22.07.2013 Views

Acoustic Tweezers & Stability

Acoustic Tweezers & Stability

Acoustic Tweezers & Stability

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Acoustic</strong> <strong>Tweezers</strong>:<br />

A further study<br />

9512535 丁孝鈞


Outline<br />

• Introduction about acoustic tweezers<br />

• Method of acoustic tweezers<br />

• Mechanism of acoustic tweezers


Introduction to acoustic<br />

tweezers<br />

• <strong>Acoustic</strong> tweezers: Using acoustical<br />

method to trap small particles.<br />

• Method: With an single transducer to<br />

generate pulse wave to capture particles.<br />

transducer<br />

Sound wave<br />

Small particle


Introduction to acoustic<br />

Transducer<br />

input wave: continuous<br />

black: transmit<br />

red: reflect<br />

standing wave<br />

tweezers<br />

wall or<br />

surrounding<br />

standing wave is easily<br />

affected by surrounding


Method of acoustic tweezers<br />

First radiation force:<br />

<br />

F =< V∇ P><br />

For constant particle volume:<br />

<br />

<br />

∆p<br />

F = =< V∇ P>= V∇ < P><br />

∆t<br />

2<br />

⎧ T [sin(2θi − 2 θr) + Rsin(2<br />

θi)<br />

⎫<br />

Fg = V∇< P> ⎨Rsin 2θi<br />

−<br />

2<br />

⎬<br />

⎩ 1+ R + 2Rcos2θr⎭ 2<br />

⎧ T [cos(2θi − 2 θr) + Rcos(2<br />

θi)<br />

⎫<br />

Fs = V∇< P> ⎨1+ Rcos2θi<br />

−<br />

2<br />

⎬<br />

⎩ 1+ R + 2Rcos2θr⎭


Method of acoustic tweezers<br />

Flow chat<br />

Simulate the time course of acoustic field :P<br />

Calculate the gradient of the average P : ▽<br />

Calculate the force F<br />

Use the iteration method to find the track of the<br />

particle


Method of acoustic tweezers<br />

-30 ns to foci<br />

0 ns to foci<br />

30 ns to foci<br />

Gradient<br />

plot


Method of acoustic tweezers<br />

The net force of a particle<br />

The force-axis diagram at given time T


Method of acoustic tweezers<br />

Iteration method


Method of acoustic tweezers<br />

Track of particle<br />

Converge → S.H.M. → being captured


Method of acoustic tweezers<br />

Track converge<br />

Unbound<br />

track


Mechanism of acoustic tweezers<br />

1. Contact<br />

wave<br />

particle<br />

Trapping model<br />

2. Shake the particle<br />

particle


Mechanism of acoustic tweezers<br />

Trapping model<br />

3. Wave leaves the particle, and acoustic field<br />

exerts no force on particle during PRI .<br />

particle<br />

wave Position A Position B


Mechanism of acoustic tweezers<br />

Trapping model<br />

4. Viscosity will decrease the speed of particle<br />

particle<br />

v<br />

The force comes from viscosity


Mechanism of acoustic tweezers<br />

Initial<br />

condition<br />

ex: position<br />

density<br />

volume<br />

Mechanism of<br />

acoustic<br />

tweezers<br />

ex: wave form<br />

viscosity<br />

prf<br />

pressure<br />

..etc.<br />

Particle<br />

track


Mechanism of acoustic tweezers<br />

Particle contacts<br />

with wave<br />

first part<br />

Pulse-Trapping system<br />

work time<br />

second part (order): 10 4<br />

first part (order): 1<br />

Particle moves<br />

within PRI<br />

second part


Mechanism of acoustic tweezers<br />

First part<br />

When particle contacts with the sound wave<br />

⎡ 1 2 ⎤<br />

vt () ∆ t+ at () ∆t<br />

⎡xt ( +∆t)<br />

⎤ ⎡xt ( ) ⎤ ⎢ 2<br />

⎥<br />

⎢ ⎢ ⎥<br />

vt ( +∆ t) ⎥<br />

=<br />

⎢<br />

vt ( )<br />

⎥<br />

+ at ( ) ∆t<br />

⎢ ⎥ ⎢ ⎥ ⎢ ⎥<br />

⎢⎣at ( +∆ t) ⎥⎦ ⎢⎣at () ⎥⎦<br />

⎢ Axt ( ( +∆ t), t+∆t) −Axt<br />

( (),) t⎥<br />

⎢ ⎥<br />

⎣ ⎦<br />

A(x,t):=the acceleration at given time t and given position x


Mechanism of acoustic tweezers<br />

First part<br />

acceleration caused by viscosity<br />

acceleration caused by acoustic field<br />

When wave contacts with particle, viscosity can be ignored.


Mechanism of acoustic tweezers<br />

Second part :During PRI<br />

dv<br />

m =−kv<br />

dt<br />

dv k<br />

=− dt<br />

v m<br />

−k<br />

v = v0exp( t)<br />

m<br />

dx − k<br />

v = = v0<br />

exp( t<br />

dt m<br />

m ⎡<br />

∴ x(<br />

t ) = − v0<br />

exp(<br />

k ⎢<br />

⎣<br />

)<br />

− k<br />

m<br />

k = 6πµ<br />

r<br />

μ : viscosity<br />

r : particle radius<br />

m : particle mass<br />

This imply: When PRI becomes<br />

longer, no significant change<br />

occurs.<br />

⎤<br />

t ) − 1<br />

⎥<br />

+<br />

⎦<br />

x<br />

0


Mechanism of acoustic tweezers<br />

A tool which may be able to help study the<br />

system<br />

Phase plot


Mechanism of acoustic tweezers<br />

Phase plot<br />

When wave<br />

contacts with<br />

particle<br />

Particle moves<br />

Within PRI.<br />

PRI:0.001 s


Mechanism of acoustic tweezers<br />

Converge to the same point


Mechanism of acoustic tweezers<br />

Black: without viscosity<br />

Blue: with viscosity


Mechanism of acoustic tweezers<br />

Viscosity increase the chance of convergence<br />

The velocity of the particle: -1*10 -4 >2*10 -5


Mechanism of acoustic tweezers<br />

with viscosity<br />

all tracks converge to -25μm


Mechanism of acoustic tweezers<br />

Without viscosity<br />

Only three tracks converge<br />

viscosity<br />

increases the<br />

converge range


Conclusion<br />

• From the discussion above, viscosity<br />

plays an import role in the pulse<br />

trapping model.<br />

• Although viscosity takes part of the<br />

trapping model, the sound wave still<br />

dominate the whole system.<br />

• To obtain a better system stability, the<br />

waveform should be smooth.


Future work<br />

• To design a better waveform which may<br />

increase the stability<br />

• Study all factors such as density,<br />

particle size and pressure etc.<br />

• Study the stream flow which caused by<br />

acoustic pressure.


Thanks for your attention

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!