24.07.2013 Views

Exergoeconomic Cost Evaluation based on Irreversibility ... - circe

Exergoeconomic Cost Evaluation based on Irreversibility ... - circe

Exergoeconomic Cost Evaluation based on Irreversibility ... - circe

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Exergoec<strong>on</strong>omic</str<strong>on</strong>g> <str<strong>on</strong>g>Cost</str<strong>on</strong>g> <str<strong>on</strong>g>Evaluati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>Irreversibility</strong><br />

Decompositi<strong>on</strong> Analysis<br />

César Torres and Ant<strong>on</strong>io Valero<br />

CIRCE. Centro de Investigación de Recursos y C<strong>on</strong>sumos Energéticos<br />

University of Zaragoza, Spain<br />

e-mail: ctorrescuadra@endesa.es<br />

ABSTRACT: The objectives of the paper are to review the c<strong>on</strong>cepts of the avoidable<br />

endogenous/exogenous part of the irreversibilities or exergy destructi<strong>on</strong> from<br />

the viewpoint of thermoec<strong>on</strong>omic diagnosis methodology and, as result of this analysis,<br />

to introduce a general technique to decompose the exergy and exergoec<strong>on</strong>omic<br />

cost into its unavoidable, endogenous and exogenous parts.<br />

The proposed method provides a detailed analysis of the cost formati<strong>on</strong> process and<br />

helps to analyze the potential improvement and local optimizati<strong>on</strong> of the system<br />

comp<strong>on</strong>ents.<br />

Keywords: <str<strong>on</strong>g>Exergoec<strong>on</strong>omic</str<strong>on</strong>g>s, <strong>Irreversibility</strong> analysis.<br />

NOMENCLATURE<br />

n Number of comp<strong>on</strong>ents<br />

E Exergy rate [kW]<br />

F Fuel exergy of a comp<strong>on</strong>ent [kW]<br />

P Product exergy of a comp<strong>on</strong>ent [kW]<br />

I <strong>Irreversibility</strong> of a comp<strong>on</strong>ent [kW]<br />

Z Investment cost rate [$/h]<br />

C <str<strong>on</strong>g>Cost</str<strong>on</strong>g> rate associated with an exergy<br />

flow [$/h]<br />

c Unit exergoec<strong>on</strong>omic cost [c/kWh]<br />

k Comp<strong>on</strong>ent unit exergy c<strong>on</strong>sumpti<strong>on</strong><br />

Matrices and Vectors<br />

ω System outputs exergy vector (n × 1)<br />

u Unity vector (n × 1)<br />

UD<br />

Identity Matrix (n × n)<br />

KD Diag<strong>on</strong>al matrix which c<strong>on</strong>tains the<br />

unit c<strong>on</strong>sumpti<strong>on</strong> of each comp<strong>on</strong>ent<br />

(n × n)<br />

〈KP〉 Unit c<strong>on</strong>sumpti<strong>on</strong> matrix (n × n)<br />

〈KP〉 Residue ratios Matrix (n × n)<br />

|P〉 Product operator matrix (n × n)<br />

|I〉 <strong>Irreversibility</strong> operator matrix (n × n)<br />

|R〉 Residue operator matrix (n × n)<br />

Greek Letters<br />

κ Unit exergy c<strong>on</strong>sumpti<strong>on</strong><br />

τ Technical exergy saving<br />

Subscripts and superscripts<br />

F Related to Fuel<br />

P Related to product<br />

e Related to external resources<br />

z Related to investment costs<br />

r Related to residues<br />

t Transpose Matrix<br />

−1 Inverse Matrix<br />

0 Reference state<br />

UN Unavoidable<br />

AV Avoidable<br />

EN Endogenous<br />

EX Exogenous<br />

Abbreviati<strong>on</strong>s<br />

MAI Maximum Avoidable <strong>Irreversibility</strong><br />

AICS Avoidable <strong>Irreversibility</strong> <str<strong>on</strong>g>Cost</str<strong>on</strong>g> Saving<br />

261


1. INTRODUCTION<br />

In practice, when attempting to achieve<br />

effective energy savings in energy systems,<br />

<strong>on</strong>ly a part of the exergy destructi<strong>on</strong> or irreversibility<br />

can be avoided by using the best<br />

current technology.<br />

Valero and co-workers [1, 2] stated in the<br />

early 80’s that for any decisi<strong>on</strong> level of an energy<br />

system: operati<strong>on</strong>, maintenance, design<br />

or synthesis, there exists a relati<strong>on</strong>ship called<br />

Law of Saving-Investment which relates the<br />

potential energy saving ∆I and its required<br />

investment ∆Z following a saturati<strong>on</strong> curve<br />

of the type:<br />

∆I = τ 1 − exp(−ε∆Z) <br />

(1)<br />

This equati<strong>on</strong> notes two important facts.<br />

First, the existence of an energy saving limit<br />

for each level of decisi<strong>on</strong>, called Technical<br />

exergy saving [4] and represented by τ,<br />

which is defined as the maximum irreversibility<br />

that it is possible to save relating to a<br />

reference c<strong>on</strong>diti<strong>on</strong> defined by the decisi<strong>on</strong><br />

level. And sec<strong>on</strong>d, a saturati<strong>on</strong> trend given<br />

by the elasticity parameter ε.<br />

Independently, Tsatar<strong>on</strong>is and coworkers<br />

[3] also states that the exergy destructi<strong>on</strong><br />

of an energy system comp<strong>on</strong>ent can be decomposed<br />

into its avoidable and unavoidable<br />

parts:<br />

I = I UN + I AV<br />

(2)<br />

In an energy analysis, the avoidable irreversibility<br />

IAV gives a realistic picture of the<br />

potential for improving the thermodynamic<br />

effectiveness of each comp<strong>on</strong>ent. The unavoidable<br />

irreversibility IUN cannot be reduced<br />

due to technological limitati<strong>on</strong>s (e.g.<br />

availability and cost of materials and manufacturing<br />

methods)<br />

Theoretically, the investment cost per producti<strong>on</strong><br />

unit could be expressed as functi<strong>on</strong><br />

of the unit c<strong>on</strong>sumpti<strong>on</strong> k:<br />

α k<br />

Z = Z0 + β P<br />

k − k0<br />

γ<br />

262<br />

where k0 is the unit c<strong>on</strong>sumpti<strong>on</strong> at an avoidable<br />

state x0, such as the investment cost Z<br />

of a system comp<strong>on</strong>ent verifies:<br />

lim Z(k) = ∞<br />

k→k0<br />

this state is called Maximum Avoidable <strong>Irreversibility</strong><br />

(MAI) state. In practical applicati<strong>on</strong>s,<br />

the MAI state could be determined by<br />

selecting the most important thermodynamic<br />

parameters to obtain its maximum avoided<br />

irreversibility per producti<strong>on</strong> unit, such a<br />

comp<strong>on</strong>ent will have a very large investment<br />

cost.<br />

Then, the avoidable exergy destructi<strong>on</strong><br />

could be c<strong>on</strong>sidered as a particular instance<br />

of the more general c<strong>on</strong>cept of technical exergy<br />

saving applied to the design level. The<br />

avoidable irreversibility is the difference between<br />

the current and the MAI state, and applying<br />

eq. (1), we get:<br />

I AV = ∆I = τ (3)<br />

The technical exergy saving is the base<br />

idea of the thermoec<strong>on</strong>omic diagnosis<br />

methodology [5], developed by Valero and<br />

co-workers from the beginning of the 90’s<br />

and formerly called Perturbati<strong>on</strong>s Theory<br />

[6]. Thermoec<strong>on</strong>omic diagnosis [7]<br />

states that the variati<strong>on</strong> of the irreversibility<br />

respect to a reference state {x 0 } could be<br />

decomposing into two parts:<br />

∆I = P(x 0 ) ∆k + k(x) ∆P (4)<br />

The first term represents the malfuncti<strong>on</strong><br />

or endogenous irreversibility due to the<br />

degradati<strong>on</strong> of its efficiency regarding to a<br />

reference state and the sec<strong>on</strong>d term represents<br />

the irreversibility variati<strong>on</strong> caused by<br />

the producti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s, which origin are<br />

the inefficiencies of the remaining comp<strong>on</strong>ents<br />

of the system, called dysfuncti<strong>on</strong> or exogenous<br />

irreversibilities.<br />

The Advanced exergoec<strong>on</strong>omic evaluati<strong>on</strong><br />

(AEE) [8, 9] applies these c<strong>on</strong>cepts to<br />

the evaluati<strong>on</strong> of thermal system cost effectiveness,<br />

<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> exergy destructi<strong>on</strong> decompositi<strong>on</strong><br />

analysis. The avoidable part of<br />

the exergy destructi<strong>on</strong> could be decomposed<br />

into the endogenous part of the exergy destructi<strong>on</strong><br />

in a system comp<strong>on</strong>ent I EN , which


is associated <strong>on</strong>ly with the irreversibilities<br />

occurring in the comp<strong>on</strong>ent when all other<br />

comp<strong>on</strong>ents operate in an ideal way, and the<br />

exogenous part of the exergy destructi<strong>on</strong> I EX<br />

caused in the comp<strong>on</strong>ent by the irreversibilities<br />

that occur in the remaining comp<strong>on</strong>ents,<br />

therefore:<br />

I AV = I EN + I EX<br />

(5)<br />

The noti<strong>on</strong> of ideal or theoretical system<br />

is associated with the MAI state. The<br />

method is applied to refrigerati<strong>on</strong> cycles,<br />

which defines a theoretical and a real system<br />

and compare them.<br />

Therefore, the aim of this paper is to analyze<br />

the AEE methodology from the perspective<br />

of the Thermoec<strong>on</strong>omic Diagnosis<br />

in order to clarify these c<strong>on</strong>cepts and to<br />

take advantage of the c<strong>on</strong>tributi<strong>on</strong>s of both<br />

methodologies to improve them and to integrate<br />

into a more general theory of energy<br />

saving, which fundamentals are exposed in<br />

ref. [2].<br />

7<br />

8 9<br />

1<br />

5<br />

HRSG<br />

2<br />

6<br />

Air<br />

Preheater<br />

4<br />

12<br />

2<br />

Combusti<strong>on</strong><br />

Chamber<br />

11<br />

3<br />

Air<br />

Gas<br />

Compressor<br />

Turbine<br />

Figure 1: Flow Diagram of CGAM System.<br />

The well-known CGAM problem [10] is<br />

used to illustrate the theoretical results. It is a<br />

cogenerati<strong>on</strong> plant, which purpose is to generate<br />

a net electric power of 30 MW and to<br />

provide saturated steam at 20 bar. It c<strong>on</strong>sists<br />

of a gas turbine system and a heat recovery<br />

steam generator. The flow diagram of the<br />

plant is depicted in Fig. 1. The productive<br />

structure and the corresp<strong>on</strong>ding exergy flow<br />

values are shown in Fig. 2.<br />

The MAI state definiti<strong>on</strong> of the problem is<br />

made according reference [3]. Table I shows<br />

1<br />

3<br />

5<br />

4<br />

10<br />

the values of the system parameters applied<br />

to the current and the MAI state. The thermoec<strong>on</strong>omic<br />

model, which is <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> EES<br />

and TAESS, used to make the calculati<strong>on</strong><br />

could be found in reference [11].<br />

Table I: CGAM Parameters.<br />

Parameter MAI state CUR state<br />

∆Pcc 0.005 0.05<br />

ηAC 0.9 0.84<br />

ηGT 0.92 0.88<br />

ηAP 0.98 0.82<br />

T4 [ o C] 1300 1200<br />

∆TP [ o C] 2 8<br />

m9 [kg/s] 13.83 7.90<br />

2. COST DECOMPOSITION<br />

Symbolic <str<strong>on</strong>g>Exergoec<strong>on</strong>omic</str<strong>on</strong>g>s [12] allows<br />

relating the producti<strong>on</strong> and other thermoec<strong>on</strong>omic<br />

variables of the plant as a functi<strong>on</strong><br />

of the efficiency of each comp<strong>on</strong>ent and the<br />

system outputs, by means of the producti<strong>on</strong><br />

operator 1 :<br />

|P〉 ≡ (UD − 〈KP〉) −1<br />

(6)<br />

where 〈KP〉 is the unit c<strong>on</strong>sumpti<strong>on</strong> matrix<br />

which elements are defined as κi j ≡ Ei j/P j.<br />

According to ref. [13] is possible to decompose<br />

the unit producti<strong>on</strong> cost into three<br />

types of c<strong>on</strong>tributi<strong>on</strong>s:<br />

cP = c e P<br />

+ cz<br />

P + cr P<br />

(7)<br />

The c<strong>on</strong>tributi<strong>on</strong> caused by external fuel resources:<br />

t e<br />

cP ≡ t |P〉 κe<br />

(8)<br />

where κe,i = C0,i/Pi is the cost of the external<br />

resources c<strong>on</strong>sumed in a comp<strong>on</strong>ent per<br />

producti<strong>on</strong> unit.<br />

The c<strong>on</strong>tributi<strong>on</strong> due to the investment<br />

and maintenance cost of the equipment is:<br />

t z<br />

cP ≡ t |P〉 zP<br />

(9)<br />

where zP,i = Zi/Pi is the equipment cost per<br />

producti<strong>on</strong> unit.<br />

1 It is equivalent, in terms of the ec<strong>on</strong>omic Input-<br />

Output theory, to the Le<strong>on</strong>tief inverse matrix.<br />

263


E12<br />

1<br />

E1<br />

E4 − E3<br />

Air-Gases<br />

E2 − E1<br />

E5 − E4<br />

E3 − E2<br />

E5 − E6<br />

E6 − E7<br />

E7<br />

2<br />

3<br />

4<br />

5<br />

E11<br />

E10 + E11<br />

E9 − E8<br />

Work<br />

E10<br />

E9<br />

E8<br />

Water-Steam<br />

Flow# MAI state CUR state<br />

1 0.0 0.0<br />

2 20321.0 28151.3<br />

3 39681.5 46824.8<br />

4 84735.8 103406.5<br />

5 31921.6 40161.2<br />

6 11295.9 19277.5<br />

7 1939.5 2095.7<br />

8 0.0 0.0<br />

9 6968.2 12427.1<br />

10 30000.0 30000.0<br />

11 21455.2 30591.5<br />

12 63405.1 82073.4<br />

Figure 2: Flow Exergies [KW] and Fuel Product Diagram of CGAM System.<br />

Finally, the producti<strong>on</strong> cost due to the<br />

residues could be computed as:<br />

c r t |R〉<br />

P =<br />

UD − t <br />

e<br />

cP + c<br />

|R〉<br />

z<br />

<br />

P (10)<br />

where |R〉 ≡ 〈KR〉 |P〉 is the residue operator,<br />

introduced in [14].<br />

In the case of a sequential system where<br />

the product of a process is the fuel of the next<br />

<strong>on</strong>e, the product exergy cost of the i–th process<br />

is equal to its exergy plus the sum of all<br />

irreversibilities of the processes required to<br />

obtain it. This fact could be generalized to<br />

any system no matter how complex is, see<br />

ref. [15], by mean of the equati<strong>on</strong>:<br />

P ∗ n<br />

i = Pi +<br />

264<br />

j=1<br />

πi j I j<br />

where πi j are the exergy cost distributi<strong>on</strong> ratios.<br />

This equati<strong>on</strong> could be written in terms<br />

of unit exergy cost as:<br />

k ∗ P,i = 1 +<br />

n<br />

j=1<br />

φ ji<br />

where φ jiPi = πi jI j, and could be written in<br />

matrix format as:<br />

t k ∗ P = t u (UD + |I〉) (11)<br />

where |I〉 ≡ (KD − UD) |P〉 is the irreversibility<br />

operator, that satisfies:<br />

I = |I〉 ω (12)<br />

If there is <strong>on</strong>ly <strong>on</strong>e external fuel with a<br />

known unit price ce the exergoec<strong>on</strong>omic cost<br />

is simply cP,i = ce · k∗ P,i . Moreover, equa-<br />

ti<strong>on</strong> (11) could be extended to compute the<br />

exergoec<strong>on</strong>omic cost for a general case, with<br />

several external flows, by means of the equati<strong>on</strong>:<br />

t cP = t c ∗ e (UD + |I〉) (13)<br />

where c ∗ e represents the unit price of the external<br />

resources that are used for each comp<strong>on</strong>ent,<br />

and it is evaluated as:<br />

(UD − 〈PF〉) c ∗ e = ce<br />

(14)<br />

where 〈PF〉 is the juncti<strong>on</strong> ratios matrix,<br />

see [16], which elements are qi j ≡ Ei j/F j<br />

and satisfy the relati<strong>on</strong>ship:<br />

κi j = qi j ki<br />

(15)<br />

The cost decompositi<strong>on</strong>, according to<br />

eqs. (7) and (13), is illustrated in Figure 4.<br />

It shows how the unit producti<strong>on</strong> cost of<br />

the CGAM comp<strong>on</strong>ents is decomposed into<br />

their different c<strong>on</strong>tributi<strong>on</strong>s: fuel price, investment<br />

and residues costs, and the irreversibilities<br />

costs. It also proves that the<br />

main c<strong>on</strong>tributi<strong>on</strong>s are the irreversibilities<br />

<strong>on</strong> the combusti<strong>on</strong> chamber and the HRSG.<br />

These results will be reviewed later.


The parameter c ∗ e plays an important role,<br />

not <strong>on</strong>ly to generalize the irreversibility cost<br />

relati<strong>on</strong>ship, but also to determine the price<br />

of the external resources used in each comp<strong>on</strong>ent<br />

and to find alternatives to reduce it.<br />

3. IRREVERSIBILITY<br />

DECOMPOSITION<br />

Now, the questi<strong>on</strong> is to evaluate how<br />

much irreversibility could be saving if the<br />

system is moving from the current state to<br />

the MAI state, and how much it does cost.<br />

P<br />

P0<br />

I UN<br />

I EX<br />

MAI State<br />

I EN<br />

1 k0 k<br />

<br />

CUR State<br />

<br />

Figure 3: <strong>Irreversibility</strong> decompositi<strong>on</strong>.<br />

According to the ideas discussed in previous<br />

secti<strong>on</strong>, the irreversibility of each system<br />

comp<strong>on</strong>ent could be decomposed into<br />

its unavoidable and avoidable irreversibility<br />

and moreover its avoidable part could be decomposed<br />

into its endogenous and exogenous<br />

parts, <strong>on</strong> the following way:<br />

I = (k 0 − 1)P 0 + (k − k 0 )P<br />

+ (k 0 − 1)∆P<br />

(16)<br />

where k 0 and P 0 are the unit c<strong>on</strong>sumpti<strong>on</strong><br />

and producti<strong>on</strong> in the MAI state, meanwhile<br />

k and P represents these values in the current<br />

state. The first term, denoted as I UN , represents<br />

the unavoidable irreversibility. The<br />

sec<strong>on</strong>d term I EN represents the avoidable<br />

endogenous irreversibility and the last term<br />

I EX is the avoidable exogenous irreversibility.<br />

Figure 3 shows graphically this decompositi<strong>on</strong>.<br />

Using Symbolic <str<strong>on</strong>g>Exergoec<strong>on</strong>omic</str<strong>on</strong>g> notati<strong>on</strong><br />

the unavoidable irreversibility could be<br />

written as a functi<strong>on</strong> of the producti<strong>on</strong> demand<br />

at the MAI state as:<br />

I UN = |I〉 UN ω 0 where<br />

|I〉 UN ≡ K 0<br />

<br />

UN<br />

D − UD |P〉<br />

the avoidable irreversibility as:<br />

I EN = |I〉 EN ω 0 where<br />

|I〉 EN ≡ KD − K 0<br />

<br />

UN<br />

D |P〉<br />

(17)<br />

(18)<br />

and the exogenous irreversibility that also<br />

depends <strong>on</strong> the system output variati<strong>on</strong>:<br />

I EX = |I〉 EX ω 0 + |I〉 ∆ω where<br />

|I〉 EX ≡ |I〉 ∆ 〈KP〉 |P〉 UN<br />

(19)<br />

Therefore the total irreversibility of each<br />

comp<strong>on</strong>ent verifies:<br />

and<br />

I = I UN + I EN + I EX<br />

|I〉 = |I〉 UN + |I〉 EN + |I〉 EX<br />

(20)<br />

(21)<br />

Table II shows the decompositi<strong>on</strong> of the irreversibilities<br />

of each comp<strong>on</strong>ent into their<br />

parts. In case of the combustor chamber the<br />

endogenous irreversibilities are lower than<br />

10%, meanwhile the air-preheater represents<br />

near 50%.<br />

Table II: <strong>Irreversibility</strong> Decompositi<strong>on</strong> for<br />

CGAM system [kW].<br />

Device I I UN I EN I EX<br />

CC 25492 18351 1947 5193<br />

AC 2440 1134 627 679<br />

GT 2654 1359 895 400<br />

APH 2210 1265 1026 -81<br />

HRSG 4755 2388 278 2089<br />

Total 37551 24497 4773 8280<br />

In the same way that the malfuncti<strong>on</strong> locati<strong>on</strong><br />

is the key for thermoec<strong>on</strong>omic diagnosis,<br />

the endogenous exergy destructi<strong>on</strong> is<br />

the appropriate measure to locate the potential<br />

improvement of the system comp<strong>on</strong>ents,<br />

instead of the total irreversibility.<br />

265


266<br />

CC<br />

AC<br />

GT<br />

AP<br />

HRSG<br />

STK<br />

CC<br />

AC<br />

GT<br />

AP<br />

HRSG<br />

STK<br />

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5<br />

<str<strong>on</strong>g>Cost</str<strong>on</strong>g> [c/kWh]<br />

Figure 4: <str<strong>on</strong>g>Cost</str<strong>on</strong>g> decompositi<strong>on</strong> of CGAM System.<br />

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5<br />

<str<strong>on</strong>g>Cost</str<strong>on</strong>g> [c/kWh]<br />

Figure 5: Avoidable/Unavoidable cost decompositi<strong>on</strong> of CGAM System.<br />

c ∗ e<br />

I1<br />

I2<br />

I3<br />

I4<br />

I5<br />

Z<br />

R<br />

c ∗ e<br />

I UN<br />

I AV<br />

1<br />

I AV<br />

2<br />

I AV<br />

3<br />

I AV<br />

4<br />

I AV<br />

5<br />

Z<br />

R


4. IRREVERSIBILITY AND COST<br />

DECOMPOSITION<br />

The combinati<strong>on</strong> of previous eq. (13),<br />

with the irreversibility operator decompositi<strong>on</strong><br />

formula (21) permits to decompose the<br />

unit producti<strong>on</strong> cost into the different irreversibility<br />

cost causes.<br />

cP = c UN<br />

P<br />

+ cAV<br />

P<br />

where the unavoidable cost could is defined<br />

as:<br />

t UN<br />

cP = t c ∗ <br />

e UD + |I〉 UN<br />

(22)<br />

and the avoidable cost as:<br />

<br />

EN EX<br />

|I〉 + |I〉 <br />

t c AV<br />

P = t c ∗ e<br />

(23)<br />

In practice, it is <strong>on</strong>ly interesting to know<br />

the part of the avoidable cost of a comp<strong>on</strong>ent<br />

caused by its own irreversibilities and<br />

the cost due to the avoidable irreversibilities<br />

both endogenous and exogenous of the rest<br />

of comp<strong>on</strong>ents:<br />

c AV<br />

P,i = c∗ e,i φ AV<br />

ii +<br />

<br />

i j<br />

c ∗ e, j φ AV<br />

ji<br />

(24)<br />

C<strong>on</strong>sidering the relati<strong>on</strong>ship between the<br />

irreversibility and the coefficients of the irreversibility<br />

operator: φAV ji Pi = πi jI AV<br />

j , previous<br />

equati<strong>on</strong> could be written in terms of<br />

cost rate as:<br />

C AV<br />

P,i = πii c ∗ e,i I AV<br />

i +<br />

<br />

ji<br />

πi j c ∗ e, j I AV<br />

j<br />

(25)<br />

The proposed cost decompositi<strong>on</strong>, introduced<br />

here, it is an important enhance in the<br />

knowledge of the cost formati<strong>on</strong> process, because<br />

it isolates the unavoidable cost, i.e. the<br />

cost is not possible to save with the current<br />

design. It calculates the c<strong>on</strong>tributi<strong>on</strong> of the<br />

avoidable irreversibility of each comp<strong>on</strong>ent<br />

to the producti<strong>on</strong> costs. This informati<strong>on</strong><br />

could be applied to take decisi<strong>on</strong>s in order to<br />

make investments that improve the efficiency<br />

and to reduce the endogenous irreversibilities<br />

and as c<strong>on</strong>sequence the producti<strong>on</strong> costs.<br />

Table III shows the unit producti<strong>on</strong> cost<br />

decompositi<strong>on</strong> into the different c<strong>on</strong>cepts explained<br />

here. Figure 5 presents the same<br />

graph depicted in Figure 4, but now it is split<br />

into the c<strong>on</strong>tributi<strong>on</strong> of the unavoidable and<br />

avoidable irreversibilities. Here, it is dem<strong>on</strong>strated<br />

that <strong>on</strong>ly a small part of cost is caused<br />

by the avoidable irreversibility of combustor<br />

and HRSG. The main c<strong>on</strong>tributi<strong>on</strong> is now<br />

the unavoidable irreversibility. Moreover,<br />

the c<strong>on</strong>tributi<strong>on</strong>s due to the investment and<br />

residue costs are, in most of the cases, higher<br />

than the cost originated by the avoidable irreversibility,<br />

and the cost saving margin is low.<br />

5. AVOIDABLE IRREVERSIBILITY<br />

COST SAVING<br />

As stated by the thermoec<strong>on</strong>omic diagnosis<br />

methodology, the cost of a comp<strong>on</strong>ent<br />

malfuncti<strong>on</strong> is the sum of its malfuncti<strong>on</strong><br />

(endogenous irreversibilities) plus the sum<br />

of all dysfuncti<strong>on</strong>s (exogenous irreversibilities)<br />

generated in the rest of comp<strong>on</strong>ents.<br />

The fuel impact formula [7] asserts that the<br />

exergy technical saving of a system is the<br />

sum of the malfuncti<strong>on</strong> cost of all comp<strong>on</strong>ents.<br />

This formula could be generalized to<br />

compute the Total fuel cost saving in m<strong>on</strong>etary<br />

terms, and it could be written as:<br />

∆C e T =<br />

<br />

n<br />

c0 j ∆E0 j =<br />

(26)<br />

where:<br />

j<br />

C e<br />

0 =<br />

i=0<br />

<br />

c e P,s ∆ωs<br />

s<br />

∆C e i<br />

(27)<br />

is the cost saving [$/h] due to the output variati<strong>on</strong><br />

(producti<strong>on</strong> demand and residues generati<strong>on</strong>),<br />

and:<br />

∆C e i =<br />

⎛<br />

<br />

c e P, j ∆κ ⎞<br />

ji (28)<br />

⎜⎝ c0i ∆κ0i +<br />

j<br />

⎟⎠ P0i<br />

is the cost that we can save for each comp<strong>on</strong>ent<br />

by reducing its local unit c<strong>on</strong>sumpti<strong>on</strong><br />

in ∆κ ji. If ∆Zi is the required investment,<br />

per unit of time, required to obtain a<br />

, then the cost benefit ra-<br />

cost saving of ∆C e i<br />

tio CBRi = ∆Zi/∆C e i<br />

is a good index for the<br />

feasibility estimati<strong>on</strong> of a local investment.<br />

This approach could be easily applied to<br />

compute the Avoidable <strong>Irreversibility</strong> <str<strong>on</strong>g>Cost</str<strong>on</strong>g><br />

267


Table III: Unit exergoec<strong>on</strong>omic cost decompositi<strong>on</strong> [c/kWh].<br />

Device cF cP c UN<br />

P<br />

c EN<br />

P<br />

c EX<br />

P c r P c z<br />

P<br />

CC 1.4400 2.1477 2.0265 0.0622 0.0000 0.0527 0.0063<br />

AC 2.7915 3.2017 2.3509 0.2182 0.0806 0.1749 0.3770<br />

GT 2.6009 2.7915 2.2266 0.1646 0.0472 0.1125 0.2407<br />

APH 2.6009 3.0683 2.3111 0.2212 0.0803 0.1732 0.2826<br />

HRSG 2.6009 3.8293 2.9128 0.2400 0.0771 0.1490 0.4504<br />

Stack 2.6009 2.6009 2.1693 0.1360 0.0308 0.1077 0.1571<br />

Saving (AICS) i.e. the cost, in m<strong>on</strong>etary<br />

terms, of the total avoidable irreversibility:<br />

C AV<br />

T =<br />

n<br />

C AV<br />

i<br />

(29)<br />

i=0<br />

Applying eq. (15) to eq. (28), the avoidable<br />

cost saving for each individual comp<strong>on</strong>ent is<br />

written as:<br />

C AV<br />

i<br />

= ce F,i IEN<br />

i<br />

+<br />

<br />

c e P, j ∆q ji F 0<br />

i<br />

j<br />

(30)<br />

because the fact j ∆q ji = 0, it is possible to<br />

estimate CAV i ce F,i IEN<br />

i as the cost of the en-<br />

dogenous irreversibility.<br />

The exergoec<strong>on</strong>omic factor, see [17],<br />

compares the sources c<strong>on</strong>tributing to the<br />

cost increase between cF and cP and shows<br />

the relati<strong>on</strong> between the investment cost and<br />

the cost of exergy destructi<strong>on</strong>. This factor<br />

is used as measure of the importance of a<br />

comp<strong>on</strong>ent from the cost viewpoint within<br />

the overall system. The lower the value is<br />

the more feasible the potential cost saving<br />

investment is. Variati<strong>on</strong>s of this factor, using<br />

the avoidable and endogenous irreversibilities,<br />

are introduced in [9]. According to<br />

eq. (28), the exergoec<strong>on</strong>omic factor could be<br />

redefined as:<br />

f AV<br />

i<br />

=<br />

C AV<br />

i<br />

Z AV<br />

i<br />

+ ZAV<br />

i<br />

(31)<br />

where ZAV i is the part of investment cost that<br />

depends <strong>on</strong> the comp<strong>on</strong>ent producti<strong>on</strong>. This<br />

definiti<strong>on</strong> takes in c<strong>on</strong>siderati<strong>on</strong> the cost of<br />

the endogenous irreversibility of the compo-<br />

268<br />

nent instead its total irreversibility. More-<br />

over the expressi<strong>on</strong> C AV<br />

k<br />

+ ZAV<br />

k could be used<br />

as cost functi<strong>on</strong> for local optimizati<strong>on</strong> to improve<br />

the quality of the soluti<strong>on</strong> and to increase<br />

the c<strong>on</strong>vergence speed.<br />

Table IV shows the values of the avoidable<br />

cost saving and proposed exergoec<strong>on</strong>omic<br />

factors. These value ratios suggest<br />

an investment to improve the comp<strong>on</strong>ent efficiency<br />

could be made in the combustor, but<br />

the investment in other comp<strong>on</strong>ents as the<br />

GT, AC and HRSG could be rejected.<br />

Table IV: Avoidable irreversibility cost saving<br />

and exergoec<strong>on</strong>omic factors.<br />

Device<br />

Z<br />

[$/h]<br />

C AV<br />

[$/h]<br />

fZ<br />

[%]<br />

f AV<br />

Z<br />

[%]<br />

CC 3.542 28.044 0.96 11.22<br />

AC 32.507 15.297 32.30 68.00<br />

GT 46.470 17.254 40.24 72.92<br />

AP 19.960 22.553 25.77 46.95<br />

HRSG 28.986 5.848 18.99 83.21<br />

6. CONCLUSIONS<br />

The c<strong>on</strong>cepts of unavoidable/avoidable<br />

and endogenous/exogenous part of the irreversibility<br />

or exergy destructi<strong>on</strong> in energy<br />

system are reviewed <strong>on</strong> this paper.<br />

The first aim of the paper has been to<br />

dem<strong>on</strong>strate that the Advanced <str<strong>on</strong>g>Exergoec<strong>on</strong>omic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Evaluati<strong>on</strong></str<strong>on</strong>g> methodology could be<br />

explained as a particular applicati<strong>on</strong> of the<br />

Thermoec<strong>on</strong>omic Diagnosis methodology.<br />

Both methodologies have a comm<strong>on</strong> objective:<br />

to evaluate the cost effectiveness of an


energy system and to estimate the profitability<br />

of potential improvements.<br />

They have got the same c<strong>on</strong>clusi<strong>on</strong>s: improvement<br />

efforts should be focus <strong>on</strong> the<br />

avoidable endogenous irreversibilities. The<br />

AEE has been applied to theoretical cycles,<br />

but it is difficult to apply to real plants.<br />

Thermoec<strong>on</strong>omic Diagnosis (TD), as a<br />

part of the Exergy <str<strong>on</strong>g>Cost</str<strong>on</strong>g> Theory (ECT), could<br />

be applied to any system no matter how complex.<br />

The more difficult task in this case is<br />

to determine the maximun avoidable irreversibility<br />

state that fulfills the producti<strong>on</strong> demand<br />

of the system. Once the MAI state is<br />

correctly defined, the TD formulati<strong>on</strong> could<br />

be applied to get the values of endogenous<br />

and exogenous part of the avoidable irreversibility<br />

and compute the associated cost saving<br />

for each comp<strong>on</strong>ent.<br />

The previous ECT works provided a<br />

method to analyze the cost formati<strong>on</strong> process,<br />

<str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> computing the producti<strong>on</strong><br />

costs as the sum of the irreversibilities of<br />

the processes required to obtain a product.<br />

The main practical c<strong>on</strong>tributi<strong>on</strong> of the paper<br />

is shown how to decompose the producti<strong>on</strong><br />

cost into its unavoidable and avoidable parts.<br />

By means of this fact it is possible to determine<br />

which part of the cost could not be<br />

reduced because of technological and thermodynamic<br />

limitati<strong>on</strong>s, which part of the<br />

cost is due to the investment costs of the system<br />

or due to the formati<strong>on</strong> and abatement<br />

cost of the residues and finally which part<br />

is caused by the avoidable irreversibilities<br />

of the own comp<strong>on</strong>ent and how much they<br />

c<strong>on</strong>tribute to the cost of the rest of comp<strong>on</strong>ents.<br />

The results allow taking a step ahead<br />

in the identificati<strong>on</strong> of the process of cost<br />

formati<strong>on</strong> of products and residues.<br />

This approach could be generalized to<br />

other decisi<strong>on</strong> levels than the design, such as<br />

operati<strong>on</strong> and maintenance, by decomposing<br />

the technical exergy savings into the c<strong>on</strong>tributi<strong>on</strong><br />

of the free variable for the decisi<strong>on</strong><br />

level, according to the Quantitative Causality<br />

Analysis [18].<br />

REFERENCES<br />

[1] Valero A. Bases Termoec<strong>on</strong>ómicas del<br />

ahorro de energia. 2 a C<strong>on</strong>ferencia Naci<strong>on</strong>al<br />

sobre ahorro y alternativas energéticas.<br />

42 FONM Zaragoza, 1982,<br />

p. 201–221.<br />

[2] Valero A., et al. A general theory of energy<br />

saving. Part III Energy Saving and<br />

Thermoec<strong>on</strong>omics In Computer Aided<br />

Engineering of Energy System. ASME<br />

AES 1986, Vol 2-3, p. 17–22.<br />

[3] Tsatsar<strong>on</strong>is G. and Park M.H. On avoidable<br />

and unavoidable exergy destructi<strong>on</strong>s<br />

and investment costs in thermal<br />

systems. Energy C<strong>on</strong>versi<strong>on</strong> and Management,<br />

2002 43:1259–1270.<br />

[4] Lozano M.A. and Valero A. Theory<br />

of the exergetic cost. Energy 1993,<br />

18:939–960.<br />

[5] Valero A., Correas L., Zaleta A.,<br />

Lazareto A., Verda V., Reini M. and<br />

Rangel V. On the thermoec<strong>on</strong>omic<br />

approach to the diagnosis of energy<br />

system malfuncti<strong>on</strong>s part 2. Malfuncti<strong>on</strong><br />

definiti<strong>on</strong>s and assessment. Energy<br />

2004, 29(12-15):1889–1907.<br />

[6] Valero A., Lozano M.A. and Torres C.<br />

On Causality in organized energy systems:<br />

Part III Theory of Perturbati<strong>on</strong>s.<br />

Proceedings of the symposium: Florence<br />

World Energy Research Symposium,<br />

Florence, Italy, 1990, p. 401–<br />

420.<br />

[7] Torres C., Valero A., Serra A. and<br />

Royo J. Structural Theory and Thermoec<strong>on</strong>omic<br />

Diagnosis. Part I: On<br />

Malfuncti<strong>on</strong> and Dysfuncti<strong>on</strong> Analysis.<br />

Proceedings of ECOS’99, Tokio, Japan<br />

1999. p. 368–373.<br />

[8] Morosuk T. and Tsatsar<strong>on</strong>is G. Splitting<br />

the exergy destructi<strong>on</strong> into endogenous<br />

and exogenous parts. Applicati<strong>on</strong><br />

to refrigerati<strong>on</strong> machines. In Procedding<br />

of ECOS 2006, Aghia Pelagia,<br />

Crete, Grece, p. 165–172.<br />

269


270<br />

[9] Morosuk T. and Tsatsar<strong>on</strong>is G. <str<strong>on</strong>g>Exergoec<strong>on</strong>omic</str<strong>on</strong>g>s<br />

evaluati<strong>on</strong> of refrigerati<strong>on</strong><br />

machines <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> avoidable endogenous<br />

and exogenous cost. In Proceding<br />

of ECOS 2007, Padova, Italy,<br />

p. 397–406.<br />

[10] Valero A., Lozano M.A., Serra L., Tsatsar<strong>on</strong>is<br />

G., Pisa J., Frangopoulos C.A.,<br />

and v<strong>on</strong> Spakovsy M.R. CGAM problem:<br />

Definiti<strong>on</strong> and c<strong>on</strong>venti<strong>on</strong>al soluti<strong>on</strong>.<br />

Energy 1994, 19:279–286.<br />

[11] Perez E. and Torres C. TAESS, Thermoec<strong>on</strong>omic<br />

Analysis of Energy System<br />

Software. CIRCE. Centro de Investigaci<strong>on</strong><br />

de Recursos y C<strong>on</strong>sumos Energéticos.<br />

Available at: http://www.<br />

exergoecology.com.<br />

[12] Torres C. Symbolic thermoec<strong>on</strong>omic<br />

analysis of energy systems. In Exergy,<br />

Energy System Analysis and Optimizati<strong>on</strong>,<br />

[Ed. C.A. Frangopoulos] from<br />

Encyclopedia of Life Support System<br />

(EOLSS). Developed under the Auspices<br />

of the UNESCO. Eolss Publishers,<br />

2004, Oxford, U.K. http://www.<br />

eolss.net.<br />

[13] Torres C. et al. On the <str<strong>on</strong>g>Cost</str<strong>on</strong>g> Formati<strong>on</strong><br />

Process of the Residues. Energy 2008,<br />

33:144–152.<br />

[14] Torres C, Valero A., Perez E. Guidelines<br />

to Develop Software for Thermoec<strong>on</strong>omic<br />

Analysis of Energy Systems.<br />

In Proceding of ECOS 2007, Padova,<br />

Italy, p. 435–453.<br />

[15] Valero A. and Torres C. Algebraic thermoec<strong>on</strong>omics<br />

of energy systems. In<br />

Approaches to the Design and Optimizati<strong>on</strong><br />

of Thermal Systems, Ed. E.<br />

Wepfer and M.J.Moran, ASME AES<br />

1988, Vol.7 p. 13–24.<br />

[16] Torres C., Serra L., Valero A.,<br />

Lozano M.A. The productive structure<br />

and thermoec<strong>on</strong>omic theories of system<br />

optimizati<strong>on</strong>. American Society<br />

of Mechanical Engineers, Advanced<br />

Energy Systems Divisi<strong>on</strong>, AES 1996<br />

36, p. 429–436.<br />

[17] Bejan A., Tsatsar<strong>on</strong>is G. and Moran M.<br />

Thermal Design and Optimizati<strong>on</strong>. Wiley,<br />

1996.<br />

[18] Usón S. and Valero A. Intrinsic and Induced<br />

Malfuncti<strong>on</strong>s Quantificati<strong>on</strong> in<br />

Thermoec<strong>on</strong>omic Diagnosis Through<br />

Quantitative Causality Analysis. Proceedings<br />

of ECOS07. Padova, Italy,<br />

p. 287–294

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!