24.07.2013 Views

Experiments to Control Atom Number and Phase-Space Density in ...

Experiments to Control Atom Number and Phase-Space Density in ...

Experiments to Control Atom Number and Phase-Space Density in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The <strong>to</strong>tal magnetic moment of an a<strong>to</strong>m is given by the sum of its electronic <strong>and</strong><br />

nuclear moments,<br />

µ = µB(gJ J +gI I), (2.13)<br />

where µB is the Bohr magne<strong>to</strong>n, J <strong>and</strong> I are the electronic angular momentum <strong>and</strong><br />

nuclear sp<strong>in</strong>, <strong>and</strong> gJ <strong>and</strong> gI are the electronic <strong>and</strong> nuclear magnetic g-fac<strong>to</strong>rs. The<br />

Hamil<strong>to</strong>nian describ<strong>in</strong>g the <strong>in</strong>teraction between the a<strong>to</strong>mic magnetic moment µ <strong>and</strong> the<br />

external magnetic field B is given by [22, 23, 25]<br />

H = −µ· B. (2.14)<br />

This Hamil<strong>to</strong>nian can be diagonalized <strong>in</strong> the hyperf<strong>in</strong>e basis |F,mF〉. Each of the hyper-<br />

f<strong>in</strong>e levels F consists of 2F +1 magnetic sublevels (mF), correspond<strong>in</strong>g <strong>to</strong> the different<br />

projections of the <strong>to</strong>tal a<strong>to</strong>mic angular momentum along the quantization axis given by<br />

the direction of the magnetic field. The associated energy shift of the state |F,mF〉 is<br />

given by<br />

where<br />

F(F +1)−I(I +1)+J(J +1)<br />

gF = gJ<br />

+gI<br />

2F(F +1)<br />

∆E = µBgFmF|B|, (2.15)<br />

F(F +1)+I(I +1)−J(J +1)<br />

. (2.16)<br />

2F(F +1)<br />

Table 2.3 summarizes the values of gI <strong>and</strong> gJ for the transitions important <strong>to</strong> this<br />

dissertation for both rubidium <strong>and</strong> lithium.<br />

Rubidium<br />

gI -0.0009951414(10)<br />

gJ(5 2 S1/2) 2.00233113(20)<br />

gJ(5 2 P1/2) 2/3<br />

gJ(5 2 P3/2) 1.3362(13)<br />

Table 2.3: g-fac<strong>to</strong>rs for rubidium <strong>and</strong> lithium<br />

Lithium<br />

gI -0.0004476540<br />

gJ(22S1/2) 2.00233113(20)<br />

gJ(22P1/2) 0.6668<br />

gJ(22P3/2) 1.335<br />

Figure 2.8 shows the anomalous Zeeman splitt<strong>in</strong>g of the ground state of 87 Rb. The<br />

magnetic field strengths used dur<strong>in</strong>g the course of the rubidium s<strong>in</strong>gle-pho<strong>to</strong>n cool<strong>in</strong>g<br />

experiment rema<strong>in</strong> <strong>in</strong> the anomalous Zeeman regime. This figure shows that it is possible<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!