23.07.2013 Views

Quantum Criticality in the Itinerant Antiferromagnet Cr-V

Quantum Criticality in the Itinerant Antiferromagnet Cr-V

Quantum Criticality in the Itinerant Antiferromagnet Cr-V

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Quantum</strong> <strong><strong>Cr</strong>iticality</strong> <strong>in</strong> <strong>the</strong><br />

It<strong>in</strong>erant <strong>Antiferromagnet</strong> <strong>Cr</strong>-V<br />

**<br />

D. A. Sokolov, G. Strycker,<br />

M. C. Bennett, M. C. Aronson<br />

University of Michigan, Ann Arbor MI<br />

S. E. Nagler and M. Lumsden<br />

HFIR, Oak Ridge TN<br />

** Work at <strong>the</strong> University of Michigan supported by <strong>the</strong> U. S. National Science Foundation


Heavy Fermion Intermetallics<br />

CePd 2 Si 2 (Mathur 1998)<br />

<strong>Quantum</strong> <strong>Cr</strong>itical Po<strong>in</strong>ts<br />

Complex Oxides<br />

Need for simpler model systems: it<strong>in</strong>erant magnets


T>T N<br />

T


<strong>Quantum</strong> critical po<strong>in</strong>t <strong>in</strong> <strong>Cr</strong> 1-x V x (x=x C =0.035)<br />

x x C : simultaneous suppression of T N and staggered moment μ<br />

<strong>Cr</strong>: [Ar]3d 5 4s 1<br />

V: [Ar]3d 3 4s 2<br />

Fawcett 1994<br />

x C ~0.038<br />

Koehler 1966


Electron Microprobe<br />

45 g s<strong>in</strong>gle crystal grown by arc-zone melt<strong>in</strong>g (Ames Laboratory)<br />

1. rectangular slab<br />

spark-cut from<br />

<strong>in</strong>terior of crystal<br />

top view of slab<br />

after polish<strong>in</strong>g<br />

2. Surface damaged by<br />

spark cutt<strong>in</strong>g, removed by<br />

polish<strong>in</strong>g.<br />

Composition of crystal <strong>in</strong>terior is nom<strong>in</strong>al 3.5 +/- 0.2 at. % V.<br />

3. Microprobe performed on<br />

<strong>in</strong>dicated area.<br />

at. %V


Electrical Resistivity of <strong>Cr</strong> 0.965 V 0.035<br />

Takeuchi 1980<br />

V concentration 3.5%


Elastic Scatter<strong>in</strong>g: Magnetic Modulation<br />

Triple axis spectroscopy: HB-3 at High Flux Isotope Reactor<br />

Collimation: 48’-40’-80’-120’<br />

no filter with λ/2 filter<br />

Elastic scatter<strong>in</strong>g:<br />

2 K<br />

h+k+l =2n+1 magnetic satellites SDW<br />

h+k+l =2n bcc structure factor


<strong>Cr</strong> – 3.5%V<br />

Incommensurate Elastic Scatter<strong>in</strong>g<br />

Pure <strong>Cr</strong>: T N =311 K<br />

Elastic scatter<strong>in</strong>g: critical SDW fluctuations,<br />

T N ~311 K<br />

Commensurability δ: x~1 %<br />

Werner 1967<br />

Part of crystal is electronically like lightly doped <strong>Cr</strong>


Evidence for Phase Separation<br />

Elastic scatter<strong>in</strong>g from regions which are at least<br />

500 A <strong>in</strong> size<br />

Sample is large s<strong>in</strong>gle crystal, no appreciable<br />

tw<strong>in</strong>n<strong>in</strong>g (Laue, rock<strong>in</strong>g curve)<br />

Averag<strong>in</strong>g over length scales larger than ~1 μm,<br />

our crystal: 3.5 at. % V<br />

(microprobe, resistivity)<br />

Phase diagram: cont<strong>in</strong>uous V solubility <strong>in</strong> <strong>Cr</strong><br />

<strong>Cr</strong> V


Inelastic Scatter<strong>in</strong>g <strong>in</strong> Chromium<br />

Boni 2002<br />

Sternlieb 1993<br />

Nearly dispersionless sp<strong>in</strong> waves emanat<strong>in</strong>g from SDW satellites at (1+/-δ,0,0).<br />

F<strong>in</strong>cher-Burke excitations near (1,0,0).


Inelastic Scatter<strong>in</strong>g <strong>in</strong> <strong>Cr</strong> 0.965 V 0.035<br />

<strong>Cr</strong> – 3.5%V<br />

q*=(0,0,1+/-δ) S(q)=S o /(1+4((q+/-q*/Γ) 2 ) + S g exp(-0.5q 2 /Γ 2 )<br />

Resolution corrections with RESLIB<br />

Pure <strong>Cr</strong><br />

6 meV<br />

5.4 meV<br />

4 meV<br />

2.6 meV<br />

Burke 1983<br />

230 K


Commensurate Scatter<strong>in</strong>g <strong>in</strong> <strong>Cr</strong> 0.965 V 0.035<br />

q=(0,0,1) 2π/a q=(0,0,1) 2π/a<br />

Detailed balance corrected <strong>in</strong>tensity: constant energy<br />

scale for T


Dispersion of <strong>the</strong> Incommensurate Excitations<br />

<strong>Cr</strong>-3.5%V: Sp<strong>in</strong> wave velocity greatly reduced relative to pure <strong>Cr</strong><br />

New branch of excitations , perhaps observed by Burke (1983)<br />

Sternlieb 1993


Incommensurate vs Commensurate Scatter<strong>in</strong>g<br />

Response most enhanced at q*=(0,0,1-δ)2π/a and as T0.<br />

Consistent with χ -1 ~ [ a(T-T N ) γ + θ(q-q*) +f(E) ] where θ 0 when q q*<br />

<strong>Cr</strong>itical scatter<strong>in</strong>g (T>T N ) for q=q*=(0,0,1+/-δ)2π/a


<strong>Cr</strong>itical Incommensurate Correlations<br />

Spatial correlations for q=(0,0,1+/-δ)2π/a dim<strong>in</strong>ished by<br />

<strong>in</strong>creased temperature T>T N and <strong>in</strong>creased energy transfer E<br />

<strong>Cr</strong>itical susceptibility χ q -1 ~ [ Γ(E,T) + θ(q-q*) ] Γ~a(T-TN ) γ + f(E)<br />

Γ conv (A -1 )


Incommensurate Scatter<strong>in</strong>g<br />

q*=(0,0,1+/-δ)2π/a: temperature <strong>in</strong>dependent scatter<strong>in</strong>g T0.<br />

S(q,E,T) = [n(E/k B T)+1] χ”(q,E,T)<br />

E/ k B T1 n(E/k B T)+1 ~ 1 χ”~G(E)<br />

<strong>Quantum</strong> <strong><strong>Cr</strong>iticality</strong>: Scale Invariant Excitations


QCP<br />

q<br />

Neutron Scatter<strong>in</strong>g Study of <strong>Cr</strong> 0.0965 V 0.035<br />

Elastic scatter<strong>in</strong>g: similar to pure <strong>Cr</strong>. Electronic phase separation?<br />

Commensurate scatter<strong>in</strong>g: Fermi – liquid like, E F ~ 18 meV<br />

Incommensurate scatter<strong>in</strong>g: critical, divergence <strong>in</strong> <strong>the</strong> susceptibility<br />

controlled by distance from (quantum) critical po<strong>in</strong>t<br />

E<br />

q-q * ,<br />

q-q*, E, T-T N<br />

T<br />

T T N (=30 K?) E 0 q q*=2π/a(0,0,1+/-δ)<br />

Generalized <strong>Cr</strong>itical Susceptibility:<br />

χ -1 ~ [ (T-T N ) γ + iE + θ(q-q*)]<br />

χ -1 ~ [(aT-iE) α + θ(q-q*) α ] CeCu 6-xc Au xc (Schroder2001)<br />

χ -1 ~ [aT-iE + θ(q-q*)] α Ce(Ru 1-xc Fe xc ] 2 Ge 2 (Montfrooij2003)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!