24.07.2013 Views

Miniaturized Langmuir probe systems for in-situ ... - IRTG Heidelberg

Miniaturized Langmuir probe systems for in-situ ... - IRTG Heidelberg

Miniaturized Langmuir probe systems for in-situ ... - IRTG Heidelberg

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

<strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong> <strong>for</strong> <strong>in</strong>-<strong>situ</strong><br />

space plasma measurements<br />

Tore André Bekkeng<br />

PhD Candidate, Department of Physics<br />

November 5th 2010<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Outl<strong>in</strong>e<br />

1 Goals<br />

2 Theory<br />

3 Instrument design<br />

4 Results<br />

5 CubeSTAR<br />

6 Future work<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Goals<br />

Scope of the thesis<br />

Develop m<strong>in</strong>iaturized <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong> <strong>for</strong> <strong>in</strong>-<strong>situ</strong> space<br />

plasma measurements of electron density and electron<br />

temperature <strong>for</strong> use on both sound<strong>in</strong>g rockets and satellites<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Theory<br />

<strong>Langmuir</strong> <strong>probe</strong>s<br />

<strong>Langmuir</strong> <strong>probe</strong>s have been widely used to analyze plasma<br />

electron density and temperature.<br />

• An exposed conductor is placed <strong>in</strong> a plasma<br />

• It gets biased to a reference potential relative to the<br />

plasma potential<br />

• The collected current is measured<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Theory<br />

<strong>Langmuir</strong> <strong>probe</strong>s<br />

Normal sweep time 1 second<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Theory<br />

m-NLP concept<br />

The <strong>Langmuir</strong> <strong>probe</strong> equation <strong>for</strong> cyl<strong>in</strong>drical <strong>probe</strong>s<br />

I 2 c<br />

kBTe<br />

=<br />

2πm (nq2πrl)24<br />

<br />

1+<br />

π<br />

qV<br />

<br />

kBTe<br />

= 2kBTe<br />

m (nq2rl)2 + 2q<br />

m (nq2rl)2V I 2 c2 −I 2 c1 = 2kBTe<br />

m (nee2rl) 2 − 2kBTe<br />

m<br />

+ 2e<br />

m (nee2rl) 2 V2 − 2e<br />

m (nee2rl) 2 V1<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong><br />

(nee2rl) 2


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Theory<br />

m-NLP concept<br />

∆(I 2 2e<br />

c ) =<br />

m (nee2rl) 2 ∆V<br />

n 2 e =<br />

m<br />

2e(e2rl) 2<br />

∆(I 2 c)<br />

∆V<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Theory<br />

m-NLP concept<br />

ne =<br />

<br />

K ∆(I2 c )<br />

∆V where K = m<br />

2e(e2rl) 2<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Instrument design<br />

Probe design<br />

Probe diameter: 0.51 mm<br />

15 mm<br />

25 mm<br />

Centre conductor<br />

Dielectric <strong>in</strong>sulator<br />

= 1 mm<br />

Braid<br />

Insulation<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Instrument design<br />

Versions<br />

Versions of the <strong>in</strong>strument:<br />

• 4-channel version <strong>for</strong> sound<strong>in</strong>g rockets: Flown on the ICI-2<br />

rocket from Spitsbergen, November 5th 2008<br />

• Modified 4-channel version <strong>for</strong> sound<strong>in</strong>g rockets: To be<br />

flown on three sound<strong>in</strong>g rockets from Andøya Rocket<br />

Range, December 2010<br />

• 8-channel version <strong>for</strong> sound<strong>in</strong>g rockets: To be flown on<br />

ICI-3 from Spitsbergen December 2011, and on the NASA<br />

payload MICA <strong>in</strong> January 2012 from Poker Flat, Alaska<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Instrument design<br />

Mechanical design<br />

Probe placement on F-field booms<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Instrument design<br />

m-NLP electronics<br />

The entire m-NLP <strong>in</strong>strument consists of one Data Acquisition<br />

card, one Power/Interface card and the electronics box <strong>in</strong><br />

alum<strong>in</strong>ium.<br />

Probe<br />

DAQ PCB<br />

P&I PCB<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Instrument design<br />

Specifications, ICI-2<br />

Specifications <strong>for</strong> the m-NLP system, ICI-2 configuration:<br />

• Four 16-bit measurement channels<br />

• Electronics weight: 130 grams<br />

• Samplerate: Max 9 kHz, 5787 Hz <strong>for</strong> ICI-2<br />

• Measurement range: Down to about 100 pA<br />

• Density range (ICI-2 configuration): ne = 10 9 m −3 to<br />

10 12 m −3<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Instrument design<br />

Specifications, ICI-3<br />

Specifications <strong>for</strong> the m-NLP system, ICI-3 configuration:<br />

• Eight 16-bit measurement channels<br />

• Electronics weight: 270 grams<br />

• Samplerate: Max 100 kHz<br />

• Measurement range: Down to about 50 pA<br />

• Density range (ICI-2 configuration): ne = 10 8 m −3 to<br />

10 13 m −3<br />

• Altera Cyclone III/IV FPGA with TMR implemented<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Results<br />

Test<strong>in</strong>g <strong>in</strong> plasma chamber<br />

Current 2 (A 2 )<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

x 10 −14<br />

• Electron density <strong>probe</strong> 1:<br />

Probe current <strong>for</strong> <strong>probe</strong> 1 & 2<br />

1<br />

0.5<br />

Probe 1<br />

Probe 2<br />

Probe 1, l<strong>in</strong>ear fit<br />

Probe 2, l<strong>in</strong>ear fit<br />

0<br />

0 1 2 3 4 5 6 7<br />

Bias(V)<br />

• Electron density <strong>for</strong> <strong>probe</strong> 2:<br />

= 6.85·10 10 m −3<br />

ne = 6.83·10 10 m −3<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Results<br />

ICI-2<br />

Some facts concern<strong>in</strong>g the ICI-2 rocket launch:<br />

• Launched at 10.35 UT, December 5th 2008<br />

• Apogee of 330 km<br />

• Sonda VS-30 / Improved Orion motor configuration<br />

• Measuremente range: Down to about 100 pA<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Results<br />

ICI-2<br />

Post-flight analysis from the ICI-2 rocket launch<br />

Collected current (nA)<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Probe 4<br />

Probe 3<br />

Probe 2<br />

Probe 1<br />

0<br />

50 100 150 200 250 300 350 400 450 500 550<br />

Time after launch (s)<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Results<br />

ICI-2<br />

Post-flight analysis from the ICI-2 rocket launch<br />

Collected current (nA)<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

Probe 4, filtered once<br />

Unfiltered data, 5.787 kHz sample rate<br />

Data, filtered with a band−reject filter from 3.07 Hz to 3.47 Hz, with a transition bandwidth of 0.2 Hz<br />

60<br />

94 94.2 94.4 94.6 94.8 95 95.2 95.4 95.6 95.8 96<br />

Time after launch (s)<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Results<br />

ICI-2<br />

Post-flight analysis from the ICI-2 rocket launch<br />

HF1 HF2 HF3<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Results<br />

ICI-2<br />

Post-flight analysis from the ICI-2 rocket launch<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

CubeSTAR<br />

Vision: Demonstrate a new concept Space Weather satellite<br />

First: Achieve meter resolution <strong>in</strong>stead of km resolution of<br />

electron density structures<br />

PCB board size: 75 x 80 mm<br />

Weight: Approx. 100 g<br />

Power: 0.5 W - 1.0 W (TBD)<br />

LAUNCH: 2013<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Future work<br />

Conclusions of the Present Work<br />

• The first ever measurements of absolute electron density<br />

have been made, with very high spatial resolution<br />

• Post-flight analysis from the ICI-2 rocket verified that the<br />

<strong>in</strong>strument worked as <strong>in</strong>tended, measur<strong>in</strong>g the smallest<br />

th<strong>in</strong>kable structures (limited by the electron gyro radius <strong>in</strong><br />

the order of 10 meters) <strong>in</strong> ionospheric plasma<br />

• New versions of the <strong>in</strong>strument <strong>for</strong> sound<strong>in</strong>g rockets are<br />

under f<strong>in</strong>al construction, <strong>for</strong> absolute electron density<br />

measurements<br />

• New <strong>probe</strong> design (m<strong>in</strong>iaturized spherical <strong>probe</strong>s, 3 mm<br />

diameter) will be done, <strong>for</strong> the 8-channel version<br />

measur<strong>in</strong>g electron temperature <strong>in</strong> addition to electron<br />

density (<strong>in</strong><strong>for</strong>mation is protected by a patent application)<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Future work<br />

Conclusions of the Present Work<br />

• The first ever measurements of absolute electron density<br />

have been made, with very high spatial resolution<br />

• Post-flight analysis from the ICI-2 rocket verified that the<br />

<strong>in</strong>strument worked as <strong>in</strong>tended, measur<strong>in</strong>g the smallest<br />

th<strong>in</strong>kable structures (limited by the electron gyro radius <strong>in</strong><br />

the order of 10 meters) <strong>in</strong> ionospheric plasma<br />

• New versions of the <strong>in</strong>strument <strong>for</strong> sound<strong>in</strong>g rockets are<br />

under f<strong>in</strong>al construction, <strong>for</strong> absolute electron density<br />

measurements<br />

• New <strong>probe</strong> design (m<strong>in</strong>iaturized spherical <strong>probe</strong>s, 3 mm<br />

diameter) will be done, <strong>for</strong> the 8-channel version<br />

measur<strong>in</strong>g electron temperature <strong>in</strong> addition to electron<br />

density (<strong>in</strong><strong>for</strong>mation is protected by a patent application)<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Future work<br />

Conclusions of the Present Work<br />

• The first ever measurements of absolute electron density<br />

have been made, with very high spatial resolution<br />

• Post-flight analysis from the ICI-2 rocket verified that the<br />

<strong>in</strong>strument worked as <strong>in</strong>tended, measur<strong>in</strong>g the smallest<br />

th<strong>in</strong>kable structures (limited by the electron gyro radius <strong>in</strong><br />

the order of 10 meters) <strong>in</strong> ionospheric plasma<br />

• New versions of the <strong>in</strong>strument <strong>for</strong> sound<strong>in</strong>g rockets are<br />

under f<strong>in</strong>al construction, <strong>for</strong> absolute electron density<br />

measurements<br />

• New <strong>probe</strong> design (m<strong>in</strong>iaturized spherical <strong>probe</strong>s, 3 mm<br />

diameter) will be done, <strong>for</strong> the 8-channel version<br />

measur<strong>in</strong>g electron temperature <strong>in</strong> addition to electron<br />

density (<strong>in</strong><strong>for</strong>mation is protected by a patent application)<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>


<strong>M<strong>in</strong>iaturized</strong><br />

<strong>Langmuir</strong><br />

<strong>probe</strong> <strong>systems</strong><br />

Tore André<br />

Bekkeng<br />

Goals<br />

Theory<br />

Instrument<br />

design<br />

Results<br />

CubeSTAR<br />

Future work<br />

Future work<br />

Conclusions of the Present Work<br />

• The first ever measurements of absolute electron density<br />

have been made, with very high spatial resolution<br />

• Post-flight analysis from the ICI-2 rocket verified that the<br />

<strong>in</strong>strument worked as <strong>in</strong>tended, measur<strong>in</strong>g the smallest<br />

th<strong>in</strong>kable structures (limited by the electron gyro radius <strong>in</strong><br />

the order of 10 meters) <strong>in</strong> ionospheric plasma<br />

• New versions of the <strong>in</strong>strument <strong>for</strong> sound<strong>in</strong>g rockets are<br />

under f<strong>in</strong>al construction, <strong>for</strong> absolute electron density<br />

measurements<br />

• New <strong>probe</strong> design (m<strong>in</strong>iaturized spherical <strong>probe</strong>s, 3 mm<br />

diameter) will be done, <strong>for</strong> the 8-channel version<br />

measur<strong>in</strong>g electron temperature <strong>in</strong> addition to electron<br />

density (<strong>in</strong><strong>for</strong>mation is protected by a patent application)<br />

Tore André Bekkeng <strong>M<strong>in</strong>iaturized</strong> <strong>Langmuir</strong> <strong>probe</strong> <strong>systems</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!