23.07.2013 Views

File #1 to be Downloaded - UCSF Radiation Oncology

File #1 to be Downloaded - UCSF Radiation Oncology

File #1 to be Downloaded - UCSF Radiation Oncology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UC SF<br />

IMAGE GUIDED ADAPTIVE<br />

RADIOTHERAPY (IGART):<br />

New Tools and<br />

New Directions<br />

MV Cone Beam CT<br />

Jean Pouliot, Ph.D.<br />

Professor<br />

<strong>UCSF</strong> Comprehensive Cancer Center<br />

San Francisco


IMAGE GUIDED ADAPTIVE<br />

RADIOTHERAPY (IGART):<br />

New Tools and<br />

New Directions<br />

Objectives:<br />

• Basic principles of MV CBCT<br />

• Workflow of IGRT with MV CBCT<br />

• Range of applications of MV CBCT<br />

– Patient positioning<br />

– moni<strong>to</strong>ring of ana<strong>to</strong>mical changes, tumor tracking<br />

– planning purposes and in-situ dose calculation<br />

– Tomosynthesis<br />

• Future possibilities of MV CBCT for Dose-Guided<br />

<strong>Radiation</strong> Therapy (DGRT).


<strong>UCSF</strong><br />

• Michelle Aubin<br />

• Jean-Francois Aubry<br />

• Kara Bucci<br />

• Al<strong>be</strong>rt Chan<br />

• Josephine Chen<br />

• Hong Chen<br />

• Cynthia Chuang<br />

• Martina Descovitcz<br />

• Bruce Faddegon<br />

• Amy Gillis<br />

• Olivier Morin<br />

• Mack Roach III<br />

• Joycelyn Speight<br />

• Lynn Verhey<br />

• Ping Xia<br />

Main Collabora<strong>to</strong>rs<br />

Siemens<br />

• Ali Bani-Hashemi<br />

• Fahard Ghelmansarai<br />

• Paco Hernandez<br />

• Dimitre Histrov<br />

• Bijumon Gangadharan<br />

• Matthias Mitschke<br />

This work is supported<br />

by<br />

Siemens O.C.S.


Basic Principles of MV CBCT<br />

Fan <strong>be</strong>am CT Cone-<strong>be</strong>am CT<br />

1 slice per rotation Entire volume in 1 rotation


Basic Principles of MV CBCT<br />

• MV CBCT generates a 3D<br />

image of the patient ana<strong>to</strong>my<br />

from the same x-ray <strong>be</strong>am<br />

(6MV) used for treatment.<br />

• Image and x-ray <strong>be</strong>am share<br />

the same isocenter.<br />

• Patient 3D ana<strong>to</strong>my in<br />

treatment position, moments<br />

<strong>be</strong>fore dose delivery.


MV CBCT: Main Features<br />

• Very low dose-rate linac <strong>be</strong>am (0.005 M.U. per degree)<br />

• Beam Pulse Triggered Acquisition Mode<br />

(Synchronized pulse-panel readout)<br />

• High sensitivity a-Si Panel EPID (Optimized for MV)<br />

• Integrated workstation: EPID deployment, image<br />

acquisition, reconstruction, fusion with CT, patient<br />

alignment, treatment delivery


Basic Characteristics<br />

of MV CBCT<br />

• Half rotation: 200 degrees<br />

• Acquisition ~ 45 seconds<br />

• Acquisition + Reconstruction < 2 min.<br />

• 27 cm x 27 cm x 27 cm Field of View<br />

• Volume of 256 x 256 x 270<br />

• Pixel size (0.5 mm)3<br />

• Typical dose: 2 <strong>to</strong> 8 cGy<br />

• Accurate Electron Density


MV CBCT


MV CBCT: Post processing<br />

Diffusion filter reduces<br />

noise and maintains edges


Future Beam Line for MV CBCT: LowZ tgt + No FF + 4.5 MV<br />

Current BL Future BL Current BL Future BL<br />

Courtesy of Bruce Faddegon, <strong>UCSF</strong>


Workflow of IGRT with MV CBCT<br />

CT Dose Plan Patient alignment Dose Delivery<br />

1: Image<br />

Acquisition<br />

2: Image<br />

Reconstruction<br />

S<br />

!<br />

o<br />

r<br />

F<br />

X (voxel)<br />

x (pixel)<br />

3: Image<br />

Registration<br />

4: Patient<br />

Alignment<br />

X-offset<br />

Y-offset<br />

Z-offset


Workflow of IGRT with MV CBCT<br />

• 1) The patient and the cone<strong>be</strong>am<br />

acquisition mode are<br />

selected at the treatment<br />

console.<br />

• 2) The linac gantry is placed<br />

in starting position, namely<br />

270 degrees.


Workflow of IGRT with MV CBCT<br />

• 3) During the acquisition, the<br />

gantry rotates 200 degrees until<br />

it reaches its final position, 110<br />

degrees.<br />

During the rotation, a portal<br />

image is acquired at each<br />

degree. The reconstruction of<br />

the cone-<strong>be</strong>am image starts<br />

immediately after the first portal<br />

image has <strong>be</strong>en acquired.


Workflow of IGRT with MV CBCT<br />

• 3) During the acquisition, the<br />

gantry rotates 200 degrees until it<br />

reaches its final position, 110<br />

degrees.<br />

During the rotation, a portal<br />

image is acquired at each<br />

degree. The reconstruction of the<br />

cone-<strong>be</strong>am image starts<br />

immediately after the first portal<br />

image has <strong>be</strong>en acquired.


Workflow of IGRT with MV CBCT<br />

• 4) Upon completion of the<br />

reconstruction image, the<br />

cone-<strong>be</strong>am image is<br />

au<strong>to</strong>matically loaded in the<br />

Adaptive Targeting<br />

Sofware TM , and the CB <strong>to</strong><br />

CT image registration is<br />

performed au<strong>to</strong>matically in<br />

few seconds using a mutual<br />

information algorithm.


MV CBCT - CT Registration


Workflow of IGRT with MV CBCT<br />

• 5) Proper alignment is<br />

validated and manual<br />

alignment can <strong>be</strong> performed<br />

when fine-tuning is required.<br />

• 6) The couch translation offset<br />

values required <strong>to</strong> obtain<br />

the <strong>be</strong>st alignment of the<br />

patient at isocenter are<br />

displayed. The couch is<br />

moved remotely from the<br />

treatment console according<br />

<strong>to</strong> these values and the<br />

patient is ready for treatment.


Setup Methods<br />

1. Conventional CT 2. Treatment Planning System<br />

CT<br />

2D method: DRR with EPI<br />

DRR<br />

3. Patient Setup<br />

CT, Points & Con<strong>to</strong>urs<br />

3D method: CT with MV CBCT


y = 1.00x + 0.00<br />

R 2 = 0.99<br />

Phan<strong>to</strong>m Study<br />

3 em<strong>be</strong>dded gold seeds imaged at different locations:<br />

MVCBCT Shift (cm)<br />

Alignment of 3 Gold Seeds<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00<br />

-0.50<br />

IMAGE GUIDED ADAPTIVE<br />

RADIOTHERAPY (IGART):<br />

New Tools and<br />

New Directions<br />

-1.00<br />

-1.50<br />

-2.00<br />

EPI Shift (cm)


Dose Delivered<br />

2 - 8 cGy @ isocenter<br />

3-5 cGy : daily alignment<br />

6-8 cGy : planning purpose


Dose Delivered


Compensation of dose delivered<br />

Tx 96% * Tx + 40 daily 10 MU MV CBCT


Compensation of dose delivered<br />

These DVHs demonstrate the possibility <strong>to</strong> nearly eliminate the<br />

extra dose delivered <strong>to</strong> the patient for daily MV CBCT imaging.


Clinical applications of MV CBCT<br />

• Patient positioning<br />

• Head & Neck<br />

• Lung<br />

• Spine<br />

• Chest<br />

• Prostate<br />

• Moni<strong>to</strong>ring of ana<strong>to</strong>mical changes<br />

• Target delineation with non-compatible CT objects<br />

• Dose calculation from MV CBCT <strong>to</strong> assess dosimetrical<br />

impact (DGRT1)<br />

• Dose-Guided <strong>Radiation</strong> Therapy (DGRT2)


Patient Setup and Prostate Alignment<br />

3D Approach


IMAGE GUIDED ADAPTIVE<br />

RADIOTHERAPY (IGART):<br />

New Tools and<br />

New Directions<br />

Daily Prostate Alignment<br />

EPID + Markers


Prostate Alignment with MV CBCT<br />

Reference CT MV CBCT 50% Blend CT-MV CBCT<br />

Provides additional information over EPID+markers:<br />

- Rectum, bladder, etc.<br />

- Prostate con<strong>to</strong>urs


Patient Setup: Prostate Bed<br />

Irradiation of postprostatec<strong>to</strong>my patient<br />

Markers are<br />

distinguished from<br />

surgical clips for daily<br />

alignment


The presence of a hip prosthesis often makes the<br />

markers difficult <strong>to</strong> see on the lat EPI.<br />

LAT<br />

Patient Setup: Prostate<br />

AP<br />

MV CBCT could <strong>be</strong> used for marker detection and<br />

prostate alignment with less dose than the regular<br />

2D approach.<br />

MV CBCT with only<br />

1.8 M.U. (1.3 cGy)


Hip Prosthesis<br />

In 2005 in US and Europe,<br />

more than 500,000 people had a hip replaced.<br />

IMAGE GUIDED ADAPTIVE<br />

RADIOTHERAPY (IGART):<br />

New Tools and<br />

New Directions<br />

MV CBCT


Patient setup: Head & Neck<br />

6 mm


Moni<strong>to</strong>r Weight Loss


Day 1<br />

Moni<strong>to</strong>r Weight Loss<br />

3D rendering of CT 3D rendering of MV CBCT<br />

Day 23


Aligned with MV<br />

CBCT<br />

Lung<br />

Aligned<br />

according <strong>to</strong> EPI


Paraspinous Tumors<br />

• Surgery + supporting hardware + post-op IMRT<br />

• Spinal cord <strong>to</strong>lerance limits Dx (palliative)<br />

• Image hardware artifact<br />

– impairs target delineation<br />

– hinders treatment verification<br />

• MV CBCT -> Target definition<br />

-> Daily 3D patient alignment<br />

-> Improved confidence Dx (curative)


Treatment of Paraspinous Tumors<br />

in the Presence of Orthopedic Hardware


Paraspinous Tumors: Patient Setup<br />

Case Report<br />

Mean magnitude of setup errors:<br />

- Lateral: 3.6 mm<br />

(95% C.I., 2.6-4.6 mm)<br />

- Longitudinal: 4.1 mm<br />

(95% C.I., 3.2-5.0 mm)<br />

- Vertical: 1.0 mm<br />

(95% C.I., 0.6-1.3 mm)


Paraspinous Tumors: Dosimetric Impact<br />

4.1 mm<br />

Dose<br />

1.0 mm<br />

3.6 mm<br />

Without daily corrections:<br />

(simulated in TPS)<br />

Maximum dose (D 0.1cc ) <strong>to</strong> Spinal cord<br />

would have increased from 51 <strong>to</strong> 61 Gy.<br />

The CTV coverage decreased by 5 Gy.<br />

Daily setup errors detected via MV CBCT were critical for both protection of<br />

spinal cord <strong>to</strong>lerance and maintenance of CTV coverage.


Dose Calculation using MV CBCT


Dose Calculation using MV Cone-Beam CT


Dosimetrical Impact of Weight Loss<br />

Week 1<br />

IMAGE GUIDED ADAPTIVE<br />

RADIOTHERAPY (IGART):<br />

New Tools and<br />

New Directions<br />

Week 3<br />

Differences in dose<br />

distribution due <strong>to</strong><br />

ana<strong>to</strong>mical changes<br />

Δ(%) >5%<br />

>10%


Dose-Guided <strong>Radiation</strong> Therapy<br />

(DGRT)<br />

DGRT is an extension of adaptive radiation therapy where<br />

dosimetric considerations constitute the basis of<br />

treatment modification<br />

• Improved confidence that the dose is delivered as<br />

planned<br />

• Allow more aggressive and definitve treatment<br />

(dose escalation)<br />

• Better understanding of the outcome of treatments


Dose Plan<br />

In-vivo<br />

Dosimetry<br />

Dose-Guided <strong>Radiation</strong> Therapy<br />

In-situ<br />

Dose<br />

Calculation<br />

(DGRT1)<br />

In-situ<br />

Exit<br />

Dosimetry<br />

In-situ<br />

Dose<br />

Reconstruction<br />

(DGRT2)


MV CBCT: Summary<br />

• Provide 3D ana<strong>to</strong>my of patient in treatment position<br />

-> Patient Setup, Moni<strong>to</strong>ring of ana<strong>to</strong>mical changes<br />

• Accurate electron density for dose calculation<br />

-> Assess dosimetric Impact<br />

• Facilitate dose reconstruction for DGRT<br />

• Specialized imaging <strong>be</strong>am line and MV adapted Flat<br />

panel EPID will further improve image quality


• MV Cone-Beam CT:<br />

Thank You<br />

– Pouliot et al., IJROBP, 61(2); 238-246, 2005<br />

– Morin et al., Med. Dosi., 31(1);51-61, 2006<br />

– Pouliot et al., Cancer et Radiothérapie, June 2006<br />

• Exit Dosimetry with EPID:<br />

– Chen et al., Med. Phys., 33(3); 584-594, 2006<br />

• Dose Calculation with MV CBCT:<br />

– Morin et al., submitted <strong>to</strong> IJROBP, 2006<br />

• DGRT with MV CBCT:<br />

– Chen et al., Brit. J. Radiol, June 2006<br />

• Use of MV CBCT <strong>to</strong> complement CT for target definition in pelvic radiotherapy<br />

in the presence of hip replacement:<br />

– Aubin et al., submitted <strong>to</strong> Brit. J. Radiol., 2006<br />

• IGRT using MV CBCT for Treatment of Paraspinous Tumors<br />

in the Presence of Orthopedic Hardware<br />

– Hansen et al., submitted <strong>to</strong> IJROBP, 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!