23.07.2013 Views

Scientific Opportunities with Synchrotron Radiation for Nanoscience

Scientific Opportunities with Synchrotron Radiation for Nanoscience

Scientific Opportunities with Synchrotron Radiation for Nanoscience

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Scientific</strong> <strong>Opportunities</strong> <strong>with</strong><br />

<strong>Synchrotron</strong> <strong>Radiation</strong> <strong>for</strong><br />

Nano-Science<br />

Nano Science<br />

Zahid Hussain<br />

<strong>Scientific</strong> Support Group, Leader<br />

Advanced Light Source<br />

Lawrence Berkeley National Laboratory


Outline<br />

Why and How?<br />

• What we need to learn about nano systems ?<br />

• What kind of tools are necessary ?<br />

• What facilities are available at the<br />

synchrotron (ALS) ?<br />

• What facilities need to be developed ?<br />

Understanding complex nano-phenomena nano phenomena require advanced<br />

tools<br />

Close proximity essential <strong>for</strong> efficiency and timely results


<strong>Opportunities</strong> <strong>for</strong> nanoscience <strong>with</strong> soft x-rays<br />

@ ALS<br />

1. Spectroscopy (In-Situ, real time)<br />

Absorption/Emission Spectroscopy (photon-in photon-out, bulk<br />

sensitivity, mag/elctric field)<br />

Photoemission Spectroscopy (photon-in electron-out, surface<br />

sensitivity, upto 10 torr)<br />

2. Microscopy (sometime combined <strong>with</strong> spectroscopy)<br />

Scanning Transmission Microscope (STXM; Res ~25nm)<br />

Transmission Imaging Microscope (XM1/2; Res ~15 nm)<br />

Photoemission electron microscope (PEEMII/III; Res ~5-50nm)<br />

Lensless diffractive imaging (3D images, Res ~5-10nm)<br />

3. Scattering<br />

Resonant Scattering (~100-1000 times higher cross section)<br />

Resonant Inelastic Scattering (res ~3-4meV @ Mn/Cu 3p edges)<br />

Coherent (dynamic) Scattering (time resolution msec to nanosec)<br />

Small and Wide Angle Scattering (SAXS/WAXS, soft x-rays<br />

provide unique capabilities)


Spectroscopy<br />

Quantum confinement (properties different<br />

than constituents)<br />

Chemical Bonding (chemical reactivity)<br />

Electronic Structure (understanding complexity)


Quantum-confinement effects and particleparticle<br />

interactions in Ge & Si nanocrystals<br />

Absorption Spectra<br />

Conduction band shift vs particle size<br />

Atomic <strong>for</strong>ce microscope<br />

sub-ML multilayer<br />

• Ge nanoparticles condensed out of the gas-phase<br />

• Particle-size determined post-situ by AFM<br />

• Blue-shift of Ge L-edge correlated <strong>with</strong><br />

decreasing cluster size<br />

•Stronger CB confinement effects observed in Ge<br />

than in Si nanoparticles.<br />

C. Bostedt et al. APL 84, 4056 (2004) — LLNL PRT<br />

C. Bostedt et al. APL 85, 5334 (2004)


Surface Reconstructions in Nanodiamonds<br />

Emission Absorption<br />

Need of theory<br />

Core – Diamond; Surface – buckyballs<br />

C 147 (≈1.2 nm) C 275 (≈1.4 nm)<br />

• Pre-edge Carbon K-edge structures observed in<br />

diamond clusters different from bulk<br />

diamond.<br />

• Fullerene-like reconstructions determined at<br />

surfaces of diamond clusters by ab initio<br />

calculations compatible <strong>with</strong> pre-edge XAS<br />

J.-Y. Raty, G. Galli, C. Bostedt, T.W. Buuren & L.J. Terminello,<br />

PRL 90, 4056 (2003) — LLNL PRT


High resolution C1s Photoelectron Spectra of<br />

hydrocarbon<br />

C 1s photoelectron spectra of<br />

propyne and two model compounds<br />

ethyne and ethane measured.<br />

Unambiguous assignment of peaks in<br />

propyne spectrum is made possible<br />

by characteristic vibrational<br />

structure and ab initio theory.<br />

Shift of the methyl (CH3) peak in<br />

propyne relative to ethane is due<br />

to the electronegativity of the<br />

ethyne (HCºC) group.<br />

Previous C 1s spectrum of propyne<br />

measured <strong>with</strong> a lab source is<br />

indicated by the dashed line<br />

From BL 10.0 (AMO, ALS)<br />

Thomas et al, PRL<br />

Ambient pressure photoemissiom


Microscopy<br />

STXM: Microbial Polymer Templates <strong>for</strong> Iron Oxyhydroxides<br />

Spectra taken<br />

above C K edge<br />

Natural filaments<br />

Fe (~ 25 nm) <strong>with</strong> a polymer<br />

as core (~5nm)<br />

1 µm<br />

C.S. Chan, G. De Stasio, S.A. Welch, M. Girasole, B.H. Frazer, M.V. Nesterova, S.<br />

Fakra, J.F. Banfield, "Microbial Polysaccharides Template Assembly of<br />

Nanocrystal Fibers“, Science 303, 1656-1658 (2004). LBNL-55375<br />

Synthetic filaments (Fe-Alginate)<br />

1 µm<br />

Look like natural filaments!<br />

STXM confirmed that the natural polymers are<br />

mostly polysaccharides <strong>with</strong> some proteins (by doing spectroscopy)<br />

spectroscopy


WHAT IS COHERENT X-RAY DIFFRACTION IMAGING<br />

(CXDI) OR LENSLESS IMAGING ?<br />

ALS undulator beam<br />

• Spatially and<br />

temporally<br />

coherent<br />

• Monochromatic<br />

• 0.5-5 keV energy<br />

Life-science or<br />

materials-science<br />

sample<br />

• Alignment<br />

• Viewing<br />

• Rotation<br />

• Cryoprotection<br />

• CCD detector<br />

• Directly records<br />

diffraction pattern<br />

• To get a 3D image:<br />

- record a tilt series of diffraction patterns<br />

- insert the resulting Fourier amplitudes into a 3D<br />

Fourier space<br />

- use a 3D phase retrieval algorithm to get their<br />

phases<br />

- get an image by Fourier inversion (“true” 3D imaging)


SEM image of 3D<br />

pyramid test object<br />

Object mounting on<br />

silicon nitride membrane<br />

Lensless Imaging:<br />

TEST IMAGES IN 3D AND 2D<br />

Pyramid 3D<br />

test object<br />

• Test object of 50 nm<br />

gold balls<br />

• Individual gold balls<br />

resolved<br />

• Estimated resolution<br />

20 nm<br />

• 130 views -65 to +65°<br />

• Exposure time 10 hours<br />

• X-ray energy = 750 eV<br />

• Object width: about<br />

2µm<br />

• Reconstruction on a<br />

Macintosh G5 in about<br />

10 hours<br />

• Reconstructed image of<br />

freeze-dried dwarf yeast<br />

A = nucleus; B = vacuole; C =<br />

cell wall<br />

• X-ray energy = 520 eV<br />

• Estimated resolution<br />

30 nm<br />

• Exposure = 45 sec<br />

1 µm<br />

Chapman/Howells/Spence et al - ALS Kirz/Jacobsen/Elser/Sayre et al -ALS


Resolution (nm)<br />

3D MICROSCOPES: RESOLUTION AND<br />

SAMPLE–THICKNESS LIMITS<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

GOOD RESOLUTION BUT<br />

SAMPLE SIZE IS LIMITED<br />

Single<br />

particl<br />

Room<br />

temp<br />

TEM<br />

Cryo<br />

TEM<br />

GOOD SAMPLE SIZE BUT<br />

RESOLUTION IS LIMITED<br />

10 100 1000 10000<br />

Sample thickness (nm)<br />

Zone plate<br />

soft x-ray<br />

Optical<br />

confocal<br />

Inorganic<br />

Organic<br />

Lensless Imaging<br />

RESOLUTION AND<br />

SAMPLE SIZE BOTH GOOD


Unique features of scattering<br />

in the soft x-ray region.<br />

Soft x-ray resonances bring<br />

new contrast mechanisms:<br />

- molecular bond sensitivity<br />

- elemental sensitivity<br />

Extremely sensitive to small<br />

sample volumes<br />

- cross section ∝ λ 3<br />

- ideal <strong>for</strong> nanoscience<br />

- coherent power ∝ λ 2<br />

Low q scattering at higher<br />

angles:<br />

- wide range structure<br />

in 3mm –1nm<br />

- “incoherent” & “coherent”<br />

Unique capabilities <strong>for</strong><br />

spectroscopy<br />

microscopy<br />

time-resolved dynamic<br />

studies<br />

Spectro-microscopy of nano<br />

materials<br />

Inhomogenities of<br />

correlated systems<br />

(charge/orbital order)


Porous low-K dielectric films via templating process<br />

porogen in matrix<br />

after porogen removal<br />

Lower limit to pore size?<br />

Processing effects?<br />

Mitchel, Kortright et al (unpublished)<br />

OD<br />

Intensity (arb. units)<br />

NEXAFS C K-edge<br />

Matrix<br />

Porogen<br />

280 285 290 295 300<br />

Photon Energy (eV)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Scattering at 2θ=6 deg<br />

0<br />

280 285 290 295 300<br />

Photon Energy (eV)


Scattering pre- and post-processing to remove porogen phase<br />

particles.<br />

For large porogens, R pore = R porogen.<br />

For smallest porogen, Rpore > Rporogen. Matrix not rigid enough to sustain<br />

smallest pores.


Coherent soft-Xray Scattering –<br />

Dynamical Studies !!<br />

Soft x-rays: - More coherent flux -Scales like λ 2 X brigtness<br />

- High sensitivity <strong>for</strong> 3d metals: Resonant 2p-3d transition-<br />

- Dynamical studies: Time resolution: > ms - 5ns) limited by<br />

time correlator<br />

Speckle-diffraction Pattern<br />

through a Co:Pt film.<br />

major loop<br />

minor loop<br />

Coherent Soft X-ray Magnetic Scattering End Station<br />

• Applied field to 0.52 T of arbitrary orientation<br />

• ‘Continuous’ scattering angle from 0 o to ~ 165 o<br />

• Functional prototype <strong>for</strong> higher field device


Resistivity (ohm-cm)<br />

Colossal Magnetoresistance (CMR) Effect<br />

10 0<br />

10 -1<br />

10 -2<br />

negative<br />

magneto-<br />

resistance<br />

Novel Electronic Phases<br />

La 1.2 Sr 1.8 Mn 2 O 7<br />

H=0T<br />

H=1T<br />

H=2T<br />

H=3T<br />

H=5T<br />

H=7T<br />

Temperature (K)<br />

Susceptibility (emu/mol)<br />

Ferro<br />

Para<br />

0 100 200 300 0 100 200 300<br />

Temperature (K)<br />

CO : Charge Order (Stripes)<br />

FI : Ferromagnetic Insulator<br />

AFI : Antiferro. Insulator<br />

CAF : Canted AFM Insulator<br />

CMR : Colossal MagnetoResis.<br />

O Large drop of resistivity<br />

upon relatively small<br />

magnetic fields<br />

O Para Ferromagnetism<br />

O Most dramatic on the<br />

insulating phase (short range<br />

orbital order)


Manganites Exhibit Interplay of Charge,<br />

Spin, lattice and Orbital degrees of freedom<br />

Interacting degrees of<br />

freedom (complex electron<br />

systems)<br />

spin<br />

charge<br />

lattice<br />

orbital<br />

Competition among many Energy<br />

and Length scales<br />

Determine the physics of these systems


Nanoscale electronic disorder in Correlated Systems (STM)<br />

∆<br />

65meV<br />

25meV<br />

Differential Conductance (nS)<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

15nm<br />

0.0<br />

-150 -100 -50 0 50 100 150<br />

Sample Bias (mV)<br />

Spatial distribution of energy gap (∆)<br />

in Bi2212 (High Tc materials)<br />

600nm<br />

Metal-Insulator transitions in the<br />

CMR material La Ca MnO 3<br />

Energy scale: ~10meV<br />

Length scale: 2 - 1000nm<br />

Ch. Renner et al, Nature, 416, 518 (2002)


Energy scales of various excitations<br />

3 eV<br />

1 eV<br />

100<br />

meV<br />

0<br />

X<br />

Mott Gap,<br />

C-T Gap<br />

dd excitations,<br />

Orbital Waves<br />

Optical Phonons,<br />

Magnons,<br />

Local Spin-flips<br />

Superconducting gap<br />

Superconducting gap: ~ 1-10meV<br />

Optical Phonons: ~ 40 - 70 meV<br />

Magnons: ~ 10 meV - 40 meV<br />

Orbital fluctuations (originated<br />

from optically <strong>for</strong>bidden d-d<br />

excitations): ~ 100 meV-<br />

1.5 eV<br />

Soft x-ray resonances (3p -> 3d) provide<br />

a very sensitive channels of excitations<br />

MERLIN (


Spectroscopies of Correlated Electrons<br />

Techniques of choice:<br />

1. Angle resolved phtotemission (ARPES) :<br />

Single-particle spectrum A(k,ω)<br />

2. Inelastic Neutron Scattering (INS) :<br />

(neutrons carry magnetic moment)<br />

Spin fluctuation spectrum S(q,ω)<br />

3. Inelastic x-ray scattering (IXS) :<br />

New info on the Charge Channel : N(q,ω)<br />

This extra experimental info can help understand<br />

correlated systems


hω 1 ,k 1 ,ε 1<br />

Photon-in<br />

Resonant Inelastic soft X-ray Scattering<br />

(Raman Spectroscopy <strong>with</strong> finite q)<br />

energy<br />

conduction band<br />

d<br />

valence band<br />

p<br />

core level<br />

Energy loss: ω=ω 2 -ω 1<br />

Momentum transfer: q=k 2 -k 1<br />

Resonance: ω 1 ~ ω edge<br />

Why???<br />

Can Can be applied in the presence of<br />

magnetic/electric field<br />

Bulk Bulk sensitive probe <strong>for</strong> studying unoccupied<br />

electronic states<br />

hω2 ,k2 ,ε2 Photon-out Optically Optically <strong>for</strong>bidden d-d excitation<br />

Finite Finite q transfer allows to study indirect Mott<br />

gap<br />

Couples Couples to charge density directly (Neutrons<br />

couples to spin).<br />

Energy Energy Resolution not limited by the core<br />

hole lifetime: achieve k BT BT resolution


meV Resolution VLS Spectrograph<br />

Optical Design<br />

Ray Traces<br />

• Calculated/measured Resolution<br />

3 meV (high efficiency)<br />

• Overall length = 2 meters.<br />

• Spectrograph <strong>for</strong> Merlin beamline<br />

(completion end of 2006)<br />

• Early experiments on bl 12<br />

(starting in July, 2005)<br />

200 µm<br />

hν = 49eV ± 5meV


Momentum-Resolved Soft X-ray Inelastic<br />

Scattering<br />

#1 (5 o~35o)<br />

#1<br />

#2 (35 o~65o)<br />

#2 #3 #4<br />

-15o<br />

15<br />

0o<br />

o<br />

#3 (65 o~95o)<br />

#4 (95 o~125o)<br />

By combining the rotation of chamber and<br />

5 mounting ports, one is able to per<strong>for</strong>m momentum-resolved<br />

RIXS; need Resolving Power ~ 100,000 – QERLIN !!<br />

#5<br />

#5 (125 o~155o)<br />

ARPES<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

#3<br />

#2<br />

-5<br />

#5<br />

#4<br />

#1<br />

0<br />

(0,0)<br />

5<br />

(π,0)<br />

(π,π)


Spatial and temporal frequency sensitivities<br />

of various techniques<br />

Coherent<br />

scattering


Concluding remarks<br />

o In situ (real conditions) studies. Photon-in photon-out studies,<br />

Ambient pressure photoemission.<br />

o Single nanoparticle imaging and spectroscopy. STXM<br />

o Lensless Imaging: Bulk 3D images, resolution ~ 2 λ<br />

(inorganic ~ 2nm, Organic ~ 5nm (radiation limit)<br />

think of combining <strong>with</strong> atomic resolution protein<br />

Crystallography.<br />

o Dynamic coherent scattering. (ms – 5 ns, limited by time<br />

correlator).<br />

o Soft x-ray scattering: Provide new contrast mechanism <strong>for</strong><br />

imaging. Imaging <strong>with</strong> spectroscopy.


Acknowledgement<br />

o Inelastic Scattering: Yi-De Chuang, Jinghua Guo; Jonathan<br />

Denlinger, (LBNL, ALS), Eric Guillikson, Phil Batson (LBNL)<br />

o Lensless Imaging: Janos Kirtz, Malcolm Howells(LBNL, ALS)<br />

o <strong>Nanoscience</strong> characterisation: Franz Himpsel (univ of Wisconsin),<br />

Lou Terminello (LLNL)<br />

o scattering: Jeff Kortright (LBNL), Mitchel (Dow chemical),<br />

Ade (NCU)<br />

o Coherent Scattering: Steve Kevan (univ of Oregon)


Transmission (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

detecto<br />

r<br />

200<br />

C 1s (46%)<br />

O 1s (66%)<br />

400 600<br />

Energy (eV)<br />

100nm Si 3 N 4, ~4 µl liquid volume, 66% transmission<br />

@O1s, vacuum pressure < 1 x 10 -9 Torr<br />

Liquid Cell - Static<br />

grating<br />

SR<br />

Fe 2p (82%)<br />

C_100nm; SiC_100nm<br />

Si_100nm; SiN_100nm<br />

Al_100nm<br />

800<br />

slit<br />

1000<br />

Si 3N 4<br />

O-ring<br />

o Ligand-stabilized Co nanoparticles<br />

o Ligand material: Oleic Acid,<br />

C18H34O2 [CH3 (CH2 ) 7CH:CH(CH2 ) 7CO2H] liquid<br />

o Solvent Solution: Dichlorobenzene, C 6 H 4 Cl 2<br />

o Size (Measured using TEM): 3, 4, 5, 6, 9 nm


In-situ analysis of Co nanoclusters in solution<br />

3d 8 L<br />

3d 7<br />

∆<br />

2p 5 3d 8 L<br />

∆+U-Q ≈ ∆<br />

2p 5 3d 7<br />

o Ligand-stabilized Co nanoparticles<br />

o Ligand material: Oleic Acid, C 18 H 34 O 2 [CH 3 (CH 2 ) 7 CH:CH(CH 2 ) 7 CO 2 H]<br />

o Solvent Solution: Dichlorobenzene, C 6 H 4 Cl 2<br />

o Size (Measured using TEM): 3 nm, 4 nm, 5 nm, 6 nm, 9 nm<br />

Molecular Foundry (P. Alivisatos & M. Salmeron) & ALS (J. Guo)<br />

CT<br />

CT<br />

d-d<br />

I d-d ~ N bulk/N surface


X-Y<br />

<strong>Nanoscience</strong>: Electronic Structure<br />

Determination - Techniques of choice<br />

Requirements ?<br />

σ∗<br />

π∗<br />

hν<br />

X + −Y −<br />

“in situ, real time” studies of:<br />

• Valence orbital (bonding, energy gap)<br />

• Core level (charge transfer,<br />

elemental/chemical specificity)<br />

How ?<br />

•Unoccupied bands:<br />

Absorption Spectroscopy<br />

•Occupied bands:<br />

Emission Spectroscopy and<br />

Photoelectron Spectroscopy<br />

•Orientation of molecules on surfaces:<br />

Polarization dependence studies<br />

Requires close coupling between theory and experiment


Resonant Inelastic soft X-ray Scattering<br />

Calculation based on photon energy of Brillouin zone size which can be covered by this<br />

650eV and 3.85 Å lattice constant spectrometer<br />

10<br />

#1 (5 o ~35 o )<br />

#2 (35 o ~65 o )<br />

-15 o<br />

0o 15o #3 (65 o ~95 o )<br />

#4 (95 o ~125 o )<br />

#5 (125 o ~155 o )<br />

Five spectrometers <strong>with</strong> 30 o rotations can cover<br />

most of the Brillouin zone<br />

momentum transfer ∆q<br />

Å -1<br />

0.60<br />

0.55<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

5<br />

0<br />

-5<br />

-10<br />

-5<br />

0<br />

(0,0)<br />

-15 -10 -5 0 5 10 15<br />

chamber rotation angle<br />

5<br />

#5<br />

#4<br />

#3<br />

#2<br />

#1<br />

(π,0)<br />

(π,π)<br />

0.75<br />

0.70<br />

0.65<br />

0.60<br />

0.55<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

fraction of the Brillouin zone


High Pressure Transfer Lens - Schematic<br />

Experimental Cell<br />

<strong>with</strong> temperaturecontrolled<br />

sample,<br />

gas flow control<br />

and variable<br />

distance to nozzle<br />

Four Pressure Zones<br />

(differential pumping)<br />

X-rays enter through a<br />

silicon nitride window<br />

Four Electrostatic Lenses<br />

Hemispherical<br />

Analyzer Lens<br />

D.F. Ogletree, H. Bluhm, Ch. Fadley, Z. Hussain, M. Salmeron, Materials Sciences Division and Advanced Light Source, LBNL.


Photoelectrons<br />

from sample<br />

surface AND<br />

near-surface gas<br />

Ambient pressure soft x-ray<br />

spectroscopy: Concept<br />

controlled<br />

gas atmosphere<br />

e -<br />

hν<br />

synchrotron beam enters<br />

through window (Al or SiN,<br />

~100 nm)<br />

differentially pumped<br />

electron transport


ALS BEAM LINE 9.0.1: Lensless Imaging<br />

Diffraction station built by SUNY/BNL group<br />

Diffraction pattern of<br />

freeze-dried yeast<br />

taken by SUNY gp<br />

Monochromator zone plate<br />

Cryo holder<br />

CCD detector chamber<br />

Sample manipulator<br />

Optimized and dedicated setup could provide 100-1000 times<br />

better efficiency


Scanning Transmission X-ray Microscope<br />

(STXM) 11.0.2<br />

Side view Top view<br />

Interferometer<br />

Detector Zone plate<br />

optics<br />

Sample mechanical stages<br />

and vacuum<br />

window<br />

Sample holder<br />

Piezo scanning stage


Imaging of tantalum oxide aerogel<br />

1 µm<br />

3D isosurface Cross-section<br />

(bar =<br />

200nm)<br />

• 2-micron-wide particle of tantalum oxide aerogel<br />

500 nm cube<br />

res’n 20-30 nm<br />

• Density about 0.1 gm/cm 3 which is about 1.2% of bulk<br />

density<br />

• Applications <strong>for</strong> NIF target, hydrogen storage<br />

Chapman/Howells/Spence et al - ALS<br />

50 nm


<strong>Nanoscience</strong> Characterization Facility @ ALS<br />

(bl 8.0)<br />

“User-friendly <strong>for</strong> nanostructure characterization<br />

endstation” proposal funded by DOE<br />

(U. Wisconsin-Madison, F. Himpsel et al)<br />

(1) Micro-focus (~10 µm) beam spot<br />

(2) Efficient fluorecence yield detectors <strong>for</strong> XAS<br />

(3) Emission Spectrograph (VLS)<br />

(4) Photoemission (Scienta 100)<br />

System is being commissioned

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!