24.07.2013 Views

Experiments to Control Atom Number and Phase-Space Density in ...

Experiments to Control Atom Number and Phase-Space Density in ...

Experiments to Control Atom Number and Phase-Space Density in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Experiments</strong> <strong>to</strong> <strong>Control</strong> A<strong>to</strong>m <strong>Number</strong> <strong>and</strong> <strong>Phase</strong>-<strong>Space</strong><br />

<strong>Density</strong> <strong>in</strong> Cold Gases<br />

Kirsten Vier<strong>in</strong>g, Ph.D.<br />

The University of Texas at Aust<strong>in</strong>, 2012<br />

Supervisor: Mark G. Raizen<br />

This dissertation presents the development <strong>and</strong> implementation of two novel ex-<br />

perimental techniques for controll<strong>in</strong>g a<strong>to</strong>m number <strong>and</strong> phase-space density <strong>in</strong> cold<br />

a<strong>to</strong>mic gases.<br />

The first experiment demonstrates the method of s<strong>in</strong>gle-pho<strong>to</strong>n cool<strong>in</strong>g, an optical<br />

realization of Maxwell’s demon, us<strong>in</strong>g an ensemble of rubidium a<strong>to</strong>ms. S<strong>in</strong>gle-pho<strong>to</strong>n<br />

cool<strong>in</strong>g <strong>in</strong>creases the phase-space density of a cloud of magnetically trapped a<strong>to</strong>ms,<br />

reduc<strong>in</strong>g the entropy of the ensemble by irreversibly transferr<strong>in</strong>g a<strong>to</strong>ms through a one-<br />

way wall via a s<strong>in</strong>gle-pho<strong>to</strong>n scatter<strong>in</strong>g event. While traditional laser cool<strong>in</strong>g methods are<br />

limited <strong>in</strong> their applicability <strong>to</strong> a small number of a<strong>to</strong>ms, s<strong>in</strong>gle-pho<strong>to</strong>n cool<strong>in</strong>g is much<br />

more general <strong>and</strong> should <strong>in</strong> pr<strong>in</strong>ciple be applicable <strong>to</strong> almost all a<strong>to</strong>ms <strong>in</strong> the periodic<br />

table. The experiment described <strong>in</strong> this dissertation demonstrates a one-dimensional<br />

implementation of the cool<strong>in</strong>g scheme. Complete phase-space compression along this<br />

dimension is observed. The limitations on the cool<strong>in</strong>g performance are shown <strong>to</strong> be<br />

given by trap dynamics <strong>in</strong> the magnetic trap.<br />

The second part of this dissertation is dedicated <strong>to</strong> the experiment built <strong>to</strong> con-<br />

trol the a<strong>to</strong>m number of a degenerate Fermi gas on a s<strong>in</strong>gle particle level. Creat<strong>in</strong>g Fock<br />

states of a<strong>to</strong>ms with ultra-high fidelity is a m<strong>and</strong>a<strong>to</strong>ry step for study<strong>in</strong>g quantum entan-<br />

glement on a s<strong>in</strong>gle a<strong>to</strong>m level. The experimental technique implemented <strong>to</strong> control the<br />

a<strong>to</strong>m number <strong>in</strong> this experiment is called laser cull<strong>in</strong>g. Decreas<strong>in</strong>g the trapp<strong>in</strong>g potential<br />

reduces the a<strong>to</strong>m number <strong>in</strong> a controlled way, giv<strong>in</strong>g precise control over the number<br />

of a<strong>to</strong>ms rema<strong>in</strong><strong>in</strong>g <strong>in</strong> the trap. This dissertation details the design <strong>and</strong> construction<br />

vii

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!