24.07.2013 Views

Experiments to Control Atom Number and Phase-Space Density in ...

Experiments to Control Atom Number and Phase-Space Density in ...

Experiments to Control Atom Number and Phase-Space Density in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

List of Figures<br />

2.1 Vapor pressure of solid rubidium . . . . . . . . . . . . . . . . . . . . . . 4<br />

2.2 Vapor pressure of liquid lithium . . . . . . . . . . . . . . . . . . . . . . . 5<br />

2.3 F<strong>in</strong>e structure splitt<strong>in</strong>g of 87 Rb <strong>and</strong> 6 Li . . . . . . . . . . . . . . . . . . . 7<br />

2.4 Hyperf<strong>in</strong>e structure splitt<strong>in</strong>g of 87 Rb . . . . . . . . . . . . . . . . . . . . 9<br />

2.5 Hyperf<strong>in</strong>e structure splitt<strong>in</strong>g of 6 Li . . . . . . . . . . . . . . . . . . . . . 9<br />

2.6 Branch<strong>in</strong>g ratios <strong>in</strong> 87 Rb . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

2.7 Angular momentum precession <strong>in</strong> the anomalous Zeeman regime . . . . . 11<br />

2.8 Anomalous Zeeman shift of the Rb ground states . . . . . . . . . . . . . 13<br />

2.9 Angular momentum precession <strong>in</strong> the normal Zeeman effect regime . . . 13<br />

2.10 Energy shift of the 6 Li ground state <strong>in</strong> an external magnetic field . . . . 14<br />

2.11 Two channel model for a Feshbach resonance . . . . . . . . . . . . . . . . 15<br />

2.12 Scatter<strong>in</strong>g length <strong>and</strong> molecular state energy near a magnetic Feshbach<br />

resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

2.13 Zeeman slower setup schematic . . . . . . . . . . . . . . . . . . . . . . . 20<br />

2.14 1D optical molasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

2.15 Schematic of a magne<strong>to</strong> optical trap setup . . . . . . . . . . . . . . . . . 22<br />

2.16 1D magne<strong>to</strong> optical trap . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

2.17 MOT <strong>and</strong> repump transition <strong>in</strong> 87 Rb . . . . . . . . . . . . . . . . . . . . 25<br />

2.18 MOT <strong>and</strong> repump transition <strong>in</strong> 6 Li . . . . . . . . . . . . . . . . . . . . . 25<br />

2.19 Evaporative cool<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

2.20 Saturated absorption spectroscopy setup . . . . . . . . . . . . . . . . . . 30<br />

2.21 Saturated absorption spectroscopy spectrum . . . . . . . . . . . . . . . . 31<br />

2.22 Saturation absorption spectroscopy setup used for lock<strong>in</strong>g the laser frequency<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

2.23 FM spectroscopy error signals . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

2.24 Absorption imag<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

2.25 Fluorescence imag<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

3.1 Periodic table of laser-cooled elements . . . . . . . . . . . . . . . . . . . 38<br />

3.2 One-way wall phase-space compression . . . . . . . . . . . . . . . . . . . 39<br />

3.3 S<strong>in</strong>gle-pho<strong>to</strong>n cool<strong>in</strong>g <strong>in</strong> a gradient potential . . . . . . . . . . . . . . . . 42<br />

3.4 Maxwell’s demon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

3.5 Maxwell’s pressure demon . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

xiv

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!