23.07.2013 Views

06_ Weldability and defects in weldments.pdf

06_ Weldability and defects in weldments.pdf

06_ Weldability and defects in weldments.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Weldability</strong> <strong>and</strong> <strong>defects</strong> <strong>in</strong><br />

<strong>weldments</strong><br />

Subjects of Interest<br />

• Reviews of weld design <strong>and</strong> weldability<br />

• Residual stresses <strong>and</strong> weld distortion<br />

• Weld metal <strong>in</strong>homogeneities<br />

• micro/macro segregations<br />

• B<strong>and</strong><strong>in</strong>g<br />

• Inclusion<br />

• Gas porosity<br />

• Weld crack<strong>in</strong>g<br />

• Solidification crack<strong>in</strong>g<br />

• Liquation crack<strong>in</strong>g<br />

• Hydrogen crack<strong>in</strong>g<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Objectives<br />

This chapter aims to:<br />

• Students are required to underst<strong>and</strong> the causes of<br />

residual stresses, distortion <strong>and</strong> their remedies.<br />

• Students are also required to differentiate weld <strong>defects</strong><br />

that might occur dur<strong>in</strong>g metal weld<strong>in</strong>g for example,<br />

solidification crack<strong>in</strong>g, liquation crack<strong>in</strong>g, distortion, weld<br />

embrittlement.<br />

• Students can suggest possible remedies associated<br />

with <strong>in</strong>dividual weld <strong>defects</strong>.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Weld design – jo<strong>in</strong>t type<br />

Five basic jo<strong>in</strong>t types<br />

Welds are made at the junction of all the pieces<br />

that make up the weldment (assembled part).<br />

A: Butt jo<strong>in</strong>t<br />

B: Corner jo<strong>in</strong>t<br />

C: T-jo<strong>in</strong>t<br />

D: Lap jo<strong>in</strong>t<br />

• A jo<strong>in</strong>t between two members aligned<br />

approximately <strong>in</strong> the same plane.<br />

• A jo<strong>in</strong>t between two members located<br />

approximately at right angles to each other<br />

<strong>in</strong> the form of an L.<br />

• A jo<strong>in</strong>t between two members located<br />

approximately at right angles to each other<br />

<strong>in</strong> a form of a T.<br />

• A jo<strong>in</strong>t between two overlapp<strong>in</strong>g<br />

members located <strong>in</strong> parallel.<br />

D: Edge jo<strong>in</strong>t •A jo<strong>in</strong>t between the edges of two or more<br />

parallel or nearly parallel members.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Weld design – weld type<br />

• There are eight weld types:<br />

Fillet weld - On the jo<strong>in</strong>t<br />

Groove weld<br />

Back weld<br />

Slot weld<br />

Spot weld<br />

Seam weld<br />

- In the jo<strong>in</strong>t<br />

- Made on the backside of the<br />

jo<strong>in</strong>t<br />

- Used with prepared holes<br />

- Weld at the <strong>in</strong>terface of the<br />

members<br />

- Without prepared holes<br />

Stud weld - Weld<strong>in</strong>g a metal stud<br />

Surface weld<br />

- Weld beads deposited on the<br />

base metal or broken surface<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Weld design – Fillet weld<br />

Fillet weld<br />

Def<strong>in</strong>itions of different parts <strong>in</strong> fillet weld<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Weld design – Groove weld<br />

• There are seven basic groove welds:<br />

square, V, bevel, U, J, flare V <strong>and</strong> flare<br />

bevel.<br />

Groove weld<br />

Types of groove welds<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Weld approval<br />

For quality control Weld<strong>in</strong>g<br />

procedure sheet is approved <strong>and</strong><br />

distributed to personnel concerned with<br />

its implementation.<br />

Details<br />

• approval of weld<strong>in</strong>g process<br />

• weld design<br />

• Electrode used<br />

• consumable used: filler, shield<strong>in</strong>g gas, flux<br />

• Inspection technique used<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


<strong>Weldability</strong><br />

Def<strong>in</strong>ition<br />

The capability of a material to be welded under the imposed<br />

fabrication conditions <strong>in</strong>to a specific, suitably designed structure<br />

<strong>and</strong> to perform satisfactorily <strong>in</strong> the <strong>in</strong>tended service.<br />

www.twi.co.uk<br />

• <strong>Weldability</strong> depends on various factors such as, nature<br />

of metals, weld designs, weld<strong>in</strong>g techniques, skills, etc.<br />

• It has been stated that all metals are weldable but<br />

some are more difficult than another.<br />

• Steel is readily weldable (<strong>in</strong> many ways) than<br />

alum<strong>in</strong>ium <strong>and</strong> copper.<br />

• Copper is not easily welded due to its high thermal<br />

conductivity which makes it difficult to raise the parent<br />

metal to its melt<strong>in</strong>g po<strong>in</strong>t. require preheat<strong>in</strong>g ~300-<br />

400 o C.<br />

• Some alum<strong>in</strong>ium based die cast<strong>in</strong>g alloys give weld<br />

pool too large to control, <strong>and</strong> alum<strong>in</strong>ium welds normally<br />

have oxide <strong>in</strong>clusions <strong>and</strong> porosity.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


<strong>Weldability</strong><br />

Steels<br />

• <strong>Weldability</strong> of steels is <strong>in</strong>versely proportional to its hardenability,<br />

due to martensite formation dur<strong>in</strong>g heat treatment<br />

Carbon content<br />

Hardenability<br />

<strong>Weldability</strong><br />

• There is a trade-off between materials strength <strong>and</strong> weldability.<br />

• Austenitic sta<strong>in</strong>less steels tend to be the most weldable but suffer<br />

from distortion due to high thermal expansion. Crack<strong>in</strong>g <strong>and</strong> reduced<br />

corrosion resistance.<br />

• Ferritic <strong>and</strong> martensitic sta<strong>in</strong>less steels are not easily welded, often<br />

to be preheated <strong>and</strong> use special electrodes.<br />

• Ferritic steels is susceptible to hot crack<strong>in</strong>g if the ferrite amount is not<br />

controlled.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


<strong>Weldability</strong><br />

Alum<strong>in</strong>ium <strong>and</strong> its alloys<br />

• <strong>Weldability</strong> of alum<strong>in</strong>ium depends on<br />

chemical composition of the alloy.<br />

• Alum<strong>in</strong>ium alloys are susceptible to hot crack<strong>in</strong>g, oxide <strong>in</strong>clusions,<br />

dross, porosity (hydrogen).<br />

• Most of wrought series, 1xxx, 3xxx, 5xxx, 6xxx, <strong>and</strong> medium strength<br />

7xxx can be fusion welded by TIG, MIG while 2xxx <strong>and</strong> high strength<br />

7xxx are not readily welded due to liquation <strong>and</strong> solidification crack<strong>in</strong>g.<br />

Cracks<br />

www.mig-weld<strong>in</strong>g.co.uk<br />

Cracks <strong>in</strong> alum<strong>in</strong>ium welds<br />

Porosity<br />

Porosity observed <strong>in</strong> alum<strong>in</strong>ium welded specimen<br />

after fractured.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


<strong>Weldability</strong><br />

Copper <strong>and</strong> copper alloys<br />

Copper<br />

Brasses<br />

Bronzes<br />

• <strong>Weldability</strong> of copper depends on<br />

chemical composition of the alloy.<br />

• High thermal conductivity required preheat<strong>in</strong>g to<br />

counteract heat s<strong>in</strong>k effect.<br />

• Can be TIG or MIG welded.<br />

• Volatilization (toxic) of z<strong>in</strong>c is the ma<strong>in</strong> problem, reduc<strong>in</strong>g<br />

weldability.<br />

• Low z<strong>in</strong>c content brass can be TIG or MIG welded.<br />

• Most are weldable, except gun metal or phosphor bronzes.<br />

• Require careful clean<strong>in</strong>g <strong>and</strong> deoxidization to avoid porosity.<br />

• Silicon improves weldability due to its deoxidiz<strong>in</strong>g <strong>and</strong> flux<strong>in</strong>g actions.<br />

• Oxygen causes porosity <strong>and</strong> reduce strength of welds.<br />

• T<strong>in</strong> <strong>in</strong>creases hot-cracked susceptibility dur<strong>in</strong>g weld<strong>in</strong>g.<br />

• Precipitation hardened alloys should be welded <strong>in</strong> the annealed<br />

condition, <strong>and</strong> then precipitation harden<strong>in</strong>g treatment.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


<strong>Weldability</strong><br />

Titanium alloys<br />

• <strong>Weldability</strong> of titanium depends on<br />

chemical composition of the alloy.<br />

• Titanium alloys with low amounts of alloy<strong>in</strong>g elements are more readily welded.<br />

For example: CP titanium alloys, α, α, α, α, α+β α+β α+β α+β titanium alloys.<br />

• Highly stabilised beta titanium alloys are difficult to weld due to segregation.<br />

• Weld<strong>in</strong>g at above 500-550 o C requires special precaution.<br />

• Fluxes are not normally used s<strong>in</strong>ce they comb<strong>in</strong>e with titanium to cause<br />

brittleness.<br />

• Weld<strong>in</strong>g processes: TIG, MIG, PAW, LBW, EBW, FW, RW.<br />

• Shield<strong>in</strong>g gases: Ar, He or the mixture of the two (avoid contact with oxygen).<br />

• Filler metal grades should match the alloys be<strong>in</strong>g welded, normally with lower<br />

yield strength to reta<strong>in</strong> ductility. (used unalloyed with lower ββββ content to avoid<br />

martensite transformation <strong>and</strong> with m<strong>in</strong>imised O, N, H contents).<br />

• Thoriated tungsten electrodes (EWTh-1 or EWTh-2) are used for TIG weld<strong>in</strong>g.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


<strong>Weldability</strong><br />

Magnesium alloys<br />

• <strong>Weldability</strong> of titanium depends on<br />

chemical composition of the alloy.<br />

• Weld<strong>in</strong>g processes: Arc weld<strong>in</strong>g, RW as well as oxyacetylene weld<strong>in</strong>g,<br />

braz<strong>in</strong>g. TIG <strong>and</strong> MIG are recommended.<br />

• Strength of the weld jo<strong>in</strong>t is lowered <strong>in</strong> the base metal, <strong>in</strong> the work<br />

hardened condition, due to recrystallisation <strong>and</strong> gra<strong>in</strong> growth <strong>in</strong> the HAZ.<br />

• Similar to weld<strong>in</strong>g of alum<strong>in</strong>ium, magnesium has low melt<strong>in</strong>g po<strong>in</strong>t, high<br />

thermal conductivity, thermal expansion, oxide surface coat<strong>in</strong>g.<br />

• In Mg-Al-Zn alloys (AZxx), Al >10% improves weldability by ref<strong>in</strong><strong>in</strong>g gra<strong>in</strong><br />

structure, while Zn > 1% <strong>in</strong>creases hot shortness.<br />

• Filler metals are selected by the composition of the base metals.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Defects <strong>in</strong> <strong>weldments</strong><br />

• It is unusual for the <strong>weldments</strong> to be completely sound.<br />

• They normally conta<strong>in</strong> small <strong>defects</strong> such as porosity, slag, oxide<br />

<strong>in</strong>clusions, lack of fusion, undercut, crack, distortion, etc.<br />

Cross sections of welds conta<strong>in</strong><strong>in</strong>g typical <strong>defects</strong><br />

Underst<strong>and</strong><br />

the cause<br />

Solve/prevent<br />

the problem<br />

• Furthermore, different<br />

metals have different<br />

weldability so we need to<br />

underst<strong>and</strong> the nature of the<br />

metal to be welded.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Defects <strong>in</strong> <strong>weldments</strong><br />

Incomplete fusion<br />

Groove welds <strong>and</strong><br />

various <strong>defects</strong><br />

Root <strong>and</strong> jo<strong>in</strong>t penetrations<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Residual stresses <strong>in</strong> weldment<br />

Residual stresses (<strong>in</strong>ternal stresses) are<br />

stresses that would exist <strong>in</strong> a body after<br />

remov<strong>in</strong>g all external loads (normally due<br />

to non uniform temperature change dur<strong>in</strong>g<br />

weld<strong>in</strong>g <strong>in</strong> this case).<br />

• Weld metal <strong>and</strong> adjacent base<br />

metal are restra<strong>in</strong>ed by the areas<br />

further away from the weld metal due<br />

to expansion <strong>and</strong> contraction.<br />

Weld metal <strong>and</strong><br />

adjacent base metal<br />

Areas further away<br />

from weld metal<br />

Residual tensile<br />

stresses<br />

Residual<br />

compressive<br />

stresses<br />

Thermally <strong>in</strong>duced residual stresses <strong>in</strong> weld.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Changes <strong>in</strong> temperature <strong>and</strong> stresses<br />

dur<strong>in</strong>g weld<strong>in</strong>g<br />

• Zero temperature <strong>and</strong> stress<br />

distribution at A-A.<br />

• Small compressive <strong>in</strong> the<br />

weld zone <strong>and</strong> small tensile <strong>in</strong><br />

the base metal at B-B dur<strong>in</strong>g<br />

melt<strong>in</strong>g of the weld metal.<br />

• Develop<strong>in</strong>g of tensile stress<br />

<strong>in</strong> the weld centre <strong>and</strong><br />

compressive <strong>in</strong> the area further<br />

away at C-C dur<strong>in</strong>g cool<strong>in</strong>g.<br />

• Further contraction of the<br />

weld metal produc<strong>in</strong>g higher<br />

tensile stress <strong>in</strong> the weld centre<br />

<strong>and</strong> compressive <strong>in</strong> the base<br />

metal at D-D.<br />

Changes <strong>in</strong> temperature <strong>and</strong> stresses dur<strong>in</strong>g weld<strong>in</strong>g<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Typical residual stress distribution <strong>in</strong><br />

weldment (longitud<strong>in</strong>al)<br />

• Residual stress distribution across the weld shows tensile <strong>in</strong> the weld<br />

metal <strong>and</strong> the adjacent base metal <strong>and</strong> then goes compressive <strong>in</strong> the area<br />

further away from the weld metal.<br />

• Residual tensile stresses are not<br />

desirable, which can cause problems<br />

such as hydrogen <strong>in</strong>duced crack<strong>in</strong>g<br />

<strong>and</strong> stress corrosion crack<strong>in</strong>g.<br />

Remedies<br />

• Post weld heat treatment is often<br />

used to reduce residual stresses.<br />

• Other techniques : preheat<strong>in</strong>g,<br />

peen<strong>in</strong>g, vibration have also been<br />

used for stress relief.<br />

Tension<br />

zone<br />

Typical residual stress (longitud<strong>in</strong>al)<br />

distribution <strong>in</strong> weldment<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Effect of temperature <strong>and</strong> time on<br />

stress relief of steel welds<br />

Stress relief temperature % Relief of <strong>in</strong>itial stress<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Typical thermal treatments for stress<br />

reliev<strong>in</strong>g <strong>weldments</strong><br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Distortion<br />

• Weld distortion is due to solidification shr<strong>in</strong>kage <strong>and</strong> thermal contraction<br />

of the weld metal dur<strong>in</strong>g weld<strong>in</strong>g.<br />

Distortion <strong>in</strong> welded structure<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Angular distortion<br />

S<strong>in</strong>gle-pass-s<strong>in</strong>gle-V groove butt jo<strong>in</strong>t<br />

Multiple-pass-s<strong>in</strong>gle-V groove butt jo<strong>in</strong>t<br />

• Upward angular distortion<br />

usually occurs when the weld is<br />

made from the top of the workpiece<br />

alone.<br />

• The weld tends to be wider at the<br />

top than the bottom, caus<strong>in</strong>g more<br />

solidification shr<strong>in</strong>kage <strong>and</strong><br />

thermal contraction.<br />

Th<strong>in</strong> plates<br />

Thick plates<br />

Inside fillet<br />

corner jo<strong>in</strong>t<br />

Fabricated beam<br />

Distortion <strong>in</strong> fillet weld<strong>in</strong>g of T jo<strong>in</strong>t<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Remedies for angular distortion<br />

There are several techniques used to reduce<br />

angular distortion.<br />

• Reduc<strong>in</strong>g volume of weld metal<br />

• Us<strong>in</strong>g double-V jo<strong>in</strong>t <strong>and</strong> alternate weld<strong>in</strong>g<br />

• Plac<strong>in</strong>g welds around neutral axis<br />

• Controll<strong>in</strong>g weld distortion<br />

Plac<strong>in</strong>g weld around neutral axis<br />

Reduc<strong>in</strong>g volume of weld metal <strong>and</strong><br />

by us<strong>in</strong>g s<strong>in</strong>gle-pass deep<br />

penetration weld<strong>in</strong>g.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Remedies for angular distortion<br />

• Balanc<strong>in</strong>g the angular weld distortion<br />

on either side of the double V jo<strong>in</strong>t.<br />

Us<strong>in</strong>g double-V jo<strong>in</strong>t <strong>and</strong> weld<br />

alternately on either side of jo<strong>in</strong>t.<br />

(a) Symmetrical<br />

double V (b) Asymmetrical<br />

double V<br />

(c) S<strong>in</strong>gle U<br />

• Double V-jo<strong>in</strong>ts balance the shr<strong>in</strong>kage almost<br />

same amount of contraction on each side (a).<br />

• Asymetrical double V : The first weld always<br />

produces more angular distortion the second side<br />

is larger too pull back the distortion when the first<br />

weld is made (b).<br />

• A s<strong>in</strong>gle U jo<strong>in</strong>t gives a uniform weld with through<br />

the section (c).<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Remedies for angular distortion<br />

Methods for controll<strong>in</strong>g weld distortion:<br />

• Presett<strong>in</strong>g: by compensat<strong>in</strong>g the amount of distortion to occur <strong>in</strong> weld<strong>in</strong>g.<br />

• Elastic prespr<strong>in</strong>g<strong>in</strong>g can reduce angular changes after restra<strong>in</strong>t is removed.<br />

• Preheat<strong>in</strong>g <strong>and</strong> post weld treatment<br />

(a) Preset<strong>in</strong>g<br />

(b) Spr<strong>in</strong>g<strong>in</strong>g (c) Perheat<strong>in</strong>g<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Longitud<strong>in</strong>al distortion<br />

• Heat<strong>in</strong>g <strong>and</strong> cool<strong>in</strong>g cycles along the jo<strong>in</strong>t dur<strong>in</strong>g weld<strong>in</strong>g build up a<br />

cumulative effect of longitud<strong>in</strong>al bow<strong>in</strong>g.<br />

Longitud<strong>in</strong>al bow<strong>in</strong>g of<br />

distortion <strong>in</strong> a butt jo<strong>in</strong>t<br />

Remedies<br />

• Weld<strong>in</strong>g short lengths on a planned or r<strong>and</strong>om<br />

distribution are used to controlled this problem.<br />

• Mechanical methods : straighten<strong>in</strong>g press,<br />

jacks, clamps<br />

• Thermal methods : local heat<strong>in</strong>g to relieve<br />

stresses (us<strong>in</strong>g torches) but cannot be used for<br />

highly conductive metal such as Al <strong>and</strong> Cu.<br />

Sequences for<br />

weld<strong>in</strong>g short<br />

lengths of a jo<strong>in</strong>t to<br />

reduce longitud<strong>in</strong>al<br />

bow<strong>in</strong>g<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Longitud<strong>in</strong>al distortion<br />

• Angular distortion <strong>and</strong> longitud<strong>in</strong>al bow<strong>in</strong>g can also be observed <strong>in</strong><br />

jo<strong>in</strong>ts made with fillet welds such as fillet-welded T jo<strong>in</strong>t.<br />

Longitud<strong>in</strong>al bow<strong>in</strong>g <strong>in</strong> a filletwelded<br />

T jo<strong>in</strong>t<br />

Remedies<br />

• Back-step technique is also used. Each<br />

small <strong>in</strong>crement will have its own shr<strong>in</strong>kage<br />

pattern which then becomes <strong>in</strong>significant to<br />

the whole pattern of weldment. (But time<br />

consum<strong>in</strong>g)<br />

• Us<strong>in</strong>g the smallest possible weld size.<br />

Back step technique<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Weld metal chemical<br />

<strong>in</strong>homogeneities<br />

• Micro segregation<br />

• Macro segregation<br />

• B<strong>and</strong><strong>in</strong>g<br />

• Inclusions <strong>and</strong> gas porosity.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Micro segregation<br />

• Lack of solid state diffusion might cause micro segregation <strong>in</strong> <strong>weldments</strong>.<br />

EX: Solid state diffusion <strong>in</strong> a more<br />

closely packed FCC structure<br />

(austenite) is more difficult than a<br />

more open BCC structure (ferrite).<br />

Microsegregation across columnar<br />

dendrite near quenched weld pool <strong>in</strong><br />

a martensitic sta<strong>in</strong>less steel.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


B<strong>and</strong><strong>in</strong>g<br />

• B<strong>and</strong><strong>in</strong>g occurs due to fluctuations <strong>in</strong> weld<strong>in</strong>g speed <strong>and</strong> power <strong>in</strong>put.<br />

B<strong>and</strong><strong>in</strong>g <strong>and</strong> rippl<strong>in</strong>g near centrel<strong>in</strong>e of as-welded top surface<br />

of a 304 sta<strong>in</strong>less steel YAG laser welded.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Inclusions <strong>and</strong> gas porosity<br />

• Gas-metal <strong>and</strong> slag-metal reactions produce slag <strong>in</strong>clusion <strong>and</strong> gas porosity.<br />

• Incomplete slag removal <strong>in</strong> multipass weld<strong>in</strong>g can cause slag <strong>in</strong>clusions<br />

trapped with<strong>in</strong> the weld.<br />

Slag<br />

<strong>in</strong>clusion<br />

Radiograph of a weld show<strong>in</strong>g<br />

a large slag <strong>in</strong>clusion.<br />

Gas porosity <strong>and</strong> <strong>in</strong>clusions <strong>in</strong> multipass weld<strong>in</strong>g.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Macro segregation<br />

• Weld pool macro segregation occur by lack of weld pool mix<strong>in</strong>g (by<br />

convection) especially <strong>in</strong> weld<strong>in</strong>g of dissimilar metals, or some special types of<br />

rapidly solidified power metallurgy alloys.<br />

• if the weld pool mix<strong>in</strong>g is <strong>in</strong>complete <strong>in</strong> s<strong>in</strong>gle pass weld<strong>in</strong>g (greater extent)<br />

<strong>and</strong> even <strong>in</strong> multipass weld<strong>in</strong>g.<br />

Ex: macro segregation <strong>in</strong> some<br />

powder metallurgy alloys<br />

• Switch<strong>in</strong>g from AC to DCEN mak<strong>in</strong>g<br />

the weld pool mixed better.<br />

Powder metallurgy Al-10Fe-5Ce GTA<br />

welded with Al-5Si filler metal (a) AC,<br />

(b) DCEN<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Remedies for macro segregation<br />

• Apply<strong>in</strong>g magnetic weld pool stirr<strong>in</strong>g to give a better mix<strong>in</strong>g <strong>in</strong> the<br />

weld pool.<br />

• For GTAW, us<strong>in</strong>g DCEN for a deeper weld penetration <strong>and</strong> mix<strong>in</strong>g.<br />

• Us<strong>in</strong>g proper filler metals.<br />

• Give enough time for the weld pool to be melt. Ex: EBW with a high<br />

weld<strong>in</strong>g speed might not give enough time for weld pool mix<strong>in</strong>g <strong>in</strong><br />

weld<strong>in</strong>g of dissimilar metals.<br />

Effect of weld pool stirr<strong>in</strong>g<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Weld crack<strong>in</strong>g<br />

There are various types of weld crack<strong>in</strong>g<br />

• Solidification crack<strong>in</strong>g (hot crack<strong>in</strong>g)<br />

• Hydrogen crack<strong>in</strong>g (cold crack<strong>in</strong>g)<br />

• Liquation crack<strong>in</strong>g<br />

• Lamellar Tear<strong>in</strong>g<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Solidification crack<strong>in</strong>g<br />

• Similar to cast<strong>in</strong>g, solidification crack<strong>in</strong>g can also occur <strong>in</strong> weld<strong>in</strong>g.<br />

• It happens at the term<strong>in</strong>al stage of solidification due to contraction of<br />

solidify<strong>in</strong>g metal <strong>and</strong> thermal contraction. (Intergranular crack)<br />

• Solidification crack<strong>in</strong>g is <strong>in</strong>tensified if the base metal is attached on to<br />

non mov<strong>in</strong>g parts (build<strong>in</strong>g up tensile stresses).<br />

• The less ductile the weld metal is, the more likely solidification crack<strong>in</strong>g<br />

to occur.<br />

Weld<br />

Base metal<br />

Solidification crack<br />

Solidification crack<strong>in</strong>g <strong>in</strong> a GMAW<br />

of 6<strong>06</strong>1 alum<strong>in</strong>ium<br />

Solidification crack<br />

(<strong>in</strong>tergranular)<br />

Solidification crack<strong>in</strong>g <strong>in</strong> an autogenous weld<br />

of 7075 alum<strong>in</strong>ium at high magnification.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Factors affect<strong>in</strong>g solidification crack<strong>in</strong>g<br />

Gra<strong>in</strong> structure<br />

• Coarse columnar gra<strong>in</strong>s are<br />

more susceptible to solidification<br />

crack<strong>in</strong>g than equiaxed gra<strong>in</strong>s.<br />

Centrel<strong>in</strong>e<br />

crack<strong>in</strong>g<br />

Centrel<strong>in</strong>e crack<strong>in</strong>g <strong>in</strong> a coarse-gra<strong>in</strong>ed<br />

sta<strong>in</strong>less steel weld<br />

Solidification<br />

crack<strong>in</strong>g <strong>in</strong> steel weld<br />

Contraction stresses<br />

• Contraction stresses can be due to thermal<br />

contraction, solidification shr<strong>in</strong>kage.<br />

Ex: Austenitic sta<strong>in</strong>less steels (high thermal<br />

expansion) susceptible to solidification<br />

crack<strong>in</strong>g.<br />

Restra<strong>in</strong><strong>in</strong>g<br />

• The weldment is restra<strong>in</strong>ed after the first<br />

weld, caus<strong>in</strong>g solidification crack<strong>in</strong>g <strong>in</strong> the<br />

second weld <strong>in</strong> T jo<strong>in</strong>ts.<br />

Solidification<br />

crack<strong>in</strong>g<br />

Second weld<br />

First weld<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Remedies for solidification crack<strong>in</strong>g<br />

• Controll<strong>in</strong>g composition of the metal to be welded.<br />

• Us<strong>in</strong>g filler metal with proper composition.<br />

• Controll<strong>in</strong>g Mn <strong>and</strong> S content <strong>in</strong> carbon <strong>and</strong> low alloy steels.<br />

• Controll<strong>in</strong>g solidification structure: gra<strong>in</strong> ref<strong>in</strong><strong>in</strong>g, arc oscillation,<br />

arc pulsation, etc.<br />

• Controll<strong>in</strong>g weld geometry: concave fillet weld suffers higher<br />

tensile stress on the face than the convex fillet weld, deep weld is<br />

more susceptible to solidification crack<strong>in</strong>g.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Hydrogen crack<strong>in</strong>g (Cold crack<strong>in</strong>g)<br />

Hydrogen crack<strong>in</strong>g occurs when<br />

• Hydrogen <strong>in</strong> the weld metal sources: moisture from metal surface, tools,<br />

atmosphere, flux,<br />

• High stresses<br />

• Susceptible microstructure : martensite (HAZ of carbon steels due to lower<br />

diffusion coefficient of hydrogen <strong>in</strong> austenite than <strong>in</strong> ferrite), comb<strong>in</strong>ation of<br />

hydrogen + martensite promotes hydrogen crack<strong>in</strong>g.<br />

• Relatively low temperature. (-100-200 o C) cold crack<strong>in</strong>g or delayed crack<strong>in</strong>g.<br />

Underbeaded crack <strong>in</strong> a low-alloy<br />

steel HAZ.<br />

Hydrogen<br />

crack<strong>in</strong>g <strong>in</strong> a fillet<br />

weld of 1040<br />

steel.<br />

Suranaree University of Technology Sep-Dec 2007<br />

Tapany Udomphol


Remedies for hydrogen crack<strong>in</strong>g<br />

• Controll<strong>in</strong>g weld<strong>in</strong>g parameters: proper preheat <strong>and</strong> <strong>in</strong>terpass<br />

temperature<br />

• Postweld treatment: stress relief.<br />

• Use proper weld<strong>in</strong>g processes <strong>and</strong> Materials (consumables),<br />

low strength filler metals.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Liquation crack<strong>in</strong>g<br />

Segregation <strong>in</strong> PMZ liquation crack<strong>in</strong>g<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Remedies for liquation crack<strong>in</strong>g<br />

• Use proper filler metal.<br />

• Reduc<strong>in</strong>g the heat <strong>in</strong>put to lower the size of PMZ.<br />

• Reduc<strong>in</strong>g the degree of restra<strong>in</strong>t, lower<strong>in</strong>g the level of tensile<br />

stresses.<br />

• Controll<strong>in</strong>g impurities, suppress<strong>in</strong>g micro segregation at gra<strong>in</strong><br />

boundaries.<br />

• Smaller gra<strong>in</strong> size is better (less concentration of impurities on<br />

gra<strong>in</strong> boundaries. Also control gra<strong>in</strong> orientation.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Lamellar Tear<strong>in</strong>g<br />

• Lamellar tear<strong>in</strong>g occurs when tensile stresses are act<strong>in</strong>g on fibred<br />

structure (str<strong>in</strong>gers of nonmetallic materials), caus<strong>in</strong>g decohesion of<br />

nonmetallic <strong>in</strong>clusions.<br />

Remedies<br />

Lamellar tear<strong>in</strong>g <strong>in</strong> steel Lamellar tear<strong>in</strong>g near a C-Mn steel weld<br />

• Avoid tensile stresses act<strong>in</strong>g on transverse direction of the sample.<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Weld <strong>defects</strong><br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Weld <strong>defects</strong><br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Weld <strong>defects</strong><br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Weld <strong>defects</strong><br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Weld <strong>defects</strong><br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Weld <strong>defects</strong><br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


Weld <strong>defects</strong><br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007


References<br />

• Kou, S., Weld<strong>in</strong>g metallurgy, 2 nd edition, 2003, John Willey <strong>and</strong><br />

Sons, Inc., USA, ISBN 0-471-43491-4.<br />

• Gourd, L.M., Pr<strong>in</strong>ciples of weld<strong>in</strong>g technology, 3 rd edition, 1995,<br />

Edward Arnold, ISBN 0 340 61399 8.<br />

• Cary, H.B., Modern weld<strong>in</strong>g technology, 4 th edition, 1998, Prentice<br />

Hall, ISBN 0-13-241803-7.<br />

• http://en.wikipedia.org/wiki/<strong>Weldability</strong><br />

• www.staff.ncl.ac.uk<br />

• http://www.key-to-metals.com<br />

Suranaree University of Technology Tapany Udomphol<br />

Sep-Dec 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!