24.07.2013 Views

Gas Detectors I - IRTG Heidelberg

Gas Detectors I - IRTG Heidelberg

Gas Detectors I - IRTG Heidelberg

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Gas</strong> <strong>Detectors</strong> I<br />

Ulrich Uwer<br />

Physikalisches Institut<br />

• Introduction<br />

• <strong>Gas</strong> detector basics<br />

• MPWC<br />

• Drift chambers (LHCb straw detector)<br />

• Micro pattern detectors


<strong>Gas</strong> <strong>Detectors</strong> – A Frontier Technology<br />

Advantages • Cheap large area coverage<br />

Challenges<br />

• Good spatial resolution<br />

• Fast and large signals<br />

• Good dE/dx resolution<br />

• Good double track resolution<br />

• Many possible detector configurations<br />

• Low material budget – low radiation length<br />

• Extremely large area detectors needed (ATLAS 5500 m 2 )<br />

• High mechanical precisions (ATLAS, better than 30 µm)<br />

• Fast readout (25 ns bunch crossing cycle at LHC)<br />

• High rate capability (LHCb Straw Tracker 400 kHz/cm 2 )<br />

• High radiation dose (charge deposition ~2 C/cm)<br />

• Light construction (LHCb Straw Tracker 9% X 0 )<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 2


Example: ATLAS Muon Detector<br />

Monitored Drift Tubes (MDT)<br />

Sagitta s<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 3


Trigger on first cluster<br />

ATLAS MDTs<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 4


<strong>Gas</strong>eous <strong>Detectors</strong> at LHC<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 5


<strong>Gas</strong> ionization by charged particles<br />

Energy loss dE/dx of charged particles:<br />

- primary ionization<br />

- secondary ionization<br />

Total number of e/ion pairs for a particle:<br />

n =<br />

ion<br />

dE<br />

W<br />

dx<br />

ion<br />

+<br />

+<br />

+<br />

−<br />

−<br />

−<br />

Average energy<br />

W ion to create<br />

e/ion pair<br />

Bethe-Bloch<br />

Counting gas<br />

+ V<br />

CO 2<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 6<br />

<strong>Gas</strong><br />

Ar<br />

CH 4<br />

Z<br />

18<br />

33<br />

10<br />

For comparison:<br />

W ion [eV]<br />

26<br />

33<br />

28<br />

Minimum ionizing<br />

particle m.i.p<br />

n ion [cm -1 ]<br />

94<br />

91<br />

53<br />

Scintillator: energy for photon ~ 100 eV<br />

Si Detector: energy for e/hole ~ 3.5 eV


Drift of electrons in presence of fields<br />

Motion of charged particles under influence<br />

of E and B fields: Langevin equation.<br />

Drift velocity u:<br />

du<br />

m = e(<br />

E + u × B)<br />

− Ku<br />

dt<br />

“stochastic friction force” due to collisions<br />

m, e = mass and charge of electron<br />

du<br />

For t>>τ → static situation: = 0<br />

dt<br />

Cyclotron frequency Scalar mobility<br />

e<br />

ω = B<br />

m<br />

e<br />

µ = τ<br />

m<br />

u<br />

µ E<br />

= τ<br />

2 2<br />

1+<br />

ω τ<br />

[ ]<br />

Eˆ<br />

Eˆ<br />

Bˆ<br />

2 2<br />

+ ωτ × + ω ( Eˆ<br />

⋅ Bˆ<br />

) Bˆ<br />

Mean free path L<br />

Time between collisions:<br />

L 1<br />

τ = =<br />

c Nσ<br />

⋅c<br />

instantaneous velocity<br />

K<br />

One finds: τ =<br />

m<br />

for ωτ → 0 =<br />

E<br />

u µ<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 7


In the microscopic picture one finds for<br />

the drifting electrons (energy ε):<br />

drift<br />

Instant.<br />

2<br />

u =<br />

eE<br />

mNσ<br />

2 eE<br />

c =<br />

mNσ<br />

λ<br />

2<br />

2<br />

λ<br />

Drift velocity<br />

σ = σ(ε<br />

)<br />

λ = λ(ε<br />

)<br />

fractional<br />

energy loss<br />

(Energy received from the E field between<br />

collisions equal to energy transferred in collisions.)<br />

Elastic collisions:<br />

λ ≈<br />

2m −<br />

≈ 10<br />

Mgas<br />

2 2 c<br />

u c u ≈<br />

2 100<br />

4<br />

= λ Drift velocity much smaller<br />

than instantaneous velocity<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 8


Fast and slow gases<br />

Ramsauer<br />

minimum<br />

Excitation threshold: Ar at 11.5 eV<br />

• Ramsauer minimum: v is large<br />

• Ar: ε ionization >> ε Ramsauer<br />

• CH 4:<br />

ε exitation < ε Ramsauer<br />

• Ar / CH 4 mixture<br />

CH4 at 0.03 eV<br />

(vibrations+rotations)<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 9<br />

λ<br />

σ<br />

λ<br />

σ<br />

small, i.e. slow gas<br />

big, i.e. fast gas<br />

Drift velocity u can be tuned


Drift velocity of ArCH 4<br />

u [µm/ns]<br />

0/100<br />

50 µm/ns<br />

90/10<br />

50 µm/ns<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 10


• Fractional energy loss for ions large:<br />

2mionM<br />

λ ≈<br />

( m + M<br />

ion<br />

gas<br />

gas<br />

Drift velocity of ions<br />

)<br />

2 ≈<br />

• Mobility / drift velocity much smaller than<br />

for electrons.<br />

µ<br />

ion<br />

• While for electrons µ=µ(E, <strong>Gas</strong>, p, T) one<br />

finds for ions only little dependence on E:<br />

µ ( E)<br />

~ const v ~ E for small E<br />

µ ( E)<br />

~<br />

E<br />

−4<br />

≈ 10 µ<br />

e<br />

v<br />

~<br />

v<br />

1<br />

2<br />

ion<br />

E<br />

≈ 10<br />

−4<br />

u<br />

e<br />

for large E<br />

<strong>Gas</strong><br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 11<br />

Ar<br />

Ne<br />

Xe<br />

Ion<br />

Ar +<br />

Ne +<br />

Xe +<br />

µ [cm 2 /(Vs)]<br />

1.5<br />

4.1<br />

0.6


Examples:<br />

• LHCb straw tubes: a=12.5 µm, b=2.5 mm<br />

• ATLAS MDT: a=25 µm, b=15 mm<br />

Proportional Counter<br />

E C<br />

r C<br />

Electrical field:<br />

V0<br />

1 C′<br />

V0<br />

1<br />

E(<br />

r ) = =<br />

ln( b / a)<br />

r 2πε<br />

r<br />

2πε 0 C′<br />

=<br />

ln( b / a)<br />

<strong>Gas</strong> amplification – avalanche:<br />

1<br />

1<br />

L = α<br />

α<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 12<br />

dn<br />

n<br />

e<br />

dx<br />

L<br />

e = = α<br />

dx<br />

0<br />

Capacity/length


General case of non-uniform fields<br />

G = exp( α(<br />

r ) dr )<br />

Raether limit:<br />

αx<br />

≈<br />

G<br />

20<br />

8<br />

~ 10<br />

rc<br />

a<br />

<strong>Gas</strong> amplification<br />

α(r) = Townsend coefficient<br />

G = k exp( C′<br />

V)<br />

Phenomenological limit:<br />

→ discharges (sparks)<br />

For uniform field<br />

n( r ) = n0<br />

exp( α r )<br />

n<br />

G =<br />

n<br />

= exp( α r )<br />

G = gas amplification = 10 4 … 10 5<br />

(gain)<br />

(LHCb straws)<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 13<br />

0


dG<br />

~ −<br />

G<br />

dG<br />

= −K<br />

G<br />

dρ<br />

ρ<br />

dp<br />

p<br />

Pressure dependence<br />

K = gas/configuration dependent constant = 5…8 Charge signal / rel. gain with<br />

mono chromatic γ source:<br />

Fe55: 6.9 keV γs<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 14


Gain drop at high particle<br />

densities: space charge<br />

around the anode.<br />

Space Charge Effect<br />

(LHCb straws)<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 15


2 nd Townsend Coefficient & Quencher<br />

UV photons from avalanche so far neglected:<br />

UV photons → photo effect (gas molecules / cathode)<br />

<strong>Gas</strong> amplification G γ<br />

G<br />

γ<br />

= G + G(<br />

γG)<br />

+ G(<br />

γG)<br />

including effect of UV photons:<br />

G<br />

+ .... =<br />

1−<br />

γG<br />

0× 1× 2× photo effect<br />

For γG → 1 : gas amplification becomes infinite<br />

2<br />

continuous discharges (sparks)<br />

Use poly-atomic gas admixtures to absorb photons: Quencher<br />

γ = probability for photo effect<br />

2 nd Townsend coefficient<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 16


Quencher<br />

Excitation cross section for Noble gases (Ar) and poly-atomic gases (CH 4 )<br />

Energy dissipation through collisions<br />

(radiation less transitions)<br />

Quencher: CH 4 , C 2 H 6 , CO 2 , CF 4<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 17


Operation modes<br />

I) Recombination before collection<br />

II) Ionization mode<br />

full charge collection, no charge<br />

multiplication.<br />

III) Proportional mode detector signal<br />

proportional to primary ionization, gas<br />

amplifications 10 4 …10 5 , needs<br />

quencher<br />

IV) Streamer mode<br />

strong photon emission produced<br />

secondary avalanche, strong<br />

quencher to localize streamer, large<br />

signals<br />

Geiger mode<br />

massive photon emission, no<br />

quencher → discharge over full<br />

length, needs to be stopped by HV<br />

drop<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 18


Absolute gain measurement<br />

HERA-B Honeycomb Tracker:<br />

Chamber current at a<br />

constant/stable irradiation for<br />

different HV (~10000 single<br />

channels contribute)<br />

~ 2 ×<br />

10<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 19<br />

4


Induced signal of charge Q moved by<br />

dr in a system with total capacity C=l·C’<br />

Electron signal<br />

Ion signal<br />

Total signal<br />

Signal development<br />

v<br />

v<br />

−<br />

+<br />

=<br />

=<br />

v = v<br />

−<br />

−<br />

+<br />

• Avalanche starts at a few radii distance<br />

from wire (typ. 50µm)<br />

• Electrons reach anode with ~1ns:<br />

Multiplication process takes less than 1ns<br />

• Ions will slowly drift towards cathode and<br />

induce a negative signal on anode<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 20<br />

dv<br />

Q a + d<br />

ln<br />

πε l a<br />

2 0<br />

Q b<br />

ln<br />

πε l a + d<br />

2 0<br />

+ v<br />

−<br />

=<br />

−<br />

Q<br />

ln<br />

πε l<br />

2 0<br />

Q<br />

=<br />

lC′<br />

V<br />

b<br />

a<br />

0<br />

dV<br />

dr<br />

dr<br />

Assumes all charge produced<br />

at distance d<br />

Q<br />

= −<br />

lC′<br />

− +<br />

v v<br />

≈ 1.<br />

4 ( 1)%<br />

for LHCb straws<br />

/ ATLAS MDT


Ion signal<br />

Signal rise time<br />

Signal timing<br />

Q ( t)<br />

= Q0<br />

ln( 1+<br />

t / t0)<br />

/ ln( 1+<br />

tmax<br />

/ t0)<br />

t<br />

0<br />

=<br />

2<br />

pa<br />

2µ<br />

V<br />

ln( b / a)<br />

~ 5ns<br />

p(<br />

b − a )<br />

Max. ion drift time tmax<br />

= ln( b / a)<br />

~ 130µ<br />

s<br />

µ V<br />

Q /Q0<br />

2<br />

p = pressure<br />

V = voltage<br />

µ = ion mobility<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 21<br />

2<br />

t<br />

[ns]<br />

LHCb straws


∆V<br />

Signal readout<br />

t<br />

C1<br />

R >><br />

2 C2,<br />

R2C1<br />

t0<br />

“Voltage source”<br />

[ns]<br />

+ V<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 22<br />

I<br />

R1<br />

C2<br />

R2<br />

R


Long ion tail will shadow<br />

subsequent ionizing particles:<br />

If threshold for particle detection is<br />

used, signal stays long time above<br />

threshold.<br />

RC/CR Shaping<br />

Signal Shaping<br />

“Current mode”<br />

Signal after shaping<br />

Signal after amplifier<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 23


Ageing Effects<br />

In a high rate environment (e.g. LHC) wire chambers could show several<br />

“ageing effects”, nearly all of them triggered by pollutants in the gas/chamber:<br />

• Deposits on the anode wire:<br />

→ gain loss<br />

Study gain as function of totol<br />

charge deposition per length<br />

(LHCb straw detector)<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 24


• Etching of anode wire in case of<br />

counting gas with CF 4 admixtures<br />

(LHCb straws)<br />

Ageing Effects II<br />

• Modification of the cathode surface:<br />

Malter effect → self sustaining currents<br />

(HERA-B, Honeycomb tracker)<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 25


Tools for detector development<br />

Garfield - simulation of gaseous detectors<br />

http://consult.cern.ch/writeup/garfield/<br />

Garfield is a computer program for the detailed simulation of twoand<br />

three-dimensional drift chambers<br />

Magboltz - Transport of electrons in gas mixtures<br />

http://consult.cern.ch/writeup/magboltz/<br />

Magboltz solves the Boltzmann transport equations for electrons<br />

in gas mixtures under the influence of electric and magnetic fields.<br />

Heed - Interactions of particles with gases<br />

http://consult.cern.ch/writeup/heed/<br />

HEED is a program that computes in detail the energy loss of fast charged<br />

particles in gases, taking delta electrons and optionally multiple scattering of<br />

the incoming particle into account. The program can also simulate the<br />

absorption of photons through photo-ionization in gaseous detectors.<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 26


Multi Wire Proportional Chamber<br />

Charpak, 1967/68<br />

Nobel prize 1992<br />

spatial resolution<br />

~ s<br />

12<br />

With typ. wire distance<br />

s≈2mm δs ≈ 0.6 mm<br />

Significantly better spatial<br />

resolution in not achievable<br />

with MWPCs<br />

E Field<br />

MPWC = Multiwire proportional chambers<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 27


Drift Chamber<br />

• Drift time drift distance and intersection point of particle<br />

• Spatial resolution of ~100 µm achievable<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 28


Ulrich Uwer Universität <strong>Heidelberg</strong> 29


Physikalisches<br />

Institut,<br />

<strong>Heidelberg</strong>, 1971<br />

First Drift Chamber<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 30


LHCb Outer Tracker<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 31


Outer Tracker - Demands<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 32


Planar Tracking Stations<br />

5 m<br />

T1 T2 T3<br />

264 Module<br />

6 m<br />

1.3% area<br />

20% tracks<br />

Outer<br />

Tracker<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 33


Straw tube drift chamber modules<br />

5mm cells<br />

pitch 5.25 mm<br />

Straw Tubes<br />

e<br />

- e -<br />

e<br />

-<br />

Track<br />

2.5 m<br />

Cathode<br />

Straw tube winding:<br />

Lamina Dielectrics Ltd.<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 34


Module Construction<br />

2 × =<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 35


Drift time spectrum<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 36


Wire Chambers -Summary<br />

• Technology widely used in HEP experiments<br />

• Proven to be robust, precise and reliable devices<br />

• Detector geometry and counting gas can be tuned and<br />

optimized to fulfill requirements of the given application<br />

• Play an important role in all LHC detectors<br />

• Will continue to used in future particle detector:<br />

ILC detector PANDA, CBM<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 37


Micro pattern detectors<br />

• Micromegas<br />

• GEM detectors<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 38


Micromegas<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 39


<strong>Gas</strong> Electron Multiplier (GEM)<br />

triple GEM<br />

double GEM<br />

Single GEM<br />

140 µm<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 40


Compass Triple-GEM<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 41


Novel Neutron Detector<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 42


CASCADE Neutron Detector<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 43


Detector development tools<br />

Ulrich Uwer Universität <strong>Heidelberg</strong> 44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!