24.07.2013 Views

Experiments to Control Atom Number and Phase-Space Density in ...

Experiments to Control Atom Number and Phase-Space Density in ...

Experiments to Control Atom Number and Phase-Space Density in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Property Symbol Value Reference<br />

A<strong>to</strong>mic numer Z 3<br />

Nucleons Z+N 6<br />

Natural abundance η 7.6% [15]<br />

A<strong>to</strong>mic mass m 6.0151214 u [21]<br />

9.9883414×10 −27 kg<br />

Nuclear sp<strong>in</strong> I 1<br />

Electronic sp<strong>in</strong> S 1/2<br />

Table 2.2: Physical properties of 6 Li<br />

2.3 F<strong>in</strong>e <strong>and</strong> Hyperf<strong>in</strong>e Structure<br />

Even <strong>in</strong> the absence of any external electromagnetic fields, <strong>in</strong>teractions between<br />

the suba<strong>to</strong>mic particles with<strong>in</strong> the a<strong>to</strong>ms will give rise <strong>to</strong> a splitt<strong>in</strong>g of the energy levels.<br />

Relativistic energy corrections, sp<strong>in</strong>-orbit coupl<strong>in</strong>g <strong>and</strong> the Darw<strong>in</strong> term give rise <strong>to</strong><br />

the f<strong>in</strong>e-structure. The <strong>in</strong>teraction between the nuclear sp<strong>in</strong> I <strong>and</strong> the electron angular<br />

momentum J leads <strong>to</strong> the hyperf<strong>in</strong>e structure. More detail on these <strong>in</strong>teractions is given<br />

<strong>in</strong> the follow<strong>in</strong>g sections.<br />

2.3.1 F<strong>in</strong>e Structure<br />

Alkali a<strong>to</strong>ms have a s<strong>in</strong>gle unpaired electron <strong>in</strong> the valence shell. The ground<br />

<strong>and</strong> first excited state configurations for lithium are 1s 2 2s 1 <strong>and</strong> 1s 2 2p 1 respectively. For<br />

rubidium the ground state configuration is [Kr]5s 1 <strong>and</strong> [Kr]5p 1 describes the excited<br />

state. The transition between these two states is usually called the D-l<strong>in</strong>e. This is<br />

the energy level structure one derives from the central potential (sp<strong>in</strong>-<strong>in</strong>dependent)<br />

approximation.<br />

Relativistic energy corrections, sp<strong>in</strong>-orbit coupl<strong>in</strong>g, <strong>and</strong> the Darw<strong>in</strong> term lead<br />

<strong>to</strong> an energy splitt<strong>in</strong>g called f<strong>in</strong>e-structure. The Hamil<strong>to</strong>nian describ<strong>in</strong>g the <strong>in</strong>teraction<br />

between the orbital angular momentum L <strong>and</strong> the sp<strong>in</strong> angular momentum S can be<br />

written as [22–25]<br />

Hfs = A L· S, (2.4)<br />

where A is the constant parameteriz<strong>in</strong>g the strength of the <strong>in</strong>teraction. The coupl<strong>in</strong>g<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!