23.07.2013 Views

X-ray and Neutron Scattering from Crystalline Surfaces and Interfaces

X-ray and Neutron Scattering from Crystalline Surfaces and Interfaces

X-ray and Neutron Scattering from Crystalline Surfaces and Interfaces

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

X-<strong>ray</strong> <strong>and</strong> <strong>Neutron</strong> <strong>Scattering</strong> <strong>from</strong><br />

<strong>Crystalline</strong> <strong>Surfaces</strong> <strong>and</strong> <strong>Interfaces</strong><br />

Paul F. Miceli,<br />

Department of Physics <strong>and</strong> Astronomy<br />

University of Missouri-Columbia<br />

National School for X-<strong>ray</strong> <strong>and</strong> <strong>Neutron</strong> <strong>Scattering</strong><br />

Argonne <strong>and</strong> Oak Ridge National Laboratories<br />

June 23, 2011<br />

Many thanks to students <strong>and</strong> collaborators:<br />

W. Elliott, C. Botez, S.W. Han, M. Gramlich, S. Hayden, Y. Chen,<br />

C. Kim, C. Jeffrey, E. H. Conrad, C.J. Palmstrøm, P.W. Stephens;<br />

<strong>and</strong> to NSF <strong>and</strong> DOE for funding.


How Crystal do we growth go <strong>from</strong> <strong>from</strong> this a vapor<br />

Nucleation<br />

Edge<br />

diffusion<br />

Step-Edge Barrier<br />

Terrace diffusion


Morphology atomic scale mechanisms<br />

Cu/Cu(001)<br />

Zuo & Wendelken


To this ?<br />

Y. Taur & T. H. Ning


Interplay between two regimes of Length Scales<br />

Interatomicdistances<br />

Structure, physics, chemistry Mechanisms<br />

Mesoscale Nanoscale<br />

Morphology Mechanisms


Example:<br />

Rotation of graphene planes affect electronic properties<br />

Graphene made <strong>from</strong> SiC<br />

J. Phys.: Condens. Matter 20 (2008) 323202


Buried Interface Structure<br />

to underst<strong>and</strong> the growth <strong>and</strong> function of materials<br />

http://www.tyndall.ie/research/electronic-theory-group/thin_film_simulation.html


Morphology atomic scale mechanisms<br />

Nanoclusters<br />

Interface roughness<br />

Nucleation/growth/coarsening at interfaces<br />

<strong>Crystalline</strong> morphology<br />

Atomic interfacial structure<br />

Vacancy clusters


Unique Advantages of X-<strong>ray</strong> <strong>Scattering</strong>:<br />

Atomic-scale structure at a buried interface<br />

Morphological structure at buried interfaces<br />

Subsurface phenomena<br />

Strains <strong>and</strong> defects near a surface<br />

Accurate statistics of distributions<br />

(eg. Isl<strong>and</strong> size distributions)<br />

<strong>Neutron</strong>s: low intensity- limited to reflectivity<br />

Soft Matter <strong>and</strong> Bio materials; H 2 O & D 2 O<br />

Magnetic materials


Objective<br />

An introduction to surface scattering techniques<br />

Build a conceptual framework<br />

Reciprocal Space is a large place: where do we look?


<strong>Scattering</strong> of X-<strong>ray</strong>s <strong>and</strong> <strong>Neutron</strong>s:<br />

2<br />

k <br />

<br />

<br />

<br />

2<br />

E k<br />

2<br />

n<br />

2<br />

r E<br />

Helmholtz Equation<br />

X-<strong>ray</strong>s <strong>Neutron</strong>s<br />

0<br />

n(r)=inhomogeneous refractive index<br />

2 2<br />

r<br />

2<br />

2m<br />

2<br />

k<br />

m <br />

<br />

EV 0<br />

<br />

2<br />

n 2<br />

b<br />

Refractive Index for neutron: r <br />

1 V r <br />

1<br />

r<br />

<br />

monoatomic <strong>Scattering</strong> length density: rb<br />

r N<br />

One language for both x-<strong>ray</strong>s <strong>and</strong> neutrons<br />

b<br />

<br />

number density<br />

<br />

<br />

scattering length:<br />

re<br />

f Q x <strong>ray</strong>s<br />

b <br />

tabulated<br />

neutrons


ki <br />

k f<br />

<br />

ki <br />

f<br />

f k<br />

Wavevector Transfer:<br />

<br />

Q k<br />

k<br />

4<br />

Q sin<br />

<br />

<br />

~<br />

i<br />

2<br />

d<br />

Probing Length Scale


Log Intensity<br />

0<br />

d<br />

~<br />

Regimes of <strong>Scattering</strong><br />

(Consider specular reflection)<br />

2<br />

Q<br />

2<br />

Q G<br />

1 2<br />

3 3<br />

2<br />

G<br />

a<br />

1. Grazing angle reflectivity: strong scattering d>>interatomic distances<br />

Exact solution required. Neglect atomic positions: homogeneous medium<br />

2. Bragg region: strong scattering; d~interatomic distances = a<br />

Exact solution required. Atomic positions needed. Similar to e - b<strong>and</strong> theory.<br />

3. Everywhere else: weak scattering<br />

Born approximation simplification. Atomic positions required.<br />

d<br />

~<br />

ki <br />

Q <br />

<br />

Surface information 3 3D: surface info is<br />

everywhere except<br />

at Bragg points<br />

Q<br />

k f


Grazing Angles: Refraction <strong>and</strong> Total Reflection<br />

Use average refractive index:<br />

d>>a: consider homogenous medium<br />

2<br />

2<br />

b<br />

n 1<br />

b<br />

1<br />

<br />

1<br />

2<br />

n 1 <br />

i<br />

<br />

With absorption:<br />

sin<br />

Snell s Law:<br />

2<br />

<br />

2<br />

sin 2<br />

<br />

Critical Angle for<br />

Total Reflection:<br />

Wavevector transfer:<br />

<br />

2 2<br />

Q Q<br />

<br />

Q<br />

2<br />

c<br />

2<br />

c<br />

k z<br />

(~ 10<br />

5<br />

Q<br />

ki <br />

<br />

)<br />

kx f<br />

k<br />

<br />

k <br />

Only k z component is affected by the surface.<br />

k x is unchanged.<br />

Q 16<br />

2<br />

c <br />

b<br />

i<br />

k z<br />

k z<br />

k x<br />

k x


Calculation of reflectivity<br />

Q<br />

Reflectivity, R, can be calculated, exacty,<br />

by matching boundary conditions at<br />

the interfaces.<br />

Include an interfacial transition<br />

Multi-slice method:<br />

Numerical simulations


M-layer<br />

http://www.ncnr.nist.gov/reflpak/


Born Approximation works if the<br />

reflectivity is not too large.<br />

R<br />

2<br />

Q Q<br />

<br />

<br />

Q Q<br />

<br />

4<br />

2 <br />

Q<br />

<br />

R <br />

<br />

<br />

Qc<br />

<br />

Born approx.<br />

Exact<br />

Single Interface<br />

Q<br />

ki <br />

<br />

k<br />

f<br />

<br />

k <br />

i


Differential <strong>Scattering</strong> Cross Section<br />

( Born Approximation or Kinematic Approximation )<br />

Reflectivity:<br />

1 d<br />

R d <br />

A d<br />

inc<br />

A<br />

<br />

d<br />

P<br />

d<br />

<br />

2<br />

<br />

S Q P<br />

A Q<br />

P is the polarization factor (x-<strong>ray</strong> case)<br />

S(Q) is the structure factor<br />

A(Q) is the scattering amplitude<br />

f(Q) is the atomic form factor<br />

<br />

is the scattering length density<br />

b<br />

<br />

<br />

<br />

iQr<br />

iQ<br />

r<br />

Q d r r e be<br />

3<br />

<br />

Q<br />

b<br />

<br />

<br />

<br />

r<br />

r<br />

<br />

<br />

b r e f for x-<strong>ray</strong>s or tabulated for neutrons


k <br />

Grazing Incidence Diffraction<br />

k <br />

c<br />

<br />

3D Diffraction<br />

If or f<br />

i<br />

<br />

Q k<br />

k<br />

k<br />

f<br />

sin<br />

i<br />

2<br />

are near grazing:<br />

refraction<br />

transmission<br />

T ,<br />

i f T<br />

c<br />

<br />

sin<br />

2<br />

2<br />

<br />

Q <br />

Evanescent wave


Perpendicular to Surface: internal Q <strong>and</strong> external Q are different<br />

x<br />

Q<br />

Q<br />

y<br />

Qz<br />

Q<br />

Q<br />

x<br />

y<br />

<br />

Parallel to Surface: internal Q <strong>and</strong> external Q are same<br />

k<br />

k<br />

( f<br />

x<br />

( f<br />

y<br />

)<br />

)<br />

k<br />

k<br />

( i)<br />

x<br />

( i)<br />

y<br />

Q <br />

H. Dosch, B.W. Batterman <strong>and</strong> D. C. Wack, PRL 56, 1144 (1986)


1<br />

Im<br />

Q z<br />

H. Dosch, PRB 35, 2137 (1987)<br />

Penetration Length<br />

i c


H. Dosch, PRB 35, 2137 (1987)<br />

Transmitted Beam Amplitude


Q <br />

S <br />

Fe 3 Al<br />

H. Dosch, PRB 35, 2137 (1987)<br />

Distorted Wave<br />

Born Approximation<br />

refraction<br />

transmission<br />

is the structure factor using<br />

the internal wavevector transfer


A Six-Circle Diffractometer<br />

H. You, J. Appl. Cryst. 32, 614-623 (1999)<br />

Extra Angles give flexibility<br />

Constraints are needed<br />

Common working modes:<br />

fixed<br />

<br />

i<br />

i<br />

f<br />

<br />

fixed<br />

f


UHV Growth <strong>and</strong> Analysis Chamber<br />

At Sector 6 at Advanced Photon Source<br />

UHV 10 -10 Torr<br />

Evaporation/deposition<br />

Ion Sputtering<br />

LEED<br />

Auger<br />

Low Temp: 55K<br />

High Temp: 1500 C<br />

Load Lock/sample transfer


Liquid Surface Diffractometer<br />

M. Schlossman et. al., Rev. Sci. Inst. 68, 4372 (1997)


David Vaknin, Ames Lab


What is a crystal truncation rod?<br />

First consider:<br />

Large crystals; rough <strong>and</strong> irregular boundaries<br />

Boundaries neglected<br />

<br />

Real space<br />

2<br />

<br />

<br />

<br />

N 1<br />

N 1<br />

N 1<br />

2 NQ a<br />

iQ an iQ bn iQ cn sin 2<br />

Q e e<br />

<br />

2 Q a<br />

sin<br />

x x<br />

y y<br />

z z<br />

S e <br />

n<br />

x<br />

0<br />

n<br />

y<br />

0<br />

<br />

<br />

Q G<br />

<br />

<br />

G<br />

Large crystal<br />

n<br />

z<br />

0<br />

G is a reciprocal lattice vector<br />

<br />

<br />

x<br />

2<br />

<br />

x<br />

sin<br />

sin<br />

2<br />

NQ b<br />

2<br />

Q b<br />

2<br />

y<br />

2<br />

y<br />

sin<br />

sin<br />

Reciprocal space<br />

Bragg points<br />

2<br />

NQ zc<br />

2<br />

Qc z<br />

2<br />

2


Now consider a crystal with one atomically flat boundary<br />

z<br />

Real space<br />

Large crystal; flat boundary<br />

<br />

Neglect boundary atz S<br />

Rp <br />

<br />

<br />

<br />

N 1<br />

2 n iQ<br />

cn<br />

iQ<br />

RR<br />

Q b<br />

e<br />

e<br />

<br />

n<br />

z<br />

0<br />

z<br />

<br />

<br />

1 N <br />

iQzc<br />

2<br />

4sin<br />

2<br />

z<br />

Very small attenuation<br />

2<br />

<br />

z<br />

<br />

<br />

R R<br />

p p<br />

Reflected wave vanishes<br />

N iQzcN<br />

1<br />

e<br />

1<br />

lim lim<br />

<br />

<br />

c<br />

1e<br />

Q z<br />

2<br />

p<br />

p<br />

~<br />

<br />

p<br />

1<br />

z<br />

0<br />

Crystal Truncation Rod Factor<br />

<br />

1<br />

2<br />

Q G <br />

2<br />

c z <br />

z


By neglecting the lateral boundaries:<br />

e<br />

<br />

R R<br />

S<br />

p p<br />

<strong>and</strong><br />

<br />

<br />

Q <br />

<br />

iQ<br />

<br />

p<br />

<br />

<br />

R<br />

p<br />

<br />

<br />

RpRp N<br />

irr e<br />

e<br />

<br />

<br />

iQ<br />

R<br />

<br />

Rp<br />

<br />

iQ<br />

R<br />

<br />

p<br />

2<br />

2<br />

<br />

N<br />

s<br />

c<br />

p<br />

b<br />

p<br />

<br />

Q p Gp<br />

2<br />

2<br />

s<br />

c<br />

<br />

G<br />

N irr = the number of irradiated atoms at the surface<br />

s = area per surface atom<br />

c<br />

G = an in-plane reciprocal lattice vector<br />

p<br />

1<br />

p<br />

p<br />

<br />

p p<br />

2<br />

irr<br />

2 Qzc<br />

4sin<br />

2 G<br />

G<br />

CTR<br />

Intensity falls slowly<br />

p<br />

Q <br />

Narrow reflection in-plane


Crystal Truncation Rods<br />

Specular rod<br />

(Q p =0)<br />

Reciprocal Space<br />

Crystal Surface<br />

Q z<br />

Q p


Crystal Truncation Rod <strong>Scattering</strong> for<br />

Specular Reflection <strong>from</strong> the Ag(111) Surface<br />

geometry CTR<br />

<br />

1<br />

Q<br />

1<br />

2 2<br />

z z Q<br />

G 0<br />

<br />

geometry<br />

<br />

Atomically smooth<br />

Rough, 3Å<br />

1<br />

CTR<br />

2<br />

Qz z<br />

1<br />

2 QG G (<br />

111)<br />

<br />

Elliott et. al. PRB 54, 17938 (1996)


R<br />

Reflectivity:<br />

<br />

R<br />

A<br />

Q S d<br />

1 <br />

A<br />

inc<br />

b<br />

p<br />

2 2<br />

f inc c 2<br />

d<br />

k<br />

2 2 Qzc<br />

A s sin<br />

<br />

2<br />

d<br />

Q<br />

2 <br />

sin<br />

p<br />

<br />

f<br />

Qz<br />

QG <br />

<br />

irr<br />

p <br />

2<br />

<br />

k<br />

d<br />

2<br />

sin<br />

<br />

Q<br />

For specular reflections:<br />

R<br />

(Two geometric factors of 1/Q)<br />

spec<br />

1<br />

<br />

s<br />

2<br />

c<br />

Q<br />

2<br />

z<br />

4<br />

Airr 2<br />

<br />

kA Q<br />

inc<br />

z<br />

Q 2<br />

G<br />

p<br />

k<br />

<br />

<br />

p<br />

1<br />

<br />

sin<br />

2<br />

f Qz<br />

kF <br />

f<br />

Qy<br />

Qx<br />

Q c 4<br />

2<br />

QG 2<br />

2 2<br />

4 2<br />

b<br />

c c<br />

<br />

<br />

<br />

<br />

2 Qzc<br />

2 2 Qzc<br />

2<br />

2 4Qz<br />

sin 2 Qz<br />

z <br />

sin<br />

z


Step ordering<br />

Q z<br />

(typically semiconductors)<br />

Miscut <strong>Surfaces</strong><br />

Tilted Rods<br />

Q p<br />

Q z<br />

ns ns<br />

<br />

G <br />

n<br />

G 0<br />

<br />

s<br />

L<br />

Step bunching<br />

(e.g. noble metals)


Specular<br />

Diffuse<br />

Q p<br />

G <br />

Qz<br />

Q p<br />

Q p<br />

<br />

Angular Width of Specular Decreases with Q z<br />

Q p<br />

Q<br />

<br />

Q<br />

z<br />

p<br />

L~9000Å<br />

Can determine terrace size, L<br />

<br />

Q p<br />

2<br />

<br />

L


Specular Reflection <strong>from</strong> the Ag(111) Surface<br />

Correct Crystal Truncation Rod <strong>Scattering</strong> for Terrace Size<br />

Elliott et. al. PRB 54, 17938 (1996)


Special location along CTR: anti-Bragg<br />

Bragg Position:<br />

Q z<br />

N 1<br />

<br />

n 0<br />

<br />

<br />

z<br />

Q z<br />

c<br />

c<br />

e<br />

2<br />

m<br />

i 2n<br />

<br />

m<br />

2<br />

z <br />

1<br />

<br />

2<br />

1<br />

0<br />

N<br />

i<br />

nz<br />

e<br />

nz<br />

<br />

<br />

For a smooth surface<br />

N<br />

Anti-Bragg Position:<br />

(m odd)<br />

2<br />

1 atomic layer<br />

Q z<br />

Anti-Bragg Positions<br />

out of phase<br />

Q p


Synchrotron<br />

X-<strong>ray</strong> Beam<br />

In situ vapor deposition in UHV<br />

evaporator


Specular Anti-Bragg Intensity<br />

Nucleation <strong>and</strong> Growth<br />

Step flow<br />

multilayer<br />

Layer-by-layer<br />

Elliott et. al. PRB 54, 17938 (1996) Adv. X-<strong>ray</strong> Anal. 43, 169 (2000)<br />

Specular <strong>and</strong> Diffuse<br />

coverage<br />

1.0 ML<br />

0.5 ML<br />

0 ML<br />

1.5 ML<br />

3 ML<br />

2.5 ML<br />

2.0 ML<br />

Qp


A<br />

<br />

<br />

Diffuse <strong>Scattering</strong> Q z<br />

<br />

2<br />

<br />

<br />

* iQrr<br />

Q bb<br />

e<br />

r<br />

r<br />

r <br />

<br />

r<br />

<br />

mR<br />

pmRp 2<br />

<br />

<br />

iQp<br />

Rp<br />

R<br />

p<br />

<br />

iQzc<br />

nn b e<br />

e<br />

<br />

Rp Rp<br />

nn<br />

<br />

2<br />

<br />

Nirr<br />

b<br />

<br />

<br />

iQp<br />

R<br />

p iQz<br />

h Rp<br />

R<br />

p<br />

h<br />

Rp<br />

e e<br />

iQ c<br />

2 <br />

<br />

R<br />

<br />

1e<br />

z Rp<br />

Neglect lateral boundaries<br />

Caused by lateral structure<br />

CTR factor<br />

FT of average phase difference<br />

due to lateral height-differences<br />

<br />

h R<br />

<br />

p<br />

Rp <br />

p<br />

scan<br />

Q p<br />

Q p dependence<br />

=S T (Q p )


S<br />

S<br />

Transverse Lineshape<br />

Far regions of surface<br />

Rp<br />

Uncorrelated heights<br />

<br />

hRR<br />

hR p p<br />

p<br />

<br />

R<br />

<br />

<br />

iQ 2<br />

e<br />

z<br />

e<br />

iQzh<br />

Uncorrelated Roughness @ Large Distance Gives Bragg:<br />

Diffuse<br />

T<br />

Bragg<br />

T<br />

<br />

Q QG<br />

p<br />

p<br />

2<br />

2 <br />

iQzh<br />

p p e<br />

s<br />

c<br />

Short-Range Correlations Give Diffuse <strong>Scattering</strong>:<br />

<br />

<br />

2<br />

<br />

p p<br />

z p p p<br />

iQzh<br />

p<br />

e<br />

<br />

<br />

R<br />

Rp<br />

<br />

<br />

<br />

iQ<br />

R<br />

iQ hRRhR Q e e<br />

p<br />

2


Two Component Line Shape: Bragg + Diffuse<br />

S<br />

T<br />

Bragg<br />

Diffuse<br />

<br />

<br />

Bragg<br />

Diffuse<br />

Q S<br />

Q S<br />

Q<br />

p<br />

T<br />

Q p<br />

<br />

p<br />

T<br />

<br />

Bragg due to laterally uncorrelated disorder at long distances<br />

Diffuse due to short-range correlations<br />

p<br />

Q z<br />

scan<br />

Q p


Layer-by-layer growth<br />

SpecularBragg Rod: intensity changes with roughness<br />

Strong inter-isl<strong>and</strong> correlations seen in the diffuse<br />

D<br />

2<br />

D<br />

Qx<br />

coverage<br />

1.0 ML<br />

0.5 ML<br />

0 ML<br />

1.5 ML<br />

3 ML<br />

2.5 ML<br />

2.0 ML<br />

Qx<br />

Adv. X-<strong>ray</strong> Anal. 43, 169 (2000)


Attenuation of the Bragg Rod <strong>and</strong> Surface Roughness<br />

If height fluctuations are Gaussian: is rms roughness<br />

e<br />

iQ<br />

z<br />

h<br />

2<br />

<br />

e<br />

Q<br />

2<br />

z<br />

2<br />

<br />

But crystal heights are discrete for a rough crystal:<br />

e<br />

iQ<br />

h<br />

2<br />

z e<br />

2<br />

<br />

4<br />

sin<br />

2<br />

c<br />

2<br />

Q<br />

zc<br />

<br />

2<br />

Binomial distribution (limits to a Gaussian for large roughness)<br />

Preserves translational symmetry in the roughness<br />

<br />

<br />

<br />

h<br />

Physica B 221, 65 (1996)


Sharper interface (real space) gives broader scattering<br />

Gaussian roughness does not give translational symmetry<br />

e<br />

Q <br />

2 2<br />

z<br />

(continuous)<br />

No roughness<br />

e<br />

2<br />

<br />

4<br />

sin<br />

2<br />

c<br />

2<br />

Q<br />

z<br />

<br />

2<br />

c<br />

<br />

<br />

<br />

(discrete roughness)<br />

Real space<br />

z


Bragg<br />

Diffuse<br />

S<br />

Q p<br />

reciprocal space<br />

Bragg<br />

Q p<br />

<br />

Q <br />

Q p<br />

1/Q p<br />

Bragg is narrow:<br />

it samples laterally uncorrelated roughness at long distances<br />

b<br />

1e<br />

Transversely-integrated scattering shows no effect of roughness:<br />

<br />

2<br />

d Qp<br />

S<br />

<br />

2 2<br />

2<br />

iQ<br />

z<br />

c<br />

2<br />

e<br />

b<br />

Q <br />

2<br />

1e<br />

<br />

4<br />

sin<br />

2<br />

c<br />

2<br />

iQ<br />

1/Q p<br />

z<br />

c<br />

Q<br />

zc<br />

<br />

2<br />

real space<br />

<br />

<br />

<br />

(for 1 interface)


In practice, at every Q z the diffuse must be subtracted <strong>from</strong><br />

the total intensity to get the Bragg rod intensity:<br />

Bragg<br />

Diffuse<br />

Q p<br />

I total<br />

Bragg rod intensity<br />

I diffuse


X-<strong>ray</strong> Reflectivity <strong>from</strong> Si(111)7x7<br />

small vertical displacements<br />

1 st 3 atomic layers<br />

oscillatory features<br />

0<br />

<br />

j<br />

3<br />

dj<br />

<br />

<br />

e <br />

j1<br />

j<br />

iQ<br />

iQz z j<br />

e<br />

Bulk CTR + layers<br />

z<br />

Robinson & Vlieg, Surf.Sci 261, 123 (1992)<br />

Qz


What would we expect <strong>from</strong> a thin film?<br />

1 st let s recall Young s slit interference


Recall<br />

N-Slit Interference <strong>and</strong> Diffraction Gratings<br />

Principle maxima<br />

d sin = m


Principle maxima always in<br />

the same place for N slits:<br />

But they narrow: width ~1/N<br />

Double Slit<br />

(no subsidiary maxima)<br />

width ~ 1/N<br />

Principle maxima<br />

d sin = m<br />

(N-2 subsidiary maxima)<br />

1 subsidiary maximum<br />

2 subsidiary maximum<br />

N large:<br />

Weak subsidiary maxima<br />

Sharp principle maxima


5-slit interference of x-<strong>ray</strong>s <strong>from</strong> 5 layers of atoms<br />

Miceli et al., Appl. Phys. Lett. 62, 2060 (1992)


Reciprocal Space<br />

Q z<br />

Thin Films<br />

Q x<br />

Real Space<br />

substrate


Q z =2L/c<br />

Ag/Si(111)7x7<br />

Specular Reflectivity: 0.3ML Ag/Si(111)7x7<br />

Sensitive to Ag-Si distance<br />

0.3 ML Ag<br />

in 7x7 wetting layer<br />

Si


specular<br />

[0 H 0]<br />

[H 0 0]<br />

rods <strong>from</strong> 7x7 reconstruction<br />

(thin surface layer)<br />

L<br />

Si In-Plane Rods<br />

Si rods (<strong>from</strong> bulk crystal)<br />

In plane<br />

(6/7,0/7)<br />

(8/7,0/7)


Specular Reflectivity: 0.9ML Ag/Si(111)7x7<br />

=0.9ML<br />

T=300K<br />

Mainly 3-layer isl<strong>and</strong>s<br />

Q z =2L/c<br />

Ag/Si(111)7x7<br />

Exposed Surface Frac<br />

Height (ML)<br />

3-layer isl<strong>and</strong>s<br />

2ML above wetting layer<br />

Wetting layer


=1.8ML<br />

Q z =2L/c<br />

Ag/Si(111)7x7<br />

Specular Reflectivity: 1.8ML Ag/Si(111)7x7<br />

Exposed Surface Frac<br />

Height (ML)<br />

Mainly 4-layer isl<strong>and</strong>s


Ag isl<strong>and</strong>s on a Ag 7x7 wetting layer: FCC = 2 ML<br />

or Ag isl<strong>and</strong>s all the way to the substrate? FCC = 3 ML<br />

Ag7x7 wetting layer<br />

Si<br />

?<br />

<br />

Si


[-H 0 0]<br />

[0 -H 0]<br />

Ag(111) rods<br />

[0 0 L]<br />

[H -H 0]<br />

[-H H 0]<br />

[0 H 0]<br />

[H 0 0]<br />

Hex coordinates<br />

(1 0 0) hex =1/3*(-4 2 2) cubic<br />

(0 1 0) hex =1/3*(-2 -2 4) cubic<br />

(0 0 1) hex =1/3*(1 1 1) cubic<br />

Fcc 3 fold symmetry<br />

One group: (1 0)rod=(-1 1)rod=(0 -1)rod<br />

Another group: (0 1)rod=(-1 0)rod=(1 -1)rod


Specular reflectivity <strong>and</strong> rod give same thickness:<br />

Isl<strong>and</strong> is FCC Ag all the way to the substrate<br />

Specular Reflectivity<br />

Specular Reflectivity<br />

Probes Si substrate, Ag<br />

wetting layer <strong>and</strong> Ag isl<strong>and</strong><br />

Ag (1 1) rod<br />

Ag truncation rod<br />

Only probes FCC Ag


Quantum-Size-Effects:<br />

Pb Nanocyrstals on Si(111)7x7<br />

Discoveries:<br />

anomalously (10 4 ) fast kinetics<br />

Non-classical coarsening<br />

Unusual behavior:<br />

fast growth => most stable<br />

structures<br />

Quantum Mechanics Influences Nanocrystal Growth<br />

C. A. Jeffrey et al., PRL 96, 106105 (2006)<br />

Si(111) substrate<br />

Disordered<br />

Pb wetting layer


metal<br />

insulator<br />

Pb<br />

Si<br />

F. K. Schulte, Surf. Sci. 55, 427 (1976)<br />

P. J. Feibelman, PRB 27, 1991 (1983)<br />

Electrons in a box<br />

Electrons will Exhibit Discrete<br />

Quantum Mechanical Energies<br />

Electrons are confined to the metal<br />

physchem.ox.ac.uk


Integrated Intensity<br />

Si(111)<br />

Si(111)<br />

Pb(111)<br />

Pb(111)<br />

l (r.l.u.)<br />

Reflectivity<br />

Pb(222)


Isl<strong>and</strong>s consume the wetting layer<br />

& move away <strong>from</strong> the interface<br />

Specular Intensity Pb(111) (au) Intensity<br />

Pb<br />

Si(111)<br />

Displacive Transition<br />

Coverage, (ml)<br />

C.A. Jeffrey et al., J. Superlat. & Micro. 41, 168 (2007)<br />

0.4Å


Charge Density Oscillations<br />

Due to Quantum Confinement<br />

Pb/Si(111)<br />

Czoschke et al., PRL 91, 226801 (2003)<br />

Electron density in Sommerfeld model:


Coarsening<br />

laist.com<br />

greeneurope.org<br />

Rain Drops On<br />

Your Winshield


Surface Chamber<br />

Advanced Photon Source<br />

Mean isl<strong>and</strong> separation, :<br />

<br />

<br />

L<br />

2<br />

<br />

L<br />

Pb(111)<br />

Experiment:<br />

Deposit Pb (1.2 to 2 ml) at 208K<br />

Isl<strong>and</strong> Density: Measure the isl<strong>and</strong> 1 density vstime<br />

(flux<br />

n<br />

off)<br />

2<br />

L<br />

Intensity<br />

X-Rays Incident<br />

Transverse Scan: In-plane Info.<br />

CCD Image<br />

<br />

Q x<br />

Pb Source


Isl<strong>and</strong> Density<br />

<br />

t<br />

n t n<br />

1<br />

0<br />

<br />

<br />

<br />

<br />

<br />

<br />

High Initial Density<br />

Low Initial Density<br />

Time<br />

2<br />

<br />

, m<br />

m2 0,<br />

1,<br />

2<br />

Long time: independent<br />

of initial conditions<br />

<br />

<br />

t n t<br />

n 0<br />

<br />

n<br />

1<br />

<br />

<br />

0<br />

Relaxation time depends<br />

only on the initial density


does not conform to the classical picture!<br />

C. A. Jeffrey et al., PRL 96, 106105 (2006)<br />

Isl<strong>and</strong> densities do not approach each<br />

other at long times:<br />

QSE Non-Oswald<br />

Breakdown of Classical Coarsening<br />

Time constant ~ 1/Flux<br />

Strong flux dependence!<br />

Unexpected!<br />

Anomalously fast relaxation<br />

~1000x faster than expected!<br />

allows equilibrium!<br />

n<br />

1.2 ML of Pb at 208K<br />

at various flux rates<br />

t<br />

n<br />

0<br />

t<br />

1


Reciprocal Space is Superb for Obtaining<br />

Good Statistics of Distributions<br />

0.01 1 100<br />

Equivalent ML Time = t*F<br />

Flux<br />

0.03 ml/min<br />

0.14<br />

0.28<br />

0.56<br />

1.5


Psuedomorphic Laminar Structures<br />

Reciprocal Space<br />

Q z<br />

t 2<br />

Q x<br />

d 3<br />

23<br />

d 3<br />

d 2<br />

12<br />

d 2<br />

d 1


Averaging with Overlapping Rods<br />

Sum 1 column of atoms at R p :<br />

A<br />

c<br />

<br />

( R , Q<br />

p<br />

z<br />

)<br />

FT all columns:<br />

<br />

S(<br />

Q)<br />

A ( R , Q<br />

<br />

<br />

R<br />

N<br />

irr <br />

p<br />

c<br />

p<br />

<br />

<br />

<br />

j(<br />

R )<br />

z<br />

) e<br />

p<br />

b<br />

j<br />

e<br />

iQ<br />

z<br />

z<br />

j<br />

= + +<br />

2<br />

<br />

<br />

iQp<br />

Rp<br />

*<br />

A<br />

c ( Rp<br />

, Qz<br />

) Ac<br />

( R<br />

<br />

p<br />

R R<br />

p p<br />

,<br />

Q<br />

<br />

<br />

iQp<br />

R<br />

p<br />

*<br />

e A <br />

c ( Rp<br />

Rp<br />

, Qz<br />

) Ac<br />

( Rp<br />

, Qz<br />

) <br />

Rp<br />

R<br />

p<br />

= FT of an amplitude-amplitude correlation function<br />

z<br />

) e<br />

<br />

iQ<br />

(<br />

R R<br />

)<br />

p<br />

p<br />

p


S<br />

Familiar short-range order diffuse <strong>and</strong><br />

long-range uncorrelated disorder in the Bragg<br />

<br />

Q <br />

N irr<br />

S<br />

<br />

R<br />

p<br />

e<br />

Bragg<br />

<br />

iQ<br />

R<br />

p<br />

Bragg:<br />

Transversely<br />

Integrated:<br />

p<br />

<br />

<br />

A<br />

c ( Rp<br />

, Qz<br />

) <br />

Rp<br />

<br />

<br />

<br />

A <br />

c ( Rp<br />

Rp<br />

, Q<br />

<br />

<br />

Diffuse<br />

Q S<br />

Q<br />

z<br />

<br />

<br />

z<br />

2<br />

)<br />

<br />

A<br />

*<br />

c<br />

<br />

( R,<br />

Q<br />

p<br />

z<br />

)<br />

<br />

R<br />

p<br />

<br />

A<br />

c<br />

<br />

( R,<br />

Q<br />

S<br />

Bragg Qz <br />

A ( R,<br />

Q )<br />

c p z<br />

2<br />

<br />

Rp<br />

d Q <br />

<br />

2<br />

p S Q <br />

2<br />

Ac<br />

( Rp<br />

, Qz<br />

) <br />

R<br />

p<br />

p<br />

z<br />

)<br />

2<br />

<br />

R


Mosaic crystal gave transverse integration: must model with R Int<br />

1000<br />

100<br />

10<br />

R Integrated<br />

Miceli,Palmstrom,Moyers, APL 61, 2060 (1992)<br />

R specular<br />

P. Miceli, in Semiconductor, <strong>Interfaces</strong>, Microstructures <strong>and</strong> Devices.<br />

Ed. Z.C Feng (IOP Publishing, Bristol, 1993) pp. 87-114


Summary<br />

<strong>Scattering</strong> <strong>Scattering</strong> <strong>from</strong> surfaces involves a range<br />

of different types of measurements<br />

Materials Materials research problems require<br />

information on a broad range of length<br />

scale <strong>from</strong> atomic to mesoscale<br />

Unique Unique ability of x-<strong>ray</strong>s: x <strong>ray</strong>s: surface <strong>and</strong><br />

subsurface structure simultaneously


X-<strong>ray</strong> Diffraction Text Books:<br />

Bibliography<br />

B. E. Warren, X-<strong>ray</strong> Diffraction (Dover Publications, New York, 1990). Originally published by<br />

Addison-Wesley (1969).<br />

J. Als-Nielsen <strong>and</strong> D. McMorrow, Elements of Modern X-<strong>ray</strong> Physics (Wiley, New York, 2001).<br />

U. Pietsch, V. Holy, T. Baumbach, High Resolution X-<strong>ray</strong> Diffraction: From Thin Films to<br />

Lateral Nanostructures, (Springer, 2004).<br />

R. W. James, The Optical Principles of the Diffraction of X-<strong>ray</strong>s (Cornell University Press, Ithaca,<br />

New York, 1965). Now available <strong>from</strong> Oxbow Press.<br />

A. Guinier, X-<strong>ray</strong> Diffraction in Crystals, Imperfect Crystals, <strong>and</strong> Amorphous Bodies, (Freeman,<br />

San Francisco, 1963).<br />

W. H. Zachariasen, Theory of X-<strong>ray</strong> Diffraction in Crystals, (Wiley, New York, 1945) (<strong>and</strong><br />

subsequently by Dover in 1967).<br />

J. M. Cowley, Diffraction Physics, (North-Holl<strong>and</strong>, Amsterdam, New York, 1981).<br />

Engineering-type books on x-<strong>ray</strong> diffraction:<br />

B. D. Cullity, Elements of X-<strong>ray</strong> Diffraction, (Addison-Wesley, Reading MA, 1978).<br />

H. P. Klug <strong>and</strong> L. E. Alex<strong>and</strong>er, X-<strong>ray</strong> Diffraction Procedures (Wiley, New York, 1974).<br />

Useful Reference Books:<br />

International Tables of X-<strong>ray</strong> Crystallography Vol. 1, 2, 3, 4 <strong>and</strong> Vol. A (Published for The<br />

International Union of Crystallography by Kluwer Academic Publishers, 1989).<br />

P. Villars <strong>and</strong> L. D. Calvert, Pearson’s H<strong>and</strong>book of Crystallographic Data for Intermetallic<br />

Phases, (American Society for Metals, Metals Park, OH, USA, 1986).<br />

Laue Atlas, Ed. Kernforschungsanlage Jülich (Wiley, 1975).<br />

Elementary treatments of crystallography in solid state textbooks, such as<br />

C. Kittel, Introduction to Solid State Physics, 7 th ed. (Wiley, 2005).<br />

M. P. Marder, Condensed Matter Physics (Wiley, 2000) (nice treatment of quasicrystals)<br />

N. W. Aschroft <strong>and</strong> N. D. Mermin, Solid State Physics (Saunders College, 1976).<br />

1


Excellent (in depth) treatment of scattering <strong>from</strong> defects:<br />

M. A. Krivoglaz, Theory of X-<strong>ray</strong> <strong>and</strong> Thermal <strong>Neutron</strong> <strong>Scattering</strong> by Real Crystals, (Plenum,<br />

New York, 1969).<br />

M. A. Krivoglaz, X-<strong>ray</strong> <strong>and</strong> Thermal <strong>Neutron</strong> Diffraction in Nonideal Crystals, (Springer, 1996)<br />

M. A. Krivoglaz, Diffuse <strong>Scattering</strong> of X-<strong>ray</strong>s <strong>and</strong> <strong>Neutron</strong>s by Fluctuations, (Springer, 1996)<br />

<strong>Neutron</strong> <strong>Scattering</strong>:<br />

G. L. Squires, Introduction to the Theory of Thermal <strong>Neutron</strong> <strong>Scattering</strong>, (Cambridbge<br />

University Press, Cambridge, London, New York, 1978).<br />

G. E. Bacon, <strong>Neutron</strong> Diffraction, (Clarendon Press-Oxford, 1975).<br />

S. W. Lovesey, Theory of <strong>Neutron</strong> <strong>Scattering</strong> <strong>from</strong> Condensed Matter, (Clarendon Press-Oxford,<br />

1984). Volumes 1 <strong>and</strong> 2.<br />

Reviews Articles of Surface <strong>Scattering</strong><br />

R. Feidenhans’l, Surf. Sci. Rep. 10, 105 (1989).<br />

I. K. Robinson <strong>and</strong> D. J. Tweet, Rep. Prog. Phys. 55, 599 (1992).<br />

P. F. Miceli, in Seminconductor <strong>Interfaces</strong>, Microstructures <strong>and</strong> Devices: Properties <strong>and</strong><br />

Applications, ed. Z. C. Feng, (IOP Publishing, Bristol, 1993) p. 87-116.<br />

H. Dosch, Critical Phenomena at <strong>Surfaces</strong> <strong>and</strong> <strong>Interfaces</strong>, (Springer-Verlag, Berlin, 1992).<br />

T. P. Russell, Mat. Sci. Rep. 5, 171-271 (1990).<br />

I. K. Robinson in H<strong>and</strong>book on Synchrotron Radiation, Vol.3, ed. G. Brown <strong>and</strong> D. E. Moncton<br />

(Elsevier Science Publishers)<br />

P. H. Fouss <strong>and</strong> S. Brennan, Annu. Rev. Mater. Sci. 20, 365 (1990).<br />

J. Als-Nielsen, in Structure <strong>and</strong> Dynamics of <strong>Surfaces</strong> II: Phenomena, Models <strong>and</strong> Methods, ed.<br />

W. Schommers <strong>and</strong> P. von Blanckenhagen, Topics in Current Physics, Vol. 43,<br />

(Springer-Verlag, Berlin, 1987), p.181<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!