23.07.2013 Views

Improvements on Impedance Matching and 13 MHz RF System in ...

Improvements on Impedance Matching and 13 MHz RF System in ...

Improvements on Impedance Matching and 13 MHz RF System in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Improvements</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Impedance</strong> <strong>Match<strong>in</strong>g</strong><br />

<strong>and</strong> <strong>13</strong> <strong>MHz</strong> <strong>RF</strong> <strong>System</strong><br />

<strong>in</strong> SNS I<strong>on</strong> Source<br />

Yo<strong>on</strong> Kang<br />

<strong>RF</strong> I<strong>on</strong> Source Workshop<br />

Oak Ridge, TN<br />

Sep. 28, 2009


SNS I<strong>on</strong> Source <strong>RF</strong> Z <strong>Match<strong>in</strong>g</strong><br />

(with Present Internal Antenna Design)<br />

• Present system<br />

• Both 2 <strong>MHz</strong> <strong>and</strong> <strong>13</strong>.56 <strong>MHz</strong> amplifiers are comb<strong>in</strong>ed through impedance match<strong>in</strong>g<br />

networks to deliver <strong>RF</strong> power to the I<strong>on</strong>-source antenna<br />

• Ma<strong>in</strong> <strong>RF</strong> power from 2 <strong>MHz</strong> 80 kW pulsed amplifier at 6% duty cycle<br />

• Pl Plasma iigniter i system uses <strong>13</strong> <strong>13</strong>.56 6 MH <strong>MHz</strong> CW amplifier lifi ( (~600 600 W max) )<br />

• Exist<strong>in</strong>g match<strong>in</strong>g networks for <strong>in</strong>ternal antenna design<br />

• 2 <strong>MHz</strong> match<strong>in</strong>g uses <strong>on</strong>ly<br />

<strong>on</strong>e variable element<br />

(vacuum capacitor) at the<br />

match<strong>in</strong>g transformer output<br />

that cannot provide perfect<br />

good g match<strong>in</strong>g g<br />

• A series <strong>in</strong>ductor is used to<br />

the antenna to raise the <strong>in</strong>put<br />

<strong>in</strong>ductance that can use a<br />

smaller capacitance p<br />

• <strong>13</strong> <strong>MHz</strong> match<strong>in</strong>g is d<strong>on</strong>e<br />

properly with two variable<br />

capacitors<br />

• <strong>Match<strong>in</strong>g</strong> network with 2<br />

capacitors to be tested<br />

<strong>RF</strong> <strong>in</strong><br />

7T:1T<br />

Transfor<br />

mer<br />

2 Managed by UT-Battelle<br />

for the U.S. Department of Energy Y. Kang Sep. 22, 2009<br />

10810 pF<br />

5kV<br />

~ 650 pF<br />

20kV<br />

To Antenna


<strong>RF</strong> Model<strong>in</strong>g of I<strong>on</strong> Source (Internal Antenna)<br />

• CST MWS package used for simulati<strong>on</strong> <strong>and</strong><br />

analysis y of the i<strong>on</strong> source <strong>RF</strong><br />

– The actual antenna impedance can be estimated<br />

with the element values <strong>in</strong> the match<strong>in</strong>g network<br />

– An equivalent c<strong>on</strong>ductivity for model<strong>in</strong>g plasma<br />

<strong>in</strong> MWS for a design can be found for the antenna<br />

i<strong>in</strong>put t resistance i t (th (the ddata t provided id d i<strong>in</strong> YY. PP. RRaizer i 1<br />

can provide rough estimate of )<br />

– Simulati<strong>on</strong> is d<strong>on</strong>e with 20 mils thick alum<strong>in</strong>a<br />

ceramic <strong>in</strong>sulated <strong>in</strong>ternal antenna i<strong>on</strong> source<br />

– The simulati<strong>on</strong> may be used to f<strong>in</strong>d other <strong>RF</strong><br />

parameters for design improvement<br />

Simulated<br />

w/o plasma<br />

1 Y. P. Raizer, Gas Discharge Physics<br />

3 Managed by UT-Battelle<br />

for the U.S. Department of Energy Y. Kang Sep. 22, 2009<br />

Measured<br />

w/o plasma<br />

Simulated w/ plasma<br />

plasma=5000 plasma 5000 S/m<br />

Simulated <strong>and</strong> measured<br />

antenna <strong>in</strong>put impedances<br />

Z<strong>in</strong> @ 2 <strong>MHz</strong><br />

Z<strong>in</strong> @ <strong>13</strong> <strong>MHz</strong>


<strong>RF</strong> Model<strong>in</strong>g of the I<strong>on</strong> Source (external antenna)<br />

Hous<strong>in</strong>g<br />

(Sta<strong>in</strong>less Steel)<br />

Plasma model<br />

(Lossy Metal)<br />

Antenna<br />

Plexiglass AlN Ceramic<br />

w/o plasma<br />

Chamber Chamber<br />

w/ plasma<br />

Antenna<br />

Input Port<br />

Magnet Holder<br />

(Copper)<br />

Simulated w/ plasma<br />

plasma=600 S/m<br />

Tefl<strong>on</strong> Insulati<strong>on</strong> Antenna impedance Z<strong>in</strong><br />

measured w/o plasma<br />

2 <strong>MHz</strong>, <strong>13</strong>.56 <strong>MHz</strong><br />

• External antenna i<strong>on</strong> source is also simulated <strong>and</strong> analyzed to<br />

– M<strong>in</strong>imize antenna voltage breakdown<br />

– Analyze with high permeability ferrite material for enhance beam output current<br />

– M<strong>in</strong>imize the magnet holder heat load<strong>in</strong>g<br />

• The c<strong>on</strong>ductivity may need to be determ<strong>in</strong>ed for each chamber geometry<br />

4 Managed by UT-Battelle<br />

for the U.S. Department of Energy Y. Kang Sep. 22, 2009


SNS I<strong>on</strong> Source Z <strong>Match<strong>in</strong>g</strong><br />

(External Antenna Design)<br />

• Test of the external antenna i<strong>on</strong> source has been successful<br />

– The 4 uH <strong>in</strong>ductor was removed s<strong>in</strong>ce the external antenna has higher <strong>in</strong>ductance <strong>in</strong> 2 <strong>MHz</strong><br />

antenna system (3 uH vs. 0.7 uH)<br />

– <strong>13</strong> <strong>MHz</strong> MH rejecti<strong>on</strong> j ti ttrap was added dd d (full (f ll llow pass filt filter iis bbe<strong>in</strong>g i bbuilt) ilt)<br />

– <strong>13</strong> <strong>MHz</strong> match<strong>in</strong>g network was modified<br />

• Future Improvement of<br />

Z <strong>Match<strong>in</strong>g</strong><br />

– If a separate antenna<br />

is used for <strong>13</strong> <strong>MHz</strong>,<br />

mutual coupl<strong>in</strong>g will be<br />

negligible<br />

– Two element<br />

capacitive match<strong>in</strong>g<br />

network can be used<br />

<strong>in</strong> 2 <strong>MHz</strong> after test<strong>in</strong>g<br />

– Frequency hopp<strong>in</strong>g<br />

technique for igniti<strong>on</strong><br />

<strong>and</strong> operati<strong>on</strong> dur<strong>in</strong>g<br />

pulse <strong>on</strong>ly with 2 <strong>MHz</strong><br />

Input<br />

Input<br />

80 kW<br />

2 <strong>MHz</strong><br />

Amplifier<br />

1200 W<br />

<strong>13</strong> <strong>MHz</strong><br />

Amplifier<br />

5 Managed by UT-Battelle<br />

for the U.S. Department of Energy Y. Kang Sep. 22, 2009<br />

4T:2T<br />

Trans<br />

<strong>13</strong> <strong>MHz</strong><br />

Rejecti<strong>on</strong><br />

0.5 uH<br />

3-30pF<br />

15kV<br />

7T:1T<br />

Trans<br />

2 <strong>MHz</strong> <strong>Match<strong>in</strong>g</strong> Network<br />

<strong>13</strong> <strong>MHz</strong> <strong>Match<strong>in</strong>g</strong> Network<br />

External Antenna<br />

I<strong>on</strong>-Source<br />

2300pF<br />

3-30pF<br />

15kV 0.8 uH<br />

0.8 uH<br />

Beam<br />

400 – 600 A<br />

65 kV


LPF Examples (<strong>13</strong> <strong>MHz</strong> block<strong>in</strong>g)<br />

3-pole p Butterworth<br />

5-pole Butterworth<br />

6 Managed by UT-Battelle<br />

for the U.S. Department of Energy Y. Kang Sep. 22, 2009


Plasma Igniter Development<br />

• Reliable plasma igniti<strong>on</strong> rema<strong>in</strong>s as a major problem with <strong>on</strong>e antenna system<br />

• DC P- gun was developed <strong>and</strong> used but has electrode erosi<strong>on</strong> problem<br />

• Plasma <strong>RF</strong> gun with a separate <strong>13</strong>.56 <strong>MHz</strong> antenna is to be tested<br />

– Greater isolati<strong>on</strong> of the two power amplifiers <strong>and</strong> easier <strong>RF</strong> impedance match<strong>in</strong>g<br />

– A small diameter ceramic chamber beh<strong>in</strong>d the ma<strong>in</strong> plasma chamber<br />

– Lower power <strong>13</strong> <strong>MHz</strong> operati<strong>on</strong> <strong>and</strong> extend<strong>in</strong>g the life of the i<strong>on</strong>-source chamber/antenna<br />

• Frequency hopp<strong>in</strong>g technique between igniti<strong>on</strong> <strong>and</strong> operati<strong>on</strong> to be developed for<br />

us<strong>in</strong>g 2 <strong>MHz</strong> ma<strong>in</strong> <strong>RF</strong> amplifier for the igniti<strong>on</strong><br />

– <strong>RF</strong> frequencies are switched <strong>and</strong> elements <strong>in</strong> the impedance match<strong>in</strong>g network is also<br />

varied accord<strong>in</strong>gly<br />

Separate<br />

plasma<br />

igniter<br />

Space for<br />

multicusp<br />

magnets<br />

7 Managed by UT-Battelle<br />

Water jacket<br />

for the U.S. Department of Energy Y. Kang Sep. 22, 2009<br />

AlN ceramic<br />

cyl<strong>in</strong>der<br />

Two layer<br />

antenna<br />

I<strong>on</strong> beam


I<strong>on</strong> Source with Two Antennas<br />

Red: port 1<br />

Green: port 2<br />

Surface current at 2 <strong>MHz</strong><br />

8Z<strong>in</strong> Managed w/ by plasma<br />

UT-Battelle<br />

for the U.S. Department of Energy Y. Kang Sep. 22, 2009<br />

Red: port 1<br />

Green: port 2<br />

Z<strong>in</strong> w/o plasma<br />

Surface current at <strong>13</strong>.56 <strong>MHz</strong>


• Internal antenna i<strong>on</strong> source Z match<strong>in</strong>g<br />

Summary<br />

– One element impedance match<strong>in</strong>g was employed us<strong>in</strong>g a variable capacitor with a series <strong>in</strong>ductor to raise<br />

the antenna <strong>in</strong>put <strong>in</strong>ductance for lower tun<strong>in</strong>g capacitance<br />

– Two variable capacitor match<strong>in</strong>g is used <strong>in</strong> <strong>13</strong> <strong>MHz</strong> system<br />

– 600 W maximum i <strong>13</strong> MH <strong>MHz</strong> amplifier lifi was sufficient ffi i ffor the h <strong>13</strong> MH <strong>MHz</strong> iigniti<strong>on</strong> i i<br />

• External antenna i<strong>on</strong> source Z match<strong>in</strong>g<br />

– Successfully tested with higher H - i<strong>on</strong> beam current up to 42 mA with l<strong>on</strong>ger antenna lifetime<br />

– 1200 W maximum i <strong>13</strong> MH <strong>MHz</strong> amplifier lifi was used d ffor th the ttest<strong>in</strong>g ti<br />

– The series <strong>in</strong>ductor was removed to use the same variable capacitor (this improves the efficiency slightly)<br />

• <strong>RF</strong> simulati<strong>on</strong>s can help the i<strong>on</strong>-source Z matcher designs <strong>and</strong> other optimizati<strong>on</strong><br />

– Pl Plasma equivalent i l t c<strong>on</strong>ductance d t ffor simulati<strong>on</strong> i l ti can bbe ffound d bby compar<strong>in</strong>g i tto th the match<strong>in</strong>g t hi network t k<br />

element values<br />

– This can be useful to predict other i<strong>on</strong> source <strong>RF</strong> properties<br />

• Improvement p <strong>on</strong> the impedance p match<strong>in</strong>g g <strong>and</strong> pplasma igniter g development p<br />

– Removal of the series <strong>in</strong>ductor required additi<strong>on</strong>al <strong>13</strong> <strong>MHz</strong> rejecti<strong>on</strong> at the 2 <strong>MHz</strong> <strong>in</strong>put<br />

– 2 antenna system that has good isolati<strong>on</strong> <strong>and</strong> possibly low power <strong>13</strong> <strong>MHz</strong> to be tested<br />

– 2 <strong>MHz</strong> impedance match<strong>in</strong>g network us<strong>in</strong>g two variable capacitors to be tested<br />

– Technique of frequency hopp<strong>in</strong>g between igniti<strong>on</strong> <strong>and</strong> operati<strong>on</strong> dur<strong>in</strong>g a pulse us<strong>in</strong>g <strong>on</strong>ly the 2 <strong>MHz</strong><br />

amplifier to be developed<br />

9 Managed by UT-Battelle<br />

for the U.S. Department of Energy Y. Kang Sep. 22, 2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!