24.07.2013 Views

Experiments to Control Atom Number and Phase-Space Density in ...

Experiments to Control Atom Number and Phase-Space Density in ...

Experiments to Control Atom Number and Phase-Space Density in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

used dur<strong>in</strong>g the course of the experiments described <strong>in</strong> this dissertation: Near-resonant<br />

light slows a<strong>to</strong>ms <strong>in</strong> a Zeeman slower <strong>and</strong> traps a<strong>to</strong>ms <strong>in</strong> a magne<strong>to</strong>-optical trap; far-off<br />

resonant light on the other h<strong>and</strong> creates optical dipole traps. In the lithium experiment<br />

an optical dipole trap is used for optical evaporation <strong>in</strong> order <strong>to</strong> cool the a<strong>to</strong>ms <strong>to</strong><br />

degeneracy. In the rubidium experiment an optical dipole trap s<strong>to</strong>res the a<strong>to</strong>ms after<br />

they have undergone s<strong>in</strong>gle-pho<strong>to</strong>n cool<strong>in</strong>g.<br />

2.6.1 Near-Resonant Light - Scatter<strong>in</strong>g Force<br />

The dom<strong>in</strong>ant effect of near-resonant light is the creation of a strong scatter<strong>in</strong>g<br />

force. If an a<strong>to</strong>m absorbs a pho<strong>to</strong>n, the pho<strong>to</strong>n momentum is transferred <strong>to</strong> the a<strong>to</strong>m. If<br />

the absorption of the pho<strong>to</strong>n is followed by a spontaneous emission process, on average<br />

the emission will not cause a change <strong>in</strong> the momentum of the a<strong>to</strong>m. The net force an<br />

a<strong>to</strong>m experiences from absorption is thus given by [35]<br />

Fscatt = kΓρee, (2.19)<br />

where k is pho<strong>to</strong>n momentum, Γ is the rate of the process <strong>and</strong> ρee is part of the density<br />

matrix <strong>and</strong> describes the probability <strong>to</strong> f<strong>in</strong>d an a<strong>to</strong>m <strong>in</strong> the excited state. Choos<strong>in</strong>g ρee<br />

over ρgg <strong>in</strong>cludes the effects of saturation <strong>and</strong> detun<strong>in</strong>g. The expression for ρee can be<br />

derived from the optical Bloch equations <strong>and</strong> is given by [35]<br />

ρee = 1<br />

2<br />

I/Isat<br />

1+(I/Isat)+4(∆/Γ) 2,<br />

(2.20)<br />

where ∆ = ωlaser −ωresonant. This implies that the scatter<strong>in</strong>g rate <strong>and</strong> scatter<strong>in</strong>g force<br />

are given by<br />

Rscatt = Γ<br />

2<br />

Fscatt = k Γ<br />

2<br />

I/Isat<br />

1+(I/Isat)+4(∆/Γ) 2<br />

I/Isat<br />

1+(I/Isat)+4(∆/Γ) 2.<br />

2.6.2 Far-Detuned Light - AC Stark Shift <strong>and</strong> Optical Dipole Force<br />

(2.21)<br />

(2.22)<br />

Far-off resonant light creates an AC Stark shift, while scatter<strong>in</strong>g forces are neg-<br />

ligible <strong>in</strong> this regime. Consider an a<strong>to</strong>m placed <strong>in</strong><strong>to</strong> an electric field E generated by<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!