24.07.2013 Views

Fast inorganic scintillators - Positron Annihilation in Halle

Fast inorganic scintillators - Positron Annihilation in Halle

Fast inorganic scintillators - Positron Annihilation in Halle

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Fast</strong> <strong><strong>in</strong>organic</strong> <strong>sc<strong>in</strong>tillators</strong><br />

- status and outlook -<br />

R. W. Novotny<br />

2nd Physics Institute<br />

University Giessen<br />

• sc<strong>in</strong>tillator basics and history<br />

• cross lum<strong>in</strong>escence BaF 2<br />

• Ce 3+ lum<strong>in</strong>escence centers<br />

• PbWO 4<br />

• <strong><strong>in</strong>organic</strong> sc<strong>in</strong>tillator fibers<br />

• outlook


asic concept of a sc<strong>in</strong>tillation detector<br />

X rays gamma<br />

rays<br />

heavy charged<br />

particles<br />

thermal neutrons<br />

energetic neutrons<br />

Photoelectric effect<br />

Compton effect<br />

Pair production<br />

Bethe Bloch<br />

<br />

e<br />

sc<strong>in</strong>tillator<br />

nuclear reaction<br />

proton<br />

<br />

ionization<br />

excitation<br />

many<br />

e-h pairs<br />

request for a wide spectrum of detector materials


Number of dicovered <strong>sc<strong>in</strong>tillators</strong><br />

history<br />

Quantity of pr<strong>in</strong>cipal <strong><strong>in</strong>organic</strong> <strong>sc<strong>in</strong>tillators</strong><br />

discovered<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

<strong>in</strong>vestigation of<br />

Photomultiplier<br />

Curran / Baker<br />

X-ray imag<strong>in</strong>g<br />

screens<br />

a -scatter<strong>in</strong>g<br />

SrI 2:Eu 1968/2008<br />

LSO:Ce,Ca 2007<br />

LuI 3:Ce 2003<br />

LaBr 3:Ce 2001<br />

LYSO:Ce 2001<br />

LuYAP:Ce 2001<br />

LaCl 3:Ce 2000<br />

LuAP:Ce 1994<br />

LSO:Ce 1982<br />

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000<br />

Years<br />

Alcali-Halides<br />

Oxides<br />

M.Korzhik, 2003<br />

year<br />

discovery and development<br />

of new sc<strong>in</strong>tillator materials<br />

are strongly correlated with basic research and technology <strong>in</strong> physics ...<br />

M.J.Weber<br />

J. of Lum. 100 (2002) 35


<strong><strong>in</strong>organic</strong> <strong>sc<strong>in</strong>tillators</strong><br />

large variations <strong>in</strong>:<br />

• compactness<br />

• lum<strong>in</strong>escence yield<br />

volume: 1X 0 3<br />

pulse height / mV<br />

time / ns


asic processes lum<strong>in</strong>escence center<br />

basic processes <strong>in</strong><br />

<strong><strong>in</strong>organic</strong> sc<strong>in</strong>tillator<br />

ionic crystal<br />

host material<br />

E gap > ~ 4 - 12 eV<br />

e<br />

h<br />

thermalization<br />

lum<strong>in</strong>escence centre<br />

<strong>in</strong>tr<strong>in</strong>sic or<br />

dopant<br />

transport<br />

conduction band<br />

lum<strong>in</strong>escence<br />

valence band


… but it is more complex !<br />

e<br />

h<br />

thermalization<br />

1 - 100 ps<br />

Trap<br />

radiationless<br />

recomb<strong>in</strong>ation<br />

thermalization<br />

thermally released<br />

Shallow trap<br />

fast to slow<br />

(afterglow)<br />

Defect<br />

transfer or<br />

lum<strong>in</strong>escence<br />

estimation of achievable light yield:<br />

conduction band<br />

Y<br />

direct excitation<br />

relaxation<br />

LC<br />

valence band<br />

> ns<br />

E<br />

<br />

E<br />

lum<strong>in</strong>escence<br />

<br />

gap<br />

S<br />

Q


<strong>in</strong>terplay of excitation and emission …<br />

… and optical transparency of the material


achievable energy resolution<br />

can be further optimized by match<strong>in</strong>g to photo sensor


most <strong>sc<strong>in</strong>tillators</strong> are sensitive to temperature<br />

thermal quench<strong>in</strong>g !


achievable energy resolution not only determ<strong>in</strong>ed by<br />

photon statistics !?<br />

but:<br />

resolution at 662 keV / %<br />

10<br />

8<br />

6<br />

4<br />

2<br />

BaF 2 BGO<br />

YAlO 3 :Ce<br />

Lu 3 Al 4 O 12 :Pr<br />

LSO:Ce<br />

CsI:Tl<br />

NaI:Tl<br />

LaCl 3<br />

R stat<br />

LaBr 3<br />

SrI 2 :Eu<br />

0<br />

0 5.000 10.000 15.000 20.000<br />

number of detected photons at 662 keV<br />

l<strong>in</strong>ear response of the sc<strong>in</strong>tillator, <strong>in</strong>dex of refraction, light<br />

collection, quantum efficiency and l<strong>in</strong>earity of sensor, etc.


non-proportionality<br />

and<br />

energy resolution<br />

typical examples<br />

Relative light yield<br />

Energy reslution at FWHM (%)<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

10<br />

LaBr 3:Ce<br />

NaI:Tl<br />

10 100 1000<br />

Energy (keV)


how everyth<strong>in</strong>g started: R.Hofstadter, Phys.Rev. 74 (1948) 100<br />

NaI<br />

with source<br />

NaI<br />

without source


BaF 2<br />

k<strong>in</strong>etics of the two fast<br />

sc<strong>in</strong>tillation components<br />

at l 195nm and l 220nm<br />

ideal for fast tim<strong>in</strong>g:<br />

• fast rise time<br />

• fast decay time<br />

• sufficient light yield<br />

tim<strong>in</strong>g determ<strong>in</strong>ed by arrival of<br />

first photons at sensor<br />

P.Schotanus et al., NIM A259 (1987) 586


fast slow component<br />

BaF 2<br />

both lum<strong>in</strong>escence components show a<br />

different temperature dependence<br />

different sc<strong>in</strong>tillation<br />

mechanisms<br />

slow component:<br />

strongly temperature dependent<br />

determ<strong>in</strong>es energy resolution<br />

dY/dT-1.4%/ 0 K


BaF 2: fast UV lum<strong>in</strong>escence<br />

E gap<br />

E VOC<br />

fast<br />

STE<br />

CondB<br />

ValB<br />

Core-Valence<br />

Lum<strong>in</strong>escence CVL<br />

OCoreB<br />

Yu.M. Aleksandrov et al, Sov. Phys. Sol. State 26 (1984) 1734<br />

6s, 5d Ba 2+<br />

2p F -<br />

5p Ba 2+<br />

Ionic crystal<br />

E VOC < E gap<br />

Auger-free lum<strong>in</strong>escence<br />

Cross lum<strong>in</strong>escence


• identification via pulse shape analysis PSA<br />

due to <strong>in</strong>tr<strong>in</strong>sic lum<strong>in</strong>escence properties:<br />

sc<strong>in</strong>tillation components show different response to<br />

electromagnetic or hadronic probes CsI(Tl), BaF 2, ...<br />

proton<br />

photon<br />

fast component<br />

time<br />

total light output<br />

signal <strong>in</strong>tegration width<br />

plastic<br />

VETO<br />

E-fast E-fast<br />

BaF 2-detector<br />

photons photons<br />

protons protons<br />

E-total<br />

identification of charged<br />

and neutral events


time-of-flight / ns<br />

particle ID:<br />

• time-of-flight<br />

BaF 2 (TAPS)<br />

2 AGeV Ca+Ca<br />

energy / MeV<br />

E (MeV)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

C <br />

0<br />

X ...<br />

0 2 4 6 8 10<br />

t (ns)<br />

time resolution: s t > 85 ps


Time-of-flight PET<br />

detector concept<br />

achieved position resolution<br />

S.Tavernier et al., BaF 2 with MWPC-TMAE readout


TAPS<br />

511 modules<br />

counts<br />

A2@MAMI<br />

Ma<strong>in</strong>z<br />

tagged photon<br />

facility<br />

E < 1.5GeV<br />

on-l<strong>in</strong>e data<br />

<br />

<strong>in</strong>variant mass / MeV<br />

complete<br />

new readout


CVL candidates<br />

E gap 4 - 13 eV<br />

Condition for CVL<br />

E VOC < E gap<br />

Ca 2+<br />

P.A. Rodnyi, Sov. Phys. Solid State 34(1992)1053<br />

I<br />

Br<br />

Cl<br />

F<br />

E VOC<br />

Sr 2+<br />

C.W.E. van Eijk, Nucl. Tracks. Radiat. Meas. 21(1993)5<br />

CVL<br />

17 eV 13 eV 8 eV 10 eV 7.5 eV 4.5 eV<br />

Rb +<br />

Ba2+ Rb<br />

K + +<br />

Ba2+ K +<br />

decay time ~ 1 ns<br />

Cs + Cs +<br />

F, Cl, Br, I<br />

CondB<br />

ValB<br />

OCoreB<br />

light yield 2000 photons/MeV


Ce 3+ lum<strong>in</strong>escence center<br />

Core +<br />

1 electron <strong>in</strong><br />

4f state<br />

e<br />

excitation<br />

h<br />

Ce 3+<br />

relaxation<br />

conduction band<br />

5d<br />

4f<br />

emission<br />

valence band<br />

5d 4f allowed dipole transition<br />

fast response ~ 20 ns


Ce 3+ lum<strong>in</strong>escence center<br />

Ce 3+ relaxation Stokes shift<br />

energy<br />

0.1 fs<br />

1 ps<br />

quench<strong>in</strong>g<br />

> ns<br />

configuration coord<strong>in</strong>ate<br />

4f levels shielded<br />

no l<strong>in</strong>e broaden<strong>in</strong>g<br />

Rodnyi<br />

Intensity (arb. units)<br />

C3h<br />

5.10 eV<br />

4.96 eV<br />

4.71 eV<br />

4.52 eV<br />

4.41 eV<br />

Exc.<br />

6.2 eV<br />

5d<br />

S=5900 cm -1<br />

<br />

150 200 250 300 350 400 450<br />

Wavelength (nm)<br />

4f<br />

LaCl 3:0.57%Ce<br />

3.68 eV<br />

3.46 eV<br />

1740 cm -1<br />

broad<br />

emission l<strong>in</strong>es<br />

C. van Eijk


additional candidates<br />

ion ground state notation excited state<br />

La 3+ Xe configuration<br />

(closed shell)<br />

Ce 3+ ,, + 1 4f electron 4f 1 4f 0 5d 1<br />

Pr 3+ ,, + 2 4f electrons 4f 2 4f 1 5d 1<br />

Nd 3+ ,, + 3 4f electrons 4f 3 4f 2 5d 1<br />

…<br />

Eu 2+ (half filled shell) + 7 4f electrons 4f 7 4f 6 5d 1<br />

Gd 3+ (half filled shell) 4f 7<br />

…<br />

Lu 3+ (closed shell) + 14 4f electrons 4f 14


fast sc<strong>in</strong>tillation mechanism<br />

Ce 3+ 5d 4f<br />

<strong>in</strong> favourable host<br />

Y<br />

<br />

E<br />

<br />

E<br />

Egap LY<br />

Egap l<br />

gap<br />

~ 20 ns<br />

S<br />

Q<br />

match<strong>in</strong>g light sensor<br />

tim<strong>in</strong>g properties:<br />

<br />

<br />

<br />

1<br />

<br />

<br />

E [eV]<br />

n<br />

l<br />

3<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

see papers by P. Dorenbos<br />

Ce 3+ levels and Egap<br />

free ion<br />

2 n <br />

<br />

<br />

<br />

3<br />

fluorides<br />

chlorides<br />

2 <br />

<br />

<br />

<br />

bromides<br />

2<br />

iodides<br />

<br />

5d<br />

oxides<br />

E gap<br />

Ce 3+ E 5d-4f<br />

sulfides<br />

<br />

selenides<br />

4f<br />

2


K 2LaX 5:0.7% Ce 3+ (X = Cl, Br, I)<br />

sc<strong>in</strong>tillation decay<br />

lifetime from Cl to Br to I<br />

emission<br />

wavelength from Cl to Br to I


LaCl 3:Ce 3+ sc<strong>in</strong>tillation decay<br />

Intensity (a.u.)<br />

25 ns<br />

10% LaCl3 :Ce 3+<br />

30%<br />

LSO<br />

NaI:Tl<br />

0 200 400<br />

Time (ns)<br />

600 800 1000<br />

NaI:Tl<br />

230 ns<br />

Lu 2SiO 5:Ce<br />

40 ns


LaCl 3:Ce 3+ energy resolution<br />

Intensity (a.u.)<br />

55 Fe<br />

R=42%<br />

0 5 10<br />

241 Am<br />

R=10.5%<br />

50<br />

Energy (keV)<br />

E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer, H.U. Güdel<br />

Appl. Phys. Lett. 77 (2000) 1467<br />

100<br />

137 Cs<br />

500<br />

R=3.3%<br />

800<br />

50,000<br />

photons/MeV<br />

NaI:Tl<br />

40,000<br />

photons/MeV<br />

Lu 2SiO 5:Ce<br />

26,000<br />

photons/MeV


LaCl 3:Ce 3+<br />

4“ x 6“<br />

4 x 6 mm 2<br />

Counts<br />

32keV Ba<br />

400 500 600 700 800<br />

La X-ray escape peak<br />

0 200 400 600 800<br />

Energy (keV)<br />

E/E=4.1%<br />

E/E=3.1%<br />

E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk,<br />

K. W. Krämer, H.U. Güdel,<br />

Appl. Phys. Lett. 77 (10) (2000) 1467.


LaBr 3: 5%Ce 3+<br />

counts (arb. units)<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

61,000 ph/MeV<br />

R=2.9%<br />

0.0<br />

0 100 200 300 400 500 600 700 800<br />

380<br />

Pulse height spectrum 662 keV gamma rays<br />

NaI:Tl<br />

2.8 % FWHM<br />

6.5 % FWHM<br />

energy (keV)<br />

energy resolution<br />

light yield<br />

70,000 photons/MeV<br />

(NaI:Tl 40,000 ph/MeV)<br />

decay time<br />

16 ns<br />

(NaI:Tl 230 ns)<br />

E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer,<br />

H.U. Güdel<br />

Appl Phys Lett 79(2001)1573


LaBr 3:Ce 3+ decay time and time resolution<br />

<strong>in</strong>tensity, normalized<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

decay time 16 ns<br />

rise time faster<br />

0 50 100 150 200 250<br />

time, ns<br />

0.5%<br />

5%<br />

10%<br />

20 %<br />

30%<br />

511 keV - 511 keV<br />

t < 300ps<br />

courtesy Kanai Shah, RMD


LaBr 3:Ce 3+<br />

345 cm 3 volume<br />

380<br />

Counts<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

BrilLanCe 380 3x3<br />

137 Cs<br />

FWHM<br />

3.00%<br />

0<br />

0 200 400 600 800 1000<br />

channel


Lanthanum halides:<br />

X-ray excited optical lum<strong>in</strong>escence<br />

LaCl 3:Ce 3+<br />

• Ce concentration , light yield <br />

• Ce concentration , host emission <br />

LaBr 3:Ce 3+<br />

• Ce concentration , light yield


some sc<strong>in</strong>tillator specs<br />

Density<br />

g/cm 3<br />

Attenuation<br />

length at<br />

511 keV<br />

mm<br />

Photoel<br />

effect<br />

%<br />

Light yield<br />

phot/MeV<br />

Decay time<br />

ns<br />

Emission<br />

max<br />

NaI:Tl 3.67 29.1 17 41,000 230 410<br />

Bi 4Ge 3O 12 (BGO) 7.1 10.4 40 9,000 300 480<br />

Lu 2SiO 5:Ce (LSO) 7.4 11.4 32 26,000 40 420<br />

Lu 2(1-x)Y 2xSiO 5:Ce (LYSO)<br />

X = 0.1<br />

7.1 12 30,000 40 420<br />

LuAlO 3:Ce (LuAP) 8.3 10.5 30 11,000 18 365<br />

Lu xY 1-xAlO 3:Ce (LuYAP)<br />

X = 0.2<br />

LaCl 3:Ce 3.86 28.0 14.7 46,000 25 (65%) 350<br />

LaBr 3:Ce 5.07 22.3 13.1 70,000 16 (97%) 380<br />

LuI 3:Ce 5.6 18.2 28 90,000 6-140 (72%) 472, 535<br />

new generation of dense, bright and radiation hard <strong>sc<strong>in</strong>tillators</strong><br />

nm


PbWO 4: a fast sc<strong>in</strong>tillator - but with low light yield<br />

counts<br />

Counts<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

T = +6 0 C<br />

Improved PWO crystal<br />

0 100 200 300 400 500 600 700 800 900<br />

T = -7 0 C<br />

time, ns<br />

T = -22 0 C<br />

T = -30 0 C<br />

0<br />

100 200 300 400 500 600 700 800<br />

light yield / a.u.<br />

t1= 6.5 ns D1= 97%<br />

t2= 30.4 ns D2= 3%<br />

60Co<br />

strong temperature quench<strong>in</strong>g<br />

counts<br />

counts<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

3000<br />

2000<br />

1000<br />

0<br />

200 400 600 800 1000<br />

light yield / a.u.<br />

137 Cs<br />

s/E=14,5%<br />

s/E=16.9%<br />

200 400 600 800 1000<br />

light yield / a.u.<br />

22 Na<br />

s/E=10.9%


E, cm -1<br />

PbWO 4: a fast sc<strong>in</strong>tillator - but with low light yield<br />

3T 3<br />

1, T2<br />

WO 4 2-<br />

3.9 eV 3 eV<br />

1 A1<br />

Energy levels of dop<strong>in</strong>gs<br />

Donor<br />

R<br />

Acceptor<br />

doped PWO:Y, La,Mo<br />

the shallow WO 4 3- + La centre is an<br />

additional radiat<strong>in</strong>g centre<br />

prevents e - to be trapped by deep<br />

Mo centres<br />

suppresses afterglow and large part<br />

of slow components<br />

pure PbWO 4<br />

non radiative losses <strong>in</strong> PWO<br />

temperature quench<strong>in</strong>g<br />

of WO 4 2- lum<strong>in</strong>escence<br />

WO 4 2-<br />

3.9 eV 3 eV<br />

1 A1<br />

e -<br />

0.2 eV<br />

1 A1<br />

WO 4 3- +La<br />

3 eV<br />

1 A1<br />

MoO 4 3-<br />

2.5 eV


device crystal modules<br />

CMS<br />

ECAL<br />

E <br />

s<br />

10 3<br />

depth<br />

X 0<br />

photosensor B<br />

T<br />

where beam energy<br />

PbWO 4 82 26 APD/VPT 4 LHC 7<br />

0.<br />

5%<br />

@120GeV<br />

TeV


the PANDA detector at FAIR<br />

• photon detection with high resolution<br />

over a large dynamic range:<br />

10MeV < E < 15GeV<br />

• high count-rate capability (2∙107 barrel<br />

~11.000<br />

<strong>Annihilation</strong>s/s)<br />

• nearly 4 coverage<br />

• sufficient radiation hardness endcaps<br />

• tim<strong>in</strong>g <strong>in</strong>formation for trigger-less DAQ ~4.000 concept<br />

Target Spectrometer<br />

PWO-II<br />

200mm (23X o)<br />

crystals<br />

4 detector for spectroscopy and reaction dynamics with antiproton


the Target Spectrometer:<br />

based on high-quality PWO-II


optical transmission light yield @RT<br />

radiation<br />

hardness


prototype performance<br />

extension<br />

response<br />

to<br />

to<br />

energies<br />

high energy<br />

< 50MeV<br />

photons<br />

@ MaxLab<br />

energy resolution s <br />

tagged photon<br />

facility<br />

@ MAMI, Ma<strong>in</strong>z<br />

E= 26 MeV<br />

e -<br />

‘s<br />

64 MeV < E 1.5 GeV<br />

E =43.3MeV<br />

readout with <strong>in</strong>cident energy / GeV<br />

photomultiplier<br />

• optimized light output: PWO-II<br />

• cool<strong>in</strong>g: operation at T=-25 o C<br />

readout with<br />

photomultiplier


eadout via SADC: further improvement<br />

time resolution<br />

1 ns<br />

energy-resolution<br />

( 3x3 matrix )


consequences of cool<strong>in</strong>g:<br />

• fast decay k<strong>in</strong>etics even at T=-25 o C<br />

LY(100ns)/LY(1µs) > 0.9<br />

• constant ratio<br />

LY(-25 o C)/LY(+18 o C) = 3.9<br />

•„no“ recovery of radiation damage at T=-25 o C<br />

asymptotic light loss correlated with k (RT)<br />

T= -25°C<br />

rel. light loss @ 25 o C / %<br />

k @ RT / m -1


ecovery of radiation damage @RT<br />

∆k (420 nm) / m -1<br />

1,0<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

@RT<br />

0 50 100 150 200<br />

illum<strong>in</strong>ation time / m<strong>in</strong><br />

Spontaneous<br />

LED_1550nm<br />

LED_1300nm<br />

LED_1060nm<br />

LED_940nm<br />

LED_464nm<br />

0 200 400 600 800 1000 1200 1400 1600<br />

applied <strong>in</strong>tegral dose of 60 Co: D = 30Gy<br />

recovery of normalized light yield / %<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

@T= -25 o C<br />

illum<strong>in</strong>ation time / m<strong>in</strong><br />

470 nm<br />

525 nm<br />

640 nm<br />

840 nm<br />

935 nm


technology: micro-pull<strong>in</strong>g-down technique (µPD)


material density<br />

LuAG<br />

:Ce<br />

g/cm 3<br />

Lu 3Al 5O 12:Ce 3+<br />

Z eff<br />

emission<br />

wavelength<br />

nm<br />

<strong>in</strong>dex of<br />

refraction<br />

decay<br />

time<br />

ns<br />

light<br />

Yield<br />

ph/MeV<br />

6.7 63 530 1.84 50-100 15.000<br />

emission spectra at various<br />

positions: slight changes<br />

tested fibers: 0.45mm - 2.0mm


esponse to 241 Am - s<strong>in</strong>gle sided readout<br />

Ø 1.0 mm fiber<br />

~<br />

e<br />

-μd<br />

LuAG:Ce<br />

additional wrapp<strong>in</strong>g with teflon <strong>in</strong>creases the light yield by ≈ 70 %


esponse to 241 Am - co<strong>in</strong>cidence readout<br />

fiberlength between 2.5 cm and 4.5 cm<br />

time resolution of a s<strong>in</strong>gle PMT:<br />

(deduced from left - right co<strong>in</strong>cidence)<br />

σ Δt<br />

t <br />

2<br />

LuAG:Ce


improvement of technology<br />

• efficiency<br />

• reproducibility<br />

• multi-pull<strong>in</strong>g<br />

• packag<strong>in</strong>g<br />

simultaneous growth of<br />

7 LuAG fibers<br />

100 mm<br />

20 fibers of<br />

comparable quality<br />

LuAG:Ce


material density<br />

g/cm 3<br />

Z eff<br />

emission<br />

wavelength<br />

nm<br />

<strong>in</strong>dex of<br />

refraction<br />

decay<br />

time<br />

ns<br />

light<br />

Yield<br />

ph/MeV<br />

LYSO 7.4 66 420 1.81 40 27.000<br />

Lu 2(1-x)Y 2xSiO 5:Ce 3+ tested fibers: 0.6mm - 2.0mm<br />

emission spectra: Ø 0.6mm<br />

- nearly constant emission<br />

- severe attenuation


LYSO:Ce fiber (Ø = 0.3 mm, L = 100 mm)<br />

response to 241 Am - s<strong>in</strong>gle sided readout<br />

average attenuation coefficient:<br />

μ ≈ (0.68 ± 0.02) cm -1<br />

LuAG:Ce (Ø 0.3 mm): μ ≈ (0.85 ± 0.06) cm -1<br />

μ<br />

<br />

μ <br />

0.68<br />

0.018<br />

cm<br />

-1<br />

cm<br />

-1<br />

LYSO:Ce<br />

good homogeneity<br />

of all <strong>in</strong>vestigated fibers


LuAG:Ce fibers<br />

100 mm long<br />

1 mm diameter<br />

round


SiPM readout – PET application<br />

KVI<br />

Hamamatsu MPPC S10362-33-100C<br />

60 Co source placed close to fiber<br />

at position A B<br />

SiPM<br />

fiber bundle of 5 LuAG:Ce<br />

MPPC preamplifier (KVI development)<br />

LuAG:Ce<br />

close-up:<br />

fibers coupled to SiPM


contact established with Russian fiber developer<br />

jo<strong>in</strong>t activity with WP28 SiPM<br />

laboratory <strong>in</strong> Chernogolovka


Thanks for your attention


energy resolution - example: NaI:Tl<br />

ΔE/E<br />

(%)<br />

100<br />

40<br />

20<br />

10<br />

4<br />

2<br />

1<br />

2.<br />

35<br />

Nel<br />

R sci<br />

Non prop<br />

4 10 20 40 100 200 400 1000<br />

E / keV<br />

schematic


• identification via<br />

pulse shape analysis PSA<br />

reaction products:<br />

2 AGeV Ar + Ca<br />

charged<br />

events<br />

protons<br />

all events<br />

photons<br />

neutral<br />

events<br />

n


• identification via pulse shape analysis PSA<br />

radius / MeV<br />

visualisation of PSA <strong>in</strong> polar coord<strong>in</strong>ates<br />

protons<br />

+<br />

photons<br />

angle / °<br />

transformation:<br />

radius<br />

<br />

short<br />

2<br />

long<br />

2<br />

,<br />

short<br />

angle a tan( )<br />

long


Ce 3+ lum<strong>in</strong>escence center<br />

5d – 4f energy difference<br />

5d level<br />

5d bands<br />

4f levels<br />

5d bands<br />

4f levels<br />

Ce3+ Pr3+ Nd 3+ Ce3+ Pr3+ Nd 3+<br />

free Ce3+ ion<br />

<strong>in</strong> crystal<br />

Ce 3+ 5d-4f level distance<br />

<strong>in</strong> crystal<br />

• 5d level shifts down<br />

• bands<br />

• split by crystal field<br />

• 4f levels hardly affected<br />

the lowest 5d-band edge matters<br />

C. van Eijk


additional candidates<br />

Ce, Pr, Nd 5d-4f transitions - ions <strong>in</strong> crystal field<br />

5d bands<br />

Ce 3+ Pr 3+ Nd 3+<br />

The lowest<br />

5d-band edge<br />

matters<br />

4f levels<br />

Radiolum<strong>in</strong>escence spectra of 0.5 % Ce 3+ -doped and Pr 3+ -doped<br />

Ca 3(BO 3) 2 s<strong>in</strong>gle crystals under 241Am 5.5 MeV α-ray.<br />

Y. Fujimoto et al, 2010 IEEE NSS Conf. Rec., pp. 192-194.<br />

Intensity [arb.units]<br />

Wavelength [nm]<br />

X-ray <strong>in</strong>duced emission spectrum of LaF 3:Nd.<br />

C.W.E. van Eijk et al, IEEE Trans. Nucl. Sci., 41, pp. 738-741, 1994.


Ce 3+ energy level shifts<br />

E [eV]<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

free ion<br />

fluorides<br />

chlorides<br />

bromides<br />

iodides<br />

oxides<br />

E gap<br />

Ce 3+ E 5d-4f<br />

sulfides<br />

selenides


comparison of a 1.0 mm and a 0.3 mm fiber<br />

LuAG:Ce<br />

average attenuation coefficient for Ø = 1.0 mm fibers: μ ≈ (1.56 ± 0.32) cm -1<br />

1 mm<br />

Ø<br />

Ø = 1.0 mm fiber<br />

Ø = 0.3 mm fibers: μ ≈ (0.85 ± 0.06) cm -1


improvement of technology<br />

special bundle<br />

LuAG:Ce


improvement of technology<br />

• new Iridium crucible with square nozzle<br />

fiber with quadratic cross section<br />

+ improved packag<strong>in</strong>g<br />

+ cost efficient<br />

830µm<br />

940µm<br />

LYSO:Ce


improvement of technology<br />

LYSO:Ce<br />

• new geometry of the seed:<br />

longer size decreases the longitud<strong>in</strong>al thermal gradient<br />

• reduced growth speed favors crystallization of monocl<strong>in</strong>ic<br />

crystal structures like LYSO<br />

• operat<strong>in</strong>g <strong>in</strong> oxidiz<strong>in</strong>g atmosphere<br />

• better thermal <strong>in</strong>sulation<br />

reduction of macroscopic cracks<br />

quadratic LYSO fiber

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!