24.07.2013 Views

From Phosphorus to Fish? Floating Island Case Study at Fish Fry Lake

From Phosphorus to Fish? Floating Island Case Study at Fish Fry Lake

From Phosphorus to Fish? Floating Island Case Study at Fish Fry Lake

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>From</strong> <strong>Phosphorus</strong> <strong>to</strong> <strong>Fish</strong>?<br />

<strong>Flo<strong>at</strong>ing</strong> <strong>Island</strong> <strong>Case</strong> <strong>Study</strong><br />

<strong>at</strong> <strong>Fish</strong> <strong>Fry</strong> <strong>Lake</strong><br />

Mark Reinsel, Ph.D., P.E.<br />

Apex Engineering, PLLC<br />

Missoula, MT<br />

Bruce Kania<br />

<strong>Flo<strong>at</strong>ing</strong> <strong>Island</strong> Intern<strong>at</strong>ional, Inc.<br />

Shepherd, MT


• Nutrient issues<br />

Topics<br />

• <strong>Flo<strong>at</strong>ing</strong> islands for nutrient removal<br />

• Biological harvesting for phosphorus reduction<br />

• Other w<strong>at</strong>er quality improvements due <strong>to</strong><br />

flo<strong>at</strong>ing islands


Nutrient Reduction Issues<br />

– New Total Maximum Daily Load (TMDL)<br />

standards being implemented by EPA/DEQ across<br />

the n<strong>at</strong>ion for nitrogen and phosphorus<br />

– Compliance may cost Montana municipalities as<br />

much as $1 billion<br />

– “Nutrient trading” may be cost‐effective for<br />

larger Montana municipalities<br />

– <strong>Flo<strong>at</strong>ing</strong> islands can serve as “polishing”<br />

tre<strong>at</strong>ment step and can provide pl<strong>at</strong>form for<br />

biological harvesting


Wh<strong>at</strong> are <strong>Flo<strong>at</strong>ing</strong> Tre<strong>at</strong>ment Wetlands<br />

(FTWs)?<br />

• Constructed of post‐consumer polymer m<strong>at</strong>rix<br />

• Foam added for initial buoyancy<br />

• Typically planted with n<strong>at</strong>ive veget<strong>at</strong>ion<br />

• Two vari<strong>at</strong>ions:<br />

BioHavens (2005): St<strong>at</strong>ic system<br />

Levi<strong>at</strong>han (2010): Aer<strong>at</strong>ion + circul<strong>at</strong>ion


Add plants and surface area is increased,<br />

and synergies between chemistry and biology are enhanced


Extensive root system (New Zealand)


Levi<strong>at</strong>han<br />

• <strong>Flo<strong>at</strong>ing</strong> Tre<strong>at</strong>ment Streambed<br />

• Also constructed of post‐consumer polymer<br />

m<strong>at</strong>rix<br />

• Typical thickness = 25 inches<br />

• Surface area = 300 ft 2 /ft 3<br />

• Up <strong>to</strong> 35 acres of surface area


Montana FTW Studies<br />

• <strong>Fish</strong> <strong>Fry</strong> <strong>Lake</strong> (Shepherd): lake res<strong>to</strong>r<strong>at</strong>ion<br />

• Rehberg Ranch (Billings): wastew<strong>at</strong>er<br />

• Metra Park (Billings): s<strong>to</strong>rmw<strong>at</strong>er<br />

• City of Billings: wastew<strong>at</strong>er<br />

• Other Montana connections:<br />

– Funding from Montana Board of Research and<br />

Commercializ<strong>at</strong>ion Technology<br />

– Working with MSU Center for Biofilm Engineering


• 6.5 acres<br />

<strong>Fish</strong> <strong>Fry</strong> <strong>Lake</strong><br />

• Impacted by agricultural effluent<br />

• Average depth = 9 ft; max. depth = 30 ft<br />

• BioHavens: 7000 ft 2<br />

• Levi<strong>at</strong>han: 1250 ft 2<br />

• Nutrient loading, turbidity, str<strong>at</strong>ific<strong>at</strong>ion


FISH FRY LAKE WATER FLOW AND AERATION/CIRCULATION<br />

7/6/10<br />

Diffuser<br />

(200<br />

gpm)<br />

Ditch (variable flow)<br />

D<strong>at</strong>e implemented<br />

Groundw<strong>at</strong>er<br />

(80 gpm)<br />

7/12/10 6/15/10<br />

Fountain<br />

Upper<br />

Wetland<br />

Diffuser<br />

(200 gpm)<br />

April ‘09<br />

Levi<strong>at</strong>han<br />

(2000 gpm)<br />

<strong>Lake</strong><br />

7/12/10<br />

Diffuser<br />

(400 gpm)<br />

General direction of w<strong>at</strong>er flow (approx. 80 gpm average)


<strong>Fish</strong> Harvesting<br />

– Intensive fishing on FFL began in May 2011<br />

– Experienced fishermen c<strong>at</strong>ch 1 fish/2 minutes<br />

– Example on 10/13/11: Owner and friends caught<br />

166 perch weighing 35 pounds<br />

– Total harvest in 2011 = 422 lbs. (8.1 lbs/wk)<br />

– YTD harvest in 2012 (thru 9/23) = 1091 lbs. (28.7<br />

lbs/wk thru 38 wks)


<strong>Fish</strong> Size<br />

<strong>Fish</strong> <strong>Fry</strong> <strong>Lake</strong> Jackson <strong>Study</strong><br />

inches mm (mm)* R<strong>at</strong>io<br />

Age 1 6.7 170 126 135%<br />

Age 2 8.7 221 186 119%<br />

Age 3 10.8 274 236 116%<br />

Age 4 12.5 318 264 120%<br />

* 95th percentile d<strong>at</strong>a for North American yellow perch<br />

from Jackson & Quist (1991)


• <strong>Phosphorus</strong> inflow<br />

P Removal Via <strong>Fish</strong><br />

– 0.041 mg/L * 80 gal/min = 0.276 lbs P/wk<br />

• <strong>Phosphorus</strong> harvest via fish<br />

– 28.7 lbs/wk * 1 lb P/100 lbs fish = 0.287 lbs P/wk<br />

• Harvest/Inflow = 0.287/0.276 = 104%<br />

• For average fish weighing 0.25 lb, 220 min/wk<br />

(3.7 hrs/wk) of fishing time is required <strong>to</strong> keep<br />

up with incoming phosphorus


Additional Harvesting<br />

• <strong>Fish</strong>: 1% P by live weight = 10.7 lbs P<br />

• Bullfrogs: Assume 1% P by live weight<br />

– 224 harvested in 2012 YTD<br />

– 101 lbs = 1.01 lbs P<br />

• Weeds: 0.1% P by wet weight<br />

– Coontail, musk grass, w<strong>at</strong>er nymph<br />

– 93.5 canoe loads in 2012 YTD = 37,400 lbs = 37.4<br />

lbs P


W<strong>at</strong>er Quality Effects in <strong>Fish</strong> <strong>Fry</strong> L.<br />

– Nitr<strong>at</strong>e‐N: 0.55 mg/L 0.01 mg/L<br />

– Phosph<strong>at</strong>e‐P: 0.041 mg/L 0.025 mg/L<br />

– W<strong>at</strong>er clarity improved from 14 inches of<br />

visibility (2008) <strong>to</strong> 19 feet (winter of 2011)


BEFORE


AFTER


Temper<strong>at</strong>ure/DO Results<br />

• Str<strong>at</strong>ific<strong>at</strong>ion essentially elimin<strong>at</strong>ed<br />

• Livable zone for trout dram<strong>at</strong>ically increased


DO (mg/L)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

<strong>Fish</strong> <strong>Fry</strong> <strong>Lake</strong> -- Dissolved Oxygen and Temper<strong>at</strong>ure<br />

Improvements<br />

T Improvement<br />

DO Improvement<br />

40<br />

0 5 10 15 20 25<br />

Depth (ft)<br />

Dissolved Oxygen 2009 Dissolved Oxygen 2010<br />

Temper<strong>at</strong>ure 2009 Temper<strong>at</strong>ure 2010<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

Temper<strong>at</strong>ure (Deg F)


Max. Depth (ft) <strong>at</strong> Which DO Exceeds 5.5 mg/L<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Maximum Livable Depth for Yellows<strong>to</strong>ne Cutthro<strong>at</strong><br />

Week 1 Week 2 Week 3 Week 4<br />

July D<strong>at</strong>a<br />

2009<br />

2010


QUESTIONS?<br />

Mark Reinsel<br />

mark@apexengineering.us<br />

(406) 493‐0368

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!