23.07.2013 Views

EBIS and EBIT - Spallation Neutron Source

EBIS and EBIT - Spallation Neutron Source

EBIS and EBIT - Spallation Neutron Source

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>EBIS</strong> <strong>and</strong> <strong>EBIT</strong><br />

Reinard Becker, Goethe-Universität, Frankfurt, Germany<br />

Oliver Kester, NSCL, MSU, USA


OUTLINE<br />

1) Principles of <strong>EBIS</strong> <strong>and</strong> <strong>EBIT</strong><br />

2) Charge balance equations <strong>and</strong> typical solutions<br />

3) Limits by radiative recombination <strong>and</strong> charge exchange<br />

4) Ion heating <strong>and</strong> cooling by Coulomb collisions<br />

5) Genealogical trees for <strong>EBIS</strong> <strong>and</strong> <strong>EBIT</strong><br />

6) Options now <strong>and</strong> in the future


electron gun<br />

U(Z)<br />

Principles of <strong>EBIS</strong> <strong>and</strong> <strong>EBIT</strong><br />

N<br />

<br />

1<br />

<br />

e<br />

drift tubes<br />

electron beam<br />

pumping surface<br />

solenoid<br />

ion extraction<br />

ion trapping<br />

m<br />

2e<br />

PU<br />

electron<br />

collector<br />

electron<br />

repeller<br />

ion pulse<br />

vacuum conductance<br />

limiters<br />

13<br />

1.<br />

0510<br />

PU<br />

injection<br />

P <br />

<br />

Z<br />

6<br />

3 2<br />

4<br />

<br />

510 [ A/<br />

V ], U 210<br />

[ V ], 1m<br />

N <br />

10<br />

Tokyo <strong>EBIT</strong><br />

<strong>and</strong> beam line<br />

for extracted ions<br />

12


Basic physics


Cross<br />

sections<br />

(cm 2 )<br />

10 -15<br />

10 -16<br />

10 -17<br />

10 -18<br />

10 -19<br />

10 -20<br />

10 -21<br />

Single step versus multiple step ionisation<br />

10 1<br />

0 -->1<br />

1 -->2<br />

10 2<br />

2 -->3<br />

3 -->4<br />

4 -->5<br />

5 -->6<br />

6 -->7<br />

7 -->8<br />

0-->1-->2-->3-->4-->5-->6-->7-->8<br />

This takes time – needs confinement !<br />

10 3<br />

argon<br />

0 -->8<br />

Electron energy (eV)<br />

10 4


x10<br />

-21<br />

cm 2<br />

Lotz cross sections<br />

14<br />

i i 1 . 5*<br />

10 <br />

nl Ee<br />

* Ei,<br />

nl<br />

<br />

<br />

3<br />

2<br />

1<br />

E e Ei,<br />

nl<br />

2 <br />

ln<br />

4 cm<br />

Ar 15+ Ar 16+<br />

Lotz ionisation cross section from 16 to 17 for Z=18<br />

2 4 6 8 10 12 14 16 18 20<br />

Electron Energy (keV)<br />

Approximate ionisation energies,<br />

ionisation cross sections<br />

<strong>and</strong> required j-values for bare ions<br />

Ion E i [eV] [cm 2 ] j* [Cb/cm 2 ]<br />

C 6+ 490 7.7*10 -20 2.1<br />

N 7+ 666 4.2*10 -20 3.8<br />

O 8+ 870 2.4*10 -20 6.5<br />

Ne 10+ 1360 1*10 -20 16<br />

Ar 18+ 4400 9.5*10 -22 170<br />

Kr 36+ 17600 6*10 -23 2700<br />

Xe 54+ 39700 1.2*10 -23 13600<br />

Pb 82+ 91400 2.2*10 -24 72300<br />

U 92+ 115000 1.4*10 -24 115000


Ionisation energies by C. Moore


Charge exchange<br />

The approximation formula of Salzborn <strong>and</strong> Müller is based on many<br />

measurements with low chage states, however, we have nothing better!<br />

again – multiple step CX is neglected!<br />

<br />

i i 1<br />

<br />

2<br />

12 1 . 17 2 . 76<br />

1 . 43 10 i P0<br />

cm<br />

In <strong>EBIS</strong>/T the pressure usually is low enough to avoid CX, only dangerous for<br />

extremely high charge states, where ion cooling becomes necessary. More<br />

important for <strong>EBIT</strong>!<br />

In ECRs CX usually limits the build up if higher charge states <strong>and</strong> produces the<br />

wide range of charge state with almost identical abundance.


10 -3<br />

Pressure<br />

(mbar)<br />

10 -6<br />

10 -9<br />

10 -12<br />

Charge exchange versus Ionisation<br />

Vacuum pressure at which gain by ionization equals the loss by charge exchange for lead ion<br />

10 A/cm 2<br />

1000 A/cm 2<br />

0 20 40 60 80<br />

P b Charge states


Radiative Recombination<br />

RR is time-reversed photo-ionisation:<br />

σ<br />

<br />

RR<br />

nl<br />

( k ) <br />

<br />

hν k<br />

2<br />

2<br />

1<br />

2m<br />

Therefore RR cross sections may be calculated from cross sections for photo<br />

ionisation, which is a well established procedure (T. Stöhlker, Kim <strong>and</strong> Pratt) :<br />

<br />

e<br />

c<br />

2<br />

σ<br />

ph<br />

nl<br />

( k<br />

2 2<br />

ph<br />

0 <br />

2 2<br />

<br />

<br />

<br />

<br />

<br />

nl k<br />

( 1 n κ ) g(n,l;κ,<br />

l<br />

2<br />

3 Z ll12l<br />

1<br />

<br />

4πa<br />

<br />

n<br />

l<br />

)


Electron energy (eV)<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

RR versus Ionisation<br />

“Balance energy” at which the gain by ionization<br />

equals loss by radiative recombination for lead ions<br />

0 20 40 60 80<br />

P b Charge states<br />

Slow electrons are the worst enemies of highly charged ions!


Ion energy (eV)<br />

Electron-ion heating<br />

Radial well voltages eqU w =kT i to trap multiply charged ions heated by electrons of<br />

energy 1 keV (dashed lines) <strong>and</strong> 10 keV (full lines), typical for ECR <strong>and</strong> <strong>EBIS</strong>/T<br />

10 3<br />

10 3 Ne Ar<br />

10 2<br />

10 2<br />

10 1<br />

10 1<br />

10 0<br />

10 0<br />

10 -1<br />

10 -1<br />

CNO Ar Kr Xe Pb<br />

0 10 20 30<br />

Charge states<br />

fortunately Coulomb-collisions not only heat ions (by electrons), but also can cool them by ions!<br />

Kr<br />

Xe<br />

Pb


In <strong>EBIT</strong> injected ions could be trapped for hours!<br />

only possible by evaporative cooling<br />

Ion-Ion-cooling<br />

Ne 22 isotope has been increased to 30% of Ne 20 in leaky mode of Frankfurt <strong>EBIS</strong><br />

Similar to isotope effect observed in ECRs (Drentje)<br />

Charge spectra for argon in operation of Frankfurt <strong>EBIS</strong> beyond neutralization<br />

O, N, C are used as coolant for argon at a pressure of 2 x 10 -10 mbar<br />

R.Becker, M.Kleinod , <strong>and</strong> H.Klein, Nucl. Instrum. Methods B24/25 (1987) 838<br />

Cooling by a background gas is most convenient but causes charge exchange.<br />

Strategies for cooling with ions need to be developed for highest charge states!<br />

8<br />

7<br />

6<br />

18 17 16 14<br />

7<br />

6<br />

5<br />

6<br />

5<br />

4<br />

5<br />

Argon<br />

32 s<br />

10 s<br />

3.2 s<br />

1 s<br />

320 ms<br />

100 ms<br />

32 ms<br />

Oxygen<br />

Nitrogen<br />

Carbon<br />

R. Becker, M. Kleinod, H. Thomae, <strong>and</strong> E. D. Donets, AIP Conf. Proc. 274,<br />

edts.P.Richard, M.Stöckli, C.L.Cocke, <strong>and</strong> C.D.Lin, (1993) p. 686


dn<br />

i<br />

dt<br />

n<br />

e<br />

n<br />

<br />

o<br />

e<br />

coll<br />

i<br />

Charge balance<br />

Win by ionisation, charge exchange, radiative radiation<br />

Loss by ionisation, charge exchange, radiative radiation, confinement of heated ions<br />

<br />

<br />

<br />

<br />

<br />

<br />

ion<br />

n <br />

ion<br />

<br />

RR<br />

n <br />

RR<br />

n<br />

ion<br />

i1<br />

i<br />

<br />

<br />

chex<br />

n <br />

chex<br />

n<br />

ii1<br />

kT<br />

w<br />

ion<br />

i1<br />

ieU<br />

exp<br />

kT<br />

ieU<br />

i<br />

w<br />

ion<br />

<br />

<br />

<br />

ii1<br />

i1<br />

i<br />

n<br />

i<br />

i1<br />

ii1<br />

i<br />

i1<br />

i<br />

i1<br />

2-step <strong>and</strong> multiple-step processes are<br />

important but are neglected! The overestimation<br />

by Lotz‘s cross section<br />

formula partially compensates for it.


Results of charge breeding simulations for Pb at 5250 eV<br />

Relative<br />

Abundance<br />

%<br />

80<br />

60<br />

40<br />

20<br />

Relative<br />

Abundance<br />

%<br />

80<br />

60<br />

40<br />

20<br />

Confinement without losses <strong>EBIT</strong> mode with neutralisation at j=10<br />

14<br />

0.001 0.01 0.1 1 10 100 1000<br />

j <br />

54<br />

Cb/cm<br />

0.001 0.01 0.1 1 10 100 1000<br />

j <br />

2<br />

2 Cb/cm<br />

1<br />

Relative<br />

Abundance<br />

0.1<br />

0.01<br />

0.001<br />

Relative<br />

Abundance<br />

%<br />

80<br />

60<br />

40<br />

20<br />

14<br />

0.001 0.01 0.1 1 10 100 1000<br />

j <br />

Confinement with charge exchange at 10 -8 mbar Confinement with radiative recombination<br />

54<br />

Cb/cm2<br />

0.001 0.01 0.1 1 10 100 1000<br />

j <br />

2 Cb/cm


Magnetic Emittance<br />

The conservation of the magnetic moment (Busch‘s theorem) results in skew trajectories outside of<br />

the magnetic field. Treating the extracted beam as a round one, results in an additional „magnetic“ emittance:<br />

For modern <strong>EBIS</strong> <strong>and</strong> <strong>EBIT</strong> B z =3T <strong>and</strong> U 0 =20 kV, producing bare light nuclei we then obtain:<br />

r (m)<br />

10 -3<br />

10 -4<br />

abs (µ) *<br />

5.2<br />

5.2 x 10 -2<br />

<strong>EBIS</strong> beams are usually smaller than 1 mm, therefore the magnetic emittance will be negligible.<br />

For <strong>EBIT</strong> with 100 µ beams even more.<br />

2<br />

2eq<br />

Br<br />

abs <br />

4 M U 0<br />

Note that dimension µ for the emittance gives the same numbers as the old fashioned mm x mrad *)<br />

m *) R.Becker <strong>and</strong> W.B.Herrmannsfeldt, Wha Pi <strong>and</strong> mrad?, Rev. Sci. Instrum.77 (2006) 03B907


40 years of <strong>EBIS</strong> history<br />

Device year place name w/c/r Bmax length N- special<br />

IEL-I/II 1968 Dubna Donets w 0.4 0.16 proof of principle<br />

SILFEC 1969 Orsay Arianer w 0.8 0.8 8E10 proof of principle<br />

TOF<strong>EBIS</strong> 1971 Frankfurt Kleinod/Becker w 0.4 0.1 1E5 proof of principle for dc<br />

KRION-I 1972 Dubna Donets/Pikin c 1.2 1.2 1E11 Synchrophasotron injector<br />

Texas-<strong>EBIS</strong> 1974 Texas Hamm w 0.4 0.2 1E10 Cyclotron<br />

KRION-II 1974 Dubna Ovsiannikov/Donets c 2.2 1.2 1E10 atomic physics<br />

<strong>EBIS</strong> 1980 Frankfurt Becker/Kleinod c 5 0.8 1E7 atomic physics<br />

NICE 1981 Nagoya Ohtani c 3 0.6 1E4 atomic physics<br />

CRY<strong>EBIS</strong>-I 1981 Orsay Arianer c 3 1.66 1E8 injector for SATURN<br />

C<strong>EBIS</strong>-I 1982 Cornell Kostroun w 0.42 0.5 1E5 atomic physics<br />

CRY<strong>EBIS</strong>-II 1984 Orsay Arianer r 5 1.66 1E10 same as CRYSIS,<br />

DIONE 1984 Saclay Faure r 6 1.2 5E10 SATURNE injector<br />

B<strong>EBIS</strong> 1984 Berkeley Brown w 0.3 0.6 1E6 worked later at SNLL<br />

C<strong>EBIS</strong>-II 1986 Cornell Kostroun c 3 0.4 6E10 atomic physics<br />

Mini-<strong>EBIS</strong> 1987 Tokyo Okuno LN 0.5 0.5 1E4 7 sources for atomic physics<br />

ESIS 1990 Dubna Donets c 3.5 1.2 5E10 Nuclotron Au injector<br />

KRY<strong>EBIS</strong> 1990 KSU Stöckli r 5 1 8.5E9 atomic physics<br />

S-<strong>EBIS</strong> 1990 SNLL Schmieder c 5 1.0 2E10 worked later at BNL<br />

RHEA 1991 Saclay Faure w 0.5 1.0 2E11 died during birth<br />

MED<strong>EBIS</strong> 1993 Frankfurt Kester/Becker w 0.8 0.25 5E10 hadron therapy<br />

KRION-S 1994 Dubna Vadeev/Donets c 2.2 1.2 1E8 Nuclotron injector<br />

X<strong>EBIS</strong>T 1994 Frankfurt Mücke/Becker w 0 0.4 1E5 without Bz, rel. focusing<br />

Test<strong>EBIS</strong> 1997 BNL Beebe/Pikin c 5 0.7 1E12 obtained 70% ion yield<br />

REX<strong>EBIS</strong> 2000 CERN Wen<strong>and</strong>er/Liljeby c 2 0.8 5.4E10 charge breeding at Isolde<br />

<strong>EBIS</strong> 2000 Arhus Schmid w 0.1 0.6 1E10 ASTRID injector<br />

MIS-1 * 2001 Novosibirsk Abdulmanov c 3 0.7 1E12 operation in 2010 ?<br />

MAX<strong>EBIS</strong> 2004 Frankfurt Becker/Kleinod c 5 0.8 3E11 moved to GSI in 2005<br />

D-<strong>EBIS</strong> 2005 Dresden Zschornack pm 0.4 0.06 6E8 HCI applications<br />

D-<strong>EBIS</strong>-A 2008 Dresden Zschornack pm 0.6 0.06 1.22E9 HCI applications<br />

RHIC-<strong>EBIS</strong> * 2009 BNL Beebe/Pikin c 6 1.5 2.2E12 new HI injector for RHIC<br />

D-<strong>EBIS</strong>-SC * 2009 Dresden Zschornack r 6 0.2 2E10 carbon therapy<br />

KRION-6T * 2009 Dubna c 6 prototype for ESIS scaling<br />

TESIS-5T * 2010 Dubna c 5 ESIS with tubular beam<br />

* not yet in operation<br />

no longer in operation


BNL Test-<strong>EBIS</strong>


BNL-<strong>EBIS</strong> results <strong>and</strong> projections<br />

4 – 8 mA !


In the paper<br />

„Instabilities“ in B<strong>EBIS</strong> created <strong>EBIT</strong><br />

„Measurement of instabilities <strong>and</strong> ion heating in an electron beam ion source“,<br />

LBL 19853, M.A. Levine, R.E. Marrs <strong>and</strong> R.W. Schmieder measured instabilities<br />

in the Berkeley <strong>EBIS</strong>.<br />

C.Litvin, M.Vella, <strong>and</strong> A.Sessler, Nucl. Instrum. Meth. 198 (1982) 189 concluded<br />

that only a short electron beam may be stable.<br />

M.A.Levine, R.E. Marrs, J.R. Henderson, D.A. Knapp <strong>and</strong> M.B. Schneider, Nucl.<br />

Instrum. Meth. B43 (1989) 431 then constructed the first <strong>EBIT</strong> <strong>and</strong><br />

R.W.Schmieder <strong>and</strong> C.L.Bisson, Rev. Sci. Instrum. 61 (1990) 256 reconstructed<br />

the Berkeley <strong>EBIS</strong> <strong>and</strong> made it work – without instabilities<br />

how to make a good decision on a wrong judgement!


Device year place name w/c/r Bmax length N- special<br />

<strong>EBIT</strong>-I 1988 LLNL Levine c 3 0.02 1E5 spectroscopy<br />

<strong>EBIT</strong> 1988 Oxford Silver c 3 0.02 1E5 spectroscopy<br />

<strong>EBIT</strong>-II 1990 LLNL Marrs/Knapp c 3 0.02 1E6 spectroscopy<br />

<strong>EBIT</strong> 1990 NIST Gillaspie c 3 0.02 1E5 spectroscopy<br />

S-<strong>EBIT</strong> 1990 LLNL Marrs/Schneider c 3 0.02 4E4 spectroscopy<br />

S-<strong>EBIT</strong> 1993 Tokyo Ohtani c 3 0.03 8.9E6 atomic physics<br />

<strong>EBIT</strong> 1997 Berlin Radke c 3 0.02 1E5 spectroscopy<br />

D-<strong>EBIT</strong> 1997 Dresden Zschornack pm 0.25 0.02 1E8 spectroscopy<br />

F/H-<strong>EBIT</strong> 1999 Freiburg Crespo r 9 0.04-0.3 2E10 atomic physics, spectroscopy<br />

<strong>EBIT</strong> QUB * 2005 Belfast Currell pm 0.65 0.02 2.4E6 atomic physics, spectroscopy<br />

S-<strong>EBIT</strong> 2005 Shanghai Wu c 3 0.02 1.3E7 spectroscopy<br />

FLASH-<strong>EBIT</strong> 2006 Heidelberg Crespo r 6 0.05-0.3 2E10 atomic physics, spectroscopy<br />

TITAN-E * 2006 TRIUMF Crespo/Dilling r 6 0.10 2E10 charge breeding<br />

<strong>EBIT</strong> 2007 Stockholm Fritioff c 3 0.02 1E5 atomic physics<br />

ReA3-<strong>EBIT</strong> * 2008 MSU Schwarz/Crespo r 6 0.80 1.5E11 charge breeding<br />

HD-II <strong>EBIT</strong> 2008 Heidelberg Crespo/Schwarz r 7 0.3 1E11 atomic physics, spectroscopy<br />

CoBIT * 2008 Tokyo Nakamura LN 0.2 0.03 1E8 atomic physics<br />

* not yet in operation<br />

20 years of <strong>EBIT</strong> history<br />

no longer in operation<br />

charge breeders TITAN, ReA3, <strong>and</strong> HD-II are certainly <strong>EBIS</strong>es !


N -<br />

10 12<br />

10 11<br />

10 10<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

<strong>EBIT</strong>Ss, applications, technology, genealogics<br />

P = prototype, S = synchrotron, C = cyclotron, A = atomic physics, B = (charge) breeder, M = multi purpose<br />

Letters: normal conducting, cooled by LN , cooled by LHe, cooled by refrigerator(s), permanent magnets<br />

2<br />

Lines: Dubna, Orsay, Frankfurt, Livermore, Japan, Heidelberg, BNL, Dresden<br />

13<br />

10<br />

P<br />

P<br />

P<br />

S<br />

A<br />

C<br />

A<br />

S<br />

A<br />

A<br />

S<br />

S<br />

C<br />

A<br />

A<br />

A<br />

S<br />

S<br />

A<br />

A<br />

A<br />

A<br />

A<br />

1970 1980 1990 2000 2010<br />

Year of start<br />

S<br />

A<br />

P<br />

S<br />

P<br />

A<br />

A<br />

M<br />

B<br />

A A<br />

S<br />

A<br />

A<br />

A<br />

A<br />

B<br />

S<br />

B<br />

S<br />

A<br />

A<br />

A


future applications for <strong>EBIT</strong>Ss


Analyzing<br />

magnet<br />

Charge breeding<br />

>> „outsourcing“ of the production of singly charged ions


Super-compression in CRY<strong>EBIS</strong>-I (1979, 1982 )<br />

J.Arianer et al., IEEE Trans. Nucl. Sci. NS-26 (1979) 3713<br />

Abnormal short ionisation times were reportet. The<br />

estimated current density increased for heavier<br />

atoms up to 10 5 A/cm² at Xenon<br />

Is this the reaction of a Brillouin focused beam on<br />

space charge neutralisation in the magnetic<br />

compression region?<br />

M.Olivier et al., IEEE Trans. Nucl. Sci NS- 30 (1982) 1463


Hadron therapy


0.6<br />

Relative<br />

abundance<br />

0.4<br />

0.2<br />

average<br />

current density<br />

in A/cm²<br />

31,600<br />

10,000<br />

3,160<br />

1000<br />

200 400 600 800 1000<br />

Electron Energy (keV)<br />

10 keV<br />

31 keV<br />

100 keV<br />

316 keV<br />

0.1 0.316 1 3.16<br />

trap length in cm<br />

<strong>EBIT</strong> with relativistic pinching<br />

1000 keV<br />

example of 500 keV<br />

A Design Study for a European Super - <strong>EBIT</strong> / <strong>EBIS</strong><br />

R. Becker 1) , E. D. Donets 2) , M. Kleinod 1) , H. S. Margolis 3) <strong>and</strong> J. D. Silver 3)<br />

1) Institut für Angew<strong>and</strong>te Physik der Universität Frankfurt, Germany<br />

2) Laboratory of High Energies, JINR, Dubna, Russia<br />

3) Clarendon Laboratory, University of Oxford, Engl<strong>and</strong><br />

91<br />

90<br />

92<br />

89<br />

10<br />

Insulator<br />

0.552 m<br />

Anode<br />

Cathode<br />

<strong>and</strong> Wehnelt<br />

0.2 m<br />

1 m<br />

gate<br />

valve<br />

gate<br />

valve<br />

Trap<br />

Collector<br />

or gun<br />

cryo panel<br />

cryo panel<br />

Gun<br />

or collector<br />

magnetic<br />

lenses <strong>and</strong><br />

steerers<br />

magnetic<br />

lenses <strong>and</strong><br />

steerers


Donet‘s ESIS <strong>and</strong> TESIS<br />

Electron String Ion <strong>Source</strong> Tubular ESIS<br />

TABLE 1. Comparison of Power Consumptions for <strong>EBIS</strong> <strong>and</strong> ESIS<br />

N e /m <strong>EBIS</strong> ESIS<br />

10 11 10 kW 50 W<br />

10 12 200 kW 200 W<br />

10 13<br />

10 14<br />

10 15<br />

5000 kW 2 kW<br />

20 kW<br />

200 kW


Conclusions<br />

<strong>EBIS</strong>es <strong>and</strong> <strong>EBIT</strong>s are all the same ! Let‘s calls them <strong>EBIT</strong>Ss !<br />

For highest charge states ion-ion-cooling needs further development<br />

Neutralisation <strong>and</strong> self-compression of the electron beam is promising<br />

MED<strong>EBIS</strong> for carbon therapy with single-turn injection <strong>and</strong> extraction<br />

Reflex mode will become more interesting when easier to control<br />

SUPER-<strong>EBIT</strong> with Ee > 500 keV should be build<br />

More charge breeder <strong>EBIS</strong>es or <strong>EBIT</strong>s to come<br />

BNL leads the classical approach !<br />

Next speaker

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!