23.07.2013 Views

Inelastic X-Ray Scattering - University of Illinois at Urbana-Champaign

Inelastic X-Ray Scattering - University of Illinois at Urbana-Champaign

Inelastic X-Ray Scattering - University of Illinois at Urbana-Champaign

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

I<strong>Inelastic</strong> l i X‐<strong>Ray</strong> X R <strong>Sc<strong>at</strong>tering</strong> S i<br />

N<strong>at</strong>ional School on X‐<strong>Ray</strong> and Neutron <strong>Sc<strong>at</strong>tering</strong><br />

AArgonne NN<strong>at</strong>ional i lLb Labor<strong>at</strong>ory, JJune 2010<br />

Peter Abbamonte<br />

<strong>University</strong> <strong>of</strong> <strong>Illinois</strong> <strong>at</strong> <strong>Urbana</strong>‐<strong>Champaign</strong><br />

abbamonte@mrl abbamonte@mrl.uiuc.edu uiuc edu<br />

http://users.mrl.uiuc.edu/abbamonte/


<strong>Inelastic</strong> x‐ray sc<strong>at</strong>tering – technical<br />

Nonresonant inelastic x‐ray sc<strong>at</strong>tering<br />

Resonant inelastic xx‐ray ray sc<strong>at</strong>tering (RIXS)<br />

(Lorentz force law)


Nonresonant IXS<br />

“N “Nonresonant” t” inelastic i l ti x‐ray sc<strong>at</strong>tering tt i<br />

Dynamic structure factor:<br />

k k f kifi<br />

S(k,) is the Fourier transform <strong>of</strong> the Van Hove density correl<strong>at</strong>ion function:<br />

X X‐ray “diff “diffraction” ti ” actually t ll measures an equal‐time l ti correl<strong>at</strong>ion lti function f ti<br />

t0<br />

<br />

S( k, ) d G( k, t) dxG( x,0)<br />

e<br />

ikx


Nonresonant IXS – dynamics!<br />

(x 1,t 1)<br />

(k 1, 1)<br />

(x 2,t 2)<br />

1 1<br />

S(<br />

, ) Im ( , )<br />

/ kT<br />

1 e <br />

k <br />

k <br />

<br />

<br />

<br />

i<br />

( x, ) nˆ( x,<br />

t), nˆ(0,0) (<br />

t)<br />

<br />

Fluctu<strong>at</strong>ion‐dissip<strong>at</strong>ion<br />

theorem<br />

Retarded density<br />

Green’s function<br />

(k 2, 2)<br />

Describes how charge propag<strong>at</strong>es around a system:<br />

• Phonons<br />

• Plasmons<br />

• Excitons<br />

• Band structure<br />

• Etc.


Resonant IXS (RIXS) –physical picture?<br />

Vl Valence<br />

electrons<br />

core level (1s)<br />

• Coherent two‐step p process p (absorption ( p / emission) )<br />

• Denomin<strong>at</strong>or can diverge. More intense.<br />

• Polari Polariz<strong>at</strong>ion‐dependent; <strong>at</strong>ion dependent sensiti sensitive e to symmetry s mmetr <strong>of</strong><br />

excit<strong>at</strong>ions<br />

• Couples to many types <strong>of</strong> excit<strong>at</strong>ions (magnons?)<br />

• No causality ‐ cross section not rel<strong>at</strong>ed to a<br />

correl<strong>at</strong>ion function. Often hard to decipher.


Comparison to other techniques<br />

<strong>Inelastic</strong> Neutron <strong>Sc<strong>at</strong>tering</strong><br />

• Low energy probe ( i = 25 meV)<br />

• Better energy resolution<br />

• Couples only to nuclei and spins<br />

• Not sensitive to charge excit<strong>at</strong>ions<br />

(e.g. plasmons)<br />

• Large samples required<br />

<strong>Inelastic</strong> Electron <strong>Sc<strong>at</strong>tering</strong><br />

• Can focus beam ~ 1Å<br />

• Decent energy resolution (0.5 eV)<br />

• Sample damage<br />

• Multiple sc<strong>at</strong>tering<br />

• Does not work in H 0<br />

• Requires UHV<br />

Light (Raman) <strong>Sc<strong>at</strong>tering</strong><br />

• q=0 probe<br />

• Super high energy resolution (0.1 meV)<br />

• Super high flux (10 22 photons/sec on sample)<br />

• Polariz<strong>at</strong>ion selection rules<br />

• cheap


Advantages / disadvantages <strong>of</strong> IXS<br />

<br />

•Direct coupling to charge excit<strong>at</strong>ions<br />

•High h resolution l ( (


Instrument<strong>at</strong>ion: Overview<br />

k ki k k2 2 2<br />

q = k k1 – k k2 White beam from APS undul<strong>at</strong>or<br />

Requirements / Challenges<br />

• Cross section small: only 1 in 10 8 photons are inelastically<br />

sc<strong>at</strong>tered –high flux needed<br />

• Very high resolving power needed. 2 meV / 20 keV = 10 ‐7<br />

• Must be able to tune energy; both 1 and 2 for RIXS<br />

• Broad angular acceptance required for enough signal<br />

MMonochrom<strong>at</strong>ic h ti<br />

beam<br />

sc<strong>at</strong>tering angle<br />

Specimen<br />

Backsc<strong>at</strong>tering k i<br />

analyzer


Instrument<strong>at</strong>ion: Source<br />

Spring‐8 (Hyogo, Japan)<br />

ESRF (Grenoble, France)<br />

Advanced Photon Source<br />

(Chicago, IL, USA)


Instrument<strong>at</strong>ion: Source<br />

Sector 9<br />

Electronic<br />

excit<strong>at</strong>ions / RIXS<br />

Sector 3<br />

Phonons<br />

Sector 30<br />

Both


Instrument<strong>at</strong>ion: Sector 30 XOR‐IXS Spectrometers<br />

MERIX<br />

E = 10‐100 meV<br />

El Electronic t i excit<strong>at</strong>ions: it ti<br />

• plasmons<br />

• excitons<br />

• Mott Mott‐gap gap excit<strong>at</strong>ions<br />

• two‐magnons<br />

HERIX<br />

E = < 1 meV<br />

Vibr<strong>at</strong>ion modes:<br />

• acoustic phonons (sound)<br />

• optical phonons


Instrument<strong>at</strong>ion: Monochrom<strong>at</strong>or<br />

Bragg’s gg law:<br />

2d sin = <br />

<br />

bandpass<br />

Darwin<br />

width idth<br />

Dumond<br />

diagram<br />

<br />

Tunable by<br />

rot<strong>at</strong>ing i crystals l<br />

in a coordin<strong>at</strong>ed<br />

fashion.


Instrument<strong>at</strong>ion: Analyzer<br />

• Need “curved” crystal to accept<br />

large <br />

• Mosaic <strong>of</strong> ~10 4 aligned blocks<br />

• Glued on spherical surface<br />

• Used near backsc<strong>at</strong>tering<br />

• Slightly tunable by rot<strong>at</strong>ing angle<br />

Backsc<strong>at</strong>tering


IXS Example 1: Excitons<br />

B. C. Larson, et. al., Phys. Rev. Lett. 99,<br />

B. C. Larson, et. al., Phys. Rev. Lett. 99,<br />

026401 (2007)


IXS Example 2: Plasmons in graphite and graphene<br />

A. H. Castro‐ Neto, et al., Rev. Mod. Phys. 81, 109 (2008)


IXS Example 2: Plasmons in graphite and graphene (x,t)<br />

i<br />

( x, ) nˆ( x,<br />

t), nˆ(0,0) (<br />

t)<br />

<br />

J. P. Reed, et al., submitted<br />

(0,0)


RIXS Example 1: Crystal field excit<strong>at</strong>ions in SrCuO 2<br />

AA. Higashiya et et. al., al J. J Elect. Elect Spect Spect. Rel Rel. Phen Phen. 144 144‐147, 147 685 (2005)


RIXS Example 2: Magnons in La 2CuO 4<br />

JJ. P. P Hill, Hill et. et al., al Phys. Phys Rev. Rev Lett. Lett 100 100, 097001 (2008)


The Future<br />

• Join mainstream <strong>of</strong> experimental probes (with STEM, ARPES, etc.)<br />

• Imaging<br />

• Strip detectors (no more analyzers?)<br />

• Surface dynamics [B. Murphy, et. al., Phys. Rev. Lett. 95, 256104<br />

(200 (2005)] )]<br />

• High g ppressure (fluctu<strong>at</strong>ions near quantum q phase p transitions)<br />

• ??? New ideas from new people.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!