 1898, to 50,5 ktoe/year in 2001. On average <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum<br />

and irreversible exergy degradati<strong>on</strong> velocities were ˙D = 5, 94 and ˙ D ∗ = 645, 5, respectively.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> 1844 to 2004, Australian copper mines lost 17,2 M tCue ∗ (1900 reference<br />

exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 tCue ∗ is equal to 6,04 toe). The ec<strong>on</strong>omic dem<strong>on</strong>strated reserves<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> copper in year 2004 are estimated as 42,1 Mt, or 41,88 MtCue (B∗ t = 253, 1<br />

Mtoe). The resources to producti<strong>on</strong> ratio (R/P) is 48 years, and <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic reserves loss is about 29%.<br />

The Hubbert peak model applied to Australian copper reserves is shown in Fig. 7.11.<br />

C<strong>on</strong>sidering that <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> copper since 1884 are R = 3.319 ktoe, <str<strong>on</strong>g>the</str<strong>on</strong>g> peak is<br />

reached in year 2021. The regressi<strong>on</strong> factor is RF = 0, 9336.<br />

Table 7.3 shows a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results.


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 251<br />

Cumulative total exergy Bt, ktoe<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1844<br />

1854<br />

1864<br />

1874<br />

1884<br />

1894<br />

1904<br />

1914<br />

1924<br />

1934<br />

Bc<br />

Year<br />

Bch Xm<br />

1944<br />

1954<br />

1964<br />

1974<br />

1984<br />

1994<br />

2004<br />

Figure 7.12. Ore grade and cumulated exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian copper<br />

mines<br />

Integral Bt<br />

Bt<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

1850 1900 1950 2000 2050 2100 2150<br />

Figure 7.13. The Hubbert peak applied to Australian copper reserves. Values in ktoe.<br />

2021<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Ore grade Xm, %


252 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Table 7.3. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian copper mines.<br />

7.7.1.3 Nickel<br />

Reserves<br />

Year 1844 2004<br />

Minimum exergy, ktoe<br />

B ch 2973,36 2120,87<br />

B c 345,65 242,02<br />

B t 3319,01 2362,89<br />

D 956,12<br />

˙D, ktoe/yr 5,94<br />

N<strong>on</strong>-reversible exergy, Mtoe<br />

B ∗<br />

ch 238,46 170,09<br />

B ∗<br />

c 118,59 83,04<br />

B ∗<br />

t 357,06 253,13<br />

D ∗ 103,93<br />

˙D ∗ , Mtoe/yr 0,645<br />

M t Cu 58,98 42,10<br />

M tCue ∗<br />

1900 59,08 41,88<br />

R/P, yrs 48<br />

% R. loss 29<br />

Year <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peak 2021<br />

The large-scale producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia’s most recent additi<strong>on</strong>s to<br />

its mining industry. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> earliest nickel producti<strong>on</strong> started in year 1913,<br />

it was not until 1966, with <str<strong>on</strong>g>the</str<strong>on</strong>g> discovering <str<strong>on</strong>g>of</str<strong>on</strong>g> a large high grade deposit, when<br />

N i producti<strong>on</strong> and explorati<strong>on</strong> boomed. Since <str<strong>on</strong>g>the</str<strong>on</strong>g>n, extracti<strong>on</strong> has c<strong>on</strong>tinued to<br />

increase, even though in <str<strong>on</strong>g>the</str<strong>on</strong>g> period from 1977 to 1994, N i producti<strong>on</strong> suffered a<br />

slight stagnati<strong>on</strong> (see Fig. 7.14).<br />

The ore grade has decreased from 4,57 to 1,16%. Accordingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g> N i mines (b∗ c ) decreased from 3,01 to 2,44 tep/t.<br />

The exergy distance D between 1963 and 2004 is equal to 323,68 ktoe, while D ∗ =<br />

9, 46 Mtoe. The exergy degradati<strong>on</strong> velocity ˙D increased from 0,26 ktoe/year to<br />

around <str<strong>on</strong>g>the</str<strong>on</strong>g> current 19 ktoe/year. On average, <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum and irreversible exergy<br />

degradati<strong>on</strong> velocities <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel mines are ˙D = 8, 52 and ˙D ∗ = 683, 13 ktoe/year,<br />

respectively.<br />

The megat<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> N i equivalent lost in <str<strong>on</strong>g>the</str<strong>on</strong>g> period 1967 to 2004 are equal to 3,27<br />

M tN ie∗ (<str<strong>on</strong>g>the</str<strong>on</strong>g> reference year is in this case 1967, since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no informati<strong>on</strong> for former<br />

years; M tN ie∗ 1967 = 7, 93 toe). The ec<strong>on</strong>omic dem<strong>on</strong>strated reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel<br />

in year 2004 are estimated as 22,6 Mt, or 22,55 M tN ie∗ (B∗ t =178,8 Mtoe). The R/P<br />

ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian nickel deposits, indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is enough metal for at least<br />

121 years. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic reserves loss is around 13%.


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 253<br />

Cumulative total exergy, ktoe<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1967 1972 1977 1982 1987<br />

Year<br />

1992 1997 2002<br />

Bc Bch Xm<br />

Figure 7.14. Ore grade and cumulated exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian nickel<br />

mines<br />

Integral Bt<br />

Bt<br />

40<br />

30<br />

20<br />

10<br />

0<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

2040<br />

0<br />

1960 1980 2000 2020 2040 2060 2080 2100 2120 2140<br />

Figure 7.15. The Hubbert peak applied to Australian nickel reserves. Values in ktoe.<br />

Figure 7.15 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model applied to Australian nickel reserves.<br />

C<strong>on</strong>sidering that <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel in 1967 are R 1967 = 2.587, 6 ktoe, <str<strong>on</strong>g>the</str<strong>on</strong>g> peak is<br />

reached in year 2040. The regressi<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> curve is RF = 0, 7549.<br />

Table 7.4 shows a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results.<br />

5,0<br />

4,5<br />

4,0<br />

3,5<br />

3,0<br />

2,5<br />

2,0<br />

1,5<br />

1,0<br />

0,5<br />

0,0<br />

Ore grade Xm, %


254 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Table 7.4. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian nickel mines.<br />

7.7.1.4 Silver<br />

Reserves<br />

Year 1967 2004<br />

Minimum exergy, ktoe<br />

B ch 2442,76 2138,14<br />

B c 144,80 125,75<br />

B t 2587,57 2263,89<br />

D 323,68<br />

˙D, ktoe/yr 8,52<br />

N<strong>on</strong>-reversible exergy, ktoe<br />

B ∗<br />

ch 142198,16 124465,18<br />

B ∗<br />

c 62524,61 54298,66<br />

B ∗<br />

t 204722,77 178763,84<br />

D ∗ 25968,93<br />

˙D ∗ , ktoe/yr 683,13<br />

M t N i 25,82 22,60<br />

M tN ie ∗<br />

1967 25,82 22,55<br />

R/P, yrs 121<br />

% R. loss 13<br />

Year <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peak 2040<br />

Silver is usually found in mines c<strong>on</strong>taining also lead and zinc and hence <str<strong>on</strong>g>the</str<strong>on</strong>g>ir producti<strong>on</strong><br />

rates are tightly c<strong>on</strong>nected. The establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> major mining companies<br />

in Australia was in <str<strong>on</strong>g>the</str<strong>on</strong>g> decade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1880’s.<br />

The ore grades <str<strong>on</strong>g>of</str<strong>on</strong>g> silver have suffered a drastic reducti<strong>on</strong>, passing from over 3000<br />

g/t at <str<strong>on</strong>g>the</str<strong>on</strong>g> initial years, to less than 800 g/t in just <strong>on</strong>e decade. Since 1931, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ore grades have declined to less than 200 g/t, being <str<strong>on</strong>g>the</str<strong>on</strong>g> current ore grade equal to<br />

133,5 g/t (see Fig. 7.16). This quality loss <str<strong>on</strong>g>of</str<strong>on</strong>g> silver mines is reflected in <str<strong>on</strong>g>the</str<strong>on</strong>g> actual<br />

c<strong>on</strong>centrati<strong>on</strong> exergy comp<strong>on</strong>ent: in year 1884, b∗ c was equal to 42,9 tep/t, while in<br />

2004, 30,3 tep/t (30% <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> exergy loss).<br />

The exergy distance between <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves in 1884 and 2004 are D = 1416, 91 toe<br />

and D ∗ = 2227, 4 ktoe. This minimum exergy was c<strong>on</strong>sumed at an average rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

˙D = 11, 71 toe/year (˙D ∗ = 18.407 toe/yr), but since year 2000, <str<strong>on</strong>g>the</str<strong>on</strong>g> silver degradati<strong>on</strong><br />

velocity has increased to about ˙D = 40 (˙D ∗ = 61.129) toe/year.<br />

Silver mines in Australia lost throughout <str<strong>on</strong>g>the</str<strong>on</strong>g>ir mining history a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 72,81 ktAge ∗<br />

(being <str<strong>on</strong>g>the</str<strong>on</strong>g> 1900 reference exergy equal to 30,6 toe/t). The ec<strong>on</strong>omic dem<strong>on</strong>strated<br />

reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> silver in year 2004 are estimated as 41,0 kt, or 40,8 ktAge (B∗ t = 1247, 4<br />

ktoe). The R/P ratio indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> silver mines could occur in 19<br />

years, if producti<strong>on</strong> remains as in 2004 and no fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r reserves are found. The<br />

majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> silver in Australia have been already extracted,<br />

as indicated by <str<strong>on</strong>g>the</str<strong>on</strong>g> %R loss ratio: 97%.


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 255<br />

Cumulative total exergy, toe<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1884<br />

1889<br />

1894<br />

1899<br />

1904<br />

1909<br />

1914<br />

1919<br />

1924<br />

1929<br />

1934<br />

1939<br />

1944<br />

1949<br />

Year<br />

Bc Bch Xm<br />

1954<br />

1959<br />

1964<br />

1969<br />

1974<br />

1979<br />

1984<br />

1989<br />

1994<br />

1999<br />

2004<br />

Figure 7.16. Ore grade and cumulated exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian silver<br />

mines<br />

The Hubbert peak model applied to Australian silver reserves does not throw out<br />

good results. The regressi<strong>on</strong> factor is very low (RF = 0, 577), c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves<br />

in year 1884: R = 2226 toe. The maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peak would have been<br />

reached in year 2005 (see Fig. 7.17). It must be pointed out that silver is a special<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodity in Australia, since it is extracted <strong>on</strong>ly as a by-product <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s such as copper, lead zinc and to a lesser extent, gold [112]. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

patterns may not follow <str<strong>on</strong>g>the</str<strong>on</strong>g> general rules expected for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r commodities.<br />

Table 7.5 summarizes <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained.<br />

7.7.1.5 Lead<br />

Lead producti<strong>on</strong> has followed a general increasing trend since <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

mining industry. In deposits mined today, lead (in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> galena, P bS) is usually<br />

associated with zinc, silver and comm<strong>on</strong>ly copper, and is extracted as a co-product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se metals [112].<br />

As in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> silver, lead ore grades decreased dramatically in a short period<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time. During <str<strong>on</strong>g>the</str<strong>on</strong>g> first 20 years <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lead industry, ore grades kept at around<br />

60%. From that point, <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> P b in <str<strong>on</strong>g>the</str<strong>on</strong>g> mines dropped to levels below 20%,<br />

reaching <str<strong>on</strong>g>the</str<strong>on</strong>g> current level <str<strong>on</strong>g>of</str<strong>on</strong>g> 4,32%. The c<strong>on</strong>centrati<strong>on</strong> exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> P b in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mines (b∗ c ) decreased from 0,63 toe/t at <str<strong>on</strong>g>the</str<strong>on</strong>g> highest point reached in 1877, to 0,49<br />

toe/t in 2004 (see Fig. 7.18).<br />

The exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> lead between 1859 and 2004 is equal to D = 982, 10 ktoe,<br />

and D ∗ = 40, 74 Mtoe. The exergy degradati<strong>on</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> lead increased from<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Ore grade Xm, g/t


256 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Integral Bt<br />

Bt<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

2005<br />

1900 1950 2000 2050 2100 2150<br />

Figure 7.17. The Hubbert peak applied to Australian silver reserves. Values in toe.<br />

Table 7.5. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian silver mines.<br />

Reserves<br />

Year 1880 2004<br />

Minimum exergy, toe<br />

B ch 1735,08 632,91<br />

B c 490,99 176,24<br />

B t 2226,07 809,15<br />

D 1416,91<br />

˙D, toe/yr 11,71<br />

N<strong>on</strong>-reversible exergy, ktoe<br />

B ∗<br />

ch 17,35 6,33<br />

B ∗<br />

c 3459,49 1241,07<br />

B ∗<br />

t 3476,84 1247,40<br />

D ∗ 2227,36<br />

˙D, ktoe/yr 18,42<br />

t Ag 112399 41000<br />

tAge ∗<br />

1900 113588 40777<br />

R/P, years 19<br />

% R. loss 97<br />

Year <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peak 2005


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 257<br />

Cumulative total exergy, ktoe<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0<br />

1859 1869 1879 1889 1899 1909 1919 1929 1939 1949 1959 1969 1979 1989 1999<br />

Year<br />

Bc Bch Xm<br />

Figure 7.18. Ore grade and cumulated exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian lead mines<br />

˙D = 0, 20 toe/year (˙D ∗ = 9 toe/year) to around 20 ktoe/year (˙D ∗ = 780 ktoe/year)<br />

registered since year 2000. On average, ˙D and ˙D ∗ are 6,73 and 279,04 ktoe/year,<br />

respectively.<br />

The megat<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> lead equivalent lost in Australia’s mining history are equal to 34,12<br />

M t P be∗ (being <str<strong>on</strong>g>the</str<strong>on</strong>g> 1900 reference actual exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lead equal to 0,766<br />

toe). The ec<strong>on</strong>omic dem<strong>on</strong>strated reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> lead in year 2004 are estimated as 22,9<br />

Mt, or 22,45 M t P be (B∗ t = 26, 81 Mtoe). According to <str<strong>on</strong>g>the</str<strong>on</strong>g> R/P ratio, <str<strong>on</strong>g>the</str<strong>on</strong>g> complete<br />

degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian lead deposits would occur in 34 years, if <str<strong>on</strong>g>the</str<strong>on</strong>g> reference year<br />

is 2004. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic dem<strong>on</strong>strated reserves loss is<br />

around 60%.<br />

Figure 7.19 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model applied to lead. The peaking year is<br />

reached in 1997, c<strong>on</strong>sidering that <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic dem<strong>on</strong>strated reserves are R 1859 =<br />

1646, 6 ktoe. The regressi<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> curve is RF = 0, 8691. And <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

points for <str<strong>on</strong>g>the</str<strong>on</strong>g> latest years (1998 - 2004) are not included under <str<strong>on</strong>g>the</str<strong>on</strong>g> curve. According<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> data, <str<strong>on</strong>g>the</str<strong>on</strong>g> real peak might have been reached in year 2002. This<br />

might indicate that, in <str<strong>on</strong>g>the</str<strong>on</strong>g> period between 1997 to 2002, <str<strong>on</strong>g>the</str<strong>on</strong>g>re has been an overproducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves. C<strong>on</strong>sequently an abrupt decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> rates is now<br />

expected, as it happens with US copper. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> pattern for<br />

lead might not follow <str<strong>on</strong>g>the</str<strong>on</strong>g> general behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r commodities, as it is extracted<br />

as a by-product, and <str<strong>on</strong>g>the</str<strong>on</strong>g> model cannot be applied satisfactorily.<br />

Table 7.6 summarizes <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained for Australian lead <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits.<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Ore grade Xm, %


258 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Integral Bt<br />

Bt<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

2000<br />

1500<br />

1000<br />

500<br />

1997<br />

0<br />

1850 1900 1950 2000 2050 2100 2150<br />

Figure 7.19. The Hubbert peak applied to Australian lead reserves. Values in ktoe.<br />

Table 7.6. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian lead mines.<br />

Reserves<br />

Year 1859 2004<br />

Minimum exergy, ktoe<br />

B ch 1513,39 613,09<br />

B c 133,24 51,44<br />

B t 1646,63 664,53<br />

D 982,10<br />

˙D, ktoe/yr 6,73<br />

N<strong>on</strong>-reversible exergy, ktoe<br />

B ∗<br />

ch 38394,47 15554,01<br />

B ∗<br />

c 29156,24 11256,51<br />

B ∗<br />

t 67550,71 26810,52<br />

D ∗ 40740,19<br />

˙D, ktoe/yr 279,04<br />

M t P b 56,53 22,90<br />

M t ∗<br />

P be,1900 56,57 22,45<br />

R/P 34<br />

% R. loss 60<br />

Year <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peak 1997


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 259<br />

Cumulative total exergy, ktoe<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

1898<br />

1903<br />

1908<br />

1913<br />

1918<br />

1923<br />

1928<br />

1933<br />

1938<br />

1943<br />

1948<br />

1953<br />

1958<br />

1963<br />

1968<br />

1973<br />

1978<br />

1983<br />

1988<br />

1993<br />

1998<br />

2003<br />

Year<br />

Bc Bch Xm<br />

Figure 7.20. Ore grade and cumulated exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian zinc mines<br />

7.7.1.6 Zinc<br />

Very little interest was shown in zinc until <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century because<br />

no known method for efficient Zn separati<strong>on</strong> and recovery was found. At that time,<br />

Zn was seen as a problem appearing in silver and lead mining. However, with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

new method <str<strong>on</strong>g>of</str<strong>on</strong>g> flotati<strong>on</strong>, firstly applied in 1905, <str<strong>on</strong>g>the</str<strong>on</strong>g> Zn industry started to emerge.<br />

The Zn grade <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian mines has fluctuated str<strong>on</strong>gly between 3 and 17%, especially<br />

until <str<strong>on</strong>g>the</str<strong>on</strong>g> late 1940’s. Since <str<strong>on</strong>g>the</str<strong>on</strong>g>n, Zn grades tend to stabilize to around 8,5%<br />

= 0, 82 toe/t).<br />

(b ∗<br />

c<br />

The exergy distance since 1905 has been D = 5381 ktoe, and D ∗ = 102 Mtoe.<br />

The exergy has been extracted at an average rate <str<strong>on</strong>g>of</str<strong>on</strong>g> ˙D=50 ktoe/year (˙D ∗ =950<br />

ktoe/year). In <str<strong>on</strong>g>the</str<strong>on</strong>g> last 5 years, <str<strong>on</strong>g>the</str<strong>on</strong>g> yearly minimum and irreversible exergy degradati<strong>on</strong><br />

velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc (˙D and ˙D ∗ ) has increased to about 178 and 3367 ktoe/year,<br />

respectively.<br />

The megat<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc equivalent lost in <str<strong>on</strong>g>the</str<strong>on</strong>g> mining period from 1898 to 2004 was<br />

44,56 M t Zne (M t Zne1900 = 2, 28 toe). The ec<strong>on</strong>omic dem<strong>on</strong>strated reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc<br />

in year 2004 are estimated as 41 Mt, or 37,69 M t Zne (B∗ t = 85, 95 Mtoe). The R/P<br />

ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Zn ec<strong>on</strong>omic reserves is estimated at around 30 years. The depleti<strong>on</strong> degree<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic reserves is around 51%.<br />

The Hubbert peak model applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian Zn reserves is shown in Fig. 7.21.<br />

As zinc mining is closely related to <str<strong>on</strong>g>the</str<strong>on</strong>g> mining <str<strong>on</strong>g>of</str<strong>on</strong>g> lead and silver, a similar behavior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model to <str<strong>on</strong>g>the</str<strong>on</strong>g> latter <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s is expected. The latest producti<strong>on</strong> points are<br />

not included under <str<strong>on</strong>g>the</str<strong>on</strong>g> curve (from 2000 to 2004). However, <str<strong>on</strong>g>the</str<strong>on</strong>g> adjusted curve<br />

has a better regressi<strong>on</strong> factor than that <str<strong>on</strong>g>of</str<strong>on</strong>g> lead and silver, namely RF = 0, 8806.<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Ore grade Xm, %


260 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Integral Bt<br />

Bt<br />

200<br />

150<br />

100<br />

50<br />

0<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

2010<br />

0<br />

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100<br />

Figure 7.21. The Hubbert peak applied to Australian zinc reserves. Values in ktoe.<br />

Table 7.7. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian zinc mines.<br />

Reserves<br />

Year 1898 2004<br />

Minimum exergy, ktoe<br />

B ch 10188,07 5078,73<br />

B c 421,86 150,24<br />

B t 10609,94 5228,96<br />

D 5380,97<br />

˙D, ktoe/yr 50,3<br />

N<strong>on</strong>-reversible exergy, ktoe<br />

B ∗<br />

ch 134494,54 67045,15<br />

B ∗<br />

c 53108,63 18913,37<br />

B ∗<br />

t 187603,17 85958,52<br />

D ∗ 68205,94<br />

˙D, ktoe/yr 637,53<br />

M t Zn 82,25 41,00<br />

M t ∗<br />

Zne,1900 82,25 37,69<br />

R/P, yrs 30<br />

% R. loss 51<br />

Year <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peak 2010<br />

The expected peaking year, assuming <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic dem<strong>on</strong>strated reservers R 1898 =<br />

10.610, 7 ktoe is 2010.<br />

Table 7.7 summarizes <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained for Australian zinc <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits.


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 261<br />

Cumulative total exergy Bt, ktoe<br />

700000<br />

600000<br />

500000<br />

400000<br />

300000<br />

200000<br />

100000<br />

0<br />

1907 1917 1927 1937 1947 1957<br />

Year<br />

1967 1977 1987 1997<br />

Bc Bch Xm<br />

Figure 7.22. Ore grade and cumulated exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian ir<strong>on</strong> mines<br />

7.7.1.7 Ir<strong>on</strong><br />

Australia is <str<strong>on</strong>g>the</str<strong>on</strong>g> third ir<strong>on</strong> ore producti<strong>on</strong> country in <str<strong>on</strong>g>the</str<strong>on</strong>g> world, after China and Brazil.<br />

The ec<strong>on</strong>omic dem<strong>on</strong>strated ir<strong>on</strong> ore reserves have fluctuated throughout last century<br />

and accordingly, its associated ore grade. In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> discoveries <str<strong>on</strong>g>of</str<strong>on</strong>g> new<br />

ir<strong>on</strong> deposits, o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs have been reclassified as ec<strong>on</strong>omic due to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong><br />

prices. The available reliable data about grades and producti<strong>on</strong> trends for ir<strong>on</strong> dates<br />

back to 1907, although <str<strong>on</strong>g>the</str<strong>on</strong>g>re are single figures for some years since 1850. There are<br />

ore grades missing for <str<strong>on</strong>g>the</str<strong>on</strong>g> following year periods: 1930 - 1934; 1936 - 1940; 1946 -<br />

1951; 1966 and 1994. For <str<strong>on</strong>g>the</str<strong>on</strong>g> latter, <str<strong>on</strong>g>the</str<strong>on</strong>g> same ore grade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> previous year, where<br />

grade data was available, was assumed. The missing grades are represented hence<br />

as a horiz<strong>on</strong>tal straight line in figure 7.22.<br />

The abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> rich deposits has allowed <str<strong>on</strong>g>the</str<strong>on</strong>g> ore grades to stabilize and even<br />

increase throughout its mining history. Ir<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> in Australia rarely goes<br />

down to 62%, equivalent to around b∗ c =0,29 toe/t (see Fig. 7.22).<br />

The exergy distance between 1907 and 2004 has been D = 704 Mtoe, and D ∗ =<br />

4.901 Mtoe. The average exergy degradati<strong>on</strong> velocity since 1907 was ˙D = 7183<br />

ktoe/year (˙D ∗ = 50.012 ktoe/year), although it increased sharply since <str<strong>on</strong>g>the</str<strong>on</strong>g> seventies<br />

to near ˙D = 40.000 ktoe/year (˙D ∗ = 265.000 ktoe/year).<br />

The megat<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> equivalent lost in <str<strong>on</strong>g>the</str<strong>on</strong>g> mining period from 1907 to 2004<br />

was 3318 M t Fee ∗ (The first available year was taken as <str<strong>on</strong>g>the</str<strong>on</strong>g> reference, 1907:<br />

1t Fee ∗ =1,47 toe). The ec<strong>on</strong>omic dem<strong>on</strong>strated reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> in year 2004 are<br />

estimated as 10.310 Mt, or 11.282 M t Fee (B∗ t = 16665 Mtoe). The Mt<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong><br />

equivalent are greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage, because in <str<strong>on</strong>g>the</str<strong>on</strong>g> reference year 1907, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Ore grade Xm, %


262 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Bt<br />

Integral Bt<br />

x 105<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

x 107<br />

4<br />

3<br />

2<br />

1<br />

2068<br />

0<br />

1850 1900 1950 2000 2050 2100 2150 2200 2250 2300<br />

Figure 7.23. The Hubbert peak applied to Australian ir<strong>on</strong> reserves. Values in ktoe.<br />

c<strong>on</strong>centrati<strong>on</strong> was smaller than in 2004 (54% vs. 62%). The R/P ratio indicates<br />

that Australian ir<strong>on</strong> reserves will become depleted in 63 years, after <str<strong>on</strong>g>the</str<strong>on</strong>g> reference<br />

year 2004. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic dem<strong>on</strong>strated reserves loss<br />

is around 23%.<br />

The Hubbert peak model is satisfactorily applied to Australian ir<strong>on</strong> reserves, as can<br />

be seen in Fig. 7.23. The peaking year will be reached in 2026, c<strong>on</strong>sidering that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ec<strong>on</strong>omic dem<strong>on</strong>strated reserves R 1907 = 3100 Mtoe. The regressi<strong>on</strong> factor is very<br />

acceptable: RF = 0, 9515.<br />

Table 7.8 shows a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained for Australian ir<strong>on</strong> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits.<br />

7.7.2 Fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

In this secti<strong>on</strong> we are going to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian fuel<br />

reserves, which are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> vast amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> coal and some oil and natural gas.<br />

The exergy is calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s provided in secti<strong>on</strong> 5.3.3, with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

methodology developed by Valero and Lozano [369]. As stated in previous chapters,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels is tightly related to its chemical exergy c<strong>on</strong>tent (<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

exergy comp<strong>on</strong>ent is insignificant). Note also that it has no sense <str<strong>on</strong>g>of</str<strong>on</strong>g> calculating<br />

exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels, as it is impossible to replace <str<strong>on</strong>g>the</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis process<br />

with current technology.


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 263<br />

Table 7.8. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian ir<strong>on</strong> mines.<br />

Reserves<br />

Year 1907 2004<br />

Minimum exergy, Mtoe<br />

B ch 3044,65 2353,31<br />

B c 55,50 42,86<br />

B t 3100,15 2396,17<br />

D 703,98<br />

˙D, ktoe/yr 7.183,45<br />

N<strong>on</strong>-reversible exergy, Mtoe<br />

B ∗<br />

ch 16163,18 12493,08<br />

B ∗<br />

c 5403,71 4172,74<br />

B ∗<br />

t 21566,89 16665,82<br />

D ∗ 4901,07<br />

˙D, Mtoe/yr 50,01<br />

M t Fe 14599,83 10310,77<br />

M t ∗<br />

Fee,1907 14599,83 11282,02<br />

R/P, yrs 63<br />

% R. loss 23<br />

Year <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peak 2026<br />

As for <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, R/P ratios, <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> degree, and <str<strong>on</strong>g>the</str<strong>on</strong>g> year<br />

estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> are provided for Australian coal, oil and<br />

natural gas.<br />

7.7.2.1 Coal<br />

Coal was first discovered in Australia in 1791 in New South Wales and <str<strong>on</strong>g>the</str<strong>on</strong>g> first coal<br />

mining settlement was established <str<strong>on</strong>g>the</str<strong>on</strong>g>re in 1801 [12].<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g>n, coal producti<strong>on</strong> has increased dramatically. It is mined in every state<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Australia. Around 75% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coal mined in Australia is exported, mostly to<br />

eastern Asia. C<strong>on</strong>sequently, Australia has become <str<strong>on</strong>g>the</str<strong>on</strong>g> fourth largest coal producer<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> world. Coal also provides about 85% <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia’s electricity producti<strong>on</strong> The<br />

relative abundance, reliability and low cost <str<strong>on</strong>g>of</str<strong>on</strong>g> coal have ensured that it remains <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most comm<strong>on</strong>ly used fuel source for electricity generati<strong>on</strong> in Australia [164].<br />

The main type <str<strong>on</strong>g>of</str<strong>on</strong>g> coal extracted in Australia is bituminous and to a lesser extent<br />

lignite. Small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> subbituminous and traces <str<strong>on</strong>g>of</str<strong>on</strong>g> semi-anthracite are also produced.<br />

Table A.22 in <str<strong>on</strong>g>the</str<strong>on</strong>g> appendix, shows <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Australian coal in <str<strong>on</strong>g>the</str<strong>on</strong>g> period between 1913 and 2006. The data has been extracted<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> historical statistics compiled by <str<strong>on</strong>g>the</str<strong>on</strong>g> British Geological Survey and its preceding<br />

organizati<strong>on</strong>s. The exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coal extracted in <str<strong>on</strong>g>the</str<strong>on</strong>g> menti<strong>on</strong>ed period<br />

are shown in figure 7.24. The specific exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> anthracite, bituminous, subbituminous<br />

and lignite used are <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es listed in table 6.10 (b I I I). According to BP [35],


264 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Bt, ktoe<br />

250000<br />

200000<br />

150000<br />

100000<br />

50000<br />

0<br />

1913<br />

1917<br />

1921<br />

1925<br />

1929<br />

1933<br />

1937<br />

Coal producti<strong>on</strong> in Australia<br />

Semi-anthracite Bituminous Subbituminous Lignite<br />

Subbituminous<br />

1941<br />

1945<br />

1949<br />

1953<br />

1957<br />

1961<br />

1965<br />

1969<br />

1973<br />

1977<br />

1981<br />

1985<br />

1989<br />

Lignite<br />

Bituminous<br />

1993<br />

1997<br />

2001<br />

2005<br />

Figure 7.24. The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian coal reserves. Values in ktoe.<br />

Australian coal’s reserves are in 2006, around 38,6 Mt<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> anthracite and bituminous,<br />

and 39,9 Mt<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> subbituminous and lignite. The latter reserves expressed in<br />

exergy terms, are equivalent to a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 37,7 Gtoe.<br />

The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian coal reserves, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance D, between 1913<br />

and 2006 has been around 5,6 Gtoe. This exergy was c<strong>on</strong>sumed at an average exergy<br />

degradati<strong>on</strong> velocity ˙D <str<strong>on</strong>g>of</str<strong>on</strong>g> near 60 Mtoe/year, but since year 2000, <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity has<br />

increased to more than 200 Mtoe/year.<br />

Assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy reserves in 1913 were those <str<strong>on</strong>g>of</str<strong>on</strong>g> year 2006 plus <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

distance between 1913 and 2006, i.e. R 1913 = 43, 4 Gtoe, <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert’s bell-shaped<br />

curve applied to Australian coal producti<strong>on</strong> reveals that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> will<br />

be reached in year 2048. As can be seen in fig. 7.25, <str<strong>on</strong>g>the</str<strong>on</strong>g> model has been very well<br />

fitted, with a regressi<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 0,9883.<br />

The resources to producti<strong>on</strong> ratio R/P in 2006, calculated as <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy reserves in 2006 and <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy producti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> same year, indicates that it<br />

will be enough coal for at least 153 years. The percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic reserves<br />

loss is around 13%, what indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are still large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> coal in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

country.<br />

7.7.2.2 Oil<br />

According to BP [35], Australia has around 0,54 Gt<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oil reserves. The majority<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se reserves are located <str<strong>on</strong>g>of</str<strong>on</strong>g>f Western Australia in <str<strong>on</strong>g>the</str<strong>on</strong>g> Carnarv<strong>on</strong> basin and in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Year


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 265<br />

Bt<br />

Integral Bt<br />

5<br />

4<br />

3<br />

2<br />

1<br />

x 10 5<br />

0<br />

x 107<br />

5<br />

4<br />

3<br />

2<br />

1<br />

2048<br />

0<br />

1900 1950 2000 2050 2100 2150 2200<br />

Figure 7.25. The Hubbert peak applied to Australian coal reserves. Values in ktoe.<br />

Bass Strait <str<strong>on</strong>g>of</str<strong>on</strong>g>f Sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Australia. Australian oil producti<strong>on</strong> does not cover internal<br />

c<strong>on</strong>sumpti<strong>on</strong> and around 39% <str<strong>on</strong>g>of</str<strong>on</strong>g> total c<strong>on</strong>sumpti<strong>on</strong> needs to be imported. Oil producti<strong>on</strong><br />

in Australia has increased gradually since 1980, peaking in 2000. Thereafter,<br />

Australia has experienced decreasing oil producti<strong>on</strong> due to oil producing basins such<br />

as Cooper-Eromanga and Gippsland experiencing natural declines, coupled with a<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> new fields coming <strong>on</strong>line [82]. However, new explorati<strong>on</strong> efforts, especially<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fshore could help stabilize <str<strong>on</strong>g>the</str<strong>on</strong>g> country’s oil producti<strong>on</strong> over <str<strong>on</strong>g>the</str<strong>on</strong>g> next few years.<br />

Historical data about Australian oil producti<strong>on</strong> is very fragmented. Reliable and<br />

c<strong>on</strong>tinuous informati<strong>on</strong> can <strong>on</strong>ly be found since <str<strong>on</strong>g>the</str<strong>on</strong>g> sixties. In fact, it was not until<br />

those years, when <str<strong>on</strong>g>the</str<strong>on</strong>g> country started to produce c<strong>on</strong>siderable amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> oil. It is<br />

worth to menti<strong>on</strong> that in additi<strong>on</strong> to crude petroleum, oil shale 5 has been extracted<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> past and might be taken up again in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

Table A.23 shows Australian oil producti<strong>on</strong> data from 1913 until 2006, published by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> British Geological Survey and its former organizati<strong>on</strong>s. With <str<strong>on</strong>g>the</str<strong>on</strong>g> specific exergy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Fuel-oil Nr.1 (46259,1 kJ/kg - table 6.13), we obtain that <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance D <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Australian oil producti<strong>on</strong> from 1964 to 2006 is equal to around 1 Gtoe. This exergy<br />

was c<strong>on</strong>sumed at an average degradati<strong>on</strong> velocity ˙D <str<strong>on</strong>g>of</str<strong>on</strong>g> 21,7 Mtoe/year, reaching a<br />

peak in 2000 <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 40 Mtoe/year (see table 7.26).<br />

The Hubbert peak model has been applied also for Australian oil producti<strong>on</strong> (see fig.<br />

7.27). It has been assumed, that <str<strong>on</strong>g>the</str<strong>on</strong>g> total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy reserves are equal to<br />

5 Oil Shales are sedimentary rocks c<strong>on</strong>taining a high proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter (kerogen) which<br />

can be c<strong>on</strong>verted to syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic oil or gas by processing.


266 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Bt, ktoe<br />

45000<br />

40000<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

1960<br />

1962<br />

Oil producti<strong>on</strong> in Australia<br />

1964<br />

1966<br />

1968<br />

1970<br />

1972<br />

1974<br />

1976<br />

1978<br />

1980<br />

1982<br />

1984<br />

1986<br />

1988<br />

1990<br />

1992<br />

1994<br />

1996<br />

1998<br />

2000<br />

2002<br />

2004<br />

2006<br />

Figure 7.26. The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian oil reserves. Values in ktoe.<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> current <strong>on</strong>es (0,59 Gtoe), plus <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy degradati<strong>on</strong> due to extracti<strong>on</strong> in past<br />

years (1,02 Gtoe), i.e. R = 1, 61 Gtoe. Our results throw up that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak 6 should<br />

have been reached in 1997. The real peak was however reached in year 2000, and<br />

was followed by a sharp producti<strong>on</strong> decrease afterwards. This behavior is <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

found in US copper mines and in <str<strong>on</strong>g>the</str<strong>on</strong>g> models <str<strong>on</strong>g>of</str<strong>on</strong>g> Meadows et al. [218], indicating<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> symmetrical exp<strong>on</strong>ential curve <str<strong>on</strong>g>of</str<strong>on</strong>g> Hubbert might not be <str<strong>on</strong>g>the</str<strong>on</strong>g> best fit.<br />

The resources to producti<strong>on</strong> ratio for Australian oil producti<strong>on</strong> indicates that in less<br />

than 26 years, oil reserves will be completely depleted, if no more deposits are found.<br />

Additi<strong>on</strong>ally, around 60% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic reserves have been also exploited. As<br />

stated before, this situati<strong>on</strong> might change, since Australia is investing in oil explorati<strong>on</strong>.<br />

7.7.2.3 Natural gas<br />

Australia has sizable natural gas reserves located in <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore basins, and in most <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all Australia’s states. The country is <str<strong>on</strong>g>the</str<strong>on</strong>g> fifth largest exporter <str<strong>on</strong>g>of</str<strong>on</strong>g> liquefied natural<br />

gas (LNG) in <str<strong>on</strong>g>the</str<strong>on</strong>g> world. Natural gas producti<strong>on</strong> in Australia has increased steadily<br />

over <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade. In <str<strong>on</strong>g>the</str<strong>on</strong>g> same time period, c<strong>on</strong>sumpti<strong>on</strong> has grown as well. Australia<br />

is expected to maintain natural gas self-sufficiency for <str<strong>on</strong>g>the</str<strong>on</strong>g> ensuing decade at<br />

a minimum. Additi<strong>on</strong>ally, recent natural gas explorati<strong>on</strong> in Australia has resulted in<br />

several important discoveries, mainly <str<strong>on</strong>g>of</str<strong>on</strong>g>fshore. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r natural gas discoveries will<br />

6 The fit has a regressi<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> RF=0,853.<br />

Year


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 267<br />

Bt<br />

Integral Bt<br />

x 104<br />

4<br />

3<br />

2<br />

1<br />

0<br />

x 106<br />

2<br />

1.5<br />

1<br />

0.5<br />

1997<br />

0<br />

1940 1960 1980 2000 2020 2040 2060<br />

Figure 7.27. The Hubbert peak applied to Australian oil reserves. Values in ktoe.<br />

likely be made inadvertently as a byproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia’s recent surge in petroleum<br />

explorati<strong>on</strong> [82].<br />

Historical data <strong>on</strong> Australian natural gas producti<strong>on</strong> dates back to 1961. Table A.24<br />

shows producti<strong>on</strong> data compiled by <str<strong>on</strong>g>the</str<strong>on</strong>g> British Geological Survey. The 2006 Australian<br />

natural gas reserves are around 2,61 trilli<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cubic meters, according to BP<br />

[35]. The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian natural gas reserves due to extracti<strong>on</strong> is shown<br />

in fig. 7.28. The specific exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas assumed is 39393,8 kJ/N m 3 (table<br />

6.16). Accordingly, Australia has lost in <str<strong>on</strong>g>the</str<strong>on</strong>g> period between 1961 to 2006, 649 Mtoe.<br />

This exergy was c<strong>on</strong>sumed at an average degradati<strong>on</strong> velocity ˙D <str<strong>on</strong>g>of</str<strong>on</strong>g> 13,8 Mtoe/year,<br />

although it has increased to more than 30 Mtoe/year since <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade (see fig.<br />

7.28).<br />

The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert bell shape-curve to Australian natural gas producti<strong>on</strong>,<br />

throws up a peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> in year 2025. It has been assumed, that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

total reserves are equal to 3,1 Gtoe 7 . The regressi<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> curve RF was<br />

0,98. Assuming that producti<strong>on</strong> will stabilize to 2007 rates and that reserves will<br />

not increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> future, <str<strong>on</strong>g>the</str<strong>on</strong>g> R/P ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian natural gas reserves would be<br />

equal to 67 years. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, about 21% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural gas reserves have been already<br />

extracted. Of course <str<strong>on</strong>g>the</str<strong>on</strong>g>se numbers are <strong>on</strong>ly hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical and will presumably<br />

increase, as new deposits are found.<br />

7 The total reserves are obtained as <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy reserves in 2006, plus <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance between<br />

1961 and 2006.


268 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Bt, ktoe<br />

40000<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

Natural gas producti<strong>on</strong> in Australia<br />

1960<br />

1962<br />

1964<br />

1966<br />

1968<br />

1970<br />

1972<br />

1974<br />

1976<br />

1978<br />

1980<br />

1982<br />

1984<br />

1986<br />

1988<br />

1990<br />

1992<br />

1994<br />

1996<br />

1998<br />

2000<br />

2002<br />

2004<br />

2006<br />

Figure 7.28. The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian natural gas reserves. Values in ktoe.<br />

Bt<br />

Integral Bt<br />

x 104<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

x 106<br />

4<br />

3<br />

2<br />

1<br />

2025<br />

0<br />

1940 1960 1980 2000 2020 2040 2060 2080 2100 2120<br />

Figure 7.29. The Hubbert peak applied to Australian natural gas reserves. Values in<br />

ktoe.<br />

Year


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 269<br />

Table 7.9. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main Australian<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

Mineral ∆t Peak R/P, % R ∆M t M e D, ktoe D<br />

yrs Loss<br />

∗ , Mtoe ˙D, ktoe, yr ˙D ∗ , ktoe, yr<br />

Au 1859 - 2004 2006 22 65 1,11E-02 0,1 10,7 6,1E-04 73,2<br />

Cu 1844 - 2004 2021 48 29 17,2 956,1 103,9 5,9 645,5<br />

N i 1967 - 2004 2040 121 13 3,3 323,7 26,0 8,5 683,1<br />

Ag 1884 - 2004 2005 19 97 7,28E-02 1,4 2,2 0,0 18,4<br />

P b 1859 - 2004 1997 34 60 34,1 982,1 40,7 6,7 279,0<br />

Zn 1897 - 2004 2010 30 51 44,6 5381,0 101,6 50,3 950,1<br />

Fe 1907 - 2004 2026 63 23 3317,8 703978,4 4901,1 7183,5 50012,4<br />

Coal 1913 - 2006 2048 153 13 - 5637923,1 - 59977,9 -<br />

Oil 1964 - 2006 1997 26 63 - 1019500,0 - 21691,5 -<br />

N.Gas 1961 - 2006 2025 67 21 - 649045,8 - 13809,5 -<br />

TOTAL 8018091,5 5186,3 102733,8 52661,8<br />

7.7.3 Summary and discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

Table 7.9, summarizes <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained from this study, showing <str<strong>on</strong>g>the</str<strong>on</strong>g> year were<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> is reached (Peak), <str<strong>on</strong>g>the</str<strong>on</strong>g> R/P ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> last recorded year,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities (% R. loss), <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> Metal extracted<br />

(∆M t M e) in Mt<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum and irreversible exergy distance (D and D ∗ ) and<br />

degradati<strong>on</strong> velocities (˙D and ˙D ∗ ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> Australian reserves<br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> time c<strong>on</strong>sidered (∆t). Thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> additive property<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> exergy, <str<strong>on</strong>g>the</str<strong>on</strong>g> total minimum and irreversible exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mines in<br />

Australia c<strong>on</strong>sidered can be calculated.<br />

The Hubbert peak model to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s c<strong>on</strong>sidered<br />

was satisfactorily applied to gold, copper, nickel, ir<strong>on</strong>, coal, oil 8 and natural gas.<br />

That was not <str<strong>on</strong>g>the</str<strong>on</strong>g> case for commodities silver, lead and zinc were <str<strong>on</strong>g>the</str<strong>on</strong>g> regressi<strong>on</strong> factors<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> curves were quite low and <str<strong>on</strong>g>the</str<strong>on</strong>g> latest producti<strong>on</strong> points were not included<br />

under <str<strong>on</strong>g>the</str<strong>on</strong>g> bell-shaped curve. Probably <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all three metals<br />

are tightly c<strong>on</strong>nected, makes that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir producti<strong>on</strong> patterns do not follow <str<strong>on</strong>g>the</str<strong>on</strong>g> general<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r commodities. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic dem<strong>on</strong>strated reserves<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> listed <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model applied in this study predicts that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

maximum producti<strong>on</strong> has been already reached for gold (2006), silver (2005), lead<br />

(1997) and oil (1997). Zinc will reach <str<strong>on</strong>g>the</str<strong>on</strong>g> peak in 2010, copper in 2021, natural<br />

gas in 2025, ir<strong>on</strong> in 2026, nickel in 2040, and finally coal in 2048. The resources to<br />

producti<strong>on</strong> data, informs us about <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated years until depleti<strong>on</strong>. Accordingly,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> most depleted commodities are in decreasing order: silver, gold, oil, zinc and<br />

lead, with R/P ratios below 35 years. They are followed by <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities <str<strong>on</strong>g>of</str<strong>on</strong>g> copper,<br />

ir<strong>on</strong>, natural gas, nickel and finally coal, with R/P ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> 48, 63, 67, 121 and<br />

153 years, respectively. Of course <str<strong>on</strong>g>the</str<strong>on</strong>g>se figures are <strong>on</strong>ly approximative, since <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

depend str<strong>on</strong>gly <strong>on</strong> producti<strong>on</strong> rates and reserves. The latter might increase as new<br />

8 Despite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> irregular oil producti<strong>on</strong> in Australia, <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model here applied has<br />

predicted with <strong>on</strong>ly three years <str<strong>on</strong>g>of</str<strong>on</strong>g> difference <str<strong>on</strong>g>the</str<strong>on</strong>g> peaking <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong>.


270 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

discoveries are found, or as technology or <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> prices allows to extract<br />

lower-grade deposits.<br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity extracted <str<strong>on</strong>g>of</str<strong>on</strong>g> all commodities in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> mass cannot be<br />

summed up (gold and silver are extracted at rates <str<strong>on</strong>g>of</str<strong>on</strong>g> some t<strong>on</strong>s per year, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r metals at rates <str<strong>on</strong>g>of</str<strong>on</strong>g> kilot<strong>on</strong>s/year), <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy<br />

costs (B ∗ ) is similar for all commodities and its sum gives valuable informati<strong>on</strong>. The<br />

irreversible exergy distance D ∗ obtained for all metals in Australia listed in Table 7.9<br />

is equal to 5186 Mtoe. The irreversible degradati<strong>on</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same metals is<br />

<strong>on</strong> average 52,6 Mtoe/yr. This means that if we would like to replace <str<strong>on</strong>g>the</str<strong>on</strong>g> metals<br />

extracted throughout Australia’s mining history, with current available technology,<br />

we would require 154 times <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 primary energy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> that country<br />

(33,7 Mtoe [35]). Moreover, each year Australia is degrading <strong>on</strong> average by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metals <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,56 times its primary oil c<strong>on</strong>sumpti<strong>on</strong>. From<br />

all metals, ir<strong>on</strong> is resp<strong>on</strong>sible for 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>sumpti<strong>on</strong>, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> great<br />

quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> ore produced in Australia.<br />

Figures 7.30 to 7.32 show <str<strong>on</strong>g>the</str<strong>on</strong>g> total c<strong>on</strong>sumpti<strong>on</strong> in exergy replacement costs terms<br />

(B∗ t ) <str<strong>on</strong>g>of</str<strong>on</strong>g> all metals c<strong>on</strong>sidered, from 1844 to 2004. In <str<strong>on</strong>g>the</str<strong>on</strong>g> first period illustrated in Fig.<br />

7.30, <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper and gold c<strong>on</strong>tribute to most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>sumed,<br />

although lead acquires a relevant role from <str<strong>on</strong>g>the</str<strong>on</strong>g> last years <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 19th century. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sec<strong>on</strong>d period, from 1907 to 1963 (Fig. 7.31), <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc, lead and ir<strong>on</strong><br />

represents <str<strong>on</strong>g>the</str<strong>on</strong>g> major exergy c<strong>on</strong>sumpti<strong>on</strong>. From 1950 to our days, ir<strong>on</strong> dominates<br />

clearly <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> exergy c<strong>on</strong>sumpti<strong>on</strong> in Australia.<br />

700<br />

B* t, ktoe<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1844<br />

1846<br />

1848<br />

1850<br />

1852<br />

1854<br />

1856<br />

1858<br />

Silver<br />

1860<br />

1862<br />

1864<br />

1866<br />

1868<br />

1870<br />

1872<br />

1874<br />

1876<br />

1878<br />

1880<br />

1882<br />

1884<br />

1886<br />

1888<br />

1890<br />

1892<br />

1894<br />

Silver Gold Copper Ir<strong>on</strong> Nickel Lead Zinc<br />

Zinc<br />

Lead<br />

Copper<br />

Gold<br />

1896<br />

1898<br />

1900<br />

1902<br />

1904<br />

1906<br />

Figure 7.30. Irreversible exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Australia<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> period from 1884 to 1906


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 271<br />

10000<br />

B* t, ktoe<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

1907<br />

1909<br />

1911<br />

1913<br />

1915<br />

1917<br />

1919<br />

1921<br />

Zinc<br />

Lead<br />

1923<br />

1925<br />

1927<br />

1929<br />

1931<br />

1933<br />

1935<br />

1937<br />

1939<br />

1941<br />

1943<br />

1945<br />

1947<br />

1949<br />

1951<br />

1953<br />

1955<br />

1957<br />

Silver Gold Copper Ir<strong>on</strong> Nickel Lead Zinc<br />

Figure 7.31. Irreversible exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Australia<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> period from 1907 to 1964<br />

300000<br />

250000<br />

200000<br />

150000<br />

100000<br />

50000<br />

0<br />

B* t, ktoe<br />

Zinc<br />

Ir<strong>on</strong><br />

Copper<br />

Ir<strong>on</strong><br />

Copper<br />

1959<br />

1961<br />

1963<br />

1965<br />

1967<br />

1969<br />

1971<br />

1973<br />

1975<br />

1977<br />

1979<br />

1981<br />

1983<br />

1985<br />

1987<br />

1989<br />

1991<br />

1993<br />

1995<br />

1997<br />

1999<br />

2001<br />

2003<br />

Silver Gold Copper Ir<strong>on</strong> Nickel Lead Zinc<br />

Figure 7.32. Irreversible exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Australia<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> period from 1965 to 2004


272 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

B* t, ktoe<br />

1914<br />

1916<br />

1918<br />

1920<br />

1922<br />

1924<br />

1926<br />

1928<br />

1930<br />

1932<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r metals Ir<strong>on</strong> Oil N.G. Coal<br />

1934<br />

1936<br />

1938<br />

1940<br />

1942<br />

1944<br />

1946<br />

1948<br />

1950<br />

1952<br />

1954<br />

1956<br />

1958<br />

1960<br />

Figure 7.33. Irreversible exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main fuel and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

in Australia in <str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> 1914 to 1968<br />

We have stated before, that calculating exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s has no sense,<br />

as it is impossible to replace <str<strong>on</strong>g>the</str<strong>on</strong>g>m, at least with current technology. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, its<br />

chemical exergy is so large, that can be compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metals<br />

studied. This way, we can estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> global <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

resources <str<strong>on</strong>g>of</str<strong>on</strong>g> a country.<br />

We have divided <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> into <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities coal, oil, natural gas, ir<strong>on</strong><br />

and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r n<strong>on</strong>-fuel metals. This is because <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> is significantly<br />

greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metals and is comparable to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, we have c<strong>on</strong>sidered two periods <str<strong>on</strong>g>of</str<strong>on</strong>g> time: from 1914 to 1968 and from<br />

1969 to 2004 (before and after <str<strong>on</strong>g>the</str<strong>on</strong>g> significant producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oil and natural gas).<br />

As can be seen in figure 7.33, in <str<strong>on</strong>g>the</str<strong>on</strong>g> first period <str<strong>on</strong>g>of</str<strong>on</strong>g> time c<strong>on</strong>sidered, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>sumpti<strong>on</strong><br />

was clearly dominated by <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal and to a lesser extent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ir<strong>on</strong>, especially towards <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> period. The global extracti<strong>on</strong> trend increased<br />

very rapidly, following an exp<strong>on</strong>ential-like behavior. This way, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy degradati<strong>on</strong><br />

velocity increased from around 10 Mtoe/year at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> period,<br />

until <str<strong>on</strong>g>the</str<strong>on</strong>g> 70 Mtoe/year reached in 1968.<br />

The coming out <str<strong>on</strong>g>of</str<strong>on</strong>g> significant reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> oil and natural gas (cleaner and more handy<br />

fuels than coal), lead to an important drop <str<strong>on</strong>g>of</str<strong>on</strong>g> coal’s producti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d period c<strong>on</strong>sidered (see fig. 7.34). This resulted in a 25-year hegem<strong>on</strong>y<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> producti<strong>on</strong> in Australia. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> coal in <str<strong>on</strong>g>the</str<strong>on</strong>g> country,<br />

toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> foreseeable depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oil, provoked a new increase <str<strong>on</strong>g>of</str<strong>on</strong>g> coal extracti<strong>on</strong>.<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g>n, both coal and ir<strong>on</strong> dominate <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy destructi<strong>on</strong> each year<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> in Australia (see fig. 7.35).<br />

Coal<br />

Ir<strong>on</strong><br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r metals<br />

1962<br />

1964<br />

1966<br />

1968<br />

Oil


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia 273<br />

600000<br />

500000<br />

400000<br />

300000<br />

200000<br />

100000<br />

0<br />

B* t, ktoe<br />

Coal<br />

Oil<br />

N.G.<br />

Ir<strong>on</strong><br />

1969<br />

1971<br />

1973<br />

1975<br />

1977<br />

1979<br />

1981<br />

1983<br />

1985<br />

1987<br />

1989<br />

1991<br />

1993<br />

1995<br />

1997<br />

1999<br />

2001<br />

2003<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r metals Ir<strong>on</strong> Oil N.G. Coal<br />

Figure 7.34. Irreversible exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main fuel and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

in Australia in <str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> 1969 to 2004<br />

%, B* T<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Coal<br />

Ir<strong>on</strong><br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r metals<br />

Oil<br />

N.G.<br />

0<br />

1914 1924 1934 1944 1954 1964 1974 1984 1994 2004<br />

Year<br />

O<str<strong>on</strong>g>the</str<strong>on</strong>g>r metals Ir<strong>on</strong> Oil N.G. Coal<br />

Figure 7.35. Relative c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> global exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia in <str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> 1914 to 2004


274 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

Despite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shifts in extracti<strong>on</strong> trends am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> different commodities, it is remarkable<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> global behavior has c<strong>on</strong>tinued to be exp<strong>on</strong>ential-like. In 2004,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy degradati<strong>on</strong> velocity exceeded 550 Mtoe/year (around 15% <str<strong>on</strong>g>of</str<strong>on</strong>g> current<br />

world’s oil c<strong>on</strong>sumpti<strong>on</strong>). And presumably, it will c<strong>on</strong>tinue to increase exp<strong>on</strong>entially<br />

at least for 20 to 40 years, until <str<strong>on</strong>g>the</str<strong>on</strong>g> peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> and coal are reached.<br />

In figures 7.36 and 7.37, we have represented <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert’s bell-shaped curves <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities c<strong>on</strong>sidered in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir exergy replacement costs. This<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> representati<strong>on</strong> will be named here as “<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> countdown”, since it shows<br />

in a very schematic way <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy resources available and <str<strong>on</strong>g>the</str<strong>on</strong>g> possible<br />

exhausti<strong>on</strong> behavior that <str<strong>on</strong>g>the</str<strong>on</strong>g>y will follow. It should be noted that representing B<br />

vs t or B ∗ vs t brings up in our case similar results for <str<strong>on</strong>g>the</str<strong>on</strong>g> peaking year, as unit<br />

replacement costs have been c<strong>on</strong>sidered c<strong>on</strong>stant throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> time c<strong>on</strong>sidered.<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy replacement costs allows us to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fuels and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. However, as stated before, a better fit should take into<br />

account <str<strong>on</strong>g>the</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> technology, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby using <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate unit exergy costs at<br />

each period <str<strong>on</strong>g>of</str<strong>on</strong>g> time.<br />

In figure 7.36, <str<strong>on</strong>g>the</str<strong>on</strong>g> bell shaped curves <str<strong>on</strong>g>of</str<strong>on</strong>g> all fuels plus those <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> and copper<br />

are represented. As can be seen, in exergy cost terms, coal is <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant resource,<br />

followed by ir<strong>on</strong>. Until <str<strong>on</strong>g>the</str<strong>on</strong>g> first decade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century, both commodities<br />

will be extracted at similar rates. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> coming <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> producti<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d decade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century, will slow down <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

metal, while coal will clearly dominate <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong> in Australia. Fig. 7.36<br />

shows additi<strong>on</strong>ally <str<strong>on</strong>g>the</str<strong>on</strong>g> significant lower amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas and<br />

oil, with respect to ir<strong>on</strong> and coal.<br />

The same thing occurs with <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metals c<strong>on</strong>sidered, which are shown<br />

in a separate figure (fig. 7.37). It is interesting to notice that although copper is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant commodity in exergy terms, <str<strong>on</strong>g>the</str<strong>on</strong>g> greater extracti<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> that<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> will provoke a faster depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper than <str<strong>on</strong>g>of</str<strong>on</strong>g> nickel. Similarly, although<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> irreversible exergy reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc and nickel are similar, <str<strong>on</strong>g>the</str<strong>on</strong>g> greater extracti<strong>on</strong><br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc, implies that <str<strong>on</strong>g>the</str<strong>on</strong>g> peaking year <str<strong>on</strong>g>of</str<strong>on</strong>g> that metal will be reached before that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nickel. The graph also shows <str<strong>on</strong>g>the</str<strong>on</strong>g> smaller relative amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lead, gold and silver, being <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> latter commodity barely perceptible<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> figure.<br />

The exergy countdown diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> a country allows us to predict future <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

producti<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities. This way, for instance,<br />

we can forecast according to our results, that in year 2050, about 64% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total<br />

c<strong>on</strong>sidered <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in Australia will be depleted. Particularly, gold will be<br />

depleted at 99,9%, copper at 90,3%, lead at 87%, zinc at 97,3%, nickel at 60,4%,<br />

ir<strong>on</strong> at 80%, coal at 52,4%, oil at 95,9% and natural gas at 85,2%.<br />

It must be pointed out, that <str<strong>on</strong>g>the</str<strong>on</strong>g> latter <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are not <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>es extracted in<br />

Australia. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s such as uranium, alumina, manganese, tin, diam<strong>on</strong>ds<br />

and industrial sands are also produced. The lack <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> especially


C<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy costs into m<strong>on</strong>etary costs 275<br />

500000<br />

400000<br />

300000<br />

200000<br />

100000<br />

Bt*, ktoe<br />

Oil<br />

Ir<strong>on</strong><br />

Natural gas<br />

Copper<br />

0<br />

1890 1940 1990 2040 2090 2140 2190<br />

Figure 7.36. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> countdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main c<strong>on</strong>sumed <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Australia<br />

ore grade trends for <str<strong>on</strong>g>the</str<strong>on</strong>g> latter materials avoids us to complete <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> figures provided are good enough for giving an order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>.<br />

7.8 C<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy costs into m<strong>on</strong>etary costs<br />

The c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy costs into m<strong>on</strong>etary costs is a ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r simple task through<br />

c<strong>on</strong>venti<strong>on</strong>al energy prices. It must be stated though, that this should not be necessarily<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> final objective, as <str<strong>on</strong>g>the</str<strong>on</strong>g> physical informati<strong>on</strong> is valuable by itself.<br />

As an example, we will estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>etary cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserve’s<br />

depleti<strong>on</strong> suffered in Australia in year 2004, due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>.<br />

The m<strong>on</strong>etary value <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, can be directly calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir corresp<strong>on</strong>ding<br />

prices in <str<strong>on</strong>g>the</str<strong>on</strong>g> year under c<strong>on</strong>siderati<strong>on</strong>. For n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, we will c<strong>on</strong>sider<br />

an average price <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy mix c<strong>on</strong>sumed in <str<strong>on</strong>g>the</str<strong>on</strong>g> country. This is because <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s represents <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy required to restore<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>m with current technology.<br />

According to <str<strong>on</strong>g>the</str<strong>on</strong>g> 2007 BP statistical report [35], <str<strong>on</strong>g>the</str<strong>on</strong>g> average price <str<strong>on</strong>g>of</str<strong>on</strong>g> coal 9 in<br />

2004 was 64,33 $US/t or 118,91 US$/toe, c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> specific exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> coal.<br />

9 This price corresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> US Central Appalachian coal spot price.<br />

Coal<br />

Year


276 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

7000<br />

Bt*, ktoe<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

Zinc<br />

Lead<br />

Gold<br />

Copper<br />

0<br />

Silver<br />

1890 1940 1990 2040 2090 2140<br />

Figure 7.37. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> countdown <str<strong>on</strong>g>of</str<strong>on</strong>g> metals copper, zinc, nickel, lead and silver in<br />

Australia<br />

The same report includes oil and natural gas prices 10 : 40,83 $US/barrel (274,62<br />

$US/toe), and 5,85 $US/milli<strong>on</strong> Btu (232,14 $US/toe), respectively.<br />

According to ABARE [1], <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 primary c<strong>on</strong>sumpti<strong>on</strong> energy mix in Australia<br />

was: 41% <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, 35% <str<strong>on</strong>g>of</str<strong>on</strong>g> oil, 19% <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas and 5% <str<strong>on</strong>g>of</str<strong>on</strong>g> renewables. Assuming<br />

zero <str<strong>on</strong>g>the</str<strong>on</strong>g> renewables cost, we obtain an average energy price in Australia <str<strong>on</strong>g>of</str<strong>on</strong>g> 189,0<br />

$US/toe.<br />

Table 7.10 shows an estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>etary costs associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> main Australian <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong> in year 2004.<br />

Table 7.10. M<strong>on</strong>etary costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves depleti<strong>on</strong> suffered in Australia<br />

due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong> in year 2004<br />

Mineral <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> extracted, Mineral’s price, M<strong>on</strong>etary cost, Bil-<br />

Mtoe<br />

US$/toe<br />

li<strong>on</strong> US$<br />

Coal 231,3 118,9 27,5<br />

Oil 22,6 274,6 6,2<br />

N. Gas 33 232,1 7,7<br />

N<strong>on</strong>-fuels 274,7 189,0 51,9<br />

TOTAL 561,6 93,3<br />

10 The natural gas price corresp<strong>on</strong>ds to USA Henry Hub &.<br />

Nickel<br />

Year


Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter 277<br />

According to <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained, Australia would have lost in 2004 an equivalent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 93,3 billi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> $US <str<strong>on</strong>g>of</str<strong>on</strong>g> its <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g>, due to resource extracti<strong>on</strong>. This corresp<strong>on</strong>ds<br />

to 15,2% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 Australian GDP (611,7 billi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> $US [56], adjusted<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> countrie’s purchasing capacity 11 ).<br />

The same amount <str<strong>on</strong>g>of</str<strong>on</strong>g> physical <str<strong>on</strong>g>capital</str<strong>on</strong>g> lost, calculated with 2006 and 2008 energy<br />

prices, would be equivalent to around 115 and 178 billi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> $US, respectively<br />

(19 and 29% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 Australian GDP 12 ). This clearly indicates, that assessing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> in m<strong>on</strong>etary costs is not very suitable, as <str<strong>on</strong>g>the</str<strong>on</strong>g> volatility<br />

and arbitrariness <str<strong>on</strong>g>of</str<strong>on</strong>g> prices distorts <str<strong>on</strong>g>the</str<strong>on</strong>g> real physical value, which is absolute and<br />

understandable worldwide.<br />

However, m<strong>on</strong>etary values provides us with an order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The c<strong>on</strong>siderable amount <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ey just calculated as an example,<br />

is what Australia should pay <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>, for <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracted<br />

<strong>on</strong>ly in year 2004. It should be stated, that less developed countries, whose ec<strong>on</strong>omy<br />

is mainly based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> could even obtain negative<br />

GDP values. That maybe <str<strong>on</strong>g>the</str<strong>on</strong>g> case for countries like South Africa or Chile, but this<br />

should be studied more carefully with detailed producti<strong>on</strong> data <str<strong>on</strong>g>of</str<strong>on</strong>g> those countries.<br />

What is clear is that ec<strong>on</strong>omy treats our planet as a reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> free goods. As<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> becomes depleted, man slowly realizes <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>serving its<br />

resources. And maybe in a not very distant future, we will have to take “Nature into<br />

account”, as stated by Dieren’s book <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same name [75], and correct accordingly<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic indices. As King argues in <str<strong>on</strong>g>the</str<strong>on</strong>g> book, if producti<strong>on</strong> is creating scarcity<br />

ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than reducing it, ec<strong>on</strong>omic growth is negative.<br />

7.9 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter<br />

We have seen in this chapter that nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r mass, nor energy are appropriate indicators<br />

for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> wealth <strong>on</strong> <strong>earth</strong>, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y are c<strong>on</strong>servative properties.<br />

In all physical transformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> matter or energy, it is always exergy that is lost.<br />

Therefore, any degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> which can come ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r from an<br />

alterati<strong>on</strong> in its compositi<strong>on</strong>, a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> its c<strong>on</strong>centrati<strong>on</strong>, or a change in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reference envir<strong>on</strong>ment, can be accounted for with exergy.<br />

Starting from <str<strong>on</strong>g>the</str<strong>on</strong>g> property exergy, we have built a series <str<strong>on</strong>g>of</str<strong>on</strong>g> indicators which should<br />

measure <str<strong>on</strong>g>the</str<strong>on</strong>g> scarcity degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves <strong>on</strong> <strong>earth</strong>. The exergy difference<br />

between two situati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet has been named as exergy distance D. The<br />

exergy degradati<strong>on</strong> velocity ˙D, calculated as <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance divided by <str<strong>on</strong>g>the</str<strong>on</strong>g> period<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time c<strong>on</strong>sidered, should account for <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain<br />

resource.<br />

11 The Purchasing Power Parity takes into account how much an individual can buy within a country<br />

al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> currency exchange rate between <str<strong>on</strong>g>the</str<strong>on</strong>g> individual country’s currency and <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. dollar.<br />

12 For <str<strong>on</strong>g>the</str<strong>on</strong>g> following energy prices in 2006 and 2008, respectively: 116,4 and 167,7 $US/toe <str<strong>on</strong>g>of</str<strong>on</strong>g> coal;<br />

438,2 and 807,1$US/toe <str<strong>on</strong>g>of</str<strong>on</strong>g> oil; 268,3 and 287,0 $US/toe <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas.


278 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

We have also defined <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> equivalent (t M e), as <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>on</strong>e t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in a certain time and place. The reference value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> equivalent has to be established for each resource. The t M e is analogous<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oil equivalent, but it accounts for <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage, grade and chemical<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substance. This new indicator allows us to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain deposit before and after extracti<strong>on</strong>, and to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> quality<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different deposits c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> same <str<strong>on</strong>g>mineral</str<strong>on</strong>g>, but with a more understandable<br />

unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure.<br />

The estimated years until depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a resource are usually calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> R/P<br />

ratio, which is obtained as <str<strong>on</strong>g>the</str<strong>on</strong>g> quotient between its reserves and its producti<strong>on</strong> in a<br />

certain year in mass terms. We have proposed to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> R/P ratio in exergy<br />

terms, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby accounting for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> factor as well.<br />

All indicators described above can be assessed ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r with minimum exergies, or<br />

with exergy replacement costs. With <str<strong>on</strong>g>the</str<strong>on</strong>g> latter, <str<strong>on</strong>g>the</str<strong>on</strong>g> irreversibility factor present in all<br />

real processes is taken into account.<br />

Finally, we have proposed <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model for <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. It has been stated that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bell-shape curve is better suited to n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s if it is fitted with exergy over<br />

time, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> mass over time. This way, we would not ignore <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

factor, which is very important for <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> solid <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

As a first case study, we have obtained <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper deposits<br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century, and have applied all indicators described above. For<br />

that purpose, <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical and c<strong>on</strong>centrati<strong>on</strong> exergy comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mines, as<br />

well as <str<strong>on</strong>g>the</str<strong>on</strong>g>ir associated exergy replacement costs have been obtained for <str<strong>on</strong>g>the</str<strong>on</strong>g> period<br />

between years 1900 and 2000. It has been estimated, that <str<strong>on</strong>g>the</str<strong>on</strong>g> global exergy cost<br />

associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper deposits in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century was around<br />

700 Mtoe, c<strong>on</strong>sumed at an average exergy degradati<strong>on</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> 6,6 Mtoe/year.<br />

The R/P ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper deposits reveals for year 2000, that reserves would be<br />

completely depleted after 56 years. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak<br />

in exergy terms, gives as a result, that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak was already reached in year 1994.<br />

In fact <str<strong>on</strong>g>the</str<strong>on</strong>g> real peak was attained in year 1998. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy producti<strong>on</strong><br />

pattern did not perfectly fit in <str<strong>on</strong>g>the</str<strong>on</strong>g> bell-shaped curve, interesting c<strong>on</strong>clusi<strong>on</strong>s have<br />

been extracted. Generally, producti<strong>on</strong> follows asymmetric curves with <str<strong>on</strong>g>the</str<strong>on</strong>g> decline<br />

much sharper than <str<strong>on</strong>g>the</str<strong>on</strong>g> growth. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> real producti<strong>on</strong> peak is most probably<br />

attained after <str<strong>on</strong>g>the</str<strong>on</strong>g> year predicted by <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert model. During a short period <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

time, <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities will be probably over-exploited and <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> points<br />

will appear over <str<strong>on</strong>g>the</str<strong>on</strong>g> bell-shaped curve. The compensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> overproducti<strong>on</strong> is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> much sharper decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> after <str<strong>on</strong>g>the</str<strong>on</strong>g> peak, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> a gradual and<br />

steady reducti<strong>on</strong>.<br />

The sec<strong>on</strong>d case study was aimed at assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. Australia has been chosen for <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis, because it is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g>


Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter 279<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> most important <str<strong>on</strong>g>mineral</str<strong>on</strong>g> exporting countries in <str<strong>on</strong>g>the</str<strong>on</strong>g> world and is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e<br />

with registered ore grade trends <str<strong>on</strong>g>of</str<strong>on</strong>g> its main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. The commodities analyzed<br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g>ir mining history until 2004 were gold, copper, nickel, silver, lead,<br />

zinc, ir<strong>on</strong>, coal, oil and natural gas. It has been stated, that generally, producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all commodities has followed an exp<strong>on</strong>ential-like behavior. The most depleted<br />

commodities are in decreasing order: silver, gold, oil, zinc and lead, with R/P ratios<br />

below 35 years. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> copper, ir<strong>on</strong>, natural gas, nickel and<br />

finally coal will last at least for 48, 63, 67, 121 and 153 years, respectively.<br />

The Hubbert peak model was satisfactorily applied for all commodities, with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> group lead-zinc-silver, whose producti<strong>on</strong> patterns differ from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rest, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y are extracted toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r. The study predicts that <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum producti<strong>on</strong><br />

has been already reached for gold (2006), silver (2005), lead (1997) and oil (1997).<br />

Zinc will reach <str<strong>on</strong>g>the</str<strong>on</strong>g> peak in 2010, copper in 2021, natural gas in 2025, ir<strong>on</strong> in 2026,<br />

nickel in 2040, and finally coal in 2048.<br />

By <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metals, Australia has degraded <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> 5,2 Gtoe (in<br />

exergy replacement cost terms). This corresp<strong>on</strong>ds to 154 times <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 primary<br />

energy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> that country. Moreover, each year Australia is degrading <strong>on</strong><br />

average by <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metals <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,6 times its primary oil c<strong>on</strong>sumpti<strong>on</strong>.<br />

Adding <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels, <str<strong>on</strong>g>the</str<strong>on</strong>g> global degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

reserves in Australia increase to 12,5 Gtoe. And this degradati<strong>on</strong> is dominated<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two commodities, coal and ir<strong>on</strong>. In 2004, <str<strong>on</strong>g>the</str<strong>on</strong>g> global exergy<br />

degradati<strong>on</strong> velocity exceeded 550 Mtoe/year (around 15% <str<strong>on</strong>g>of</str<strong>on</strong>g> current world’s oil<br />

c<strong>on</strong>sumpti<strong>on</strong>). And it will probably c<strong>on</strong>tinue to increase exp<strong>on</strong>entially at least for<br />

20 to 40 years, until <str<strong>on</strong>g>the</str<strong>on</strong>g> peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> and coal are reached.<br />

A very practical representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves available and <str<strong>on</strong>g>the</str<strong>on</strong>g> possible<br />

extracti<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities is through <str<strong>on</strong>g>the</str<strong>on</strong>g> “<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> countdown” graphs.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> latter, <str<strong>on</strong>g>the</str<strong>on</strong>g> different Hubbert peak models in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> irreversible exergy are<br />

shown in a single diagram. This has allowed us to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> past, present and<br />

possible future extracti<strong>on</strong> rates and available reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

in Australia. With <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy countdown, we have predicted that in year 2050,<br />

about 64% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities produced in Australia will be depleted.<br />

Moreover, except for coal, ir<strong>on</strong> and nickel, more than 85% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves<br />

will be exhausted by <str<strong>on</strong>g>the</str<strong>on</strong>g>n.<br />

The exergy analysis toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy countdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s could c<strong>on</strong>stitute<br />

a universal and transparent predicti<strong>on</strong> tool for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong>-renewable resources, with dramatic c<strong>on</strong>sequences for <str<strong>on</strong>g>the</str<strong>on</strong>g> future management<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s physical stock.<br />

We additi<strong>on</strong>ally estimated <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>etary cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserve’s depleti<strong>on</strong><br />

suffered in Australia in year 2004. This was carried out, by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy<br />

costs into m<strong>on</strong>etary costs through c<strong>on</strong>venti<strong>on</strong>al energy prices. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

obtained, Australia would have lost an equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> 93,3 billi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> $US <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g>, due to resource extracti<strong>on</strong> in 2004. This corresp<strong>on</strong>ds to 15,2% <str<strong>on</strong>g>of</str<strong>on</strong>g>


280 THE TIME FACTOR IN THE EXERGY ASSESSMENT OF MINERAL RESOURCES<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 Australian GDP. However, if 2006 and 2008 energy prices are c<strong>on</strong>sidered,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> same amount <str<strong>on</strong>g>of</str<strong>on</strong>g> physical stock extracted would corresp<strong>on</strong>d to 19 and 29% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2004 Australian GDP. This indicates that m<strong>on</strong>etary costs might not be a very suitable<br />

indicator for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g>, as <str<strong>on</strong>g>the</str<strong>on</strong>g> volatility and arbitrariness <str<strong>on</strong>g>of</str<strong>on</strong>g> prices<br />

distorts <str<strong>on</strong>g>the</str<strong>on</strong>g> real physical value. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, it provides an order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omy.<br />

It should be noted, that <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained are estimati<strong>on</strong>s and hence <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers<br />

cannot be taken as final. More reserves could be found in <str<strong>on</strong>g>the</str<strong>on</strong>g> future, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby<br />

increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> years until depleti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g> huge amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy and its equivalent in m<strong>on</strong>ey terms involved in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <strong>on</strong> <strong>earth</strong>, alerts us about <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>serving<br />

our resources.


Chapter 8<br />

The exergy <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> planet<br />

<strong>earth</strong><br />

8.1 Introducti<strong>on</strong><br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter is to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

<strong>on</strong> <strong>earth</strong>, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> human acti<strong>on</strong>. For that purpose, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> exergy degradati<strong>on</strong><br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century, will be studied. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, we will analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gases in <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels. Finally, with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios, we will estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> next century.<br />

8.2 The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th<br />

century<br />

As stated before, exergy is an accounting tool that allows us to assess resources <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

single or aggregated commodities <str<strong>on</strong>g>of</str<strong>on</strong>g> a regi<strong>on</strong>, country or even <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> whole world.<br />

In chapter 7 we evaluated <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a country<br />

and our aim now is to extrapolate <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment to <str<strong>on</strong>g>the</str<strong>on</strong>g> entire planet.<br />

This ambitious task is not free <str<strong>on</strong>g>of</str<strong>on</strong>g> difficulties. The first and most important problem<br />

that we have to face is <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> current and historical data <str<strong>on</strong>g>of</str<strong>on</strong>g> many commodities.<br />

A few geological instituti<strong>on</strong>s, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS or BGS, compile world producti<strong>on</strong><br />

data <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most important <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. But <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS provides estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, with <str<strong>on</strong>g>the</str<strong>on</strong>g> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in <str<strong>on</strong>g>the</str<strong>on</strong>g> US,<br />

no ore grade trends <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities are compiled. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia is an<br />

excepti<strong>on</strong>al example <str<strong>on</strong>g>of</str<strong>on</strong>g> a country with available historical ore grades <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main<br />

metals produced. And this was thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> own initiative <str<strong>on</strong>g>of</str<strong>on</strong>g> Mudd [232], [234].<br />

281


282 THE EXERGY EVOLUTION OF PLANET EARTH<br />

To <str<strong>on</strong>g>the</str<strong>on</strong>g>se limitati<strong>on</strong>s, we have to add that unit exergy replacement costs are available<br />

for many important n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities, but not for all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

In order to overcome <str<strong>on</strong>g>the</str<strong>on</strong>g> difficulties menti<strong>on</strong>ed before, we are obliged to make different<br />

assumpti<strong>on</strong>s at <str<strong>on</strong>g>the</str<strong>on</strong>g> expense <str<strong>on</strong>g>of</str<strong>on</strong>g> an important accuracy loss in <str<strong>on</strong>g>the</str<strong>on</strong>g> results. Firstly,<br />

we will assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> ore grade <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities remains c<strong>on</strong>stant<br />

and equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> average ore grades estimated in this PhD (table 4.10). This implies<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> specific c<strong>on</strong>centrati<strong>on</strong> exergy will not change over time. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> equivalent has no practical sense anymore. Moreover,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy will ignore <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

factor, which is quite significant in many n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. As it happened to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> previous case studies, unit exergy replacement costs are assumed to be c<strong>on</strong>stant.<br />

In reality, unit costs are a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> technology and hence vary with<br />

time.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> latter assumpti<strong>on</strong>s, we can make a rough estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following variables<br />

for fuel and n<strong>on</strong> fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s:<br />

• The <str<strong>on</strong>g>mineral</str<strong>on</strong>g> exergy degradati<strong>on</strong> <strong>on</strong> <strong>earth</strong> since <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century<br />

(D),<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s exergy degradati<strong>on</strong> velocity due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong> (˙D),<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves and reserve base (% R. loss and % R.B.<br />

loss),<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> years until depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities (R/P), and<br />

• <str<strong>on</strong>g>the</str<strong>on</strong>g> year where <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> is reached (Year <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peak)<br />

8.2.1 N<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> historical data compiled by <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS [361], and <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

calculati<strong>on</strong> procedures applied for US copper and <str<strong>on</strong>g>the</str<strong>on</strong>g> main metals in Australia, we<br />

have calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distances D and D ∗ and <str<strong>on</strong>g>the</str<strong>on</strong>g> average exergy degradati<strong>on</strong><br />

velocities ˙D and ˙D ∗ <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th<br />

century 1 . Since producti<strong>on</strong> rates usually increase exp<strong>on</strong>entially, it is interesting to<br />

analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> latest exergy degradati<strong>on</strong> velocities registered. Therefore, we have additi<strong>on</strong>ally<br />

calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> average degradati<strong>on</strong> velocities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade (from 2000<br />

to 2006). The depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities (% R and % R.B.) has been<br />

obtained as <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio between <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance D, and <str<strong>on</strong>g>the</str<strong>on</strong>g> total reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

commodity. The latter are obtained as <str<strong>on</strong>g>the</str<strong>on</strong>g> published reserves or reserve base <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

commodity in 2006, plus <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance D from 1900 to 2006. Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> R/P<br />

ratio applied to exergy is provided, as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> years until depleti<strong>on</strong>. It has<br />

1 Some commodities have started to be extracted after <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> century.


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century 283<br />

been assumed that producti<strong>on</strong> remains as in year 2006, and that reserves do not<br />

increase after that year.<br />

The <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> uranium has been included in <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> classificati<strong>on</strong> 2 .<br />

For that purpose, <str<strong>on</strong>g>the</str<strong>on</strong>g> world uranium statistics published by <str<strong>on</strong>g>the</str<strong>on</strong>g> World Nuclear Associati<strong>on</strong><br />

[408] have been used (see table A.25). Current uranium assured reserves<br />

were estimated by <str<strong>on</strong>g>the</str<strong>on</strong>g> OECD [248] as 3,804 Mt<strong>on</strong>s, while <str<strong>on</strong>g>the</str<strong>on</strong>g> inferred reserves, as<br />

4,742 Mt<strong>on</strong>s. The average ore grade <str<strong>on</strong>g>of</str<strong>on</strong>g> U 3O 8 is 0,33%, as calculated in this study<br />

(table 4.9), or 0,28% <str<strong>on</strong>g>of</str<strong>on</strong>g> U).<br />

Table 8.1 shows a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained for <str<strong>on</strong>g>the</str<strong>on</strong>g> 51 <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities<br />

taken into account.<br />

As can be seen from <str<strong>on</strong>g>the</str<strong>on</strong>g> table and in figure 8.1, in reversible exergy terms, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> <strong>on</strong> <strong>earth</strong> is clearly dominated by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two commodities: ir<strong>on</strong> and aluminium, representing around 81 and<br />

10% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total exergy c<strong>on</strong>sumpti<strong>on</strong>. The exergy distance due to n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

extracti<strong>on</strong> between 1900 and 2006 is at least 3 5,68 Gtoe. As expected, <str<strong>on</strong>g>the</str<strong>on</strong>g> general<br />

c<strong>on</strong>sumpti<strong>on</strong> pattern has followed an exp<strong>on</strong>ential-like behavior 4 . This is reflected<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> drastic change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy degradati<strong>on</strong> velocity ˙D, passing from around 10<br />

Mtoe/year in 1910, to 180 Mtoe/year in 2006.<br />

In irreversible terms, i.e. analyzing <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy replacement costs (actual exergy) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> commodities, we observe in fig. 8.2, that copper acquires a more important role.<br />

Copper is resp<strong>on</strong>sible for 6% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total exergy degradati<strong>on</strong> costs <strong>on</strong> <strong>earth</strong>, while<br />

ir<strong>on</strong> and aluminium, 63 and 24%, respectively. The irreversible exergy distance D ∗<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all analyzed commodities is at least 51 Gtoe. This means that with current technology,<br />

we would require a minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> a third <str<strong>on</strong>g>of</str<strong>on</strong>g> all current fuel oil reserves <strong>on</strong> <strong>earth</strong><br />

(178 Gtoe [35]) for <str<strong>on</strong>g>the</str<strong>on</strong>g> replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> all depleted n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities.<br />

Excluding ir<strong>on</strong> and aluminium, which eclipse <str<strong>on</strong>g>the</str<strong>on</strong>g> rest commodities, we observe in<br />

fig. 8.3 that in decreasing order, <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> manganese, zinc, nickel, zirc<strong>on</strong>ium,<br />

lead, chromium, uranium, tin and gold c<strong>on</strong>tribute also significantly to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

planet’s n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> degradati<strong>on</strong>. Again, an exp<strong>on</strong>ential behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g> all commodities is observed. The average exergy cost degradati<strong>on</strong><br />

velocity D ∗ in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century is at least 0,5 Gtoe/year. However in <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade,<br />

this velocity increased to 1,3 Gtoe/year.<br />

2The nuclear exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> uranium, which is huge compared to its chemical exergy (see chapter 4),<br />

has not been taken into account.<br />

3This value corresp<strong>on</strong>ds <strong>on</strong>ly to <str<strong>on</strong>g>the</str<strong>on</strong>g> 51 <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities taken into account.<br />

4With <str<strong>on</strong>g>the</str<strong>on</strong>g> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uranium, whose producti<strong>on</strong> depends <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r external factors, such as<br />

political decisi<strong>on</strong>s.


284 THE EXERGY EVOLUTION OF PLANET EARTH<br />

Table 8.1: The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities in <str<strong>on</strong>g>the</str<strong>on</strong>g> world.<br />

Values are expressed in ktoe<br />

1900-2006 1996-2006 2006<br />

Mineral D D∗ ˙D ˙D ∗ ˙D ˙D ∗ % R loss % R. B. R/P, yrs R.B./P,<br />

loss<br />

yrs<br />

Aluminium 5,64E+05 1,22E+07 5,27E+03 1,14E+05 1,85E+04 4,01E+05 14,9 12,0 135 173<br />

Antim<strong>on</strong>y 5,13E+02 5,71E+03 4,80E+00 5,34E+01 1,18E+01 1,31E+02 72,8 56,6 16 32<br />

Arsenic 5,75E+02 7,23E+03 5,37E+00 6,76E+01 6,91E+00 8,70E+01 74,6 66,2 20 30<br />

Barite 1,53E+03 N.A. 1,43E+01 N.A. 3,47E+01 N.A. 61,0 25,2 24 111<br />

Beryllium 6,88E-01 3,60E+01 6,43E-03 3,37E-01 7,97E-03 4,17E-01 N.A. N.A. N.A. N.A.<br />

Bismuth 7,61E+00 1,24E+02 7,12E-02 1,16E+00 1,54E-01 2,50E+00 41,1 24,7 56 119<br />

Bor<strong>on</strong> oxide 4,04E+03 N.A. 3,78E+01 N.A. 1,69E+02 N.A. 39,2 21,1 40 96<br />

Bromine 2,41E+02 N.A. 2,26E+00 N.A. 7,96E+00 N.A. N.A. N.A. N.A. N.A.<br />

Cadmium 6,51E+01 3,54E+03 6,08E-01 3,31E+01 1,28E+00 6,98E+01 66,8 45,1 25 62<br />

Cesium 6,62E-02 N.A. 6,18E-04 N.A. N.A. N.A. 1,2 0,8 N.A. N.A.<br />

Chromium 4,53E+04 1,03E+05 4,23E+02 9,62E+02 1,32E+03 3,00E+03 N.A. N.A. N.A. N.A.<br />

Cobalt 2,20E+02 1,10E+04 2,05E+00 1,03E+02 5,70E+00 2,86E+02 19,5 11,5 104 193<br />

Copper 2,96E+04 3,07E+06 2,76E+02 2,87E+04 7,94E+02 8,24E+04 50,3 34,5 32 62<br />

Feldspar 8,77E+02 N.A. 8,20E+00 N.A. 3,51E+01 N.A. N.A. N.A. N.A. N.A.<br />

Fluorspar 9,95E+03 N.A. 9,30E+01 N.A. 2,03E+02 N.A. 48,6 32,1 45 90<br />

Gallium 2,75E-01 N.A. 2,57E-03 N.A. 1,31E-02 N.A. N.A. N.A. N.A. N.A.<br />

Germanium 6,52E-01 N.A. 6,09E-03 N.A. 1,24E-02 N.A. N.A. N.A. N.A. N.A.<br />

Gold 9,98E-01 8,17E+04 9,33E-03 7,64E+02 1,93E-02 1,58E+03 75,4 58,9 17 37<br />

Graphite 3,26E+04 N.A. 3,05E+02 N.A. 7,13E+02 N.A. 31,0 15,5 83 204<br />

Gypsum 1,40E+04 N.A. 1,30E+02 N.A. 3,51E+02 N.A. N.A. N.A. N.A. N.A.<br />

Helium 1,32E+02 N.A. 1,23E+00 N.A. 4,11E+00 N.A. N.A. N.A. N.A. N.A.<br />

Indium 5,45E-01 N.A. 5,10E-03 N.A. 3,35E-02 N.A. 34,3 26,4 19 28<br />

Iodine 1,12E+01 N.A. 1,05E-01 N.A. 3,86E-01 N.A. 3,8 2,2 600 1080<br />

Ir<strong>on</strong> 4,60E+06 3,22E+07 4,30E+04 3,01E+05 1,04E+05 7,26E+05 27,7 14,9 84 185<br />

Lead 6,01E+03 2,35E+05 5,62E+01 2,19E+03 8,99E+01 3,51E+03 72,5 55,1 23 49<br />

Lithium 9,32E+03 3,49E+04 8,71E+01 3,26E+02 3,26E+02 1,22E+03 62,3 38,1 12 33<br />

Magnesium 1,01E+04 1,01E+04 9,45E+01 9,45E+01 2,96E+02 2,96E+02 N.A. N.A. N.A. N.A.<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century 285<br />

Table 8.1: The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities in <str<strong>on</strong>g>the</str<strong>on</strong>g> world.<br />

Values are expressed in ktoe.– c<strong>on</strong>tinued from previous page.<br />

1900-2006 1996-2006 2006<br />

Mineral D D∗ ˙D ˙D ∗ ˙D ˙D ∗ % R loss % R. B. R/P, yrs R.B./P,<br />

loss<br />

yrs<br />

Manganese 1,08E+05 1,04E+06 1,01E+03 9,75E+03 1,82E+03 1,76E+04 51,9 8,7 39 437<br />

Mercury 9,24E+00 3,16E+03 8,63E-02 2,95E+01 2,75E-02 9,40E+00 92,2 69,4 31 162<br />

Molybdenum 9,58E+02 1,80E+04 8,95E+00 1,68E+02 2,62E+01 4,92E+02 37,5 21,4 47 103<br />

Nickel 4,48E+03 3,55E+05 4,18E+01 3,32E+03 1,31E+02 1,04E+04 40,0 22,9 42 95<br />

Niobium 1,57E+02 N.A. 1,46E+00 N.A. 6,90E+00 N.A. 19,8 18,1 61 67<br />

Phosphate rock 5,47E+04 7,08E+04 5,12E+02 6,62E+02 1,19E+03 1,54E+03 26,1 11,3 127 352<br />

PGM 2,41E-01 N.A. 2,25E-03 N.A. 8,35E-03 N.A. 14,4 13,0 137 154<br />

Potash 1,30E+05 2,02E+05 1,22E+03 1,89E+03 2,94E+03 4,56E+03 12,8 6,3 285 619<br />

REE 6,65E+01 N.A. 6,22E-01 N.A. 2,85E+00 N.A. 2,4 1,4 715 1220<br />

Rhenium 6,10E-02 7,43E+00 5,70E-04 6,95E-02 2,71E-03 3,30E-01 24,2 7,4 53 212<br />

Selenium 8,72E+00 N.A. 8,15E-02 N.A. 1,77E-01 N.A. 48,2 31,0 53 110<br />

Silver 1,76E+01 1,69E+04 1,65E-01 1,58E+02 3,24E-01 3,11E+02 78,5 63,4 13 28<br />

Str<strong>on</strong>tium 1,83E+03 N.A. 1,71E+01 N.A. 8,52E+01 N.A. 56,0 41,9 12 21<br />

Tantalum 4,71E+00 1,31E+03 4,41E-02 1,22E+01 2,30E-01 6,38E+01 14,2 10,7 94 130<br />

Tellurium 4,65E-01 N.A. 4,35E-03 N.A. 7,03E-03 N.A. 25,8 13,5 159 356<br />

Thorium 1,58E+00 N.A. 1,47E-02 N.A. N.A. N.A. 1,2 1,0 N.A. N.A.<br />

Tin 2,11E+03 1,08E+05 1,97E+01 1,01E+03 2,92E+01 1,51E+03 75,2 62,7 20 36<br />

Uranium 2,47E+02 7,29E+04 2,31E+00 6,81E+02 4,68E+00 1,38E+03 34,8 29,9 96 120<br />

Vanadium 4,40E+02 4,96E+03 4,11E+00 4,64E+01 1,56E+01 1,76E+02 8,9 3,2 231 675<br />

Wolfram 3,01E+02 2,28E+04 2,81E+00 2,13E+02 6,02E+00 4,56E+02 48,5 30,2 32 69<br />

Zinc 4,98E+04 9,09E+05 4,65E+02 8,49E+03 1,13E+03 2,06E+04 68,1 44,4 18 48<br />

Zirc<strong>on</strong>ium 3,03E+02 2,91E+05 2,83E+00 2,72E+03 8,52E+00 8,18E+03 43,8 29,2 32 61<br />

SUM 5,68E+06 5,11E+07 5,31E+04 4,78E+05 1,34E+05 1,29E+06 25,6 14,2 92 191<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table


286 THE EXERGY EVOLUTION OF PLANET EARTH<br />

200000<br />

180000<br />

160000<br />

140000<br />

120000<br />

100000<br />

80000<br />

60000<br />

40000<br />

20000<br />

0<br />

1900<br />

1904<br />

B T, ktoe<br />

1908<br />

1912<br />

1916<br />

1920<br />

1924<br />

1928<br />

1932<br />

1936<br />

1940<br />

1944<br />

1948<br />

1952<br />

1956<br />

1960<br />

1964<br />

1968<br />

1972<br />

1976<br />

1980<br />

1984<br />

1988<br />

Ir<strong>on</strong><br />

Aluminium<br />

1992<br />

1996<br />

2000<br />

2004<br />

Uranium<br />

Zirc<strong>on</strong>ium<br />

Zinc<br />

Wolfram<br />

Vanadium<br />

Tin<br />

Thorium<br />

Tellurium<br />

Tantalum<br />

Str<strong>on</strong>tium<br />

Silver<br />

Selenium<br />

Rhenium<br />

REE<br />

Potash<br />

PGM<br />

Phosphate rock<br />

Niobium<br />

Nickel<br />

Molybdenum<br />

Mercury<br />

Manganese<br />

Magnesium<br />

Lithium<br />

Lead<br />

Ir<strong>on</strong><br />

Iodine<br />

Indium<br />

Helium<br />

Gypsum<br />

Graphite<br />

Gold<br />

Germanium<br />

Gallium<br />

Fluorspar<br />

Feldspar<br />

Copper<br />

Cobalt<br />

Chromium<br />

Cesium<br />

Cadmium<br />

Bromine<br />

Bor<strong>on</strong> oxide<br />

Bismuth<br />

Beryllium<br />

Barite<br />

Arsenic<br />

Antim<strong>on</strong>y<br />

Aluminium<br />

Figure 8.1. The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities <strong>on</strong> <strong>earth</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> twentieth century<br />

According to <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> ratios (% R loss and % R.B. loss) in table 8.1, man has<br />

depleted in just <strong>on</strong>e century around 26% <str<strong>on</strong>g>of</str<strong>on</strong>g> its world n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves, and<br />

around 14% <str<strong>on</strong>g>of</str<strong>on</strong>g> its reserve base. The estimated years until depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total<br />

reserves and reserve base are around 92 and 191 years, respectively. It must be<br />

pointed out that <str<strong>on</strong>g>the</str<strong>on</strong>g>se are <strong>on</strong>ly minimum numbers, as it has been assumed that no<br />

more deposits are going to be found. However, as we observed before, extracti<strong>on</strong><br />

follows an exp<strong>on</strong>ential behavior, what may lead that <str<strong>on</strong>g>the</str<strong>on</strong>g> finding <str<strong>on</strong>g>of</str<strong>on</strong>g> new deposits<br />

does not compensate <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing producti<strong>on</strong> rates.<br />

According to fig. 8.4, <str<strong>on</strong>g>the</str<strong>on</strong>g> most depleted commodities are in decreasing order: mercury,<br />

with 92% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves extracted, silver (79%), gold (75%), tin (75%), arsenic<br />

(75%), antim<strong>on</strong>y (72%) and lead (72%). On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cesium, thorium, REE, iodine vanadium, PGM’s, tantalum, aluminium cobalt and<br />

niobium are <str<strong>on</strong>g>the</str<strong>on</strong>g> least depleted commodities, having extracted less than 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

respective world resources. The depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s depend <strong>on</strong> two factors:<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserve, and its producti<strong>on</strong> rates. Usually,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> least depleted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s coincide with those substances, for which no important<br />

usefulness has been found until to date. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, it can also be due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

important abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resource. That is <str<strong>on</strong>g>the</str<strong>on</strong>g> case for iodine, aluminium or ir<strong>on</strong>.


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century 287<br />

1800000<br />

1600000<br />

1400000<br />

1200000<br />

1000000<br />

800000<br />

600000<br />

400000<br />

200000<br />

0<br />

B* T , ktoe<br />

1900<br />

1904<br />

Manganese<br />

1908<br />

1912<br />

1916<br />

1920<br />

1924<br />

1928<br />

1932<br />

1936<br />

1940<br />

1944<br />

1948<br />

1952<br />

1956<br />

1960<br />

1964<br />

1968<br />

1972<br />

1976<br />

1980<br />

Ir<strong>on</strong><br />

Copper<br />

Aluminium<br />

1984<br />

1988<br />

1992<br />

1996<br />

2000<br />

2004<br />

Uranium<br />

Zirc<strong>on</strong>ium<br />

Zinc<br />

Wolfram<br />

Vanadium<br />

Tin<br />

Thorium<br />

Tellurium<br />

Tantalum<br />

Str<strong>on</strong>tium<br />

Silver<br />

Selenium<br />

Rhenium<br />

REE<br />

Potash<br />

PGM<br />

Phosphate rock<br />

Niobium<br />

Nickel<br />

Molybdenum<br />

Mercury<br />

Manganese<br />

Magnesium<br />

Lithium<br />

Lead<br />

Ir<strong>on</strong><br />

Iodine<br />

Indium<br />

Helium<br />

Gypsum<br />

Graphite<br />

Gold<br />

Germanium<br />

Gallium<br />

Fluorspar<br />

Feldspar<br />

Copper<br />

Cobalt<br />

Chromium<br />

Cesium<br />

Cadmium<br />

Bromine<br />

Bor<strong>on</strong> oxide<br />

Bismuth<br />

Beryllium<br />

Barite<br />

Arsenic<br />

Antim<strong>on</strong>y<br />

Aluminium<br />

Figure 8.2. The actual exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities <strong>on</strong><br />

<strong>earth</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> twentieth century<br />

Despite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intensive extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> and aluminium throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir respective abundances have avoided scarcity problems. Their reserve’s<br />

depleti<strong>on</strong> rates are around 28 and 15%, respectively. Unfortunately that is not <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case for copper, which has been and is still being massively extracted. More than<br />

50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s copper reserves have been already depleted.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> latter three <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s we have applied <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model, c<strong>on</strong>sidering<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir respective reserve base in year 19005 . Since unit exergy replacement costs<br />

are assumed to be c<strong>on</strong>stant over time, plotting producti<strong>on</strong> versus time in minimum<br />

exergy or in exergy replacement cost terms will not affect <str<strong>on</strong>g>the</str<strong>on</strong>g> final result. In this<br />

case, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy replacement costs (B∗ t ) versus time and not <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum exergies<br />

(Bt) versus time have been plotted, because <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> patterns obtained will<br />

be later used for estimating exergy degradati<strong>on</strong> costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

Accordingly, it has been obtained that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> will be reached<br />

in year 2068, <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium in 2057 and <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in 2024 (see figs. 8.5, 8.6, and<br />

8.7). It must be remembered, that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> factor has not been accounted<br />

for.<br />

5 The reserve base in year 1900 is calculated as <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base in year 2006 plus <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

distance in <str<strong>on</strong>g>the</str<strong>on</strong>g> period between 1900 and 2006.


288 THE EXERGY EVOLUTION OF PLANET EARTH<br />

200000<br />

180000<br />

160000<br />

140000<br />

120000<br />

100000<br />

80000<br />

60000<br />

40000<br />

20000<br />

0<br />

1900<br />

1904<br />

B* T, ktoe<br />

Uranium<br />

Nickel<br />

1908<br />

1912<br />

1916<br />

1920<br />

1924<br />

1928<br />

1932<br />

1936<br />

1940<br />

1944<br />

1948<br />

1952<br />

1956<br />

1960<br />

1964<br />

1968<br />

1972<br />

1976<br />

Zinc<br />

Manganese<br />

Zirc<strong>on</strong>ium<br />

Tin<br />

Lead<br />

Copper<br />

Gold<br />

Chromium<br />

1980<br />

1984<br />

1988<br />

1992<br />

1996<br />

2000<br />

2004<br />

Uranium<br />

Zirc<strong>on</strong>ium<br />

Zinc<br />

Tin<br />

Silver<br />

Nickel<br />

Mercury<br />

Manganese<br />

Magnesium<br />

Figure 8.3. The actual exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main 15 n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities <strong>on</strong><br />

<strong>earth</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> twentieth century, excluding ir<strong>on</strong> and aluminium<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Arsenic<br />

Antim<strong>on</strong>y<br />

20<br />

Aluminium<br />

10<br />

0<br />

%<br />

Barite<br />

Cadmium<br />

Bismuth<br />

Bor<strong>on</strong> oxide<br />

Cobalt<br />

Cesium<br />

Gold<br />

Copper<br />

Fluorspar<br />

Indium<br />

Graphite<br />

Iodine<br />

Ir<strong>on</strong><br />

Lead<br />

Lithium<br />

Mercury<br />

Manganese<br />

Nickel<br />

Molybdenum<br />

Phosphate rock<br />

Rhenium<br />

Niobium<br />

PGM<br />

Potash<br />

REE<br />

Silver<br />

Selenium<br />

Str<strong>on</strong>tium<br />

Tellurium<br />

Tantalum<br />

Tin<br />

Thorium<br />

Uranium<br />

Lead<br />

Gypsum<br />

Graphite<br />

Gold<br />

Vanadium<br />

Gallium<br />

Copper<br />

Chromium<br />

Zinc<br />

Wolfram<br />

Zirc<strong>on</strong>ium<br />

Figure 8.4. Depleti<strong>on</strong> degree in % <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodity reserves


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century 289<br />

The results obtained should not be taken as definitive. They should be ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>sidered<br />

as an approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves <strong>on</strong> <strong>earth</strong>. In<br />

additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>s made, we should not forget that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are still many<br />

places in <str<strong>on</strong>g>the</str<strong>on</strong>g> world that remain unexplored. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, and despite that <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers<br />

are <strong>on</strong>ly approximati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> results are pointing out that <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

extracti<strong>on</strong> in just <strong>on</strong>e century has been excessive, when compared to past periods<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time. Moreover, many commodities are already suffering scarcity problems. In a<br />

not very distant future, man will have to search for material alternatives <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

depleted commodities. This has already occurred for some applicati<strong>on</strong>s, for example<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> shift away from copper to aluminium for c<strong>on</strong>ductors in wires and cables. But<br />

substituti<strong>on</strong> will be <strong>on</strong>ly possible, whenever o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources are available.<br />

Bt*<br />

Integral Bt*<br />

x 10<br />

15<br />

5<br />

10<br />

5<br />

0<br />

x 108<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

2068<br />

0<br />

1900 1950 2000 2050 2100 2150 2200 2250<br />

Figure 8.5. The Hubbert peak applied to world ir<strong>on</strong> producti<strong>on</strong>. Data in ktoe


290 THE EXERGY EVOLUTION OF PLANET EARTH<br />

Bt<br />

Integral Bt<br />

x 105<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

x 107<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

2057<br />

0<br />

1900 1950 2000 2050 2100 2150 2200<br />

Figure 8.6. The Hubbert peak applied to world aluminium producti<strong>on</strong>. Data in ktoe<br />

Bt<br />

Integral Bt<br />

x 104<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

x 106<br />

10<br />

8<br />

6<br />

4<br />

2<br />

2024<br />

0<br />

1900 1950 2000 2050 2100 2150<br />

Figure 8.7. The Hubbert peak applied to world copper producti<strong>on</strong>. Data in ktoe


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century 291<br />

8.2.2 Fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

The degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s throughout history, requires historical producti<strong>on</strong><br />

data <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, oil and natural gas. Historical statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> world fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s had to<br />

be rec<strong>on</strong>structed from different informati<strong>on</strong> sources, being <str<strong>on</strong>g>the</str<strong>on</strong>g> most important <strong>on</strong>es<br />

those from <str<strong>on</strong>g>the</str<strong>on</strong>g> British Geological Survey and its preceding organizati<strong>on</strong>s. Tables<br />

A.26, A.27 and A.28 in <str<strong>on</strong>g>the</str<strong>on</strong>g> appendix show world producti<strong>on</strong> data <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, oil and<br />

natural gas, between years 1900 and 2006.<br />

The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three types <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s has been obtained in <str<strong>on</strong>g>the</str<strong>on</strong>g> same way as<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia, and assuming a single type <str<strong>on</strong>g>of</str<strong>on</strong>g> coal and oil 6 , with <str<strong>on</strong>g>the</str<strong>on</strong>g> average<br />

properties calculated by Valero and Arauzo [366]. This way, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> average<br />

coal and oil <strong>on</strong> <strong>earth</strong> are assumed to be 22.692 and 45.664 kJ/kg, respectively.<br />

Table 8.2 summarizes <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained for world fuels throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century.<br />

Table 8.2. The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, oil and natural gas in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century.<br />

1900-2006 1996-2006 2006<br />

Mineral D, Mtoe ˙D, Mtoe/yr ˙D, M toe/yr % R. loss R/P, yrs Year <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Peak<br />

Coal 1,45E+05 1,37E+03 2,73E+03 27,9 156 2060<br />

Oil 1,61E+05 1,50E+03 3,96E+03 47,5 42 2008<br />

Natural gas 7,60E+04 1,74E+03 2,34E+03 30,9 63 2023<br />

SUM 3,82E+05 4,61E+03 9,03E+03 30,5 114 2029<br />

Figure 8.8 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, oil and natural gas deposits in <str<strong>on</strong>g>the</str<strong>on</strong>g> last<br />

century. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> most extracted fuel in <str<strong>on</strong>g>the</str<strong>on</strong>g> world is coal, as revealed by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

historical statistics included in tables A.26, A.27 and A.28, in exergy terms, <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

c<strong>on</strong>sumed fuel has been oil. Oil has accounted for 42% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total fuel exergy degradati<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century, while coal and natural gas for 38 and 20%, respectively.<br />

The exergy distance between 1900 and 2006 (D), i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> total fuel’s exergy depleted<br />

has been 382 Gtoe, corresp<strong>on</strong>ding to 30,5% <str<strong>on</strong>g>of</str<strong>on</strong>g> total world’s proven fuel reserves in<br />

2006.<br />

The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels was c<strong>on</strong>sumed at an average exergy degradati<strong>on</strong> velocity (˙D)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 4,6 Gtoe/year. However in <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade, this velocity increased to around 9<br />

Gtoe/year. From <str<strong>on</strong>g>the</str<strong>on</strong>g> latter figure, coal c<strong>on</strong>tributes to 2,7, oil to 4,0 and natural gas<br />

to 2,3 Gtoe/year.<br />

If we add <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels, to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy replacement costs <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, we obtain that man has depleted in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 433 Gtoe,<br />

which were c<strong>on</strong>sumed at an average velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> around 4 Gtoe/year. However, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

6 Natural gas was already assumed to have a single compositi<strong>on</strong>, with a standard exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> 39.394<br />

kJ/N m 3 (see secti<strong>on</strong> 6.4.1.3).


292 THE EXERGY EVOLUTION OF PLANET EARTH<br />

12000000 12000<br />

10000000 10000<br />

8000000 8000<br />

6000000 6000<br />

4000000 4000<br />

2000000 2000<br />

0<br />

B* t , Mtoe<br />

1900<br />

1904<br />

Copper<br />

1908<br />

1912<br />

1916<br />

1920<br />

1924<br />

1928<br />

1932<br />

1936<br />

1940<br />

1944<br />

1948<br />

1952<br />

1956<br />

1960<br />

1964<br />

1968<br />

1972<br />

1976<br />

1980<br />

1984<br />

N. Gas<br />

Oil<br />

Coal<br />

1988<br />

1992<br />

1996<br />

2000<br />

Figure 8.8. Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s fuel and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century<br />

2006 <str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s exergy degradati<strong>on</strong> velocity increased to around 12 Gtoe. Most part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this exergy degradati<strong>on</strong> (82%) was due to <str<strong>on</strong>g>the</str<strong>on</strong>g> combusti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels. The extracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> was resp<strong>on</strong>sible for 7,4% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total exergy destructi<strong>on</strong>, aluminium<br />

for 2,8%, copper for 0,7% and <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s for 0,8% (see fig. 8.8).<br />

Without excepti<strong>on</strong>, producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all fossil fuels have followed an exp<strong>on</strong>ential-like<br />

behavior, what allows a satisfactorily applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert’s bell-shaped curve.<br />

Am<strong>on</strong>g all c<strong>on</strong>venti<strong>on</strong>al fossil fuels, coal is <str<strong>on</strong>g>the</str<strong>on</strong>g> least depleted commodity (27,9%),<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> its large reserves worldwide. Assuming that no more coal reserves will<br />

be found, and that <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> rate remains as in 2006, <str<strong>on</strong>g>the</str<strong>on</strong>g> R/P ratio indicates<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g>re will be enough resource for 156 years. The Hubbert peak model applied<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal (fig. 8.9), reveals that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak will be reached in<br />

year 2060 7 . Our study c<strong>on</strong>tradicts <str<strong>on</strong>g>the</str<strong>on</strong>g> recent estimate by <str<strong>on</strong>g>the</str<strong>on</strong>g> Energy Watch Group<br />

(EWG), which reports that global coal producti<strong>on</strong> could peak in 2025 [89].<br />

The reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas are significantly more depleted than coal. In <str<strong>on</strong>g>the</str<strong>on</strong>g> period<br />

between 1900 and 2006, natural gas c<strong>on</strong>sumpti<strong>on</strong> has leaded to <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

30,9% <str<strong>on</strong>g>of</str<strong>on</strong>g> its exergy reserves. Its R/P ratio for 2006, reveals that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is enough<br />

natural gas for 63 years. The peak <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s natural gas producti<strong>on</strong> will be reached<br />

in year 2023, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model applied and represented in fig.<br />

7 It has been assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> coal extracted in <str<strong>on</strong>g>the</str<strong>on</strong>g> period between 1800 and 1900<br />

followed <str<strong>on</strong>g>the</str<strong>on</strong>g> same exp<strong>on</strong>ential behavior detected by <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> points. Hence, it has been assumed<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> total reserves in 1800 were 675 Gtoe.<br />

Ir<strong>on</strong><br />

Aluminium<br />

2004


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century 293<br />

Bt<br />

4000<br />

3000<br />

2000<br />

1000<br />

Integral Bt<br />

0<br />

x 105<br />

8<br />

6<br />

4<br />

2<br />

2060<br />

0<br />

1800 1850 1900 1950 2000 2050 2100 2150 2200 2250 2300<br />

Figure 8.9. The Hubbert peak applied to world coal producti<strong>on</strong>. Data in Mtoe<br />

Bt<br />

Integral Bt<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

x 105<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

2023<br />

0<br />

1900 1950 2000 2050 2100 2150<br />

Figure 8.10. The Hubbert peak applied to world natural gas producti<strong>on</strong>. Data in<br />

Mtoe<br />

8.10. Bentley estimated in year 2002 [24] that <str<strong>on</strong>g>the</str<strong>on</strong>g> global peak in c<strong>on</strong>venti<strong>on</strong>al gas<br />

producti<strong>on</strong> was already in sight, in perhaps 20 years. Hence, Bentley’s estimati<strong>on</strong><br />

fits very well with <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> carried out in this study.<br />

Bey<strong>on</strong>d doubt, oil is <str<strong>on</strong>g>the</str<strong>on</strong>g> most depleted commodity, having extracted almost half <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

its resources (47,5%). The R/P ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> oil indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is enough fuel for <strong>on</strong>ly


294 THE EXERGY EVOLUTION OF PLANET EARTH<br />

Bt<br />

Integral Bt<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

x 105<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

2008<br />

0<br />

1900 1950 2000 2050 2100<br />

Figure 8.11. The Hubbert peak applied to world oil producti<strong>on</strong>. Data in Mtoe<br />

42 years, before complete depleti<strong>on</strong> occurs. Hubbert’s bell-shaped curve applied to<br />

world oil’s exergy (fig. 8.11) alerts that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak is reached in year 2008. The latter<br />

value fits very well with <str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r authors, such as Hatfield [133], Kerr<br />

[183] or Campbell and Laherre [47], who estimated that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak year <str<strong>on</strong>g>of</str<strong>on</strong>g> world oil<br />

will be between 2004 and 2008. In fact, Campbell and Laherre’s predicti<strong>on</strong> in 1998<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> world could see radical increases in oil prices ten years later, has turned out<br />

to be completely right. The price <str<strong>on</strong>g>of</str<strong>on</strong>g> a barrel <str<strong>on</strong>g>of</str<strong>on</strong>g> crude oil increased by a 100% in just<br />

<strong>on</strong>e year, surpassing in January 2008, <str<strong>on</strong>g>the</str<strong>on</strong>g> psychological barrier <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 $US. And <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

observed tendency is that it will probably reach 200 $US by <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> year 2008 or<br />

not much later.<br />

Since exergy is an additive property, we can apply Hubbert’s bell-shape curve to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sum <str<strong>on</strong>g>of</str<strong>on</strong>g> all three fuels. In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e fossil fuel may lead to a greater<br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. This way, <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> oil has been already<br />

reached, will probably lead in <str<strong>on</strong>g>the</str<strong>on</strong>g> short and mid-run, to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more<br />

natural gas and coal. Therefore, it is interesting to analyze all three fuels as a single<br />

entity, making <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are mutually replaceable. If no more fuel<br />

resources are found, and if <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> rate remains as in 2006, <str<strong>on</strong>g>the</str<strong>on</strong>g> R/P ratio<br />

indicates that in 114 years, all c<strong>on</strong>venti<strong>on</strong>al fossil fuels will be completely depleted.<br />

Moreover, as revealed by fig. 8.12, <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all c<strong>on</strong>venti<strong>on</strong>al fossil<br />

fuels would be reached in 2029. If this predicti<strong>on</strong> is true, fuel prices will increase<br />

sharply 8 , putting at risk world ec<strong>on</strong>omies. Hopefully o<str<strong>on</strong>g>the</str<strong>on</strong>g>r energy alternatives will<br />

be ready by <str<strong>on</strong>g>the</str<strong>on</strong>g>n and are able to supply <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing world energy demand.<br />

8 As it is happening already with oil and natural gas.


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s fossil fuel reserves due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect 295<br />

Bt<br />

12000<br />

10000<br />

Integral Bt<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

x 105<br />

15<br />

10<br />

5<br />

2029<br />

0<br />

1900 1950 2000 2050 2100 2150<br />

Figure 8.12. The Hubbert peak applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s c<strong>on</strong>venti<strong>on</strong>al fossil fuel producti<strong>on</strong>.<br />

Data in Mtoe<br />

Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model can be applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s plus <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels. Taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> global extracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong>, aluminium, copper, coal, oil and natural gas, <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> would<br />

be reached in year 2034, as shown in fig. 8.13. The same figure presents also <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bell shape curve, i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> accelerati<strong>on</strong> experienced in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

processes throughout history. Accordingly, we observe that <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong> has<br />

underg<strong>on</strong>e accelerati<strong>on</strong> until 1989. From that moment <strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong><br />

rises until 2034, but at increasingly slower rates.<br />

Figure 8.14 summarizes <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous secti<strong>on</strong>s, showing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy countdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s extracted <strong>on</strong> <strong>earth</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel and n<strong>on</strong>-fuel<br />

nature. As it can be seen, coal, ir<strong>on</strong> and aluminium are <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities having <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

least scarcity problems. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r end we find in decreasing order <str<strong>on</strong>g>of</str<strong>on</strong>g> scarcity<br />

degree, oil, natural gas and copper. These values assume that no more resources<br />

than <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base for n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, and <str<strong>on</strong>g>the</str<strong>on</strong>g> proven reserves for fuels will<br />

be available in <str<strong>on</strong>g>the</str<strong>on</strong>g> future. Obviously <str<strong>on</strong>g>the</str<strong>on</strong>g> figures may change, as new discoveries are<br />

made.<br />

8.3 The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s fossil fuel reserves due to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect<br />

The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuel reserves may decrease ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r through extracti<strong>on</strong> and subsequent<br />

burning, or through an alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment. This secti<strong>on</strong>


296 THE EXERGY EVOLUTION OF PLANET EARTH<br />

Bt<br />

Derivative Bt<br />

15<br />

10<br />

5<br />

0<br />

0.2<br />

0.1<br />

0<br />

-0.1<br />

1989<br />

2034<br />

-0.2<br />

1900 1950 2000 2050 2100 2150 2200<br />

Figure 8.13. The Hubbert peak applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s producti<strong>on</strong>.<br />

Data in Mtoe<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Bt*, Mtoe<br />

Oil<br />

Natural gas<br />

Copper<br />

Coal<br />

Ir<strong>on</strong><br />

Aluminium<br />

0<br />

1890 1940 1990 2040 2090 2140 2190 2240 2290<br />

Figure 8.14. The exergy countdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s extracted <strong>on</strong> <strong>earth</strong>


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s fossil fuel reserves due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect 297<br />

is devoted to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuel reserves due to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

greenhouse gases in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere (mainly CO 2) and <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent temperature<br />

rise.<br />

A similar study was carried out for <str<strong>on</strong>g>the</str<strong>on</strong>g> first time in 1991 by Valero and Arauzo [366].<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g>ir analysis, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> an “average fossil fuel” was determined,<br />

assuming that CO 2 c<strong>on</strong>centrati<strong>on</strong> would double over <str<strong>on</strong>g>the</str<strong>on</strong>g> next hundred years.<br />

In this secti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> provided by <str<strong>on</strong>g>the</str<strong>on</strong>g> latter authors will be updated with<br />

recent GHG emissi<strong>on</strong> scenarios and <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, natural<br />

gas and oil will be studied separately.<br />

8.3.1 The carb<strong>on</strong> cycle and <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect<br />

The carb<strong>on</strong> cycle is a well-known natural flux occurring <strong>on</strong> <strong>earth</strong>. The mass transfer<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> takes place between <str<strong>on</strong>g>the</str<strong>on</strong>g> three spheres <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet: hydrosphere, c<strong>on</strong>tinental<br />

crust and atmosphere. According to Post [270], <str<strong>on</strong>g>the</str<strong>on</strong>g> annual natural flux <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carb<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 between terrestrial plus oceanic reservoirs and <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere<br />

is about 200 Gt per year, from which 100-115 are exchanged between <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ocean and atmosphere, and 100-120 between <strong>earth</strong> biomasses and <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere<br />

(see Fig. 8.15).<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> anthropic annual flux <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 from fossil fuel combusti<strong>on</strong><br />

and modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> terrestrial ecosystems is estimated at 7-8 Gt C/year [296], or<br />

<strong>on</strong>ly 3,5 to 4% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural flux. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> combined climate and biogeochemical<br />

systems that regulate <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere cannot handle<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> anthropogenic perturbati<strong>on</strong> without accumulating in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere in <str<strong>on</strong>g>the</str<strong>on</strong>g> near<br />

term about half <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 being released.<br />

According to <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s forth assessment report [162], annual fossil carb<strong>on</strong> dioxide<br />

emissi<strong>on</strong>s increased from an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 6,4 GtC (23,5 GtCO 2) per year in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

1990s to 7,2 GtC (26,4 GtCO 2) per year in 2000-2005. Accordingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> annual<br />

carb<strong>on</strong> dioxide c<strong>on</strong>centrati<strong>on</strong> growth rate in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere was larger during <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

years 1995-2005 (average: 1,9 ppm per year), than it has been since <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous direct atmospheric measurements (1960-2005 average: 1,4 ppm per<br />

year). The record at Mauna Loa observatory shows that c<strong>on</strong>centrati<strong>on</strong>s have increased<br />

from about 310 to <str<strong>on</strong>g>the</str<strong>on</strong>g> current 379 ppm since 1958. And preindustrial CO 2<br />

c<strong>on</strong>centrati<strong>on</strong>s did not exceed 280 ppm.<br />

Eleven <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> twelve years between 1995 and 2006 rank am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> 12 warmest years<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> instrumental record <str<strong>on</strong>g>of</str<strong>on</strong>g> global surface temperature (since 1850). The linear<br />

warming trend over <str<strong>on</strong>g>the</str<strong>on</strong>g> last 50 years (0,13 ◦ C per decade) is nearly twice <str<strong>on</strong>g>of</str<strong>on</strong>g> that for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> last 100 years. The total temperature increase from 1850-1899 to 2001-2005 is<br />

0,76 ◦ C [162].<br />

There is c<strong>on</strong>siderable scientific c<strong>on</strong>sensus that <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid buildup <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 is tightly related<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric temperature, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> well known greenhouse


298 THE EXERGY EVOLUTION OF PLANET EARTH<br />

Figure 8.15. Schematic presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> global carb<strong>on</strong> cycle as estimated by Post<br />

et al. [270]<br />

effect. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r gases cause <str<strong>on</strong>g>the</str<strong>on</strong>g> same or even a more enhanced greenhouse effect <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. The most important <strong>on</strong>es are methane CH 4 (released from agriculture,<br />

waste and energy) and nitrous oxides N 2O (from agriculture and industry),<br />

accounting for about 14 and 8% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total greenhouse gas (GHG) emissi<strong>on</strong>s, respectively.<br />

The global warming impact <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG gases is related to that <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 and is<br />

measured in CO 2 − eq units. The global warming impact <str<strong>on</strong>g>of</str<strong>on</strong>g> CH 4 is 21 times <str<strong>on</strong>g>of</str<strong>on</strong>g> that<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2, while that <str<strong>on</strong>g>of</str<strong>on</strong>g> N 2O is 310 greater.<br />

According to <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC [162], atmospheric c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 (379 ppm) and<br />

CH 4 (1774 ppb) in 2005 exceeded by far <str<strong>on</strong>g>the</str<strong>on</strong>g> natural range over <str<strong>on</strong>g>the</str<strong>on</strong>g> last 650.000<br />

years. Greenhouse gases are already having a major impact <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> world climate<br />

and sea level; and within 40 to 80 years atmospheric greenhouse gases will more<br />

than double with alarming implicati<strong>on</strong>s for world climate, agriculture, sea levels,<br />

nati<strong>on</strong>al ec<strong>on</strong>omics, etc.<br />

8.3.2 Scenarios<br />

There is a great variety <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios published about nati<strong>on</strong>al and world energy<br />

c<strong>on</strong>sumpti<strong>on</strong>s. Two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> latest world scenarios are <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es carried out by <str<strong>on</strong>g>the</str<strong>on</strong>g>


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s fossil fuel reserves due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect 299<br />

World Energy Council in 2007 [44] and <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>al Energy Agency in 2006<br />

[152].<br />

The WEC report, more focused <strong>on</strong> political acti<strong>on</strong>s, takes into account four scenarios,<br />

based <strong>on</strong> ec<strong>on</strong>omic, populati<strong>on</strong> and policy aspects. The main c<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study<br />

is that to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> energy demand <str<strong>on</strong>g>of</str<strong>on</strong>g> all households worldwide, energy supplies must<br />

double by 2050.<br />

The IEA c<strong>on</strong>siders two different scenarios: <str<strong>on</strong>g>the</str<strong>on</strong>g> reference and <str<strong>on</strong>g>the</str<strong>on</strong>g> alternative policy<br />

scenario. In <str<strong>on</strong>g>the</str<strong>on</strong>g> latter <strong>on</strong>e, governments take str<strong>on</strong>ger acti<strong>on</strong> to steer <str<strong>on</strong>g>the</str<strong>on</strong>g> energy<br />

system <strong>on</strong>to a more sustainable path. Globally, fossil fuels will remain <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant<br />

source <str<strong>on</strong>g>of</str<strong>on</strong>g> energy to 2030 in both scenarios. Primary energy demand in <str<strong>on</strong>g>the</str<strong>on</strong>g> reference<br />

scenario is projected to increase by just over <strong>on</strong>e-half between now and 2030 and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> associated carb<strong>on</strong> dioxide emissi<strong>on</strong>s increase by 55%. World primary energy<br />

demand in 2030 is about 10% lower in <str<strong>on</strong>g>the</str<strong>on</strong>g> alternative policy scenario than in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reference scenario, coming <str<strong>on</strong>g>the</str<strong>on</strong>g> biggest energy savings from coal. The carb<strong>on</strong> dioxide<br />

emissi<strong>on</strong>s are cut by 16% in 2030 relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> reference scenario.<br />

The scenarios for GHG emissi<strong>on</strong>s most widely used are those <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC published in<br />

2000 for use in <str<strong>on</strong>g>the</str<strong>on</strong>g> Third Assessment Report (Special Report <strong>on</strong> Emissi<strong>on</strong>s Scenarios<br />

- SRES - [160]). We will focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> SRES scenarios, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y were c<strong>on</strong>structed to<br />

explore future developments in <str<strong>on</strong>g>the</str<strong>on</strong>g> global envir<strong>on</strong>ment with special reference to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gases and aerosol 9 precursor emissi<strong>on</strong>s.<br />

The SRES defined four scenarios A1, A2, B1 and B2, describing <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ships<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> forces driving greenhouse gas and aerosol emissi<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g><br />

during <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century for large world regi<strong>on</strong>s and globally. Each scenario<br />

represents different demographic, social, ec<strong>on</strong>omic, technological, and envir<strong>on</strong>mental<br />

developments that diverge in increasingly irreversible ways. The scenarios are<br />

summarized as follows:<br />

• A1 scenario family: a future world <str<strong>on</strong>g>of</str<strong>on</strong>g> very rapid ec<strong>on</strong>omic growth, global<br />

populati<strong>on</strong> that peaks in mid-century and declines <str<strong>on</strong>g>the</str<strong>on</strong>g>reafter, and rapid introducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> new and more efficient technologies.<br />

• A2 scenario family: a very heterogeneous world with c<strong>on</strong>tinuously increasing<br />

global populati<strong>on</strong> and regi<strong>on</strong>ally oriented ec<strong>on</strong>omic growth that is more<br />

fragmented and slower than in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r storylines.<br />

• B1 scenario family: a c<strong>on</strong>vergent world with <str<strong>on</strong>g>the</str<strong>on</strong>g> same global populati<strong>on</strong> as<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> A1 storyline but with rapid changes in ec<strong>on</strong>omic structures toward a<br />

service and informati<strong>on</strong> ec<strong>on</strong>omy, with reducti<strong>on</strong>s in material intensity, and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> clean and resource-efficient technologies.<br />

• B2 scenario family: a world in which <str<strong>on</strong>g>the</str<strong>on</strong>g> emphasis is <strong>on</strong> local soluti<strong>on</strong>s to ec<strong>on</strong>omic,<br />

social, and envir<strong>on</strong>mental sustainability, with c<strong>on</strong>tinuously increasing<br />

populati<strong>on</strong> (lower than A2) and intermediate ec<strong>on</strong>omic development.<br />

9 Aerosol emissi<strong>on</strong>s cause <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite effect <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gases.


300 THE EXERGY EVOLUTION OF PLANET EARTH<br />

Figure 8.16. Scenarios for GHG emissi<strong>on</strong>s from 2000 to 2100 and projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

surface temperatures [160]<br />

Table 8.3. Projected global averaged temperature change ( ◦ C at 2090-2099 relative<br />

to 1980-1999) at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century. After [160]<br />

Scenario Temperature change<br />

C<strong>on</strong>stant year 2000 c<strong>on</strong>centrati<strong>on</strong>s<br />

0,6<br />

B1 1,8<br />

A1T 2,4<br />

B2 2,4<br />

A1B 2,8<br />

A2 3,4<br />

A1FI 4,0<br />

Six groups <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios were drawn from <str<strong>on</strong>g>the</str<strong>on</strong>g> four families: <strong>on</strong>e group each in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

A2, B1 and B2 families, and three groups in <str<strong>on</strong>g>the</str<strong>on</strong>g> A1 family, characterizing alternative<br />

developments <str<strong>on</strong>g>of</str<strong>on</strong>g> energy technologies: A1FI (fossil intensive), A1T (predominantly<br />

n<strong>on</strong>-fossil) and A1B (balanced across energy sources).<br />

The SRES scenarios project an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> global GHG emissi<strong>on</strong>s by 25-90% (CO 2eq)<br />

between 2000 and 2030 (Fig. 8.16), with fossil fuels maintaining <str<strong>on</strong>g>the</str<strong>on</strong>g>ir dominant<br />

positi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> global energy mix to 2030 and bey<strong>on</strong>d.<br />

According to those scenarios, <str<strong>on</strong>g>the</str<strong>on</strong>g> projected global averaged surface warming is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>e shown in table 8.3.<br />

In order to stabilize <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> GHGs in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, emissi<strong>on</strong>s would<br />

need to peak and decline <str<strong>on</strong>g>the</str<strong>on</strong>g>reafter. Table 8.4 and figure 8.17 summarize <str<strong>on</strong>g>the</str<strong>on</strong>g> re-


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s fossil fuel reserves due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect 301<br />

Table 8.4. Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> stabilizati<strong>on</strong> scenarios and resulting l<strong>on</strong>g-term equilibrium<br />

global average temperature rise above pre-industrial at equilibrium from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal expansi<strong>on</strong> <strong>on</strong>ly. After [162]<br />

Category CO2 c<strong>on</strong>c. CO2-eq c<strong>on</strong>c. Peaking year Global aver. temp.<br />

for CO2 si<strong>on</strong>semis-<br />

ppm ppm year ◦C I 350-400 445-490 2000-2015 2,0-4,0<br />

II 400-440 490-535 2000-2020 2,4-2,8<br />

III 440-485 535-590 2010-2030 2,8-3,2<br />

IV 485-570 590-710 2020-2060 3,2-4,0<br />

V 570-660 710-855 2050-2080 4,0-4,9<br />

VI 660-790 855-1130 2060-2090 4,9-6,1<br />

Figure 8.17. CO 2 emissi<strong>on</strong>s and equilibrium temperature increases for a range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stabilizati<strong>on</strong> levels [162]<br />

quired emissi<strong>on</strong> levels for different group <str<strong>on</strong>g>of</str<strong>on</strong>g> stabilizati<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

resulting equilibrium global warming, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC [162].<br />

Combining <str<strong>on</strong>g>the</str<strong>on</strong>g> scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> table 8.3 and <str<strong>on</strong>g>the</str<strong>on</strong>g> stabilizati<strong>on</strong> temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> table 8.4,<br />

we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> required variables to be introduced in <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels (table<br />

8.5). The more energy intensive scenario, with an intensive use <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels (A1FI)<br />

leads to <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest CO 2 c<strong>on</strong>centrati<strong>on</strong>s and temperature increase. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary,<br />

scenario B1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> most sustainable <strong>on</strong>e in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 emissi<strong>on</strong>s. Scenarios B2<br />

and A1T throw out <str<strong>on</strong>g>the</str<strong>on</strong>g> same CO 2 c<strong>on</strong>centrati<strong>on</strong>s and temperature increase, since<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rapid ec<strong>on</strong>omic growth assumed in A1T is mainly achieved through n<strong>on</strong>-fossil<br />

fuel technologies. Scenario A1B, which assumes a balanced use <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil and n<strong>on</strong>fossil<br />

fuel energies, comes right after <str<strong>on</strong>g>the</str<strong>on</strong>g> latter scenarios in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 emissi<strong>on</strong>s,<br />

followed by scenario A2.


302 THE EXERGY EVOLUTION OF PLANET EARTH<br />

Table 8.5. Temperature rise and CO 2 c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> SRES scenarios<br />

Scenario B1 A1T B2 A1B A2 A1FI<br />

∆T, ◦ C 1,8 2,4 2,4 2,8 3,4 4<br />

CO 2, ppm 350 400 400 440 620 710<br />

Table 8.6. Specific exergy (b in kJ/kg) and <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss (%) <str<strong>on</strong>g>of</str<strong>on</strong>g> anthracite, bituminous,<br />

subbituminous, and lignite coal according to <str<strong>on</strong>g>the</str<strong>on</strong>g> different SRES scenarios<br />

Anthracite Bituminous Subbituminous Lignite<br />

Scenario b loss, b loss, b loss, b loss,<br />

%<br />

%<br />

%<br />

%<br />

0 31624,2 0,00 29047,1 0,00 24276,5 0,00 17351,1 0,00<br />

B1 31603,6 0,07 29028,7 0,06 24261,7 0,06 17340,2 0,06<br />

A1T 31582,7 0,13 29010,7 0,13 24246,5 0,12 17329,5 0,12<br />

B2 31582,7 0,13 29010,7 0,13 24246,5 0,12 17329,5 0,12<br />

A1B 31567,8 0,18 28997,8 0,17 24235,7 0,17 17321,9 0,17<br />

A2 31511,4 0,36 28949,7 0,34 24194,9 0,34 17293,3 0,33<br />

A1FI 31489,9 0,42 28931,0 0,40 24179,3 0,40 17282,3 0,40<br />

8.3.3 The fossil fuel exergy decrease<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s explained in secti<strong>on</strong> 5.3.3 and <str<strong>on</strong>g>the</str<strong>on</strong>g> fossil fuel’s reserves<br />

data provided in secti<strong>on</strong> 6.4.1, we are able to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> fossil fuel exergy decrease<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> table 8.5, with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> current situati<strong>on</strong>. For<br />

that purpose, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy difference will be calculated for <str<strong>on</strong>g>the</str<strong>on</strong>g> four types <str<strong>on</strong>g>of</str<strong>on</strong>g> average<br />

coal: anthracite, bituminous, sub-bituminous and lignite; for <str<strong>on</strong>g>the</str<strong>on</strong>g> three most comm<strong>on</strong><br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> average oil: fuel-oil 1, fuel-oil 2 and fuel-oil 4; and for natural gas 10 . The<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. chosen for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s is number III, which c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following substances 11 : O 2, N 2, CO 2, H 2O, CaSO 4 · 2H 2O and CaCO 3.<br />

Tables 8.6 through 8.8 and Figs. 8.18 to 8.20 show <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different<br />

fuels, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> SRES scenarios. Scenario “0” is <str<strong>on</strong>g>the</str<strong>on</strong>g> starting point, where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

R.E.’s temperature is assumed to be 298,15 K and <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 c<strong>on</strong>centrati<strong>on</strong>, 300 ppm.<br />

As can be seen from <str<strong>on</strong>g>the</str<strong>on</strong>g> figures and tables, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss increases with temperature<br />

and CO 2 c<strong>on</strong>centrati<strong>on</strong>. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum exergy loss is achieved in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> scenario A1FI (rapid ec<strong>on</strong>omic and populati<strong>on</strong> growth, intensive in fossil fuels),<br />

with an exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> around 0,4%. This figure is very close to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e found<br />

by Valero and Arauzo [366], where <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss fell by approximately 0,31 to<br />

0,38% if <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 c<strong>on</strong>centrati<strong>on</strong> would double.<br />

10 See secti<strong>on</strong> 6.4.1 for <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels.<br />

11 See secti<strong>on</strong> 5.3.3 for more details about <str<strong>on</strong>g>the</str<strong>on</strong>g> different R.E. proposed for fossil fuels.


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s fossil fuel reserves due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect 303<br />

<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss, %<br />

0,45<br />

0,40<br />

0,35<br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

300 360 420 480 540 600 660 720<br />

CO2, ppm<br />

Anthracite Bituminous Subbituminous Lignite<br />

Figure 8.18. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> coal as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2<br />

c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere<br />

Table 8.7. Specific exergy (b) and <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss (%) <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel-oil 1, fuel-oil 2 and fuel-oil<br />

4, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> different SRES scenarios.<br />

Fuel-oil1 Fuel-oil 2 Fuel-oil 4<br />

Scenario T0 CO2, b, kJ/kg loss, b, kJ/kg loss, b, kJ/kg loss,<br />

ppm<br />

%<br />

%<br />

%<br />

0 298,15 300 46259,1 0,00 45517,4 0,00 44002,4 0,00<br />

B1 299,95 350 46229,9 0,06 45488,2 0,06 43973,9 0,06<br />

A1T 300,55 400 46205,2 0,12 45463,5 0,12 43949,6 0,12<br />

B2 300,55 400 46205,2 0,12 45463,5 0,12 43949,6 0,12<br />

A1B 300,95 440 46187,4 0,16 45446,0 0,16 43931,9 0,16<br />

A2 301,55 620 46124,6 0,29 45383,4 0,29 43869,5 0,30<br />

A1F1 302,15 710 46099,3 0,35 45358,1 0,35 43844,5 0,36


304 THE EXERGY EVOLUTION OF PLANET EARTH<br />

<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss, %<br />

0,40<br />

0,35<br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

300 360 420 480 540 600 660 720<br />

CO2, ppm<br />

Fuel-oil1 Fuel-oil 2 Fuel-oil 4<br />

Figure 8.19. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel-oils as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2<br />

c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere<br />

Table 8.8. Specific exergy (b) and <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss (%) <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

different SRES scenarios.<br />

Natural gas<br />

Scenario T0 CO2, b, kJ/N m<br />

ppm<br />

3 loss,<br />

%<br />

0 298,15 300 39393,8 0,00<br />

B1 299,95 350 39355,7 0,10<br />

A1T 300,55 400 39333,0 0,15<br />

B2 300,55 400 39333,0 0,15<br />

A1B 300,95 440 39317,2 0,19<br />

A2 301,55 620 39269,3 0,32<br />

A1F1 302,15 710 39246,3 0,37


The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s fossil fuel reserves due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect 305<br />

<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss, %<br />

0,40<br />

0,35<br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

300 360 420 480 540 600 660 720<br />

CO2, ppm<br />

Figure 8.20. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere<br />

Am<strong>on</strong>g all fuels, <str<strong>on</strong>g>the</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> coal are <str<strong>on</strong>g>the</str<strong>on</strong>g> most sensible to CO 2 c<strong>on</strong>centrati<strong>on</strong>s,<br />

leaded by anthracite. Natural gas follows coal, while fuel-oils are <str<strong>on</strong>g>the</str<strong>on</strong>g> least<br />

affected fossil fuels by <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect.<br />

Tables 8.9 through 8.11 show <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s 2006 coal, fuel-oil and<br />

natural gas reserves, c<strong>on</strong>sidering <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. The<br />

reserves for coal are <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es provided by <str<strong>on</strong>g>the</str<strong>on</strong>g> World Energy Council, while those<br />

for fuel-oil and natural gas come from <str<strong>on</strong>g>the</str<strong>on</strong>g> statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> BP 12 . As can be seen from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> tables, <str<strong>on</strong>g>the</str<strong>on</strong>g> worst scenario A1F I would lead to an exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> 2102,4 Mtoe <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coal, 623,7 Mtoe for fuel-oil and 637,3 Mtoe for natural gas. The global fossil fuel<br />

exergy loss would amount to 3363,4 Mtoe, 84% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 USA oil reserves (4000<br />

Mtoe). Obviously <str<strong>on</strong>g>the</str<strong>on</strong>g> real exergy loss would be much greater, since <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resource in <str<strong>on</strong>g>the</str<strong>on</strong>g> different scenarios has not been taken into account. The latter<br />

analysis is accomplished in <str<strong>on</strong>g>the</str<strong>on</strong>g> next secti<strong>on</strong>.<br />

12 See <str<strong>on</strong>g>the</str<strong>on</strong>g> detailed reserves in tables 6.11, 6.14 and 6.17.


306 THE EXERGY EVOLUTION OF PLANET EARTH<br />

Table 8.9. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 coal reserves due to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG emissi<strong>on</strong>s,<br />

according to <str<strong>on</strong>g>the</str<strong>on</strong>g> different SRES scenarios. Values in Mtoe<br />

Scen. Africa N. Amer- S. Amer- Asia Europe Middle Oceania WORLD<br />

icaica East<br />

0 B 34286,5 159649,3 10224,9 136447,4 136826,9 958,6 42603,1 520996,7<br />

A1 B 34264,7 159548,3 10218,5 136361,5 136742,1 957,9 42576,3 520669,4<br />

∆B 21,8 101,0 6,4 85,9 84,9 0,6 26,9 327,4<br />

A1T&B2 B 34243,5 159445,7 10212,2 136277,0 136657,0 957,4 42549,9 520342,8<br />

∆B 43,0 203,6 12,7 170,4 169,9 1,2 53,2 654,0<br />

A1B B 34228,2 159372,3 10207,6 136216,3 136596,1 956,9 42531,1 520108,6<br />

∆B 58,2 277,0 17,3 231,1 230,8 1,6 72,1 888,1<br />

A2 B 34171,4 159095,8 10190,5 135989,9 136367,9 955,3 42460,6 519231,5<br />

∆B 115,05 553,50 34,34 457,59 459,00 3,22 142,56 1765,26<br />

A1F1 B 34149,4 158990,4 10184,0 135902,3 136280,2 954,7 42433,3 518894,3<br />

∆B 137,1 658,9 40,9 545,2 546,7 3,8 169,8 2102,4<br />

Table 8.10. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 fuel-oil reserves due to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG<br />

emissi<strong>on</strong>s, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> different SRES scenarios<br />

Scen. N. America<br />

S. & C.<br />

America<br />

Europe<br />

& Eurasia<br />

Middle<br />

East<br />

Africa Asia Pacific<br />

WORLD<br />

A1 B, Mtoe 8464,5 16005,6 20991,7 109629,4 16866,0 5890,1 177847,3<br />

∆B 5,44 10,28 13,55 70,40 10,81 3,78 114,26<br />

A1T&B2 B, Mtoe 8459,9 15997,0 20980,2 109569,9 16856,8 5886,9 177750,7<br />

∆B 10,03 18,97 25,06 129,92 19,96 6,97 210,90<br />

A1B B, Mtoe 8456,6 15990,8 20972,0 109527,8 16850,4 5884,7 177682,2<br />

∆B 13,28 25,11 33,33 172,02 26,43 9,23 279,41<br />

A2 B, Mtoe 8445,0 15968,8 20942,6 109376,8 16827,2 5876,6 177436,8<br />

∆B 24,94 47,15 62,73 322,98 49,62 17,33 524,76<br />

A1FI B, Mtoe 8440,2 15959,9 20930,8 109315,8 16817,8 5873,3 177337,8<br />

∆B 29,64 56,06 74,52 383,95 58,99 20,60 623,76<br />

Table 8.11. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 natural gas reserves due to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG<br />

emissi<strong>on</strong>s, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> different SRES scenarios<br />

Scen. N. America<br />

S. & C.<br />

America<br />

Europe<br />

& Eurasia<br />

Middle<br />

East<br />

Africa Asia Pacific<br />

WORLD<br />

A1 B, Mtoe 7475,7 6445,8 60089,8 68845,3 13290,2 13886,9 170033,8<br />

∆B 7,23 6,24 58,14 66,61 12,86 13,44 164,52<br />

A1T&B2 B, Mtoe 7471,4 6442,1 60055,2 68805,7 13282,6 13878,9 169935,9<br />

∆B 11,54 9,95 92,72 106,23 20,51 21,43 262,37<br />

A1B B, Mtoe 7468,4 6439,5 60031,1 68778,0 13277,2 13873,4 169867,5<br />

∆B 14,54 12,54 116,90 133,93 25,85 27,02 330,78<br />

A2 B, Mtoe 7459,3 6431,7 59957,9 68694,2 13261,1 13856,5 169660,6<br />

∆B 23,64 20,38 190,03 217,72 42,03 43,92 537,73<br />

A1FI B, Mtoe 7454,9 6427,9 59922,7 68653,9 13253,3 13848,3 169561,0<br />

∆B 28,02 24,16 225,23 258,04 49,81 52,05 637,31


A predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century 307<br />

8.4 A predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

Future c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s will be affected by many different factors, such as<br />

ec<strong>on</strong>omic, populati<strong>on</strong>, policy, or envir<strong>on</strong>mental aspects. In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> latter, <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

extracti<strong>on</strong> will be obviously c<strong>on</strong>strained by <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> available resources.<br />

We will explore seven different scenarios, for which <str<strong>on</strong>g>the</str<strong>on</strong>g> future <str<strong>on</strong>g>mineral</str<strong>on</strong>g> degradati<strong>on</strong><br />

will be calculated: a scenario based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert models developed in <str<strong>on</strong>g>the</str<strong>on</strong>g> last<br />

secti<strong>on</strong>s, and <str<strong>on</strong>g>the</str<strong>on</strong>g> six scenarios included in <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC SRES report [160].<br />

8.4.1 Hubbert scenario<br />

At a first stage, we will suppose that <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> available resources are those <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base for n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s published by <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS for year 2006 [362],<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> proven reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel commodities, published by BP [35] and WEC [401]<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> same year. It is assumed that no more resources are going to be found,<br />

and that producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities will follow <str<strong>on</strong>g>the</str<strong>on</strong>g> bell-shaped curves obtained<br />

before. As we saw in secti<strong>on</strong> 8.2.1, ir<strong>on</strong>, aluminium and copper dominate <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s<br />

n<strong>on</strong> fossil fuel extracti<strong>on</strong>, representing 93% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total actual exergy degradati<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century. We will c<strong>on</strong>sider that <str<strong>on</strong>g>the</str<strong>on</strong>g> same behavior will be found in this<br />

new century and hence <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> latter three metals will be analyzed inside <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>fuels<br />

category. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly fossil fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s c<strong>on</strong>sidered will be coal, oil<br />

and natural gas, although <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r types such as tar sands, oil shales,<br />

natural bitumen or heavy crude oil might be ec<strong>on</strong>omically competitive by <str<strong>on</strong>g>the</str<strong>on</strong>g>n. In<br />

order to be compared, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels (B) is added to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy costs (B ∗ ) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 13 .<br />

Figure 8.21 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> possible <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserve’s degradati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> latter assumpti<strong>on</strong>s.<br />

According to fig. 8.21, if <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different commodities do not increase,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong> will be reached in <str<strong>on</strong>g>the</str<strong>on</strong>g> decade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2020s,<br />

exceeding 12 Gtoe/year. By <str<strong>on</strong>g>the</str<strong>on</strong>g>n, producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s would increase with<br />

respect to 2010, with <str<strong>on</strong>g>the</str<strong>on</strong>g> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oil, which had reached <str<strong>on</strong>g>the</str<strong>on</strong>g> peak in 2008.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> 2030s, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al fossil fuels will come at approximately<br />

equal rates from all three fuels. From that moment <strong>on</strong>, oil will lose <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

hegem<strong>on</strong>y <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy producti<strong>on</strong> in favor <str<strong>on</strong>g>of</str<strong>on</strong>g> coal.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> middle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century, oil extracti<strong>on</strong> will be reduced to more than a half<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount produced in 2010. Natural gas and copper producti<strong>on</strong>, which should<br />

reach <str<strong>on</strong>g>the</str<strong>on</strong>g> peak in years 2023 and 2024, respectively, will be reduced to 23 and 13%<br />

13 Remember that calculating exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s has no sense, as it is impossible to replace<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>m at least with current technology. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, its chemical exergy is so large, that can be<br />

compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> metals studied.


308 THE EXERGY EVOLUTION OF PLANET EARTH<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Bt*<br />

Copper<br />

Aluminium<br />

Ir<strong>on</strong><br />

N. Gas<br />

Oil<br />

Coal<br />

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100<br />

Year<br />

Coal Oil N. Gas Ir<strong>on</strong> Aluminium Copper<br />

Figure 8.21. Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model. Values in Gtoe<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir respective extracti<strong>on</strong>s in 2010. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, ir<strong>on</strong>, aluminium and coal<br />

producti<strong>on</strong> will c<strong>on</strong>tinue to increase exp<strong>on</strong>entially. By <str<strong>on</strong>g>the</str<strong>on</strong>g> decade <str<strong>on</strong>g>of</str<strong>on</strong>g> 2070s, all c<strong>on</strong>sidered<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s would have reached <str<strong>on</strong>g>the</str<strong>on</strong>g> peak, leading to producti<strong>on</strong> decelerati<strong>on</strong>s<br />

also <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant <strong>on</strong>es, i.e. <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong>, aluminium and coal.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy degradati<strong>on</strong> velocity due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong><br />

will be reduced to 5,3 Gtoe/year (a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 50% with respect<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> peaking year). By <str<strong>on</strong>g>the</str<strong>on</strong>g>n, 82% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s exergy reserves available in<br />

year 1900 will be depleted. Am<strong>on</strong>g all, <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> oil, natural gas and copper<br />

will be almost completely exhausted (more than 99%). Aluminium, coal and ir<strong>on</strong><br />

commodities will be depleted at 83%, 72% and 69% respectively. Table 8.12 shows<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance and <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves for <str<strong>on</strong>g>the</str<strong>on</strong>g> periods from<br />

1900 to 2000 and from 1900 to 2100.<br />

It should be noted however that future explorati<strong>on</strong> efforts will result in <str<strong>on</strong>g>the</str<strong>on</strong>g> discovery<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> new deposits. Moreover, technological development will likely allow to extract<br />

mines that are ec<strong>on</strong>omically unaffordable nowadays.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> next scenarios, we will assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> registered world resources by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

USGS [361] <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-fossil fuel commodities, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base will<br />

be available for extracti<strong>on</strong>. This supposes that technology is enough developed and<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> prices are high enough to extract resources that are currently not prifitable.<br />

Accordingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong>, aluminium and copper will be reached<br />

in years 2087, 2089 and 2066, respectively (see figures A.1, A.2, and A.3 in <str<strong>on</strong>g>the</str<strong>on</strong>g> ap-


A predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century 309<br />

Table 8.12. Actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model<br />

1900 1900 - 2000 1900 - 2100<br />

Mineral R.B., Gtoe D ∗ , Gtoe % R.B. Loss D ∗ , Gtoe % R.B. Loss<br />

Coal 666,4 127,8 19,2 480,2 72,1<br />

Oil 338,8 136,3 40,2 333,9 98,6<br />

Natural gas 246,2 61,0 24,8 243,9 99,1<br />

Ir<strong>on</strong> 216,4 26,5 12,3 145,1 67,0<br />

Aluminium 101,8 9,6 9,4 84,7 83,2<br />

Copper 8,9 2,6 29,5 8,9 99,7<br />

SUM 1578,4 363,9 23,1 1296,6 82,1<br />

pendix). The extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, oil and natural gas is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC SRES scenarios, which indirectly assume an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> all proven reserves.<br />

Tables A.29 through A.34 show <str<strong>on</strong>g>the</str<strong>on</strong>g> primary energy c<strong>on</strong>sumpti<strong>on</strong> and cumulative resources<br />

producti<strong>on</strong> assumed in each SRES scenario. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fossil fuels due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect will be taken into account. We will assume<br />

that this decrease will affect <str<strong>on</strong>g>the</str<strong>on</strong>g> fuels c<strong>on</strong>sumed from year 2050 <strong>on</strong>, letting CO 2<br />

emissi<strong>on</strong>s and temperatures stabilize in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere.<br />

8.4.2 The IPCC’s B1 scenario<br />

As stated before, IPCC’s B1 [160] scenario is characterized by a world toward a<br />

service and informati<strong>on</strong> ec<strong>on</strong>omy, with reducti<strong>on</strong>s in material intensity, and <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> clean and resource-efficient technologies. Am<strong>on</strong>g all SRES scenarios,<br />

it is <str<strong>on</strong>g>the</str<strong>on</strong>g> most respectful with <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel resources.<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect is taken into account. In scenario<br />

B1, we obtained that <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels was 0,06% for average coal and oil and<br />

0,10% for natural gas.<br />

Figure 8.22 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s extracted in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century, based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> B1 scenario for fuels. For n<strong>on</strong> fuel<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s it has been assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> behavior follows Hubbert’s bellshaped<br />

curve, c<strong>on</strong>sidering that <str<strong>on</strong>g>the</str<strong>on</strong>g> world resources published by <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS [361]<br />

are available for extracti<strong>on</strong>.<br />

According to B1 scenario, <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all c<strong>on</strong>sidered fuels will be<br />

reached in <str<strong>on</strong>g>the</str<strong>on</strong>g> decade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2040s with 13,2 Gtoe extracted each year, and declining<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>reafter. Current relative c<strong>on</strong>sumpti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> each fuel will be kept until <str<strong>on</strong>g>the</str<strong>on</strong>g> peak, i.e.<br />

oil will dominate world’s extracti<strong>on</strong>, followed by coal and finally natural gas. After<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> peaking year, <str<strong>on</strong>g>the</str<strong>on</strong>g> relative c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal will gradually decrease in favor <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cleaner fuel natural gas. But oil will still dominate world’s fuel c<strong>on</strong>sumpti<strong>on</strong>.


310 THE EXERGY EVOLUTION OF PLANET EARTH<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Bt*<br />

Copper<br />

Aluminium<br />

Ir<strong>on</strong><br />

N. Gas<br />

Oil<br />

Coal<br />

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100<br />

Year<br />

Coal Oil N. Gas Ir<strong>on</strong> Aluminium Copper<br />

Figure 8.22. Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s B1 scenario. Values in Gtoe<br />

The dynamic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> B1 scenario would imply an exergy degradati<strong>on</strong> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century <str<strong>on</strong>g>of</str<strong>on</strong>g> over 1300 Gtoe, from <str<strong>on</strong>g>the</str<strong>on</strong>g>se, around 1050 come <strong>on</strong>ly from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels. With <str<strong>on</strong>g>the</str<strong>on</strong>g> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, <str<strong>on</strong>g>the</str<strong>on</strong>g> total exergy cost<br />

degraded <str<strong>on</strong>g>of</str<strong>on</strong>g> all c<strong>on</strong>sidered commodities is greater than in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous Hubbert scenario.<br />

In order to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel c<strong>on</strong>sumpti<strong>on</strong> expectati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> B1 scenario, <str<strong>on</strong>g>the</str<strong>on</strong>g> oil<br />

proven reserves should increase by 69% and <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas by 52%. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary,<br />

current proven reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> coal would suffice for meeting future world’s c<strong>on</strong>sumpti<strong>on</strong>.<br />

In fact, in year 2100, 64% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> current proven coal reserves will be depleted.<br />

Obviously, <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s here is greater than in Hubbert’s<br />

scenario, as <str<strong>on</strong>g>the</str<strong>on</strong>g> peaks are reached 20 to 40 years later, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greater available<br />

resources c<strong>on</strong>sidered. Moreover <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities would be<br />

also smaller: 57% for ir<strong>on</strong>, 58% for aluminium and 74% for copper.<br />

Table 8.13 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> irreversible exergy distance D ∗ <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> period from 1900 to 2100, and <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities,<br />

according to <str<strong>on</strong>g>the</str<strong>on</strong>g> B1 scenario.<br />

8.4.3 The IPCC’s A1T scenario<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s AIT scenario, <str<strong>on</strong>g>the</str<strong>on</strong>g> very rapid ec<strong>on</strong>omic growth, and <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid introducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> new and more efficient technologies is achieved with predominantly n<strong>on</strong>-fuel<br />

technologies.


A predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century 311<br />

Table 8.13. Actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> B1 scenario<br />

1900 1900 - 2000 1900 - 2100<br />

Mineral W.R., Gtoe D ∗ , Gtoe % W.R. Loss D ∗ , Gtoe %W.R. Loss<br />

Coal 666,4 127,8 19,2 427,0 64,1<br />

Oil 338,8 136,3 40,2 573,1 169,2<br />

Natural gas 246,2 61,0 24,8 373,9 151,9<br />

Ir<strong>on</strong> 297,0 26,5 8,9 169,0 56,9<br />

Aluminium 222,0 9,6 4,3 129,4 58,3<br />

Copper 21,6 2,6 12,1 16,0 74,3<br />

SUM 1792,0 363,9 20,3 1688,5 94,2<br />

According to <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s carried out before, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels due to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect in <str<strong>on</strong>g>the</str<strong>on</strong>g> A1T scenario are: 0,12% for average coal and oil, and<br />

0,15% for natural gas.<br />

Taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, and <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels<br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g> GHG emissi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> A1T scenario, we obtain that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

extracti<strong>on</strong> is reached in <str<strong>on</strong>g>the</str<strong>on</strong>g> middle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century, with 19 Gtoe/year, coinciding<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> century, <str<strong>on</strong>g>the</str<strong>on</strong>g> global irreversible exergy degradati<strong>on</strong> velocity ˙D ∗<br />

decreases to 10,4 Gtoe/year. Oil dominates world fuel c<strong>on</strong>sumpti<strong>on</strong> until <str<strong>on</strong>g>the</str<strong>on</strong>g> 2040s.<br />

Thereafter, natural gas is <str<strong>on</strong>g>the</str<strong>on</strong>g> most extracted fuel, followed by oil and finally by coal<br />

(see fig. 8.23).<br />

The exergy cost degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves c<strong>on</strong>sidered in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

amounts to more than 1500 Gtoe. And <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels is resp<strong>on</strong>sible<br />

for around 80% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> global <str<strong>on</strong>g>mineral</str<strong>on</strong>g> depleti<strong>on</strong>. Coal is <str<strong>on</strong>g>the</str<strong>on</strong>g> least depleted fuel<br />

commodity, with a degradati<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> its proven reserves since 1900, <str<strong>on</strong>g>of</str<strong>on</strong>g> 59%.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas and oil should increase by 77% and<br />

144%, in order to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> world fuel requirements specified in scenario A1T. The<br />

depleti<strong>on</strong> degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities are <str<strong>on</strong>g>the</str<strong>on</strong>g> same as for <str<strong>on</strong>g>the</str<strong>on</strong>g> latter<br />

scenario, since <str<strong>on</strong>g>the</str<strong>on</strong>g> same assumpti<strong>on</strong>s have been taken into account (see table 8.14).<br />

8.4.4 The IPCC’s B2 scenario<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s B2 scenario, a world with c<strong>on</strong>tinuously increasing populati<strong>on</strong> and<br />

intermediate ec<strong>on</strong>omic development, <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> increases c<strong>on</strong>tinuously<br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> century, although <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> increase slows down in <str<strong>on</strong>g>the</str<strong>on</strong>g> decade <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 2050s.<br />

The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect in <str<strong>on</strong>g>the</str<strong>on</strong>g> B2 scenario is identical<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> previous case, namely 0,12% for coal and oil, and 0,15% for natural gas.


312 THE EXERGY EVOLUTION OF PLANET EARTH<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Bt*<br />

Copper<br />

Aluminium<br />

Ir<strong>on</strong><br />

N. Gas<br />

Oil<br />

Coal<br />

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100<br />

Year<br />

Coal Oil N. Gas Ir<strong>on</strong> Aluminium Copper<br />

Figure 8.23. Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A1T scenario. Values in Gtoe<br />

Table 8.14. Actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> A1T scenario<br />

1900 1900 - 2000 1900 - 2100<br />

Mineral W.R., Gtoe D ∗ , Gtoe % W.R. Loss D ∗ , Gtoe %W.R. Loss<br />

Coal 666,4 127,8 19,2 393,3 59,0<br />

Oil 338,8 136,3 40,2 598,9 176,7<br />

Natural gas 246,2 61,0 24,8 600,6 244,0<br />

Ir<strong>on</strong> 297,0 26,5 8,9 169,0 56,9<br />

Aluminium 222,0 9,6 4,3 129,4 58,3<br />

Copper 21,6 2,6 12,1 16,0 74,3<br />

SUM 1792,0 363,9 20,3 1907,2 106,4<br />

According to figure 8.24, in year 2100, <str<strong>on</strong>g>the</str<strong>on</strong>g> global <str<strong>on</strong>g>mineral</str<strong>on</strong>g> degradati<strong>on</strong> velocity will<br />

reach near 20 Gtoe/year. By <str<strong>on</strong>g>the</str<strong>on</strong>g>n, fuel demand will be satisfied at approxamtely<br />

equal rates with natural gas and coal. Oil will reach <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 2040s. From that moment <strong>on</strong>, coal and natural gas producti<strong>on</strong> will increase,<br />

compensating <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> oil, although <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas will be reached in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

2080s.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> century, <str<strong>on</strong>g>the</str<strong>on</strong>g> global exergy degradati<strong>on</strong> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves<br />

will be around 1580 Gtoe, slightly greater than in <str<strong>on</strong>g>the</str<strong>on</strong>g> A1T scenario. From <str<strong>on</strong>g>the</str<strong>on</strong>g>se, 83%<br />

corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels. Since 1900, coal extracti<strong>on</strong> would


A predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century 313<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Bt*<br />

Copper<br />

Aluminium<br />

Ir<strong>on</strong><br />

N. Gas<br />

Oil<br />

Coal<br />

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100<br />

Year<br />

Coal Oil N. Gas Ir<strong>on</strong> Aluminium Copper<br />

Figure 8.24. Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s B2 scenario. Values in Gtoe<br />

Table 8.15. Actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> B2 scenario<br />

1900 1900 - 2000 1900 - 2100<br />

Mineral W.R., Gtoe D ∗ , Gtoe % W.R. Loss D ∗ , Gtoe %W.R. Loss<br />

Coal 666,4 127,8 19,2 417,6 62,7<br />

Oil 338,8 136,3 40,2 567,4 167,5<br />

Natural gas 246,2 61,0 24,8 644,8 261,9<br />

Ir<strong>on</strong> 297,0 26,5 8,9 169,0 56,9<br />

Aluminium 222,0 9,6 4,3 129,4 58,3<br />

Copper 21,6 2,6 12,1 16,0 74,3<br />

SUM 1792,0 363,9 20,3 1944,2 108,5<br />

lead to <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 63% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total reserves. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> proven reserves <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural gas and oil should increase by 63% and 167%, in order to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> world fuel<br />

requirements specified in scenario B2. Again, <str<strong>on</strong>g>the</str<strong>on</strong>g> same figures than in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous<br />

scenarios are obtained for n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, as <str<strong>on</strong>g>the</str<strong>on</strong>g> same assumpti<strong>on</strong>s have been<br />

taken into account (see table 8.15).


314 THE EXERGY EVOLUTION OF PLANET EARTH<br />

8.4.5 The IPCC’s A1B scenario<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> A1B scenario, <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid ec<strong>on</strong>omic growth and rapid increase <str<strong>on</strong>g>of</str<strong>on</strong>g> new and more<br />

efficient technologies is achieved with a balance between fuel and n<strong>on</strong>-fuel energy<br />

sources. It is assumed that since <str<strong>on</strong>g>the</str<strong>on</strong>g> decade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2030s, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil<br />

fuels is dominated by natural gas.<br />

The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect was calculated for A1B<br />

scenario as 0,17% for average coal, 0,16% for average fuel, and 0,19% for natural<br />

gas.<br />

According to <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> A1B scenario, <str<strong>on</strong>g>the</str<strong>on</strong>g> peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> oil and coal producti<strong>on</strong><br />

are reached in <str<strong>on</strong>g>the</str<strong>on</strong>g> decades <str<strong>on</strong>g>of</str<strong>on</strong>g> 2030s and 2050s, respectively with around 5,7 Gtoe<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> oil extracted per year and 4,6 Gtoe/year <str<strong>on</strong>g>of</str<strong>on</strong>g> coal. The global <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong><br />

peak is reached in <str<strong>on</strong>g>the</str<strong>on</strong>g> decade <str<strong>on</strong>g>of</str<strong>on</strong>g> 2070s, with around 24 Gtoe/year extracted (see fig<br />

8.25).<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Bt*<br />

Copper<br />

Aluminium<br />

Ir<strong>on</strong><br />

N. Gas<br />

Oil<br />

Coal<br />

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100<br />

Year<br />

Coal Oil N. Gas Ir<strong>on</strong> Aluminium Copper<br />

Figure 8.25. Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A1B scenario. Values in Gtoe<br />

The global exergy degradati<strong>on</strong> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> all c<strong>on</strong>sidered <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century exceeds 2000 Gtoe, from which 86% corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels.<br />

At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century, 74% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total coal reserves would be depleted. The<br />

A1B scenario assumes that oil and natural gas proven reserves should increase by<br />

76% and 200%, respectively, in order to meet future fuel demands. The depleti<strong>on</strong><br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves are identical to <str<strong>on</strong>g>the</str<strong>on</strong>g> previous cases, since <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same assumpti<strong>on</strong>s have been c<strong>on</strong>sidered. Table 8.16 shows a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> A1B scenario.


A predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century 315<br />

Table 8.16. Actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> A1B scenario<br />

1900 1900 - 2000 1900 - 2100<br />

Mineral W.R., Gtoe D ∗ , Gtoe % W.R. Loss D ∗ , Gtoe %W.R. Loss<br />

Coal 666,4 127,8 19,2 495,4 74,3<br />

Oil 338,8 136,3 40,2 595,1 175,6<br />

Natural gas 246,2 61,0 24,8 982,1 399,0<br />

Ir<strong>on</strong> 297,0 26,5 8,9 169,0 56,9<br />

Aluminium 222,0 9,6 4,3 129,4 58,3<br />

Copper 21,6 2,6 12,1 16,0 74,3<br />

SUM 1792,0 363,9 20,3 2387,1 133,2<br />

8.4.6 The IPCC’s A2 scenario<br />

The energy demand <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinuously increasing global populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> IPCC’s A2<br />

scenario is mainly satisfied by <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels. World oil<br />

c<strong>on</strong>sumpti<strong>on</strong> reaches <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> 2020s, decreasing <str<strong>on</strong>g>the</str<strong>on</strong>g>reafter<br />

until its complete substituti<strong>on</strong> towards <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> century. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> peaking<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> oil producti<strong>on</strong>, coal is <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant fuel c<strong>on</strong>sumed in this scenario. It passed<br />

from representing 25% <str<strong>on</strong>g>of</str<strong>on</strong>g> all fossil fuels c<strong>on</strong>sumed in <str<strong>on</strong>g>the</str<strong>on</strong>g> 2020s, to over 75% in year<br />

2100.<br />

To <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s due to extracti<strong>on</strong>, we add <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel’s exergy degradati<strong>on</strong><br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect, which is in <str<strong>on</strong>g>the</str<strong>on</strong>g> A2 scenario: 0,34% for average<br />

coal, 0,29% for average fuel, and 0,32% for natural gas.<br />

Accordingly <str<strong>on</strong>g>the</str<strong>on</strong>g> global peak <str<strong>on</strong>g>of</str<strong>on</strong>g> world <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century is<br />

reached in year 2100, with over 33 Gtoe/year extracted. In order to satisfy this<br />

energy demand, <str<strong>on</strong>g>the</str<strong>on</strong>g> proven reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, oil, and natural gas should increase by<br />

89%, 50%, and 140%, respectively (see fig. 8.26).<br />

In table 8.17, <str<strong>on</strong>g>the</str<strong>on</strong>g> irreversible exergy distance between 1900 and 2100 is shown.<br />

According to it, A2 scenario would imply a global exergy degradati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century <str<strong>on</strong>g>of</str<strong>on</strong>g> over 2300 Gtoe (6,3 times more <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy degraded in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous<br />

century). This implies <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> almost 150% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> global <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources<br />

available in 1900. Again, <str<strong>on</strong>g>the</str<strong>on</strong>g> same figures than in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous scenarios<br />

are obtained for n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, as <str<strong>on</strong>g>the</str<strong>on</strong>g> same assumpti<strong>on</strong>s have been taken into<br />

account.<br />

8.4.7 The IPCC’s A1FI scenario<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A1FI scenario, <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s rapid ec<strong>on</strong>omic growth and rapid introducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> new and more efficient technologies is achieved through <str<strong>on</strong>g>the</str<strong>on</strong>g> intensive


316 THE EXERGY EVOLUTION OF PLANET EARTH<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Bt*<br />

Copper<br />

Aluminium<br />

Ir<strong>on</strong><br />

N. Gas<br />

Oil<br />

Coal<br />

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100<br />

Year<br />

Coal Oil N. Gas Ir<strong>on</strong> Aluminium Copper<br />

Figure 8.26. Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A2 scenario. Values in Gtoe<br />

Table 8.17. Actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> A2 scenario<br />

1900 1900 - 2000 1900 - 2100<br />

Mineral W.R., Gtoe D ∗ , Gtoe % W.R. Loss D ∗ , Gtoe %W.R. Loss<br />

Coal 666,4 127,8 19,2 1261,8 189,3<br />

Oil 338,8 136,3 40,2 510,0 150,5<br />

Natural gas 246,2 61,0 24,8 592,0 240,5<br />

Ir<strong>on</strong> 297,0 26,5 8,9 169,0 56,9<br />

Aluminium 222,0 9,6 4,3 129,4 58,3<br />

Copper 21,6 2,6 12,1 16,0 74,3<br />

SUM 1792,0 363,9 20,3 2678,2 149,5<br />

c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels. C<strong>on</strong>sequently, it is <str<strong>on</strong>g>the</str<strong>on</strong>g> most <str<strong>on</strong>g>mineral</str<strong>on</strong>g> predatory scenario<br />

taken into account.<br />

The decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel’s exergy due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect in <str<strong>on</strong>g>the</str<strong>on</strong>g> scenario A1FI obtained<br />

was: 0,4% for average coal, 0,35% for average fuel, and 0,37% for natural<br />

gas.<br />

According to figure 8.27, <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong> is reached in <str<strong>on</strong>g>the</str<strong>on</strong>g> decade <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 2080s, coinciding with <str<strong>on</strong>g>the</str<strong>on</strong>g> peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> oil and natural gas c<strong>on</strong>sumpti<strong>on</strong>. Thereafter,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> oil and natural gas producti<strong>on</strong> is compensated by an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

world extracti<strong>on</strong>. The global <str<strong>on</strong>g>mineral</str<strong>on</strong>g> degradati<strong>on</strong> velocity in <str<strong>on</strong>g>the</str<strong>on</strong>g> eighties reaches


A predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century 317<br />

39,8 Gtoe/year, from which over 90% are due to <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels. It<br />

should be remembered, that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s has been assumed<br />

to be identical to <str<strong>on</strong>g>the</str<strong>on</strong>g> previous cases.<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Bt*<br />

Copper<br />

Aluminium<br />

Ir<strong>on</strong><br />

N. Gas<br />

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100<br />

Year<br />

Coal Oil N. Gas Ir<strong>on</strong> Aluminium Copper<br />

Figure 8.27. Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A1FI scenario. Values in Gtoe<br />

The global <str<strong>on</strong>g>mineral</str<strong>on</strong>g> exergy degradati<strong>on</strong> cost in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century is in <str<strong>on</strong>g>the</str<strong>on</strong>g> A1FI scenario<br />

over 2750 Gtoe. This implies that man would have depleted 7,6 times more<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves than in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century, and <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> around 174% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> global <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources available in 1900 (see table 8.18). Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

proven reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, oil and natural gas should increase at least by 56%, 140%<br />

and 289%, in order to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> scenario A1FI.<br />

8.4.8 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scenarios<br />

Table 8.19 and figure 8.28 show a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> possible exergy degradati<strong>on</strong> costs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves extracted in <str<strong>on</strong>g>the</str<strong>on</strong>g> period between 1900 and 2100, according<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> different scenarios c<strong>on</strong>sidered before. It should be noted that to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

obtained values, we should add <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s not accounted for<br />

in this study. Additi<strong>on</strong>al n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s could increase <str<strong>on</strong>g>the</str<strong>on</strong>g> global <str<strong>on</strong>g>mineral</str<strong>on</strong>g> exergy<br />

c<strong>on</strong>sumpti<strong>on</strong> in 20% or more.<br />

As can be seen from <str<strong>on</strong>g>the</str<strong>on</strong>g> table and <str<strong>on</strong>g>the</str<strong>on</strong>g> figure, <str<strong>on</strong>g>the</str<strong>on</strong>g> scenario that leads to <str<strong>on</strong>g>the</str<strong>on</strong>g> least<br />

degradati<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves, is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert model.<br />

It should be remembered, that for this scenario it has been assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly<br />

available <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources for extracti<strong>on</strong> are those <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base, and that<br />

Oil<br />

Coal


318 THE EXERGY EVOLUTION OF PLANET EARTH<br />

Table 8.18. Actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> A1FI scenario<br />

1900 1900 - 2000 1900 - 2100<br />

Mineral W.R., Gtoe D ∗ , Gtoe % W.R. Loss D ∗ , Gtoe %W.R. Loss<br />

Coal 666,4 127,8 19,2 1036,9 155,6<br />

Oil 338,8 136,3 40,2 811,3 239,4<br />

Natural gas 246,2 61,0 24,8 955,6 388,2<br />

Ir<strong>on</strong> 297,0 26,5 8,9 169,0 56,9<br />

Aluminium 222,0 9,6 4,3 129,4 58,3<br />

Copper 21,6 2,6 12,1 16,0 74,3<br />

SUM 1792,0 363,9 20,3 3118,1 174,0<br />

Table 8.19. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> period between years 1900 and 2100 based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

IPCC’s SRES scenarios<br />

Scenario Hubbert B1 A1T B2 AIB A2 A1FI<br />

D ∗ 1900 - 2100 1297 1689 1907 1944 2387 2678 3118<br />

% Reserves lost 82 94 106 108 133 149 174<br />

no more resources will be found in <str<strong>on</strong>g>the</str<strong>on</strong>g> future. Accordingly, at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century, man would have depleted around 82% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base available in 1900.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> rest scenarios, it has been assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves available<br />

for extracti<strong>on</strong>, are those <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world resources published by <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS [361].<br />

Accordingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s is greater than in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous<br />

case, as more resources can be extracted.<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels assumed in <str<strong>on</strong>g>the</str<strong>on</strong>g> different SRES scenarios,<br />

we have taken into account <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels due to <str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gases to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. Depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> scenario c<strong>on</strong>sidered,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect increases <str<strong>on</strong>g>the</str<strong>on</strong>g> global <str<strong>on</strong>g>mineral</str<strong>on</strong>g> exergy loss between 0,04% and<br />

0,31%.<br />

Am<strong>on</strong>g all SRES scenarios, A1FI implies <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves,<br />

leading to <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 3100 Gtoe. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r end, scenario B1 leads<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> least <str<strong>on</strong>g>mineral</str<strong>on</strong>g> degradati<strong>on</strong>, with near 1700 Gtoe depleted. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, all<br />

IPCC’s scenarios involve greater degradati<strong>on</strong> degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves than in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> case where <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert behavior has been assumed. This indicates that for satisfying<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> energy c<strong>on</strong>sumpti<strong>on</strong> assumed in <str<strong>on</strong>g>the</str<strong>on</strong>g> SRES scenarios, <str<strong>on</strong>g>the</str<strong>on</strong>g> proven reserves<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> coal, oil and natural gas should increase c<strong>on</strong>siderably.<br />

New discoveries are indeed increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> many <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources. A<br />

recent case has been <str<strong>on</strong>g>the</str<strong>on</strong>g> discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Carioca oil well in <str<strong>on</strong>g>the</str<strong>on</strong>g> Santos Basin <str<strong>on</strong>g>of</str<strong>on</strong>g>f-


A predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century 319<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Bt*, Gtoe<br />

Copper<br />

Aluminium<br />

Ir<strong>on</strong><br />

Natural gas<br />

Oil<br />

Coal<br />

Hubbert B1 A1T B2 A1B A2 A1FI<br />

Coal Oil Natural gas Ir<strong>on</strong> Aluminium Copper<br />

Figure 8.28. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> period between years 1900 and 2100 based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

IPCC’s SRES scenarios<br />

shore Brazil, which registered a test producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2900 barrels/day <str<strong>on</strong>g>of</str<strong>on</strong>g> oil and 57000<br />

m 3 /day <str<strong>on</strong>g>of</str<strong>on</strong>g> gas.<br />

But in <str<strong>on</strong>g>the</str<strong>on</strong>g> relatively mature oil industry, <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al reserves that remain<br />

to be discovered is unclear [160]. Ivanhoe and Leckie [165], Laherrere [190],<br />

Campbell [45] or Hatfield [133] argue that few new oil fields are being discovered<br />

and that most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> increases in reserves results from revisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> underestimating<br />

existing reserves. However, optimistic views such as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Smith and Robins<strong>on</strong><br />

[324], appeal to improvements in technology, which will increase recovery rates<br />

from existing reservoirs and make pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itable <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> fields previously<br />

regarded as unec<strong>on</strong>omic.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas, estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> reserves and resources are being revised<br />

c<strong>on</strong>tinuously. Optimistic additi<strong>on</strong>al gas reserves are estimated as between 200, according<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>al Gas Uni<strong>on</strong> [156] and 500 Gtoe, according to Gregory<br />

and Rogner [123].<br />

Coal proven reserves are larger than those <str<strong>on</strong>g>of</str<strong>on</strong>g> oil and natural gas. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

according to <str<strong>on</strong>g>the</str<strong>on</strong>g> WEC [401] estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al resources in place, <str<strong>on</strong>g>the</str<strong>on</strong>g> global<br />

coal reserves could be multiplied by more than two. But as <str<strong>on</strong>g>the</str<strong>on</strong>g> EWG [89] argues,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> historical assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> global resources has revealed substantial downgradings<br />

over <str<strong>on</strong>g>the</str<strong>on</strong>g> last decades. Estimated coal resources have declined from 10 billi<strong>on</strong> t<strong>on</strong>s<br />

coal equivalent ( 8300 Mtoe) to about 4,5 billi<strong>on</strong> t<strong>on</strong>s coal equivalent ( 3750 Mtoe),<br />

a decline <str<strong>on</strong>g>of</str<strong>on</strong>g> 55% within <str<strong>on</strong>g>the</str<strong>on</strong>g> last 25 years. Moreover, this downgrading <str<strong>on</strong>g>of</str<strong>on</strong>g> estimated


320 THE EXERGY EVOLUTION OF PLANET EARTH<br />

coal resources shows a trend supported by each new assessment. Therefore it is<br />

possible that resource estimates will be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r reduced in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

Hence, it remains to be seen whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> discoveries and <str<strong>on</strong>g>the</str<strong>on</strong>g> reclassificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves as recoverable are sufficient to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> demands <str<strong>on</strong>g>of</str<strong>on</strong>g> a rapidly<br />

industrializing world.<br />

8.5 Final reflecti<strong>on</strong>s<br />

8.5.1 The Limits to Growth to be rec<strong>on</strong>sidered?<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> early seventies, Meadows et al. [218] raised <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cern about <str<strong>on</strong>g>the</str<strong>on</strong>g> limits to<br />

growth. Their c<strong>on</strong>clusi<strong>on</strong> was that if no immediate acti<strong>on</strong> is undertaken, <str<strong>on</strong>g>the</str<strong>on</strong>g> current<br />

standard <str<strong>on</strong>g>of</str<strong>on</strong>g> living will not be sustained and world ec<strong>on</strong>omies will eventually collapse.<br />

Polluti<strong>on</strong> will increase and food and <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities will suffer important<br />

shortages, leading to a reducti<strong>on</strong> in populati<strong>on</strong>. The book c<strong>on</strong>stituted a world<br />

shock and incited reflecti<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> urgent need for a sustainable development.<br />

The Limits to Growth predicted oil running out in 1992 am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>r natural resources<br />

14 . Instead <str<strong>on</strong>g>of</str<strong>on</strong>g> shortages, <str<strong>on</strong>g>the</str<strong>on</strong>g> last two decades <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century were<br />

marked by a generalized excess. The world ended up enjoying significant declines<br />

in almost all commodity prices. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> message <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Club <str<strong>on</strong>g>of</str<strong>on</strong>g> Rome was<br />

so<strong>on</strong> discredited. But <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> precise data and hence inexact and early predicti<strong>on</strong>s<br />

about future shortages does not excuse <str<strong>on</strong>g>the</str<strong>on</strong>g> reality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> message provided in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Meadow’s book. It was also in <str<strong>on</strong>g>the</str<strong>on</strong>g> late eighties and early nineties when more<br />

voices were raised <strong>on</strong> a global scale in favor <str<strong>on</strong>g>of</str<strong>on</strong>g> putting limits to growth, in view<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> systematic destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment. Clear examples <str<strong>on</strong>g>of</str<strong>on</strong>g> that were <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Brundtland report [398] in 1987 or <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth Summit celebrated in Rio de Janeiro<br />

in 1992. The beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century has been marked by a drastic increase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> and food prices. In <str<strong>on</strong>g>the</str<strong>on</strong>g> period between may 2007 and may 2008 <str<strong>on</strong>g>the</str<strong>on</strong>g> prices<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> wheat, soy or rice have increased by 62, 79 and 95%, respectively. Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

prices <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium, gold, natural gas or brent increased in <str<strong>on</strong>g>the</str<strong>on</strong>g> same period by 25,<br />

36, 238 and 57%, respectively. These few examples can be extrapolated to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

commodities. The sharp increase <str<strong>on</strong>g>of</str<strong>on</strong>g> prices that we are currently facing, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g>fered in this PhD more than justify to rec<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> reflecti<strong>on</strong>s<br />

incited by <str<strong>on</strong>g>the</str<strong>on</strong>g> Club <str<strong>on</strong>g>of</str<strong>on</strong>g> Rome.<br />

Obviously <str<strong>on</strong>g>the</str<strong>on</strong>g> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD was not to reanalyze <str<strong>on</strong>g>the</str<strong>on</strong>g> truth or falseness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

predicti<strong>on</strong>s, but to shed light <strong>on</strong> a more precise methodology that could improve<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis, almost forty years later. The exergoecological analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fuel and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s could be extended to <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fertile soils and<br />

14 The authors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> report <str<strong>on</strong>g>of</str<strong>on</strong>g>fered also an upper value for <str<strong>on</strong>g>the</str<strong>on</strong>g> expiry time, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y accepted that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> known resources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and energy could, and would, grow in <str<strong>on</strong>g>the</str<strong>on</strong>g> future, and c<strong>on</strong>sumpti<strong>on</strong><br />

growth rates could also decline. Assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> resources are multiplied by two, virtually all major<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and energy resources would expire within <str<strong>on</strong>g>the</str<strong>on</strong>g> following 100 years.


Final reflecti<strong>on</strong>s 321<br />

c<strong>on</strong>sequently to <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing world food demand and <str<strong>on</strong>g>the</str<strong>on</strong>g> carrying<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet. If <str<strong>on</strong>g>the</str<strong>on</strong>g> demand <str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels as an alternative to c<strong>on</strong>venti<strong>on</strong>al oil<br />

should compete with food producti<strong>on</strong>, <strong>on</strong>e could questi<strong>on</strong> which will be <str<strong>on</strong>g>the</str<strong>on</strong>g> availability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> food, bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels and biodiversity in a world with increasing demands and<br />

accelerated degradati<strong>on</strong>s. The analysis could be also extended to <str<strong>on</strong>g>the</str<strong>on</strong>g> growing freshwater<br />

requirements in a world with unpredictable climate changes.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> materials is still cheap, so even if <str<strong>on</strong>g>the</str<strong>on</strong>g>y are partially<br />

recycled, extracti<strong>on</strong> c<strong>on</strong>tinues to increase. This indicates that mankind has put<br />

nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r energy nor mass limits to <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Maybe <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> is<br />

to establish some kind <str<strong>on</strong>g>of</str<strong>on</strong>g> global law stating that extracti<strong>on</strong> should be limited to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s that are naturally degraded through oxidati<strong>on</strong>. This is, humanbeings<br />

should live with a certain amount <str<strong>on</strong>g>of</str<strong>on</strong>g> recyclable metals and materials and<br />

should exploit <strong>on</strong>ly limited resources. Ulterior extracti<strong>on</strong>s should not be permitted,<br />

except for extraordinary cases. This is, it should be stated that <str<strong>on</strong>g>the</str<strong>on</strong>g>re has been extracted<br />

enough ir<strong>on</strong>, aluminium, copper and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities throughout<br />

history, and mankind should learn to recycle and save materials, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> promoting<br />

wasting. This new ec<strong>on</strong>omy would be more focused toward use than toward<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> raw materials. The dematerializati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a society could <strong>on</strong>ly be<br />

achieved by limiting drastically <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s resources. It should be<br />

noted that this limitati<strong>on</strong> would not avoid an increasing energy c<strong>on</strong>sumpti<strong>on</strong>. The<br />

energy demand should be supplied through renewable resources for compensating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy destructi<strong>on</strong> associated to recycling.<br />

It is not enough to establish c<strong>on</strong>venti<strong>on</strong>al measures <str<strong>on</strong>g>of</str<strong>on</strong>g> energy efficiency, renewable<br />

energies or more advanced energy technologies such as CO 2 sequestrati<strong>on</strong>, fissi<strong>on</strong> or<br />

fusi<strong>on</strong>. We should propose a drastic limitati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> raw materials from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. We should live from and with <str<strong>on</strong>g>the</str<strong>on</strong>g> already extracted materials, c<strong>on</strong>verting<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir use and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir recycling into an art that comes from <str<strong>on</strong>g>the</str<strong>on</strong>g> necessity. As l<strong>on</strong>g as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> “Great Mine Earth” c<strong>on</strong>tinues providing cheap materials in which <str<strong>on</strong>g>the</str<strong>on</strong>g>ir value is<br />

associated to extracti<strong>on</strong> costs, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than replacement costs, it will be always less<br />

expensive to c<strong>on</strong>tinue exhausting <str<strong>on</strong>g>the</str<strong>on</strong>g> planet, than to live with <str<strong>on</strong>g>the</str<strong>on</strong>g> available and<br />

already extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Society requires development, not growth.<br />

However, as <str<strong>on</strong>g>the</str<strong>on</strong>g> former UK prime minister T<strong>on</strong>y Blair stated [84], “we cannot forget<br />

that more than three and a half billi<strong>on</strong> people live in countries rich in oil, gas or<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. These natural resources provide great opportunities to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> lives<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> poor people. But <str<strong>on</strong>g>the</str<strong>on</strong>g>re are risks. Bad management and lack <str<strong>on</strong>g>of</str<strong>on</strong>g> transparency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se resources can lead to poverty, c<strong>on</strong>flict and corrupti<strong>on</strong>. However this is not<br />

inevitably”.<br />

If ec<strong>on</strong>omic development <str<strong>on</strong>g>of</str<strong>on</strong>g> so many people in <str<strong>on</strong>g>the</str<strong>on</strong>g> world depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir raw materials, limiting such activity is at <str<strong>on</strong>g>the</str<strong>on</strong>g> present time unfeasible and not<br />

very practical. If this drastic limitati<strong>on</strong> will surely come eventually, today <str<strong>on</strong>g>the</str<strong>on</strong>g> immediate<br />

and realistic requirement is to promote c<strong>on</strong>servati<strong>on</strong> measures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resources<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> future use <str<strong>on</strong>g>of</str<strong>on</strong>g> coming generati<strong>on</strong>s and a more rati<strong>on</strong>al management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>


322 THE EXERGY EVOLUTION OF PLANET EARTH<br />

extracti<strong>on</strong> and use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. The c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources has worried<br />

a number <str<strong>on</strong>g>of</str<strong>on</strong>g> renowned ec<strong>on</strong>omists throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> middle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century. Although<br />

this topic exceeds <str<strong>on</strong>g>the</str<strong>on</strong>g> objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD, we want to shortly address this<br />

problem.<br />

As stated by Ciriacy-Wantrup [57], <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omy is <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electi<strong>on</strong> between<br />

alternative ways <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> for solving scarcity. C<strong>on</strong>servati<strong>on</strong> is interested in when<br />

resources should be used. C<strong>on</strong>servati<strong>on</strong> and its anti<str<strong>on</strong>g>the</str<strong>on</strong>g>sis depleti<strong>on</strong> are defined in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> change in <str<strong>on</strong>g>the</str<strong>on</strong>g> intertemporal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> resources. Such<br />

changes lead to <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two or more alternative temporal distributi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> resources extracti<strong>on</strong>. According to Ciriacy-Wantrup, <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum c<strong>on</strong>servati<strong>on</strong><br />

state is <str<strong>on</strong>g>the</str<strong>on</strong>g> temporal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> use that maximizes <str<strong>on</strong>g>the</str<strong>on</strong>g> current value and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> income flux. An ec<strong>on</strong>omic study <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> should explain how a c<strong>on</strong>servati<strong>on</strong><br />

state is produced and how it changes. In many practical situati<strong>on</strong>s, keeping a<br />

minimum standard <str<strong>on</strong>g>of</str<strong>on</strong>g> living does not imply any abstenti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> resources,<br />

it ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r implies a change in <str<strong>on</strong>g>the</str<strong>on</strong>g> technical ways (not in <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity) <str<strong>on</strong>g>of</str<strong>on</strong>g> use.<br />

8.5.2 The need for global agreements <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> and use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural resources<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> previous chapters, we have stated that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two different types <str<strong>on</strong>g>of</str<strong>on</strong>g> accelerati<strong>on</strong>s<br />

appearing in <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources. One is <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing demand <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r more subtle <strong>on</strong>e is associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> decline <str<strong>on</strong>g>of</str<strong>on</strong>g> ore grades.<br />

This last phenomen<strong>on</strong>, corroborated throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century for almost all <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

lead to increasing energy requirements per unit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracted.<br />

The result is that not <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> absolute quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> energy increases for <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> planet, but also <str<strong>on</strong>g>the</str<strong>on</strong>g> energy per unit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>, as <str<strong>on</strong>g>the</str<strong>on</strong>g> ore grade<br />

decreases. Currently, between 5 and 6% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> yearly world’s fossil fuel c<strong>on</strong>sumpti<strong>on</strong><br />

is used for <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> and processing <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong>, aluminium, copper and cement 15 .<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> demand <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s increase and at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time ore grades decline, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

energy demand for extracti<strong>on</strong> will likely suffer a doubly exp<strong>on</strong>ential increase in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

next decades. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> recycling <str<strong>on</strong>g>of</str<strong>on</strong>g> materials, especially <str<strong>on</strong>g>of</str<strong>on</strong>g> metals has grown<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> last decades, <str<strong>on</strong>g>the</str<strong>on</strong>g>se are far from reaching <str<strong>on</strong>g>the</str<strong>on</strong>g> accelerated extracti<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir precursors. It is still cheaper to c<strong>on</strong>tinue extracting than to save materials. And<br />

probably this trend will not change in <str<strong>on</strong>g>the</str<strong>on</strong>g> short run.<br />

Therefore, global agreements are urgently required. Paraphrasing <str<strong>on</strong>g>the</str<strong>on</strong>g> words <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

e-Parliament 16 [86], “We are burning oil, coal and gas and extracting <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and<br />

rocks at an ever increasing rate, while at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time destroying our forests, our<br />

biodiversity, our land and our mines. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> is heating up fast. These<br />

15 According to energy requirements data from <str<strong>on</strong>g>the</str<strong>on</strong>g> SimaPro 7.1 LCA s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware.<br />

16 The e-Parliament is <str<strong>on</strong>g>the</str<strong>on</strong>g> first world instituti<strong>on</strong> whose members are elected by <str<strong>on</strong>g>the</str<strong>on</strong>g> people. It links<br />

democratic members <str<strong>on</strong>g>of</str<strong>on</strong>g> parliament and c<strong>on</strong>gress into a global forum, combining meetings and electr<strong>on</strong>ic<br />

communicati<strong>on</strong>.


Final reflecti<strong>on</strong>s 323<br />

problems are global, but we are trying to solve <str<strong>on</strong>g>the</str<strong>on</strong>g>m with an internati<strong>on</strong>al system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> some 200 nati<strong>on</strong>al interests. Each nati<strong>on</strong>al <str<strong>on</strong>g>capital</str<strong>on</strong>g> makes policy decisi<strong>on</strong>s within<br />

its own borders, with no easy way to learn from <str<strong>on</strong>g>the</str<strong>on</strong>g> experience <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. The<br />

governments have been trying for years to agree <strong>on</strong> what to do to protect <str<strong>on</strong>g>the</str<strong>on</strong>g> planet.<br />

It isn’t working. To act in time, we need to create quickly a critical mass <str<strong>on</strong>g>of</str<strong>on</strong>g> lawmakers<br />

from all parties who understand <str<strong>on</strong>g>the</str<strong>on</strong>g> dangers, share a visi<strong>on</strong> for a sustainable<br />

world, and are ready to take <str<strong>on</strong>g>the</str<strong>on</strong>g> lead in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir nati<strong>on</strong>al parliaments. We need to invest<br />

not <strong>on</strong>ly in renewable energy, but in informati<strong>on</strong> for planet management and<br />

political leadership. The <strong>on</strong>ly shortage we face is a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> political will and political<br />

leadership to make <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> to a sustainable world.”<br />

It is surprising that <str<strong>on</strong>g>the</str<strong>on</strong>g> internati<strong>on</strong>al worries are still very far removed from this<br />

topic. Pancala and Socolow [256] have laid out a menu <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 currently available<br />

opti<strong>on</strong>s for meeting <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s energy needs over <str<strong>on</strong>g>the</str<strong>on</strong>g> next 50 years while stabilizing<br />

CO 2 emissi<strong>on</strong>s near <str<strong>on</strong>g>the</str<strong>on</strong>g> current level <str<strong>on</strong>g>of</str<strong>on</strong>g> 7 billi<strong>on</strong> t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> per year. These<br />

opti<strong>on</strong>s include energy efficiency, renewable energies, CO 2 capture and storage, new<br />

generati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear power plants, <str<strong>on</strong>g>the</str<strong>on</strong>g> massive use <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid and hydrogen vehicles<br />

and even a change in <str<strong>on</strong>g>the</str<strong>on</strong>g> energy model. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, it has not been proposed<br />

in a quantitative way what it may suppose a drastic world reducti<strong>on</strong> and an appropriate<br />

management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> massive use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extractive mining industry.<br />

It seems though, that early birds in <str<strong>on</strong>g>the</str<strong>on</strong>g> sector are determined to improve public<br />

transparency in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir activities at least in ec<strong>on</strong>omic terms. This way, <str<strong>on</strong>g>the</str<strong>on</strong>g> Extractive<br />

Industries Transparency Initiative (EITI) [84] came into being in 2002 at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

World Summit <strong>on</strong> Sustainable Development in Johannesburg. It brought toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r a<br />

global coaliti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> governments, companies, civil society organizati<strong>on</strong>s and investors<br />

to promote greater transparency in <str<strong>on</strong>g>the</str<strong>on</strong>g> payment and receipts <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resource revenues.<br />

As a c<strong>on</strong>sequence, EITI is becoming <str<strong>on</strong>g>the</str<strong>on</strong>g> internati<strong>on</strong>ally accepted standard<br />

for transparency in <str<strong>on</strong>g>the</str<strong>on</strong>g> oil, gas and mining sectors.<br />

If EITI is an initiative that should be applauded, it is still not ambitious enough in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> physical frame. Indeed, we share with <str<strong>on</strong>g>the</str<strong>on</strong>g> EITI <str<strong>on</strong>g>the</str<strong>on</strong>g> following principles and most<br />

relevant criteria [84]:<br />

• We share <str<strong>on</strong>g>the</str<strong>on</strong>g> belief that <str<strong>on</strong>g>the</str<strong>on</strong>g> prudent use <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resource wealth should<br />

be an important engine for sustainable ec<strong>on</strong>omic growth that c<strong>on</strong>tributes to<br />

sustainable development and poverty reducti<strong>on</strong>, but if not managed property,<br />

can create negative ec<strong>on</strong>omic and social impacts.<br />

• We affirm that management <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resource wealth for <str<strong>on</strong>g>the</str<strong>on</strong>g> benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

country’s citizens is in <str<strong>on</strong>g>the</str<strong>on</strong>g> domain <str<strong>on</strong>g>of</str<strong>on</strong>g> sovereign governments to be exercised in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> interests <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir nati<strong>on</strong>al development.<br />

• We recognize that <str<strong>on</strong>g>the</str<strong>on</strong>g> benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> resource extracti<strong>on</strong> occur as revenue streams<br />

over many years and can be highly price dependent.


324 THE EXERGY EVOLUTION OF PLANET EARTH<br />

• We recognize that public understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> government revenues and expenditure<br />

over time could help public debate and inform choice <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate and<br />

realistic opti<strong>on</strong>s for sustainable development.<br />

• We underline <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> transparency by governments and companies<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> extractive industries and <str<strong>on</strong>g>the</str<strong>on</strong>g> need to enhance public financial management<br />

and accountability.<br />

• In seeking soluti<strong>on</strong>s we believe that all stakeholders have important and relevant<br />

c<strong>on</strong>tributi<strong>on</strong>s to make, including governments and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir agencies, extractive<br />

industry companies, service companies, multilateral organizati<strong>on</strong>s, financial<br />

organizati<strong>on</strong>s, investors and n<strong>on</strong>-governmental organizati<strong>on</strong>s.<br />

• Regular publicati<strong>on</strong> should be accomplished <str<strong>on</strong>g>of</str<strong>on</strong>g> all material oil, gas and mining<br />

payments by companies to governments and all material revenues received<br />

by governments from oil, gas and mining companies should be forwarded to<br />

a wide audience in a publicly accessible, comprehensive and comprehensible<br />

manner.<br />

• Civil society is actively engaged as a participant in <str<strong>on</strong>g>the</str<strong>on</strong>g> design, m<strong>on</strong>itoring and<br />

evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this process and c<strong>on</strong>tributes towards public debate.<br />

Obviously, <str<strong>on</strong>g>the</str<strong>on</strong>g> global benefits obtained through a global EITI implementati<strong>on</strong> would<br />

be impressive. Underlying this work is <str<strong>on</strong>g>the</str<strong>on</strong>g> belief that more public accountability and<br />

more transparency can raise <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> public expenditure, cut corrupti<strong>on</strong>, reduce<br />

poverty and raise <str<strong>on</strong>g>the</str<strong>on</strong>g> credibility and prestige <str<strong>on</strong>g>of</str<strong>on</strong>g> extractive companies. Moreover, it<br />

provides <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> that allows to decide <strong>on</strong> a global scale whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r or not to<br />

change extracti<strong>on</strong> rates from an ec<strong>on</strong>omic perspective.<br />

Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g> EITI lays stress <strong>on</strong>ly <strong>on</strong> ec<strong>on</strong>omic transparency, forgetting physical<br />

parameters that are extraordinarily relevant for understanding <str<strong>on</strong>g>the</str<strong>on</strong>g> decline <str<strong>on</strong>g>of</str<strong>on</strong>g> benefits<br />

or <str<strong>on</strong>g>the</str<strong>on</strong>g> extractive velocity in relati<strong>on</strong> to its reserves. So EITI proposes transparency in<br />

extracti<strong>on</strong>, but after all it enhances extracti<strong>on</strong>.<br />

Physical and objective informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> available resources, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

compositi<strong>on</strong> and quality, <str<strong>on</strong>g>the</str<strong>on</strong>g> ore grades, <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> energy and water required<br />

for extracti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> waste rock and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r physical parameters that would<br />

allow an objective analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> our <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> is rarely published. In<br />

fact, in many cases this informati<strong>on</strong> is hidden or distorted by companies, instituti<strong>on</strong>s<br />

or even governments for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own ec<strong>on</strong>omic benefits. The EITI simply ignores this<br />

issue. What really matters is <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ey produced by a country through<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources, for carrying out a more transparent and credible<br />

management in <str<strong>on</strong>g>the</str<strong>on</strong>g> internati<strong>on</strong>al markets. In short, it is about where do <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>its from extracti<strong>on</strong> go to and in any case, maximize <str<strong>on</strong>g>the</str<strong>on</strong>g>m for a more universal<br />

and fair benefit. But <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> reducing or stopping extracti<strong>on</strong> is not even<br />

questi<strong>on</strong>ed.


Final reflecti<strong>on</strong>s 325<br />

8.5.3 The need for an accountability <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources. The<br />

Physical Ge<strong>on</strong>omics<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, it is surprising how <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s wealth classificati<strong>on</strong> has been<br />

carried out traditi<strong>on</strong>ally through purely qualitative criteria: <str<strong>on</strong>g>the</str<strong>on</strong>g> terms reserves or<br />

resources are accompanied by adjectives like ec<strong>on</strong>omically or technically feasible to<br />

extract, hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical, identified, indicated, probable, etc. The definiti<strong>on</strong> is usually<br />

imprecise and depends generally <strong>on</strong> those owning <str<strong>on</strong>g>the</str<strong>on</strong>g> data, who diminish or increase<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> resources for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own interest.<br />

The countries account ec<strong>on</strong>omically for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir increase <str<strong>on</strong>g>of</str<strong>on</strong>g> wealth through <str<strong>on</strong>g>the</str<strong>on</strong>g> GDP<br />

indicator. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> physical wealth, its decline and its eventual replacement<br />

does not appear in any nati<strong>on</strong>al account. The depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

country are seen as an asset that generates immediate wealth. Nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> associated<br />

polluti<strong>on</strong>, nor <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> wealth are c<strong>on</strong>sidered in <str<strong>on</strong>g>the</str<strong>on</strong>g> nati<strong>on</strong>al accounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

countries. It is as if we would sell <str<strong>on</strong>g>the</str<strong>on</strong>g> bricks <str<strong>on</strong>g>of</str<strong>on</strong>g> ca<str<strong>on</strong>g>the</str<strong>on</strong>g>drals to tourists, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby increasing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> local people. As stated by Seymour and Zadek [305], we need to<br />

examine <str<strong>on</strong>g>the</str<strong>on</strong>g> underlying assumpti<strong>on</strong>s about energy and <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment <strong>on</strong> which<br />

today’s governance and accountability systems have been built. Such an assessment<br />

challenges us to develop a new generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> instituti<strong>on</strong>s with system <str<strong>on</strong>g>of</str<strong>on</strong>g> rules for<br />

our ec<strong>on</strong>omy and politics which incorporates energy, materials and water scarcity<br />

and envir<strong>on</strong>mental fragility into its design. This will require dramatic innovati<strong>on</strong>s<br />

moving forward in our understanding and practice <str<strong>on</strong>g>of</str<strong>on</strong>g> governance and accountability.<br />

As l<strong>on</strong>g as <str<strong>on</strong>g>the</str<strong>on</strong>g>re is not a unifying <str<strong>on</strong>g>the</str<strong>on</strong>g>ory that allows to c<strong>on</strong>vert quantities, compositi<strong>on</strong>s<br />

and ore grades into n<strong>on</strong> m<strong>on</strong>etary units and thus not subject to variabilities<br />

bey<strong>on</strong>d mining extracti<strong>on</strong> such as currency value, this physical and parallel accountability<br />

will probably remain in <str<strong>on</strong>g>the</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> dialectic speeches.<br />

But this PhD, and in general, <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Exergoecology approach, could<br />

break this <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical barrier and provoke a global stream in favor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical accountability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> wealth <strong>on</strong> a global and local scale and disaggregated by<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> type, companies involved, etc. Hence, we propose a physical accountability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources taking into account at least three physical properties: quantity,<br />

compositi<strong>on</strong> and ore grade. Additi<strong>on</strong>ally, an estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental impact<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> opening, exploitati<strong>on</strong> and shutdown <str<strong>on</strong>g>of</str<strong>on</strong>g> mining activities in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> energy,<br />

water and material costs (not <strong>on</strong>ly in ec<strong>on</strong>omic cost-effective terms) should be required.<br />

This is, mining resources should be evaluated in <str<strong>on</strong>g>the</str<strong>on</strong>g> same way as industrial<br />

products, which can be assessed through <str<strong>on</strong>g>the</str<strong>on</strong>g> Life Cycle Assessment methodology. On<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between physical and m<strong>on</strong>etary cost will be always<br />

possible through energy prices. This could at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time keep <str<strong>on</strong>g>the</str<strong>on</strong>g> objectivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physical data and <str<strong>on</strong>g>the</str<strong>on</strong>g> more intelligible meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>etary units.<br />

In any case, more high quality data collecti<strong>on</strong> processes and better indicators are<br />

required. Despite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> enormous currently available IT means, governmental agencies<br />

do not have <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical informati<strong>on</strong> level attained until <str<strong>on</strong>g>the</str<strong>on</strong>g> seventies <str<strong>on</strong>g>of</str<strong>on</strong>g>


326 THE EXERGY EVOLUTION OF PLANET EARTH<br />

last century. Those series and <str<strong>on</strong>g>the</str<strong>on</strong>g> critical mass built around <str<strong>on</strong>g>the</str<strong>on</strong>g> knowledge about<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> countries and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir yearly physical exploitati<strong>on</strong> and<br />

associated impacts, were progressively disappearing throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century.<br />

This was due to <str<strong>on</strong>g>the</str<strong>on</strong>g> neoliberal streams that transferred to <str<strong>on</strong>g>the</str<strong>on</strong>g> private initiative and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> markets, <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>sibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The government agencies that<br />

carried out <str<strong>on</strong>g>the</str<strong>on</strong>g> surveys through a network <str<strong>on</strong>g>of</str<strong>on</strong>g> experts were c<strong>on</strong>verted into research<br />

institutes, leaving <str<strong>on</strong>g>the</str<strong>on</strong>g> systematic and c<strong>on</strong>trolled knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> and natural<br />

envir<strong>on</strong>ment. Under this informati<strong>on</strong> and databases gap, it is impossible to<br />

develop laws for improving <str<strong>on</strong>g>the</str<strong>on</strong>g> governance <str<strong>on</strong>g>of</str<strong>on</strong>g> nati<strong>on</strong>al and global resources. Because<br />

in practical terms, current ec<strong>on</strong>omy c<strong>on</strong>siders that we live in a planet full <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

resources and it is <strong>on</strong>ly a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> prices, i.e. <str<strong>on</strong>g>of</str<strong>on</strong>g> supply and demand, <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> scarcity problem.<br />

The <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical principles <str<strong>on</strong>g>of</str<strong>on</strong>g> Exergoecology, stated in this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis and in preceding<br />

studies show <str<strong>on</strong>g>the</str<strong>on</strong>g> way. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, it is necessary to work in <str<strong>on</strong>g>the</str<strong>on</strong>g> field and put<br />

into practice <str<strong>on</strong>g>the</str<strong>on</strong>g>se principles. This is already happening with <str<strong>on</strong>g>the</str<strong>on</strong>g> recent developed<br />

methodology for water cost assessment called “Physical Hydr<strong>on</strong>omics” developed<br />

by Valero et al. [412], [372], which is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> principles <str<strong>on</strong>g>of</str<strong>on</strong>g> Exergoecology.<br />

Physical Hydr<strong>on</strong>omics assesses <str<strong>on</strong>g>the</str<strong>on</strong>g> physical cost <str<strong>on</strong>g>of</str<strong>on</strong>g> a water body al<strong>on</strong>g its course<br />

with a single unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure, exergy, which accounts for chemical quality, height,<br />

temperature, velocity and flow. This way, any natural or human alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

water body can be physically accounted for. Through <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy replacement costs,<br />

we have an objective tool for envir<strong>on</strong>mental cost assessment, allowing an alternative<br />

management <str<strong>on</strong>g>of</str<strong>on</strong>g> water bodies for a certain regi<strong>on</strong>. The rules or accounting principles<br />

are being developed thanks to specific experiences were problems are detected and<br />

solved by <str<strong>on</strong>g>the</str<strong>on</strong>g> simple method <str<strong>on</strong>g>of</str<strong>on</strong>g> learning by doing.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> same way, this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis proposes as final corollary a new accounting tool for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> wealth <strong>on</strong> <strong>earth</strong>, including not <strong>on</strong>ly fossil fuels, but<br />

also <str<strong>on</strong>g>the</str<strong>on</strong>g> much more complex and apparently less relevant informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. We propose to call this tool “Physical Ge<strong>on</strong>omics”. Obviously, <str<strong>on</strong>g>the</str<strong>on</strong>g> accounting<br />

principles <strong>on</strong> which it is based will be created through <str<strong>on</strong>g>the</str<strong>on</strong>g> learning by doing<br />

technique. If Exergoecology c<strong>on</strong>siders that a <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposit is a <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

system that c<strong>on</strong>tains exergy because it is differentiated from its envir<strong>on</strong>ment, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

accounting principles that allow to c<strong>on</strong>vert <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory into numbers should be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

developed. And this should be carried out not <strong>on</strong>ly for exergy, but also for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy replacement costs. The latter provide more significant numbers, but are more<br />

arbitrary, since <str<strong>on</strong>g>the</str<strong>on</strong>g>y depend <strong>on</strong> technologies and hence <strong>on</strong> internati<strong>on</strong>al agreements.<br />

Physical Ge<strong>on</strong>omics should not <strong>on</strong>ly account for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s extracted from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

planet, but also for those that are being recycled. C<strong>on</strong>sequently, we could obtain<br />

a global accountancy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planetary stocks <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical elements available for<br />

mankind in a certain period <str<strong>on</strong>g>of</str<strong>on</strong>g> time. This would allow to detect <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s that have been returned to <str<strong>on</strong>g>the</str<strong>on</strong>g> planet in a complete dispersed way. That<br />

quantity is always positive, what tells us that <str<strong>on</strong>g>the</str<strong>on</strong>g> planet inexorably approaches <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

degraded state. The assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> that entropic planet will have to be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r de-


Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter 327<br />

veloped in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies for thinking over <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> our planetary<br />

resources.<br />

Can we move to more efficient, equitable and cleaner use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s resources by<br />

shifting c<strong>on</strong>venti<strong>on</strong>al accountability practices into physical accounting systems? The<br />

answer is not simply a clear “yes”, but we think that Physical Ge<strong>on</strong>omics proposed<br />

in this <str<strong>on</strong>g>the</str<strong>on</strong>g>sis can positively help in this task.<br />

8.6 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter<br />

This chapter has extrapolated at planetary level, <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy degradati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves carried out before for Australia. For that purpose, many<br />

assumpti<strong>on</strong>s had to be made at <str<strong>on</strong>g>the</str<strong>on</strong>g> expense <str<strong>on</strong>g>of</str<strong>on</strong>g> accuracy loss in <str<strong>on</strong>g>the</str<strong>on</strong>g> results. This<br />

is because <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an important informati<strong>on</strong> gap about current and historical data<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> many commodities. Bearing in mind <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>siderati<strong>on</strong>s, we have been able to<br />

give a rough estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> loss <strong>on</strong> <strong>earth</strong> since <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th<br />

century, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s degradati<strong>on</strong> velocity, <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves and<br />

reserve base, <str<strong>on</strong>g>the</str<strong>on</strong>g> years until depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities, and <str<strong>on</strong>g>the</str<strong>on</strong>g> year where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> is reached for <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s extracted <strong>on</strong> <strong>earth</strong>.<br />

According to our calculati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> irreversible exergy distance D ∗ <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 51 n<strong>on</strong>-fuel<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities analyzed is at least 51 Gtoe, c<strong>on</strong>sumed at an average exergy<br />

degradati<strong>on</strong> velocity ˙D ∗ <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,3 Gtoe/year in <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade. This means that with<br />

current technology, <str<strong>on</strong>g>the</str<strong>on</strong>g> replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> all depleted n<strong>on</strong>-fuel commodities would<br />

require a third <str<strong>on</strong>g>of</str<strong>on</strong>g> current world fuel oil reserves (178 Gtoe).<br />

The exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves <strong>on</strong> <strong>earth</strong> is clearly dominated<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong>, aluminium and to a lesser extent <str<strong>on</strong>g>of</str<strong>on</strong>g> copper. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> latter three <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are not <str<strong>on</strong>g>the</str<strong>on</strong>g> most depleted commodities. We have<br />

stated that <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> mercury, silver, gold, tin, arsenic, antim<strong>on</strong>y and lead are<br />

suffering <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest scarcity problems. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cesium,<br />

thorium, REE, iodine, vanadium, PGM’s, tantalum, aluminium, cobalt and niobium<br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g> least depleted commodities.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> most extracted n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <strong>on</strong> <strong>earth</strong>, we have applied <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert<br />

bell-shaped curve, assuming that <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base published by <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS [362]<br />

are available for extracti<strong>on</strong>. Accordingly, we have obtained that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong><br />

for ir<strong>on</strong>, aluminium and copper is reached in years 2068, 2057 and 2024,<br />

respectively.<br />

With respect to fossil fuels, we have stated that in exergy terms, oil has been <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

c<strong>on</strong>sumed fuel, accounting for 42% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total fuel exergy degradati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th<br />

century (coal and natural gas accounted for 38 and 20%, respectively). The total<br />

fuel’s exergy depleted between 1900 and 2006 is estimated at 382 Gtoe, c<strong>on</strong>sumed<br />

at an average exergy degradati<strong>on</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> 9 Gtoe/year in <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade. The<br />

degradati<strong>on</strong> corresp<strong>on</strong>ds to 30,5% <str<strong>on</strong>g>of</str<strong>on</strong>g> total world’s proven fuel reserves in 2006.


328 THE EXERGY EVOLUTION OF PLANET EARTH<br />

Hubbert’s bell shaped curves applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels revealed<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> coal will be reached in year 2060, <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas in 2023, and <str<strong>on</strong>g>of</str<strong>on</strong>g> oil<br />

in 2008. The latter value fits very well with <str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r authors, who<br />

estimated that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak year <str<strong>on</strong>g>of</str<strong>on</strong>g> world oil will be between 2004 and 2008. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

it gives sense to <str<strong>on</strong>g>the</str<strong>on</strong>g> radical increase <str<strong>on</strong>g>of</str<strong>on</strong>g> oil prices registered recently. The price<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a barrel <str<strong>on</strong>g>of</str<strong>on</strong>g> crude has been doubled in just <strong>on</strong>e year, surpassing in January 2008,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> psychological barrier <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 $US.<br />

If we add <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy replacement costs <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, we obtain that man has depleted in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 433 Gtoe.<br />

In 2006, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits was depleted at a degradati<strong>on</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

around 12 Gtoe. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, c<strong>on</strong>sidering all main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources <strong>on</strong> <strong>earth</strong>, we<br />

have estimated that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> will be reached in year 2034.<br />

The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves can be also affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPPC’s reference scenarios, we were able to estimate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels due to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG emissi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature rise. According to our calculati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels<br />

could decrease to up to 0,40%, if <str<strong>on</strong>g>the</str<strong>on</strong>g> current CO 2 c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere<br />

doubles.<br />

Finally, we have made an estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> possible depleti<strong>on</strong> degree that <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

reserves might suffer in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century. For that purpose, we took into account<br />

seven different scenarios.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> first scenario, we assumed that producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities<br />

extracted, namely coal, oil, natural gas, ir<strong>on</strong>, aluminium and copper, would follow<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> bell-shaped curves calculated before. Accordingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> global <str<strong>on</strong>g>mineral</str<strong>on</strong>g> exergy<br />

decrease in <str<strong>on</strong>g>the</str<strong>on</strong>g> period between 1900 and 2100 would be near 1300 Gtoe. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century, man would have depleted around 82% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reserve base available in 1900.<br />

The o<str<strong>on</strong>g>the</str<strong>on</strong>g>r six case studies corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> IPPC’s SRES scenarios c<strong>on</strong>cerning fossil<br />

fuel c<strong>on</strong>sumpti<strong>on</strong>. For n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, we assumed that world resources, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

than <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base are available for extracti<strong>on</strong>. Additi<strong>on</strong>ally, we have taken into<br />

account <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels due to <str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gases to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere.<br />

All IPCC’s scenarios involve greater degradati<strong>on</strong> degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves than<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert behavior has been assumed. In <str<strong>on</strong>g>the</str<strong>on</strong>g> worst case, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources degraded exceeds 3100 Gtoe. This indicates that<br />

for satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g> energy c<strong>on</strong>sumpti<strong>on</strong> assumed in <str<strong>on</strong>g>the</str<strong>on</strong>g> SRES scenarios, <str<strong>on</strong>g>the</str<strong>on</strong>g> proven<br />

reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, oil and natural gas should increase c<strong>on</strong>siderably. Although new<br />

discoveries are indeed increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> many <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources, it remains<br />

to be seen whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> discoveries and <str<strong>on</strong>g>the</str<strong>on</strong>g> reclassificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves<br />

as recoverable are sufficient enough to supply <str<strong>on</strong>g>the</str<strong>on</strong>g> huge future <str<strong>on</strong>g>mineral</str<strong>on</strong>g> demand.


Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chapter 329<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> final reflecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD, we have taken up again <str<strong>on</strong>g>the</str<strong>on</strong>g> ideas provided by<br />

Meadows et al. [218] in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir book “The Limits to Growth”. In view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

obtained in this study, we have stated that <str<strong>on</strong>g>the</str<strong>on</strong>g> message <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Club <str<strong>on</strong>g>of</str<strong>on</strong>g> Rome was<br />

not as false as many claimed, even if <str<strong>on</strong>g>the</str<strong>on</strong>g> last decades <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century indicated<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary. In fact, we have reached a point in which we might think about limiting<br />

radically extracti<strong>on</strong> and living <strong>on</strong>ly with <str<strong>on</strong>g>the</str<strong>on</strong>g> already extracted materials. This<br />

is recycling, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than wasting should be promoted. But nowadays, this practice<br />

would be impossible to undertake, as many ec<strong>on</strong>omies are sustained by <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> resources. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> realistic requirement now is to promote c<strong>on</strong>servati<strong>on</strong><br />

measures for assuring enough resources for coming generati<strong>on</strong>s and a more rati<strong>on</strong>al<br />

management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> and use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

We have stated that c<strong>on</strong>venti<strong>on</strong>al measures <str<strong>on</strong>g>of</str<strong>on</strong>g> energy efficiency, renewable energies,<br />

CO 2 sequestrati<strong>on</strong>, etc., are not enough for achieving sustainability. We believe that<br />

a drastic world reducti<strong>on</strong> and an appropriate management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> massive use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extractive mining industry should be also required. For that purpose, global<br />

agreements are a must.<br />

An appropriate management should be based <strong>on</strong> a solid, transparent and objective<br />

physical accountability system <str<strong>on</strong>g>of</str<strong>on</strong>g> resources. As final corollary <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD, we have<br />

proposed a new accountability tool for <str<strong>on</strong>g>the</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> wealth <strong>on</strong><br />

<strong>earth</strong>, based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Exergoecological principles stated in this study. We have proposed<br />

to call this tool “Physical Ge<strong>on</strong>omics”. Obviously, <str<strong>on</strong>g>the</str<strong>on</strong>g> accounting principles <strong>on</strong><br />

which it is based will have to be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r developed through <str<strong>on</strong>g>the</str<strong>on</strong>g> learning by doing<br />

technique.


9.1 Introducti<strong>on</strong><br />

Chapter 9<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

In this chapter, a syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD is accomplished and <str<strong>on</strong>g>the</str<strong>on</strong>g> main scientific c<strong>on</strong>tributi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> work are outlined. Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> perspectives <str<strong>on</strong>g>of</str<strong>on</strong>g> future interesting<br />

studies that have arisen from this PhD are presented.<br />

9.2 Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PhD<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD has been <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resources available <strong>on</strong> <strong>earth</strong> and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir degradati<strong>on</strong> velocity, due to human acti<strong>on</strong>. This has been accomplished under<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> framework <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecological analysis. The latter allows to value <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

resources, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> physical cost that would require to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g>m from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> materials c<strong>on</strong>tained in a hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical <strong>earth</strong> that has reached <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> deteriorati<strong>on</strong>. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, it quantifies <str<strong>on</strong>g>the</str<strong>on</strong>g> physical cost <str<strong>on</strong>g>of</str<strong>on</strong>g> restoring natural<br />

resources from a degraded state in <str<strong>on</strong>g>the</str<strong>on</strong>g> so called reference envir<strong>on</strong>ment to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s<br />

in which <str<strong>on</strong>g>the</str<strong>on</strong>g>y are currently presented in nature. The exergoecology approach<br />

uses <str<strong>on</strong>g>the</str<strong>on</strong>g> property exergy as <str<strong>on</strong>g>the</str<strong>on</strong>g> universal unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure. The main advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

use with respect to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r physical indicators is that in a single property, all <str<strong>on</strong>g>the</str<strong>on</strong>g> physical<br />

features <str<strong>on</strong>g>of</str<strong>on</strong>g> a resource are accounted for. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, exergy has <str<strong>on</strong>g>the</str<strong>on</strong>g> capability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aggregating heterogeneous energy and material assets. This is not <str<strong>on</strong>g>the</str<strong>on</strong>g> case, if <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

assessment is carried out in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> mass, because we cannot add t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oil with<br />

t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gold, for instance. Unlike standard ec<strong>on</strong>omic valuati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy analysis<br />

gives objective informati<strong>on</strong> since it is not subject to m<strong>on</strong>etary policy, or currency<br />

speculati<strong>on</strong>.<br />

This PhD has been structured into two different parts. The first <strong>on</strong>e, <str<strong>on</strong>g>of</str<strong>on</strong>g> an eminently<br />

geological and geochemical character, has described and modeled <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemistry<br />

331


332 CONCLUSIONS<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and its resources. The sec<strong>on</strong>d part has developed and used <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

tools required for analyzing <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet.<br />

In chapter 2, a comprehensive analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical and geochemical features <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> has been undertaken as a starting point for determining its properties.<br />

First, a coarse compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk <strong>earth</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> relative mass proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each sphere has been presented. This overview has given way to <str<strong>on</strong>g>the</str<strong>on</strong>g> more detailed<br />

explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere and upper c<strong>on</strong>tinental<br />

crust, which are <str<strong>on</strong>g>the</str<strong>on</strong>g> layers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> with which man interacts.<br />

It has been stated that <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere is ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r uniform<br />

to heights up to 100 km. Apart from <str<strong>on</strong>g>the</str<strong>on</strong>g> natural occurring gases, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are traces <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

anthropogenic substances in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere that may alter <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <strong>earth</strong>.<br />

The hydrosphere is composed by <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans (representing over 97% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere’s<br />

volume), renewable water resources (rivers, lakes and underground water),<br />

ice, and atmospheric water. As it happens to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater<br />

is quite uniform. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rest hydrosphere’s<br />

comp<strong>on</strong>ents may vary from place to place. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, some examples and averages<br />

have been provided for all water reservoirs.<br />

The c<strong>on</strong>tinental crust is <str<strong>on</strong>g>the</str<strong>on</strong>g> outer layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> solid <strong>earth</strong>, and is composed by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

core, mantle and crust. The crust is fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r divided into <str<strong>on</strong>g>the</str<strong>on</strong>g> lower, middle and<br />

upper crust. We have focused our attenti<strong>on</strong> <strong>on</strong>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> it, as it is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r natural resources for mankind. The<br />

chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s is well<br />

known, although it is still subject <str<strong>on</strong>g>of</str<strong>on</strong>g> numerous updates. However, its compositi<strong>on</strong> in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s has been barely studied.<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental<br />

crust requires <str<strong>on</strong>g>the</str<strong>on</strong>g> knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s included in it, <str<strong>on</strong>g>the</str<strong>on</strong>g> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> chapter 3 was<br />

to obtain a model <str<strong>on</strong>g>of</str<strong>on</strong>g> its <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong>.<br />

For that purpose, a revisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> studies c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust was carried out. It was stated, that <str<strong>on</strong>g>the</str<strong>on</strong>g> heterogeneity and complexity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust have hindered deep and accurate studies <str<strong>on</strong>g>of</str<strong>on</strong>g> its compositi<strong>on</strong> in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. In fact a single author N.A. Grigor’ev has been very recently <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

first <strong>on</strong>e in giving a comprehensive <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust.<br />

We checked <str<strong>on</strong>g>the</str<strong>on</strong>g> satisfacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance between <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s proposed by<br />

Grigor’ev and <str<strong>on</strong>g>the</str<strong>on</strong>g> better known chemical compositi<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

upper crust. The no satisfacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance, lead us to update Grigor’ev’s<br />

compositi<strong>on</strong>. The methodology used minimizes <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between Grigor’ev’s<br />

and our target compositi<strong>on</strong>, under <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>straint <str<strong>on</strong>g>of</str<strong>on</strong>g> assuring chemical coherence<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> average chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> elements.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> final compositi<strong>on</strong> includes important <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s not taken into account<br />

in Grigor’ev’s analysis. As a result, we obtained an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> average


Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PhD 333<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust, c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 307 most abundant<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

The compositi<strong>on</strong> obtained should not be c<strong>on</strong>sidered as final and closed, since many<br />

assumpti<strong>on</strong>s had to be made. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, it is <str<strong>on</strong>g>the</str<strong>on</strong>g> first step for obtaining a coherent<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust.<br />

Chapter 4 closes <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s comp<strong>on</strong>ents (Part I <str<strong>on</strong>g>of</str<strong>on</strong>g> this report), by<br />

undertaking a review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different natural resources useful to man.<br />

Generally, informati<strong>on</strong> is available for most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy resources. This is not <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case for n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, where <str<strong>on</strong>g>the</str<strong>on</strong>g> data is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten scarce and inaccurate.<br />

Hence at a first step, <str<strong>on</strong>g>the</str<strong>on</strong>g> revisi<strong>on</strong> was focused <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> energy sources <str<strong>on</strong>g>of</str<strong>on</strong>g> renewable<br />

and n<strong>on</strong> renewable nature. With <str<strong>on</strong>g>the</str<strong>on</strong>g> most updated informati<strong>on</strong> sources, <str<strong>on</strong>g>the</str<strong>on</strong>g> available<br />

energy, potential energy use and current world energy c<strong>on</strong>sumpti<strong>on</strong> has been<br />

provided. The energy resources studied were: geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal, nuclear, tidal, solar, wind<br />

and ocean power, as well as biomass, coal, natural gas, oil and unc<strong>on</strong>venti<strong>on</strong>al fuels.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> most important n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> current producti<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> available<br />

reserves, reserve base and world resources has been obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> US Geological<br />

Survey. But as opposed to fossil fuels, <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s is not important<br />

if <str<strong>on</strong>g>the</str<strong>on</strong>g>se are dispersed throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> crust. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> grade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

deposits is also required for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources. From different<br />

informati<strong>on</strong> sources, we were able to estimate world <str<strong>on</strong>g>mineral</str<strong>on</strong>g> average ore grades.<br />

Part II <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD begins in chapter 5 with <str<strong>on</strong>g>the</str<strong>on</strong>g> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

models required for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and its resources.<br />

In order to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> any substance, a reference envir<strong>on</strong>ment (R.E.)<br />

should be defined. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> first aim <str<strong>on</strong>g>of</str<strong>on</strong>g> chapter 5 was to select an appropriate<br />

R.E. for <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> <strong>on</strong> <strong>earth</strong>.<br />

For that purpose, <str<strong>on</strong>g>the</str<strong>on</strong>g> different R.E. proposed so far were reviewed. It was stated,<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> best suitable available R.E. for determining <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources<br />

was <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e based <strong>on</strong> Szargut’s criteri<strong>on</strong>. Hence, Szargut’s R.E. [336], later modified<br />

by Ranz [276], was updated and adapted to our requirements with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> new<br />

geochemical informati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinental crust developed in this PhD.<br />

Next, we analyzed <str<strong>on</strong>g>the</str<strong>on</strong>g> energy involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposit<br />

from a defined R.E., and provided <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>s required for <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy calculati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. We stated that <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum exergy embedded in a <str<strong>on</strong>g>mineral</str<strong>on</strong>g> has<br />

two comp<strong>on</strong>ents, <strong>on</strong>e based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <strong>on</strong>e <strong>on</strong> its<br />

c<strong>on</strong>centrati<strong>on</strong> or ore grade. The first parameter accounts for <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> from <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. The c<strong>on</strong>centrati<strong>on</strong> exergy expresses <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum energy that<br />

nature had to spend to bring <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s from <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> reference<br />

state to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> mine. We saw, that <str<strong>on</strong>g>the</str<strong>on</strong>g> latter shows a negative logarithmic<br />

pattern with <str<strong>on</strong>g>the</str<strong>on</strong>g> grade. This means that as <str<strong>on</strong>g>the</str<strong>on</strong>g> ore grade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mine tends<br />

to zero, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposit approaches also zero and <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy required for<br />

replacing <str<strong>on</strong>g>the</str<strong>on</strong>g> mine tends to infinity.


334 CONCLUSIONS<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels can be calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> general formulas provided<br />

for <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemical structure, makes this<br />

task very difficult and special calculati<strong>on</strong> procedures are applied. It was stated that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels can be in many cases approximated to its HHV. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less,<br />

we used <str<strong>on</strong>g>the</str<strong>on</strong>g> different formulas developed by Valero and Lozano [369],<br />

since <str<strong>on</strong>g>the</str<strong>on</strong>g>y take into account <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment.<br />

Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum exergy values are very small, if compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> real energy<br />

required for <str<strong>on</strong>g>the</str<strong>on</strong>g> replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir original state. In order to<br />

account for <str<strong>on</strong>g>the</str<strong>on</strong>g> inefficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g> man-made processes, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy values are multiplied<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> unit exergy replacement costs. These are dimensi<strong>on</strong>less and measure<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy units needed to obtain <strong>on</strong>e unit <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> product. The<br />

resulting exergy costs represent <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy required by <str<strong>on</strong>g>the</str<strong>on</strong>g> given available technology<br />

to return a resource into <str<strong>on</strong>g>the</str<strong>on</strong>g> physical and chemical c<strong>on</strong>diti<strong>on</strong>s in which it was<br />

delivered by <str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystem. As opposed to exergy, exergy costs cannot be c<strong>on</strong>sidered<br />

as a property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resource, since unit exergy costs introduce an arbitrary factor<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be used as a suitable indicator for assessing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y integrate in <strong>on</strong>e parameter,<br />

c<strong>on</strong>centrati<strong>on</strong>, compositi<strong>on</strong> and also <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> technology.<br />

The chapter ends with <str<strong>on</strong>g>the</str<strong>on</strong>g> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> twelve semi-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretical models for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enthalpies and Gibbs free energies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong>, required for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

In chapter 6, <str<strong>on</strong>g>the</str<strong>on</strong>g> standard <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> outer <strong>earth</strong>’s spheres have been provided for <str<strong>on</strong>g>the</str<strong>on</strong>g> first time. That is <str<strong>on</strong>g>the</str<strong>on</strong>g> standard<br />

enthalpy, Gibbs free energy and chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 330 natural<br />

substances. The enthalpies and Gibbs free energies, have been obtained ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> literature, or have been calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> 12 estimati<strong>on</strong> methods described<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous chapter. The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substances has been calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements, generated with <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. developed in this PhD.<br />

Through <str<strong>on</strong>g>the</str<strong>on</strong>g> molar fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substances in each layer, determined in part I<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this report, we were able to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> average <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere (divided into seawater, rivers, glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f and<br />

groundwater) and upper c<strong>on</strong>tinental crust.<br />

It has been stated, that all negative i<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere throw up negative chemical<br />

exergies. Additi<strong>on</strong>ally, some substances <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust show also<br />

negative exergy values. This is because <str<strong>on</strong>g>the</str<strong>on</strong>g> reference species <str<strong>on</strong>g>of</str<strong>on</strong>g> our R.E. are more<br />

stable than <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered substance. This lead us to questi<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

R.E. developed in this PhD, for natural resource accounting. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, this R.E.<br />

differs substantially from <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> degraded <strong>earth</strong> that should become.<br />

The degraded <strong>earth</strong> could be assimilated to a dead planet, with an atmosphere similar<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> current <strong>on</strong>e, but with a higher CO 2 c<strong>on</strong>centrati<strong>on</strong> due to <str<strong>on</strong>g>the</str<strong>on</strong>g> burning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels, a hydrosphere were all fresh waters are mixed with salt water, and


Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PhD 335<br />

a c<strong>on</strong>tinental crust without fossil fuels or c<strong>on</strong>centrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits. Since <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

relative quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater with respect to saltwater <strong>on</strong> <strong>earth</strong> is irrelevant, <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical <strong>earth</strong> has <str<strong>on</strong>g>the</str<strong>on</strong>g> same compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> oceans. Something<br />

similar occurs with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust, <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits<br />

and fossil fuels is negligible when compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> whole c<strong>on</strong>tinental crust. Hence,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> degraded crust can be approximated to <str<strong>on</strong>g>the</str<strong>on</strong>g> model developed<br />

in this PhD.<br />

From this model <str<strong>on</strong>g>of</str<strong>on</strong>g> degraded <strong>earth</strong> firstly defined in this PhD, we could recalculate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements. We think that <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> procedures and<br />

even <str<strong>on</strong>g>the</str<strong>on</strong>g> philosophy for obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements should be<br />

reviewed, since <str<strong>on</strong>g>the</str<strong>on</strong>g> selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an appropriate R.E. is a required but not a sufficient<br />

c<strong>on</strong>diti<strong>on</strong>. However, this activity remains open for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

Despite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. developed here with Szargut’s methodology, it<br />

still c<strong>on</strong>stitutes a tool for obtaining chemical exergies. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong><br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> its spheres is known, we were able to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> absolute chemical exergy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere and upper c<strong>on</strong>tinental crust: 6, 27×10 3 , 7, 80×10 5<br />

and 1, 21 × 10 9 Gtoe, respectively. Of course <str<strong>on</strong>g>the</str<strong>on</strong>g>se are very rough numbers, and are<br />

subject to ulterior updates, especially when a more appropriate R.E. is found. But<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y are good enough, for providing an order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> huge chemical<br />

wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet.<br />

The sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> chapter 6 has provided an inventory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most important energy<br />

resources and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <strong>on</strong> <strong>earth</strong>, expressed through a single unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure:<br />

exergy. We have stated that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a huge amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy sources <strong>on</strong><br />

<strong>earth</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> both renewable and n<strong>on</strong>-renewable nature. There are many energy alternatives<br />

that could replace fossil fuels when <str<strong>on</strong>g>the</str<strong>on</strong>g>y become depleted. But obviously <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

technology for recovering <str<strong>on</strong>g>the</str<strong>on</strong>g>se alternatives needs to be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r developed.<br />

Despite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> enormous chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet, <strong>on</strong>ly 0,01% <str<strong>on</strong>g>of</str<strong>on</strong>g> that amount<br />

can be c<strong>on</strong>sidered as available for human use. With current technology, it is impossible<br />

to use <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersed substances. And <strong>on</strong>ly those <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s that<br />

are c<strong>on</strong>centrated, can be c<strong>on</strong>sidered as resources. In <str<strong>on</strong>g>the</str<strong>on</strong>g> short run, technological development<br />

will allow substituti<strong>on</strong> am<strong>on</strong>g <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, but this can <strong>on</strong>ly last whenever<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>centrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g> stocks are available.<br />

Hence, we have stated that <str<strong>on</strong>g>the</str<strong>on</strong>g> scarcity problems that man could be facing are based<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> materials, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> use energy sources. This is why recycling<br />

and especially, <str<strong>on</strong>g>the</str<strong>on</strong>g> search <str<strong>on</strong>g>of</str<strong>on</strong>g> a dematerialized society becomes essential, in order to<br />

be c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> sustainability doctrine.<br />

In chapter 7, we have included <str<strong>on</strong>g>the</str<strong>on</strong>g> time dimensi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

<str<strong>on</strong>g>capital</str<strong>on</strong>g> <strong>on</strong> <strong>earth</strong>.<br />

We stated that nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r mass, nor energy are appropriate indicators for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> wealth <strong>on</strong> <strong>earth</strong>, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y are c<strong>on</strong>servative properties. On <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>trary, in all physical transformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> matter or energy, it is always exergy that


336 CONCLUSIONS<br />

is lost. Therefore, any degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> which can come ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

from an alterati<strong>on</strong> in its compositi<strong>on</strong>, a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> its c<strong>on</strong>centrati<strong>on</strong>, or a change in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment, can be accounted for with exergy.<br />

Starting from <str<strong>on</strong>g>the</str<strong>on</strong>g> property exergy, we have built a series <str<strong>on</strong>g>of</str<strong>on</strong>g> indicators which should<br />

measure <str<strong>on</strong>g>the</str<strong>on</strong>g> scarcity degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves <strong>on</strong> <strong>earth</strong>. The exergy difference<br />

between two situati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet has been named as exergy distance D. The<br />

exergy degradati<strong>on</strong> velocity ˙D, calculated as <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance divided by <str<strong>on</strong>g>the</str<strong>on</strong>g> period<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time c<strong>on</strong>sidered, should account for <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain<br />

resource.<br />

We have also defined <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> equivalent (t M e), which allows us to assess<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain deposit before and after extracti<strong>on</strong>, and to compare<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> different deposits c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> same <str<strong>on</strong>g>mineral</str<strong>on</strong>g>, but with a more understandable<br />

unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, we have proposed to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> resources to producti<strong>on</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits in exergy terms, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby accounting for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> factor as<br />

well.<br />

All indicators described above can be assessed ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r with minimum exergies, or<br />

with exergy replacement costs. With <str<strong>on</strong>g>the</str<strong>on</strong>g> latter, <str<strong>on</strong>g>the</str<strong>on</strong>g> irreversibility factor present in all<br />

real processes is taken into account.<br />

Finally, we have proposed <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model for <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. It has been stated that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bell-shape curve is better suited to n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s if it is fitted with exergy over<br />

time, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> mass over time. This way, we would not ignore <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

factor, which is very important for <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> solid <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

As a first case study, we have obtained <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper deposits<br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century, and have applied all indicators described above. It<br />

has been estimated, that <str<strong>on</strong>g>the</str<strong>on</strong>g> global exergy cost associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> US<br />

copper deposits in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century was around 700 Mtoe, c<strong>on</strong>sumed at an average<br />

exergy degradati<strong>on</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> 6,6 Mtoe/year. The R/P ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper deposits<br />

reveals for year 2000, that reserves would be completely depleted after 56 years.<br />

Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak in exergy terms, gave as a result, that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> peak was already reached in year 1994. In fact <str<strong>on</strong>g>the</str<strong>on</strong>g> real peak was attained in<br />

year 1998.<br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy producti<strong>on</strong> pattern did not perfectly fit in <str<strong>on</strong>g>the</str<strong>on</strong>g> bell-shaped curve,<br />

interesting c<strong>on</strong>clusi<strong>on</strong>s could be extracted. Generally, producti<strong>on</strong> follows asymmetric<br />

curves with <str<strong>on</strong>g>the</str<strong>on</strong>g> decline much sharper than <str<strong>on</strong>g>the</str<strong>on</strong>g> growth. Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> real producti<strong>on</strong><br />

peak is most probably attained after <str<strong>on</strong>g>the</str<strong>on</strong>g> year predicted by <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert model. During<br />

a short period <str<strong>on</strong>g>of</str<strong>on</strong>g> time, <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities will be probably over-exploited and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

producti<strong>on</strong> points will appear over <str<strong>on</strong>g>the</str<strong>on</strong>g> bell-shaped curve. The compensati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

overproducti<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> much sharper decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> after <str<strong>on</strong>g>the</str<strong>on</strong>g> peak, instead<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a gradual and steady reducti<strong>on</strong>.


Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PhD 337<br />

The sec<strong>on</strong>d case study was aimed at assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> a country due to<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. Australia has been chosen for <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis, because it is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> most important <str<strong>on</strong>g>mineral</str<strong>on</strong>g> exporting countries in <str<strong>on</strong>g>the</str<strong>on</strong>g> world and is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e<br />

with registered ore grade trends <str<strong>on</strong>g>of</str<strong>on</strong>g> its main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. It has been stated that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

most depleted commodities are in decreasing order: silver, gold, oil, zinc and lead,<br />

with R/P ratios below 35 years. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> copper, ir<strong>on</strong>, natural<br />

gas, nickel and finally coal will last at least for 48, 63, 67, 121 and 153 years,<br />

respectively.<br />

The Hubbert peak model was satisfactorily applied for all commodities, with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> group lead-zinc-silver, whose producti<strong>on</strong> patterns differ from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rest, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y are extracted toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r. The study predicts that <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum producti<strong>on</strong><br />

has been already reached for gold (2006), silver (2005), lead (1997) and oil (1997).<br />

Zinc will reach <str<strong>on</strong>g>the</str<strong>on</strong>g> peak in 2010, copper in 2021, natural gas in 2025, ir<strong>on</strong> in 2026,<br />

nickel in 2040, and finally coal in 2048.<br />

By <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, Australia has degraded <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> 12,5 Gtoe.<br />

And this degradati<strong>on</strong> is dominated by <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two commodities, coal and<br />

ir<strong>on</strong>. In 2004, <str<strong>on</strong>g>the</str<strong>on</strong>g> global exergy degradati<strong>on</strong> velocity exceeded 550 Mtoe/year<br />

(around 15% <str<strong>on</strong>g>of</str<strong>on</strong>g> current world’s oil c<strong>on</strong>sumpti<strong>on</strong>). And it will probably c<strong>on</strong>tinue<br />

to increase exp<strong>on</strong>entially at least for 20 to 40 years, until <str<strong>on</strong>g>the</str<strong>on</strong>g> peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> and coal<br />

are reached.<br />

We additi<strong>on</strong>ally estimated <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>etary cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserve’s depleti<strong>on</strong><br />

suffered in Australia in year 2004. This was carried out, by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy<br />

costs into m<strong>on</strong>etary costs through c<strong>on</strong>venti<strong>on</strong>al energy prices. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

obtained, Australia would have lost an equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> 93,3 billi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> $US <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g>, due to resource extracti<strong>on</strong> <strong>on</strong>ly in year 2004. This corresp<strong>on</strong>ds to<br />

15,2% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 Australian GDP.<br />

It should be noted, that <str<strong>on</strong>g>the</str<strong>on</strong>g> results obtained are estimati<strong>on</strong>s and hence <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers<br />

cannot be taken as final. More reserves could be found in <str<strong>on</strong>g>the</str<strong>on</strong>g> future, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby increasing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> years until depleti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities.<br />

However, <str<strong>on</strong>g>the</str<strong>on</strong>g> huge amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy and its equivalent in m<strong>on</strong>ey terms involved in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <strong>on</strong> <strong>earth</strong>, alerts us about <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>serving<br />

our resources.<br />

The last chapter <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD, chapter 8, has extrapolated at planetary level, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves carried out for Australia. For<br />

that purpose, many assumpti<strong>on</strong>s had to be made at <str<strong>on</strong>g>the</str<strong>on</strong>g> expense <str<strong>on</strong>g>of</str<strong>on</strong>g> accuracy loss in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> results. This is because <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an important informati<strong>on</strong> gap about current and<br />

historical data <str<strong>on</strong>g>of</str<strong>on</strong>g> many commodities. Bearing in mind <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>siderati<strong>on</strong>s, we have<br />

been able to give a rough estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> loss <strong>on</strong> <strong>earth</strong> since <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s degradati<strong>on</strong> velocity, <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reserves and reserve base, <str<strong>on</strong>g>the</str<strong>on</strong>g> years until depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities, and <str<strong>on</strong>g>the</str<strong>on</strong>g> year<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> is reached for <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s extracted <strong>on</strong> <strong>earth</strong>.


338 CONCLUSIONS<br />

According to our calculati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> irreversible exergy distance D ∗ <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 51 n<strong>on</strong>fuel<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities analyzed is at least 51 Gtoe, c<strong>on</strong>sumed at an average<br />

exergy degradati<strong>on</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,3 Gtoe/year in <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade. This means that with<br />

current technology, <str<strong>on</strong>g>the</str<strong>on</strong>g> replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> all depleted n<strong>on</strong>-fuel commodities would<br />

require a third <str<strong>on</strong>g>of</str<strong>on</strong>g> current world fuel oil reserves (178 Gtoe).<br />

The exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves <strong>on</strong> <strong>earth</strong> is clearly dominated<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong>, aluminium and to a lesser extent <str<strong>on</strong>g>of</str<strong>on</strong>g> copper. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> latter three <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s are not <str<strong>on</strong>g>the</str<strong>on</strong>g> most depleted commodities. We have<br />

stated that <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> mercury, silver, gold, tin, arsenic, antim<strong>on</strong>y and lead are<br />

suffering <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest scarcity problems. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cesium,<br />

thorium, REE, iodine vanadium, PGM’s, tantalum, aluminium cobalt and niobium<br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g> least depleted commodities.<br />

For <str<strong>on</strong>g>the</str<strong>on</strong>g> most extracted n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <strong>on</strong> <strong>earth</strong>, we have applied <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert<br />

bell-shaped curve, assuming that <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base published by <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS [362]<br />

are available for extracti<strong>on</strong>. Accordingly, we have obtained that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong><br />

for ir<strong>on</strong>, aluminium and copper is reached in years 2068, 2057 and 2024,<br />

respectively.<br />

With respect to fossil fuels, we have stated that in exergy terms, oil has been <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

c<strong>on</strong>sumed fuel, accounting for 42% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total fuel exergy degradati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th<br />

century (coal and natural gas accounted for 38 and 20%, respectively). The total<br />

fuel’s exergy depleted between 1900 and 2006 is estimated at 382 Gtoe, c<strong>on</strong>sumed<br />

at an average exergy degradati<strong>on</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> 9 Gtoe/year in <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade. The<br />

degradati<strong>on</strong> corresp<strong>on</strong>ds to 30,5% <str<strong>on</strong>g>of</str<strong>on</strong>g> total world’s proven fuel reserves in 2006.<br />

Hubbert’s bell shaped curves applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels revealed<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> coal will be reached in year 2060, <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas in 2023, and <str<strong>on</strong>g>of</str<strong>on</strong>g> oil<br />

in 2008. The latter value fits very well with <str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r authors, who<br />

estimated that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak year <str<strong>on</strong>g>of</str<strong>on</strong>g> world oil will be between 2004 and 2008. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

it gives sense to <str<strong>on</strong>g>the</str<strong>on</strong>g> radical increase <str<strong>on</strong>g>of</str<strong>on</strong>g> oil prices registered recently. The price<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a barrel <str<strong>on</strong>g>of</str<strong>on</strong>g> crude has been doubled in just <strong>on</strong>e year, surpassing in January 2008,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> psychological barrier <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 $US.<br />

If we add <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy replacement costs <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, we obtain that man has depleted in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 433 Gtoe.<br />

In 2006, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits was depleted at a degradati<strong>on</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

around 12 Gtoe.<br />

The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves can be also affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPPC’s reference scenarios, we were able to estimate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels due to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG emissi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature rise. According to our calculati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels<br />

could decrease to up to 0,40%, if <str<strong>on</strong>g>the</str<strong>on</strong>g> current CO 2 c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere<br />

doubles.


Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PhD 339<br />

Finally, we have made an estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> possible depleti<strong>on</strong> degree that <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

reserves might suffer in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century. For that purpose, we took into account<br />

seven different scenarios.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> first scenario, we assumed that producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities<br />

extracted, namely coal, oil, natural gas, ir<strong>on</strong>, aluminium and copper, would follow<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> bell-shaped curves calculated before. Accordingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> global <str<strong>on</strong>g>mineral</str<strong>on</strong>g> exergy<br />

decrease in <str<strong>on</strong>g>the</str<strong>on</strong>g> period between 1900 and 2100 would be near 1300 Gtoe. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century, man would have depleted around 82% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reserve base available in 1900.<br />

The o<str<strong>on</strong>g>the</str<strong>on</strong>g>r six case studies corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> IPPC’s SRES scenarios c<strong>on</strong>cerning fossil<br />

fuel c<strong>on</strong>sumpti<strong>on</strong>. For n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, we assumed that world resources, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

than <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base are available for extracti<strong>on</strong>. Additi<strong>on</strong>ally, we took into account<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels due to <str<strong>on</strong>g>the</str<strong>on</strong>g> emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gases to <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere.<br />

All IPCC’s scenarios involve greater degradati<strong>on</strong> degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves than<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> case where <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert behavior has been assumed. In <str<strong>on</strong>g>the</str<strong>on</strong>g> worst case, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources degraded exceeds 3100 Gtoe. This indicates that<br />

for satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g> energy c<strong>on</strong>sumpti<strong>on</strong> assumed in <str<strong>on</strong>g>the</str<strong>on</strong>g> SRES scenarios, <str<strong>on</strong>g>the</str<strong>on</strong>g> proven<br />

reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, oil and natural gas should increase c<strong>on</strong>siderably. Although new<br />

discoveries are indeed increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> many <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources, it remains<br />

to be seen whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> discoveries and <str<strong>on</strong>g>the</str<strong>on</strong>g> reclassificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves<br />

as recoverable are sufficient enough to supply <str<strong>on</strong>g>the</str<strong>on</strong>g> huge future <str<strong>on</strong>g>mineral</str<strong>on</strong>g> demand.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> final reflecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD, we have taken up again <str<strong>on</strong>g>the</str<strong>on</strong>g> ideas provided by<br />

Meadows et al. [218] in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir book “The Limits to Growth”. In view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results<br />

obtained in this study, we have stated that <str<strong>on</strong>g>the</str<strong>on</strong>g> message <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Club <str<strong>on</strong>g>of</str<strong>on</strong>g> Rome was not<br />

as false as many claimed, even if <str<strong>on</strong>g>the</str<strong>on</strong>g> last decades <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century indicated <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>trary. In fact, we have reached a point in which we might think about stopping<br />

extracti<strong>on</strong> and living <strong>on</strong>ly with <str<strong>on</strong>g>the</str<strong>on</strong>g> already extracted materials. This is recycling,<br />

ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than wasting should be promoted. But nowadays, this practice would be<br />

impossible to undertake, as many ec<strong>on</strong>omies are sustained by <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resources.<br />

Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> realistic requirement now is to promote c<strong>on</strong>servati<strong>on</strong> measures<br />

for assuring enough resources for coming generati<strong>on</strong>s and a more rati<strong>on</strong>al management<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> and use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

We have stated that c<strong>on</strong>venti<strong>on</strong>al measures <str<strong>on</strong>g>of</str<strong>on</strong>g> energy efficiency, renewable energies,<br />

CO 2 sequestrati<strong>on</strong>, etc. are not enough for achieving sustainability. We believe that<br />

a drastic world reducti<strong>on</strong> and an appropriate management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> massive use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extractive mining industry should be also required.<br />

An appropriate management should be based <strong>on</strong> a solid, transparent and objective<br />

physical accountability system <str<strong>on</strong>g>of</str<strong>on</strong>g> resources. As final corollary <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD, we have<br />

proposed a new accountability tool for <str<strong>on</strong>g>the</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> wealth <strong>on</strong><br />

<strong>earth</strong>, based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Exergoecological principles stated in this study. We have proposed<br />

to call this tool “Physical Ge<strong>on</strong>omics”. Obviously, <str<strong>on</strong>g>the</str<strong>on</strong>g> accounting principles <strong>on</strong>


340 CONCLUSIONS<br />

which it is based will have to be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r developed through <str<strong>on</strong>g>the</str<strong>on</strong>g> learning by doing<br />

technique.<br />

9.3 Scientific c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PhD<br />

The main scientific c<strong>on</strong>tributi<strong>on</strong>s generated in this PhD are outlined next.<br />

1. This PhD has provided average chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, seawater,<br />

rivers, lakes, groundwater and glacial-run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> main studies<br />

about <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust,<br />

have been compiled. Although this informati<strong>on</strong> is available in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature, it is<br />

ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r dispersed in a significant number <str<strong>on</strong>g>of</str<strong>on</strong>g> different publicati<strong>on</strong>s. The integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all <str<strong>on</strong>g>the</str<strong>on</strong>g>se data accomplished in this work, provides a global overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemistry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our planet with special attenti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> substances that compose <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s<br />

outer spheres.<br />

2. We have estimated for <str<strong>on</strong>g>the</str<strong>on</strong>g> first time <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, through a procedure that assures chemical coherence between<br />

species and elements.<br />

The model <str<strong>on</strong>g>of</str<strong>on</strong>g> upper crust developed in this PhD is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> recent and single<br />

published study c<strong>on</strong>cerning <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust, by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Russian geochemist Grigor’ev [127]. He calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> average c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> 265 rock<br />

forming and accessory <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust. Grigor’ev’s<br />

model accounts for 56 elements, as opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> 78 included in <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust <str<strong>on</strong>g>of</str<strong>on</strong>g> Rudnick and Gao [292].<br />

Since <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and in particular <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust can be c<strong>on</strong>sidered as a<br />

closed system, <str<strong>on</strong>g>the</str<strong>on</strong>g> mass c<strong>on</strong>servati<strong>on</strong> principle dictates that <str<strong>on</strong>g>the</str<strong>on</strong>g> elements c<strong>on</strong>tained<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust, must be equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust,<br />

which is reas<strong>on</strong>ably known. We stated that Grigor’ev’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong>,<br />

although comprehensive, does not fulfill <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. Therefore,<br />

we optimized Grigor’ev model, assuring <str<strong>on</strong>g>the</str<strong>on</strong>g> mass balance between species and elements.<br />

A rigorous analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> each element was carried out,<br />

and some important substances not included in Grigor’ev’s compositi<strong>on</strong> were c<strong>on</strong>sidered<br />

in this model. As a result, we obtained a model <str<strong>on</strong>g>of</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust,<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 307 most abundant <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> new model takes<br />

into account all 78 elements included in <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Rudnick and<br />

Gao [292].<br />

Although <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> obtained should not be c<strong>on</strong>sidered as definitive, since<br />

different assumpti<strong>on</strong>s had to be made, it c<strong>on</strong>stitutes <str<strong>on</strong>g>the</str<strong>on</strong>g> first step for obtaining a<br />

coherent and comprehensive <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper <strong>earth</strong>’s crust.<br />

3. The full physical characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources should be based<br />

<strong>on</strong> at least two physical features: <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage and <str<strong>on</strong>g>the</str<strong>on</strong>g> grade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposits. Only <str<strong>on</strong>g>the</str<strong>on</strong>g>


Scientific c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PhD 341<br />

US Geological Survey provides world figures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves for <str<strong>on</strong>g>the</str<strong>on</strong>g> most important<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities. However, average ore grades <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves are unknown.<br />

This study has estimated <str<strong>on</strong>g>the</str<strong>on</strong>g> weighted average grades <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most important n<strong>on</strong>fuel<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves. This was mainly accomplished basing <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compendium<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> descriptive geologic models <str<strong>on</strong>g>of</str<strong>on</strong>g> Cox and Singer [66], who estimated pre-mining<br />

t<strong>on</strong>nage’s grades from over 3900 well-characterized deposits all over <str<strong>on</strong>g>the</str<strong>on</strong>g> world.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> published informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves by <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS, and <str<strong>on</strong>g>the</str<strong>on</strong>g> average ore<br />

grade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities estimated here, we have been able to illustrate for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> first time in global terms, <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity and quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits<br />

<strong>on</strong> <strong>earth</strong>.<br />

4. We have stated in this PhD, that <str<strong>on</strong>g>the</str<strong>on</strong>g> most appropriate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ments<br />

published so far for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources, is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>e based <strong>on</strong> Szargut’s methodology [336].<br />

Ranz [276] and Rivero [281] made important c<strong>on</strong>tributi<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> update <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Szargut’s R.E, proposing new reference substances. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, it was stated<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> latter studies could be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r adapted to our requirements. C<strong>on</strong>sequently,<br />

we have improved Szargut’s R.E., with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> new geochemical informati<strong>on</strong>,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinental crust developed in this study. The criteri<strong>on</strong> used for<br />

choosing <str<strong>on</strong>g>the</str<strong>on</strong>g> reference substances <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E., which differs from Ranz’s and Rivero’s<br />

models, is based <strong>on</strong> Szargut’s partial stability. This is, am<strong>on</strong>g a group <str<strong>on</strong>g>of</str<strong>on</strong>g> reas<strong>on</strong>able<br />

abundant substances, <str<strong>on</strong>g>the</str<strong>on</strong>g> most stable will be chosen if <str<strong>on</strong>g>the</str<strong>on</strong>g>y also fulfill <str<strong>on</strong>g>the</str<strong>on</strong>g> “<strong>earth</strong><br />

similarity criteri<strong>on</strong>”. If <str<strong>on</strong>g>the</str<strong>on</strong>g> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> possible different reference substances for<br />

a specific element (measured in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> Gibbs energy) is within a<br />

certain threshold, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant R.S. will be chosen. If <str<strong>on</strong>g>the</str<strong>on</strong>g> differences<br />

exceed this threshold, <str<strong>on</strong>g>the</str<strong>on</strong>g> most stable substance will be taken as R.S. as l<strong>on</strong>g as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

“<strong>earth</strong> similarity criteri<strong>on</strong>” is not c<strong>on</strong>tradicted.<br />

The new R.E. generates chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements that differ <strong>on</strong> average in<br />

<strong>on</strong>ly 1% with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> original envir<strong>on</strong>ment. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, when <str<strong>on</strong>g>the</str<strong>on</strong>g> whole<br />

<strong>earth</strong> is c<strong>on</strong>sidered, <str<strong>on</strong>g>the</str<strong>on</strong>g>se small numbers become not so insignificant.<br />

5. In this study a compendium <str<strong>on</strong>g>of</str<strong>on</strong>g> twelve different estimati<strong>on</strong> methods for calculating<br />

standard enthalpies and Gibbs free energies <str<strong>on</strong>g>of</str<strong>on</strong>g> substances are provided for <str<strong>on</strong>g>the</str<strong>on</strong>g> first<br />

time. The calculati<strong>on</strong> methodologies come from different <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemical studies<br />

published in <str<strong>on</strong>g>the</str<strong>on</strong>g> literature. The novelty introduced in this PhD is <str<strong>on</strong>g>the</str<strong>on</strong>g> compilati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all procedures, <str<strong>on</strong>g>the</str<strong>on</strong>g> specificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir respective applicati<strong>on</strong>s within <str<strong>on</strong>g>the</str<strong>on</strong>g> geochemical<br />

framework, and <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relative errors introduced with each<br />

methodology.<br />

This way, we have provided methodologies with estimati<strong>on</strong> errors comprised between<br />

0% and 10%. The first method is based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gibbs free<br />

energy and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore does not introduce any error in <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>. The sec<strong>on</strong>d<br />

most accurate estimati<strong>on</strong> procedure is Vieillard’s method for hydrated clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

and for phyllosilicates, entailing an error <str<strong>on</strong>g>of</str<strong>on</strong>g> around ±0, 6%. Five fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r methods


342 CONCLUSIONS<br />

have associated an estimati<strong>on</strong> error <str<strong>on</strong>g>of</str<strong>on</strong>g> ±1%. These are: <str<strong>on</strong>g>the</str<strong>on</strong>g> ideal mixing model;<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemical approximati<strong>on</strong>s for sulfosalts and complex oxides; <str<strong>on</strong>g>the</str<strong>on</strong>g> method<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>ding states; <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> Chermak and Rimstidt for silicate <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s;<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ∆O −2 method; and <str<strong>on</strong>g>the</str<strong>on</strong>g> ∆O −2 method for different compounds with <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

cati<strong>on</strong>s. The following three methods entail a maximum error <str<strong>on</strong>g>of</str<strong>on</strong>g> ±5%: assuming<br />

∆S r zero; <str<strong>on</strong>g>the</str<strong>on</strong>g> element substituti<strong>on</strong> method; and <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> method for hydrated<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> procedure proposed with <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest associated<br />

error (±10%) is <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong> method.<br />

6. We have developed for <str<strong>on</strong>g>the</str<strong>on</strong>g> first time a complete <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemical data base <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

main substances that compose <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere and upper c<strong>on</strong>tinental<br />

crust. For that purpose, <str<strong>on</strong>g>the</str<strong>on</strong>g> standard Gibbs free energy, enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> and<br />

specific exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 330 natural substances has been provided. The enthalpy<br />

and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> compounds have been compiled from <str<strong>on</strong>g>the</str<strong>on</strong>g> literature, or<br />

have been calculated with <str<strong>on</strong>g>the</str<strong>on</strong>g> 12 estimati<strong>on</strong> methods described previously. Generally,<br />

published <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemical data is available for those substances with industrial<br />

importance. C<strong>on</strong>sequently, many comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust (a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 125), lacked<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> experimental <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemical values and had to be estimated. From <str<strong>on</strong>g>the</str<strong>on</strong>g> Gibbs<br />

free energy data and <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements generated from <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E.<br />

developed in this PhD, we were able to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> specific chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>sidered substances.<br />

7. With <str<strong>on</strong>g>the</str<strong>on</strong>g> relative abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substances in each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s outer spheres<br />

obtained in this PhD, and <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemical informati<strong>on</strong>, we were able to calculate<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> first time, <str<strong>on</strong>g>the</str<strong>on</strong>g> average Gibbs free energy, enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> and chemical<br />

exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere and upper c<strong>on</strong>tinental crust.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, since <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> each layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> is well known, we have obtained<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> first estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s specific chemical exergy: 1, 22 × 10 9 Gtoe.<br />

We have stated that <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust is resp<strong>on</strong>sible for most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy<br />

(99,9%), due to its greater mass porti<strong>on</strong> and specific exergy. Although <str<strong>on</strong>g>the</str<strong>on</strong>g> relative<br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere and hydrosphere is small when compared to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

whole, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir chemical exergies are also huge: 6, 27 × 10 3 Gtoe and 7, 80 × 10 5 Gtoe,<br />

respectively.<br />

8. This PhD has provided <str<strong>on</strong>g>the</str<strong>on</strong>g> first model <str<strong>on</strong>g>of</str<strong>on</strong>g> degraded <strong>earth</strong>. It has been stated, that<br />

this crepuscular planet is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> an atmosphere similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> current <strong>on</strong>e, but<br />

with a CO 2 c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> around 1400 ppm due to <str<strong>on</strong>g>the</str<strong>on</strong>g> complete burning <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil<br />

fuel resources. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere is equivalent to that <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater,<br />

since in <str<strong>on</strong>g>the</str<strong>on</strong>g> degraded planet all fresh waters are mixed with salt water. We stated<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> freshwater c<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> final compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seas is irrelevant,<br />

due to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir small relative volume. Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> degraded<br />

planet is <strong>on</strong>e in which no fossil fuels or c<strong>on</strong>centrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits exist. Since<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits and fossil fuels is negligible when compared to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> whole c<strong>on</strong>tinental crust (<str<strong>on</strong>g>the</str<strong>on</strong>g>y account for about 0,001%), <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

degraded crust can be approximated to <str<strong>on</strong>g>the</str<strong>on</strong>g> model developed in this PhD.


Scientific c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PhD 343<br />

9. This study has obtained an inventory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most important renewable and n<strong>on</strong>renewable<br />

resources <strong>on</strong> <strong>earth</strong> measured in exergy terms. The main novelty introduced<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> inventory is <str<strong>on</strong>g>the</str<strong>on</strong>g> combined assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> energy resources with n<strong>on</strong>fuel<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Since exergy is an additive property, we have been able to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

total exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong> renewable energy resources, including nuclear, fossil fuels<br />

and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore we could estimate for all renewable resources,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> current c<strong>on</strong>sumpti<strong>on</strong> with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> available potential use.<br />

Similarly, for n<strong>on</strong>-renewables, we estimated <str<strong>on</strong>g>the</str<strong>on</strong>g> resource to producti<strong>on</strong> ratio.<br />

We came to <str<strong>on</strong>g>the</str<strong>on</strong>g> important c<strong>on</strong>clusi<strong>on</strong> that vast amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> energy resources are<br />

available <strong>on</strong> <strong>earth</strong>, especially <str<strong>on</strong>g>of</str<strong>on</strong>g> renewable nature. However, we are currently using<br />

less than 2% <str<strong>on</strong>g>of</str<strong>on</strong>g> its potential. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, we have estimated that <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrated fuel and n<strong>on</strong> fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, which can be practically used by man,<br />

represent <strong>on</strong>ly 0,01% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir global<br />

R/P ratio excluding nuclear materials, is less than 100 years. Hence, humankind is<br />

not facing an energy crisis, as many claim, but ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r a material’s scarcity.<br />

10. An important advance entailed in this PhD with respect to <str<strong>on</strong>g>the</str<strong>on</strong>g> works <str<strong>on</strong>g>of</str<strong>on</strong>g> Ranz<br />

[276] and Botero [34] has been <str<strong>on</strong>g>the</str<strong>on</strong>g> inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> time factor in <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy assessment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources. C<strong>on</strong>sequently, we have been able not <strong>on</strong>ly to calculate<br />

what is <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g>, but also at which rate<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se resources are being degraded by man. For that purpose, we defined several<br />

indicators, aimed at quantifying <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet. The exergy<br />

distance (D) accounts for <str<strong>on</strong>g>the</str<strong>on</strong>g> total exergy degraded by man in a certain period <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

time. Its derivative, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy degradati<strong>on</strong> velocity (˙D), measures <str<strong>on</strong>g>the</str<strong>on</strong>g> rate at which<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> resources are being depleted. The resource to producti<strong>on</strong> ratio (R/P), usually<br />

calculated in mass terms, is proposed to be assessed in exergy terms, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby taking<br />

also into account <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits.<br />

We have additi<strong>on</strong>ally defined a new indicator called <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> equivalent<br />

(t M e), as <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in a certain time and place.<br />

The t M e is analogous to <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oil equivalent, but it accounts at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time,<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage, grade and chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered <str<strong>on</strong>g>mineral</str<strong>on</strong>g>. This<br />

indicator allows us to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain deposit before and after<br />

extracti<strong>on</strong>, and to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> different deposits c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>, but with a more understandable unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure.<br />

11. This PhD has applied for <str<strong>on</strong>g>the</str<strong>on</strong>g> first time <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert model to n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s,<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> estimating <str<strong>on</strong>g>the</str<strong>on</strong>g> year were <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> is reached. It<br />

has been stated that <str<strong>on</strong>g>the</str<strong>on</strong>g> bell-shape curve is better suited to n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s if<br />

it is fitted with exergy over time, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> mass over time. This way, we take<br />

into account <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> factor, which is very important for <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> solid<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. C<strong>on</strong>sequently, we have developed <str<strong>on</strong>g>the</str<strong>on</strong>g> required equati<strong>on</strong>s for estimating<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert’s peak for all kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in exergy terms.<br />

12. With <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> indicators previously defined, we were able to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper during <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century, <str<strong>on</strong>g>the</str<strong>on</strong>g> average exergy degra-


344 CONCLUSIONS<br />

dati<strong>on</strong> velocity, <str<strong>on</strong>g>the</str<strong>on</strong>g> R/P ratio, and <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper producti<strong>on</strong>. Am<strong>on</strong>g o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs,<br />

it has been estimated, that <str<strong>on</strong>g>the</str<strong>on</strong>g> global exergy cost associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

US copper deposits in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century was around 700 Mtoe, and that <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

producti<strong>on</strong> was reached in 1994. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> real peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> was reached in<br />

1998, we came to <str<strong>on</strong>g>the</str<strong>on</strong>g> interesting c<strong>on</strong>clusi<strong>on</strong> that in fact producti<strong>on</strong> follows ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

an asymmetric curve with <str<strong>on</strong>g>the</str<strong>on</strong>g> decline much sharper than <str<strong>on</strong>g>the</str<strong>on</strong>g> growth.<br />

13. This PhD has analyzed for <str<strong>on</strong>g>the</str<strong>on</strong>g> first time <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

deposits in a country, Australia. For that purpose, historical statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

c<strong>on</strong>sumpti<strong>on</strong> and average ore grade trends have been taking into account <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel<br />

and n<strong>on</strong>-fuel origin. We have been able to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy depleted<br />

through <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> rate at which that exergy is degraded, and <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong><br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model in exergy terms to all c<strong>on</strong>sidered<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s has allowed us to establish <str<strong>on</strong>g>the</str<strong>on</strong>g> “<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> countdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> country”.<br />

This is, in a single graphic, we have represented <str<strong>on</strong>g>the</str<strong>on</strong>g> bell-shaped curves <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Australian gold, silver, ir<strong>on</strong>, zinc, lead, nickel, copper, coal, oil and natural<br />

gas. Such a representati<strong>on</strong> would be impossible if <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis were carried out in<br />

mass terms, as <str<strong>on</strong>g>the</str<strong>on</strong>g> orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude are radically different. The exergy countdown<br />

diagram provides in a simple and visual way a comparative <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> available<br />

reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> country, <str<strong>on</strong>g>the</str<strong>on</strong>g> year were <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> is reached, or <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong><br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different commodities. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore it allows to predict future<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> commodities.<br />

This way, for instance, we could forecast that in year 2050, about 64% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total<br />

c<strong>on</strong>sidered <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves in Australia will be depleted. Particularly, gold will be<br />

depleted at 99,9%, copper at 90,3%, lead at 87%, zinc at 97,3%, nickel at 60,4%,<br />

ir<strong>on</strong> at 80%, coal at 52,4%, oil at 95,9% and natural gas at 85,2%.<br />

The results obtained could lead to spectacular c<strong>on</strong>sequences in <str<strong>on</strong>g>the</str<strong>on</strong>g> future <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian<br />

mining and its ec<strong>on</strong>omic implicati<strong>on</strong>s. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy countdown<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s could c<strong>on</strong>stitute a universal and transparent predicti<strong>on</strong> tool for assessing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-renewable resources, with dramatic c<strong>on</strong>sequences for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> future management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s physical stock.<br />

14. The physical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a country has allowed us to<br />

assess in m<strong>on</strong>etary terms <str<strong>on</strong>g>the</str<strong>on</strong>g> value associated to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>. The c<strong>on</strong>versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> exergy into m<strong>on</strong>ey is accomplished through c<strong>on</strong>venti<strong>on</strong>al energy prices. The resulting<br />

m<strong>on</strong>etary value represents <str<strong>on</strong>g>the</str<strong>on</strong>g> price that a country should pay <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>, for<br />

degrading <str<strong>on</strong>g>the</str<strong>on</strong>g> resources that are being extracted.<br />

This way, we have provided a first example <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> GDP <str<strong>on</strong>g>of</str<strong>on</strong>g> a country. Assuming 2004 energy prices, Australia would have lost<br />

through <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> same year, <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> 15% <str<strong>on</strong>g>of</str<strong>on</strong>g> its 2004 GDP.<br />

However, if 2006 or 2008 energy prices are c<strong>on</strong>sidered, <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding m<strong>on</strong>etary<br />

cost associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> same degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> would increase to 19 and


Scientific c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PhD 345<br />

29% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian 2004 GDP, respectively. This ratifies that <str<strong>on</strong>g>the</str<strong>on</strong>g> physical cost is a<br />

more objective and robust unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure than <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>etary cost, which is highly<br />

dependent <strong>on</strong> external factors. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>etary value provides us with an<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> extracti<strong>on</strong>, which is understandable<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>. This procedure would allow to correct <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ec<strong>on</strong>omic indices, taking nature into account, as stated by Dieren [75].<br />

15. With <str<strong>on</strong>g>the</str<strong>on</strong>g> available informati<strong>on</strong> about world <str<strong>on</strong>g>mineral</str<strong>on</strong>g> historic statistics and available<br />

reserves, we have carried out <str<strong>on</strong>g>the</str<strong>on</strong>g> first diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-renewable<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <strong>on</strong> <strong>earth</strong>. This PhD has estimated through <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy analysis, <str<strong>on</strong>g>the</str<strong>on</strong>g> degradati<strong>on</strong><br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities, detecting <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es being degraded at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

highest rates, and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es facing important scarcity problems.<br />

We have stated that ir<strong>on</strong> and aluminium are <str<strong>on</strong>g>the</str<strong>on</strong>g> most extracted commodities but not<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> most depleted <strong>on</strong>es, due to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir crustal abundance. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary, copper,<br />

which is also being extracted at very high rates, is already suffering scarcity problems,<br />

with more than 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> its world reserves depleted. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r commodities such<br />

as mercury, silver, gold, tin, arsenic, antim<strong>on</strong>y or lead are even more degraded, with<br />

more than 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir reserves depleted.<br />

Additi<strong>on</strong>ally, we have estimated <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves.<br />

Extensive literature is found <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model for local<br />

and world oil producti<strong>on</strong> ([147], [133], [183], [47]). To our knowledge, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is<br />

also at least <strong>on</strong>e study about world coal producti<strong>on</strong> [89] and <strong>on</strong>e about natural gas<br />

[24]. The novelty introduced by our work is <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak<br />

in exergy terms, what allows not <strong>on</strong>ly to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> peaking year <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> separated<br />

commodities, but also for <str<strong>on</strong>g>the</str<strong>on</strong>g> whole <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Our results fit very well with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

already published studies about <str<strong>on</strong>g>the</str<strong>on</strong>g> peaking <str<strong>on</strong>g>of</str<strong>on</strong>g> oil and natural gas, which are reached<br />

in years 2008 and 2023, respectively. This is not <str<strong>on</strong>g>the</str<strong>on</strong>g> case with our predicti<strong>on</strong> about<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> peaking <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, which is achieved according to this study in 2060. The Energy<br />

Watch Group [89] reported recently that global coal producti<strong>on</strong> could peak in 2025.<br />

If all fossil fuels are c<strong>on</strong>sidered as a single entity, assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are mutually<br />

replaceable, <str<strong>on</strong>g>the</str<strong>on</strong>g> peaking <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> will be reached in year 2029. Moreover <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

R/P ratio reveals that <str<strong>on</strong>g>the</str<strong>on</strong>g>re will be enough c<strong>on</strong>venti<strong>on</strong>al fossil fuels for 114 years<br />

more.<br />

In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels, we have applied <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model to<br />

world’s ir<strong>on</strong>, copper and aluminium producti<strong>on</strong>. This task was never accomplished<br />

before. According to our results, <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> world ir<strong>on</strong> producti<strong>on</strong> will be reached<br />

in year 2068, <str<strong>on</strong>g>of</str<strong>on</strong>g> aluminium in 2057 and <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in 2024.<br />

Thanks to <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> unit <str<strong>on</strong>g>of</str<strong>on</strong>g> measure exergy, we have been able to provide for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

first time <str<strong>on</strong>g>the</str<strong>on</strong>g> “<str<strong>on</strong>g>the</str<strong>on</strong>g> exergy countdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <strong>on</strong> <strong>earth</strong>”, representing<br />

in a single graph <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak curves for coal, oil, natural gas, ir<strong>on</strong>, copper and<br />

aluminium.<br />

16. This PhD has assessed <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuel exergy due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse effect.<br />

This estimati<strong>on</strong> was firstly carried out by Valero and Arauzo [366], for an average


346 CONCLUSIONS<br />

fuel compositi<strong>on</strong> that should account for <str<strong>on</strong>g>the</str<strong>on</strong>g> coal, oil and natural gas reserves, and<br />

assuming that CO 2 c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere would double.<br />

In our case, we have c<strong>on</strong>sidered separately <str<strong>on</strong>g>the</str<strong>on</strong>g> world resources <str<strong>on</strong>g>of</str<strong>on</strong>g> each type <str<strong>on</strong>g>of</str<strong>on</strong>g> coal,<br />

oil and natural gas. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, we have based our calculati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s SRES<br />

scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> future CO 2 c<strong>on</strong>centrati<strong>on</strong>. According to our results, in <str<strong>on</strong>g>the</str<strong>on</strong>g> worst case,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels would be decreased by 0,4%.<br />

17. In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> global overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> our <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

past and in <str<strong>on</strong>g>the</str<strong>on</strong>g> present provided before, this PhD has estimated <str<strong>on</strong>g>the</str<strong>on</strong>g> possible exergy<br />

degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century. This was carried out c<strong>on</strong>sidering<br />

7 different scenarios.<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> first scenario, <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s was c<strong>on</strong>strained by <str<strong>on</strong>g>the</str<strong>on</strong>g> current available<br />

reserves (i.e. base reserves for n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and proven reserves for fossil<br />

fuels). Accordingly if <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 reserves do not increase, at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

man would have depleted around 82% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base available in 1900.<br />

The remaining 6 scenarios are based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s SRES models, which indirectly<br />

assume a c<strong>on</strong>siderable increase <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuel reserves. To <str<strong>on</strong>g>the</str<strong>on</strong>g> fossil fuel c<strong>on</strong>sumpti<strong>on</strong><br />

estimated by <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC, we have included as a novelty <str<strong>on</strong>g>the</str<strong>on</strong>g> possible c<strong>on</strong>sumpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, namely ir<strong>on</strong>, aluminium and copper, assuming that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> world resources, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve base published by <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS [362] are<br />

available for extracti<strong>on</strong>. This way, we have provided a global perspective <str<strong>on</strong>g>of</str<strong>on</strong>g> future<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong>. According to our results, for satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g> demand <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil<br />

fuels in <str<strong>on</strong>g>the</str<strong>on</strong>g> SRES scenarios, <str<strong>on</strong>g>the</str<strong>on</strong>g> reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels should double and in some<br />

cases, <str<strong>on</strong>g>the</str<strong>on</strong>g>y should be multiplied by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> four. C<strong>on</strong>sequently, we think that <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

fuel c<strong>on</strong>sumpti<strong>on</strong> estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SRES scenarios should be reviewed.<br />

18. This PhD has proposed an accounting tool for <str<strong>on</strong>g>the</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

wealth <strong>on</strong> <strong>earth</strong>, including not <strong>on</strong>ly fossil fuels, but also <str<strong>on</strong>g>the</str<strong>on</strong>g> much more complex and<br />

apparently less relevant informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. This tool has been named<br />

here as “Physical Ge<strong>on</strong>omics”. It should take into account all physical changes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> stock <strong>on</strong> <strong>earth</strong>, c<strong>on</strong>sidering both <str<strong>on</strong>g>the</str<strong>on</strong>g> extracted and recycled materials.<br />

The c<strong>on</strong>crete accounting procedures <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Ge<strong>on</strong>omics should be created with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> learning by doing technique. But <str<strong>on</strong>g>the</str<strong>on</strong>g> principles <strong>on</strong> which it is based have been<br />

already developed in this PhD and in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r exergoecological studies. Physical Ge<strong>on</strong>omics<br />

should help to achieve a more rati<strong>on</strong>al management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> and<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

9.4 Perspectives<br />

This PhD has opened <str<strong>on</strong>g>the</str<strong>on</strong>g> way for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy resources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir degradati<strong>on</strong> rate, providing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical tools required for filling <str<strong>on</strong>g>the</str<strong>on</strong>g> existing<br />

knowledge gap <strong>on</strong> that field. Obviously it is subject to fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r improvements and<br />

refinements in future studies, with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> better statistics, geochemical updates


Perspectives 347<br />

and especially, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a new model <str<strong>on</strong>g>of</str<strong>on</strong>g> degraded <strong>earth</strong>. Next, <str<strong>on</strong>g>the</str<strong>on</strong>g> ideas<br />

and calculati<strong>on</strong>s that have arisen throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> accomplishment <str<strong>on</strong>g>of</str<strong>on</strong>g> this PhD but<br />

that have remained und<strong>on</strong>e, are discussed.<br />

The first thing that we realized when we embarked <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> adventure <str<strong>on</strong>g>of</str<strong>on</strong>g> assessing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s resources was that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a huge informati<strong>on</strong> gap about our<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g>. It is incredible that in this high developed and ir<strong>on</strong>ically named<br />

“knowledge society”, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s c<strong>on</strong>tinental crust<br />

is unknown. Similarly, data <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> available <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources or <str<strong>on</strong>g>the</str<strong>on</strong>g> average ore<br />

grade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposits <strong>on</strong> <strong>earth</strong> is uncertain.<br />

An efficient management <str<strong>on</strong>g>of</str<strong>on</strong>g> our resources should be based <strong>on</strong> global and reliable<br />

informati<strong>on</strong> sources. Hence, more data bases, better global statistics, <str<strong>on</strong>g>the</str<strong>on</strong>g> opening<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> global informati<strong>on</strong> channels and impartial and serious interpretati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong><br />

are urgently required. But for that purpose, we think that at least <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following data should be compiled worldwide for all <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities:<br />

• Yearly producti<strong>on</strong> data.<br />

• Ore grade trends <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits.<br />

• Energy, water and raw material c<strong>on</strong>sumpti<strong>on</strong>.<br />

• Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> waste rock.<br />

• T<strong>on</strong>nage and grade <str<strong>on</strong>g>of</str<strong>on</strong>g> available reserves.<br />

In many cases, this informati<strong>on</strong> is hidden or distorted by companies or even governments<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own ec<strong>on</strong>omic benefits. We cannot forget that <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> and its<br />

resources are a comm<strong>on</strong> good. C<strong>on</strong>sequently <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> our planet should be <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

global knowledge.<br />

This work has been based <strong>on</strong> many different and partially fragmented informati<strong>on</strong><br />

sources. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> some data needed for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s, lead us to<br />

make important assumpti<strong>on</strong>s at <str<strong>on</strong>g>the</str<strong>on</strong>g> expense <str<strong>on</strong>g>of</str<strong>on</strong>g> accuracy loss in <str<strong>on</strong>g>the</str<strong>on</strong>g> results.<br />

This way, for instance, <str<strong>on</strong>g>the</str<strong>on</strong>g> first step for determining <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust has been accomplished. Now is <str<strong>on</strong>g>the</str<strong>on</strong>g> turn <str<strong>on</strong>g>of</str<strong>on</strong>g> world geologists and<br />

geochemists to update <str<strong>on</strong>g>the</str<strong>on</strong>g> model with better geochemical informati<strong>on</strong>.<br />

Something similar occurs with <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves <strong>on</strong><br />

<strong>earth</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir degradati<strong>on</strong> velocity, carried out in this PhD. With <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> improved<br />

statistical data, an update <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results would be expected.<br />

But <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> our study cannot <strong>on</strong>ly be improved with better data bases. We have<br />

stated that some calculati<strong>on</strong> procedures could be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r developed and adapted to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study.


348 CONCLUSIONS<br />

The main activity that has remain und<strong>on</strong>e and that is crucial for an appropriate natural<br />

resource assessment, is a deeper analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> entropic <strong>earth</strong> towards we are<br />

approaching. Moreover, <str<strong>on</strong>g>the</str<strong>on</strong>g> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> a methodology able to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements from a realistic degraded reference envir<strong>on</strong>ment<br />

is still missing. In this PhD, we have stated that <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. based <strong>on</strong> Szargut’s criteri<strong>on</strong><br />

gives some problems when calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> certain natural substances.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinental crust developed in this PhD and <str<strong>on</strong>g>the</str<strong>on</strong>g> well<br />

known average compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere and seawater, we have been able<br />

to develop <str<strong>on</strong>g>the</str<strong>on</strong>g> first model <str<strong>on</strong>g>of</str<strong>on</strong>g> a realistic degraded <strong>earth</strong> (or entropic planet). However,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an appropriate R.E. is a required but not a sufficient c<strong>on</strong>diti<strong>on</strong>.<br />

Hence, <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> procedures and even <str<strong>on</strong>g>the</str<strong>on</strong>g> philosophy for obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical<br />

exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements should be reviewed. But this activity remains open for<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.<br />

In this PhD, we have stated that exergy replacement costs represent a suitable indicator<br />

for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y integrate in <strong>on</strong>e<br />

parameter, c<strong>on</strong>centrati<strong>on</strong>, compositi<strong>on</strong> and also <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> technology. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> costs<br />

are calculated through unit exergy replacement costs, which are a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> technology and hence vary with time.<br />

Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, in this work, we have c<strong>on</strong>sidered unit exergy replacement costs to<br />

be c<strong>on</strong>stant. A more exact determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s throughout<br />

history would imply changing unit exergy replacement costs, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding<br />

energy requirements. Generally, historical informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong><br />

is usually unavailable for most commodities. But future energy requirements<br />

could be assessed with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> learning curves. With learning-bydoing,<br />

increases in material and energy efficiency increase with cumulative producti<strong>on</strong>.<br />

The assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> unit exergy replacement costs as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time remains open<br />

for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies. However, it should be noted that with appropriate historical and<br />

future unit exergy replacement costs, <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model could be applied to<br />

exergy replacement costs, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than to minimum exergies, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby introducing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

technological factor. This would provide a more accurate predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> peaking<br />

year <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities.<br />

Finally, we have stated that a gaussian model applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> world <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

producti<strong>on</strong> might not be <str<strong>on</strong>g>the</str<strong>on</strong>g> perfect fit. We have seen, that generally producti<strong>on</strong><br />

follows asymmetric curves with <str<strong>on</strong>g>the</str<strong>on</strong>g> decline much sharper than <str<strong>on</strong>g>the</str<strong>on</strong>g> growth. Hence<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r types <str<strong>on</strong>g>of</str<strong>on</strong>g> curves should be analyzed for improving <str<strong>on</strong>g>the</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results.<br />

In summary we have stated that with <str<strong>on</strong>g>the</str<strong>on</strong>g> required informati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecological<br />

approach used here could c<strong>on</strong>stitute a universal and transparent tool for assessing<br />

natural resources. The study could be extended to <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fertile soils and c<strong>on</strong>sequently<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing world food demand and <str<strong>on</strong>g>the</str<strong>on</strong>g> carrying<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet. Similarly, it could be also extended to <str<strong>on</strong>g>the</str<strong>on</strong>g> growing freshwater<br />

requirements in a world with unpredictable climate changes.


Perspectives 349<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> principles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergoecological approach, a new physical accounting tool<br />

could be developed. This proposed tool, that we have called “Physical Ge<strong>on</strong>omics”,<br />

would account for all physical changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> stock <strong>on</strong> <strong>earth</strong>. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physical into m<strong>on</strong>etary costs with <str<strong>on</strong>g>the</str<strong>on</strong>g> procedure shown in this<br />

PhD, would allow to keep at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time <str<strong>on</strong>g>the</str<strong>on</strong>g> objectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> physical data and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

more intelligible meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>etary units. But <str<strong>on</strong>g>the</str<strong>on</strong>g> specific accounting principles<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Ge<strong>on</strong>omics need to be developed with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> learning by doing<br />

technique. In fact, <str<strong>on</strong>g>the</str<strong>on</strong>g> materializati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> proposal would require <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> internati<strong>on</strong>al working groups participated by governments, <str<strong>on</strong>g>the</str<strong>on</strong>g> scientific community,<br />

industry and civil society organizati<strong>on</strong>s, allowing internati<strong>on</strong>al agreements <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> methodological principles. Obviously, that would require a firm political will <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extending <str<strong>on</strong>g>the</str<strong>on</strong>g> current ec<strong>on</strong>omic criteria.<br />

In short, <str<strong>on</strong>g>the</str<strong>on</strong>g> Exergoecology method and its corollary, Physical Ge<strong>on</strong>omics, could help<br />

decisi<strong>on</strong> makers for an appropriate management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s physical stock.


Appendix A<br />

Additi<strong>on</strong>al calculati<strong>on</strong>s<br />

A.1 Input data. Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s<br />

crust<br />

This secti<strong>on</strong> shows vectors ˆε i, ξ i and matrix R[ j × i] required for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust, according to Eq. 3.1. Additi<strong>on</strong>ally,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> resulting vector ˆ ξ i is presented.<br />

Table A.1 shows vector ˆε j from Rudnick and Gao [292] and ε j, obtained applying Eq.<br />

3.1 to Grigorev’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> (ξ i) [127]. Table A.2, shows vectors ξ i<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting ˆ ξ i. Finally, tables A.3 and A.4 show <str<strong>on</strong>g>the</str<strong>on</strong>g> transposed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficient<br />

matrix R [ j × i]. R ′ <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s [307 × 78] is given ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than R [78 × 307] in<br />

order to make easier its representati<strong>on</strong>. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix is divided into two<br />

tables because <str<strong>on</strong>g>of</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> space.<br />

Table A.1: Vector ˆε j [78×1], according to Rudnick and Gao [292] and vector<br />

ε j [78 × 1], obtained from Grigor’ev [127]. Values in mole/g<br />

Element j ˆε j ε j Element j ˆε j ε j<br />

Au 1 7,62E-12 9,14E-13 Ag 40 4,91E-10 2,82E-11<br />

Te 2 3,92E-11 4,54E-13 Sb 41 3,29E-09 4,14E-12<br />

Cs 3 3,69E-08 0 Bi 42 7,66E-10 1,07E-11<br />

Na 4 1,19E-03 8,65E-04 Os 43 1,63E-13 0<br />

Rb 5 9,83E-07 0 Ir 44 1,14E-13 0<br />

Al 6 3,02E-03 2,60E-03 Ru 45 3,36E-12 0<br />

Si 7 1,10E-02 1,02E-02 Pt 46 2,56E-12 2,51E-14<br />

O 8 2,97E-02 Pd 47 4,89E-12 4,83E-15<br />

H 9 2,11E-03 Ni 48 8,01E-07 6,94E-09<br />

Ge 10 1,93E-08 0 Rh 49 5,83E-13 0<br />

Y 11 2,36E-07 1,12E-08 Sm 50 3,13E-08 8,08E-12<br />

Sc 12 3,11E-07 4,07E-13 Pr 51 5,04E-08 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .<br />

351


352 ADDITIONAL CALCULATIONS<br />

Table A.1: Vector ˆε j [78×1], according to Rudnick and Gao [292] and vector<br />

ε j [78×1], obtained from Grigor’ev [127]. Values in mole/g – c<strong>on</strong>tinued from<br />

previous page.<br />

Element j ˆε j ε j Element j ˆε j ε j<br />

Ga 13 2,51E-07 0 Nd 52 1,87E-07 1,09E-08<br />

Re 14 1,06E-12 0 Ce 53 4,50E-07 5,84E-08<br />

Tb 15 4,40E-09 0 Nb 54 1,29E-07 1,28E-09<br />

Dy 16 2,40E-08 0 Pb 55 8,20E-08 2,34E-09<br />

Ho 17 5,03E-09 0 Sn 56 1,77E-08 1,70E-10<br />

Er 18 1,38E-08 0 Sr 57 3,65E-06 9,28E-09<br />

Eu 19 6,58E-09 0 C 58 1,66E-04 6,85E-04<br />

Tm 20 1,78E-09 0 Ba 59 4,57E-06 4,26E-08<br />

Gd 21 2,03E-08 0 F 60 2,93E-05 5,73E-05<br />

Lu 22 1,77E-09 0 Ti 61 8,01E-05 3,13E-05<br />

Hf 23 2,97E-08 0 B 62 1,57E-06 1,34E-07<br />

Cd 24 8,01E-10 0 Mg 63 6,15E-04 9,24E-04<br />

S 25 1,93E-05 1,91E-05 Li 64 3,46E-06 8,15E-11<br />

Hg 26 2,49E-10 2,57E-12 Mo 65 1,15E-08 7,52E-10<br />

Ca 27 6,40E-04 9,64E-04 U 66 1,13E-08 2,51E-10<br />

I 28 1,10E-08 0 Th 67 4,53E-08 4,68E-09<br />

Cr 29 1,77E-06 1,70E-08 V 68 1,90E-06 0<br />

In 30 4,88E-10 0 Ta 69 4,97E-09 8,87E-11<br />

N 31 5,93E-06 0 Cu 70 4,41E-07 7,30E-09<br />

K 32 5,95E-04 6,22E-04 Be 71 2,33E-07 1,07E-08<br />

Se 33 1,14E-09 0 Zr 72 2,12E-06 5,46E-07<br />

Tl 34 4,40E-09 0 Cl 73 1,04E-05 3,37E-05<br />

W 35 1,03E-08 2,52E-10 La 74 2,23E-07 2,82E-08<br />

Fe 36 7,02E-04 6,41E-04 Zn 75 1,02E-06 4,75E-09<br />

Mn 37 1,41E-05 1,10E-06 Co 76 2,94E-07 5,06E-11<br />

Yb 38 1,13E-08 1,38E-09 As 77 6,41E-08 1,23E-09<br />

P 39 2,11E-05 8,15E-06 Br 78 2,00E-08 0<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

Table A.2: Vector ξ i [324 × 1], according to Grigor’ev [127] and vector ˆ ξ i<br />

[324 × 1] obtained in this study<br />

Mineral i ξ i, mole/g ˆ ξi, mole/g<br />

Gold 1 9,14E-13 6,47E-12<br />

Calaverite 2 0 5,71E-13<br />

Sylvanite 3 0 7,62E-13<br />

Pollucite 4 0 6,14E-08<br />

Dispersed Ge 5 0 1,93E-08<br />

Thortveitite 6 2,71E-13 2,71E-13<br />

Dispersed Sc 7 0 3,11E-07<br />

Dispersed Ga 8 0 2,51E-07<br />

Dispersed Re 9 0 1,06E-12<br />

Dispersed Tb 10 0 4,40E-09<br />

Dispersed Dy 11 0 2,40E-08<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Input data. Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 353<br />

Table A.2: Vector ξ i [324 × 1], according to Grigor’ev [127] and vector ˆ ξ i<br />

[324 × 1] obtained in this study – c<strong>on</strong>tinued from previous page.<br />

Mineral i ξ i, mole/g ˆ ξi, mole/g<br />

Dispersed Ho 12 0 5,03E-09<br />

Dispersed Er 13 0 1,38E-08<br />

Dispersed Eu 14 0 6,58E-09<br />

Dispersed Tm 15 0 1,78E-09<br />

Dispersed Gd 16 0 2,03E-08<br />

Dispersed Lu 17 0 1,77E-09<br />

Hf in Zr ores 18 0 2,97E-08<br />

Greenockite 19 0 8,01E-10<br />

Metacinnabar 20 3,27E-14 3,17E-12<br />

Cinnabar 21 2,54E-12 2,46E-10<br />

Lautarite 22 0 2,76E-09<br />

Dietzeite 23 0 2,76E-09<br />

In in ZnS 24 0 4,88E-10<br />

Nitratine 25 0 2,96E-06<br />

Niter 26 0 2,96E-06<br />

Se in copper ores 27 0 1,14E-09<br />

Dispersed Tl 28 0 4,40E-09<br />

Scheelite 29 2,26E-10 9,28E-09<br />

Wolframite 30 2,57E-11 1,06E-09<br />

Xenotime 31 1,38E-09 1,38E-09<br />

Yb in m<strong>on</strong>azite 32 0 9,95E-09<br />

Native silver 33 1,11E-11 1,94E-10<br />

Sams<strong>on</strong>ite 34 3,04E-14 5,29E-13<br />

Tetradymite 35 2,27E-13 2,27E-13<br />

Tellurite 36 0 1,14E-12<br />

Te in Cu ores 37 0 3,49E-11<br />

Iridium 38 0 1,50E-13<br />

Osmium 39 0 1,57E-13<br />

Polixene/ Tetraferroplatinum 40 1,20E-14 1,20E-14<br />

I-Platinum 41 1,54E-14 1,54E-14<br />

Cooperite 42 1,61E-14 2,11E-12<br />

Pt in Ni-Cu ores 43 0 1,27E-12<br />

Pd in Ni-Cu ores 44 0 4,25E-12<br />

Rh in Ni-Cu ores 45 0 5,83E-13<br />

Ru in Ni-Cu ores 46 0 3,33E-12<br />

Fergus<strong>on</strong>ite 47 8,08E-11 8,08E-11<br />

Sm in M<strong>on</strong>azite and Bastnasite 48 0 3,12E-08<br />

Pr in M<strong>on</strong>azite and Bastnasite 49 0 5,04E-08<br />

Stibnite 50 1,30E-13 8,10E-10<br />

Boulangerite 51 2,12E-15 2,12E-15<br />

Sb in galena 52 0 1,62E-09<br />

Tin 53 3,71E-12 3,87E-10<br />

Cassiterite 54 1,66E-10 1,73E-08<br />

Lamprophyllite 55 5,61E-12 5,61E-12<br />

Celestine 56 9,26E-09 3,65E-06<br />

Str<strong>on</strong>tianite 57 1,35E-11 5,34E-09<br />

Tourmaline 58 4,09E-08 4,09E-08<br />

Kornerupine 59 9,24E-09 9,24E-09<br />

Axinite -Fe 60 1,93E-10 1,93E-10<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


354 ADDITIONAL CALCULATIONS<br />

Table A.2: Vector ξ i [324 × 1], according to Grigor’ev [127] and vector ˆ ξ i<br />

[324 × 1] obtained in this study – c<strong>on</strong>tinued from previous page.<br />

Mineral i ξ i, mole/g ˆ ξi, mole/g<br />

Dumortierite 61 1,33E-13 1,33E-13<br />

Sassolite (natural boric acid) 62 0 3,60E-07<br />

Colemanite 63 0 5,99E-08<br />

Kernite 64 0 8,99E-08<br />

Ulexite 65 0 7,19E-08<br />

Psilomelane 66 5,25E-09 5,78E-07<br />

Barite 67 3,13E-08 3,44E-06<br />

Wi<str<strong>on</strong>g>the</str<strong>on</strong>g>rite 68 0 3,44E-07<br />

Bismutite 69 2,16E-12 1,19E-10<br />

Bismuthinite 70 1,79E-12 9,91E-11<br />

Bismuth 71 2,34E-12 1,30E-10<br />

Bismite 72 0 9,91E-11<br />

Spodumene 73 5,16E-11 2,06E-06<br />

Neptunite 74 2,75E-11 1,10E-06<br />

Amblyg<strong>on</strong>ite 75 3,24E-12 1,29E-07<br />

Staurolite 76 6,28E-07 7,70E-07<br />

Chromite 77 8,49E-09 8,83E-07<br />

Molybdenite 78 7,50E-10 1,14E-08<br />

Powellite 79 2,00E-12 3,05E-11<br />

Wulfenite 80 1,09E-13 1,66E-12<br />

Uraninite 81 2,44E-10 5,60E-09<br />

Blomstrandite/ Betafite 82 2,17E-11 4,96E-10<br />

Metatorbenite 83 7,89E-14 1,81E-12<br />

Polycrase (Y) 84 1,07E-15 2,46E-14<br />

Carnotite 85 0 2,80E-09<br />

Beryl 86 2,98E-09 5,99E-08<br />

Phenakite 87 3,63E-10 7,31E-09<br />

Bertrandite 88 1,68E-10 3,38E-09<br />

Helvine/ Helvite 89 7,21E-11 1,45E-09<br />

Chrysoberyl 90 0 1,80E-08<br />

Gadolinite 91 7,03E-11 1,41E-09<br />

Zirc<strong>on</strong> 92 5,46E-07 2,11E-06<br />

Naegite 93 1,80E-12 6,98E-12<br />

Sirtolite 94 1,04E-10 4,02E-10<br />

Eudialyte 95 1,11E-10 4,30E-10<br />

Baddeleyite 96 2,52E-11 9,75E-11<br />

Lavenite 97 6,68E-12 2,59E-11<br />

Rinkolite/ Mosandrite 98 5,80E-14 2,25E-13<br />

Wohlerite 99 3,29E-16 1,27E-15<br />

Ferrotantalite 100 5,06E-12 3,07E-10<br />

Microlite 101 1,44E-13 8,71E-12<br />

Delorenzite/ Tanteuxenite 102 1,37E-13 8,33E-12<br />

Bastnasite 103 1,46E-08 1,16E-07<br />

Loparite - (Ce) 104 6,08E-11 4,81E-10<br />

Rhabdophane-Ce 105 1,31E-11 1,03E-10<br />

Chevkinite 106 3,48E-12 2,76E-11<br />

M<strong>on</strong>azite (Ce) 107 5,41E-08 4,29E-07<br />

Britholite 108 2,75E-11 2,18E-10<br />

Thorite 109 1,76E-09 2,13E-08<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Input data. Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 355<br />

Table A.2: Vector ξ i [324 × 1], according to Grigor’ev [127] and vector ˆ ξ i<br />

[324 × 1] obtained in this study – c<strong>on</strong>tinued from previous page.<br />

Mineral i ξ i, mole/g ˆ ξi, mole/g<br />

Uranium- Thorite 110 2,63E-12 3,18E-11<br />

Yttrialite 111 3,83E-10 4,64E-09<br />

Thorianite 112 1,29E-12 1,56E-11<br />

Dispersed V 113 0 1,90E-06<br />

Halite 114 3,25E-05 1,01E-05<br />

Apatite 115 2,55E-06 7,91E-07<br />

Scapolite 116 2,05E-07 6,34E-08<br />

Sylvite 117 8,85E-08 2,74E-08<br />

Carnallite 118 4,68E-09 1,45E-09<br />

Sodalite 119 6,60E-10 2,05E-10<br />

Bisch<str<strong>on</strong>g>of</str<strong>on</strong>g>ite 120 1,28E-09 3,96E-10<br />

Diadochic Nd 121 0 1,01E-07<br />

Sphalerite 122 4,74E-09 1,02E-06<br />

Zinc 123 7,19E-12 1,55E-09<br />

Smiths<strong>on</strong>ite 124 2,95E-12 6,36E-10<br />

Cobaltite 125 5,06E-11 5,06E-11<br />

Smaltite 126 0 5,06E-11<br />

Linnaeite 127 0 1,69E-11<br />

Dispersed Co 128 0 2,93E-07<br />

Arsenopyrite 129 5,40E-10 2,89E-08<br />

Orpiment 130 3,45E-11 1,85E-09<br />

Realgar 131 2,62E-12 1,40E-10<br />

Fahlerz Group: Tennantite 132 2,31E-14 1,24E-12<br />

Lollingite 133 2,43E-14 1,30E-12<br />

Nickeline 134 3,82E-10 2,04E-08<br />

Gersdorffite 135 1,81E-10 9,70E-09<br />

Arsenolite 136 0 2,80E-10<br />

Pentlandite 137 1,09E-09 7,44E-08<br />

Garnierite 138 1,73E-10 1,18E-08<br />

Violarite 139 2,52E-10 1,72E-08<br />

Vaesite 140 6,19E-10 4,23E-08<br />

Diadochic Ni 141 0 3,35E-07<br />

Galena 142 7,94E-10 2,79E-08<br />

Lead 143 8,69E-12 3,05E-10<br />

Cerussite 144 2,36E-11 8,27E-10<br />

Anglesite 145 1,09E-11 3,82E-10<br />

Murmanite 146 2,26E-10 2,78E-08<br />

Ferrocolumbite 147 1,95E-10 2,40E-08<br />

Pyrochlore 148 2,83E-11 3,47E-09<br />

Ilmenorutile 149 2,62E-09 3,22E-07<br />

Euxenite 150 1,68E-10 1,02E-08<br />

Miserite 151 2,00E-12 2,00E-12<br />

Diadochic Ce 152 0 2,02E-07<br />

Weinschenkite 153 1,68E-12 1,68E-12<br />

Francolite 154 1,70E-07 8,68E-08<br />

Vivianite 155 2,59E-12 2,59E-12<br />

Biotite 156 1,73E-04 8,80E-05<br />

Muscovite 157 4,99E-05 2,54E-05<br />

Hydrobiotite 158 1,03E-05 5,26E-06<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


356 ADDITIONAL CALCULATIONS<br />

Table A.2: Vector ξ i [324 × 1], according to Grigor’ev [127] and vector ˆ ξ i<br />

[324 × 1] obtained in this study – c<strong>on</strong>tinued from previous page.<br />

Mineral i ξ i, mole/g ˆ ξi, mole/g<br />

Phlogopite 159 3,10E-07 1,58E-07<br />

Clinohumite 160 2,16E-08 1,10E-08<br />

Fluorite 161 2,82E-07 1,44E-07<br />

Humite 162 1,86E-08 9,46E-09<br />

Topaz 163 2,52E-08 1,29E-08<br />

Ch<strong>on</strong>drodite 164 5,76E-10 2,93E-10<br />

Cryolite 165 0 2,36E-09<br />

Orthite-Ce/ Allanite 166 7,81E-08 7,81E-08<br />

Diadochic Y 167 0 2,09E-07<br />

Phosphate rock 168 0 8,99E-06<br />

Chalcopyrite 169 5,99E-09 3,62E-07<br />

Cubanite 170 2,21E-10 1,33E-08<br />

Covellite 171 3,77E-10 2,27E-08<br />

Azurite 172 7,25E-11 4,38E-09<br />

Bornite 173 4,38E-11 2,65E-09<br />

Malachite 174 9,04E-11 5,46E-09<br />

Copper 175 6,45E-11 3,90E-09<br />

Chalcocite 176 1,13E-11 6,83E-10<br />

Chrysocolla 177 5,87E-14 3,54E-12<br />

Diodochic Rb 178 0 9,77E-07<br />

Lepidolite 179 0 1,03E-07<br />

Ankerite 180 1,50E-06 1,31E-05<br />

Rhodochrosite 181 1,04E-07 9,14E-07<br />

Chloritoid 182 6,81E-09 5,96E-08<br />

Pyrolusite 183 6,21E-08 5,44E-07<br />

Todorokite 184 1,48E-09 1,29E-08<br />

Vernadite 185 2,40E-09 2,10E-08<br />

Spessartine 186 5,25E-08 4,60E-07<br />

Orthoclase 187 3,52E-04 4,22E-04<br />

Hydromuscovite/ Illite 188 6,45E-05 7,73E-05<br />

Glauk<strong>on</strong>ite 189 3,04E-06 3,65E-06<br />

Lepidomelane/ Annite 190 1,48E-06 1,78E-06<br />

Sanidine 191 2,22E-06 2,67E-06<br />

Stilpnomelane 192 2,31E-07 2,77E-07<br />

Nepheline 193 4,24E-07 5,09E-07<br />

Jarosite 194 7,99E-09 9,57E-09<br />

Alunite 195 1,83E-13 2,20E-13<br />

Calcite 196 3,98E-04 8,05E-05<br />

Dolomite 197 3,80E-05 7,69E-06<br />

Graphite 198 9,99E-05 2,02E-05<br />

Siderite 199 1,04E-05 2,10E-06<br />

C org 200 9,16E-05 1,86E-05<br />

Arag<strong>on</strong>ite 201 3,80E-06 7,69E-07<br />

Magnesite 202 1,78E-06 3,60E-07<br />

Daws<strong>on</strong>ite 203 1,25E-08 2,53E-09<br />

Cancrinite 204 2,09E-10 4,23E-11<br />

Moissanite 205 1,75E-10 3,54E-11<br />

Augite 206 5,12E-05 1,27E-04<br />

Ilmenite 207 1,25E-05 3,10E-05<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Input data. Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 357<br />

Table A.2: Vector ξ i [324 × 1], according to Grigor’ev [127] and vector ˆ ξ i<br />

[324 × 1] obtained in this study – c<strong>on</strong>tinued from previous page.<br />

Mineral i ξ i, mole/g ˆ ξi, mole/g<br />

Titanite 208 9,18E-06 2,28E-05<br />

Ulvöspinel 209 2,10E-06 5,21E-06<br />

Leucoxene 210 7,65E-07 1,90E-06<br />

Rutile 211 1,38E-06 3,41E-06<br />

Anatase 212 2,25E-07 5,59E-07<br />

Aenigmatite 213 1,28E-09 3,16E-09<br />

Perovskite 214 2,06E-09 5,10E-09<br />

Brookite 215 2,13E-09 5,27E-09<br />

Ramsayite/ Lorenzenite 216 1,46E-10 3,62E-10<br />

Kieserite 217 4,84E-08 3,06E-08<br />

Crossite 218 6,41E-07 4,06E-07<br />

Glaucophane 219 1,91E-08 1,21E-08<br />

Omphacite 220 1,18E-08 7,49E-09<br />

Clinochlore 221 1,16E-05 7,34E-06<br />

Cordierite 222 1,50E-07 9,52E-08<br />

Gedrite 223 6,51E-08 4,12E-08<br />

Palygorskite 224 4,38E-09 2,77E-09<br />

Pumpellyite 225 2,99E-07 1,89E-07<br />

Ripidolite 226 3,18E-05 2,01E-05<br />

Sapphirine 227 3,22E-08 2,04E-08<br />

Spinel 228 1,69E-07 1,07E-07<br />

Thuringite/ Chamosite 229 1,81E-06 1,14E-06<br />

Vermiculite 230 1,07E-06 6,78E-07<br />

Vesubianite/ Idocrase 231 1,90E-07 1,20E-07<br />

Actinolite 232 4,45E-06 2,82E-06<br />

Diopside 233 2,22E-05 1,40E-05<br />

Pige<strong>on</strong>ite 234 3,14E-06 1,99E-06<br />

Tremolite 235 6,77E-07 4,29E-07<br />

Anthophyllite 236 4,23E-08 2,68E-08<br />

Br<strong>on</strong>zite 237 2,80E-06 1,77E-06<br />

Brucite 238 4,29E-08 2,71E-08<br />

Cummingt<strong>on</strong>ite 239 5,89E-06 3,73E-06<br />

Enstatite 240 2,19E-06 1,39E-06<br />

Forsterite 241 7,82E-07 4,95E-07<br />

Hypers<str<strong>on</strong>g>the</str<strong>on</strong>g>ne 242 1,85E-05 1,17E-05<br />

Olivine 243 2,41E-06 1,53E-06<br />

Periclase 244 5,96E-12 3,77E-12<br />

Ple<strong>on</strong>aste/ Magnesi<str<strong>on</strong>g>of</str<strong>on</strong>g>errite 245 6,96E-10 4,41E-10<br />

Sepiolite 246 8,96E-06 5,67E-06<br />

Serpentine/ Clinochrysotile 247 2,60E-06 1,64E-06<br />

Talc 248 1,21E-06 7,68E-07<br />

Clementite 249 6,02E-08 3,81E-08<br />

Pyrite 250 5,25E-06 2,64E-06<br />

Anhydrite 251 3,31E-06 1,66E-06<br />

Pyrrhotite 252 3,41E-06 1,71E-06<br />

Gypsum 253 1,52E-06 7,64E-07<br />

Marcasite 254 1,00E-07 5,03E-08<br />

Sulphur 255 3,51E-09 1,77E-09<br />

Nosean 256 2,47E-09 1,24E-09<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


358 ADDITIONAL CALCULATIONS<br />

Table A.2: Vector ξ i [324 × 1], according to Grigor’ev [127] and vector ˆ ξ i<br />

[324 × 1] obtained in this study – c<strong>on</strong>tinued from previous page.<br />

Mineral i ξ i, mole/g ˆ ξi, mole/g<br />

Troilite 257 2,28E-11 1,14E-11<br />

Oligoclase 258 5,39E-04 4,49E-04<br />

Andesine 259 2,44E-04 2,03E-04<br />

Labradorite 260 1,11E-04 9,24E-05<br />

M<strong>on</strong>tmorill<strong>on</strong>ite 261 7,83E-06 6,52E-06<br />

Hastingsite 262 3,13E-06 2,60E-06<br />

Bytownite 263 1,09E-05 9,08E-06<br />

Thoms<strong>on</strong>ite 264 7,44E-07 6,19E-07<br />

Anorthite 265 1,19E-06 9,90E-07<br />

Clinozoisite 266 9,02E-07 7,51E-07<br />

Epidote 267 2,25E-05 1,87E-05<br />

Grossular 268 5,55E-08 4,62E-08<br />

Hornblende (Fe) 269 3,34E-05 2,78E-05<br />

Prehnite 270 4,30E-06 3,58E-06<br />

Zoisite 271 6,82E-07 5,68E-07<br />

Andradite 272 2,36E-08 1,96E-08<br />

Hedenbergite 273 3,31E-07 2,75E-07<br />

Wollast<strong>on</strong>ite 274 4,91E-08 4,08E-08<br />

Albite 275 1,52E-04 5,14E-04<br />

N<strong>on</strong>tr<strong>on</strong>ite 276 1,15E-05 3,88E-05<br />

Riebeckite 277 1,82E-06 6,14E-06<br />

Beidellite 278 4,11E-06 1,39E-05<br />

Aegirine 279 3,90E-06 1,32E-05<br />

Natrolite 280 2,31E-06 7,82E-06<br />

Analcime 281 3,00E-07 1,01E-06<br />

Arfveds<strong>on</strong>ite 282 3,23E-08 1,09E-07<br />

Jadeite 283 1,41E-07 4,78E-07<br />

Hydrosodalite 284 2,68E-10 9,06E-10<br />

Fayalite 285 1,91E-07 2,35E-07<br />

Ferrosilite 286 1,89E-06 2,32E-06<br />

Goethite 287 9,57E-06 1,17E-05<br />

Hematite 288 4,95E-06 6,06E-06<br />

Hisingerite 289 5,11E-09 6,27E-09<br />

Magnetite 290 2,81E-05 3,44E-05<br />

Iotsite 291 1,95E-10 2,39E-10<br />

Almandine 292 1,71E-05 2,09E-05<br />

Andalusite 293 3,89E-06 1,25E-05<br />

Boehmite 294 3,00E-06 9,65E-06<br />

Corundum 295 3,73E-07 1,20E-06<br />

Diaspore 296 9,17E-06 2,95E-05<br />

Distene/ Kyanite 297 1,36E-06 4,37E-06<br />

Hydragillite/ Gibbsite 298 5,51E-06 1,77E-05<br />

Kaolinite 299 1,01E-05 3,24E-05<br />

Pyrophyllite 300 2,78E-08 8,93E-08<br />

Sillimanite 301 1,91E-05 6,15E-05<br />

Cristobalite 302 2,16E-07 2,06E-07<br />

Opal 303 1,49E-04 1,42E-04<br />

Quarz 304 3,99E-03 3,81E-03<br />

Tridymite 305 1,10E-08 1,05E-08<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Input data. Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 359<br />

Table A.2: Vector ξ i [324 × 1], according to Grigor’ev [127] and vector ˆ ξ i<br />

[324 × 1] obtained in this study – c<strong>on</strong>tinued from previous page.<br />

Mineral i ξ i, mole/g ˆ ξi, mole/g<br />

Dispersed Br 306 0 2,00E-08<br />

Acanthite 307 1,57E-12 2,74E-11<br />

Argentite 308 2,87E-12 4,99E-11<br />

Stephanite 309 4,43E-13 7,72E-12<br />

Pyrargirite 310 1,37E-12 2,38E-11<br />

Chlorargirite 311 3,14E-13 5,47E-12<br />

Freibergite 312 2,02E-13 3,52E-12<br />

Tetrahedrite 313 3,47E-13 3,47E-13<br />

Nordite 314 7,20E-13 7,20E-13<br />

Hollandite 315 7,50E-09 2,63E-07<br />

Jacobsite 316 1,32E-08 1,15E-07<br />

Cryptomelane 317 3,40E-09 2,98E-08<br />

Manganite 318 1,71E-08 1,49E-07<br />

Tephroite 319 6,93E-08 6,07E-07<br />

Braunite 320 4,47E-08 3,91E-07<br />

Rhod<strong>on</strong>ite 321 2,56E-08 2,24E-07<br />

Pennine 322 4,54E-06 2,87E-06<br />

Lawsenite 323 7,64E-06 6,35E-06<br />

Parag<strong>on</strong>ite 324 1,47E-05 4,95E-05<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table


360 ADDITIONAL CALCULATIONS<br />

Table A.3: Matrix R ′ [324 × 78] (Part 1)<br />

i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40<br />

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

3 0,75 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,25<br />

4 0 0 0,6 0,2 0,1 0,9 2,1 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

6 0 0 0 0 0 0 2 7 0 0 0,5 1,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

22 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0<br />

23 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 0 0 0 0 0 0 0 0 0 0 0<br />

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0<br />

25 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0<br />

26 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0<br />

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0<br />

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0<br />

29 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0<br />

30 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0,5 0,5 0 0 0<br />

31 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0<br />

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0<br />

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1<br />

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4<br />

35 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

36 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

37 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Input data. Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 361<br />

Table A.3: Matrix R ′ [324 × 78] (Part 1). – c<strong>on</strong>tinued from previous page.<br />

i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40<br />

44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

47 0 0 0 0 0 0 0 4 0 0 0,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

54 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

55 0 0 0 2 0 0 4 17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

56 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

57 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

58 0 0 0 1 0 6 6 31 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0<br />

59 0 0 0 0 0 5,7 3,7 18,2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,2 0 0 0 0<br />

60 0 0 0 0 0 2 4 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

61 0 0 0 0 0 6,9 3 18 0,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

62 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

63 0 0 0 0 0 0 0 16 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

64 0 0 0 2 0 0 0 11 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

65 0 0 0 1 0 0 0 17 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

66 0 0 0 0 0 0 0 12 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0<br />

67 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

68 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

69 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

72 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

73 0 0 0 0 0 1 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

74 0 0 0 2 0 0 8 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1,5 0,5 0 0 0<br />

75 0 0 0 0,25 0 1 0 4,25 0,25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0<br />

76 0 0 0 0 0 9 4 24 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0<br />

77 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0<br />

78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

79 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

80 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

81 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

82 0 0 0 0 0 0,1 0 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,2 0 0 0 0 0 0 0 0 0,1 0 0 0 0<br />

83 0 0 0 0 0 0 0 20 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0<br />

84 0 0 0 0 0 0 0 6 0 0 0,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

85 0 0 0 0 0 0 0 15 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0<br />

86 0 0 0 0 0 2 6 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


362 ADDITIONAL CALCULATIONS<br />

Table A.3: Matrix R ′ [324 × 78] (Part 1). – c<strong>on</strong>tinued from previous page.<br />

i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40<br />

87 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

88 0 0 0 0 0 0 2 9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

89 0 0 0 0 0 0 3 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0<br />

90 0 0 0 0 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

91 0 0 0 0 0 0 2 10 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

92 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

93 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

94 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

95 0 0 0 4 0 0 8 23,5 1,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0,7 0,3 0 0 0<br />

96 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

97 0 0 0 1,1 0 0 2 7,9 0,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,9 0 0 0 0 0 0 0 0 0,5 0,5 0 0 0<br />

98 0 0 0 2 0 0 4 15,5 0 0 0,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

99 0 0 0 1 0 0 2 8,7 0,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

100 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

101 0 0 0 0,4 0 0 0 6,9 0,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,6 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

102 0 0 0 0 0 0 0 6 0,5 0 0,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,2 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

103 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

104 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

105 0 0 0 0 0 0 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0<br />

106 0 0 0 0 0 0 4 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,8 0 0 0 0 0 0 0 0 2,3 0 0 0 0<br />

107 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0<br />

108 0 0 0 0 0 0 2,7 13,8 1,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,9 0 0 0 0 0 0 0 0 0 0 0 0,5 0<br />

109 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

110 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

111 0 0 0 0 0 0 2 7 0 0 1,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

112 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

114 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

115 0 0 0 0 0 0 0 12,3 0,33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 3 0<br />

116 0 0 0 2 0 3 9 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

118 0 0 0 0 0 0 0 6 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

119 0 0 0 8 0 6 6 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

120 0 0 0 0 0 0 0 6 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

124 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Input data. Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 363<br />

Table A.3: Matrix R ′ [324 × 78] (Part 1). – c<strong>on</strong>tinued from previous page.<br />

i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40<br />

130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

134 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

136 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 4,5 0 0 0 0<br />

138 0 0 0 0 0 0 2 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

140 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

141 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

143 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

144 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

145 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

146 0 0 0 4 0 0 4 22 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

147 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

148 0 0 0 1 0 0 0 6,75 0,75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

149 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,23 0 0 0 0<br />

150 0 0 0 0 0 0 0 6 0 0 0,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,2 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

151 0 0 0 0 0 0 8 23,5 1,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

152 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

153 0 0 0 0 0 0 0 6 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0<br />

154 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 2,63 0<br />

155 0 0 0 0 0 0 0 16 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 2 0<br />

156 0 0 0 0 0 1 3 11,8 1,75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0,5 0 0 0 0<br />

157 0 0 0 0 0 3 3 11,8 1,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

158 0 0 0 0 0 1,3 2,8 14,8 7,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,1 0 0 0 0 0,3 0 0 0 0,6 0 0 0 0<br />

159 0 0 0 0 0 1 3 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

160 0 0 0 0 0 0 4 16,5 0,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2,25 0 0 0 0<br />

161 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

162 0 0 0 0 0 0 3 12,5 0,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,75 0 0 0 0<br />

163 0 0 0 0 0 2 1 4,9 0,9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

164 0 0 0 0 0 0 2 8,5 0,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,25 0 0 0 0<br />

165 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

166 0 0 0 0 0 2 3 13 1 0 0,1330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,2 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

167 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

168 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 2 0<br />

169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

170 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0<br />

171 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

172 0 0 0 0 0 0 0 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


364 ADDITIONAL CALCULATIONS<br />

Table A.3: Matrix R ′ [324 × 78] (Part 1). – c<strong>on</strong>tinued from previous page.<br />

i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40<br />

173 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

174 0 0 0 0 0 0 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

176 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

177 0 0 0 0 0 0 2 10 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

178 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

179 0 0 0 0 0 1 4 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

180 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0,6 0,1 0 0 0<br />

181 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

182 0 0 0 0 0 4 2 14 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,2 0,2 0 0 0<br />

183 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

184 0 0 0 2 0 0 0 15 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0<br />

185 0 0 0 0 0 0 0 3,4 3,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,2 0 0 0 0 0 0 0 0 0,2 0,6 0 0 0<br />

186 0 0 0 0 0 2 3 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0<br />

187 0 0 0 0 0 1 3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

188 0 0 0 0 0 2 3,5 12,4 3,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,6 0 0 0 0,1 0 0 0 0<br />

189 0 0 0 0 0 0,3 3,8 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,6 0 0 0 1,5 0 0 0 0<br />

190 0 0 0 0 0 0,25 3 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3,25 0 0 0 0<br />

191 0 0 0 0,25 0 1 3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,75 0 0 0 0 0 0 0 0<br />

192 0 0 0 0 0 0,8 11,1 35 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,8 0 0 0 8 0 0 0 0<br />

193 0 0 0 0 0 1 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,25 0 0 0 0 0 0 0 0<br />

194 0 0 0 0 0 0 0 14 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0<br />

195 0 0 0 0 0 3 0 14 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

196 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

197 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

198 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

199 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

201 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

202 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

203 0 0 0 1 0 1 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

204 0 0 0 6 0 6 6 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

205 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

206 0 0 0 0,1 0 0,4 1,9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,9 0 0 0 0 0 0 0 0 0,2 0 0 0 0<br />

207 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

208 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

209 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0<br />

210 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

211 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

212 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

213 0 0 0 2 0 0 6 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0<br />

214 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

215 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Input data. Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 365<br />

Table A.3: Matrix R ′ [324 × 78] (Part 1). – c<strong>on</strong>tinued from previous page.<br />

i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40<br />

216 0 0 0 2 0 0 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

217 0 0 0 0 0 0 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

218 0 0 0 2 0 2 8 24 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

219 0 0 0 2 0 2 8 24 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

220 0 0 0 0,4 0 0,3 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,6 0 0 0 0 0 0 0 0 0,1 0 0 0 0<br />

221 0 0 0 0 0 2 3 18 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,25 0 0 0 0<br />

222 0 0 0 0 0 4 5 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

223 0 0 0 0 0 4 6 24 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

224 0 0 0 0 0 1 4 15 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

225 0 0 0 0 0 2 3 14 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

226 0 0 0 0 0 2 3 18 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,25 0 0 0 0<br />

227 0 0 0 0 0 8 2 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

228 0 0 0 0 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

229 0 0 0 0 0 1,5 3 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,5 0 0 0 0<br />

230 0 0 0 0 0 0 4 14 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

231 0 0 0 0 0 5,5 9 37,5 4,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9,5 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

232 0 0 0 0 0 0 8 24 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0<br />

233 0 0 0 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

234 0 0 0 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,1 0 0 0 0 0 0 0 0 0,55 0 0 0 0<br />

235 0 0 0 0 0 0 8 24 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

236 0 0 0 0 0 0 8 24 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

237 0 0 0 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

238 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

239 0 0 0 0 0 0 8 24 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

240 0 0 0 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

241 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

242 0 0 0 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

243 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,4 0 0 0 0<br />

244 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

245 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0<br />

246 0 0 0 0 0 0 6 23 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

247 0 0 0 0 0 0 2 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

248 0 0 0 0 0 0 4 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

249 0 0 0 0 0 2 3 18 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0<br />

250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

251 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

253 0 0 0 0 0 0 0 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

254 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

256 0 0 0 8 0 6 6 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

257 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

258 0 0 0 0,8 0 1,4 2,8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,2 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


366 ADDITIONAL CALCULATIONS<br />

Table A.3: Matrix R ′ [324 × 78] (Part 1). – c<strong>on</strong>tinued from previous page.<br />

i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40<br />

259 0 0 0 0,6 0 1 2,6 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,4 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

260 0 0 0 0,5 0 1,5 2,5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,5 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

261 0 0 0 0,17 0 2,4 3,7 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,08 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

262 0 0 0 1 0 2 6 24 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 5 0 0 0 0<br />

263 0 0 0 0,2 0 1,8 2,2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,8 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

264 0 0 0 1 0 5 5 26 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

265 0 0 0 0 0 2 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

266 0 0 0 0 0 3 3 13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

267 0 0 0 0 0 2 3 13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

268 0 0 0 0 0 2 3 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

269 0 0 0 0 0 0,75 7 24 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 4,25 0 0 0 0<br />

270 0 0 0 0 0 2 3 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

271 0 0 0 0 0 3 3 13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

272 0 0 0 0 0 0 3 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0<br />

273 0 0 0 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

274 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

275 0 0 0 1 0 1 3 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

276 0 0 0 0,3 0 0,3 3,7 16 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0<br />

277 0 0 0 2 0 0 8 24 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0<br />

278 0 0 0 0,33 0 2,3 3,7 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

279 0 0 0 1 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

280 0 0 0 2 0 2 3 12 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

281 0 0 0 1 0 1 2 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

282 0 0 0 3 0 0 8 24 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0<br />

283 0 0 0 1 0 0,9 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,1 0 0 0 0<br />

284 0 0 0 8 0 6 6 26 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

285 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0<br />

286 0 0 0 0 0 0 2 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0<br />

287 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

288 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0<br />

289 0 0 0 0 0 0 2 11 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0<br />

290 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0<br />

291 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

292 0 0 0 0 0 2 3 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0<br />

293 0 0 0 0 0 2 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

294 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

295 0 0 0 0 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

296 0 0 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

297 0 0 0 0 0 2 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

298 0 0 0 0 0 1 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

299 0 0 0 0 0 2 2 9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

300 0 0 0 0 0 2 4 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

301 0 0 0 0 0 2 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Input data. Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 367<br />

Table A.3: Matrix R ′ [324 × 78] (Part 1). – c<strong>on</strong>tinued from previous page.<br />

i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40<br />

302 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

303 0 0 0 0 0 0 1 3,5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

304 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

305 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2<br />

308 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2<br />

309 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5<br />

310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3<br />

311 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1<br />

312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 1,2 0 0 0 7,2<br />

313 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0<br />

314 0 0 0 2,8 0 0 6 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,5 0 0 0 0 0 0 0 0 0 0,2 0 0 0<br />

315 0 0 0 0,13 0 0,2 0,1 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,3 6,5 0 0 0<br />

316 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,8 1,1 0 0 0<br />

317 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 8 0 0 0<br />

318 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

319 0 0 0 0 0 0 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0<br />

320 0 0 0 0 0 0 1 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0<br />

321 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

322 0 0 0 0 0 2 3 18 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,25 0 0 0 0<br />

323 0 0 0 0 0 2 2 10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

324 0 0 0 1 0 3 3 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

Table A.4: Matrix R ′ [324 × 78] (Part 2)<br />

i \ j 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78<br />

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


368 ADDITIONAL CALCULATIONS<br />

Table A.4: Matrix R ′ [324 × 78] (Part 2). – c<strong>on</strong>tinued from previous page.<br />

i \ j 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78<br />

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

34 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

35 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

38 0 0 0,3 0,5 0,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

39 0 0 0,75 0,25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

41 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

42 0 0 0 0 0 0,6 0,3 0,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

43 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

44 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

45 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

46 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

47 0 0 0 0 0 0 0 0 0 0,1 0 0,4 0,4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

48 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

49 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

50 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

51 4 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

52 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Input data. Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 369<br />

Table A.4: Matrix R ′ [324 × 78] (Part 2). – c<strong>on</strong>tinued from previous page.<br />

i \ j 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78<br />

57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,2 3,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

63 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

68 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

69 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

70 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

71 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

72 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

74 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,75 0 0 0 0,75 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

78 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

79 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0<br />

82 0 0 0 0 0 0 0 0 0 0 0 0 0 0,9 0 0 0 0 0 0 0,8 0 0 0 0 0,3 0 0 0,5 0 0 0 0 0 0 0 0 0<br />

83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0<br />

84 0 0 0 0 0 0 0 0 0 0 0 0 0,1 0,6 0 0 0 0 0 0 1,2 0 0 0 0 0,1 0,1 0 0,2 0 0 0 0 0 0 0 0 0<br />

85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0<br />

86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0<br />

87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0<br />

88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0<br />

89 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0<br />

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0<br />

91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0<br />

92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0<br />

93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0<br />

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0<br />

95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0,5 0 0 0 0 0<br />

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0<br />

97 0 0 0 0 0 0 0 0 0 0 0 0 0 0,1 0 0 0 0 0 0,1 0,1 0 0 0 0 0 0 0 0 0 0 0,8 0 0 0 0 0 0<br />

98 0 0 0 0 0 0 0 0 0 0 0 0 1,5 0,5 0 0 0 0 0 3,5 0,4 0 0 0 0 0 0 0 0 0 0 0,1 0 0 0 0 0 0<br />

99 0 0 0 0 0 0 0 0 0 0 0 0 0 0,4 0 0 0 0 0 0,3 0 0 0 0 0 0 0 0 0 0 0 0,6 0 0 0 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


370 ADDITIONAL CALCULATIONS<br />

Table A.4: Matrix R ′ [324 × 78] (Part 2). – c<strong>on</strong>tinued from previous page.<br />

i \ j 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78<br />

100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0<br />

101 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0<br />

102 0 0 0 0 0 0 0 0 0 0 0 0 0,1 0,3 0 0 0 0 0 0 0,05 0 0 0 0 0 0 0 1,4 0 0 0 0 0 0 0 0 0<br />

103 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0<br />

104 0 0 0 0 0 0 0 0 0 0 0 0 0,22 0,2 0 0 0 0 0 0 0,8 0 0 0 0 0 0 0 0 0 0 0 0 0,11 0 0 0 0<br />

105 0 0 0 0 0 0 0 0 0 0 0 0 0,75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,25 0 0 0 0<br />

106 0 0 0 0 0 0 0 0 0 0 0 0 1,7 0 0 0 0 0 0 0 2,5 0 0,5 0 0 0 0,1 0 0 0 0 0 0 1,4 0 0 0 0<br />

107 0 0 0 0 0 0 0 0 0 0 0 0,2 0,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0,05 0 0 0 0 0 0 0,25 0 0 0 0<br />

108 0 0 0 0 0 0 0 0 0 0 0 0,2 0,9 0 0 0 0 0 0 0,2 0 0 0 0 0 0 0,6 0 0 0 0 0 0 0,4 0 0 0 0<br />

109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0<br />

110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0<br />

111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,5 0 0 0 0 0 0 0 0 0 0 0<br />

112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0<br />

113 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0<br />

114 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0<br />

115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,33 0 0 0 0 0 0 0 0 0 0 0 0 0,33 0 0 0 0 0<br />

116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0<br />

117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0<br />

118 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0<br />

119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0<br />

120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0<br />

121 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0<br />

125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0<br />

126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0<br />

127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0<br />

128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0<br />

129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0<br />

130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0<br />

131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0<br />

132 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 4 0<br />

133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0<br />

134 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0<br />

135 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0<br />

136 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0<br />

137 0 0 0 0 0 0 0 4,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

138 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

139 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

140 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

141 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Input data. Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 371<br />

Table A.4: Matrix R ′ [324 × 78] (Part 2). – c<strong>on</strong>tinued from previous page.<br />

i \ j 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78<br />

143 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

144 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

145 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

146 0 0 0 0 0 0 0 0 0 0 0 0 0 0,4 0 0 0 0 0 0 3,6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

147 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

148 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0,25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

149 0 0 0 0 0 0 0 0 0 0 0 0 0 0,15 0 0 0 0 0 0 0,7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

150 0 0 0 0 0 0 0 0 0 0 0 0 0,1 1,4 0 0 0 0 0 0 0,05 0 0 0 0 0 0 0 0,4 0 0 0 0 0 0 0 0 0<br />

151 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

152 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

153 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,5 0 1,11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

155 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

156 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,25 0 0 2,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

157 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

158 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,2 0 0 2,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

159 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

160 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,5 0 0 6,75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

161 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

162 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,5 0 0 5,25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

163 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

164 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,5 0 0 3,75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

166 0 0 0 0 0 0 0 0 0 0 0 0 0,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

167 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

169 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

170 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

171 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

172 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0<br />

173 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0<br />

174 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0<br />

175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0<br />

176 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0<br />

177 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0<br />

178 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

179 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0,3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

181 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

182 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

183 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

185 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


372 ADDITIONAL CALCULATIONS<br />

Table A.4: Matrix R ′ [324 × 78] (Part 2). – c<strong>on</strong>tinued from previous page.<br />

i \ j 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78<br />

186 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

187 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

189 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

190 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

191 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

192 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

193 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

194 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

195 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

196 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

197 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

198 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

199 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

202 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

206 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,1 0 0,9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

207 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

208 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

209 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

211 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

212 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

213 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

214 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

215 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

217 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

218 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

219 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

220 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

221 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

222 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

223 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

224 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

226 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

227 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

228 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Input data. Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 373<br />

Table A.4: Matrix R ′ [324 × 78] (Part 2). – c<strong>on</strong>tinued from previous page.<br />

i \ j 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78<br />

229 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

230 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

231 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

233 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

234 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

235 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

236 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

237 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

238 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

239 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

240 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

241 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

242 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

244 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

246 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

247 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

248 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

249 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

251 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

252 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

253 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

254 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

257 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

258 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

259 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

261 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

262 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

263 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

264 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

265 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

266 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

267 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

268 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

269 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

271 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


374 ADDITIONAL CALCULATIONS<br />

Table A.4: Matrix R ′ [324 × 78] (Part 2). – c<strong>on</strong>tinued from previous page.<br />

i \ j 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78<br />

272 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

273 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

274 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

275 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

276 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

277 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

279 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

280 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

281 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

283 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

285 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

286 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

287 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

288 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

289 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

290 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

291 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

292 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

293 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

294 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

295 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

296 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

297 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

298 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

299 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

302 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1<br />

307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

308 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

309 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

310 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

311 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0<br />

312 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,6 0 0 0 0 0 0 1 0<br />

313 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0<br />

314 0 0 0 0 0 0 0 0 0 0 0 0 0,6 0 0 0 0,5 0 0 0 0 0 0,4 0 0 0 0 0 0 0 0 0 0 0,33 0,6 0 0 0<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Input data. Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust 375<br />

Table A.4: Matrix R ′ [324 × 78] (Part 2). – c<strong>on</strong>tinued from previous page.<br />

i \ j 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78<br />

315 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,2 0 0 0 0,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

316 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

317 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

318 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

319 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

321 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

323 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

324 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table


376 ADDITIONAL CALCULATIONS<br />

A.2 Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> average <str<strong>on</strong>g>mineral</str<strong>on</strong>g> ore grades<br />

The average grade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits analyzed by Cox and Singer [66]<br />

is calculated with Eq. 4.4, taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> t<strong>on</strong>nage <str<strong>on</strong>g>of</str<strong>on</strong>g> each model and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> deposits (No. dep.) c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> under c<strong>on</strong>siderati<strong>on</strong>. Tables<br />

A.5 through A.12 show <str<strong>on</strong>g>the</str<strong>on</strong>g> mean average grade and t<strong>on</strong>nage <str<strong>on</strong>g>of</str<strong>on</strong>g> each deposit type.<br />

Table 4.9 in chapter 4 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> final average grade obtained.<br />

Table A.5. Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-1. After [66]<br />

Mean No.dep. Mean No.dep. Mean No.dep.<br />

Deposit type Placer Au-PGE Placer PGE-Au Shoreline Placer<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 1,07 65 0,13 83 87,50 61<br />

RE2O5 (%)<br />

M<strong>on</strong>azite (%) 0,03 29<br />

U3O8 (%)<br />

Zirc<strong>on</strong> (% ZrO2) 0,27 52<br />

Nb2O5 (%)<br />

Barite (%)<br />

Al2O3(%)<br />

P (%)<br />

P2O5 (%)<br />

Ilmenite (% TiO2) 1,27 61<br />

Rutile (% TiO2) 0,21 50<br />

Leucocite (% TiO2) 0,23 24<br />

Cr2O3 (%)<br />

Mn (%)<br />

Fe (%)<br />

Co (%)<br />

Ni (%)<br />

Cu (%)<br />

Mo (%)<br />

WO3 (%)<br />

Pd (ppb) 1,50 13<br />

Pt (ppb) 1588,55 83<br />

Rh (ppb)<br />

Ir (ppb) 8,38 10<br />

Ru (ppb)<br />

Os (ppb) 82,22 21<br />

Ag (g/t) 0,03 16<br />

Au (g/t) 0,20 65 0,03 23<br />

Zn (%)<br />

Hg (%)<br />

Sn (%)<br />

Pb (%)<br />

Sb (%)


Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> average <str<strong>on</strong>g>mineral</str<strong>on</strong>g> ore grades 377<br />

Table A.6. Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-2. After [66]<br />

Deposit type Mean No.dep. Mean No.dep. Mean No.dep. Mean No.dep.<br />

Komatiite Ni-Cu Dunitic Ni-Cu Synorg-synvolc. Ni-Cu Minor podiform Cr<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 1,72 31 28,25 22 2,00 32 0,00 435<br />

RE2O5 (%)<br />

M<strong>on</strong>azite (%)<br />

U3O8 (%)<br />

Zirc<strong>on</strong> (% ZrO2)<br />

Nb2O5 (%)<br />

Barite (%)<br />

Al2O3(%)<br />

P (%)<br />

P2O5 (%)<br />

Ilmenite (% TiO2)<br />

Rutile (% TiO2)<br />

Leucocite (% TiO2)<br />

Cr2O3 (%) 42,13 435<br />

Mn (%)<br />

Fe (%)<br />

Co (%) 0,06 8 0,03 3 0,05 3<br />

Ni (%) 1,51 31 0,99 22 0,76 32<br />

Cu (%) 0,14 21 0,04 12 0,48 29<br />

Mo (%)<br />

WO3 (%)<br />

Pd (ppb) 338,61 11 139,19 5 98,86 3 4,70 31<br />

Pt (ppb) 201,05 5 31,05 2 30,83 33<br />

Rh (ppb) 8,11 69<br />

Ir (ppb) 71,61 9 15,07 5 65,31 38<br />

Ru (ppb) 189,67 29<br />

Os (ppb)<br />

Ag (g/t)<br />

Au (g/t) 0,04 10 0,02 5 0,11 3<br />

Zn (%)<br />

Hg (%)<br />

Sn (%)<br />

Pb (%)<br />

Sb (%)<br />

Major podiform Cu Carb<strong>on</strong>atite W Skarn Sn Scarn<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 0,02 174 59,84 20 1,04 28 5,94 4<br />

RE2O5 (%) 0,10 5<br />

M<strong>on</strong>azite (%)<br />

U3O8 (%)<br />

Zirc<strong>on</strong> (% ZrO2)<br />

Nb2O5 (%) 0,64 20<br />

Barite (%)<br />

Al2O3(%)<br />

P (%)<br />

P2O5 (%)<br />

Ilmenite (% TiO2)<br />

Rutile (% TiO2)<br />

Leucocite (% TiO2)<br />

Cr2O3 (%) 44,03 7,291<br />

Mn (%)<br />

Fe (%)<br />

Co (%)<br />

Ni (%)<br />

Cu (%)<br />

Mo (%)<br />

WO3 (%) 0,66 28<br />

Pd (ppb) 3,48 16<br />

Pt (ppb) 14,32 12<br />

Rh (ppb) 13,06 14<br />

Ir (ppb) 78,34 9<br />

Ru (ppb) 220,80 7<br />

Os (ppb)<br />

Ag (g/t)<br />

Au (g/t)<br />

Zn (%)<br />

Hg (%)<br />

Sn (%) 0,31 4<br />

Pb (%)<br />

Sb (%)


378 ADDITIONAL CALCULATIONS<br />

Table A.7. Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-3. After [66]<br />

Deposit type Mean No.dep. Mean No.dep. Mean No.dep. Mean No.dep.<br />

Replacement Sn W veins Sn Veins Sn Greisen<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 5,25 6 0,56 16 0,24 43 7,20 10<br />

RE2O5 (%)<br />

M<strong>on</strong>azite (%)<br />

U3O8 (%)<br />

Zirc<strong>on</strong> (% ZrO2)<br />

Nb2O5 (%)<br />

Barite (%)<br />

Al2O3(%)<br />

P (%)<br />

P2O5 (%)<br />

Ilmenite (% TiO2)<br />

Rutile (% TiO2)<br />

Leucocite (% TiO2)<br />

Cr2O3 (%)<br />

Mn (%)<br />

Fe (%)<br />

Co (%)<br />

Ni (%)<br />

Cu (%)<br />

Mo (%)<br />

WO3 (%) 0,91 16<br />

Pd (ppb)<br />

Pt (ppb)<br />

Rh (ppb)<br />

Ir (ppb)<br />

Ru (ppb)<br />

Os (ppb)<br />

Ag (g/t)<br />

Au (g/t)<br />

Zn (%)<br />

Hg (%)<br />

Sn (%) 0,80 6 1,27 43 0,28 10<br />

Pb (%)<br />

Sb (%)<br />

Climax Mo Porphyry Cu Porphyry Cu skarn-related Cu skarn<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 201,84 9 144,21 208 79,62 18 0,56 64<br />

RE2O5 (%)<br />

M<strong>on</strong>azite (%)<br />

U3O8 (%)<br />

Zirc<strong>on</strong> (% ZrO2)<br />

Nb2O5 (%)<br />

Barite (%)<br />

Al2O3(%)<br />

P (%)<br />

P2O5 (%)<br />

Ilmenite (% TiO2)<br />

Rutile (% TiO2)<br />

Leucocite (% TiO2)<br />

Cr2O3 (%)<br />

Mn (%)<br />

Fe (%)<br />

Co (%)<br />

Ni (%)<br />

Cu (%) 0,54 208 0,98 18 1,69 64<br />

Mo (%) 0,19 9 0,01 103 0,02 4<br />

WO3 (%)<br />

Pd (ppb)<br />

Pt (ppb)<br />

Rh (ppb)<br />

Ir (ppb)<br />

Ru (ppb)<br />

Os (ppb)<br />

Ag (g/t) 1,65 76 4,78 9 21,43 15<br />

Au (g/t) 0,12 81 0,33 6 1,78 16<br />

Zn (%)<br />

Hg (%)<br />

Sn (%)<br />

Pb (%)<br />

Sb (%)


Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> average <str<strong>on</strong>g>mineral</str<strong>on</strong>g> ore grades 379<br />

Table A.8. Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-4. After [66]<br />

Deposit type Mean No.dep. Mean No.dep. Mean No.dep. Mean No.dep.<br />

Zn-Pb skarn Fe skarn deposits Polymet. replacement Replacement Mn<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 1,42 34 7,21 168 1,82 52 0,02 37<br />

RE2O5 (%)<br />

M<strong>on</strong>azite (%)<br />

U3O8 (%)<br />

Zirc<strong>on</strong> (% ZrO2)<br />

Nb2O5 (%)<br />

Barite (%)<br />

Al2O3(%)<br />

P (%) 0,03 3<br />

P2O5 (%)<br />

Ilmenite (% TiO2)<br />

Rutile (% TiO2)<br />

Leucocite (% TiO2)<br />

Cr2O3 (%)<br />

Mn (%) 32,54 37<br />

Fe (%) 49,61 168<br />

Co (%)<br />

Ni (%)<br />

Cu (%) 0,46 17 0,23 35 0,88 4<br />

Mo (%)<br />

WO3 (%)<br />

Pd (ppb)<br />

Pt (ppb)<br />

Rh (ppb)<br />

Ir (ppb)<br />

Ru (ppb)<br />

Os (ppb)<br />

Ag (g/t) 114,55 22 193,20 45<br />

Au (g/t) 0,45 7 0,71 35<br />

Zn (%) 5,91 0,2709 3,92 51<br />

Hg (%)<br />

Sn (%)<br />

Pb (%) 3,22 30 5,06 52<br />

Sb (%)<br />

Porphyry Cu-Au Porphyry Cu-Mo Porphyry Mo, Low -F Polymetallic vein<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 101,16 40 508,16 16 94,19 33 0,01 75<br />

RE2O5 (%)<br />

M<strong>on</strong>azite (%)<br />

U3O8 (%)<br />

Zirc<strong>on</strong> (% ZrO2)<br />

Nb2O5 (%)<br />

Barite (%)<br />

Al2O3(%)<br />

P (%)<br />

P2O5 (%)<br />

Ilmenite (% TiO2)<br />

Rutile (% TiO2)<br />

Leucocite (% TiO2)<br />

Cr2O3 (%)<br />

Mn (%)<br />

Fe (%)<br />

Co (%)<br />

Ni (%)<br />

Cu (%) 0,50 40 0,42 16 0,19 33<br />

Mo (%) 0,00 20 0,02 16 0,09 33<br />

WO3 (%)<br />

Pd (ppb)<br />

Pt (ppb)<br />

Rh (ppb)<br />

Ir (ppb)<br />

Ru (ppb)<br />

Os (ppb)<br />

Ag (g/t) 1,59 27 1,22 16 866,96 74<br />

Au (g/t) 0,38 40 0,01 16 0,62 54<br />

Zn (%) 2,78 60<br />

Hg (%)<br />

Sn (%)<br />

Pb (%) 8,97 75<br />

Sb (%)


380 ADDITIONAL CALCULATIONS<br />

Table A.9. Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-5. After [66]<br />

Deposit type Mean No.dep. Mean No.dep. Mean No.dep. Mean No.dep.<br />

Cyprus massive sulfide Besshi massive sulfide Volcanogenic Mn Creede epith. vein<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 1,27 49 0,22 44 0,05 93 1,42 27<br />

RE2O5 (%)<br />

M<strong>on</strong>azite (%)<br />

U3O8 (%)<br />

Zirc<strong>on</strong> (% ZrO2)<br />

Nb2O5 (%)<br />

Barite (%)<br />

Al2O3(%)<br />

P (%) 0,09 8<br />

P2O5 (%)<br />

Ilmenite (% TiO2)<br />

Rutile (% TiO2)<br />

Leucocite (% TiO2)<br />

Cr2O3 (%)<br />

Mn (%) 38,80 93<br />

Fe (%)<br />

Co (%)<br />

Ni (%)<br />

Cu (%) 1,60 49 1,46 44 0,30 19<br />

Mo (%)<br />

WO3 (%)<br />

Pd (ppb)<br />

Pt (ppb)<br />

Rh (ppb)<br />

Ir (ppb)<br />

Ru (ppb)<br />

Os (ppb)<br />

Ag (g/t) 12,85 15 7,86 14 125,60 27<br />

Au (g/t) 0,91 15 0,34 14 2,12 23<br />

Zn (%) 0,79 16 0,56 6 1,88 26<br />

Hg (%)<br />

Sn (%)<br />

Pb (%) 0,05 3 2,55 24<br />

Sb (%)<br />

Comstock epith. vein Sado epith. vein Epith. quartz-alunite Au Volcanogenic U<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 0,77 41 0,30 20 1,58 8 0,34 21<br />

RE2O5 (%)<br />

M<strong>on</strong>azite (%)<br />

U3O8 (%) 0,12 21<br />

Zirc<strong>on</strong> (% ZrO2)<br />

Nb2O5 (%)<br />

Barite (%)<br />

Al2O3(%)<br />

P (%)<br />

P2O5 (%)<br />

Ilmenite (% TiO2)<br />

Rutile (% TiO2)<br />

Leucocite (% TiO2)<br />

Cr2O3 (%)<br />

Mn (%)<br />

Fe (%)<br />

Co (%)<br />

Ni (%)<br />

Cu (%) 0,02 18 0,19 9 0,24 5<br />

Mo (%)<br />

WO3 (%)<br />

Pd (ppb)<br />

Pt (ppb)<br />

Rh (ppb)<br />

Ir (ppb)<br />

Ru (ppb)<br />

Os (ppb)<br />

Ag (g/t) 114,82 41 37,93 20 17,82 8<br />

Au (g/t) 7,46 41 6,86 18 7,81 8<br />

Zn (%) 0,03 3 0,25 1<br />

Hg (%)<br />

Sn (%)<br />

Pb (%) 0,01 19 0,00 2<br />

Sb (%)


Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> average <str<strong>on</strong>g>mineral</str<strong>on</strong>g> ore grades 381<br />

Table A.10. Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-6. After [66]<br />

Deposit type Mean No.dep. Mean No.dep. Mean No.dep. Mean No.dep.<br />

Epi<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal Mn Rhyolite-hosted Sn Volcan.-hosted magnetite Carb<strong>on</strong>ate-hosted Au-Ag<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 0,02 59 0,00 132 39,99 39 5,08 35<br />

RE2O5 (%)<br />

M<strong>on</strong>azite (%)<br />

U3O8 (%)<br />

Zirc<strong>on</strong> (% ZrO2)<br />

Nb2O5 (%)<br />

Barite (%)<br />

Al2O3(%)<br />

P (%) 0,40 36<br />

P2O5 (%)<br />

Ilmenite (% TiO2)<br />

Rutile (% TiO2)<br />

Leucocite (% TiO2)<br />

Cr2O3 (%)<br />

Mn (%) 30,59 59<br />

Fe (%) 53,72 39<br />

Co (%)<br />

Ni (%)<br />

Cu (%)<br />

Mo (%)<br />

WO3 (%)<br />

Pd (ppb)<br />

Pt (ppb)<br />

Rh (ppb)<br />

Ir (ppb)<br />

Ru (ppb)<br />

Os (ppb)<br />

Ag (g/t) 21,88 5<br />

Au (g/t) 2,57 34<br />

Zn (%)<br />

Hg (%)<br />

Sn (%) 0,39 132<br />

Pb (%)<br />

Sb (%)<br />

Hot-spring Hg Silica-carb<strong>on</strong>ate Hg Sb veins Disseminated Sb<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 0,01 20 0,03 28 0,00 81 0,09 23<br />

RE2O5 (%)<br />

M<strong>on</strong>azite (%)<br />

U3O8 (%)<br />

Zirc<strong>on</strong> (% ZrO2)<br />

Nb2O5 (%)<br />

Barite (%)<br />

Al2O3(%)<br />

P (%)<br />

P2O5 (%)<br />

Ilmenite (% TiO2)<br />

Rutile (% TiO2)<br />

Leucocite (% TiO2)<br />

Cr2O3 (%)<br />

Mn (%)<br />

Fe (%)<br />

Co (%)<br />

Ni (%)<br />

Cu (%)<br />

Mo (%)<br />

WO3 (%)<br />

Pd (ppb)<br />

Pt (ppb)<br />

Rh (ppb)<br />

Ir (ppb)<br />

Ru (ppb)<br />

Os (ppb)<br />

Ag (g/t) 36,39 8 1,20 1<br />

Au (g/t) 5,14 9 0,30 2<br />

Zn (%)<br />

Hg (%) 0,34 20 0,39 28<br />

Sn (%)<br />

Pb (%)<br />

Sb (%) 34,67 81 3,55 23


382 ADDITIONAL CALCULATIONS<br />

Table A.11. Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-7. After [66]<br />

Deposit type Mean No.dep. Mean No.dep. Mean No.dep. Mean No.dep.<br />

Kuroko mass. sulfide Algoma and Sup. Fe Sandst<strong>on</strong>e-hosted Pb-Zn Sedim.-hosted Cu<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 1,50 432 165,20 66 5,36 20 21,93 57<br />

RE2O5 (%)<br />

M<strong>on</strong>azite (%)<br />

U3O8 (%)<br />

Zirc<strong>on</strong> (% ZrO2)<br />

Nb2O5 (%)<br />

Barite (%)<br />

Al2O3(%)<br />

P (%) 0,06 47<br />

P2O5 (%)<br />

Ilmenite (% TiO2)<br />

Rutile (% TiO2)<br />

Leucocite (% TiO2)<br />

Cr2O3 (%)<br />

Mn (%)<br />

Fe (%) 50,83 66<br />

Co (%) 0,24 10<br />

Ni (%)<br />

Cu (%) 1,26 432 2,15 57<br />

Mo (%)<br />

WO3 (%)<br />

Pd (ppb)<br />

Pt (ppb)<br />

Rh (ppb)<br />

Ir (ppb)<br />

Ru (ppb)<br />

Os (ppb)<br />

Ag (g/t) 28,77 284 11,22 9<br />

Au (g/t) 0,78 238<br />

Zn (%) 2,81 330 0,59 14<br />

Hg (%)<br />

Sn (%)<br />

Pb (%) 0,75 184 2,15 20<br />

Sb (%)<br />

Sedim. Exhal. Zn-Pb Bedded barite Missouri / Appalach. Pb-Zn Sedimentary Mn<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 14,69 45 1,82 25 34,83 20 7,28 39<br />

RE2O5 (%)<br />

M<strong>on</strong>azite (%)<br />

U3O8 (%)<br />

Zirc<strong>on</strong> (% ZrO2)<br />

Nb2O5 (%)<br />

Barite (%) 83,02 25<br />

Al2O3(%)<br />

P (%) 0,12 13<br />

P2O5 (%)<br />

Ilmenite (% TiO2)<br />

Rutile (% TiO2)<br />

Leucocite (% TiO2)<br />

Cr2O3 (%)<br />

Mn (%) 31,38 39<br />

Fe (%)<br />

Co (%)<br />

Ni (%)<br />

Cu (%) 0,19 11<br />

Mo (%)<br />

WO3 (%)<br />

Pd (ppb)<br />

Pt (ppb)<br />

Rh (ppb)<br />

Ir (ppb)<br />

Ru (ppb)<br />

Os (ppb)<br />

Ag (g/t) 43,32 37 4,67 10<br />

Au (g/t)<br />

Zn (%) 5,65 45 4,05 20<br />

Hg (%)<br />

Sn (%)<br />

Pb (%) 2,78 45 1,23 16<br />

Sb (%)


Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> average <str<strong>on</strong>g>mineral</str<strong>on</strong>g> ore grades 383<br />

Table A.12. Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-8. After [66]<br />

Deposit type Mean No.dep. Mean No.dep. Mean No.dep. Mean No.dep.<br />

Phosphate, upwell. Phosphate, warm current Low-sulfide Au-quartz veins Homestake Au<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 331,13 60 400,87 18 0,03 313 0,94 116<br />

RE2O5 (%)<br />

M<strong>on</strong>azite (%)<br />

U3O8 (%)<br />

Zirc<strong>on</strong> (% ZrO2)<br />

Nb2O5 (%)<br />

Barite (%)<br />

Al2O3(%)<br />

P (%)<br />

P2O5 (%) 23,96 60 24,16 18<br />

Ilmenite (% TiO2)<br />

Rutile (% TiO2)<br />

Leucocite (% TiO2)<br />

Cr2O3 (%)<br />

Mn (%)<br />

Fe (%)<br />

Co (%)<br />

Ni (%)<br />

Cu (%)<br />

Mo (%)<br />

WO3 (%)<br />

Pd (ppb)<br />

Pt (ppb)<br />

Rh (ppb)<br />

Ir (ppb)<br />

Ru (ppb)<br />

Os (ppb)<br />

Ag (g/t) 4,97 39 1,62 52<br />

Au (g/t) 15,96 313 9,22 116<br />

Zn (%)<br />

Hg (%)<br />

Sn (%)<br />

Pb (%)<br />

Sb (%)<br />

Unc<strong>on</strong>formity U-Au Lateritic Ni Laterite type bauxite Karst type bauxite<br />

T<strong>on</strong>nage (Mt<strong>on</strong>) 0,23 36 44,16 71 25,18 122 23,23 41<br />

RE2O5 (%)<br />

M<strong>on</strong>azite (%)<br />

U3O8 (%) 0,52 36<br />

Zirc<strong>on</strong> (% ZrO2)<br />

Nb2O5 (%)<br />

Barite (%)<br />

Al2O3(%) 44,97 122 49,18 41<br />

P (%)<br />

P2O5 (%)<br />

Ilmenite (% TiO2)<br />

Rutile (% TiO2)<br />

Leucocite (% TiO2)<br />

Cr2O3 (%)<br />

Mn (%)<br />

Fe (%)<br />

Co (%) 0,07 12<br />

Ni (%) 1,36 71<br />

Cu (%)<br />

Mo (%)<br />

WO3 (%)<br />

Pd (ppb)<br />

Pt (ppb)<br />

Rh (ppb)<br />

Ir (ppb)<br />

Ru (ppb)<br />

Os (ppb)<br />

Ag (g/t)<br />

Au (g/t)<br />

Zn (%)<br />

Hg (%)<br />

Sn (%)<br />

Pb (%)<br />

Sb (%)


384 ADDITIONAL CALCULATIONS<br />

A.3 Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E.<br />

Tables A.13, A.14 and A.15, show <str<strong>on</strong>g>the</str<strong>on</strong>g> variables required for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements and <str<strong>on</strong>g>the</str<strong>on</strong>g> results, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong>s described<br />

in secti<strong>on</strong> 5.2.3 and <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust developed in this PhD<br />

(chapter 3) for gaseous, liquid and solid reference substances, respectively.<br />

Table A.13. Chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements for gaseous reference substances<br />

Element R.S. State P0 i (kPa) bch,R.S. (kJ/mole)<br />

∆G f i<br />

(kJ/mole)<br />

b ch j<br />

(kJ/mole)<br />

Ar Ar g 9,06E-03 11,7 0,0 11,7<br />

C CO 2 g 3,35E-04 19,9 -394,4 410,3<br />

H 2 H 2O g 2,20E-02 9,5 -228,6 236,1<br />

He He g 4,85E-06 30,4 0,0 30,4<br />

K r K r g 9,70E-07 34,4 0,0 34,4<br />

N 2 N 2 g 7,58E-01 0,7 0,0 0,7<br />

N e N e g 1,77E-05 27,2 0,0 27,2<br />

O 2 O 2 g 2,04E-01 4,0 0,0 4,0<br />

X e X e g 8,70E-08 40,3 0,0 40,3<br />

Table A.14: Chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements for aqueous reference substances<br />

Element R.S. State z + γi mi (mole/kg)<br />

∆G f i<br />

Ag AgCl −<br />

2 l -1 0,6 2,70E-09 -215,5 69,7<br />

b ch j<br />

(kJ/mole)<br />

As HAsO −2<br />

4 l -2 0,138 2,10E-08 -714,7 494,1<br />

B B(OH) 3 l 0 1 3,25E-04 -968,8 628,6<br />

Bi BiO + l 1 0,52 1,00E-10 -146,4 274,8<br />

Br 2 Br − l -1 0,73 8,70E-04 -104,0 101,1<br />

Cd CdCl 2 l 0 1 6,90E-11 -359,4 293,2<br />

Cl 2 Cl − l -1 0,63 5,66E-01 -131,3 124,2<br />

Cs Cs + l 1 0,6 2,30E-09 -282,2 404,5<br />

Cu Cu +2 l 2 0,2 7,30E-10 65,5 134,0<br />

H g H gCl −2<br />

I2 4<br />

IO3<br />

l -2 0,1 3,40E-10 -446,9 114,8<br />

− K K<br />

l -1 0,6 5,20E-07 -128,0 175,0<br />

+ l 1 0,62 1,06E-02 -282,4 366,5<br />

Li Li + l 1 0,68 2,50E-05 -294,0 392,9<br />

M o M oO−2 N a<br />

4<br />

N a<br />

l -2 0,1 1,10E-07 -836,4 730,5<br />

+ l 1 0,65 4,86E-01 -262,1 336,6<br />

N i N i +2 l 2 0,2 1,20E-07 -45,6 232,5<br />

P H PO−2 P b<br />

Rb<br />

4<br />

P bCl 2<br />

Rb<br />

l<br />

l<br />

-2<br />

0<br />

0,1<br />

1<br />

4,90E-07<br />

4,20E-11<br />

-1089,3<br />

-297,2<br />

861,6<br />

232,2<br />

+ l 1 0,6 1,40E-06 -282,4 388,8<br />

S SO −2<br />

4 l -2 0,12 2,93E-02 -744,6 607,3<br />

Se SeO −2<br />

4 l -2 0,1 1,20E-09 -441,4 346,7<br />

W W O −2<br />

4 l -2 0,1 5,60E-10 -920,5 827,7<br />

Zn Zn +2 l 2 0,2 1,70E-08 -147,3 339,0<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table


Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E. 385<br />

Table A.15: Chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements for solid reference substances<br />

Element εj R.S. State c j xi bch,R.S. ∆G f i bch j<br />

(mole/g)<br />

(kJ/mole) (kJ/mole) (kJ/mole)<br />

Al 3,02E-03 Al2SiO 5 s 6,75E-03 1,60E-03 16,0 -2441,0 794,3<br />

Au 7,62E-12 Au s 8,05E-01 9,63E-10 51,5 0,0 51,5<br />

Ba 4,57E-06 BaSO4 s 6,49E-01 4,66E-04 19,0 -1361,9 765,5<br />

Be 2,33E-07 Be2SiO 4 s 5,95E-02 1,09E-06 34,0 -2033,3 602,6<br />

Ca 6,40E-04 CaCO 3 s 1,26E-01 1,27E-02 10,8 -1129,0 723,8<br />

Ce 4,50E-07 CeO2 s 0,02 1,41E-06 33,4 -1024,8 1054,2<br />

Co 2,94E-07 CoFe 2O4 s 0,005 2,31E-07 37,9 -1032,6 308,9<br />

C r 1,77E-06 K2C r2O7 s 0,01 1,39E-06 33,4 -1882,3 584,4<br />

D y 2,40E-08 D y(OH) 3 s 0,02 7,54E-08 40,7 -1294,3 974,9<br />

Er 1,38E-08 Er(OH) 3 s 0,02 4,33E-08 42,0 -1291,0 973,0<br />

Eu 6,58E-09 Eu(OH) 3 s 0,02 2,07E-08 43,9 -1320,1 1003,9<br />

F2 2,93E-05 CaF 2Ca 9<br />

(PO4) 6<br />

s 0,01 2,30E-05 26,5 -12985,3 556,1<br />

Fe 7,02E-04 Fe2O3 s 1,08E-02 5,95E-04 18,4 -742,2 376,8<br />

Ga 2,51E-07 Ga2O3 s 0,02 3,94E-07 36,6 -998,6 514,6<br />

Gd 2,03E-08 Gd(OH) 3 s 0,02 6,37E-08 41,1 -1288,9 969,9<br />

Ge 1,93E-08 GeO2 s 0,05 1,52E-07 38,9 -521,5 556,5<br />

H f 2,97E-08 H f O2 s 0,05 2,33E-07 37,9 -1027,4 1061,3<br />

Ho 5,03E-09 Ho(OH) 3 s 0,02 1,58E-08 44,5 -1294,8 979,3<br />

In 4,88E-10 In2O 3 s 0,05 1,92E-09 49,8 -830,9 437,4<br />

I r 1,14E-13 I rO2 s 0,005 8,95E-14 74,5 -185,6 256,1<br />

La 2,23E-07 La(OH) 3 s 0,02 7,00E-07 35,1 -1319,2 994,3<br />

Lu 1,77E-09 Lu(OH) 3 s 0,02 5,56E-09 47,1 -1259,6 946,6<br />

M g 6,15E-04 M g3Si4O 10 s 3,56E-03 1,15E-04 22,5 -5543,0 629,6<br />

(OH) 2<br />

M n 1,41E-05 M nO 2 s 2,66E-02 5,89E-05 24,1 -465,2 484,6<br />

N b 1,29E-07 N b 2O 3 s 0,01 1,01E-07 39,9 -1766,4 900,2<br />

N d 1,87E-07 N d(OH) 3 s 0,02 5,87E-07 35,6 -1294,3 969,8<br />

Os 1,63E-13 OsO 4 s 0,005 1,28E-13 73,6 -305,1 370,8<br />

Pd 4,89E-12 PdO s 0,005 3,84E-12 65,2 -82,5 145,7<br />

P r 5,04E-08 P r(OH) 3 s 0,02 1,58E-07 38,8 -1285,1 963,8<br />

P t 2,56E-12 P tO 2 s 0,005 2,01E-12 66,8 -83,7 146,5<br />

Pu 6,20E-20 PuO 2 s 0,01 9,73E-20 108,5 -995,1 1099,7<br />

Ra 4,40E-15 RaSO 4 s 0,05 3,45E-14 76,8 -1364,2 825,8<br />

Re 1,06E-12 Re 2O 7 s 0,01 8,32E-13 69,0 -1067,6 561,3<br />

Rh 5,83E-13 Rh 2O 3 s 0,005 2,29E-13 72,2 -299,8 183,0<br />

Ru 3,36E-12 RuO 2 s 0,005 2,64E-12 66,1 -253,1 315,2<br />

Sb 3,29E-09 Sb 2O 5 s 0,001 2,58E-10 54,7 -829,3 437,1<br />

Sc 3,11E-07 Sc 2O 3 s 0,05 1,22E-06 33,8 -1819,7 923,8<br />

Si 1,10E-02 SiO 2 s 3,33E-01 5,75E-01 1,4 -856,7 854,2<br />

Sm 3,13E-08 Sm(OH) 3 s 0,02 9,83E-08 40,0 -1314,0 993,9<br />

Sn 1,77E-08 SnO 2 s 9,27E-01 2,58E-06 31,9 -519,6 547,6<br />

Sr 3,65E-06 SrCO 3 s 1,39E-03 7,97E-07 34,8 -1140,1 758,8<br />

Ta 4,97E-09 Ta 2O 5 s 0,01 3,90E-09 48,0 -1911,6 974,8<br />

T b 4,40E-09 T b(OH) 3 s 0,02 1,38E-08 44,9 -1314,2 999,0<br />

Te 3,92E-11 TeO 2 s 0,005 3,08E-11 60,0 -270,3 326,4<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


386 ADDITIONAL CALCULATIONS<br />

Table A.15: Chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements for solid reference substances<br />

– c<strong>on</strong>tinued from previous page.<br />

Element ε j<br />

R.S. State cj xi bch,R.S. ∆G f i bch j<br />

(mole/g)<br />

(kJ/mole) (kJ/mole) (kJ/mole)<br />

Th 4,53E-08 ThO2 s 3,27E-04 2,33E-09 49,3 -1169,1 1214,5<br />

T i 8,01E-05 T iO2 s 4,15E-02 5,22E-04 18,7 -889,5 904,4<br />

T l 4,40E-09 T l2O4 s 0,01 3,45E-09 48,3 -347,3 193,8<br />

T m 1,78E-09 T m(OH) 3 s 0,02 5,59E-09 47,1 -1265,5 952,5<br />

U 1,13E-08 UO3 · H2O s 0,01 1,77E-08 44,2 -1395,9 1196,1<br />

V 1,90E-06 V2O5 s 0,01 1,49E-06 33,3 -1419,6 721,5<br />

Y 2,36E-07 Y (OH) 3 s 0,02 7,41E-07 35,0 -1291,4 966,3<br />

Y b 1,13E-08 Y b(OH) 3 s 0,02 3,55E-08 42,5 -1262,5 944,9<br />

Z r 2,12E-06 Z rSiO 4 s 9,45E-01 3,15E-04 20,0 -1919,5 1077,4<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

A.4 Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> gaseous fuels<br />

Table A.16 shows coefficients a 1 through a 7 for ideal gases required for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> h ∗ (T) and s ∗ (T) in Eqs. 5.43 and 5.45, according to Zelenik and Gord<strong>on</strong><br />

[413].<br />

Table A.16. Coefficients a 1 through a 7 [413]<br />

a 1 a 2 a 3 a 4 a 5 a 6 a 7<br />

CH 4 2,928 0,002569 7,844E-06 -4,91E-09 2,04E-13 -10054 4,634<br />

C 2H 6 1,463 0,01549 5,781E-06 -1,26E-08 4,59E-12 -11239 14,43<br />

C 3H 8 0,8969 0,02669 5,431E-06 -2,13E-08 9,24E-12 -13955 19,36<br />

C 4H 10 1,522 0,03429 8,101E-06 -2,92E-08 1,27E-11 -17126 18,35<br />

C 5H 12 1,878 0,04122 0,00001253 -3,70E-08 1,53E-11 -20038 18,77<br />

N 2 3,704 -0,001422 2,867E-06 -1,20E-09 -1,40E-14 -1064 2,234<br />

CO 2 2,401 0,008735 -6,607E-06 2,00E-09 6,33E-16 -48378 9,695<br />

A.5 Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

A.5.1 Chermak’s methodology<br />

Table A.17 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> polyhedral units required<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> silicate <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. The brackets next to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical formulas<br />

indicate <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinati<strong>on</strong> number.


Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 387<br />

Table A.17. The g i and h i <str<strong>on</strong>g>of</str<strong>on</strong>g> each polyhedral type and <str<strong>on</strong>g>the</str<strong>on</strong>g> standard error (%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

estimate. Values in kJ/mol. [55]<br />

Polyhedral unit gi Error hi Error<br />

Al2O [4]<br />

3<br />

Al2O -1631,32 13,3 -1716,24 11,0<br />

[6]<br />

3<br />

Al(OH)<br />

-1594,52 15,3 -1690,18 15,9<br />

[6]<br />

3<br />

SiO<br />

-1181,62 13,2 -1319,55 12,2<br />

[4]<br />

2<br />

M gO<br />

-853,95 4,6 -910,97 3,2<br />

[6] -628,86 10,6 -660,06 7,9<br />

M g(OH) [6]<br />

2<br />

CaO<br />

-851,86 10,2 -941,62 9,1<br />

[6] -669,13 5,9 -696,65 5,2<br />

CaO [8−z] -710,08 7,2 -736,00 7,1<br />

N a2O [6−8] -672,5 26,0 -683,00 18,4<br />

K2O [8−12] -722,94 27,4 -735,24 21,1<br />

H2O -239,91 5,7 292,37 4,6<br />

FeO [6] -266,29 6,8 -290,55 5,4<br />

Fe(OH) [6]<br />

2<br />

Fe2O -542,04 24,6 -596,07 8,2<br />

[6]<br />

3 -776,07 33,0 -939,18 35,6<br />

A.5.2 Vieillard’s methodology for hydrated clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

Table A.18 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> values for ∆ GO −2 M z+ (clay) for i<strong>on</strong>s located in <str<strong>on</strong>g>the</str<strong>on</strong>g> interlayer<br />

(l), octahedral (o), tetrahedral (t) and brucitic (b) sites. These values are required<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrated clays and phyllosilicates<br />

with Eqs 5.65 and 5.66.<br />

A.5.3 Estimated values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

Table A.19, shows <str<strong>on</strong>g>the</str<strong>on</strong>g> estimated standard enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s included in <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper crust developed in<br />

chapter 3. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> method used to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> values are outlined in column<br />

“Meth.” (see table 5.8 for <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>dence between methods and numbers).<br />

The estimati<strong>on</strong> error ±ɛ is taken as <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest associated error to <str<strong>on</strong>g>the</str<strong>on</strong>g> methodologies<br />

used for <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>’s properties. This means that if <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

is a substance, for which 2 or more estimati<strong>on</strong> methods were used, <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> error<br />

associated to <str<strong>on</strong>g>the</str<strong>on</strong>g> most inaccurate <strong>on</strong>e will be taken into account (<str<strong>on</strong>g>the</str<strong>on</strong>g> maximum is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n ±ɛ = 10%).<br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibbs free energies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> from standard entropies<br />

(method 1), references [284] and [391] were used for <str<strong>on</strong>g>the</str<strong>on</strong>g> required standard en-


388 ADDITIONAL CALCULATIONS<br />

Table A.18. Values <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ GO −2 M z+ (clay) for i<strong>on</strong>s located in different sites [382] for<br />

hydrated clays and phyllosilicates. Values in kJ/mole<br />

I<strong>on</strong>s ∆GO −2 M z+ ∆GO −2 M z+ I<strong>on</strong>s ∆GO −2 M z+ ∆GO −2 M z+<br />

(hydr. Clays) Phyllosil. (hydr. Clays) Phyllosil.<br />

K + (l) 425,77 476<br />

N a + (l) 267,19 280<br />

Li + (l) 77,54 Li + (o) -50,71 -35,2<br />

M g 2+ (l) -100 -110 M g 2+ (o) -112 -103<br />

Ca 2+ (l) -32,34 -52 Ca 2+ (o) -74,4<br />

(N H 4) + (l) -28,4 -76,3 C r +3 (o) -158,6 -160,6<br />

M n +2 (l) -88 M n +2 (o) -122,9 -119,1<br />

Cu +2 (l) -136,7<br />

Co +2 (l) -110 Co 2+ (o) -132,2<br />

N i +2 (l) -114,8 N i +2 (o) -136,8 -135,3<br />

Cd +2 (l) -102,6<br />

Zn +2 (l) -121 Zn +2 (o) -140,3 -139,3<br />

Al +3 (l) -143,3 Al 3+ (o) -161,23 -157<br />

La +3 (l) -65,6<br />

Fe 2+ (l) -148,7 Fe 2+ (o) -134,4 -141<br />

Cs + (l) 565,9 562,1 Fe 3+ (o) -164,05 -168,5<br />

Rb + (l) 528,1 545,1 Ga 3+ (o) -167,6<br />

Ba 2+ (l) 157,6 73,7 T i 4+ (o) -180,5<br />

Sr 2+ (l) 123,4 18,8<br />

H + (l) -154,2 H + (o) -220<br />

I<strong>on</strong>s ∆GO −2 M z+ ∆GO −2 M z+ I<strong>on</strong>s ∆GO −2 M z+ ∆GO −2 M z+<br />

(hydr. Clays) Phyllosil. (hydr. Clays) Phyllosil.<br />

M g 2+ (b) -30<br />

Fe 2+ (b) -115<br />

Al 3+ (t) -197,31 -196 Al 3+ (b) -171<br />

Fe 3+ (t) -261,7 Fe 3+ (b) -210<br />

Ga 3+ (t) -241,9 Li + (b) 70<br />

Be 2+ (t) -193,9 M n 2+ (b) -87,3<br />

Zn 2+ (b) -129,1<br />

N i 2+ (b) -120,8<br />

Co 2+ (b) -114,5<br />

C r +3 (b) -173,1<br />

Ca 2+ (b) 4,7<br />

H + (b) -228<br />

Si 4+ (t) -169 Si 4+ (clay) -166,09<br />

H + (clay) -220<br />

tropies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir reference state, according to Eq. 5.50. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simple oxides used for <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong>s are also recorded in <str<strong>on</strong>g>the</str<strong>on</strong>g> same<br />

references.<br />

In column “M.2: Poles”, <str<strong>on</strong>g>the</str<strong>on</strong>g> poles that compose <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> under analysis assuming<br />

an ideal solid soluti<strong>on</strong> (method 2, Eq. 5.53) are given.


Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 389<br />

Column “M.3; 4; 6; 8: Ref. Minerals” includes <str<strong>on</strong>g>the</str<strong>on</strong>g> reference <str<strong>on</strong>g>mineral</str<strong>on</strong>g> used to determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substance c<strong>on</strong>sidered. Remember that in method 3,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reference <str<strong>on</strong>g>mineral</str<strong>on</strong>g> is decomposed ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r into its sulfides or oxides and <str<strong>on</strong>g>the</str<strong>on</strong>g> obtained<br />

∆H r and ∆G r is added to <str<strong>on</strong>g>the</str<strong>on</strong>g> weighted sum <str<strong>on</strong>g>of</str<strong>on</strong>g> enthalpies and free energies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simple sulfides or oxides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> under c<strong>on</strong>siderati<strong>on</strong> (see Eq. 5.55).<br />

In method 4, <str<strong>on</strong>g>the</str<strong>on</strong>g> same reacti<strong>on</strong> energy involved in a substituti<strong>on</strong> reacti<strong>on</strong> is applied<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> under analysis and for an isomorphous <strong>on</strong>e. For methods 6 and 8<br />

(<str<strong>on</strong>g>the</str<strong>on</strong>g> ∆O −2 method for <str<strong>on</strong>g>the</str<strong>on</strong>g> same family <str<strong>on</strong>g>of</str<strong>on</strong>g> compounds, and for different compounds<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> same cati<strong>on</strong>s, respectively), <str<strong>on</strong>g>the</str<strong>on</strong>g> reference <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s (at least 2) required for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter α in Eqs. 5.62 and 5.66 are given. If not specified,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> reference <str<strong>on</strong>g>mineral</str<strong>on</strong>g> will be used for <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both, ∆H 0<br />

f<br />

and ∆G0<br />

f .<br />

The properties <str<strong>on</strong>g>of</str<strong>on</strong>g> substances approximated with method 4 (<str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> Chermak<br />

and Rimstidt for silicate <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s) and 7 (<str<strong>on</strong>g>the</str<strong>on</strong>g> ∆O −2 method for hydrated clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

and for phyllosilicates), were obtained with <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> provided in tables<br />

A.17 and A.18, after decomposing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> into its c<strong>on</strong>stituent blocks.<br />

Column “M.9; 10: Ideal reacti<strong>on</strong>” shows <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> that takes place to form <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> under analysis. Remember that in method 9 (assuming ∆S f zero), it is<br />

assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> is zero. In method 10 (<str<strong>on</strong>g>the</str<strong>on</strong>g> element substituti<strong>on</strong><br />

method), <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> is approximated to zero. If<br />

not specified, <str<strong>on</strong>g>the</str<strong>on</strong>g> reference <str<strong>on</strong>g>mineral</str<strong>on</strong>g> will be used for <str<strong>on</strong>g>the</str<strong>on</strong>g> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both, ∆H 0<br />

f<br />

and ∆G 0<br />

f .<br />

For those substances whose properties were estimated with method 11 (<str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong><br />

method for hydrated <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s), <str<strong>on</strong>g>the</str<strong>on</strong>g> weighted enthalpy or Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid<br />

water c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> was added.<br />

The properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s estimated with method 12 are obtained through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

weighted sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simple blocks (ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r oxides or sulfides) that compose <str<strong>on</strong>g>the</str<strong>on</strong>g> substance.<br />

The properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simple compounds are mainly obtained from Faure<br />

[94] and Robie [284].


390 ADDITIONAL CALCULATIONS<br />

Table A.19: Estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standard enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Values in<br />

kJ/mole<br />

Mineral Formula ∆H 0 ∆G f<br />

0 M.2: Poles M.3; 4; 6; 8: Ref. Minerals M.9; 10: Ideal reacti<strong>on</strong> Meth. ±ɛ, References<br />

f<br />

%<br />

Actinolite Ca2M g3Fe 2Si8O 22(OH) 2 -11519,4 -10801,5 Ca2Fe 5Si8O 22(OH) 2 3 1 [94] [284]<br />

Aenigmatite N a2Fe 2+<br />

5 T iSi6O20 -8184,4 -7660,9 12 10 [284][94]<br />

Amblyg<strong>on</strong>ite Li0,75N a0,25Al(PO 4)<br />

-307,1 -282,7 Li0,75N a0,25Al(PO 4)<br />

10; 10 [284][94]<br />

F0,75(OH) 0,25<br />

F0,75(OH) 0,25 + 0, 75H2O 12<br />

→ Li0,75N a0,25Al(PO 4)(OH) 2 +<br />

0, 75H F<br />

Ankerite CaFe 2+<br />

0,6M g0,3Mn 2+<br />

0,1 (CO3) 2 -2076,8 -1923,1 12 10 [284][94]<br />

Anorthite CaAl 2Si2O 8 -4274,4 -4021,0 ∆H f : 1 [55]<br />

5<br />

Apatite Ca5(PO 4) 3(OH) 0,33<br />

-6773,4 -6386,9 Ca5(PO 4) 3F; Ca5(PO 4) 3Cl;<br />

Ca10(PO 4) 6Cl 2 +2H F → 3; 10 5 [94] [284]<br />

F0,33Cl 0,33<br />

Ca5(PO 4) 3OH<br />

Ca10(PO 4) 6F2+2HCl Axinite- Ca2Fe Fe<br />

2+ Al2BO 3 Si4O12(OH) -7640,4 -7180,9 12 10 [284][94]<br />

Bastnaesite La(CO 3)F -1660,9 -1527,8 SmOH · CO3 · 0, 5H2O; La(CO 3)F + 1, 5H2O → LaOH · 1; 8; 5 [222][391]<br />

N dOH · CO3 · 0, 5H2O CO3 · 0, 5H2O + H F<br />

10<br />

[223]<br />

[284]<br />

Beidellite N a0,33Al2,33Si3,67 O10(OH) 2 -5691,6 -5317,2 ∆H f<br />

3 1 [94] [284]<br />

Ca0,167Al2,33Si3,67O10(OH) 2<br />

Bertrandite Be4Si 2O7(OH) 2 -4586,1 -4300,6 1 0 [136]<br />

Beryl Be3Al 2Si6O 18 -9006,5 -8500,4 1 0 [136]<br />

Biotite K(M g2,5Fe 0,5)(Si3Al)O 10 -6079,4 -5706,7 K M g3(Si3Al)O 10(OH) 2; K Fe3(Si 3Al)O10(F) 2 from<br />

2; 4 1 [284][391]<br />

(OH) 1,75F0,25 K M g3(Si3Al)O 10(F) 2; K M g3(Si3Al)O 10(OH) 2 and<br />

K Fe3(Si 3Al)O10(OH) 2; K M g3(Si3Al)O 10(F) 2<br />

K Fe3(Si 3Al)O10(F) 2<br />

Bismutite Bi2(CO 3)O2 -968,0 -888,7 12 10 [284][94]<br />

Blomstran- U0,3Ca 0,2N b0,9Ti 0,8Al0,1 dite/ Fe<br />

Betafite<br />

3+<br />

0,1Ta -2884,5 -2683,8 12 10 [284][94]<br />

0,5O6(OH) Boulangerite P b5Sb 4S11 -1034,5 -1023,7 P b5S b4S11 → 5P bS + 2S b2S3 1; 9 5 [67] [284]<br />

Britholite Ca2,9Ce 0,9Th 0,6 La0,4N d0,2 -7057,3 -6666,9 Ca2,9Ce 0,9Th 0,6 La0,4N d0,2 10; 10 [284][94]<br />

Si2,7P0,5O12(OH) 1,8F0,2 Si2,7P0,5O12(OH) 0,8F0,2 + 0, 2H2O 12<br />

→ Ca2,9Ce 0,9Th 0,6 La0,4N d0,2 Si2,7P0,5O12(OH) 2 + 0, 2H F<br />

Br<strong>on</strong>zite M gFeSi 2O6 -2753,4 -2585,3 1 0 [309][284]<br />

Calaverite AuTe2 -19,0 -17,4 1 0 [255]<br />

Cancrinite N a6Ca 2Al6Si 6O24(CO 3) 2 -14980,9 -14136,3 12 10 [94]<br />

Chevkinite Ce1,7 La1,4Ca 0,8Th 0,1<br />

Fe 2+<br />

1,8M g0,5 T i2,5Fe 3+<br />

0,5Si -10499,8 -9894,5 12 10 [284][94]<br />

4O22 Chloritoid Fe 2+<br />

1,2M g0,6Mn 2+<br />

0,2<br />

-6606,9 -6152,6 FeAl 2SiO 5(OH) 2 3 1 [94] [284]<br />

Al4Si 2O10(OH) 4<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 391<br />

Table A.19: Estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standard enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Values in<br />

kJ/mole– c<strong>on</strong>tinued from previous page.<br />

References<br />

∆G0 M.2: Poles M.3; 4; 6; 8: Ref. Minerals M.9; 10: Ideal reacti<strong>on</strong> Meth. ±ɛ,<br />

f<br />

%<br />

Mineral Formula ∆H 0<br />

f<br />

Ch<strong>on</strong>drodite M g3,75Fe 2+<br />

1,25 (SiO4) 2<br />

-5023,0 -4701,4 M g3,75Fe F1,5(OH) 0,5<br />

2+<br />

1,25<br />

(SiO4) 2F1,5(OH) 0,5 + 1, 5H2O → M g3,75Fe 2+<br />

1,25 (SiO 5; 10 5 [55] [284]<br />

[94]<br />

4) 2(OH) 2 +<br />

1, 5H F<br />

Chrysocolla Cu2Si 2O6(H 2O) 4 -3279,4 -2964,6 ∆H 0:12<br />

10 [94] [400]<br />

f<br />

Clementite Fe 2+<br />

3 M g1,5Al Fe3+ -7657,8 -7043,1 5 1 [55]<br />

Si3AlO 12(OH) 6<br />

Clinochlore M g3,75Fe 1,25Al2 Si3O10(OH) 8 -8435,5 -7796,6 M g5Al2Si 3O10(OH) 8 3 1 [94] [284]<br />

Clinohumite M g6,75Fe 2,25Si4O 16<br />

-8966,4 -8410,0 M g6,75Fe 2,25Si4O 16<br />

10 1 [144][284]<br />

(OH) 0,5F1,5 (OH) 2 + 2, 25M gO →<br />

M g9Si4O 16(OH) 2 + 2, 25FeO;<br />

M g6,75Fe 2,25Si4O 16(OH) 0,5F1,5 +1, 5H F →<br />

M g6,75Fe 2,25Si4O 16(OH) 2+<br />

1, 5H2O Cancrinite N a6Ca 2Al6Si 6O24(CO 3) 2 -14980,9 -14136,3 12 10 [94]<br />

Cobaltite CoAsS -163,1 N.A. ∆H 0:FeAsS<br />

3 1 [284][391]<br />

f<br />

Colemanite Ca2B 6O11· 5H2O -6949,7 -6277,0 3CaO · B2O3; 2CaO · B2O3; 1; 6; 5 [319][284]<br />

CaO · 2B2O3 11<br />

Cooperite P t0,6Pd 0,3N i0,1S -79,8 -73,8 P tS 3 1 [94] [284]<br />

Crossite N a2M g2Fe 2+ Al2 -11600,3 -10925,8 N a2M g3Al2Si 8O22(OH) 2;<br />

(Si8O22)(OH) 2<br />

N a2Fe 2+<br />

3 Al 1; 2 1 [120][284]<br />

2Si8O 22(OH) 2<br />

CryptomelaneK8(M n 4+<br />

7,5M n2+<br />

0,5 ) O16 -3743,6 -3432,2 ∆H 0<br />

f :N a0,033Al0,02K0,12 M n0,94Fe 0,0375Sr0,016 Ba0,012O2; ∆G0 f : M n 3 1 [97] [94]<br />

[284]<br />

3O4 Cubanite CuFe 2S3 -293,7 -302,8 Cu5FeS 4 3 1 [241][226]<br />

[284]<br />

Delorenzite/ Y0,7Ca 0,2Ce 0,12(Ta0,7) 2 -2721,2 -2549,9 12 10 [284][94]<br />

Tanteux- (N b0,2) 2(T i0,1)O5,5(OH) 0,5<br />

enite<br />

Dietzeite Ca2(IO 3) 2(C rO4) -2425,4 -2148,1 12 10 [391]<br />

Eudyalite N a4Ca 2Fe 2+<br />

0,7M n0,3Z r<br />

-11859,9 -11062,9 N a12Ca 6Fe<br />

Si8O22(OH) 1,5Cl 1,5<br />

2+<br />

3<br />

N a4Ca 2Fe<br />

Z r3Si24O66(OH) 6<br />

2+<br />

0,7M n0,3Z r<br />

Si8O22(OH) 2 + 1, 5HCl<br />

→ N a4Ca 2Fe 2+<br />

0,7M n 1; 3; 1 [179][284]<br />

10<br />

0,3Z r<br />

Si8O22(OH) 1,5Cl 1,5 + 1, 5H2O Euxenite Y0,7Ca 0,2Ce 0,1(Ta0,2) 2<br />

-2671,5 -2506,3 12 10 [284][94]<br />

(N b0,7) 2(T i0,025)O6 Fergus<strong>on</strong>ite N d0,4Ce 0,4Sm0,1Y0,1N bO4 -2808,3 -2631,2 12 10 [284][94]<br />

Ferrocolum- Fe<br />

bite<br />

2+ N b2O6 -2172,8 -2631,2 12 10 [284][94]<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


392 ADDITIONAL CALCULATIONS<br />

Table A.19: Estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standard enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Values in<br />

kJ/mole– c<strong>on</strong>tinued from previous page.<br />

Mineral Formula ∆H 0 ∆G f<br />

0 M.2: Poles M.3; 4; 6; 8: Ref. Minerals M.9; 10: Ideal reacti<strong>on</strong> Meth. ±ɛ, References<br />

f<br />

%<br />

Ferrotantalite Fe2+ Ta2O6 -2319,3 -2163,9 12 10 [284][94]<br />

Francolite Ca5(PO4) 2,63 (CO3) 0,5F1,11 -5984,4 -5698,1 Ca10(PO 4) 6F2 1; 3; 1 [167][391]<br />

9<br />

Freibergite Ag7,2Cu 3,6Fe 2+<br />

1,2 Sb3AsS 13 -703,2 -727,5 Ag3SbS 3 3 5 [284]<br />

Gadolinite Y2Fe 2+ Be2(Si 2O10) -5220,0 -4943,3 12 10 [284][94]<br />

Garnierite (N i2M g)Si2O 5(OH) 4 -3494,6 -3267,1 (N i2M g)Si2O 5(OH) 4 +<br />

1; 7; 1 [383][143]<br />

2M gO → M g3Si2O 5(OH) 4 +<br />

9<br />

[284]<br />

2N iO<br />

Gedrite M g5Al2(Si 6Al2O 22)(OH) 2 -12319,7 -11584,2 1 0 [144]<br />

Glauc<strong>on</strong>ite (K0,6N a0,05)(Fe 3+<br />

1,3<br />

-5150,3 -4785,6 7 0,6 [383]<br />

M g0,4Fe 2+<br />

0,2Al3+ 0,15 )<br />

(Si3,8Al0,2)O10(OH) 2<br />

Helvine/ M n4Be3(SiO 4) 3S -5843,9 -5532,4 12 10 [284][94]<br />

Helvite<br />

Hollandite Ba0,8P b0,2N a0,125 Fe1,3Al0,2Si0,1 M n 2+<br />

0,5M n4+<br />

6 O 3 1 [97] [94]<br />

[284]<br />

16<br />

-4733,3 -4330,4 ∆H 0<br />

f :N a0,0125Al0,029Si0,01 K0,005Mn 0,82Fe 0,165<br />

Ba0,09P b0,02O2 · 0, 09H2O; ∆G0 f : M n3O4 Hornblende- Ca2Fe Fe<br />

2+<br />

4 Al0,75Fe 3+<br />

0,25<br />

-10976,4 -10303,7 Ca2M g4Al(Si 7AlO22)(OH) 2 3 [320][284]<br />

(Si7AlO 22)(OH) 2<br />

Humite M g5,25Fe 2+<br />

1,75 (SiO4) 3<br />

-6953,7 -6512,3 M g9Si4O 16(OH) 2 M g5,25Fe F1,5(OH) 0,5<br />

2+<br />

1,75 (SiO4) 3(OH) 2<br />

+1, 75M gO →<br />

M g9Si4O 16(OH) 2 + 1, 75FeO;<br />

M g5,25Fe 2+<br />

1,75 (SiO4) 3F1,5(OH) 0,5<br />

+1, 5H F →<br />

M g5,25Fe 2+<br />

1,75 (SiO 3; 10 5 [144]<br />

4) 3(OH) 2<br />

+1, 5H2O Hydrobiotite (K0,3Ca 0,1)(M g2,3Fe 3+<br />

0,6 -7362,2 -6238,9 (K0,3Ca 0,1)(M g2,3Fe Al0,1)(Si2,8Al1,2) O10((OH) 1,8F0,2) · 3(H2O) 3+<br />

0,6Al0,1) (Si2,8Al1,2)O10(OH) 1,8F0,2) ·<br />

3(H2O)+ 0, 2H F →<br />

(K0,3Ca 0,1)(M g2,3Fe 3+<br />

0,6Al 1; 7; 5 [382][143]<br />

10<br />

[284]<br />

0,1)<br />

(Si2,8Al1,2)O10(OH) 2 · 3(H2O) +<br />

0, 2H2O Hydromusco- K0,6(H3O) 0,4Al2M g0,4Fe vite<br />

2+<br />

0,1 -5886,2 -5499,1 5 1 [55]<br />

Si3,5O10(OH) 2<br />

HydrosodaliteN a8Al6Si 6O24 (OH) 2 -13408,5 -12678,2 N a8Al6Si 6O24Cl 2 N a8Al6Si 6O24SO4 + 2H2O → 3, 10 5 [187]<br />

N a8Al6Si 6O24(OH) 2 + H2SO4 Ilmenorutile T i0,7N b0,15Fe 2+<br />

0,225O2 -864,6 -813,2 T iO2; N b2O5; FeO 1; 2 1 [227][94]<br />

[284]<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 393<br />

Table A.19: Estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standard enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Values in<br />

kJ/mole– c<strong>on</strong>tinued from previous page.<br />

Mineral Formula ∆H 0 ∆G f<br />

0 M.2: Poles M.3; 4; 6; 8: Ref. Minerals M.9; 10: Ideal reacti<strong>on</strong> Meth. ±ɛ, References<br />

f<br />

%<br />

Jacobsite M n 2+<br />

0,6Fe2+ 0,3M g2+<br />

Fe 3+<br />

1,5M n3+<br />

0,5O -1237,4 -1137,5 M nFe2O 4; Fe2O4; FeM n2O4; FeM n2O4 + M nO → M nM n2O4 + 1; 2; 5 [227][285]<br />

M gFe<br />

4<br />

2O4; M nM n2O4; FeO<br />

9<br />

[284]<br />

M gMn 2O4 [227]<br />

[189]<br />

[118]<br />

Jadeite N aAl0,9Fe 3+<br />

0,1 (Si2O6) -2990,4 -2812,1 N aAlSi 2O6 3 1 [94] [284]<br />

Jarosite K Fe 3+<br />

3 (SO4) 2(OH) 6 -3521,7 -3318,7 ∆H 0<br />

f : 10 [94] [400]<br />

12<br />

Kernite N a2O · 2B2O3 · 4H2O -4104,9 -3713,1 N a2O · 2B2O3 · 4H2O → N a2O + 10 5 [284][94]<br />

2B2O3 + 4H2O Kornerupine M g1,1Fe 0,2Al5,7 -9172,9 -8624,8 Al6,75BSi 3O17,25(OH) 0,75 3 1 [135][284]<br />

(Si3,7B0,3)O17,2(OH) Lampro- N a2SrBaT i3Si4O 16(OH)F -8401,2 -7865,3 N a2SrBaT i3Si4O 16(OH)F + H2O 10; 10 [284][94]<br />

phyllite<br />

→ N a2SrBaT i3Si4O 16(OH) 2 + 12<br />

H F<br />

Lavenite N a1,1Ca 0,9Mn 2+<br />

0,5Fe2+ 0,5<br />

-4191,1 -3925,1 N a1,1Ca 0,9Mn<br />

Z r0,8Ti 0,1N b0,1(Si2O 7)<br />

O0,6(OH) 0,3F0,1 2+<br />

0,5Fe2+ 0,5<br />

Z r0,8Ti 0,1N b0,1(Si2O 7)<br />

O0,6(OH) 0,3F0,1 + 0, 1H2O → N a1,1Ca 0,9Mn 2+<br />

0,5Fe2+ 10; 10 [284][94]<br />

12<br />

0,5<br />

Z r0,8Ti 0,1N b0,1(Si2O 7)<br />

O0,6(OH) 0,4 + 0, 1H F<br />

Lawsenite CaAl 2Si2O 7(OH) 2 · H2O -4812,8 -4510,6 CaAl 2Si2O 2 3; 11 5 [284][94]<br />

Lepidolite K Li2AlSi 4O10F(OH) -6003,2 -5654,7 K M g3(Si3Al)O 10(OH) 2; K Li2AlSi 4O10F(OH) + H2O → 7; 4 1 [383][391]<br />

K M g3(Si3Al)O 10(F) 2<br />

K Li2AlSi 4O10(OH) 2 + H F<br />

Lepido- K Fe<br />

melane/<br />

Annite<br />

2+<br />

2,5M g0,5Fe 3+<br />

0,75<br />

-4995,0 -4642,3 K Fe3AlSi 3O10(OH) 2 3 1 [94] [284]<br />

Al0,25Si3O 10(OH) 2<br />

Loellingite FeAs2 -85,7 -80,2 1 0 [113]<br />

Loparite - N a0,6Ce 0,22 La0,11 -1430,8 -1721,8 12 10 [284][94]<br />

(Ce) Ca0,1Ti 0,8N b0,2O3 Manganite M nO(OH) -622,4 -557,3 ∆H 0<br />

f : 10 [284]<br />

12<br />

Microlite N a0,4Ca 1,6Ta2O 6,6<br />

-3208,3 -3004,3 N a0,4Ca 1,6Ta2O 6,6(OH) 0,3 F0,1 + 10; 10 [284][94]<br />

(OH) 0,3F0,1 0, 1H2O → N a0,4Ca 1,6Ta2O 6,6 12<br />

(OH) 0,4 + 0, 1H F<br />

Miserite KCa 2Ce 3Si8O 22 (OH) 1,5F0,5 -11738,2 -11035,1 KCa 2Ce 3Si8O 22(OH) 1,5F0,5 + 10; 10 [284][94]<br />

0, 5H2O → 12<br />

KCa 2Ce 3Si8O 22(OH) 2 + 0, 5H F<br />

M<strong>on</strong>azite Ce0,5 La0,25N d0,2 Th0,05(PO 4) -2074,0 -1943,3 12 10 [284][94]<br />

(Ce)<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


394 ADDITIONAL CALCULATIONS<br />

Table A.19: Estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standard enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Values in<br />

kJ/mole– c<strong>on</strong>tinued from previous page.<br />

Mineral Formula ∆H 0 ∆G f<br />

0 M.2: Poles M.3; 4; 6; 8: Ref. Minerals M.9; 10: Ideal reacti<strong>on</strong> Meth. ±ɛ, References<br />

f<br />

%<br />

M<strong>on</strong>tmori- N a0,165Ca 0,084Al2,33 -5523,8 -5354,5 Ca0,167Al2,33Si3,67O10(OH) 2;<br />

2 1 [94]<br />

ll<strong>on</strong>ite Si3,67O10(OH) 2<br />

N a0,33Al2,33Si3,67O10(OH) 2<br />

Murmanite N a4Ti 3,6N b0,4(Si2O 7) 2O4 · -9804,0 -9096,6 12 10 [284][94]<br />

4(H2O) Muscovite KAl3Si 3O10(OH) 1,8F0,2 -5991,3 -5616,6 K M g3(Si3Al)O 10(OH) 2; KAl3Si 3O10(OH) 1,8F0,2 4 1 [391][284]<br />

K M g3(Si3Al)O 10(F) 2<br />

+0, 2H2O → KAl3Si 3O10(OH) 2<br />

+0, 2H F<br />

Nepheline N a0,75K0,25Al(SiO 4) -2087,6 -1972,4 N aAlSiO 4 3 1 [94] [284]<br />

Neptunite KN a2 LiFe 2+<br />

1,5M n2+<br />

0,5 T i2Si8O 24 -10724,6 -10061,3 12 10 [284][94]<br />

N<strong>on</strong>tr<strong>on</strong>ite N a0.3Fe 3+<br />

2 (Si3,7 -6841,0 -5447,7 1; 7 0,6 [382][143]<br />

Al0,3)O10(OH) 2 · 4(H2O) [284]<br />

Nordite N a2,8Mn 2+<br />

0,2Sr0,5Ca 0,5<br />

-8020,8 -7532,2 12 10 [284][94]<br />

La0,33Ce 0,6Zn 0,6 M g0,4Si6O 17<br />

Nosean N a8Al6Si 6O24 SO4 -13936,7 -13131,5 N a8Al6Si 6O24SO4 + 2HCl → 10 5 [187]<br />

N a8Al6Si 6O24Cl 2 + H2SO4 Olivine M g1,6Fe 2+<br />

0.4 (SiO4) -2083,3 -1925,0 ∆H 0<br />

f : 1 [55]<br />

5<br />

Omphacite Ca0,6N a0,4M g0,6Al0,3 -3075,5 -2904,3 M gSi2O 6; N aFeSi 2O6; 2 1 [284]<br />

Fe0,1Si2O 6<br />

CaSi 2O6; N aAlSi 2O6 Opal SiO2· 0, 5H2O -1044,5 -967,9 11 5 [284]<br />

Orthite- Ca(Ce 0,4Ca 0,2Y0,133) Allanite (Al2Fe 3+ -6481,6 -6055,4 Ca2(Al 2Fe<br />

)Si3O12(OH) 3+ )Si3O12(OH) 3 1 [144][284]<br />

[94]<br />

Orthoclase KAlSi 3O8 -3977,5 -3752,1 1 0 [25]<br />

Palygorskite M gAlSi 4O10(OH) · 4(H2O) -6477,8 -5939,9 5 1 [55]<br />

Pentlandite Fe 2+<br />

4,5N i4,5S8 -778,3 -766,2 12 10 [284][94]<br />

Phlogopite K M g3AlSi 3O10F(OH) -6292,8 -5902,2 K M g3(Si3Al)O 10(OH) 2; K M g3AlSi 3O10F(OH)+H 2O → 4 1 [391][284]<br />

K M g3(Si3Al)O 10(F) 2<br />

K M g3AlSi 3O10(OH) 2+H F<br />

Pige<strong>on</strong>ite M g1,35Fe 0,55Ca 0,1(Si2O 6) -1535,4 -1448,8 M gSi2O 6; CaSi 2O6; 2 1 [284]<br />

Fe2Si 2O6; Pollucite Cs0,6N a0,2Rb0,1Al0,9 Si2,1O6 · -3297,1 -3074,2 12 10 [284][94]<br />

(H2O) Polycrase Y0,5Ca 0,1Ce 0,1U0,1 -2847,7 -2681,3 12 10 [284][94]<br />

(Y) Th0,1Ti 1,2N b0,6Ta0,2O6 Psilomelane Ba2Mn 2+<br />

2 M n4+<br />

3 O10 · 2H2O -2569,1 -2347,2 ∆H 0<br />

f :Ba0,4Mn 2+<br />

0,4 M n4+<br />

0,6O2 ·<br />

0, 4H2O; ∆G0 f : M n 3 1 [97] [94]<br />

[284]<br />

3O4 Pumpellyte Ca2M gAl2(SiO 4)<br />

-7148,6 -6672,5 Ca4M gAl5Si 6O21(OH) 7 3 1 [144][284]<br />

(Si2O7)(OH) 2 · H2O Pyrargirite Ag3SbS 3 -131,5 -142,2 Ag3S bS3 → 3<br />

2 Ag2S + 1<br />

2 S b2S3 9 5 [284]<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 395<br />

Table A.19: Estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standard enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Values in<br />

kJ/mole– c<strong>on</strong>tinued from previous page.<br />

References<br />

∆G0 M.2: Poles M.3; 4; 6; 8: Ref. Minerals M.9; 10: Ideal reacti<strong>on</strong> Meth. ±ɛ,<br />

f<br />

%<br />

Mineral Formula ∆H 0<br />

f<br />

10; 10 [284][94]<br />

12<br />

0, 25H F<br />

Ramsayite N a2Ti 2Si2O 9 -4360,1 -4103,9 12 10 [284][94]<br />

Realgar As4S4 -140,3 -132,7 1 0 [312]<br />

RhabdophaneCe0,75 La0,25(PO 4) · H2O -1964,9 -1821,9 LaPO 4; CePO4 2 1 [364][388]<br />

Riebeckite N a2Fe 2+<br />

3 Fe3+<br />

2 (Si8O22)(OH) 2 -10087,1 -9399,5 1 0 [94] [312]<br />

Rinkolite/ N a2Ca 3Ce 1,5Y0,5 -9415,1 -8808,5 N a2Ca 3Ce 1,5Y0,5 10; 10 [284][94]<br />

Mosan- T i0,4N b0,5Z r0,1(Si2O 7) 2<br />

T i0,4N b0,5Z r0,1(Si2O 7) 2<br />

12<br />

drite O1,5F3,5 O1,5F3,5 + 3, 5H2O →<br />

N a2Ca 3Ce 1,5Y0,5 T i0,4N b0,5Z r0,1(Si2O 7) 2<br />

O5 + 3, 5H F<br />

Ripidolite (M g3,75Fe 1,25Al)<br />

-8429,2 -7788,2 7 0,6 [383]<br />

(Si3Al)O 10(OH) 2(OH) 6<br />

Sams<strong>on</strong>ite Ag4MnSb2S 6 -444,9 -463,5 ∆H 0<br />

f :Ag3SbS 3 3 5 [284]<br />

Sanidine K0,75N a0,25AlSi 3O8 -3860,7 -3715,9 KAlSi 3O8 3 1 [94] [284]<br />

Scapolite- N a4Al3Si 9O24Cl -12197,4 -11504,2 1 0 [186][284]<br />

Marialite<br />

Serpentine M g3Si2O 5(OH) 4 -4363,4 -4035,4 1 0 [25]<br />

Stephanite Ag5SbS 4 -166,1 -184,5 ∆H 0<br />

f :Ag3SbS 3 3 5 [284]<br />

StilplomelaneK0, 8Fe8Al 0,85Si11,1 -16655,5 -15197,0 1 0 [210][210]<br />

O21(OH)8 · 6H2O [284]<br />

Tennantite Cu10Fe 2As4S 13 -1968,6 -1999,6 1 0 [303][284]<br />

Tetradymite Bi2Te 2S -100,2 -100,6 Bi2Te 3; Bi2S3 2 1 [226][94]<br />

Tetrahedrite Cu10Fe 2S b4S13 -1909,5 -1939,7 1 0 [303][284]<br />

Thoms<strong>on</strong>ite N aCa2Al5Si 5O20 · 6H2O -12413,7 -11543,9 5 1 [55]<br />

Thorite ThSiO 4 -2160,5 -2048,8 ThSiO 4 + UO2 → USiO 4 + ThO2 1; 9 5 [298][192]<br />

[284]<br />

Thortveitite Sc1,5Y0,5Si2O 7 -3740,2 -3540,6 Y2Si 2O7; Sc2Si2O 7 Sc2Si2O 7 + Al2O3 → Al2Si 2O7 +<br />

Sc2O3; s0 f :Y 2; 9 5 [62] [269]<br />

2Si2O 7 + Al2O3 →<br />

[213]<br />

Al2Si 2O7 + Y2O [391]<br />

3<br />

[284]<br />

Thuringite- (Fe3M g2Fe Chamosite<br />

3+<br />

0,5Al3+ 0,5 )<br />

-7596,0 -6981,9 7 0,6 [383]<br />

(Si3Al)O 10(OH) 2<br />

Titanite CaT iSiO5 -2597,1 -2455,1 1 0 [94] [312]<br />

Todorokite N a2Mn 4+<br />

4 M n3+<br />

2 O12· 3H2O -4037,4 -3576,5 ∆H 0<br />

f :M g0,19Mn 3+<br />

0,38<br />

M n 4+<br />

0,62O2 · 0, 75H2O; ∆G0 f :<br />

3 1 [97] [284]<br />

[94]<br />

M n3O4 C<strong>on</strong>tinued <strong>on</strong> next page . . .<br />

Pyrochlore N aCaN b2O6(OH) 0,75F0,25 -2897,9 -2687,3 N aCaN b2O6(OH) 0.75F0.25 +<br />

0, 25H2O → N aCaN b2O6(OH) +


396 ADDITIONAL CALCULATIONS<br />

Table A.19: Estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standard enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Values in<br />

kJ/mole– c<strong>on</strong>tinued from previous page.<br />

Mineral Formula ∆H 0 ∆G f<br />

0 M.2: Poles M.3; 4; 6; 8: Ref. Minerals M.9; 10: Ideal reacti<strong>on</strong> Meth. ±ɛ, References<br />

f<br />

%<br />

Topaz Al2(SiO 4)F1,1(OH) 0,9 -3044,4 -2875,2 Al2(SiO 4)F1,1(OH) 0,9+0,9H F → 10 5 [94]<br />

Al2SiO 4F2+0,9H2O Tourmaline- N aFe<br />

Schorl<br />

2+<br />

3 Al6(BO 3) 3Si6 -14401,4 -13453,5 1 0 [107][284]<br />

O18(OH) 4<br />

Ulexite N aCa(B 5O6(OH) 6)· 5H2O -6762,2 -6151,5 1 0 [293][284]<br />

Ulvöspinel T iFe 2+<br />

2 O4 -1489,4 -1392,9 12 10 [284][94]<br />

Vermiculite M g3Si4O 10(OH) 2 · 2(H2O) -7018,8 -5957,2 ∆H 0<br />

f : 10 [284]<br />

12<br />

Vernadite M n 4+<br />

0,6Fe3+ 0,2Ca 0,2<br />

-637,8 -571,4 ∆H<br />

N a0,1O1,5(OH) 0,5 · 1, 4(H2O) 0<br />

f :Ba0,13MnO2 · 0, 27H2O M n 4+<br />

0,6O2 · 0, 4H2O; ∆G0 f :<br />

3 1 [284][94]<br />

M n3O4 Violarite Fe2+ N i2S4 -378,0 -368,9 Fe2+ N i2S4 → 2<br />

3 N i3S4+ 1<br />

3 Fe2S3 +<br />

1<br />

3 FeS<br />

1; 9 1 [255][79]<br />

[241]<br />

Vivianite Fe3(PO 4) 2(H2O) 8 -4608,4 -4428,2 ∆H 0<br />

f : 10 [284]<br />

12<br />

Weinschen- Y PO4 -1987,7 -1871,1 1 0 [364][345]<br />

kite<br />

[284]<br />

[391]<br />

Wohlerite N aCa2Z r0,6N b0,4 -4439,7 -4170,0 N aCa2Z r0,6N b0,4 10; 10 [284][94]<br />

Si2O8,4(OH) 0,3F0,3 Si2O8,4(OH) 0,3F0,3 + 0, 3H2O 12<br />

→ N aCa2Z r0,6N b0,4 Si2O8,4(OH) 0,6 + 0, 3H F<br />

Wolframite Fe 2+<br />

0,5M n0,5W O4 -1246,2 -1146,4 FeW O4; M nW O4 2 1 [284]<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table


<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 397<br />

A.6 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources<br />

Table A.20 and A.21 show <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical Bch and c<strong>on</strong>centrati<strong>on</strong> Bc exergy, as well<br />

as <str<strong>on</strong>g>the</str<strong>on</strong>g>ir corresp<strong>on</strong>ding exergy cost (B∗ and B∗<br />

ch c ), <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong><br />

in 2006, <str<strong>on</strong>g>the</str<strong>on</strong>g> reserve, base reserve and world’s resources, collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS<br />

[362]. The specific chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substances bch are calculated with Eq.<br />

5.1. The c<strong>on</strong>centrati<strong>on</strong> exergies bc are calculated as <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong><br />

exergies obtained with <str<strong>on</strong>g>the</str<strong>on</strong>g> average <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> deposits<br />

(x m) and with <str<strong>on</strong>g>the</str<strong>on</strong>g> average c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust (x c), both are calculated<br />

with Eq. 5.10. The exergy costs are obtained with Eq. 5.46, and <str<strong>on</strong>g>the</str<strong>on</strong>g> unit<br />

exergy costs kch and kc from table 5.7. The average <str<strong>on</strong>g>mineral</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

crust and in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits are expressed as xc and xm, respectively.


398 ADDITIONAL CALCULATIONS<br />

Table A.20: The chemical exergy and exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong>, <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

reserves, base reserve and world resources. Values are expressed in ktoe if not specified<br />

Producti<strong>on</strong> Reserves Reserve base World resources<br />

bch [kJ/mol] kch [-] Bch B∗ B ch ch B∗ B ch ch B∗ B ch ch B∗ ch<br />

Aluminium 794,30 8 2,38E+04 1,91E+05 3,20E+06 2,57E+07 4,10E+06 3,29E+07 9,61E+06 7,72E+07<br />

Antim<strong>on</strong>y 437,10 10 1,15E+01 1,15E+02 1,80E+02 1,80E+03 3,69E+02 3,69E+03 N.A. N.A.<br />

Arsenic 494,10 10 9,42E+00 9,42E+01 1,88E+02 1,88E+03 2,83E+02 2,83E+03 1,73E+03 1,73E+04<br />

Barite 18,40 N.A. 1,50E+01 N.A. 3,58E+02 N.A. 1,66E+03 N.A. 3,77E+03 N.A.<br />

Beryllium 24,30 1 4,15E-03 4,15E-03 N.A. N.A. N.A. N.A. N.A. N.A.<br />

Bismuth 274,80 10 1,79E-01 1,79E+00 1,01E+01 1,01E+02 2,14E+01 2,14E+02 N.A. N.A.<br />

Bor<strong>on</strong> oxide 84,12 N.A. 1,23E+02 N.A. 4,91E+03 N.A. 1,18E+04 N.A. N.A. N.A.<br />

Bromine 50,56 N.A. 8,24E+00 N.A. N.A. N.A. N.A. N.A. N.A. N.A.<br />

Cadmium 293,15 10 1,20E+00 1,20E+01 3,05E+01 3,05E+02 7,48E+01 7,48E+02 3,74E+02 3,74E+03<br />

Cesium 404,46 1 N.A. N.A. 5,09E+00 5,09E+00 8,00E+00 8,00E+00 N.A. N.A.<br />

Chromium 584,40 1 1,57E+03 1,57E+03 N.A. N.A. N.A. N.A. 1,02E+06 1,02E+06<br />

Cobalt 308,89 10 8,45E+00 8,45E+01 8,77E+02 8,77E+03 1,63E+03 1,63E+04 1,88E+03 1,88E+04<br />

Copper 134,03 80 8,20E+02 6,58E+04 2,66E+04 2,13E+06 5,11E+04 4,09E+06 1,63E+05 1,31E+07<br />

Feldspar 35,02 N.A. 4,63E+01 N.A. N.A. N.A. N.A. N.A. N.A. N.A.<br />

Fluorspar 112,64 N.A. 1,84E+02 N.A. 8,27E+03 N.A. 1,65E+04 N.A. 1,72E+04 N.A.<br />

Gallium 514,61 1 1,29E-02 1,29E-02 N.A. N.A. N.A. N.A. 1,76E+02 1,76E+02<br />

Germanium 556,48 1 1,65E-02 1,65E-02 N.A. N.A. N.A. N.A. N.A. N.A.<br />

Gold 51,50 1 1,54E-02 1,54E-02 2,62E-01 2,62E-01 5,62E-01 5,62E-01 N.A. N.A.<br />

Graphite 410,25 N.A. 8,40E+02 N.A. 7,02E+04 N.A. 1,71E+05 N.A. 6,53E+05 N.A.<br />

Gypsum 17,92 N.A. 1,74E+02 N.A. 0,00E+00 N.A. 0,00E+00 N.A. N.A. N.A.<br />

Hafnium 1061,31 1 N.A. N.A. 8,64E+01 8,64E+01 1,56E+02 1,56E+02 N.A. N.A.<br />

Helium 30,37 1 5,09E+00 5,09E+00 N.A. N.A. 1,17E+03 1,17E+03 N.A. N.A.<br />

Indium 437,36 10 5,29E-02 5,29E-01 1,00E+00 1,00E+01 1,46E+00 1,46E+01 N.A. N.A.<br />

Iodine 87,48 N.A. 4,12E-01 N.A. 2,47E+02 N.A. 4,45E+02 N.A. 5,60E+02 N.A.<br />

Ir<strong>on</strong> 376,84 5 1,40E+05 7,41E+05 1,18E+07 6,25E+07 2,58E+07 1,37E+08 3,71E+07 1,97E+08<br />

Lead 232,18 25 9,29E+01 2,36E+03 2,11E+03 5,37E+04 4,55E+03 1,15E+05 4,02E+04 1,02E+06<br />

Lithium 392,92 1 4,50E+02 4,50E+02 5,54E+03 5,54E+03 1,49E+04 1,49E+04 1,76E+04 1,76E+04<br />

Magnesium 629,60 1 4,26E+02 4,26E+02 N.A. N.A. N.A. N.A. N.A. N.A.<br />

Manganese 484,64 1 2,51E+03 2,51E+03 9,69E+04 9,69E+04 1,10E+06 1,10E+06 N.A. N.A.<br />

Mercury 114,77 10 2,02E-02 2,02E-01 6,29E-01 6,29E+00 3,28E+00 3,28E+01 8,20E+00 8,20E+01<br />

Molybdenum 730,50 1 3,35E+01 3,35E+01 1,56E+03 1,56E+03 3,46E+03 3,46E+03 2,36E+03 2,36E+03<br />

Nickel 232,48 58 1,49E+02 8,70E+03 6,34E+03 3,69E+05 1,42E+04 8,26E+05 N.A. N.A.<br />

Niobium 900,20 1 1,03E+01 1,03E+01 6,25E+02 6,25E+02 6,94E+02 6,94E+02 N.A. N.A.<br />

Phosphate rock (as fosforite) 360,45 1 1,21E+03 1,21E+03 1,54E+05 1,54E+05 4,27E+05 4,27E+05 N.A. N.A.<br />

PGM 146,52 N.A. 9,29E-03 N.A. 1,27E+00 N.A. 1,44E+00 N.A. 1,79E+00 N.A.<br />

Potash (K2O) 416,26 1 3,07E+03 3,07E+03 8,76E+05 8,76E+05 1,90E+06 1,90E+06 2,64E+07 2,64E+07<br />

REE (as Ce2O 3) 408,21 N.A. 3,65E+00 N.A. 2,61E+03 N.A. 4,46E+03 N.A. N.A. N.A.<br />

Rhenium 561,34 10 3,40E-03 3,40E-02 1,80E-01 1,80E+00 7,20E-01 7,20E+00 7,92E-01 7,92E+00<br />

Selenium 346,70 1 1,62E-01 1,62E-01 8,60E+00 8,60E+00 1,78E+01 1,78E+01 N.A. N.A.<br />

Silver 69,73 10 3,12E-01 3,12E+00 4,17E+00 4,17E+01 8,80E+00 8,80E+01 N.A. N.A.<br />

Str<strong>on</strong>tium 758,76 N.A. 1,21E+02 N.A. 1,41E+03 N.A. 2,48E+03 N.A. 2,07E+05 N.A.<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 399<br />

Table A.20: The chemical exergy and exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong>, <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

reserves, base reserve and world resources. Values are expressed in ktoe if not specified.– c<strong>on</strong>tinued<br />

from previous page.<br />

Producti<strong>on</strong> Reserves Reserve base World resources<br />

bch [kJ/mol] kch [-] Bch B∗ B ch ch B∗ B ch ch B∗ B ch ch B∗ ch<br />

Tantalum 974,85 1 2,97E-01 2,97E-01 2,78E+01 2,78E+01 3,85E+01 3,85E+01 N.A. N.A.<br />

Tellurium 326,36 1 8,07E-03 8,07E-03 1,28E+00 1,28E+00 2,87E+00 2,87E+00 N.A. N.A.<br />

Thorium 1214,50 N.A. 0,00E+00 N.A. 1,32E+02 N.A. 1,54E+02 N.A. N.A. N.A.<br />

Tin 547,58 1 3,33E+01 3,33E+01 6,72E+02 6,72E+02 1,21E+03 1,21E+03 N.A. N.A.<br />

Titanium (T iO2) 18,84 1 3,27E+01 3,27E+01 4,11E+03 4,11E+03 8,45E+03 8,45E+03 1,13E+04 1,13E+04<br />

Vanadium 721,48 1 1,90E+01 1,90E+01 4,40E+03 4,40E+03 1,29E+04 1,29E+04 2,13E+04 2,13E+04<br />

Wolfram 827,70 1 9,77E+00 9,77E+00 3,12E+02 3,12E+02 6,78E+02 6,78E+02 N.A. N.A.<br />

Zinc 339,02 13 1,24E+03 1,64E+04 2,23E+04 2,94E+05 5,95E+04 7,85E+05 2,35E+05 3,11E+06<br />

Zirc<strong>on</strong> (Z rO2) 46,21 1 1,06E+01 1,06E+01 3,40E+02 3,40E+02 6,45E+02 6,45E+02 N.A. N.A.<br />

Sum 1,77E+05 1,03E+06 1,63E+07 9,22E+07 3,37E+07 1,79E+08 7,55E+07 3,19E+08<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table


400 ADDITIONAL CALCULATIONS<br />

Table A.21: The c<strong>on</strong>centrati<strong>on</strong> exergy and exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong>,<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves, base reserve and world resources. Values are expressed in ktoe if not specified<br />

Producti<strong>on</strong> Reserves Reserve base World resources<br />

xm [g/g] xc [g/g] kc [-] Bc B∗ c Bc B∗ c Bc B∗ c Bc B∗ c<br />

Aluminium 4,60E-01 8,15E-02 2250 1,46E+02 3,28E+05 1,97E+04 4,42E+07 2,52E+04 5,66E+07 5,90E+04 1,33E+08<br />

Antim<strong>on</strong>y 3,78E-02 4,00E-07 28 7,48E-01 2,12E+01 1,17E+01 3,33E+02 2,40E+01 6,82E+02 N.A. N.A.<br />

Arsenic 1,00E-02 4,80E-06 80 3,61E-01 2,89E+01 7,23E+00 5,78E+02 1,08E+01 8,67E+02 6,65E+01 5,32E+03<br />

Barite 8,30E-01 4,13E-06 N.A. 2,60E+01 N.A. 6,19E+02 N.A. 2,87E+03 N.A. 6,52E+03 N.A.<br />

Beryllium 1,00E-02 2,10E-06 112 3,59E-03 4,01E-01 N.A. N.A. N.A. N.A. N.A. N.A.<br />

Bismuth 2,00E-03 1,60E-07 90 1,52E-02 1,37E+00 8,56E-01 7,69E+01 1,82E+00 1,63E+02 N.A. N.A.<br />

Bor<strong>on</strong> oxide 2,00E-01 1,70E-05 N.A. 3,44E+01 N.A. 1,37E+03 N.A. 3,31E+03 N.A. N.A. N.A.<br />

Bromine 5,00E-03 5,00E-03 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.<br />

Cadmium 1,00E-04 9,00E-08 804 7,13E-02 5,73E+01 1,81E+00 1,45E+03 4,43E+00 3,56E+03 2,22E+01 1,78E+04<br />

Cesium 2,33E-01 4,90E-06 N.A. N.A. N.A. 3,40E-01 N.A. 5,34E-01 N.A. N.A. N.A.<br />

Chromium 4,35E-01 9,20E-05 37 5,81E+01 2,13E+03 N.A. N.A. N.A. N.A. 3,77E+04 1,38E+06<br />

Cobalt 1,08E-03 1,73E-05 1262 2,80E-01 3,54E+02 2,91E+01 3,67E+04 5,40E+01 6,81E+04 6,23E+01 7,86E+04<br />

Copper 5,80E-03 2,80E-05 343 8,10E+01 2,78E+04 2,63E+03 9,01E+05 5,04E+03 1,73E+06 1,61E+04 5,52E+06<br />

Feldspar 4,50E-01 1,45E-01 N.A. 4,34E+00 N.A. N.A. N.A. N.A. N.A. N.A. N.A.<br />

Fluorspar 2,50E-01 1,32E-06 N.A. 4,97E+01 N.A. 2,24E+03 N.A. 4,47E+03 N.A. 4,66E+03 N.A.<br />

Gallium 2,30E-05 1,75E-05 N.A. 1,69E-05 N.A. N.A. N.A. N.A. N.A. 2,32E-01 N.A.<br />

Germanium 5,00E-05 1,40E-06 N.A. 2,63E-04 N.A. N.A. N.A. N.A. N.A. N.A. N.A.<br />

Gold 2,20E-07 1,50E-09 422879 3,69E-03 1,56E+03 6,30E-02 2,66E+04 1,35E-01 5,71E+04 N.A. N.A.<br />

Graphite 5,00E-01 1,99E-03 N.A. 2,96E+01 N.A. 2,47E+03 N.A. 6,04E+03 N.A. 2,30E+04 N.A.<br />

Gypsum 8,00E-01 1,08E-04 N.A. 2,28E+02 N.A. N.A. N.A. N.A. N.A. N.A. N.A.<br />

Hafnium 6,00E-05 5,30E-06 N.A. N.A. N.A. 4,89E-01 N.A. 8,83E-01 N.A. N.A. N.A.<br />

Helium 7,00E-02 7,00E-02 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.<br />

Indium 1,40E-04 5,60E-08 N.A. 2,34E-03 N.A. 4,44E-02 N.A. 6,46E-02 N.A. N.A. N.A.<br />

Iodine 1,60E-04 1,40E-06 N.A. 5,53E-02 N.A. 3,32E+01 N.A. 5,97E+01 N.A. 7,52E+01 N.A.<br />

Ir<strong>on</strong> 5,11E-01 3,92E-02 97 2,63E+03 2,56E+05 2,22E+05 2,16E+07 4,86E+05 4,73E+07 6,98E+05 6,80E+07<br />

Lead 2,05E-02 1,70E-05 219 7,05E+00 1,54E+03 1,60E+02 3,51E+04 3,45E+02 7,55E+04 3,05E+03 6,66E+05<br />

Lithium 4,00E-04 2,40E-05 158 N.A. N.A. 9,84E+01 1,56E+04 2,64E+02 4,18E+04 3,12E+02 4,93E+04<br />

Magnesium 4,50E-01 1,50E-02 1 6,15E+00 6,15E+00 N.A. N.A. N.A. N.A. N.A. N.A.<br />

Manganese 3,15E-01 7,74E-04 284 7,93E+01 2,25E+04 3,07E+03 8,71E+05 3,47E+04 9,84E+06 N.A. N.A.<br />

Mercury 3,83E-03 5,00E-08 1707 4,91E-03 8,39E+00 1,53E-01 2,61E+02 7,97E-01 1,36E+03 1,99E+00 3,40E+03<br />

Molybdenum 3,10E-04 1,10E-06 947 6,41E-01 6,07E+02 3,00E+01 2,84E+04 6,62E+01 6,26E+04 4,53E+01 4,29E+04<br />

Nickel 1,30E-02 4,70E-05 432 8,97E+00 3,87E+03 3,80E+02 1,64E+05 8,51E+02 3,68E+05 N.A. N.A.<br />

Niobium 6,38E-03 1,20E-05 N.A. 1,78E-01 N.A. 1,08E+01 N.A. 1,20E+01 N.A. N.A. N.A.<br />

Phosphate rock (as fosforite) 1,10E-03 4,03E-04 44 8,34E+00 3,66E+02 1,06E+03 4,64E+04 2,94E+03 1,29E+05 N.A. N.A.<br />

PGM 8,02E-07 5,00E-10 N.A. 1,16E-03 N.A. 1,59E-01 N.A. 1,79E-01 N.A. 2,24E-01 N.A.<br />

Potash (K2O) 2,50E-01 2,32E-02 39 4,58E+01 1,77E+03 1,31E+04 5,04E+05 2,83E+04 1,09E+06 3,93E+05 1,52E+07<br />

REE (as Ce2O 3) 9,70E-04 6,30E-05 N.A. 6,07E-02 N.A. 4,34E+01 N.A. 7,40E+01 N.A. N.A. N.A.<br />

Rhenium 2,23E-04 1,98E-10 1939 2,09E-04 4,06E-01 1,11E-02 2,15E+01 4,43E-02 8,59E+01 4,87E-02 9,45E+01<br />

Selenium 2,50E-02 9,00E-08 N.A. 1,45E-02 N.A. 7,72E-01 N.A. 1,60E+00 N.A. N.A. N.A.<br />

Silver 4,30E-06 5,30E-08 7042 4,88E-02 3,43E+02 6,52E-01 4,59E+03 1,38E+00 9,69E+03 N.A. N.A.<br />

Str<strong>on</strong>tium 3,40E-01 3,20E-04 0 2,83E+00 0,00E+00 3,29E+01 0,00E+00 5,81E+01 0,00E+00 4,84E+03 N.A.<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources 401<br />

Table A.21: The c<strong>on</strong>centrati<strong>on</strong> exergy and exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong>,<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves, base reserve and world resources. Values are expressed in ktoe if not specified.–<br />

c<strong>on</strong>tinued from previous page.<br />

Producti<strong>on</strong> Reserves Reserve base World resources<br />

xm [g/g] xc [g/g] kc [-] Bc B∗ c Bc B∗ c Bc B∗ c Bc B∗ c<br />

Tantalum 6,50E-03 9,00E-07 12509 6,71E-03 8,39E+01 6,28E-01 7,86E+03 8,70E-01 1,09E+04 N.A. N.A.<br />

Tellurium 1,00E-06 5,00E-09 N.A. 3,25E-04 N.A. 5,16E-02 N.A. 1,16E-01 N.A. N.A. N.A.<br />

Thorium 3,00E-02 1,05E-05 N.A. N.A. N.A. 2,15E+00 N.A. 2,50E+00 N.A. N.A. N.A.<br />

Tin 4,80E-03 2,10E-06 1493 1,17E+00 1,74E+03 2,35E+01 3,52E+04 4,25E+01 6,34E+04 N.A. N.A.<br />

Titanium (T iO2) 6,90E-03 3,84E-03 348 2,53E+00 8,80E+02 3,18E+02 1,11E+05 6,53E+02 2,28E+05 8,71E+02 3,03E+05<br />

Vanadium 2,00E-02 9,70E-05 572 3,49E-01 2,00E+02 8,07E+01 4,61E+04 2,36E+02 1,35E+05 3,91E+02 2,24E+05<br />

Wolfram 7,17E-03 1,90E-06 3105 2,41E-01 7,48E+02 7,70E+00 2,39E+04 1,67E+01 5,19E+04 N.A. N.A.<br />

Zinc 4,06E-02 6,70E-05 126 5,82E+01 7,33E+03 1,05E+03 1,32E+05 2,79E+03 3,52E+05 1,11E+04 1,39E+06<br />

Zirc<strong>on</strong> (Z rO2) 2,69E-03 1,93E-04 7744 1,49E+00 1,16E+04 4,81E+01 3,73E+05 9,12E+01 7,06E+05 N.A. N.A.<br />

Sum 3,51E+03 6,69E+05 2,70E+05 6,92E+07 6,04E+05 1,19E+08 1,26E+06 2,25E+08<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table


402 ADDITIONAL CALCULATIONS<br />

A.7 Australian fossil fuel producti<strong>on</strong><br />

A.7.1 Coal<br />

Table A.22 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian coal producti<strong>on</strong> from 1913 to 2006. The data has<br />

been obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> British Geological Survey’s historical statistics [159], [157],<br />

[52], [250], [154], [155], [30], [31] and [29].<br />

Table A.22: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian coal producti<strong>on</strong>. Values in kt<strong>on</strong>s<br />

Year Anthrac. Bitum. Subbit. Lign. Year Anthrac. Bitum. Subbit. Lign.<br />

1912 1960 51 20975 1908 15210<br />

1913 12619 1961 60 22347 1988 16543<br />

1914 12657 1962 70 22362 2433 17415<br />

1915 11600 1963 62 22629 2568 18756<br />

1916 9971 1964 74 24840 2891 19341<br />

1917 10398 1965 71 28685 3191 20993<br />

1918 11126 1966 47 30568 3297 22136<br />

1919 10695 1967 39 31806 3425 23763<br />

1920 13178 1968 30 37350 3542 23346<br />

1921 13087 1969 15 42349 3735 23282<br />

1922 12498 1970 46063 3482 24175<br />

1923 12720 119 1971 45841 3161 23382<br />

1924 13980 130 1972 59389 3300 23697<br />

1925 13850 891 1973 57355 3298 24676<br />

1926 13465 973 1974 66474 3975 27303<br />

1927 13742 1479 1975 62417 3300 23697<br />

1928 12032 1618 1976 69676 5008 28178<br />

1929 10533 1769 1977 72679 5529 29250<br />

1930 9686 1861 1978 74094 5733 32860<br />

1931 8537 2230 1979 72679 5529 29250<br />

1932 8725 2655 1980 76794 6365 32597<br />

1933 9239 2622 1981 93405 7190 32990<br />

1934 9734 2660 1982 99109 7992 37821<br />

1935 11064 2257 1983 99828 8998 34191<br />

1936 11555 3094 1984 116018 8288 35166<br />

1937 12270 3449 1985 158256 36985<br />

1938 11869 3735 1986 170067 37604<br />

1939 1987 178399 44877<br />

1940 1988 176604 43450<br />

1941 14443 4640 1989 190085 48252<br />

1942 14612 2 5014 1990 162957 47725<br />

1943 14423 5174 1991 167472 52124<br />

1944 13944 35 5098 1992 179144 50228<br />

1945 13020 42 5533 1993 180045 48458<br />

1946 14000 138 5799 1994 182553 48582<br />

1947 14901 196 6240 1995 193534 50751<br />

1948 15022 6801 1996 198638 53604<br />

1949 14336 7495 1997 216690 58160<br />

1950 16816 7446 1998 222040 65600<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


Australian fossil fuel producti<strong>on</strong> 403<br />

Table A.22: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian coal producti<strong>on</strong>. Values in kt<strong>on</strong>s–<br />

c<strong>on</strong>tinued from previous page.<br />

Year Anthrac. Bitum. Subbit. Lign. Year Anthrac. Bitum. Subbit. Lign.<br />

1951 16373 1521 7963 1999 232860 65820<br />

1952 18084 1635 8235 2000 244840 67363<br />

1953 17119 1590 8391 2001 266710 64958<br />

1954 18212 1871 9482 2002 272560 66661<br />

1955 17979 1608 10276 2003 280700 66809<br />

1956 18050 1536 10731 2004 294810 66343<br />

1957 18596 1645 10915 2005 308000 67152<br />

1958 58 18917 1798 11832 2006 316000 67737<br />

1959 55 18877 1695 13246<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

A.7.2 Oil<br />

Table A.23 shows Australian oil producti<strong>on</strong> from 1913 to 2006. The data has been<br />

obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> British Geological Survey’s historical statistics [159], [157], [52],<br />

[250], [154], [155], [30], [31] and [29]. For <str<strong>on</strong>g>the</str<strong>on</strong>g> period between 1931 to 1940,<br />

oil data corresp<strong>on</strong>ds <strong>on</strong>ly to <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Victoria. Until 1964, <str<strong>on</strong>g>the</str<strong>on</strong>g> statistics include<br />

crude petroleum plus oil shale.<br />

Table A.23: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian oil producti<strong>on</strong>. Values in kt<strong>on</strong>s<br />

Year kt<strong>on</strong>s Year kt<strong>on</strong>s Year kt<strong>on</strong>s Year kt<strong>on</strong>s<br />

1913 5,52 1937 0,04 1961 1985 30447<br />

1914 16,26 1938 0,03 1962 1986 27151<br />

1915 5,03 1939 0,02 1963 1987 29076<br />

1916 5,66 1940 0,02 1964 278 1988 27493<br />

1917 10,27 1941 1965 334 1989 25908<br />

1918 10,52 1942 1966 432 1990 30548<br />

1919 10,15 1943 1967 993 1991 28835<br />

1920 8,12 1944 1968 1818 1992 28326<br />

1921 1945 1969 2065 1993 26300<br />

1922 1946 1970 8541 1994 28505<br />

1923 1947 1971 14803 1995 27031<br />

1924 1948 0,12 1972 15685 1996 28407<br />

1925 1949 0,14 1973 20635 1997 30000<br />

1926 1950 0,16 1974 24559 1998 28000<br />

1927 1951 0,27 1975 21738 1999 27000<br />

1928 1952 1976 22122 2000 37000<br />

1929 1953 1977 22793 2001 34000<br />

1930 1954 1978 22976 2002 33000<br />

1931 0,08 1955 1979 23141 2003 27000<br />

1932 0,08 1956 1980 19451 2004 20748<br />

C<strong>on</strong>tinued <strong>on</strong> next page . . .


404 ADDITIONAL CALCULATIONS<br />

Table A.23: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian oil producti<strong>on</strong>. Values in kt<strong>on</strong>s.–<br />

c<strong>on</strong>tinued from previous page.<br />

A.7.3 Natural gas<br />

Year kt<strong>on</strong>s Year kt<strong>on</strong>s Year kt<strong>on</strong>s Year kt<strong>on</strong>s<br />

1933 0,08 1957 1981 19799 2005 21439<br />

1934 0,02 1958 1982 18839 2006 20831<br />

1935 0,02 1959 1983 21209<br />

1936 0,02 1960 1984 26377<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

Table A.24 shows Australian natural gas producti<strong>on</strong> from 1961 to 2006. The data<br />

has been obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> British Geological Survey’s historical statistics [154],<br />

[155], [155], [30], [31] and [29].<br />

Table A.24: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian natural gas producti<strong>on</strong>. Values in<br />

milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cubic meters<br />

Year M m 3 Year M m 3 Year M m 3 Year M m 3<br />

1961 0,34 1973 4099 1985 13470 1997 29876<br />

1962 1,6 1974 4677 1986 14714 1998 30361<br />

1963 2,7 1975 5026 1987 15023 1999 30755<br />

1964 3,0 1976 5929 1988 15383 2000 31165<br />

1965 4,0 1977 6728 1989 17806 2001 32482<br />

1966 4,0 1978 7320 1990 20620 2002 32606<br />

1967 4,3 1979 8381 1991 21694 2003 33180<br />

1968 6,1 1980 9567 1992 23462 2004 35224<br />

1969 265 1981 11260 1993 24457 2005 37129<br />

1970 1502 1982 11565 1994 28147 2006 38883<br />

1971 2274 1983 11581 1995 29761<br />

1972 3188 1984 12600 1996 29799<br />

A.8 World’s fuel producti<strong>on</strong><br />

A.8.1 Uranium<br />

Table A.25 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uranium in western countries and <str<strong>on</strong>g>the</str<strong>on</strong>g> world<br />

producti<strong>on</strong> from 1945 to 2006. Approximate data about uranium producti<strong>on</strong> in<br />

western countries is extracted from <str<strong>on</strong>g>the</str<strong>on</strong>g> World Nuclear Associati<strong>on</strong> [408]. For world<br />

producti<strong>on</strong> data, it has been assumed that western countries c<strong>on</strong>tribute to about 69


World’s fuel producti<strong>on</strong> 405<br />

% <str<strong>on</strong>g>of</str<strong>on</strong>g> total world producti<strong>on</strong>. From 2002 to 2006, world producti<strong>on</strong> informati<strong>on</strong> is<br />

directly provided by <str<strong>on</strong>g>the</str<strong>on</strong>g> WNA [408].<br />

Table A.25: Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uranium in western countries and in <str<strong>on</strong>g>the</str<strong>on</strong>g> world.<br />

Values are expressed in t<strong>on</strong>s<br />

Year Producti<strong>on</strong><br />

w. countries<br />

[408]<br />

World producti<strong>on</strong><br />

Year Producti<strong>on</strong><br />

w. countries<br />

[408]<br />

1945 500 725 1976 24000 34783<br />

1946 500 725 1977 29000 42029<br />

1947 500 725 1978 35000 50725<br />

1948 1500 2174 1979 39000 56522<br />

1949 1500 2174 1980 45000 65217<br />

1950 3000 4348 1981 45000 65217<br />

1951 3000 4348 1982 42000 60870<br />

1952 2000 2899 1983 36000 52174<br />

1953 4500 6522 1984 38000 55072<br />

1954 6500 9420 1985 35000 50725<br />

1955 7500 10870 1986 36500 52899<br />

1956 10300 14928 1987 34500 50000<br />

1957 20000 28986 1988 36000 52174<br />

1958 30000 43478 1989 33000 47826<br />

1959 34000 49275 1990 27500 39855<br />

1960 32000 46377 1991 26000 37681<br />

1961 28000 40580 1992 23000 33333<br />

1962 25500 36957 1993 22500 32609<br />

1963 23000 33333 1994 22500 32609<br />

1964 22500 32609 1995 25000 36232<br />

1965 15300 22174 1996 27500 39855<br />

1966 15000 21739 1997 28000 40580<br />

1967 15400 22319 1998 26500 38406<br />

1968 17000 24638 1999 22500 32609<br />

1969 17000 24638 2000 26500 38406<br />

1970 18300 26522 2001 27500 39855<br />

1971 19000 27536 2002 26000 36063<br />

1972 20000 28986 2003 25000 35613<br />

1973 20000 28986 2004 28000 40251<br />

1974 19000 27536 2005 41702<br />

1975 20000 28986 2006 39429<br />

A.8.2 Coal<br />

World producti<strong>on</strong><br />

Table A.26 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s coal producti<strong>on</strong> from 1900 to 2006. The data from<br />

1981 to 2006 has been extracted from BP [35]. From 1900 to 1912 <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong><br />

has been obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong>s d<strong>on</strong>e by Ortiz [253]. From 1913 to 1981,


406 ADDITIONAL CALCULATIONS<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> data was obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> British Geological Survey’s historical statistics [159],<br />

[157], [52], [250], [154].<br />

A.8.3 Oil<br />

Table A.26: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s coal producti<strong>on</strong><br />

Year Mt coal Year Mt coal Year Mt coal Year Mt coal<br />

1900 1927 1450,0 1954 1940,0 1981 3831,1<br />

1901 800,0 1928 1440,0 1955 2100,0 1982 3980,1<br />

1902 820,0 1929 1540,0 1956 2220,0 1983 3986,8<br />

1903 850,0 1930 1390,0 1957 2300,0 1984 4191,5<br />

1904 900,0 1931 1240,0 1958 2400,0 1985 4420,8<br />

1905 920,0 1932 1110,0 1959 2480,0 1986 4528,8<br />

1906 1000,0 1933 1150,0 1960 2590,0 1987 4629,9<br />

1907 1100,0 1934 1260,0 1961 2440,0 1988 4735,7<br />

1908 1080,0 1935 1310,0 1962 2510,0 1989 4818,5<br />

1909 1100,0 1936 1420,0 1963 2610,0 1990 4718,6<br />

1910 1190,0 1937 1510,0 1964 2710,0 1991 4538,8<br />

1911 1200,0 1938 1420,0 1965 2760,0 1992 4500,2<br />

1912 1210,0 1939 1550,0 1966 2790,0 1993 4382,5<br />

1913 1320,1 1940 1660,0 1967 2677,0 1994 4470,5<br />

1914 1160,0 1941 1745,0 1968 2702,0 1995 4592,5<br />

1915 1175,3 1942 1756,0 1969 2826,0 1996 4667,7<br />

1916 1258,7 1943 1770,0 1970 2944,0 1997 4702,1<br />

1917 1310,4 1944 1420,0 1971 2950,0 1998 4555,7<br />

1918 1234,3 1945 1324,0 1972 3041,0 1999 4544,5<br />

1919 1084,7 1946 1445,0 1973 3065,0 2000 4606,6<br />

1920 1302,0 1947 1622,0 1974 3107,0 2001 4819,2<br />

1921 1118,0 1948 1698,0 1975 3253,0 2002 4852,3<br />

1922 1210,0 1949 1670,0 1976 3349,0 2003 5187,6<br />

1923 1340,0 1950 1792,0 1977 3510,0 2004 5585,3<br />

1924 1340,0 1951 1570,0 1978 3558,0 2005 5886,7<br />

1925 1350,0 1952 1900,0 1979 3719,0 2006 6195,1<br />

1926 1340,0 1953 1930,0 1980 3806,0<br />

Table A.27 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s oil producti<strong>on</strong> from 1900 to 2006. The data from 1965<br />

to 2006 has been extracted from BP [35]. Until 1912, <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> has been<br />

obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong>s d<strong>on</strong>e by Ortiz [253]. Between 1913 and 1965, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

data was obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> British Geological Survey’s historical statistics [159],<br />

[157], [52], [250], [154].


World’s fuel producti<strong>on</strong> 407<br />

A.8.4 Natural gas<br />

Table A.27: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s oil producti<strong>on</strong><br />

Year Mt oil Year Mt oil Year Mt oil Year Mt oil<br />

1900 0,0 1927 181,7 1954 699,0 1981 2910,0<br />

1901 4,5 1928 183,8 1955 774,5 1982 2795,6<br />

1902 9,0 1929 207,0 1956 842,7 1983 2759,2<br />

1903 13,6 1930 197,0 1957 888,4 1984 2814,6<br />

1904 18,1 1931 190,5 1958 910,8 1985 2792,1<br />

1905 22,6 1932 180,8 1959 984,0 1986 2935,9<br />

1906 27,1 1933 199,1 1960 1053,6 1987 2947,1<br />

1907 31,7 1934 207,3 1961 1131,8 1988 3069,0<br />

1908 36,2 1935 228,6 1962 1208,0 1989 3102,9<br />

1909 40,7 1936 249,9 1963 1303,5 1990 3170,6<br />

1910 45,2 1937 283,5 1964 1403,1 1991 3160,5<br />

1911 49,8 1938 279,4 1965 1500,6 1992 3190,0<br />

1912 54,3 1939 289,9 1966 1700,6 1993 3188,6<br />

1913 56,0 1940 299,0 1967 1824,7 1994 3237,2<br />

1914 59,0 1941 310,6 1968 1990,9 1995 3281,0<br />

1915 62,7 1942 290,6 1969 2141,2 1996 3376,5<br />

1916 67,4 1943 320,6 1970 2355,2 1997 3480,5<br />

1917 71,8 1944 342,0 1971 2492,6 1998 3548,3<br />

1918 69,1 1945 361,9 1972 2636,6 1999 3482,9<br />

1919 79,3 1946 383,4 1973 2866,6 2000 3618,1<br />

1920 99,8 1947 423,2 1974 2875,2 2001 3602,7<br />

1921 113,1 1948 477,5 1975 2734,4 2002 3575,6<br />

1922 124,1 1949 475,1 1976 2969,0 2003 3701,3<br />

1923 146,9 1950 530,2 1977 3073,2 2004 3862,6<br />

1924 146,1 1951 600,9 1978 3103,1 2005 3896,8<br />

1925 154,1 1952 632,6 1979 3233,1 2006 3914,1<br />

1926 157,4 1953 668,5 1980 3087,9<br />

End <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> table<br />

Table A.28 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s natural gas producti<strong>on</strong> from 1900 to 2006. The data<br />

from 1970 to 2006 has been extracted from BP [35]. Until 1920, <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong><br />

has been estimated from US natural gas producti<strong>on</strong>, which is a compilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> data<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> “Espasa” encyclopedia [87] between years 1900 -1921. Between 1921 and<br />

1970, <str<strong>on</strong>g>the</str<strong>on</strong>g> data was obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> British Geological Survey’s historical statistics<br />

[159], [157], [52], [250], [154]. For years 1945-1947, a linear increasing rate has<br />

been assumed, because <str<strong>on</strong>g>of</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> data.


408 ADDITIONAL CALCULATIONS<br />

Table A.28: Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s natural gas producti<strong>on</strong>. Data in billi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cubic meters<br />

Year World Prod. Year World Prod. Year World Prod.<br />

1900 3,5 1935 57,5 1970 1009,3<br />

1901 5,0 1936 65,5 1971 1073,8<br />

1902 5,9 1937 72,5 1972 1125,3<br />

1903 6,7 1938 75,2 1973 1180,2<br />

1904 7,3 1939 80,5 1974 1201,5<br />

1905 7,5 1940 80,4 1975 1203,3<br />

1906 10,8 1941 112,2 1976 1252,9<br />

1907 11,5 1942 91,1 1977 1301,5<br />

1908 11,2 1943 98,9 1978 1347,3<br />

1909 13,4 1944 106,6 1979 1438,0<br />

1910 14,6 1945 121,1 1980 1448,5<br />

1911 14,7 1946 135,6 1981 1475,8<br />

1912 15,8 1947 150,1 1982 1478,0<br />

1913 16,2 1948 164,6 1983 1483,2<br />

1914 16,5 1949 175,6 1984 1614,9<br />

1915 17,6 1950 184,1 1985 1666,7<br />

1916 21,0 1951 239,0 1986 1713,6<br />

1917 22,1 1952 257,1 1987 1798,7<br />

1918 20,3 1953 270,1 1988 1882,4<br />

1919 21,0 1954 295,9 1989 1943,3<br />

1920 22,4 1955 323,6 1990 1991,8<br />

1921 19,8 1956 351,8 1991 2023,7<br />

1922 22,8 1957 386,3 1992 2037,0<br />

1923 29,8 1958 388,6 1993 2073,1<br />

1924 33,7 1959 432,4 1994 2093,6<br />

1925 35,3 1960 472,9 1995 2134,7<br />

1926 38,9 1961 511,8 1996 2227,9<br />

1927 42,7 1962 558,5 1997 2231,5<br />

1928 45,6 1963 609,8 1998 2279,5<br />

1929 56,4 1964 663,8 1999 2343,7<br />

1930 57,6 1965 706,9 2000 2425,2<br />

1931 49,3 1966 759,8 2001 2482,1<br />

1932 47,0 1967 821,5 2002 2524,6<br />

1933 47,4 1968 889,1 2003 2614,3<br />

1934 54,6 1969 955,1 2004 2703,1<br />

2005 2779,8<br />

2006 2865,3<br />

A.9 The Hubbert peak applied to world producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

Figures A.1, A.2, and A.3 show <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert model applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy costs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

world ir<strong>on</strong>, aluminium and copper producti<strong>on</strong>. It is assumed that <str<strong>on</strong>g>the</str<strong>on</strong>g> total world


The Hubbert peak applied to world producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s 409<br />

Bt*<br />

Integral Bt*<br />

x 10<br />

15<br />

5<br />

10<br />

5<br />

0<br />

x 108<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

2068<br />

0<br />

1900 1950 2000 2050 2100 2150 2200 2250<br />

Figure A.1. The Hubbert peak applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s ir<strong>on</strong> producti<strong>on</strong>,<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> world resources. Data in ktoe<br />

Bt*<br />

Integral Bt*<br />

1.5<br />

1<br />

0.5<br />

x 106<br />

2<br />

0<br />

x 108<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

2089<br />

0<br />

1900 1950 2000 2050 2100 2150 2200 2250 2300<br />

Figure A.2. The Hubbert peak applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s aluminium producti<strong>on</strong>,<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> world resources. Data in ktoe<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves are equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> world resources <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in 2006 published<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> USGS [362] plus <str<strong>on</strong>g>the</str<strong>on</strong>g> irreversible exergy distance D ∗ from 1900 to 2006.


410 ADDITIONAL CALCULATIONS<br />

Bt*<br />

Integral Bt*<br />

1.5<br />

1<br />

0.5<br />

x 105<br />

2<br />

0<br />

x 107<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

2066<br />

0<br />

1900 1950 2000 2050 2100 2150 2200 2250<br />

Figure A.3. The Hubbert peak applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s copper producti<strong>on</strong>,<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> world resources. Data in ktoe<br />

A.10 Fuel c<strong>on</strong>sumpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

Tables A.29 through A.34 show <str<strong>on</strong>g>the</str<strong>on</strong>g> primary energy c<strong>on</strong>sumpti<strong>on</strong> and cumulative<br />

resources producti<strong>on</strong> assumed in each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SRES scenarios.<br />

Table A.29. Primary energy c<strong>on</strong>sumpti<strong>on</strong> and cumulative resources producti<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s B1 scenario [160]<br />

Primary Energy, EJ<br />

Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100<br />

Coal 105 109 120 134 163 181 167 133 101 76 58 44<br />

Oil 129 141 176 206 230 236 228 199 167 143 119 99<br />

Gas 62 71 108 138 153 166 173 168 154 136 121 103<br />

Cumulative Resources Producti<strong>on</strong>, ZJ<br />

Coal 0,0 1,1 2,2 3,5 4,9 6,7 8,5 10,0 11,1 12,0 12,7 13,2<br />

Oil 0,0 1,3 2,9 4,8 7,0 9,3 11,6 13,8 15,6 17,2 18,5 19,6<br />

Gas 0,0 0,6 1,5 2,8 4,2 5,8 7,5 9,2 10,8 12,3 13,6 14,7


Fuel c<strong>on</strong>sumpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century 411<br />

Table A.30. Primary energy c<strong>on</strong>sumpti<strong>on</strong> and cumulative resources producti<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A1T scenario [160]<br />

Primary Energy, EJ<br />

Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100<br />

Coal 91 106 125 151 180 153 119 87 60 53 40 25<br />

Oil 128 155 172 193 223 241 250 236 205 143 113 77<br />

Gas 71 87 124 166 231 288 324 344 324 291 240 196<br />

Cumulative Resources Producti<strong>on</strong>, ZJ<br />

Coal 0,0 0,9 2,0 3,2 4,7 6,5 8,1 9,3 10,1 10,7 11,3 11,7<br />

Oil 0,0 1,4 3,0 4,7 6,6 8,9 11,3 13,8 16,1 18,2 19,6 20,8<br />

Gas 0,0 0,8 1,6 2,9 4,5 6,8 9,7 13,0 16,4 19,6 22,6 25,0<br />

Table A.31. Primary energy c<strong>on</strong>sumpti<strong>on</strong> and cumulative resources producti<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s B2 scenario [160]<br />

Primary Energy, EJ<br />

Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100<br />

Coal 91 91 98 98 96 93 86 91 119 170 231 300<br />

Oil 128 168 195 214 240 238 227 201 146 101 72 52<br />

Gas 71 84 107 150 194 251 297 356 390 402 385 336<br />

Cumulative Resources Producti<strong>on</strong>, ZJ<br />

Coal 0,0 0,9 1,8 2,8 3,8 4,7 5,7 6,5 7,4 8,6 10,3 12,6<br />

Oil 0,0 1,4 3,1 5,1 7,2 9,6 12,0 14,3 16,3 17,7 18,7 19,5<br />

Gas 0,0 0,7 1,6 2,7 4,2 6,1 8,6 11,6 15,1 19,0 23,1 26,9<br />

Table A.32. Primary energy c<strong>on</strong>sumpti<strong>on</strong> and cumulative resources producti<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A1B scenario [160]<br />

Primary Energy, EJ<br />

Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100<br />

Coal 93 99 134 163 179 182 186 165 148 126 103 84<br />

Oil 143 167 209 238 239 226 214 188 166 149 136 125<br />

Gas 73 91 147 196 298 372 465 519 578 604 590 576<br />

Cumulative Resources Producti<strong>on</strong>, ZJ<br />

Coal 0,1 1,1 2,2 3,7 5,4 7,0 9,1 10,5 12,2 13,6 14,7 15,9<br />

Oil 0,1 1,7 3,6 5,8 8,2 10,2 12,7 14,4 16,3 18,0 19,4 20,8<br />

Gas 0,1 0,9 2,1 3,8 6,3 9,3 13,9 18,2 23,9 29,8 35,5 42,2


412 ADDITIONAL CALCULATIONS<br />

Table A.33. Primary energy c<strong>on</strong>sumpti<strong>on</strong> and cumulative resources producti<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A2 scenario [160]<br />

Primary Energy, EJ<br />

Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100<br />

Coal 92 90 106 129 184 239 294 415 536 658 781 904<br />

Oil 134 172 220 291 270 249 228 148 69 23 12 0<br />

Gas 71 74 89 126 176 225 275 297 319 330 331 331<br />

Cumulative Resources Producti<strong>on</strong>, ZJ<br />

Coal 0,0 1,0 2,0 3,2 4,7 6,9 9,5 13,1 17,9 31,1 38,3 46,8<br />

Oil 0,0 1,7 3,6 6,2 9,0 11,6 13,9 15,7 16,7 17,0 17,2 17,2<br />

Gas 0,0 0,8 1,6 2,7 4,2 6,2 8,7 11,6 14,7 17,9 21,3 24,6<br />

Table A.34. Primary energy c<strong>on</strong>sumpti<strong>on</strong> and cumulative resources producti<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A1FI scenario [160]<br />

Primary Energy, EJ<br />

Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100<br />

Coal 88 115 150 193 299 393 475 448 432 429 518 607<br />

Oil 131 136 150 173 165 202 283 353 416 471 359 248<br />

Gas 70 85 129 203 268 333 398 494 573 634 606 578<br />

Cumulative Resources Producti<strong>on</strong>, ZJ<br />

Coal 0,1 1,2 2,6 4,2 7,0 10,4 14,6 19,1 23,6 27,9 32,9 37,9<br />

Oil 0,1 1,5 2,9 4,5 6,2 8,1 10,4 13,8 17,7 22,0 25,8 29,6<br />

Gas 0,1 0,9 2,1 3,6 6,1 9,2 12,7 17,4 22,8 28,7 34,8 40,9


Nomenclature, Figures, Tables and<br />

References<br />

413


Symbols<br />

a 1 − a 7 : Experimental coefficients for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> h ∗ (T) and s ∗ (T) [-]<br />

a i : Effective diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> i<strong>on</strong> [m]<br />

a j1 : Intercept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> learning curve with <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical axes for material’s use [-]<br />

a e1 : Intercept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> learning curve with <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical axes for energy’s use [-]<br />

a j2 : Parameter relating material inputs per unit output at time period t [-]<br />

a e2 : Parameter relating energy inputs per unit output at time period t [-]<br />

Nomenclature<br />

A 1 : C<strong>on</strong>stant in <str<strong>on</strong>g>the</str<strong>on</strong>g> Debye- Huckel equati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> value 0,51 kg 1/2 mole −1/2 for water at 25 o C<br />

A 2 : C<strong>on</strong>stant in <str<strong>on</strong>g>the</str<strong>on</strong>g> Debye- Huckel equati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> value 3,287 * 10 9 kg 1/2 m −1 mole −1/2 for water<br />

at 25 o C<br />

b : Specific exergy [kJ/mole]<br />

b 0 : Full width at half maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gaussian peak [-]<br />

b ch : Specific chemical exergy [kJ/mole]<br />

b c : Specific c<strong>on</strong>centrati<strong>on</strong> exergy [kJ/mole]<br />

B : Absolute exergy [kJ]<br />

B ∗ : Absolute exergy replacement cost (also named actual exergy) [kJ]<br />

B c : Absolute c<strong>on</strong>centrati<strong>on</strong> exergy [kJ]<br />

B ch : Absolute chemical exergy [kJ]<br />

B t : Absolute total exergy [kJ]<br />

c j : Fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> j-th element appearing in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> reference species [-]<br />

∆C p : Heat capacity [kJ/mole]<br />

d 1 : Moles <str<strong>on</strong>g>of</str<strong>on</strong>g> C c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel [mole/g]<br />

D : Minimum exergy distance, equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy difference between two situati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet<br />

[kJ]<br />

D ∗ : Actual exergy distance, equivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> difference <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy replacement costs <str<strong>on</strong>g>of</str<strong>on</strong>g> two situati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planet [kJ]<br />

415


416 NOMENCLATURE<br />

˙D : Minimum exergy degradati<strong>on</strong> velocity [kW]<br />

˙D ∗ : Actual degradati<strong>on</strong> velocity in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy replacement costs [kW]<br />

e 0 : Standard energy [kJ/mole]<br />

e1 − e5 : Exp<strong>on</strong>entials used to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> entropy change for gaseous reference<br />

substances [-]<br />

e(t ) : Flow <str<strong>on</strong>g>of</str<strong>on</strong>g> energy used to perform a certain process [kJ]<br />

f j : Elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atomic compositi<strong>on</strong> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel f = [1, h, o, n, s] ′ [-]<br />

F : Fractal relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposit [-]<br />

F 1 − F 7 : Coefficients for estimating x H2O,00 [-]<br />

g i : Free energy c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e mole <str<strong>on</strong>g>of</str<strong>on</strong>g> each oxide or hydroxide comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substance,<br />

according to <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> Chermak and Rimstid [55] [kJ/mole]<br />

∆G f : Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> [kJ/mole]<br />

∆G m : Gibs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing [kJ/mole]<br />

∆G0 : hydrati<strong>on</strong> Gibbs free energy [kJ/mole]<br />

hydr<br />

∆ GO −2 : Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a generic oxide MO x(c) from its aqueous i<strong>on</strong> [kJ/mole]<br />

∆G0 : Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a given compound as determined from <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stituent oxides<br />

ox<br />

[kJ/mole]<br />

∆G r : Gibs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> [kJ/mole]<br />

h : Moles <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen per mole <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel [mole/mole]<br />

h i : Enthalpy c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e mole <str<strong>on</strong>g>of</str<strong>on</strong>g> each oxide or hydroxide <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substance, according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

method <str<strong>on</strong>g>of</str<strong>on</strong>g> Chermak and Rimstid [55] [kJ/mole]<br />

h ∗ (T) : Enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> Zelenik and Gord<strong>on</strong> [413] [kJ/mole]<br />

H j,00 : Enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> dead state [kJ/mole]<br />

∆H : Enthalpy change [kJ/mole]<br />

∆H f : Enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> [kJ/mole]<br />

∆H m : Enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing [kJ/mole]<br />

∆H 0 : Hydrati<strong>on</strong> enthalpy [kJ/mole]<br />

hydr<br />

∆ H O −2 : Enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a generic oxide MO x(c) from its aqueous i<strong>on</strong> [kJ/mole]<br />

∆H 0 : Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a given compound as determined from <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>stituent oxides<br />

ox<br />

[kJ/mole]<br />

∆H r : Enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reacti<strong>on</strong> [kJ/mole]<br />

I : I<strong>on</strong>ic strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> electrolyte [mole/kg]<br />

j(t ) : Flow <str<strong>on</strong>g>of</str<strong>on</strong>g> material used to perform a certain process [kg]<br />

k c: Unit c<strong>on</strong>centrati<strong>on</strong> exergy replacement cost [-]<br />

k ch: Unit chemical exergy replacement cost [-]<br />

l j : Number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> j-th element in <str<strong>on</strong>g>the</str<strong>on</strong>g> molecule <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference species [-]<br />

m : Mass [kg]


Nomenclature 417<br />

m i : C<strong>on</strong>venti<strong>on</strong>al standard molarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference substance i in seawater [mole/kg]<br />

M : T<strong>on</strong>nage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deposit [kg]<br />

M c : T<strong>on</strong>nage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> piece <str<strong>on</strong>g>of</str<strong>on</strong>g> land under c<strong>on</strong>siderati<strong>on</strong> [kg]<br />

M W : Molecular weight [mole/g]<br />

n : Moles <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen per mole <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel [mole/mole]<br />

ni : Number <str<strong>on</strong>g>of</str<strong>on</strong>g> moles <str<strong>on</strong>g>of</str<strong>on</strong>g> substance i [mole]. In secti<strong>on</strong> 5.4.5, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen i<strong>on</strong>s linked to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cati<strong>on</strong>s [-].<br />

M z+<br />

i<br />

n s : Number <str<strong>on</strong>g>of</str<strong>on</strong>g> cati<strong>on</strong>s located in different sites <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrated clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g> or phyllosilicate [-].<br />

n w : Number <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules <str<strong>on</strong>g>of</str<strong>on</strong>g> water [-]<br />

N : Number <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygens linked to <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> double oxide [-]<br />

o : Moles <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen per mole <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel [mole/mole]<br />

∆O −2 : Enthalpy ∆ HO −2 or Gibbs free energy ∆ GO −2 <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a generic oxide MO x(c) from its<br />

aqueous i<strong>on</strong> [kJ/mole]<br />

P : Pressure [kPa] and Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodity [ktoe/year]<br />

P 0i : C<strong>on</strong>venti<strong>on</strong>al mean ideal gas partial pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> substance i in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere [kPa]<br />

pH : Exp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen i<strong>on</strong> in seawater (pH=8,1) [-]<br />

Q : Heat loss escaping <str<strong>on</strong>g>the</str<strong>on</strong>g> crust [W /m 3 ]<br />

Q B : Heat input at <str<strong>on</strong>g>the</str<strong>on</strong>g> base <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lithosphere due to mantle c<strong>on</strong>vecti<strong>on</strong> [W /m 3 ]<br />

Q C : Radiogenic heat producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust [W /m 3 ]<br />

Q L : Radiogenic heat producti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> mantle part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lithosphere [W /m 3 ]<br />

Q M : Mantle heat flow [W /m 3 ]<br />

Q T : L<strong>on</strong>g-term heat producti<strong>on</strong> transient due to cooling after a major tect<strong>on</strong>ic or magmatic perturbati<strong>on</strong><br />

[W /m 3 ]<br />

r j,i : Amount <str<strong>on</strong>g>of</str<strong>on</strong>g> moles <str<strong>on</strong>g>of</str<strong>on</strong>g> element j in substance i [mole j/mole i]<br />

r k,i : Number <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al elements k present in <str<strong>on</strong>g>the</str<strong>on</strong>g> molecule <str<strong>on</strong>g>of</str<strong>on</strong>g> reference substance i<br />

[mole k/mole i]<br />

R : Available reserves [ktoe]<br />

R[ j × i] : Stoichiometric coefficient matrix between species i and elements j <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s [ j × i]<br />

¯R : Universal gas c<strong>on</strong>stant [8,314E-3 kJ/(mole K)]<br />

RF : Regressi<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fit [-]<br />

R/P : Resources to producti<strong>on</strong> ratio [-]<br />

s : Moles <str<strong>on</strong>g>of</str<strong>on</strong>g> sulphur per mole <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel [mole/mole]<br />

s 0 : Standard entropy [kJ/mole]<br />

s ∗ (T) : Entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> Zelenik and Gord<strong>on</strong> [413] [kJ/(mole K)]<br />

∆S : Entropy change [kJ/(mole K)]<br />

t : time [s, years]<br />

t 0 : Year where <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> is reached [yr]


418 NOMENCLATURE<br />

T : Temperature [K]<br />

t Me : <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in a certain time and place [kJ]<br />

t Me ∗ : <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> replacement cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e t<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in a certain time and place [kJ]<br />

w : Moles <str<strong>on</strong>g>of</str<strong>on</strong>g> water per mole <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel [mole/mole]<br />

W : Moles <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid water (moisture) in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel [mole]<br />

x : Molar fracti<strong>on</strong> [mole/mole]. In secti<strong>on</strong> 5.4.5, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen atoms combined with <strong>on</strong>e<br />

atom M in <str<strong>on</strong>g>the</str<strong>on</strong>g> oxide [-].<br />

x c : C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust [g/g]<br />

x m : C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposit [g/g]<br />

X : The molar fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen related to <str<strong>on</strong>g>the</str<strong>on</strong>g> cati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a hydrated clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g> or phyllosilicate [-]<br />

y 0 : Height <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gaussian peak [-]<br />

z : Moles <str<strong>on</strong>g>of</str<strong>on</strong>g> ashes per mole <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel [mole/mole]<br />

z + : Number <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary positive charges [-]<br />

Z : Moles <str<strong>on</strong>g>of</str<strong>on</strong>g> ashes in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel [mole]<br />

Greek letters<br />

α G : Empirical coefficient variable for estimating ∆G 0<br />

ox [-]<br />

α H : Empirical coefficient variable for estimating ∆H 0<br />

ox [-]<br />

δ : Thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> crust [m]<br />

γ : Activity coefficient (molarity scale) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference substance in seawater [-]<br />

Γ(t ) : Cumulative producti<strong>on</strong> in period t [kg]<br />

ε : Relative error [%]<br />

ε j : Mean molar c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> element j c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere or c<strong>on</strong>tinental<br />

crust [mole/g]<br />

µ j,00 : Chemical potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> dead state [kJ/mole]<br />

ρ 15 : Density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel at 15 ◦ C [kg/m 3 ]<br />

τ : Temperature [ ◦ C]<br />

ξ i : Mean molar c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> substance i c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere, hydrosphere or c<strong>on</strong>tinental<br />

crust [mole/g]<br />

Abbreviati<strong>on</strong>s<br />

BGS : British Geological Survey<br />

BP : British Petroleum<br />

EWG : Energy Watch Group<br />

HHV : High Heating Value


Nomenclature 419<br />

IGU : Internati<strong>on</strong>al Gas Uni<strong>on</strong><br />

IPCC : Intergovernmental Panel <strong>on</strong> Climate Change<br />

IWP&DC : The Internati<strong>on</strong>al Water Power & Dam C<strong>on</strong>structi<strong>on</strong><br />

LHV : Low Heating Value<br />

PV : Photovoltaic energy<br />

R.B. : Reserve Base<br />

R.E. : Reference Envir<strong>on</strong>ment<br />

RE 2O 5 : Rare <strong>earth</strong>’s oxides<br />

R.S. : Reference Substances in <str<strong>on</strong>g>the</str<strong>on</strong>g> Reference Envir<strong>on</strong>ment<br />

RW : Renewable Energies<br />

SRES : Special Report <strong>on</strong> Emissi<strong>on</strong> Scenarios<br />

THC : Thermohaline Circulati<strong>on</strong><br />

USBM : U.S. Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Mines<br />

USGS : U.S. Geological Survey<br />

WEC : World Energy Council<br />

W.R. : World Resources<br />

Subscripts<br />

0 : C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment<br />

00 : C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment or dead state<br />

at m: Atmosphere<br />

b k : The number <str<strong>on</strong>g>of</str<strong>on</strong>g> brucitic cati<strong>on</strong>s<br />

cr : Upper c<strong>on</strong>tinental crust<br />

e: Electrical c<strong>on</strong>sumpti<strong>on</strong><br />

g l: Glaciers<br />

g w : Groundwater<br />

hydr: Hydrosphere<br />

j : Index <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered element. In secti<strong>on</strong> 5.4.5, also <str<strong>on</strong>g>the</str<strong>on</strong>g> index <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered cati<strong>on</strong><br />

i : Index <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered species. In secti<strong>on</strong> 5.4.5, also <str<strong>on</strong>g>the</str<strong>on</strong>g> index <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sidered cati<strong>on</strong><br />

k : Index <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong>al element appearing in <str<strong>on</strong>g>the</str<strong>on</strong>g> reference substance <str<strong>on</strong>g>of</str<strong>on</strong>g> element j<br />

l i : The number <str<strong>on</strong>g>of</str<strong>on</strong>g> interlayer atom<br />

L : Liquid fuel<br />

F : Clean solid fuel<br />

o : The octahedral site<br />

t : The tetrahedral site


420 NOMENCLATURE<br />

r w : River water<br />

s pher e: C<strong>on</strong>sidered sphere <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r atmosphere, hydrosphere or upper c<strong>on</strong>tinental crust<br />

s w : Seawater<br />

t : Total<br />

t h: Thermal c<strong>on</strong>sumpti<strong>on</strong><br />

W : Moisture<br />

Z : Ashes<br />

Superscripts<br />

∧ : Property calculated in this study<br />

− : Average <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> property<br />

0 : Standard c<strong>on</strong>diti<strong>on</strong>s


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures<br />

1.1 C<strong>on</strong>ceptual diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> terms exergoecology and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmo-ecology . 11<br />

2.1 The atmospheric layers. Source: http://www.atmosphere.mpg.de<br />

(Max Plank Institute) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

2.2 Earth’s cutaway. Source: USGS [397] . . . . . . . . . . . . . . . . . . . . . 38<br />

4.1 Energy flow sheet for <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong> [317] . . . . . . . . . . . . 107<br />

4.2 The hydrologic cycle. Source: http://www.ec.gc.ca/water (Envir<strong>on</strong>ment<br />

Canada) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115<br />

4.3 A simplified summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> path <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Thermohaline Ocean Circulati<strong>on</strong><br />

[274] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />

4.4 Primary world energy c<strong>on</strong>sumpti<strong>on</strong> by fuel type at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006.<br />

Values in Mtoe [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120<br />

4.5 Coal proved reserves at <str<strong>on</strong>g>the</str<strong>on</strong>g> end 2006. Values in thousand milli<strong>on</strong>s<br />

t<strong>on</strong>nes (share <str<strong>on</strong>g>of</str<strong>on</strong>g> anthracite and bituminous coal in brackets) [35]. . . . 122<br />

4.6 Coal producti<strong>on</strong> and c<strong>on</strong>sumpti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006. Elaborated from<br />

data included in [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123<br />

4.7 Oil proved reserves at <str<strong>on</strong>g>the</str<strong>on</strong>g> end 2006. Values in thousand milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

barrels [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br />

4.8 Oil producti<strong>on</strong> and c<strong>on</strong>sumpti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006. Elaborated from<br />

data included in [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br />

4.9 Natural gas proved reserves at <str<strong>on</strong>g>the</str<strong>on</strong>g> end 2006. Values in trilli<strong>on</strong> cubic<br />

meters [35]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126<br />

4.10 Natural gas producti<strong>on</strong> and c<strong>on</strong>sumpti<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2006. Elaborated<br />

from data included in [35]. . . . . . . . . . . . . . . . . . . . . . . . 126<br />

4.11 A classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources and reserves [141]. . . . . . . . . . 130<br />

4.12 Two possible relati<strong>on</strong>ships between ore grade and <str<strong>on</strong>g>the</str<strong>on</strong>g> metal, <str<strong>on</strong>g>mineral</str<strong>on</strong>g>,<br />

or energy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> resource base [316]. . . . . . . . . . . . . . . . . 131<br />

5.1 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> required for separating a substance from a mixture, according<br />

to Eq. 5.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160<br />

421


422 LIST OF FIGURES<br />

7.1 C<strong>on</strong>ceptual diagram for <str<strong>on</strong>g>the</str<strong>on</strong>g> terms exergy distance and exergy degradati<strong>on</strong><br />

velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231<br />

7.2 The Hubbert’s bell shape curve <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> any exhaustible<br />

resource [146]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233<br />

7.3 Hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical processes involved in obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment . . . . . . . . . . . . . . . . . . . . . . . . 236<br />

7.4 Yearly chemical exergy c<strong>on</strong>sumpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> US <str<strong>on</strong>g>of</str<strong>on</strong>g> pure copper due to<br />

copper producti<strong>on</strong> throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century . . . . . . . . . . . . . . 239<br />

7.5 Cumulative chemical exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> copper mines in <str<strong>on</strong>g>the</str<strong>on</strong>g> US<br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century . . . . . . . . . . . . . . . . . . . . . . . . . . 239<br />

7.6 Yearly c<strong>on</strong>centrati<strong>on</strong> exergy c<strong>on</strong>sumpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> US <str<strong>on</strong>g>of</str<strong>on</strong>g> pure copper due<br />

to copper producti<strong>on</strong> throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century . . . . . . . . . . . . . 240<br />

7.7 Cumulative c<strong>on</strong>centrati<strong>on</strong> exergy decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> copper mines in <str<strong>on</strong>g>the</str<strong>on</strong>g> US<br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century . . . . . . . . . . . . . . . . . . . . . . . . . . 241<br />

7.8 The Hubbert peak applied to US copper producti<strong>on</strong>. Best fitting curve.<br />

Values in ktoe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243<br />

7.9 The Hubbert peak applied to US copper base reserves. Values in ktoe. . 245<br />

7.10 Ore grade and cumulated exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian gold mines 248<br />

7.11 The Hubbert peak applied to Australian gold reserves. Values in toe. . 249<br />

7.12 Ore grade and cumulated exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian copper<br />

mines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251<br />

7.13 The Hubbert peak applied to Australian copper reserves. Values in ktoe. 251<br />

7.14 Ore grade and cumulated exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian nickel mines 253<br />

7.15 The Hubbert peak applied to Australian nickel reserves. Values in ktoe. 253<br />

7.16 Ore grade and cumulated exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian silver mines 255<br />

7.17 The Hubbert peak applied to Australian silver reserves. Values in toe. . 256<br />

7.18 Ore grade and cumulated exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian lead mines 257<br />

7.19 The Hubbert peak applied to Australian lead reserves. Values in ktoe. . 258<br />

7.20 Ore grade and cumulated exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian zinc mines 259<br />

7.21 The Hubbert peak applied to Australian zinc reserves. Values in ktoe. . 260<br />

7.22 Ore grade and cumulated exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian ir<strong>on</strong> mines 261<br />

7.23 The Hubbert peak applied to Australian ir<strong>on</strong> reserves. Values in ktoe. . 262<br />

7.24 The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian coal reserves. Values in ktoe. . . . . . . . . 264<br />

7.25 The Hubbert peak applied to Australian coal reserves. Values in ktoe. . 265<br />

7.26 The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian oil reserves. Values in ktoe. . . . . . . . . . 266<br />

7.27 The Hubbert peak applied to Australian oil reserves. Values in ktoe. . . 267<br />

7.28 The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian natural gas reserves. Values in ktoe. . . . 268<br />

7.29 The Hubbert peak applied to Australian natural gas reserves. Values in<br />

ktoe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268<br />

7.30 Irreversible exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Australia<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> period from 1884 to 1906 . . . . . . . . . . . . . . . . . . . . 270<br />

7.31 Irreversible exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Australia<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> period from 1907 to 1964 . . . . . . . . . . . . . . . . . . . . 271


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures 423<br />

7.32 Irreversible exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Australia<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> period from 1965 to 2004 . . . . . . . . . . . . . . . . . . . . 271<br />

7.33 Irreversible exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main fuel and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

in Australia in <str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> 1914 to 1968 . . . . . . . . . . . . . . . . . . 272<br />

7.34 Irreversible exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main fuel and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

in Australia in <str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> 1969 to 2004 . . . . . . . . . . . . . . . . . . 273<br />

7.35 Relative c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> global exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia in <str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> 1914 to 2004 273<br />

7.36 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> countdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main c<strong>on</strong>sumed <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in Australia . . . . . 275<br />

7.37 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> countdown <str<strong>on</strong>g>of</str<strong>on</strong>g> metals copper, zinc, nickel, lead and silver in<br />

Australia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276<br />

8.1 The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities <strong>on</strong> <strong>earth</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> twentieth century . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286<br />

8.2 The actual exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities <strong>on</strong><br />

<strong>earth</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> twentieth century . . . . . . . . . . . . . . . . . . . . . . . . . 287<br />

8.3 The actual exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main 15 n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities<br />

<strong>on</strong> <strong>earth</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> twentieth century, excluding ir<strong>on</strong> and aluminium . . . . 288<br />

8.4 Depleti<strong>on</strong> degree in % <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodity reserves 288<br />

8.5 The Hubbert peak applied to world ir<strong>on</strong> producti<strong>on</strong>. Data in ktoe . . . 289<br />

8.6 The Hubbert peak applied to world aluminium producti<strong>on</strong>. Data in ktoe 290<br />

8.7 The Hubbert peak applied to world copper producti<strong>on</strong>. Data in ktoe . . 290<br />

8.8 Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s fuel and n<strong>on</strong>-fuel <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century . . . . . . . . . . . . . . . . . . . . . . . . . . 292<br />

8.9 The Hubbert peak applied to world coal producti<strong>on</strong>. Data in Mtoe . . . 293<br />

8.10 The Hubbert peak applied to world natural gas producti<strong>on</strong>. Data in Mtoe 293<br />

8.11 The Hubbert peak applied to world oil producti<strong>on</strong>. Data in Mtoe . . . . 294<br />

8.12 The Hubbert peak applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s c<strong>on</strong>venti<strong>on</strong>al fossil fuel producti<strong>on</strong>.<br />

Data in Mtoe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295<br />

8.13 The Hubbert peak applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s producti<strong>on</strong>.<br />

Data in Mtoe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296<br />

8.14 The exergy countdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s extracted <strong>on</strong> <strong>earth</strong> . . . . 296<br />

8.15 Schematic presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> global carb<strong>on</strong> cycle as estimated by Post<br />

et al. [270] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298<br />

8.16 Scenarios for GHG emissi<strong>on</strong>s from 2000 to 2100 and projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

surface temperatures [160] . . . . . . . . . . . . . . . . . . . . . . . . . . . 300<br />

8.17 CO 2 emissi<strong>on</strong>s and equilibrium temperature increases for a range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stabilizati<strong>on</strong> levels [162] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301<br />

8.18 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> coal as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 c<strong>on</strong>centrati<strong>on</strong><br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . 303<br />

8.19 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel-oils as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2<br />

c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere . . . . . . . . . . . . . . . . . . . . . . . . 304<br />

8.20 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305


424 LIST OF FIGURES<br />

8.21 Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model. Values in Gtoe . . . . . . . . . . . . . 308<br />

8.22 Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s B1 scenario. Values in Gtoe . . . . . . . . . . . . . . 310<br />

8.23 Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A1T scenario. Values in Gtoe . . . . . . . . . . . . . 312<br />

8.24 Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s B2 scenario. Values in Gtoe . . . . . . . . . . . . . . 313<br />

8.25 Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A1B scenario. Values in Gtoe . . . . . . . . . . . . . 314<br />

8.26 Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A2 scenario. Values in Gtoe . . . . . . . . . . . . . . 316<br />

8.27 Actual exergy c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A1FI scenario. Values in Gtoe . . . . . . . . . . . . . 317<br />

8.28 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> period between years 1900 and 2100 based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s SRES scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 319<br />

A.1 The Hubbert peak applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s ir<strong>on</strong> producti<strong>on</strong>,<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> world resources. Data in ktoe . . . . . . . . . . . . . . . . . 409<br />

A.2 The Hubbert peak applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s aluminium<br />

producti<strong>on</strong>, based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> world resources. Data in ktoe . . . . . . . . . . 409<br />

A.3 The Hubbert peak applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> world’s copper producti<strong>on</strong>,<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> world resources. Data in ktoe . . . . . . . . . . . . . . 410


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables<br />

2.1 Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main envelopes derived from direct sampling or<br />

from a chemical translati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a direct measurement (density), in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> core, and <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding whole <strong>earth</strong> compositi<strong>on</strong> [169]. 21<br />

2.2 Gaseous chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere [272]. . . . . . . . . . 24<br />

2.3 Inventory <str<strong>on</strong>g>of</str<strong>on</strong>g> water at <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s surface [263]. . . . . . . . . . . . . . . . 25<br />

2.4 Volume <str<strong>on</strong>g>of</str<strong>on</strong>g> Oceans and Seas. Adapted from [85] . . . . . . . . . . . . . . 26<br />

2.5 The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> average seawater. Adapted from [224] . . . . . . . 27<br />

2.6 Predicted Mean Oceanic C<strong>on</strong>centrati<strong>on</strong>s. Adapted from [273]. . . . . . 28<br />

2.7 Renewable water resources and potential water availability by c<strong>on</strong>tinents<br />

[311]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

2.8 Mean chemical c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> world river water [197] . . . . . . . . . . . . 31<br />

2.9 The average c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> elements in filtered river water. C<strong>on</strong>centrati<strong>on</strong><br />

in ppb. Adapted from Li [196]. . . . . . . . . . . . . . . . . . . 32<br />

2.10 C<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> ground waters from different rock types. C<strong>on</strong>centrati<strong>on</strong>s<br />

in µg/g [405]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

2.11 Area <str<strong>on</strong>g>of</str<strong>on</strong>g> land surface covered by glaciers in different regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

world, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> volume and <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent sea level<br />

rise that <str<strong>on</strong>g>the</str<strong>on</strong>g> volume implies [185]. . . . . . . . . . . . . . . . . . . . . . . 35<br />

2.12 The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> major i<strong>on</strong>s in glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from different regi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world. C<strong>on</strong>centrati<strong>on</strong>s are reported in mg/l. Adapted from [43] 36<br />

2.13 Average compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust according to different<br />

studies. Elements in g/g. . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

3.1 Mineral classificati<strong>on</strong> based <strong>on</strong> Dana’s New Mineralogy [103] . . . . . . 44<br />

3.2 Crustal abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. Data in percent volume. . . . . . . . . . 47<br />

3.3 Average <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust according<br />

to Grigor’ev [127]. Results are given in mass percentage. . . . 47<br />

3.4 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Rudnick and Gao’s [292] chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

upper <strong>earth</strong>’s crust and <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e generated by Grigor’ev [127] according<br />

to Eq. 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br />

3.5 Mineralogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust according to <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92<br />

425


426 LIST OF TABLES<br />

3.6 Crustal abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s according to this and Grigor’ev’s model<br />

in mass % [127] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101<br />

4.1 World energy use in 1984 [130] . . . . . . . . . . . . . . . . . . . . . . . . 106<br />

4.2 Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> bulk c<strong>on</strong>tinental crust heat producti<strong>on</strong> from heat flow data<br />

[168]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

4.3 Estimated uranium resources in ores rich enough to be mined for use in<br />

235 U power plants [317], toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with estimated rates <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong><br />

for 2005 according to <str<strong>on</strong>g>the</str<strong>on</strong>g> BGS [139]. Data reported as kt<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> metal<br />

c<strong>on</strong>tent. No distincti<strong>on</strong>s are drawn between reserves and resources,<br />

and no data for resources are reported by <str<strong>on</strong>g>the</str<strong>on</strong>g> former URSS countries. . 111<br />

4.4 Specific exergy <strong>on</strong> a dry basis <str<strong>on</strong>g>of</str<strong>on</strong>g> representative biomass samples [138] 118<br />

4.5 Rank <str<strong>on</strong>g>of</str<strong>on</strong>g> coal according to <str<strong>on</strong>g>the</str<strong>on</strong>g> norm ASTM D388. . . . . . . . . . . . . . . 121<br />

4.6 Rank <str<strong>on</strong>g>of</str<strong>on</strong>g> oil according to <str<strong>on</strong>g>the</str<strong>on</strong>g> British standard BS2869:1998 . . . . . . . 122<br />

4.7 Physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> different compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas [34] . . . . 123<br />

4.8 Available energy, potential energy use and current c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural<br />

resources <strong>on</strong> <strong>earth</strong>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />

4.9 Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models. After [66] . . . . . . . . . 132<br />

4.10 Mineral world reserves, reserve base and world resources in 2006 . . . 136<br />

5.1 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> difference <str<strong>on</strong>g>of</str<strong>on</strong>g> selected elements c<strong>on</strong>sidering ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r as reference<br />

species <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant or <str<strong>on</strong>g>the</str<strong>on</strong>g> most stable substances in <str<strong>on</strong>g>the</str<strong>on</strong>g> R.E.<br />

[367] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />

5.4 Standard chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements . . . . . . . . . . . . . . . . . 154<br />

5.5 Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three R.E. proposed . . . . . . . . . . . . . . . . . . . 164<br />

5.6 Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements according to<br />

three different R.E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166<br />

5.7 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> costs <str<strong>on</strong>g>of</str<strong>on</strong>g> selected substances [371] & [207] . . . . . . . . . . . . . 170<br />

5.8 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> methodologies used to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184<br />

6.1 Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> atmosphere. Values <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆H 0 , ∆G0 f i f i ,<br />

b 0<br />

ch i<br />

in kJ/mole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189<br />

6.2 Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater. Values in kJ/mole . . . . . . . . 190<br />

6.3 Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> average rivers. Values in kJ/mole . . . . 191<br />

6.4 Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> glacial run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Values in kJ/mole . . . . . 192<br />

6.5 Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwaters. Values in kJ/mole . . . . 193<br />

6.6 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrosphere. Values<br />

in kJ/mole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194<br />

6.7 Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust . . . . . . . . 196<br />

6.8 The standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s outer layers . . . . . . . . . 205<br />

6.9 High heating value and elementary analysis (% by weight) c<strong>on</strong>sidered<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> Valero and Arauzo [366] to define different types <str<strong>on</strong>g>of</str<strong>on</strong>g> coal. 208


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables 427<br />

6.10 Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> coal. Values in<br />

kJ/kg, except for s 0 (kJ/kgK) . . . . . . . . . . . . . . . . . . . . . . . . . 208<br />

6.11 The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s coal proven reserves reported in [401]. Values<br />

in milli<strong>on</strong> t<strong>on</strong>nes if not specified . . . . . . . . . . . . . . . . . . . . . 209<br />

6.12 High heating value and elementary analysis (% by weight) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> oil, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> British standard BS2869:1998 . . . 213<br />

6.13 Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> oil. Values in<br />

kJ/kg, except for s 0 (kJ/kgK) . . . . . . . . . . . . . . . . . . . . . . . . . 213<br />

6.14 The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s oil proven reserves reported in [35]. Values<br />

in thousand milli<strong>on</strong> t<strong>on</strong>nes if not specified . . . . . . . . . . . . . . . . . . 213<br />

6.15 Standard volumetric compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas c<strong>on</strong>sidered in [366] . 215<br />

6.16 Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas. Values in kJ/N m 3 , except<br />

for ∆H f (kJ/kg) and s 0 (kJ/kgK) . . . . . . . . . . . . . . . . . . . . . . . 216<br />

6.17 The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s natural gas proven reserves reported in [35] 216<br />

6.18 The exergy and exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves, base reserve and<br />

world resources. Values are expressed in ktoe . . . . . . . . . . . . . . . . 219<br />

6.19 Available exergy, potential exergy use and current exergy c<strong>on</strong>sumpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources <strong>on</strong> <strong>earth</strong>. Letter e denotes electrical c<strong>on</strong>sumpti<strong>on</strong>,<br />

while th <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal c<strong>on</strong>sumpti<strong>on</strong>. . . . . . . . . . . . . . . . . . . . . . . . . 224<br />

7.1 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> US copper mines<br />

during <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246<br />

7.2 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian gold mines. 250<br />

7.3 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian copper<br />

mines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252<br />

7.4 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian nickel mines. 254<br />

7.5 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian silver mines. 256<br />

7.6 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian lead mines. 258<br />

7.7 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian zinc mines. 260<br />

7.8 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy distance <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian ir<strong>on</strong> mines. 263<br />

7.9 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main Australian<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269<br />

7.10 M<strong>on</strong>etary costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves depleti<strong>on</strong> suffered in Australia<br />

due to <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong> in year 2004 . . . . . . . . . . . . . . . . 276<br />

8.1 The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>mineral</str<strong>on</strong>g> commodities in <str<strong>on</strong>g>the</str<strong>on</strong>g> world. Values<br />

are expressed in ktoe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284<br />

8.2 The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, oil and natural gas in <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century. . . . . . 291<br />

8.3 Projected global averaged temperature change ( ◦ C at 2090-2099 relative<br />

to 1980-1999) at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century. After [160] . . . . . 300<br />

8.4 Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> stabilizati<strong>on</strong> scenarios and resulting l<strong>on</strong>g-term equilibrium<br />

global average temperature rise above pre-industrial at equilibrium<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal expansi<strong>on</strong> <strong>on</strong>ly. After [162] . . . . . . . . . . . . . 301<br />

8.5 Temperature rise and CO 2 c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> SRES scenarios . . . . . 302


428 LIST OF TABLES<br />

8.6 Specific exergy (b in kJ/kg) and <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss (%) <str<strong>on</strong>g>of</str<strong>on</strong>g> anthracite, bituminous,<br />

subbituminous, and lignite coal according to <str<strong>on</strong>g>the</str<strong>on</strong>g> different SRES<br />

scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302<br />

8.7 Specific exergy (b) and <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss (%) <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel-oil 1, fuel-oil 2 and<br />

fuel-oil 4, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> different SRES scenarios. . . . . . . . . . . . 303<br />

8.8 Specific exergy (b) and <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss (%) <str<strong>on</strong>g>of</str<strong>on</strong>g> natural gas according to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

different SRES scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304<br />

8.9 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 coal reserves due to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG emissi<strong>on</strong>s,<br />

according to <str<strong>on</strong>g>the</str<strong>on</strong>g> different SRES scenarios. Values in Mtoe . . . . 306<br />

8.10 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 fuel-oil reserves due to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG<br />

emissi<strong>on</strong>s, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> different SRES scenarios . . . . . . . . . . . 306<br />

8.11 <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 natural gas reserves due to <str<strong>on</strong>g>the</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> GHG<br />

emissi<strong>on</strong>s, according to <str<strong>on</strong>g>the</str<strong>on</strong>g> different SRES scenarios . . . . . . . . . . . 306<br />

8.12 Actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak model . . . . . . . . . . . . . . . . . . 309<br />

8.13 Actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> B1 scenario . . . . . . . . . . . . . . . . . . . . . . . 311<br />

8.14 Actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> A1T scenario . . . . . . . . . . . . . . . . . . . . . . 312<br />

8.15 Actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> B2 scenario . . . . . . . . . . . . . . . . . . . . . . . 313<br />

8.16 Actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> A1B scenario . . . . . . . . . . . . . . . . . . . . . . 315<br />

8.17 Actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> A2 scenario . . . . . . . . . . . . . . . . . . . . . . . 316<br />

8.18 Actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st<br />

century based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> A1FI scenario . . . . . . . . . . . . . . . . . . . . . . 318<br />

8.19 Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> actual exergy degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main extracted <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> period between years 1900 and 2100 based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s SRES scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 318<br />

A.1 Vector ˆε j [78 × 1], according to Rudnick and Gao [292] and vector ε j<br />

[78 × 1], obtained from Grigor’ev [127]. Values in mole/g . . . . . . . 351<br />

A.2 Vector ξ i [324 × 1], according to Grigor’ev [127] and vector ˆ ξ i [324 ×<br />

1] obtained in this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352<br />

A.3 Matrix R ′ [324 × 78] (Part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 360<br />

A.4 Matrix R ′ [324 × 78] (Part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . 367<br />

A.5 Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-1. After [66] . . . . . . . . 376<br />

A.6 Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-2. After [66] . . . . . . . . 377<br />

A.7 Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-3. After [66] . . . . . . . . 378<br />

A.8 Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-4. After [66] . . . . . . . . 379<br />

A.9 Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-5. After [66] . . . . . . . . 380<br />

A.10 Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-6. After [66] . . . . . . . . 381<br />

A.11 Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-7. After [66] . . . . . . . . 382


List <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables 429<br />

A.12 Summary statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> grade-t<strong>on</strong>nage models-8. After [66] . . . . . . . . 383<br />

A.13 Chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements for gaseous reference substances . . 384<br />

A.14 Chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements for aqueous reference substances . . 384<br />

A.15 Chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements for solid reference substances . . . . 385<br />

A.16 Coefficients a 1 through a 7 [413] . . . . . . . . . . . . . . . . . . . . . . . . 386<br />

A.17 The g i and h i <str<strong>on</strong>g>of</str<strong>on</strong>g> each polyhedral type and <str<strong>on</strong>g>the</str<strong>on</strong>g> standard error (%) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> estimate. Values in kJ/mol. [55] . . . . . . . . . . . . . . . . . . . . . 387<br />

A.18 Values <str<strong>on</strong>g>of</str<strong>on</strong>g> ∆ GO −2 M z+ (clay) for i<strong>on</strong>s located in different sites [382]<br />

for hydrated clays and phyllosilicates. Values in kJ/mole . . . . . . . . . 388<br />

A.19 Estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standard enthalpy and Gibbs free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

Values in kJ/mole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390<br />

A.20 The chemical exergy and exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong>,<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves, base reserve and world resources. Values<br />

are expressed in ktoe if not specified . . . . . . . . . . . . . . . . . . . . . 398<br />

A.21 The c<strong>on</strong>centrati<strong>on</strong> exergy and exergy cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2006 world’s <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

producti<strong>on</strong>, <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves, base reserve and world resources. Values<br />

are expressed in ktoe if not specified . . . . . . . . . . . . . . . . . . . . . 400<br />

A.22 Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian coal producti<strong>on</strong>. Values in kt<strong>on</strong>s . . . . . . . 402<br />

A.23 Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian oil producti<strong>on</strong>. Values in kt<strong>on</strong>s . . . . . . . . 403<br />

A.23 Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian oil producti<strong>on</strong>. Values in kt<strong>on</strong>s.– c<strong>on</strong>tinued<br />

from previous page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404<br />

A.24 Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian natural gas producti<strong>on</strong>. Values in milli<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cubic meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404<br />

A.25 Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uranium in western countries and in <str<strong>on</strong>g>the</str<strong>on</strong>g> world. Values<br />

are expressed in t<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405<br />

A.26 Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s coal producti<strong>on</strong> . . . . . . . . . . . . . . . . . . . 406<br />

A.27 Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s oil producti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . 407<br />

A.28 Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world’s natural gas producti<strong>on</strong>. Data in billi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cubic<br />

meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408<br />

A.29 Primary energy c<strong>on</strong>sumpti<strong>on</strong> and cumulative resources producti<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s B1 scenario [160] . . . . . . . . . . . . . . . . . . . . . . . . . . 410<br />

A.30 Primary energy c<strong>on</strong>sumpti<strong>on</strong> and cumulative resources producti<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A1T scenario [160] . . . . . . . . . . . . . . . . . . . . . . . . . 411<br />

A.31 Primary energy c<strong>on</strong>sumpti<strong>on</strong> and cumulative resources producti<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s B2 scenario [160] . . . . . . . . . . . . . . . . . . . . . . . . . . 411<br />

A.32 Primary energy c<strong>on</strong>sumpti<strong>on</strong> and cumulative resources producti<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A1B scenario [160] . . . . . . . . . . . . . . . . . . . . . . . . . 411<br />

A.33 Primary energy c<strong>on</strong>sumpti<strong>on</strong> and cumulative resources producti<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A2 scenario [160] . . . . . . . . . . . . . . . . . . . . . . . . . . 412<br />

A.34 Primary energy c<strong>on</strong>sumpti<strong>on</strong> and cumulative resources producti<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> IPCC’s A1FI scenario [160] . . . . . . . . . . . . . . . . . . . . . . . . . 412


References<br />

[1] Abare. Energy update 2006. Technical report, The Australian Bureau<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural and Resource Ec<strong>on</strong>omics, 2006. Online under:<br />

http://www.abarec<strong>on</strong>omics.com/publicati<strong>on</strong>s_html/ energy/energy_06/ energyupdate<br />

_06.pdf.<br />

[2] Y. Ahmad, S. El Serafy, and E. Lutz, editors. Envir<strong>on</strong>mental accounting. The<br />

World Bank, Washingt<strong>on</strong>, D.C., 1989.<br />

[3] J. Ahrendts. The exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> chemically reacting systems. Technical report, VDI<br />

Forschungsheft 579, Düsseldorf, 1977. In German.<br />

[4] J. Ahrendts. Reference states. Energy, 5:667–677, 1980.<br />

[5] A. Alchian. Reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> progress curves in airframe producti<strong>on</strong>. Ec<strong>on</strong>ometrica,<br />

31:679–693, 1963.<br />

[6] C. Allègre, J.-P. Poirier, E. Humler, and A. H<str<strong>on</strong>g>of</str<strong>on</strong>g>mann. The chemical compositi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. Earth and Planetary Science Letters, 134:515–526, 1995.<br />

[7] C. J. Allègre, E. Lewin, and B. Dupré. A coherent crustal mantle model for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> uranium-thorium-lead isotopic system. Chem. Geol., 70:211–234, 1988.<br />

[8] C. J. Allègre, G. Manhès, and E. Lewin. Chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong><br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> volatility c<strong>on</strong>trol <strong>on</strong> planetary genetics. Earth and Planetary Science<br />

Letters, 185:46–69, 2001.<br />

[9] C. L. Archer and M. Z. Jacobs<strong>on</strong>. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> global wind power. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Geophysical Research - Atmospheres, 110(D12, D12110), June 2005.<br />

[10] R. Aringh<str<strong>on</strong>g>of</str<strong>on</strong>g>f, C. Aubrey, G. Brakmann, and S. Teske. Solar <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal power<br />

2020. Technical report, Greenpeace Internati<strong>on</strong>al/European Solar Thermal<br />

Power Industry Associati<strong>on</strong>, Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands, 2003.<br />

[11] Ashrae. Ashrae Handbook. Fundamentals. Ashrae, 2005.<br />

[12] AusIMM. History <str<strong>on</strong>g>of</str<strong>on</strong>g> coal mining in Australia. Number No. 21 in M<strong>on</strong>ograph<br />

Series. Australasian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Mining and Metallurgy, 1993.<br />

431


432 REFERENCES<br />

[13] R. Ayres. Optimal investment policies with exhaustible resources: An informati<strong>on</strong><br />

based model. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Ec<strong>on</strong>omics and Management,<br />

15:439–461, 1988.<br />

[14] R. Ayres, L. Ayres, and A. Masini. Sustainable Metals Management, chapter<br />

An applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy accounting to five basic metal industries, pages 141–<br />

194. Springer, 2006.<br />

[15] R. Ayres, L. Ayres, and B. Warr. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g>, power and work in <str<strong>on</strong>g>the</str<strong>on</strong>g> US ec<strong>on</strong>omy,<br />

1900 to1998. Energy, 28:219–273, 2003.<br />

[16] R. Ayres and S. Miller. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> technical change. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental<br />

Ec<strong>on</strong>omics and Management, 7:353–371, 1980.<br />

[17] R. Ayres and I. Nair. Thermodynamics and ec<strong>on</strong>omics. Physics Today, 35:62–<br />

71, 1984.<br />

[18] U. Bardi. The <str<strong>on</strong>g>mineral</str<strong>on</strong>g> ec<strong>on</strong>omy: a model for <str<strong>on</strong>g>the</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> oil producti<strong>on</strong><br />

curves. Energy Policy, 33(1):53–61, Jan. 2005.<br />

[19] I. Barin. Thermochemical Data <str<strong>on</strong>g>of</str<strong>on</strong>g> Pure Substances. VCH Verlagsgesellschaft<br />

GmbH, Weinheim, Germany, 1993.<br />

[20] H. Barnett and C. Morse. Scarcity and Growth. John Hopkins, Baltimore,<br />

1963.<br />

[21] D. Bar<str<strong>on</strong>g>the</str<strong>on</strong>g>lmy. Mineralogy database, web<str<strong>on</strong>g>mineral</str<strong>on</strong>g>. Online under<br />

http://www.web<str<strong>on</strong>g>mineral</str<strong>on</strong>g>.com, 2007.<br />

[22] A. Bartlett. An Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> U.S. and World Oil Producti<strong>on</strong> Patterns Using<br />

Hubbert-Style Curves. Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Geology, 32(1):1–17, 2000.<br />

[23] R. J. Beichner, J. W. Jewett, and R. A. Serway. Physics For Scientists and<br />

Engineers. Saunders College, New York, 2000.<br />

[24] R. Bentley. Global oil & gas depleti<strong>on</strong>. Energy Policy, 30:189–205, 2002.<br />

[25] R. Berman. Thermodynamic databases used by various versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> TWQ. Unpublished<br />

documentati<strong>on</strong> accompanying <str<strong>on</strong>g>the</str<strong>on</strong>g> TWQ s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware package, 1992.<br />

[26] R. A. Berner. The l<strong>on</strong>g-term carb<strong>on</strong> cycle, fossil fuels and atmospheric compositi<strong>on</strong>.<br />

Nature, 426(6964):323–236, 2003.<br />

[27] A. N. Berzina, V. I. Sotnikov, M. Ec<strong>on</strong>omou-Eliopoulos, and D. G. Eliopoulos.<br />

Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu<br />

deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> Russia (Siberia) and M<strong>on</strong>golia. Ore Geology Reviews, 26(1-2):91–<br />

113, 2005.<br />

[28] BGS. World <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong> 2001-2005. Technical report, BGS, 2005.


433<br />

[29] BGS. Minerals - what makes a mine? Online under:<br />

http://www.<str<strong>on</strong>g>mineral</str<strong>on</strong>g>suk.com/britmin/mm5.pdf, 2006.<br />

[30] BGS. World Mineral Statistics. British Geological Survey, Various years (1982<br />

- 2002).<br />

[31] BGS. World Mineral Producti<strong>on</strong>. British Geological Survey, Various years<br />

(2002 - 2006).<br />

[32] L. S. Borodin. Estimated chemical compositi<strong>on</strong> and petrochemical <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust. Geochem. Int., 37:723–734, 1999.<br />

[33] F. Bosjankovic. Reference level <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> chemically reacting systems.<br />

Forschung im Ingenieurwesen, 21:151–152, 1963.<br />

[34] E. Botero. Valoración exergética de recursos naturales, <str<strong>on</strong>g>mineral</str<strong>on</strong>g>es, agua y combustibles<br />

fósiles. PhD <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, Universidad de Zaragoza, 2000.<br />

[35] BP. Statistical review <str<strong>on</strong>g>of</str<strong>on</strong>g> world energy. Technical report, British Petroleum,<br />

2007. Online under: http://www.bp.com/ productlanding.do ?categoryId=6848&c<strong>on</strong>tentId=7033471.<br />

[36] G. P. Brasseur, J. J. Orlando, and G. S. Tyndall. Atmospheric Chemistry and<br />

Global Change. Oxford University Press, Oxford, 1999.<br />

[37] P. G. Brewer. Chemical Oceanography, volume 1, chapter Minor elements in<br />

sea water, pages 415–496. Academic Press, 1975.<br />

[38] K. A. Brik, B. B. Mureni, L. O. Kiseleva, L. H. Masinkova, and G. A. Kvasov.<br />

Gold distributi<strong>on</strong> according to its structure and volume fracti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> sands<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gold deposits. Mineral balance <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical elements in rocks and deposits <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Urals, pages 29–36, 1989. In Russian.<br />

[39] V. Brodianski. Earth’s available energy and <str<strong>on</strong>g>the</str<strong>on</strong>g> sustainable development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

life support systems. Theories and Practices for Energy Educati<strong>on</strong>, Training,<br />

Regulati<strong>on</strong> and Standards, from Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> Life Support Systems (EOLSS),<br />

Developed under <str<strong>on</strong>g>the</str<strong>on</strong>g> Auspices <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> UNESCO. Eolss Publishers, Oxford, UK;<br />

Online encyclopedia: http://www.eolss.net, Retrieved May 19, 2005.<br />

[40] W. S. Broecker. The great ocean c<strong>on</strong>veyor. Oceanography, 4(2):79–89, 1991.<br />

[41] D. B. Brooks and P. W. Andrews. Mineral resources, ec<strong>on</strong>omic growth and<br />

world populati<strong>on</strong>. Science, pages 13–20, 1974.<br />

[42] M. Brown and R. Herendeen. Embodied energy analysis and emergy analysis:<br />

a comparative view. Ecological Ec<strong>on</strong>omics, 19:219–235, 1996.<br />

[43] S. Brown. World Energy Resource. Springer, 2002.


434 REFERENCES<br />

[44] A. Caille and o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. Deciding <str<strong>on</strong>g>the</str<strong>on</strong>g> Future: Energy Policy Scenarios<br />

to 2050. World Energy Council, L<strong>on</strong>d<strong>on</strong>, UK, 2007. Online under:<br />

http://www.worldenergy.org/documents/scenarios_study_<strong>on</strong>line_1.pdf.<br />

[45] C. Campbell. Better understanding urged for rapidly depleting reserves. Oil<br />

and Gas Journal, 7:51–54, April 1997.<br />

[46] C. Campbell. The Essence <str<strong>on</strong>g>of</str<strong>on</strong>g> Oil & Gas Depleti<strong>on</strong>. Multiscience Publishing,<br />

Brentwood, 2003.<br />

[47] C. Campbell and J. Laherrère. The end <str<strong>on</strong>g>of</str<strong>on</strong>g> cheap oil. Scientific American, pages<br />

60–65, March 1998.<br />

[48] S. M. Cargill, D. H. Root, and E. H. Bailey. Resource estimati<strong>on</strong> from historical<br />

data: mercury, a test case. Internat. Assoc. Math. Geologists Jour., 12:489–522,<br />

1980.<br />

[49] R. Carmichael. Practical handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Rocks and Minerals.<br />

CRC Press, Boca Rat<strong>on</strong>, Florida, 1990.<br />

[50] O. Carpintero. El metabolismo de la ec<strong>on</strong>omía española. Recursos naturales y<br />

la huella ecológica (1955-2000). Ec<strong>on</strong>omía vs Naturaleza, Madrid, 2005. In<br />

Spanish.<br />

[51] D. D. Carr, editor. Industrial Minerals and Rocks. Society for Mining, Metallurgy,<br />

and Explorati<strong>on</strong>, Inc., Littlet<strong>on</strong>, Colorado, 1994.<br />

[52] CGS. Statistical Summary. Col<strong>on</strong>ial Geological Surveys, Various years (1948-<br />

1955).<br />

[53] P. Chapman and F. Roberts. Metal Resources and Energy. Butterworths, 1983.<br />

[54] R. H. Charlier and J. R. Justus. Elsevier Oceanographic Series, chapter Ocean<br />

Energies: Envir<strong>on</strong>mental, ec<strong>on</strong>omic, and technological aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> alternative<br />

power sources, page pp. 534. Elsevier, 1993.<br />

[55] J. A. Chermak and D. Rimstidt. Estimating <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamik properties<br />

(∆G0 and ∆H0)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> silicate <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s at 298 K from <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> polyhedral<br />

f f<br />

c<strong>on</strong>tributi<strong>on</strong>s. American Mineralogist, 74:1023–1031, 1989.<br />

[56] CIA. The world factbook. Technical report, Central Intellilgence Agency,<br />

2005. Online under: https://www.cia.gov/library/publicati<strong>on</strong>s/<str<strong>on</strong>g>the</str<strong>on</strong>g>-worldfactbook/.<br />

[57] S. Ciriacy-Wantrup. Resource C<strong>on</strong>servati<strong>on</strong>, Ec<strong>on</strong>omics and Policies. University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> California Press, California, 1952.<br />

[58] F. Clarke. The relative abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical elements. Phil. Soc. Washingt<strong>on</strong><br />

Bull., XI:131–142, 1889.


435<br />

[59] C. Cleveland and M. Ruth. When, where, and by how much do biophysical<br />

limits c<strong>on</strong>strain <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omic process? Ecological Ec<strong>on</strong>omics, 22:203–223,<br />

1997.<br />

[60] K. C. C<strong>on</strong>die. Plate Tect<strong>on</strong>ics and Crustal Evoluti<strong>on</strong>. Pergam<strong>on</strong>, L<strong>on</strong>d<strong>on</strong>, 1993.<br />

[61] L. C<strong>on</strong>nelly and C. Coshland. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> and industrial ecology. Part 2: A n<strong>on</strong>dimensi<strong>on</strong>al<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> means to reduce resource depleti<strong>on</strong>. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> Int. J.,<br />

1(4):234–255, 2001.<br />

[62] E. H. P. Cordfunke, A. S. Booij, and R. R. Vanderlaan. The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochemical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Y 2Si 2O 7 and D y 2Si 2O 7. J Chem Thermodyn, 30(2):199–205,<br />

1998.<br />

[63] R. L. Cornelissen and G. G. Hirs. The value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergetic life cycle assessment<br />

besides <str<strong>on</strong>g>the</str<strong>on</strong>g> LCA. Energy C<strong>on</strong>versi<strong>on</strong> and Management, 43:1417–1424,<br />

2002.<br />

[64] R. Costanza, editor. Ecological Ec<strong>on</strong>omics-The Science and Management <str<strong>on</strong>g>of</str<strong>on</strong>g> Sustainability,<br />

chapter Part II: Accounting, Modeling and Analysis. Columbia<br />

University Press, New York, 1991.<br />

[65] R. Costanza and H. E. Daly. Natural <str<strong>on</strong>g>capital</str<strong>on</strong>g> and sustainable development.<br />

C<strong>on</strong>servati<strong>on</strong> Biology, 6(1):37–46, March 1992.<br />

[66] D. P. Cox and D. A. Singer, editors. Mineral Deposit Models, volume US Geological<br />

Survey Bulletin 1693. US Geological Survey, 1992. Online under:<br />

hhtp://pubs.usgs.gov/bul/b1693/.<br />

[67] J. Craig and P. Bart<strong>on</strong>. Thermochemical approximati<strong>on</strong>s for sulfosalts. Ec<strong>on</strong>omic<br />

Geology, 68:493–506, 1973.<br />

[68] J. Craig, D. Vaughan, and B. J. Skinner. Resources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>: origin, use and<br />

envir<strong>on</strong>mental impact. Prentice Hall, 3rd editi<strong>on</strong>, 2001.<br />

[69] F. Culkin. Chemical Oceanography, volume 1, chapter The major c<strong>on</strong>stituents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> seawater, pages 121–161. Academic Press, L<strong>on</strong>d<strong>on</strong>, 1965.<br />

[70] H. Daly and J. Cobb. For <str<strong>on</strong>g>the</str<strong>on</strong>g> comm<strong>on</strong> good: redirecting <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omy toward<br />

community, <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment, and a sustainable future. Beac<strong>on</strong> Press, Bost<strong>on</strong>,<br />

Massachussets, 1989.<br />

[71] A. G. Darnley. Resources and World Development, chapter Resources for Nuclear<br />

Energy, pages 187–210. John Wiley and S<strong>on</strong>s Limited, 1987.<br />

[72] K. Deffeyes. The Impending World Oil Shortage. Princet<strong>on</strong> University Press,<br />

Princet<strong>on</strong>, 2001.


436 REFERENCES<br />

[73] J. H. DeYoung and D. A. Singer. Physical factors that could restrict <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

supply. Ec<strong>on</strong>omic Geology, 75th Anniversary Volume:939–954, 1981.<br />

[74] D. Diederichsen. Referenzumgebungen zur Berechnung der chemischen Exergie.<br />

Technical report, Technical Report, Fortschr.-Ber.VDI Reihe 19, Düsseldorf,<br />

1999. In German.<br />

[75] W. V. Dieren, editor. Taking Nature into Account. Copernicus, 1995.<br />

[76] I. Dincer. Thermodynamics, exergy and envir<strong>on</strong>mental impact. Energy<br />

Sources, 22:723–732, 2000.<br />

[77] R. Duda and L. Reijl. Minerals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> World. Spring Books, 1986.<br />

[78] K. Dunham. N<strong>on</strong>-renewable <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources. Resources Policy, pages 3–13,<br />

1974.<br />

[79] L. Duro, M. Grivé, C. Domenech, X. Ga<strong>on</strong>a, J. Bruno, and E. Giffaut. Réferentiel<br />

de comportements des redi<strong>on</strong>ucléides et des toxiques chimiques, chapter<br />

Chemical <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic data base <str<strong>on</strong>g>the</str<strong>on</strong>g>rmochimie. Andra, 2005.<br />

[80] K. E. Eade and W. Fahring. Regi<strong>on</strong>al, lithological and temporal variati<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> abundances <str<strong>on</strong>g>of</str<strong>on</strong>g> some trace elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> canadian shield. Geol. Sur.<br />

Canada Paper, pages 72–46, 1973.<br />

[81] K. E. Eade and W. F. Fahring. Geochemical <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g>ary trends <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinental<br />

plates, a preliminary study fo <str<strong>on</strong>g>the</str<strong>on</strong>g> Canadian Shield. Geol. Surv. Canada Bull.,<br />

179(1-59), 1971.<br />

[82] EIA. Internati<strong>on</strong>al Energy Annual 2004. Technical report, Energy Informati<strong>on</strong><br />

Administrati<strong>on</strong>, 2004. Online under: http://www.eia.doe.gov/ emeu/cabs/<br />

Australia/Oil.html.<br />

[83] W. Eisermann, P. Johns<strong>on</strong>, and W. C<strong>on</strong>ger. Estimating <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> coal, char, tar and ash. Fuel Processing Technology, 3:39–53, 1980.<br />

[84] EITI. Extractive Industries Transparency Iniciative. Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>al<br />

Advisory Group. Technical report, Department for Internati<strong>on</strong>al Development,<br />

L<strong>on</strong>d<strong>on</strong>, UK, 2006.<br />

[85] Encyclopaedia-Britannica. Table 1: Surface area, volume, and average depth<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> oceans and seas. Online under: http://www.britannica.com/eb/article-<br />

9116157, 2007.<br />

[86] eParliament. Climate, Energy, Forests. Creating a virtual parliament<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> legislators to protect our planet. http://www.eparl.net/eparliament/upload/Why_an_e-Parliament.pdf,<br />

2003-2006.


437<br />

[87] ESPASA, editor. Enciclopedia Universal Ilustrada, volume 25. Espasa-Calpe,<br />

1986. pp. 938-939.<br />

[88] EU. Towards a <str<strong>on</strong>g>the</str<strong>on</strong>g>matic strategy <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sustainable use <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources.<br />

Technical Report COM(2003) 572 final, European Uni<strong>on</strong>, 2003.<br />

[89] EWG. Coal: resources and future producti<strong>on</strong>. Technical Report EWG-Paper<br />

No. 1/07, Energy Watch Group, 2007.<br />

[90] M. Faber. Energy and time in ec<strong>on</strong>omic and physical resources, chapter A biophysical<br />

approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> ec<strong>on</strong>omy entropy, envir<strong>on</strong>ment and resources, pages<br />

315–337. Elsevier Science Publishers, Amsterdam, 1984.<br />

[91] M. Faber and J.L.Proops. Ecological Ec<strong>on</strong>omics: The Science and Management<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Sustainability, chapter Nati<strong>on</strong>al Accounting, Time and <str<strong>on</strong>g>the</str<strong>on</strong>g> Envir<strong>on</strong>ment,<br />

pages 214–233. Columbia University Press, New York, 1991.<br />

[92] M. Faber, H. Niemes, and G. Stephan. Entropy, Envir<strong>on</strong>ment and Resources.<br />

Springer-Verlag, Berlin, Heidelberg, New York, 1987.<br />

[93] W. F. Fahring and K. E. Eade. The chemical <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Canadian Shield.<br />

Geochim. Cosmochim. Acta, 5:1247–1252, 1968.<br />

[94] G. Faure. Principles and applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Inorganic Chemistry. MacMillan, 1991.<br />

[95] A. Fisher. Measures <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Resource Scarcity, chapter Measures <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural<br />

Resource Scarcity, pages 249–275. John Hopkins University Press for<br />

Resources for <str<strong>on</strong>g>the</str<strong>on</strong>g> Future, Baltimore, 1979.<br />

[96] J. W. Forrester. World Dynamics. Wright Allen Press, INC., 1971.<br />

[97] S. Fritsch, J. Post, S. Suib, and A. Navrotsky. Thermochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> framework<br />

and layer manganese dioxide related phases. Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials, 10(474-<br />

479), 1988.<br />

[98] L. Fult<strong>on</strong> and T. Howes. Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels for transport: An internati<strong>on</strong>al perspective.<br />

Technical report, IEA/EET, 2004.<br />

[99] R. B. Fult<strong>on</strong> and G. M<strong>on</strong>tgomery. Industrial Minerals and Rocks, chapter<br />

Fluorspar, pages 509–522. Society for Mining, Metallurgy, and Explorati<strong>on</strong>,<br />

Inc., 1994.<br />

[100] W. S. Fyfe. Geochemistry. Clarend<strong>on</strong> Press, Oxford, 1974.<br />

[101] R. Gaggioli and P. Petit. Sec<strong>on</strong>d law analysis for pinpointing <str<strong>on</strong>g>the</str<strong>on</strong>g> true inefficiencies<br />

in final c<strong>on</strong>versi<strong>on</strong> systems. A.C.S. Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fuel Chemistry, 21(2),<br />

1976.


438 REFERENCES<br />

[102] J. Gaillardet, J. Viers, and B. Dupré. Treatise <strong>on</strong> Geochemistry, volume 5,<br />

chapter Trace Elements in River Waters, pages 225–272. Elsevier Pergam<strong>on</strong><br />

Ltd, 2004.<br />

[103] R. V. Gaines, H. C. W. Skinner, E. E. Foord, B. Mas<strong>on</strong>, and A. Rosenzweig.<br />

Dana’s New Mineralogy. John Wiley & S<strong>on</strong>s, Inc., 1997.<br />

[104] S. J. G. Galer, S. L. Goldstein, and R. K. O’Ni<strong>on</strong>s. Limits <strong>on</strong> chemical and<br />

c<strong>on</strong>vective isolati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s interior. Chem. Geol., 75:257–290, 1989.<br />

[105] R. Ganapathy and E. Anders. Bulk compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mo<strong>on</strong> and <strong>earth</strong>, estimated<br />

from meteorites. In Proc. 5th Lunar Sci. C<strong>on</strong>f, pages 1181–1206, 1974.<br />

[106] S. Gao, T.-C. Luo, B.-R. Zhang, Y.-W. Han, Z.-D. Zhao, and Y.-K. HU. Chemical<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust as revealed by studies in East China.<br />

Geochimica et Cosmochimica Acta, 62(11):1959–1975, Jun 1998.<br />

[107] P. Gar<str<strong>on</strong>g>of</str<strong>on</strong>g>alo, A. Audétat, D. Gün<str<strong>on</strong>g>the</str<strong>on</strong>g>r, C. Heinrich, and J. Ridley. Estimati<strong>on</strong><br />

and testing <str<strong>on</strong>g>of</str<strong>on</strong>g> standard molar <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> tourmaline endmembers<br />

using data <str<strong>on</strong>g>of</str<strong>on</strong>g> natural samples. American Mineralogist, 85:78–88,<br />

2000.<br />

[108] L. Gartner. Relati<strong>on</strong>s entre enthalpies et enthalpies libres de formati<strong>on</strong> des i<strong>on</strong>s,<br />

des oxydes de formule M nN mO 2. Utilizati<strong>on</strong> des frequences de vibrati<strong>on</strong> dans<br />

l’infra-rouge. PhD <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, Université de Strasbourg, 1979.<br />

[109] K. Gawell, M. Reed, and P. M. Wright. Geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal energy, <str<strong>on</strong>g>the</str<strong>on</strong>g> potential<br />

for clean power from <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. Technical report, Geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal<br />

Energy Associati<strong>on</strong>, 1999. Online under: http://www.geoenergy.org/publicati<strong>on</strong>s/reports/PRELI-MINARY%20REPORT.pdf.<br />

[110] Y. Genç. Genesis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Neogene interstratal karst-type Pöhrenk fluorite-barite<br />

(+-lead) deposit (Kirsehir, Central Anatolia, Turkey). Ore Geology Reviews,<br />

29(2):105–117, 2006.<br />

[111] N. Georgescu-Roegen. The Entropy Law and <str<strong>on</strong>g>the</str<strong>on</strong>g> Ec<strong>on</strong>omic Process. Harvard<br />

University Press, Cambridge Massachussets, L<strong>on</strong>d<strong>on</strong> England, 1971.<br />

[112] Geoscience. Australia’s identified <str<strong>on</strong>g>mineral</str<strong>on</strong>g> resources. Technical report, Australian<br />

Government. Geoscience Australia, 2005.<br />

[113] Geoscience-Australia. Virtual centre for ge<str<strong>on</strong>g>of</str<strong>on</strong>g>luids<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic data. Online under:<br />

https://www.ga.gov.au/rural/projects/<str<strong>on</strong>g>the</str<strong>on</strong>g>rmo/calculator/search.jsp.<br />

[114] GERM. Geochemical <strong>earth</strong> reference model. Online under:<br />

http://<strong>earth</strong>ref.org/GERM.


439<br />

[115] P. H. Gleick. The world’s water 2000-2001, <str<strong>on</strong>g>the</str<strong>on</strong>g> biennial report <strong>on</strong> freshwater<br />

resources. Island Press, Washingt<strong>on</strong> D.C., 2000.<br />

[116] V. M. Goldschmidt. The principles <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical elements in<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and rocks. J. Chem. Soc., 1937.<br />

[117] V. M. Goldschmidt. Geochemistry. Clarend<strong>on</strong> Press, Oxford, 1954.<br />

[118] Y. V. Golikov, V. P. Barkhatov, V. F. Kostitsyn, E. G.and Balakirev, and G. I.<br />

Chufarov. Thermodynamic <str<strong>on</strong>g>of</str<strong>on</strong>g> phase equilibria in <str<strong>on</strong>g>the</str<strong>on</strong>g> Mg-Mn-O system. Russ.<br />

J. Phys. Chem., 57(8):1983–1985, 1983.<br />

[119] L. G. Goroshenko. Some peculiarities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogy <str<strong>on</strong>g>of</str<strong>on</strong>g> granulitic forming<br />

rocks in <str<strong>on</strong>g>the</str<strong>on</strong>g> Kola peninsule in relati<strong>on</strong> with its origin. Problems <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sedimentary geology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> precambrian, 3:56–79, 1971. In Russian.<br />

[120] M. Gottschalk. Internally c<strong>on</strong>sistent <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic data for rock-forming<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> system SiO2-TiO2-Al2O3-Fe2O3-CaO-MgO-FeO-K2O-Na2O-<br />

H2O-CO2. European Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mineralogy, 9(1):175–223, 1997.<br />

[121] J. Govett and M. Govett. The c<strong>on</strong>cept and measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> reserves<br />

and resources. Resources Policy, pages 46–55, 1974.<br />

[122] N. N. Greenwood and A. Earnshaw. Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Elements. Pergam<strong>on</strong><br />

Press, 1984.<br />

[123] K. Gregory and H. Rogner. Energy resources and c<strong>on</strong>versi<strong>on</strong> technologies<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st century. Mitigati<strong>on</strong> and Adaptati<strong>on</strong> Strategies for Global Change,<br />

3((2-4)):171–229, 1998.<br />

[124] N. Grigor’ev. The average c<strong>on</strong>tents <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> major groups <str<strong>on</strong>g>of</str<strong>on</strong>g> magmatic<br />

rocks; granite-metamorphic layers. Uralian Geological Journal, 1:47–<br />

58, 2000.<br />

[125] N. Grigor’ev. The average <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental<br />

crust. Uralian Geological Journal, 3:3–21, 2000. In Russian.<br />

[126] N. A. Grigor’ev. Andesitic magmatism and its place in geological history in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Olj<strong>on</strong> area (West Baikal). Litosphera, pages 113–122, 2006. In Russian.<br />

[127] N. A. Grigor’ev. Average compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> upper c<strong>on</strong>tinental crust and<br />

dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical elements. Geology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Ural and neighbouring territories. Summary materials 2002-2006.<br />

Uralian Geological Journey, October 2007. In Russian.<br />

[128] A. Grubler, N. Nakiecenvic, and A. McD<strong>on</strong>ald. Global Energy Perspectives.<br />

Cambridge University Press, Cambridge (MA), 1998.


440 REFERENCES<br />

[129] U. Haack. On <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tent and vertical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> K, Th, and U in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>tinental crust. Earth Planet. Sci. Lett., 62:360–366, 1983.<br />

[130] D. O. Hall, M. Slesser, D. K. L. Betz, D. J. McLaren, P. F. Burollet, P. C. Roberts,<br />

A. G. Darnley, H. D. Schilling, J. Diekmann, D. A. White, W. U. Ehrmann,<br />

R. H. Williams, and H. W. Levi. Resources and World Development, chapter<br />

Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Renewable and N<strong>on</strong>renewable Energy Resources, pages 4854–<br />

506. John Wiley & S<strong>on</strong>s Limited, 1987.<br />

[131] M. J. Harris. Flotati<strong>on</strong> C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Low Grade Fluorite Ore from Southwestern<br />

New Mexico: A Preliminary Study. Technical Report 321, New Mexico<br />

Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Mines and Mineral Resources, November 1987. Online under:<br />

http://geoinfo.nmt.edu/publicati<strong>on</strong>s/.<br />

[132] C. Harvie and J. Moller, N.and Weare. The predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> solubilities<br />

in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system<br />

to high i<strong>on</strong>ic strengths at 25 o C. Geochim. Cosmochim. Acta, 48:723–751,<br />

1984.<br />

[133] C. Hatfield. Oil back <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> global agenda. Nature, 387:121, 1997.<br />

[134] H. C. Helges<strong>on</strong>, J. M. Delany, H. W. Nesbitt, and D. K. Bird. Summary and<br />

critique <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rock-forming <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. American<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, 278-A:1–229, 1978.<br />

[135] B. Hemingway, L. M. Anovitz, R. Robie, and J. J. McGee. The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> dumortierite. American Mineralogist, 75:1370–1375, 1990.<br />

[136] B. Hemingway, M. Bart<strong>on</strong>, R. Robie, and H. Haselt<strong>on</strong>. Heat capacities<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic functi<strong>on</strong>s for beryl, Be3Al2Si6O18, phenakite, Be2SiO4,<br />

euclase, BeAlSiO4(OH), bertrandite, Be4Si2O7(OH)2, and chrysoberyl,<br />

BeAl2O4. American Mineralogist, 71:557–568, 1986.<br />

[137] P. Henders<strong>on</strong>. Inorganic Geochemistry. Pergam<strong>on</strong> Press, 1982.<br />

[138] W. A. Hermann. Quantifying global exergy resources. Energy, 31:1685–1702,<br />

2006.<br />

[139] L. E. He<str<strong>on</strong>g>the</str<strong>on</strong>g>ringt<strong>on</strong>, T. J. Brown, A. J. Benham, P. A. J. Lusty, and N. E. Idoine.<br />

World <str<strong>on</strong>g>mineral</str<strong>on</strong>g> producti<strong>on</strong>. Technical report, British Geological Survey, Keyworth,<br />

Nottingham (UK), 2007.<br />

[140] M. H. Hey. An index <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> species & varieties arranged chemically: with an<br />

alphabetical index <str<strong>on</strong>g>of</str<strong>on</strong>g> accepted <str<strong>on</strong>g>mineral</str<strong>on</strong>g> names and syn<strong>on</strong>yms. British Museum<br />

(Natural History), 1975.<br />

[141] D. E. Highley, G. R. Chapman, and K. A. B<strong>on</strong>el. The Ec<strong>on</strong>omic Importance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Minerals to <str<strong>on</strong>g>the</str<strong>on</strong>g> UK. Report CR/04/070N, British GEological Survey Commissi<strong>on</strong>ed,<br />

2004.


441<br />

[142] R. Höll, M. Kling, and E. Schroll. Metallogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> germanium-a review. Ore<br />

Geology Reviews, 30(3-4):145–180, March 2007.<br />

[143] T. J. B. Holland. Dependance <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy <strong>on</strong> volume for silicate and oxide<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. A review and a predicture model. Amer. Miner., 74:5–13, 1989.<br />

[144] T. J. B. Holland and R. Powell. An internally c<strong>on</strong>sistent <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

data set for phases <str<strong>on</strong>g>of</str<strong>on</strong>g> petrological interest. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Metamorphic Geology,<br />

16:309–343, 1998.<br />

[145] H. Hotelling. The ec<strong>on</strong>omics <str<strong>on</strong>g>of</str<strong>on</strong>g> exhaustible resources. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Political<br />

Ec<strong>on</strong>omy, 1931.<br />

[146] M. K. Hubbert. Nuclear energy and <str<strong>on</strong>g>the</str<strong>on</strong>g> fossil fuels. Technical Report Publicat<strong>on</strong><br />

No. 95, Shell develpment Company. Explorati<strong>on</strong> and Producti<strong>on</strong> Research<br />

Divisi<strong>on</strong>, 1956.<br />

[147] M. K. Hubbert. Energy resources: a report to <str<strong>on</strong>g>the</str<strong>on</strong>g> Committee <strong>on</strong> Natural<br />

Resources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences. Technical Report PB-222401,<br />

Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences - Nati<strong>on</strong>al Research Council, Washingt<strong>on</strong>, D.C.<br />

(USA), 1962.<br />

[148] C. P. Idyll, editor. The Science <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Sea. Nels<strong>on</strong>, 1970.<br />

[149] IEA. Technology innovati<strong>on</strong>, development and diffusi<strong>on</strong>. Informati<strong>on</strong> paper,<br />

Internati<strong>on</strong>al Energy Agency, OECD, Paris, 2003.<br />

[150] IEA. World Energy Outlook 2004. Technical report, Internati<strong>on</strong>al Energy<br />

Agency, OECD, Paris, 2004.<br />

[151] IEA. World Energy Outlook 2005, Middle East and North Africa Insights.<br />

Technical report, Internati<strong>on</strong>al Energy Agency, OECD, Paris, 2005.<br />

[152] IEA. World Energy Outlook. Internati<strong>on</strong>al Energy Council, Paris, France, 2006.<br />

[153] IEA. Key World Energy Statistics. IEA, 2007. Online under:<br />

http://www.iea.org/textbase/nppdf/free/2007/key_stats_2007.pdf.<br />

[154] IGS. Statistical Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Mineral Industry. Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Geological Sciences,<br />

Various years (1965 - 1971).<br />

[155] IGS. World Mineral Statistics. Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Geological Sciences, Various years<br />

(1972 - 1981).<br />

[156] IGU. World gas prospects, strategies and ec<strong>on</strong>omics. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

20th World Gas C<strong>on</strong>ference, Copenhagen, Denmark, 1997. Internati<strong>on</strong>al Gas<br />

Uni<strong>on</strong>.<br />

[157] II. Statistical Summary. Imperial Institute, Various years (1924 - 1947).


442 REFERENCES<br />

[158] S. Ikumi, C. Luo, and C. Y. Wen. A method <str<strong>on</strong>g>of</str<strong>on</strong>g> estimating entropies <str<strong>on</strong>g>of</str<strong>on</strong>g> coals<br />

and coal liquids. The Canadian journal <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical engineering, 60:551–555,<br />

1982.<br />

[159] IMRB. Statistical Summary. Imperial Mineral Resources Bureau, Various years<br />

(1913-1923).<br />

[160] IPCC. Special Report <strong>on</strong> Emissi<strong>on</strong>s Scenarios: A Special Report <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Working Group III <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Intergovernmental Panel <strong>on</strong> Climate Change.<br />

Cambridge University Press, Cambridge, U.K., 2000. Online under:<br />

http://www.grida.no/climate/ipcc/emissi<strong>on</strong>/index.htm.<br />

[161] IPCC. Climate Change 2001 (Mitigati<strong>on</strong>). C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group III to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Third Assessment Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Intergovernmental Panel <strong>on</strong> Climate Change,<br />

chapter Technological and Ec<strong>on</strong>omic Potential <str<strong>on</strong>g>of</str<strong>on</strong>g> Greenhouse Gas Emissi<strong>on</strong>s<br />

Reducti<strong>on</strong>. Cambridge Univ. Press, 2001.<br />

[162] IPCC. Climate Change 2007: The Physical Science Basis. C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working<br />

Group I to <str<strong>on</strong>g>the</str<strong>on</strong>g> Fourth Assessment Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Intergovernmental Panel <strong>on</strong><br />

Climate Change, chapter Summary for Policymakers. Cambridge University<br />

Press, Cambridge, United Kingdom and New York, NY, USA., 2007. Online under:<br />

http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf.<br />

[163] IPCC. IPCC Working group III fourth assessment report, chapter Energy supply.<br />

Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands Envir<strong>on</strong>mental Assessment Agency, 2007.<br />

[164] ISR. Australia’s Export Coal Industry. Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Industry, Science & Resources -<br />

Energy Minerals Branch, 6th editi<strong>on</strong>, 2001.<br />

[165] L. Ivanhoe and G. Leckie. Global oil, gas fields, sizes tallied, analyzed. Oil<br />

and Gas Journal, 91(7):87–91, 1993.<br />

[166] IWP&DC. Internati<strong>on</strong>al Water Power and Dam C<strong>on</strong>structi<strong>on</strong> Handbook. Reed<br />

Business Pub. Ltd., Sutt<strong>on</strong>, Surrey, England, 1996.<br />

[167] R. Jahnke. The syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis and solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>ate fluoroapatite. American<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, 284:58–78, January 1984.<br />

[168] C. Jaupart and J. C. Mareschal. Treatise <strong>on</strong> Geochemistry. The Crust, volume 3,<br />

chapter C<strong>on</strong>straints <strong>on</strong> Crustal Heat Producti<strong>on</strong> from Heat Flow Data, pages<br />

65–84. Elsevier Pergam<strong>on</strong>, 2004.<br />

[169] M. Javoy. Chemical <strong>earth</strong> models. C.R. Acad. Sci. Paris, Sciences de la terre et<br />

des planètes / Earth & Planetary Sciences, 329:537–555, 1999.<br />

[170] T. Johanss<strong>on</strong>, K. McCormick, L. Neij, and W. Turkenburg. The potentials <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

renewable energy. Thematic background paper for renewables, 2004. Online<br />

under: http://www.renewables2004.de.


443<br />

[171] K. S. Johns<strong>on</strong>. Industrial Minerals and Rocks, chapter Iodine, pages 583–588.<br />

Society for Mining, Metallurgy, and Explorati<strong>on</strong>, Inc., 6th editi<strong>on</strong>, 1994.<br />

[172] R. Joly<strong>on</strong>. Mindat.org-<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> and locality database. Online under:<br />

http://www.mindat.org, 2007.<br />

[173] I. W. J<strong>on</strong>es, G. Munhoven, M. Tranter, P. Huybrechts, and M. J. Sharp. Modelled<br />

glacial and n<strong>on</strong>-glacial HCO3, Si and Ge fluxes since <str<strong>on</strong>g>the</str<strong>on</strong>g> LGM: little potential<br />

for impact <strong>on</strong> atmospheric CO2 c<strong>on</strong>centrati<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> marine Ge:Si<br />

ratio. Global Planet Change, 33:139–153, 2002.<br />

[174] D. B. Jorgensen. Industrial Minerals and Rocks, chapter Gypsum and Anhydrite,<br />

pages 571–581. Society for Mining, Metallurgy, and Explorati<strong>on</strong>, Inc,<br />

1994.<br />

[175] S. Jorgensen. Eco-<str<strong>on</strong>g>Exergy</str<strong>on</strong>g> as Sustainability. WIT Press, UK, 2006.<br />

[176] S. Jorgensen and Y. Svirezhe. Towards a Thermodynamic Theory for Ecological<br />

Systems. Elsevier, 1st editi<strong>on</strong>, 2004.<br />

[177] H. Kameyama, K. Yoshida, S. Yamauchi, and K. Fueki. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reference<br />

exergy for <str<strong>on</strong>g>the</str<strong>on</strong>g> elements. Applied Energy, 11:69–83, 1982.<br />

[178] V. K. Karzhavin. Amphiboles: <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties. Geokhimiya,<br />

12:1724–1732, 1991.<br />

[179] V. K. Karzhavin. Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> eudialyte. Geoch. Int.,<br />

31(6):77–80, 1994.<br />

[180] R. A. Kauffman and D. V. Dyk. Industrial Minerals and Rocks, chapter Feldspar,<br />

pages 473–481. Society for Mining, Metallurgy, and Explorati<strong>on</strong>, Inc., 1994.<br />

[181] R. Keeling, editor. Treatise <strong>on</strong> Geochemistry. The Atmosphere, volume 4. Elsevier<br />

Pergam<strong>on</strong>, 2004.<br />

[182] H. M. Kendall, R. M. Glendinning, C. H. MacFadden, and R. F. Logan. Introducti<strong>on</strong><br />

to Physical Geography. Harcourt Brace Jovanovich, Inc, New York,<br />

2nd editi<strong>on</strong>, 1974.<br />

[183] R. Kerr. The Next Oil Crisis Looms Large-And Perhaps Close. Science,<br />

281:1128–1131, 1998.<br />

[184] N. Khan, Z. Saleem, and A. Wahid. Review <str<strong>on</strong>g>of</str<strong>on</strong>g> natural energy sources and<br />

global power needs. Renewable and Sustainable Energy Reviews, 12(7):1959–<br />

1973, September 2008.<br />

[185] P. G. Knight. Glaciers. Cheltenham, Stanley Thornes, 1999.


444 REFERENCES<br />

[186] N. Komada, D. Moecher, E. Westrum, B. Hemingway, M. Zolotov, Y. Semenov,<br />

and I. Khodakovsky. Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> scapolites at temperatures<br />

ranging from 10 K to 1000 K. J. Chem. Thermodynamics, 28:941–973, 1996.<br />

[187] N. Komada, E. F. Westrum, M. Y. Hemingway, B. S.and Zolotov, Y. V. Semenov,<br />

I. L. Khodakovsky, and M. Anovitz. Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> sodalite at<br />

temperatures from 15 K to 1000 K. J Chem Thermodyn, 27(10):1119–1132,<br />

1995.<br />

[188] J. Krautkraemer. Scarcity and Growth Revisited, chapter Ec<strong>on</strong>omics <str<strong>on</strong>g>of</str<strong>on</strong>g> Scarcity,<br />

pages 54–77. Resources for <str<strong>on</strong>g>the</str<strong>on</strong>g> Future, Washingt<strong>on</strong> DC, USA, 2005.<br />

[189] O. Kubaschewski. The <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> double oxides (A review),<br />

volume 4. High Temp., High Press, 1972.<br />

[190] J. Laherrere. Published figures and political reserves. World Oil, 33, January<br />

1994.<br />

[191] D. Langmuir. Uranium soluti<strong>on</strong>-<str<strong>on</strong>g>mineral</str<strong>on</strong>g> equilibria at low temperatures<br />

with applicati<strong>on</strong>s to sedimentary ore deposits. Geochim. et Cosmoch. Acta,<br />

42(6):547–565, 1978.<br />

[192] D. Langmuir and K. Applin. Short Papers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Geological Survey Uranium<br />

Thorium Symp., chapter Refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> uranium <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and dissolved species with applicati<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemistry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ground waters in sandst<strong>on</strong>e-type uranium deposits, pages 57–66. U. S.<br />

Geol. Survey Circ., 1977.<br />

[193] S. Lasky. How t<strong>on</strong>nage and grade relati<strong>on</strong>s help predict ore reserves. Eng.<br />

Mining Jour., 151:81–85, 1950.<br />

[194] W. Latimer. The oxidati<strong>on</strong> states <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir potentials in aqueous<br />

soluti<strong>on</strong>s. Prentice-Hall, New York, 1952.<br />

[195] L. D. Leet, S. Juds<strong>on</strong>, and M. E. Kauffman. Physical Geology. Prentice-Hall,<br />

Inc, 6th editi<strong>on</strong>, 1982.<br />

[196] Y. H. Li. A brief discussi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mean oceanic residence time <str<strong>on</strong>g>of</str<strong>on</strong>g> elements.<br />

Geochimica et Cosmochimica Acta, 46:2671–2675, 1982.<br />

[197] D. A. Livingst<strong>on</strong>e. Data <str<strong>on</strong>g>of</str<strong>on</strong>g> Geochemistry, chapter Chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rivers and lakes. US Geological Survey, 6th editi<strong>on</strong>, 1963.<br />

[198] W. G. Lloyd and D. A. Davenport. Applying <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics to fossil fuel.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical educati<strong>on</strong>, 57:56–60, 1980.<br />

[199] J. Lovelock. Gaia: A new look at life <strong>on</strong> Earth. Oxford University Press, 1979.


445<br />

[200] J. Lovelock. The revenge <str<strong>on</strong>g>of</str<strong>on</strong>g> Gaia: Why <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth Is Fighting Back - and How We<br />

Can Still Save Humanity. Penguin Press, 2006.<br />

[201] M. Lozano. Metodología para el análisis exergético de calderas de vapor en<br />

centrales térmicas. PhD <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, Universidad de Zaragoza, Septiembre 1989.<br />

[202] M. Lozano and A. Valero. Methodology for calculating exergy in chemical<br />

processes. In W. Wepfer, G. Tsatsar<strong>on</strong>is, and R. Bajura, editors, ASME. AES,<br />

volume 4, 1988.<br />

[203] P. Lujula. Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources. In 2003 ECPR Joint Sessi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Workshops,, Edinburgh, UK, March 2003. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omics. Norwegian<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology, Dragvoll. NO-7491 Tr<strong>on</strong>dheim,<br />

Norway.<br />

[204] M. I. L’vovich. World Water Resources and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir Future. LithoCrafters, Inc.,<br />

Chelsea, Michigan, 1979.<br />

[205] D. Lynch. Standard free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NiAs. Metallurgical and Materials<br />

Transacti<strong>on</strong>s B, 13(2):285–288, 1982.<br />

[206] T. R. Malthus. An Essay <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Principle <str<strong>on</strong>g>of</str<strong>on</strong>g> Populati<strong>on</strong>. Methuen<br />

and Co., Ltd. 1904. Ed. Edwin Cannan. Library <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omics and Liberty.,<br />

1798. Retrieved May 18, 2006 from <str<strong>on</strong>g>the</str<strong>on</strong>g> World Wide Web:<br />

http://www.ec<strong>on</strong>lib.org/library/Malthus/malPop1.html.<br />

[207] A. Martinez, A. Valero, A. Valero D., and I. Arauzo. Accounting <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s<br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> for <str<strong>on</strong>g>the</str<strong>on</strong>g> most demanded <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> industry. The case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bauxite, alumina and aluminium and limest<strong>on</strong>e. In Biennial internati<strong>on</strong>al<br />

workshop. Advances in energy studies, Porto Venere, Italy, 12-16 September<br />

2006.<br />

[208] E. Martinot. Renewables. Global status report. 2006 update. Technical report,<br />

Renewable Energy Policy Network for <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st Century, 2006. Online under:<br />

http://www.ren21.net/.<br />

[209] B. Mas<strong>on</strong>. Principles <str<strong>on</strong>g>of</str<strong>on</strong>g> Geochemistry. Wiley, 3rd editi<strong>on</strong>, 1966.<br />

[210] H. J. Mass<strong>on</strong>ne and Z. Szpurka. Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> white micas<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> high-pressure experiments in <str<strong>on</strong>g>the</str<strong>on</strong>g> systems K2O-MgO-Al2O3-<br />

SiO2-H2O and K2O-FeO-Al2O3-SiO2-H2O. Lithos 4, 1(1-3):229–250, 1997.<br />

[211] C. Masters, E. Attanasi, and D. Root. World petroleum assessment and analysis.<br />

In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 14th World Petroleum C<strong>on</strong>gress, pages 1–13, Stavanger,<br />

Norway, 1994. John Wiley.<br />

[212] W. McD<strong>on</strong>ough and S.-s. Sun. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. Chemical Geology,<br />

120:223–253, 1995.


446 REFERENCES<br />

[213] O. P. Mchedlov-Petrossyan. The chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Inorganic Building Materials.<br />

Moscow Stryizdat, 1971.<br />

[214] V. E. McKelvey. Mineral resources estimates and public policy. American Scientist,<br />

60(1):32–40, 1972.<br />

[215] S. M. McLennan. Relati<strong>on</strong>ships between <str<strong>on</strong>g>the</str<strong>on</strong>g> trace element compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentary<br />

rocks and upper c<strong>on</strong>tinental crust. Geochemistry geophysics geosystems,<br />

2:2000GC000109, April 2001.<br />

[216] S. M. McLennan and S. R. Taylor. Heat flow and <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tinental crust. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Geology, 104:369–377, 1996.<br />

[217] D. H. Meadows, D. L. Meadows, and J. Randers. Bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> Limits: C<strong>on</strong>fr<strong>on</strong>ting<br />

Global Collapse, Envisi<strong>on</strong>ing a Sustainable Future. Chelsea Green Publishing<br />

Company, 1993.<br />

[218] D. H. Meadows, D. L. Meadows, J. Randers, and W. W. Behrens. The Limits to<br />

Growth. Universe Books, 1972.<br />

[219] D. H. Meadows, J. Randers, and D. L. Meadows. Limits to Growth: The 30-<br />

Year Update. Chelsea Green Publishing Company, White River Juncti<strong>on</strong>, Vt,<br />

2004.<br />

[220] F. Melcher, T. Oberthür, and D. Rammlmair. Geochemical and <str<strong>on</strong>g>mineral</str<strong>on</strong>g>ogical<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> germanium in <str<strong>on</strong>g>the</str<strong>on</strong>g> Khusib Springs Cu-Zn-Pb-Ag sulfide deposit,<br />

Otavi Mountain Land, Namibia. Ore Geology Reviews, 28(1):32–56, 2006.<br />

[221] W. D. Menzie, D. A. Singer, and J. H. Deyoung. Scarcity and Growth Revisited,<br />

chapter Mineral Resources and C<strong>on</strong>sumpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> Twenty-First Century,<br />

pages 33–53. Resources for <str<strong>on</strong>g>the</str<strong>on</strong>g> Future, 2005.<br />

[222] L. Merli and J. Fuger. Thermochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> selected lanthanide and actinide<br />

hydroxycarb<strong>on</strong>ates and carb<strong>on</strong>ates. Radiochim Acta, 74:37–43, 1996.<br />

[223] L. Merli, B. Lambert, and J. Fuger. Thermochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> lanthanum,<br />

neodymium, samarium and americium trihydroxides and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir relati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

corresp<strong>on</strong>ding hydroxycarb<strong>on</strong>ates. J Nucl Mater, 247:172–176, 1997.<br />

[224] F. Millero. Chemical Oceanography. CRC Press, 2nd editi<strong>on</strong>, 1996.<br />

[225] F. Millero. Physical Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Waters. Wiley-Interscience Series in<br />

Geochemistry, 2001.<br />

[226] K. Mills. Thermodynamic data for inorganic sulphides , selenides and tellurides.<br />

Butterworths, L<strong>on</strong>d<strong>on</strong>, 1974.


447<br />

[227] T. Miyano and N. J. Beukes. Physicochemical envir<strong>on</strong>ments for <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quartz free manganese oxide ores from <str<strong>on</strong>g>the</str<strong>on</strong>g> early proterozoic formati<strong>on</strong><br />

Kalahari manganese field, South Africa. Ec<strong>on</strong>. Geol., 82:706–718, 1987.<br />

[228] G. E. Moore. Structure and metamorphism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Keene-Brattle-boro Area,<br />

New Hampshire-Verm<strong>on</strong>t. Geoch. et Cosmoch. Acta, 65(12):2007–2016, 2001.<br />

[229] J. R. Moreira. Can Renewable Energy Make Important C<strong>on</strong>tributi<strong>on</strong> to GHG<br />

Atmospheric Stabilizati<strong>on</strong>? Third project workshop, LAMNET, Brasilia, Brazil,<br />

December 2002.<br />

[230] D. Morse and A. Glover. Events Affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. N<strong>on</strong>fuel Minerals<br />

Industry 1900-2000. Technical report, U.S. Geological Survey (USGS),<br />

2000. http://<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.usgs.gov/<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s/pubs/commodity/timeline/<br />

20th_century_review.pdf.<br />

[231] M. Mottl. Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seawater: Salinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> major i<strong>on</strong>s. Chemocal<br />

Oceanography (OC 623); www.soest.hawaii.edu.<br />

[232] G. M. Mudd. Sustainable mining: An evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changing ore grades and<br />

waste volumes. In Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Sustainability Engineering &<br />

Science. Auckland, New Zealand. 6-9 July, Auckland, New Zealand, 6-9 July<br />

2004.<br />

[233] G. M. Mudd. The Sustainability <str<strong>on</strong>g>of</str<strong>on</strong>g> Mining in Australia: Key Producti<strong>on</strong> Trends<br />

and Their Envir<strong>on</strong>mental Implicati<strong>on</strong>s. Joint research report, Mineral Policy<br />

Institute (MPI) and Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, M<strong>on</strong>ash University, Australia,<br />

2006.<br />

[234] G. M. Mudd. An analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> historic producti<strong>on</strong> trends in Australian base<br />

metal mining. Ore Geology Reviews, 32(1-2):227–261, 2007.<br />

[235] W. Munk and C. Wunsch. Abyssal recipes II: energetics <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal and wind mixing.<br />

Deep-Sea Research, Part I (Oceanographic Research Papers), 45(12):1977–<br />

2010, 1998.<br />

[236] S. Murao, M. Deb, and M. Furuno. Mineralogical <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> indium in high<br />

grade tin-polymetallic hydro<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal veins-A comparative study from Tosham,<br />

Haryana state, India and Goka, Naegi district, Japan. Ore Geology Reviews,<br />

33(3-4):490–504, June 2008.<br />

[237] J. Naredo. La ec<strong>on</strong>omía en evolución. Historia y perspectivas de características<br />

básicas del pensamiento ec<strong>on</strong>ómico. Edici<strong>on</strong>es Siglo XXI, Madrid, 1987.<br />

[238] J. Naredo. El final de la era del petróleo, chapter El c<strong>on</strong>flicto entre eficacia<br />

y sostenibilidad utilizar el <str<strong>on</strong>g>capital</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> de la tierra o el flujo solar y sus<br />

derivados renovables, pages 185–199. Icaria editorial, 2008.


448 REFERENCES<br />

[239] J. Naredo and A. Valero, editors. Desarrollo ec<strong>on</strong>ómico y deterioro ecológico.<br />

Fundación Argentaria, Madrid, 1999.<br />

[240] NASA. Surface meteorology and solar energy (release 5). Technical report,<br />

Earth Science Enterprise Program. NASA Langley Research Center, Langley,<br />

VA, 2004. Online under: http://eosweb.larc.nasa.gob/sse/.<br />

[241] G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovsky. Handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic<br />

Data. Moscou Atomizdat, 1971. In Russian.<br />

[242] H. W. Nesbitt and G. M. Young. Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some wea<str<strong>on</strong>g>the</str<strong>on</strong>g>ring trends <str<strong>on</strong>g>of</str<strong>on</strong>g> plut<strong>on</strong>ic<br />

and volcanic rocks based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic and kinetic c<strong>on</strong>siderati<strong>on</strong>s.<br />

Geochim. Cosmochim. Acta, 48(7):1523–1534, 1984.<br />

[243] H. E. News<strong>on</strong>, K. W. W. Sims, P. D. Noll, W. L. Jaeger, S. A. Maehr, and T. B.<br />

Beserra. The depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tungsten in <str<strong>on</strong>g>the</str<strong>on</strong>g> bulk silicate <strong>earth</strong>: c<strong>on</strong>straints <strong>on</strong><br />

core formati<strong>on</strong>. Geochim. Cosmochim. Acta, 60:1155–1169, 1996.<br />

[244] J. A. Ober. Industrial Minerals and Rocks, chapter Str<strong>on</strong>tium <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s, pages<br />

1003–1009. Society for Mining, Metallurgy, and Explorati<strong>on</strong>, Inc., 6th editi<strong>on</strong>,<br />

1994.<br />

[245] H. Odum. System Ecology: An Introducti<strong>on</strong>. John Wiley and S<strong>on</strong>s, New York,<br />

1983.<br />

[246] H. T. Odum. Envir<strong>on</strong>mental Accounting. Emergy and Envir<strong>on</strong>mental Decisi<strong>on</strong><br />

Making. John Wiley & S<strong>on</strong>s, inc., 1st editi<strong>on</strong>, 1996.<br />

[247] OECD. Uranium 2003: resources, producti<strong>on</strong> and demand. Joint report,<br />

OECD Nuclear Energy Agency and <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>al Atomic Energy Agency,<br />

Paris, 2004.<br />

[248] OECD. Uranium 2005 - Resources, Producti<strong>on</strong> and Demand. Technical report,<br />

OECD Nuclear Energy Agency (NEA) and <str<strong>on</strong>g>the</str<strong>on</strong>g> IAEA, 2005. Online under:<br />

http://www.nea.fr/html/ndd/reports/ 2006/uranium2005-english.pdf.<br />

[249] OECD. Advanced nuclear fuel cycles and radioactive waste management. Number<br />

ISBN: 92-64-02485-9. OECD/NEA, 2006.<br />

[250] OGS. Statistical Summary. Overseas Geological Surveys, Various years (1956<br />

- 1964).<br />

[251] R. K. O’Ni<strong>on</strong>s, N. M. Evensen, and P. J. Hamilt<strong>on</strong>. Geochemical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mantle differentiati<strong>on</strong> and crustal growth. J. Geophys. Res., 84:6091–6101,<br />

1979.<br />

[252] Oroya. Third qarter activities and cash flow report for <str<strong>on</strong>g>the</str<strong>on</strong>g> period ended 31<br />

march 2006. Technical report, Oroya Mining Limited, 2006. Online under:<br />

http://www.oroya.com.au.


449<br />

[253] A. Ortiz. Desarrollo ec<strong>on</strong>ómico y deterioro ecológico, chapter Cuantificación<br />

de la extracción de rocas y <str<strong>on</strong>g>mineral</str<strong>on</strong>g>es de la corteza terrestre, pages 103–154.<br />

Fundación Argentaria, 1999.<br />

[254] G. Ott<strong>on</strong>ello. Principles <str<strong>on</strong>g>of</str<strong>on</strong>g> geochemistry. Columbia University Press, New York,<br />

1997.<br />

[255] G. Ott<strong>on</strong>ello, A. Della G., A. Dal. N., and F. Baccaarin. Thermodynamic Data,<br />

chapter A structure Energy model for C2/c Pyroxenes in <str<strong>on</strong>g>the</str<strong>on</strong>g> system Na-Mg-<br />

Ca-Mn-Fe-Al-Cr-Ti-Si-O, pages 194–238. Springer Verlag, 1990.<br />

[256] S. Pacala and R. Socolow. Stabilizati<strong>on</strong> wedges: Solving <str<strong>on</strong>g>the</str<strong>on</strong>g> climate problem<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> next 50 years with current technologies. Science, 305:968–972, 2004.<br />

[257] W. S. B. Paters<strong>on</strong>. The Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Glaciers. Pergam<strong>on</strong>, Oxford, 3rd editi<strong>on</strong>,<br />

1994.<br />

[258] R. Perry and C. Chilt<strong>on</strong>. Manual del Ingeniero Químico. McGraw-Hill de México,<br />

México, 2nd editi<strong>on</strong>, 1992.<br />

[259] R. Perry and D. Green, editors. Perry’s Chemical Engineers Handbook. McGraw<br />

Hill, New York, 1984.<br />

[260] W. C. Peters. Explorati<strong>on</strong> and mining geology. John Wiley and S<strong>on</strong>s, 1978.<br />

[261] C. Philibert. Case study 1: c<strong>on</strong>centrating solar power technologies. Internati<strong>on</strong>al<br />

energy technology collaborati<strong>on</strong> and climate change mitigati<strong>on</strong>, OECD<br />

Envir<strong>on</strong>mental Directorate, Internati<strong>on</strong>al Energy Agency, Paris, 2004.<br />

[262] A. Philpotts. Igneous and Metamorphic Petrology. Prentice Hall, Englewood<br />

Cliffs, 1990.<br />

[263] M. Pidwirny. Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> physical geography. Online under:<br />

http://www.physicalgeography.net/fundamentals/c<strong>on</strong>tents.html, 2006.<br />

[264] M. Pils<strong>on</strong>. An Introducti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Sea. Prentice Hall, New<br />

Jersey, 1998.<br />

[265] G. Pinaev. Standard reference exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> oceanic<br />

reference medium. I. C<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modern hydrochemical data <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> oceanic medium and <str<strong>on</strong>g>the</str<strong>on</strong>g> deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

reactivity from <str<strong>on</strong>g>the</str<strong>on</strong>g> neutral <strong>on</strong>e. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering Physics and Thermophysics,<br />

79(5):1028–1038, 2006.<br />

[266] G. Pinaev. Standard reference exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical elements in <str<strong>on</strong>g>the</str<strong>on</strong>g> oceanic reference<br />

medium. II. Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium <str<strong>on</strong>g>of</str<strong>on</strong>g> ecospecies in <str<strong>on</strong>g>the</str<strong>on</strong>g> oceanic<br />

medium. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering Physics and Thermophysics, 79(5):1039–<br />

1049, 2006.


450 REFERENCES<br />

[267] T. Plank and C. Langmuir. The geochemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> subducting sediment<br />

and its c<strong>on</strong>sequences for <str<strong>on</strong>g>the</str<strong>on</strong>g> crust and mantle. Chemical Geology,<br />

145:325–394, 1998.<br />

[268] A. Polanski and K. Smulikowski. Geochemia. Wydawnictwa Geologicne, Warsaw,<br />

1969. In Polish.<br />

[269] L. D. Polyachenok, K. Nasarov, and O. G. Polyachenok. The interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

scandium trichloride with quartz. Russ. J. Phys. Chem., 52:1021–1022, 1978.<br />

[270] W. M. Post, T. Peng, W. R. Emanuel, A. W. King, V. H. Dale, and D. L. DeAngelis.<br />

The global carb<strong>on</strong> cycle. American Scientist, 78(310-326), 1990.<br />

[271] R. Prinn, R. Weiss, P. Fraser, P. Simm<strong>on</strong>ds, D. Cunnold, F. Alyea, S. O’Doherty,<br />

P. Salameh, B. Miller, J. Huang, R. Wang, D. Hartley, C. Harth, L. Steele,<br />

G. Sturrock, P. Midgley, and A. McColloch. A history <str<strong>on</strong>g>of</str<strong>on</strong>g> chemically and radiatively<br />

important gases in air deduced from ale/gage/agage. J. Geophys. Res.,<br />

105:17751–17792, 2000.<br />

[272] R. G. Prinn. Treatise <strong>on</strong> Geochemistry, volume 4, chapter Oz<strong>on</strong>e, Hydroxyl<br />

Radical, and Oxidative Capacity, pages 1–19. Elservier Pergam<strong>on</strong>, 2004.<br />

[273] M. S. Quinby-Hunt and K. K. Turekian. Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elements in sea water.<br />

EOS Trans, AGU 64:130–132, 1983.<br />

[274] S. Rahmstorf. Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> Quaternary Sciences, chapter Thermohaline<br />

Ocean Circulati<strong>on</strong>. Elsevier, Amsterdam, 2006.<br />

[275] Z. Rant. Zur Bestimmung der spezifischen Exergie v<strong>on</strong> Brennst<str<strong>on</strong>g>of</str<strong>on</strong>g>fen. Allgem.<br />

Waermetechn., 10(172-176), 1961. In German.<br />

[276] L. Ranz. Análisis de los costes exergéticos de la riqueza <str<strong>on</strong>g>mineral</str<strong>on</strong>g> terrestre. Su<br />

aplicación para la gestión de la sostenibilidad. PhD <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, Universidad de<br />

Zaragoza, Abril 1999.<br />

[277] D. Reynolds. The <str<strong>on</strong>g>mineral</str<strong>on</strong>g> ec<strong>on</strong>omy. How prices and costs can falsely signal<br />

decreasing scarcity. Ecological Ec<strong>on</strong>omics, 31:155–166, 1999.<br />

[278] L. Riekert. The efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> energy utilizati<strong>on</strong> in chemical processes. Chem.<br />

Eng. Sci, 29:1613–1620, 1974.<br />

[279] S. Ringen, J. Lanum, and F. P. Miknis. Calculating heating values from elemental<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels. Fuel, 58(69-71), 1979.<br />

[280] A. E. Ringwood. Advances in Earth Sciences, chapter The chemical compositi<strong>on</strong><br />

and origin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>, pages 287–356. MIT Press, 1966.


451<br />

[281] R. Rivero and M. Garfias. Standard Chemical <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> Updated. Part II. In<br />

R. Rivero, L. M<strong>on</strong>roy, R. Pulido, and G. Tsatsar<strong>on</strong>is, editors, Energy-Efficient,<br />

Cost-Effective, and Envir<strong>on</strong>mentally-Sustainable Systems and Processes, volume<br />

2, pages 773–785, 2004.<br />

[282] R. Rivero, G. M<strong>on</strong>tero, and M. Garfias. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental temperature<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrocarb<strong>on</strong>s. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ECOS 2002,<br />

volume 1, pages 69–78, Berlin, 3-5 July 2002.<br />

[283] F. Roberts and I. Torrens. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> life cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-ferrous <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.<br />

Resources Policy, pages 14–28, 1974.<br />

[284] R. A. Robie and B. S. Hemingway. Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and<br />

related substances at 298.15 K and 1 bar (10 5 Pascals) pressure and higher<br />

temperature. U.S. Geological Survey Bulletin 2131, 1995.<br />

[285] R. A. Robie, B. S. Hemingway, and J. R. Fisher. Thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s and related substances at 298.15 K and 1 bar (10 5 Pascals) pressure<br />

and at higher temperatures. U.S. Geological Survey Bulletin 1452, 1978.<br />

[286] D. H. Roemmich and C. Wunsch. Two transatlantic secti<strong>on</strong>s: Meridi<strong>on</strong>al circulati<strong>on</strong><br />

and heat flux in <str<strong>on</strong>g>the</str<strong>on</strong>g> subtropical North Atlantic Ocean. Deep Sea<br />

Research, 32:619–664, 1985.<br />

[287] A. B. R<strong>on</strong>ov and A. A. Yaroshevsky. Earth’s Crust and Upper Mantle, chapter<br />

Chemical Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s Crust. American Geophysical Uni<strong>on</strong>,<br />

Washingt<strong>on</strong> D.C., 1969.<br />

[288] A. B. R<strong>on</strong>ov, A. A. Yaroshevsky, and A. A. Migdisov. Chemical structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s crust and geochemical balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> major elements. M. Nauka,<br />

Moscow, 1990.<br />

[289] M. Rosen. Can exergy help us understand and address envir<strong>on</strong>mental c<strong>on</strong>cerns?<br />

<str<strong>on</strong>g>Exergy</str<strong>on</strong>g>, 2:214–217, 2002.<br />

[290] M. Rosen. Energy, culture and standard <str<strong>on</strong>g>of</str<strong>on</strong>g> life. Theories and Practices for<br />

Energy Educati<strong>on</strong>, Training, Regulati<strong>on</strong> and Standards, from Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Life Support Systems (EOLSS), Developed under <str<strong>on</strong>g>the</str<strong>on</strong>g> Auspices <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> UNESCO.<br />

Eolss Publishers, Oxford ,UK, [http://www.eolss.net], Retrieved May 19, 2005.<br />

[291] R. L. Rudnick. Nature and compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust: a lower<br />

crustal perspective. Reviews <str<strong>on</strong>g>of</str<strong>on</strong>g> Geophysics, 33(3):267–309, August 1995.<br />

[292] R. L. Rudnick and S. Gao. Treatise <strong>on</strong> Geochemistry. The Crust, volume 3,<br />

chapter Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> C<strong>on</strong>tinental Crust, pages 1–64. Elsevier Pergam<strong>on</strong>,<br />

2004.


452 REFERENCES<br />

[293] C. Ruoyu, L. Jun, X. Shuping, and G. Shiyang. Thermochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> ulexite.<br />

Thermochimica Acta, 306(1-2):1–5, 1997.<br />

[294] M. Ruth. Integrating Ec<strong>on</strong>omics, Ecology and Thermodynamics, volume 3 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ecology, Ec<strong>on</strong>omy & Envir<strong>on</strong>ment. Kluwer Academic Publishers, 1993.<br />

[295] M. Ruth. Thermodynamic c<strong>on</strong>straints <strong>on</strong> optimal depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper and aluminum<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States: a dynamic model <str<strong>on</strong>g>of</str<strong>on</strong>g> substituti<strong>on</strong> and technical<br />

change. Ecological Ec<strong>on</strong>omics, 15:197–213, 1995.<br />

[296] R. Sadourny. Global Change <str<strong>on</strong>g>of</str<strong>on</strong>g> Planet Earth, chapter Modelling <str<strong>on</strong>g>the</str<strong>on</strong>g> Physical<br />

Ocean-Atmosphere System and Its Resp<strong>on</strong>se to External Radiative Perturbati<strong>on</strong>s.<br />

OECD, 1994.<br />

[297] R. N. Schock. Energy Technologies for <str<strong>on</strong>g>the</str<strong>on</strong>g> 21st Century. The Roles <str<strong>on</strong>g>of</str<strong>on</strong>g> Renewable<br />

Energy. In World Federati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientists Internati<strong>on</strong>al Seminars <strong>on</strong> Planetary<br />

Emergencies, Erice, Italy, August, 20-23 2005. Center for Global Security<br />

Research, Lawrence Livermore Nati<strong>on</strong>al Laboratory, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California.<br />

[298] R. D. Schuiling, L. Vergouwen, and H. Van d. Rijst. Gibbs energies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> zirc<strong>on</strong> (ZrSiO4), thorite (ThSiO4), and phenacite (Be2SiO4). Amer.<br />

Mineralogist, 61:161–168, 1976.<br />

[299] E. Sciubba. Cost analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> energy c<strong>on</strong>versi<strong>on</strong> systems via a novel resourcebased<br />

quantifier. Energy, 28:457–477, 2003.<br />

[300] E. Sciubba. Extended exergy accounting applied to energy recovery from<br />

waste: The c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> total recycling. Energy, 28:1315–1334, 2003.<br />

[301] D. M. Scotford. Petrology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Cincinnatian Series. Shales and Envir<strong>on</strong>mental<br />

Implicati<strong>on</strong>. Geol. Soc. Am. Bull., 76(2):193–222, 1965.<br />

[302] A. Scott and P. Pearse. Natural resources in a high-tech ec<strong>on</strong>omy. Resources<br />

Policy, pages 154–166, September 1992.<br />

[303] R. R. I. Seal, E. J. Essene, and W. C. Kelly. Tetrahedrite and tennantite: Evaluati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic data and phase equilibria. Canadian Mineralogist,<br />

28(725-738), 1990.<br />

[304] E. Serova and V. Brodianski. The c<strong>on</strong>cept "envir<strong>on</strong>ment" in exergy analysis<br />

(some special cases). In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ECOS 2002, volume 1, pages 79–82,<br />

Berlin, 2002.<br />

[305] F. Seymour and S. Zadek. Accountability Forum Issue 9, chapter Governing<br />

Energy: The Global Energy Challenge, pages 6–15. Greenleaf Publishing and<br />

Accountability, 2006.


453<br />

[306] D. Shaw, G. Reilly, J. Muyss<strong>on</strong>, G. Pattenden, and F. Campbell. An estimate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Canadian Precambrian shield. Can. J. Earth<br />

Sci., 4:829–853, 1967.<br />

[307] D. M. Shaw, A. P. Dickin, H. Li, R. H. McNutt, H. P. Scharcz, and M. G. Truscott.<br />

Crustal geochemistry in <str<strong>on</strong>g>the</str<strong>on</strong>g> Wawa-Foleyet regi<strong>on</strong>, Ontario. Can. J. Earth Sci,<br />

31:1104–1121, 1994.<br />

[308] D. M. Shaw, J. Dostal, and R. R. Keays. Additi<strong>on</strong>al estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinental<br />

surface Precambrian shield compositi<strong>on</strong> in Canada. Geochim. Cosmoch. Acta,<br />

40:73–83, 1976.<br />

[309] P. F. Shi, S. K. Saxena, and B. Sundman. Sublattice solid soluti<strong>on</strong> model and its<br />

applicati<strong>on</strong> to orthopyroxene (Mg,Fe)Si2O6. Phys. Chem. Miner., 18(6):393–<br />

405, 1992.<br />

[310] J. Shieh and L. Fan. Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy (enthalpy) and exergy (availability)<br />

c<strong>on</strong>tents in structurally complicated materials. Energy Sources, 6(1):1–46,<br />

1982.<br />

[311] I. A. Shiklomanov. World Water Resources: Modern Assessment and Outlook for<br />

21-st Century. Federal Service <str<strong>on</strong>g>of</str<strong>on</strong>g> Rusia for Hidrometeorology & Envir<strong>on</strong>ment<br />

M<strong>on</strong>itoring. State Hydrological Institute, St. Peterburg, 1999.<br />

[312] Y. Shvarov, M. Borisov, D. Grichuk, and E. Bastrakov. Default uni<str<strong>on</strong>g>the</str<strong>on</strong>g>rm<br />

database for <str<strong>on</strong>g>the</str<strong>on</strong>g> hch package for geochemical modelling. Unpublished computer<br />

file, 1999.<br />

[313] J. L. Sim<strong>on</strong>. The Ultimate Resource 2. Princet<strong>on</strong> University Press, 1998.<br />

[314] K. W. W. Sims, H. E. News<strong>on</strong>, and E. S. Gladney. Origin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth, chapter<br />

Chemical fracti<strong>on</strong>ati<strong>on</strong> during formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth’s core and c<strong>on</strong>tinental<br />

crust: clues from As, Sb, W and M., and In., pages 291–317. Oxford University<br />

Press, Oxford, 1990.<br />

[315] C. Skidmore. Zirc<strong>on</strong>ium and Hafnium (chapter). In Mining Journal Review.<br />

Technical report, Minor Metals Trade Associati<strong>on</strong>, 2006. Online under:<br />

http://www.mmta.co.uk/ec<strong>on</strong>omicsFacts/miningJournalReview.aspx.<br />

[316] B. J. Skinner. A sec<strong>on</strong>d ir<strong>on</strong> age ahead? American Scientist, 64:258–269,<br />

May-June 1976.<br />

[317] B. J. Skinner. Earth resources. Prentice-Hall, L<strong>on</strong>d<strong>on</strong>, 1986.<br />

[318] B. J. Skinner, S. C. Porter, and D. B. Botkin. The Blue Planet. An introducti<strong>on</strong><br />

to <strong>earth</strong> system science. Wiley, 2nd editi<strong>on</strong> editi<strong>on</strong>, 1999.


454 REFERENCES<br />

[319] W. Slough and G. P. J<strong>on</strong>es. A compilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic data for borate<br />

systems. Technical report, Nati<strong>on</strong>al Physics Laboratory Divisi<strong>on</strong> Chemical<br />

Standards, 1974.<br />

[320] E. A. Smelik, D. M. Jenkins, and A. Navrotsky. A calorimetric study <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic<br />

amphiboles al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> tremolite-tschermakite join and <str<strong>on</strong>g>the</str<strong>on</strong>g> heats <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnesiohorneblende and tschermakite. Amer Mineral, 79(1-<br />

2):1110–1122, 1994.<br />

[321] A. Smith. An Inquiry into <str<strong>on</strong>g>the</str<strong>on</strong>g> Nature and Causes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> Nati<strong>on</strong>s.<br />

Methuen and Co., Ltd. 1904. Ed. Edwin Cannan. Library <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omics<br />

and Liberty., 1904. Retrieved May 18, 2006 from <str<strong>on</strong>g>the</str<strong>on</strong>g> World Wide Web:<br />

http://www.ec<strong>on</strong>lib.org/LIBRARY/Smith/smWN4.html.<br />

[322] J. V. Smith. Mineralogy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planets: a voyage in space and time. Mineral.<br />

Mag., 43(1-89), 1979.<br />

[323] L. K. Smith and W. J. Bruckard. The separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arsenic from copper in<br />

a northparkes copper-gold ore using c<strong>on</strong>trolled-potential flotati<strong>on</strong>. Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mineral Processing, 2007. Article in Press.<br />

[324] N. Smith and G. Robins<strong>on</strong>. Technology pushes reserves "crunch" date back in<br />

time. Oil and Gas Journal, pages 43–50, April 7 1997.<br />

[325] V. K. Smith, editor. Scarcity and Growth Rec<strong>on</strong>sidered. John Hopkins University<br />

Press for Resources for <str<strong>on</strong>g>the</str<strong>on</strong>g> Future, 1979.<br />

[326] R. Solow. The ec<strong>on</strong>omics <str<strong>on</strong>g>of</str<strong>on</strong>g> resources or <str<strong>on</strong>g>the</str<strong>on</strong>g> resources <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omics. American<br />

Ec<strong>on</strong>omic Review, 66:1–114, 1974.<br />

[327] J. A. Souza-Neto, P. H. S<strong>on</strong>net, J. M. Legrand, and M. Volfinger. The<br />

B<strong>on</strong>fim W-Au-Bi-Te Skarn deposit, nor<str<strong>on</strong>g>the</str<strong>on</strong>g>astern Brazil: a polymetallic<br />

ore revealed by emp and pixe analyses. Technical report, Universidad<br />

Federal de Pernambuco, retrieved 17 July 2007. Online under:<br />

http://www.ufpe.br/geologia/docentes/publicacoes/.<br />

[328] W. Stanek. Thermo-ecology analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> mettalurgy up<strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-renewable natural resources. In L. Rivero, L. M<strong>on</strong>roy,<br />

R. Pulido, and G. Tsatsar<strong>on</strong>is, editors, Energy-Efficient, Cost-Effective,<br />

and Envir<strong>on</strong>mentally-Sustainable Systems and Proceses. Instituto Mexicano del<br />

Petróleo, 2004.<br />

[329] H. Staudigel, F. Albarède, J. Blichert-T<str<strong>on</strong>g>of</str<strong>on</strong>g>t, J. Edm<strong>on</strong>d, B. McD<strong>on</strong>ough, S. Jacobsen,<br />

R. Keeling, C. H. Langmuir, R. Nielsen, T. Plank, R. Rudnick, H. F.<br />

Shaw, S. Shirey, J. Veizer, and W. White. Geochemical Earth Reference Model<br />

(GERM): descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> initiative. Chemical Geology, 134:515–526, 1998.


455<br />

[330] V. Stepanov. Chemical energies and exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels. Energy, 20(3):235–242,<br />

1995.<br />

[331] A. N. Strahler. Physical Geography. John Wiley and S<strong>on</strong>s, Inc., 4th editi<strong>on</strong>,<br />

1975.<br />

[332] M. Sussman. Choosing a reference envir<strong>on</strong>ment-state for available-energy<br />

computati<strong>on</strong>s. In 72nd Annual Meeting. American Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Engineers,<br />

San Francisco (USA), November 1979.<br />

[333] J. Szargut. Energy potential balance in chemical processes. Archiwum Budowy<br />

Maszyn, 4(11):89–117, 1957. In Polish.<br />

[334] J. Szargut. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> balance <str<strong>on</strong>g>of</str<strong>on</strong>g> metallurgical processes. Archiwum Hutnictwa,<br />

6(1):23–60, 1961. In Polish.<br />

[335] J. Szargut. Standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> some elements and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir compounds,<br />

based up<strong>on</strong> te c<strong>on</strong>centrati<strong>on</strong> in <strong>earth</strong>’s crust. Geochemistry Internati<strong>on</strong>al,<br />

35(1-2):53–60, 1987.<br />

[336] J. Szargut. Chemical exergies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements. Applied Energy, 32:269–286,<br />

1989.<br />

[337] J. Szargut. Anthropogenic and natural exergy losses (exergy balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>earth</strong>’s surface and atmosphere). Energy, 28:1047–1054, 2003.<br />

[338] J. Szargut. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> method: technical and ecological applicati<strong>on</strong>s. WIT-press,<br />

Ashurst, UK, 2005.<br />

[339] J. Szargut. Global implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g>,<br />

Energy System Analysis, and Optimizati<strong>on</strong>., from Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> Life Support<br />

Systems (EOLSS), Developed under <str<strong>on</strong>g>the</str<strong>on</strong>g> Auspices <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> UNESCO Eolss Publishers,<br />

Oxford, UK; Online encyclopedia: http://www.eolss.net, Retrieved May 19,<br />

2005.<br />

[340] J. Szargut and D. Morris. Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> standard chemical exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

elements and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir compounds based up<strong>on</strong> seawater as <str<strong>on</strong>g>the</str<strong>on</strong>g> datum level substance.<br />

Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences. Techical Sciences., 33(5-<br />

6):293–305, 1985.<br />

[341] J. Szargut, D. Morris, and F. Steward. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal, chemical,<br />

and metallurgical processes. Hemisphere Publishing Corporati<strong>on</strong>, 1988.<br />

[342] J. Szargut and T. Styrylska. Approximate evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy <str<strong>on</strong>g>of</str<strong>on</strong>g> fuels.<br />

Brennst. Waerme Kraft, 16(12):589–596, 1964. In German.<br />

[343] J. Szargut, A. Valero, W. Stanek, and A. Valero D. Towards an internati<strong>on</strong>al<br />

legal reference envir<strong>on</strong>ment. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ECOS 2005, pages 409–420,<br />

Tr<strong>on</strong>dheim, Norway, June 2005.


456 REFERENCES<br />

[344] J. Szargut, A. Ziebik, and W. Stanek. Depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-renewable natural<br />

exergy resources as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological cost. Energy C<strong>on</strong>versi<strong>on</strong> and<br />

Management, (43):1149–1163, 2002.<br />

[345] I. V. Tananaev, V. P. Orlovskii, K. M. Kourbanov, B. S. Khalikov, S. O. Osmanov,<br />

and V. I. Bulgakov. Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> enthalpy at 298K and entropy at 298K <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

scandium, yttrium and lanthanide orthophosphates. Doklady Akademia Nauk<br />

Tadzhirghistan S.S.S.R, 17(42-44), 1974.<br />

[346] E. J. Tarbuck and F. K. Lutgens. The Earth. An introducti<strong>on</strong> to physical geology.<br />

Charles E. Merrill, 1984.<br />

[347] Y. Tardy. Relati<strong>on</strong>ship am<strong>on</strong>g Gibbs energies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> compounds.<br />

Amer. Jour. Sci., 279:217–224, 1979. Referencia del libro Ott<strong>on</strong>ello1997.<br />

[348] Y. Tardy and R. M. Garrels. A method <str<strong>on</strong>g>of</str<strong>on</strong>g> estimating <str<strong>on</strong>g>the</str<strong>on</strong>g> Gibbs energies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> layer silicates. Geochim. Cosmochim. Acta, 38:1101–1116, 1974.<br />

[349] Y. Tardy and R. M. Garrels. Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibbs energies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong>: I-<br />

Relati<strong>on</strong>ships am<strong>on</strong>g Gibbs energies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxides, oxides and<br />

aqueous i<strong>on</strong>s. Geochim. Cosmochim. Acta, 40:1015–1056, 1976.<br />

[350] Y. Tardy and R. M. Garrels. Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibbs energies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

compounds from <str<strong>on</strong>g>the</str<strong>on</strong>g> elements, II: M<strong>on</strong>ovalent and divalent metal silicates.<br />

Geochim. Cosmochim. Acta, 41:87–92, 1977.<br />

[351] Y. Tardy and L. Gartner. Relati<strong>on</strong>ships am<strong>on</strong>g Gibbs energies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sulfates, nitrates, carb<strong>on</strong>ates, oxides and aqueous i<strong>on</strong>s. C<strong>on</strong>trib. Mineral.<br />

Petrol., 63:89–102, 1977.<br />

[352] Y. Tardy and P. Viellard. Relati<strong>on</strong>ships am<strong>on</strong>g Gibbs energies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phosphates, oxides and aqueous i<strong>on</strong>s. C<strong>on</strong>trib. Mineral. Petrol., 63:75–88,<br />

1977.<br />

[353] S. Taylor and S. McLennan. The C<strong>on</strong>tinental Crust: Its Compositi<strong>on</strong> and Evoluti<strong>on</strong>.<br />

Blackwell, L<strong>on</strong>d<strong>on</strong>, 1985.<br />

[354] S. Taylor and S. McLennan. The geochemical <str<strong>on</strong>g>evoluti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental<br />

crust. Rev. Geophys., 33:241–265, 1995.<br />

[355] F. Teng, W. F. McD<strong>on</strong>ough, R. L. Rudnick, C. Dalpé, P. B. Tomascak, B. W.<br />

Chapell, and S. Gao. Lithium isotopic compositi<strong>on</strong> and c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

upper c<strong>on</strong>tinental crust. Geochim. Cosmoch. Acta, 68(20):4167–4178, October<br />

2004.<br />

[356] T. B. Thoms<strong>on</strong>. Geology and uranium-thorium <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Bokan<br />

Mountain Granite Complex, sou<str<strong>on</strong>g>the</str<strong>on</strong>g>astern Alaska. Ore Geology Reviews, 3(1-<br />

3):193–210, April 1998.


457<br />

[357] M. Tranter. Treatise <strong>on</strong> Geochemistry, volume 5, chapter Geochemical Wea<str<strong>on</strong>g>the</str<strong>on</strong>g>ring<br />

in Glacial and Proglacial Envir<strong>on</strong>ments, pages 189–205. Elsevier Pergam<strong>on</strong>,<br />

2004.<br />

[358] D. L. Turcotte. A fractal approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between ore grade and<br />

t<strong>on</strong>nage. Ec<strong>on</strong>omic Geology and <str<strong>on</strong>g>the</str<strong>on</strong>g> Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omic Geologists,<br />

81(6):1528–1532, October 1986.<br />

[359] K. K. Turekian. Handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> Geochemistry, volume 1, chapter The Oceans,<br />

Streams, and Atmosphere, pages 297–320. Springer-Verlag, Berlin, 1969.<br />

[360] USGS. United states geological survey fact sheet. Fact sheet,<br />

United States Geological Survey, December, 2 2004. Online under:<br />

http://marine.usgs.gov/fact40sheets/gas-hydrates/title.html.<br />

[361] USGS. Historical statistics for <str<strong>on</strong>g>mineral</str<strong>on</strong>g> and material commodities in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

United States. Report, US Geological Survey, 2006. Online under:<br />

http://<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.usgs.gov/ds/2005/140/.<br />

[362] USGS. Mineral commodity summaries. Technical report, US Geological Survey,<br />

2007. Online under: http://<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.usgs.gov/<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s/pubs/mcs.<br />

[363] USGS. Minerals yearbook. Technical report, USGS, Various years. Online<br />

under: http:<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s.usgs.gov/<str<strong>on</strong>g>mineral</str<strong>on</strong>g>s/pubs/myb.html/.<br />

[364] S. Ushakov, K. Helean, A. Navrotsky, and L. Boatner. Thermochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rare-<strong>earth</strong> orthophosphates. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Research, 16(9):2623–2633,<br />

2001.<br />

[365] A. Valero. Thermoec<strong>on</strong>omics as a c<strong>on</strong>ceptual basis for energy-ecological analysis.<br />

In S. Ulgiati, editor, Advances in Energy Studies. Energy Flows in Ecology<br />

and Ec<strong>on</strong>omy, pages 415–444, Musis, Roma, 1998.<br />

[366] A. Valero and I. Arauzo. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> outcomes associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse<br />

effects. In G. Reistad, M. Moran, W. Wepfer, and N. Lior, editors, AES, Sec<strong>on</strong>d<br />

Analysis-Industrial and Envir<strong>on</strong>mental Applicati<strong>on</strong>s, volume 25, pages 63–70.<br />

The American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineers, 1991.<br />

[367] A. Valero and E. Botero. An assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>’s clean fossil exergy<br />

<str<strong>on</strong>g>capital</str<strong>on</strong>g> based <strong>on</strong> exergy abatement costs. Energy System Analysis, and Optimizati<strong>on</strong>.,<br />

from Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> Life Support Systems (EOLSS), Developed under<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Auspices <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> UNESCO.<br />

[368] A. Valero, E. Botero, and A. Valero D. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> accounting <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources.<br />

<str<strong>on</strong>g>Exergy</str<strong>on</strong>g>, Energy System Analysis, and Optimizati<strong>on</strong>., from Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> Life<br />

Support Systems (EOLSS), Developed under <str<strong>on</strong>g>the</str<strong>on</strong>g> Auspices <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> UNESCO Eolss<br />

Publishers, Oxford, UK; Online encyclopedia: http://www.eolss.net, Retrieved<br />

May 19, 2005.


458 REFERENCES<br />

[369] A. Valero and M. Lozano. Curso de Termoec<strong>on</strong>omía. Universidad de Zaragoza,<br />

1994.<br />

[370] A. Valero, M. Lozano, and M. Muñoz. A general <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> exergy saving.<br />

I. On <str<strong>on</strong>g>the</str<strong>on</strong>g> exergetic cost. In R. Gaggioli, editor, Computer-Aided Engineering<br />

and Energy Systems. Sec<strong>on</strong>d Law Analysis and Modelling, volume 3, pages 1–8,<br />

1986.<br />

[371] A. Valero, L. Ranz, and E. Botero. Exergetic Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Mineral<br />

Capital (1) Reference Envir<strong>on</strong>ment Methodology. In G. Tsatsar<strong>on</strong>is,<br />

M. Moran, F. Cziesla, and T. Bruckner, editors, ECOS 2002, volume 1, pages<br />

54–61, Berlin, July 2002.<br />

[372] A. Valero, J. Uche, A. Valero D., A. Martínez, and J. Escriu. Physical Hydr<strong>on</strong>omics:<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy analysis to <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental<br />

costs <str<strong>on</strong>g>of</str<strong>on</strong>g> water bodies. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Inland Basins <str<strong>on</strong>g>of</str<strong>on</strong>g> Catal<strong>on</strong>ia. In Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ECOS 2007, volume I, pages 683–692, 2007.<br />

[373] A. Valero, A. Valero D., and C. Torres. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> Hubbert peak. An<br />

extended analysis for <str<strong>on</strong>g>the</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s <strong>on</strong> <strong>earth</strong>. In<br />

Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> IMECE 2008, Bost<strong>on</strong>, USA, 31 October - 6 November 2008.<br />

ASME.<br />

[374] A. Valero D. Assessing world <str<strong>on</strong>g>mineral</str<strong>on</strong>g> deposits through <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamics.<br />

In Inproceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Mineral Deposit Studies Group (MDSG)<br />

c<strong>on</strong>ference, Nottingham (UK), 2-4 January 2008.<br />

[375] A. Valero D., A. Valero, and I. Arauzo. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> as an indicator for resources<br />

scarcity. The exergy loss <str<strong>on</strong>g>of</str<strong>on</strong>g> Australian <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g>, a case study. In Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> IMECE2006, Chicago, USA, 5-10 November 2006. ASME.<br />

[376] A. Valero D., A. Valero, and I. Arauzo. Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> decrease in <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

exergy throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> 20th century. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> copper in <str<strong>on</strong>g>the</str<strong>on</strong>g> US. Energy,<br />

33(2):107–115, 2008.<br />

[377] A. Valero D., A. Valero, and A. Martinez. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g><br />

<str<strong>on</strong>g>capital</str<strong>on</strong>g> <strong>on</strong> Earth. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reference envir<strong>on</strong>ment. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

IMECE 2005, Orlando, USA, 5-11 November 2005. ASME.<br />

[378] A. Valero D., A. Valero, A. Martínez, and G. Mudd. A physical way to assess<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g> <str<strong>on</strong>g>capital</str<strong>on</strong>g> through exergy. The Australian case. In<br />

Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> ISEE 2006, New Delhi, India, 15-18 December 2006. Ninth<br />

Biennial C<strong>on</strong>ference <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Internati<strong>on</strong>al Society for Ecological Ec<strong>on</strong>omics<br />

(ISEE). “Ecological Sustainability and Human Well-being”.<br />

[379] W. van Gool. Thermodynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical references for exergy analysis.<br />

Energy C<strong>on</strong>versi<strong>on</strong> and Management, 39(16-18):1719–1728, 1998.


459<br />

[380] P. Vieillard. Modèle de calcul des énergies de formati<strong>on</strong> des mineraux bati sur<br />

la c<strong>on</strong>naisance affinée des structures cristallines. CNRS Memoirs 69, Université<br />

Louis Pasteur, Strasbourg, 1982.<br />

[381] P. Vieillard. Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> based <strong>on</strong> refined cyrstal structures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> multisite compounds. 1. Theories and examples. Geochimica et Cosmochimica<br />

Acta, 58:4049–4063, 1994.<br />

[382] P. Vieillard. A new method for <str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibbs free energies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hydrated clay <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s base <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>egativity scale. Clays &<br />

Clay Minerals, 48(4):459–473, 2000.<br />

[383] P. Vieillard. A new method for <str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gibbs free energies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phyllosilicates (10 A and 14 A) based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> electr<strong>on</strong>egativity scale.<br />

Clays and Clay Minerals, 50(3):352–363, 2002.<br />

[384] P. Vieillard and H. D. B. Jenkins. Empirical relati<strong>on</strong>ships for estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

enthalpies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> simples hydrates. Part 2. Hydrates <str<strong>on</strong>g>of</str<strong>on</strong>g> alkaline-<strong>earth</strong><br />

metal cati<strong>on</strong>s. Journal Chemical Research (Synopsis), pages 446–447, 1986.<br />

[385] P. Vieillard and H. D. B. Jenkins. Empirical relati<strong>on</strong>ships for estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enthalpies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> simples hydrates. Part 3. Hydrates <str<strong>on</strong>g>of</str<strong>on</strong>g> transiti<strong>on</strong>metal<br />

cati<strong>on</strong>s (C r2+ , Fe2+ , Co2+ , N i2+ , Cu2+ , Zn2+ , Cd 2+ and UO 2+<br />

2 ). Journal Chemical<br />

Research (Synopsis), pages 448–449, 1986.<br />

[386] P. Vieillard and H. D. B. Jenkins. Empirical relati<strong>on</strong>ships for estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

enthalpies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> simples hydrates. Part I Hydrates <str<strong>on</strong>g>of</str<strong>on</strong>g> alkali- metal<br />

cati<strong>on</strong>s, <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen and <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ovalent cati<strong>on</strong>s. Journal Chemical Research<br />

(Synopsis), pages 444–445, 1986.<br />

[387] P. Vieillard, L. Richard, and M. Boir<strong>on</strong>. Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enthalpies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sulfides and sulfosalts <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s. In Colloque Bilan et prospective de GDR<br />

Transmet, Nancy, 6-7 juillet 2006, 2006.<br />

[388] P. Vieillard and Y. Tardy. Phosphate Minerals, chapter Thermochemical properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phosphates. Springer Verlag, New York, 1984.<br />

[389] P. Vieillard and Y. Tardy. Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enthalpies <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir refined crystal structures. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Science,<br />

288:997–1040, 1988.<br />

[390] P. Vieillard and Y. Tardy. Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> based <strong>on</strong> refined<br />

crystal structures <str<strong>on</strong>g>of</str<strong>on</strong>g> multisite compounds. 2. Applicati<strong>on</strong> to <str<strong>on</strong>g>mineral</str<strong>on</strong>g>s<br />

bel<strong>on</strong>ging to <str<strong>on</strong>g>the</str<strong>on</strong>g> system Li 2O − N a 2O − K 2O − BeO − M gO − CaO − M nO-<br />

FeO − Fe 2O 3 − Al 2O 3 − SiO 2 − H 2O. Results and discussi<strong>on</strong>. Geochimica et<br />

Cosmochimica Acta, 58(4064-4107), 1994.


460 REFERENCES<br />

[391] D. Wagman, H. William, V. Parker, R. Schumm, I. Halow, S. Bailey, K. Churney,<br />

and R. Nuttall. The NBS tables <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic properties: Selected<br />

values for inorganic and C1 and C2 organic substances in SI units. American<br />

Chemical Society and <str<strong>on</strong>g>the</str<strong>on</strong>g> American Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics for <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Bureau<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Standards, New York, 1982.<br />

[392] G. Wall. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> - a useful c<strong>on</strong>cept within resource accounting. report 77-42,<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Physics, Göteborg, 1977.<br />

[393] G. Wall. Exergetics. Eolss Publishers, Oxford ,UK, [http://www.eolss.net], Retrieved<br />

May 19, 2005.<br />

[394] G. Wall. Nati<strong>on</strong>al exergy accounting <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources. Eolss Publishers,<br />

Oxford, UK, [http://www.eolss.net], Retrieved May 19, 2005.<br />

[395] G. Wall and M. G<strong>on</strong>g. On exergy and sustainable development-part 1: C<strong>on</strong>diti<strong>on</strong>s<br />

and c<strong>on</strong>cepts. <str<strong>on</strong>g>Exergy</str<strong>on</strong>g> Int. J., 1(3):128–145, 2001.<br />

[396] W. Wang and R. X. Huang. Wind energy input to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface waves. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Oceanography, 34(5):1276–1280, 2004.<br />

[397] J. Wats<strong>on</strong>. Inside <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>earth</strong>. Technical report, USGS, 1999. Online under:<br />

http://pubs.usgs.gov/publicati<strong>on</strong>s/text/inside.html.<br />

[398] WCED. Our Comm<strong>on</strong> Future (The Brundtland Report). Oxford University<br />

Press, 1987.<br />

[399] R. Weast, editor. CRC Handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry and Physics. CRC Press, 1975.<br />

[400] R. C. Weast, W. J. Astle, and W. H. Beyer. CRC Handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry and<br />

Physics. CRC Press, 1986.<br />

[401] WEC. Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> energy resources 2007. Technical report, World Energy<br />

Council, 2007. Online under: http://www.worldenergy.org/publica ti<strong>on</strong>s/<br />

survey_<str<strong>on</strong>g>of</str<strong>on</strong>g>_energy_resources_2007/ default.asp.<br />

[402] K. H. Wedepohl, editor. Handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> Geochemistry, volume 1. Springer-Verlag,<br />

Berlin, 1969.<br />

[403] K. H. Wedepohl. Geochemistry. Holt, Rinehart and Winst<strong>on</strong>, Inc., 1971.<br />

[404] K. H. Wedepohl. The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinental crust. Geochimica et<br />

Cosmochimica Acta, 59(7):1217–1232, 1995.<br />

[405] D. E. White, J. D. Hem, and G. A. Waring. Data <str<strong>on</strong>g>of</str<strong>on</strong>g> Geochemistry, chapter Chemical<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sub-surface waters. Bull. 440-F. U.S. Geological Survey,<br />

6th editi<strong>on</strong>, 1963.


461<br />

[406] M. J. Wilhelm and K. C. Williams. Industrial Minerals and Rocks, chapter<br />

Bromine Resources, pages 187–189. Society for Mining, Metallurgy, and Explorati<strong>on</strong>,<br />

Inc., 1994.<br />

[407] S. C. Williams-Stroud, J. P. Searls, and R. J. Hite. Industrial Minerals and<br />

Rocks, chapter Potash resources, pages 783–802. Society for Mining, Metallurgy,<br />

and Explorati<strong>on</strong>, Inc., 6th editi<strong>on</strong>, 1994.<br />

[408] WNA. World uranium mining. Technical report, World Nuclear Associati<strong>on</strong>,<br />

2007. Online under: http://www.world-nuclear.org/info/inf23.html.<br />

[409] T. J. Wolery and S. A. Daveler. A s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware package for geochemical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aqueous systems. Lawrence Livermore Nati<strong>on</strong>al Laboratory, 1992.<br />

[410] WRI. World resources 2000-2001. World Resources Institute, Washingt<strong>on</strong>, DC,<br />

2000.<br />

[411] C. Yoder. Global Earth Physics: A handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> physical c<strong>on</strong>stants, chapter<br />

Astrometic and geodetic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Earth and Solar system, pages 1–<br />

31. Amercian geophysical uni<strong>on</strong>, 1995.<br />

[412] A. Zaleta, L. Ranz, and A. Valero. Towards a unified measure <str<strong>on</strong>g>of</str<strong>on</strong>g> renewable<br />

resources availability: <str<strong>on</strong>g>the</str<strong>on</strong>g> exergy method applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> water <str<strong>on</strong>g>of</str<strong>on</strong>g> a river.<br />

Energy C<strong>on</strong>versi<strong>on</strong> and Management, 39(16-18):1911–1917, 1998.<br />

[413] F. Zelenik and S. Gord<strong>on</strong>. Simultaneous least-square approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a functi<strong>on</strong><br />

and its first integrals with applicati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g>rmodynamic data. Technical<br />

Report TN D-767, NASA, 1961.<br />

[414] J. Zwartendyk, P. Abels<strong>on</strong>, H. Baumann, J. Clark, M. Dalheimer, J. Darmstadter,<br />

P. Demeny, R. Gord<strong>on</strong>, D. Harris, H. Krupp, J. Tilt<strong>on</strong>, and F. Wiedenbein.<br />

Resources and World Development, chapter Human factors influencing<br />

resource availability and use, pages 532–546. John Wiley and S<strong>on</strong>s Limited,<br />

1987.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!