23.07.2013 Views

Advances in Brachytherapy and IORT - UCSF Radiation Oncology

Advances in Brachytherapy and IORT - UCSF Radiation Oncology

Advances in Brachytherapy and IORT - UCSF Radiation Oncology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Advances</strong> <strong>in</strong><br />

<strong>Brachytherapy</strong> <strong>and</strong><br />

<strong>IORT</strong><br />

Physics Residents Talks


Overview<br />

Change <strong>in</strong> brachytherapy from orig<strong>in</strong>s to<br />

present<br />

Sources / Equipment<br />

Plann<strong>in</strong>g<br />

<strong>IORT</strong>


<strong>Radiation</strong> Sources<br />

Isotopes used<br />

Radium / Radon<br />

Cesium-137<br />

Iridium-192<br />

Iod<strong>in</strong>e-125<br />

Palladium-103


Radium / Radon<br />

Part of U-238 decay<br />

226 Ra 222 Rn 218 Po<br />

206 Pb<br />

1622 y, α<br />

210 Po<br />

3.8 days, α<br />

Radium/Radon <strong>in</strong> equilibrium<br />

Shield<strong>in</strong>g needed to remove particles<br />

1 mg ~ 1 mCi<br />

210 Bi<br />

214 Pb<br />

210 Pb<br />

214 Bi+β - +γ<br />

214 Po+β - +γ


Cesium-137<br />

Product of U-235 fission<br />

Decays to Ba-137<br />

Long half-life (30 yrs)<br />

β - , 8%<br />

1.17 MeV<br />

137 Cs 30yr<br />

β - , 92%<br />

0.51 MeV<br />

137 Ba<br />

0.662 MeV


Cesium-137<br />

Can substitute for radium<br />

Easier to shield than radium<br />

Used <strong>in</strong> the form of tubes <strong>and</strong> needles<br />

Also used for manual <strong>and</strong> remote<br />

afterload<strong>in</strong>g


Iridium-192<br />

Produced by neutron<br />

bombardment of Ir-<br />

191<br />

Source is <strong>in</strong> the form<br />

of iridium/plat<strong>in</strong>um<br />

core with th<strong>in</strong> (~0.1-<br />

0.2 mm) cladd<strong>in</strong>g.<br />

Available as wire,<br />

hairp<strong>in</strong>, or seed<br />

192 Ir<br />

74 days<br />

β - (0.08-0.7<br />

MeV)<br />

192 Pt<br />

0.2-1.06 MeV<br />

photons<br />

(E eff =.37 MeV)


Cobalt-60<br />

Produced by neutron activation of Co-59<br />

Used for HDR <strong>and</strong> teletherapy units<br />

Half-life: 5.27 years<br />

Emission: Decays to Ni-60 via β- decay<br />

followed by 1.17 MeV <strong>and</strong> 1.33 MeV<br />

photons.


Permanent Implant Isotopes<br />

Radon-222<br />

Iod<strong>in</strong>e-125<br />

Gold-198<br />

Palladium-103


Iod<strong>in</strong>e-125<br />

Half-life: 59.4 days<br />

Decay: I-125 decays by EC to Te-125<br />

Emissions: characteristic x-rays with mean<br />

energy ~27 keV.


Palladium-103<br />

Half-life: 17 days<br />

Decay: EC to excited states of ruthenium-<br />

103<br />

Emissions: <strong>in</strong>ternal conversion result <strong>in</strong><br />

characteristic x-rays with mean energy of<br />

21 keV.


Gold-198<br />

Half-life: 2.7 days.<br />

Emissions: beta decay with 0.41 MeV<br />

photons.<br />

Can be used as radon substitute for<br />

implants. 1 mCi gold = 0.284 mg Ra<br />

Used <strong>in</strong> solutions <strong>in</strong> body cavities.


Desirable Properties<br />

Half-life: Long t 1/2 = lower specific activity,<br />

but less frequent source replacement. Not<br />

desirable for permanent implants.<br />

Solid (not gas) w/ solid decay products<br />

Emissions<br />

High energy: shield<strong>in</strong>g issues<br />

Low energy: tissue attenuation may become<br />

important<br />

Other


Electronic <strong>Brachytherapy</strong> Source<br />

50 kV, 0.3 mA, 15 W<br />

Water cooled<br />

Can be used like HDR<br />

source<br />

Rivard et al, Med Phys.<br />

33(11), 2006.


Afterload<strong>in</strong>g<br />

First used for radiation<br />

safety purposes<br />

Manual vs. Remote<br />

Remote<br />

LDR: 12 Gy/hr


Remote Afterloaders<br />

Applicator<br />

Afterloader


Other afterloader designs<br />

Afterloader sorts<br />

spherical Cs-137 <strong>and</strong><br />

spacers to create<br />

“source tra<strong>in</strong>s”


Applicators<br />

Used to hold radioactive sources <strong>in</strong> the<br />

correct position<br />

Can be used with various afterload<strong>in</strong>g<br />

techniques (LDR, HDR, manual)


Applicators<br />

Fletcher-Suit<br />

Vag<strong>in</strong>al Cyl<strong>in</strong>ders<br />

Intralum<strong>in</strong>al Catheters<br />

Interstitial Implants


MammoSite<br />

Used for Accelerated Partial Breast Irradiation<br />

Fluid filled balloon placed dur<strong>in</strong>g surgery<br />

Attached to HDR afterloader (e.g., Nucletron) with<br />

Ir-192 source<br />

Patient treated <strong>in</strong> 5 fx.<br />

http://www.mammosite.com


GliaSite<br />

Used to treat bra<strong>in</strong> tumors<br />

Balloon filled with I-125<br />

conta<strong>in</strong><strong>in</strong>g solution<br />

Example: used to treat<br />

glioblastoma multiformae<br />

to 50 Gy followed by EBRT<br />

boost


Source Strength / Dose Specification<br />

Radium equivalent (mg-Ra)<br />

Activity (Ci)<br />

Exposure rate (R/hr)<br />

Air kerma strength (Gy/hr/m 2 )


Traditional Dose Calculation<br />

Dose calculation approximated source as a po<strong>in</strong>t<br />

A app =apparent activity<br />

f med = exposure to dose conversion<br />

(Γ δ ) x =exposure rate constant for radionuclide<br />

T(r) is tissue attenuation<br />

φ an is anisotropy factor


TG-43 formalism<br />

S k: Air kerma strength<br />

Λ: Dose rate constant<br />

G L(r, θ): geometric<br />

function<br />

g L(r): radial dose<br />

function<br />

F(r, θ): anisotropy<br />

function


Plann<strong>in</strong>g Systems<br />

Paterson-Parker / Manchester (1934)<br />

Quimby (1944)<br />

Paris (1966)


Manchester system<br />

Surface applicators<br />

Planar implants<br />

Volume implants<br />

Uter<strong>in</strong>e implants


Surface Applicators


Surface Applicator Distributions


Planar Implants<br />

Used for tumors too deep for<br />

surface applicators<br />

Insert radium needles beneath sk<strong>in</strong>


Volume Implants<br />

Volume implants used<br />

when target can’t be<br />

covered by two<br />

planes<br />

Rules are given for<br />

various shapes


Uter<strong>in</strong>e Implants<br />

Treatment of cervical <strong>and</strong><br />

other gynecological cancers<br />

Treat cervix, vag<strong>in</strong>a, or<br />

uterus


Uter<strong>in</strong>e Implants<br />

Dose at Po<strong>in</strong>t A represents<br />

limit<strong>in</strong>g dose<br />

Dose to Po<strong>in</strong>t B represents<br />

dose to pelvic lymph nodes


Uter<strong>in</strong>e implants<br />

Bladder def<strong>in</strong>ed<br />

by balloon of<br />

Foley catheter<br />

Rectal reference<br />

po<strong>in</strong>t is 0.5 cm fro<br />

posterior vag<strong>in</strong>al<br />

wall


Imag<strong>in</strong>g<br />

Reconstruction us<strong>in</strong>g orthogonal<br />

radiographs<br />

3D imag<strong>in</strong>g allows more sophisticated<br />

plann<strong>in</strong>g<br />

Functional imag<strong>in</strong>g (MRSI, PET, SPECT)<br />

can also be used


Other techniques<br />

Intravascular<br />

Radio-immunotherapy<br />

Intraoperative radiation therapy


Intravascular <strong>Brachytherapy</strong><br />

Coronary artery disease caused<br />

by occlusion of cardiac vessels<br />

IVB used to prevent re-stenosis<br />

after angioplasty<br />

<strong>Radiation</strong> delivered either with<br />

temporary implant or radioactive<br />

stent


IVBT<br />

Lum<strong>in</strong>al diameter:<br />

3-5 mm<br />

Target volume: 2-3<br />

cm length , 2 mm<br />

from radial center<br />

Mostly replaced by<br />

drug releas<strong>in</strong>g<br />

stents


Radioimmunotherapy<br />

Use radiolabeled antibody targeted to tumor<br />

cells


Intraoperative <strong>Radiation</strong> Therapy<br />

Started <strong>in</strong> the early 1900’s.<br />

Attractive for deep tumors because the sk<strong>in</strong><br />

dose was limit<strong>in</strong>g prior to the <strong>in</strong>vention of<br />

megavoltage accelerators.<br />

Rega<strong>in</strong>ed popularity <strong>in</strong> Japan <strong>in</strong> 1970’s for<br />

treatment of gastric cancer.<br />

Applications <strong>in</strong>clude: retroperitoneal<br />

sarcoma, pancreatic cancer, rectal cancer.


<strong>IORT</strong> Methods<br />

L<strong>in</strong>ac<br />

Dedicated systems<br />

IntraOp Mobetron<br />

Hitesys Novac7<br />

HDR based<br />

Intrabeam


IntraOp Mobetron<br />

X-b<strong>and</strong> l<strong>in</strong>ac (9300<br />

MHz vs. 2856 MHz)<br />

Electron energies: 4,<br />

6, 9, 12 MeV<br />

Soft dock<strong>in</strong>g system<br />

for applicators<br />

Typical dose: ~15 Gy<br />

<strong>in</strong> one fraction


INTRABEAM<br />

Compact x-ray source: max<br />

energy 50 kVp<br />

Spherical applicator<br />

(1.5-5 cm diameter) placed<br />

<strong>in</strong> cavity dur<strong>in</strong>g surgery<br />

Patient treated <strong>in</strong>traoperatively<br />

<strong>in</strong> 1 fraction<br />

(~15-20 Gy)<br />

http://www.targittrial.com/whatisiort.htm


Summary<br />

Radioisotopes: mostly radium → many<br />

reactor produced isotopes<br />

Equipment: manually <strong>in</strong>sert<strong>in</strong>g sources →<br />

remote afterload<strong>in</strong>g<br />

Plann<strong>in</strong>g: “System” based, planar imag<strong>in</strong>g<br />

→ computer optimization & 3D imag<strong>in</strong>g


References<br />

Johns <strong>and</strong> Cunn<strong>in</strong>gham<br />

“Pr<strong>in</strong>ciples <strong>and</strong> Practice of <strong>Brachytherapy</strong><br />

Us<strong>in</strong>g Afterload<strong>in</strong>g Systems,” edited by<br />

Josl<strong>in</strong>, Flynn, <strong>and</strong> Hall.<br />

Rivard et al, Medical Physics, 36(6), 2009.<br />

Van Dyk, ‘Modern Technology of <strong>Radiation</strong><br />

Therapy”

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!