22.07.2013 Views

Science Case

Science Case

Science Case

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

European Extremely Large Telescope<br />

<strong>Science</strong> <strong>Case</strong><br />

Markus Kissler-Patig<br />

E-ELT Project Scientist<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


GMT<br />

TMT<br />

E-ELT


E-ELT Overview


• A project lead by ESO on behalf of 14 member states<br />

• Segmented mirror, adaptive telescope of 42m<br />

diameter with a 5 mirror design<br />

• Schedule:<br />

• Detail design phase until mid-2010<br />

• Start of construction by end of 2010<br />

• End of construction 2017<br />

The E-ELT in a Nutshell<br />

• Cost (Telescope + Instruments): ~1 billion Euros


The E-ELT Dome


BRD v1<br />

The E-ELT Structure<br />

Azimuth track Altitude cradle<br />

Two industrial studies: cost & schedule check<br />

BRD v2<br />

Baseline for updating requirements


$<br />

N?G7J8$:$$$.A6OD>I$$6=;>%L?AGJAO6$;K$@7JH8L$J8IB$/A>?;$A6$A$?;K$;8L$ED$L?;G$<br />

$<br />

.183 MM<br />

The BRD v2 Optical Design<br />

G<br />

49390$ #=>?@AB$C7AB?>D$<br />

M4 (AO): 2.6m<br />

G<br />

G<br />

!%!&'$#(')*+&$,!")-.$/!(#/'$<br />

M1 (seg): 42m<br />

M2: 5.7m<br />

M3: 4m<br />

G<br />

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$>P;2$<br />

$ 19<br />

>?@7A8$4$*


The E-ELT Emphasis<br />

• Active optics to phase up the large mirror surfaces<br />

• Adaptive optics is being designed into the telescope<br />

and first-generation instruments<br />

to give maximum gains in resolution and sensitivity<br />

priority for diffraction-limited instruments


Adaptive Optics<br />

• The Telescope delivers:<br />

• seeing limited mode<br />

• Ground Layer AO (w/ and w/o LGS) [GLAO]<br />

• Post-Focal AO facilities:<br />

• Single Conjugated AO (no LGS) [SCAO]<br />

• Laser Tomography AO [LTAO]<br />

• Multi-conjugated AO [MCAO]<br />

• AO included in instruments:<br />

• Extreme AO [XAO]<br />

• Single Conjugated AO [SCAO]


Laser Guide Stars<br />

Baseline:<br />

•Six Continuous Wave lasers of 50 W (TBC) each at 589 nm<br />

•Gravity invariant laser clean room(s)<br />

•Launch from behind secondary mirror<br />

•Mirror relay to launch telescope<br />

•Rotate laser with the field (not with the pupil)<br />

LLT<br />

Sodium<br />

layer<br />

~5” elongation


Instrument Suite


E-ELT Instrumentation: Background<br />

E-ELT Proposal to ESO Council (Dec 2006)<br />

• High Priority Instruments<br />

• Policy of studies and instrument procurement<br />

• “5-6 first generation instruments” at an estimated hardware<br />

construction cost to ESO of 86 M€<br />

Instrument and AO modules Study Plan (April 2007)<br />

• Plan presented and discussed with STC foresees:<br />

8 instruments and 2 post-focal AO module preparatory<br />

studies<br />

• 2.3 M€ Study Budget 2007-2009 (now 90% committed) +<br />

30 ESO FTE for Study Phase<br />

• For the most demanding instruments and AO modules<br />

additional funding provided by EC Framework programs


Foreseen first generation of instruments<br />

Name Instrument type<br />

Wavelength<br />

range<br />

MICADO Diffraction limited NIR Imager 0.8-2.4 μm<br />

HARMONI Single-field NIR spectrograph 0.8-2.4 μm<br />

EAGLE<br />

CODEX<br />

Wide-field multi-object NIR<br />

spectrograph<br />

High-resolution visual<br />

spectrograph<br />

0.8-2.4 μm<br />

0.35-0.72<br />

μm<br />

METIS Mid-IR imager and spectrograph 3.5-20 μm<br />

FoV and<br />

sampling<br />

30”<br />

4 mas/pix<br />

~1”-10”<br />

20-50 mas/pix<br />

patrol field ≥5'<br />

10-50 mas/pix<br />

Spectral<br />

resolution<br />

~4000<br />

(~20.000)<br />

~5000<br />

(R>15.000)<br />

AO support<br />

envisaged<br />

SCAO/MCAO<br />

SCAO/LTAO<br />

point source >120.000 Tip-Tilt?<br />

30”<br />

15-30 mas/pix<br />

5-200<br />

~100.000<br />

Notes<br />

MOAO multiplex >20<br />

SCAO/LTAO<br />

stability < 2 cm/s<br />

over 30 years<br />

EPICS Planet finder 0.6-1.8 μm ~2”-4” >50 XAO Polarimetry<br />

?? Optical MOS 0.3-1.8 μm 5’-10’ FoV 1000-10.000 GLAO multiplex >100<br />

?? NIR high-resolution spectrograph 0.8-2.4 μm slit >100.000 GLAO<br />

MAORY Multi-conjugated AO module 0.6-2.4 μm 2’ FoV<br />

2 DMs + M4,<br />

6 LGS<br />

?? Laser tomography AO module 0.6-2.4 μm 1’ FoV M4, 6 LGS


Markus Kissler-Patig E-ELT Status GSMT Workshop, Chicago, 16 June 2008 15


Markus Kissler-Patig E-ELT Status GSMT Workshop, Chicago, 16 June 2008 15


Markus Kissler-Patig E-ELT Status GSMT Workshop, Chicago, 16 June 2008 16


TEST INSTRUMENT DISTRIBUTION (NASMYTH PLATFORMS)<br />

MCAO & LTAO modules, MICADO, HARMONI, EPICS, METIS , one WF INSTRUMENT<br />

Test<br />

Camera<br />

WIDE FIELD<br />

INSTRUMENT<br />

MICADO<br />

MCAO module<br />

P<br />

M6<br />

units,<br />

Adaptors<br />

P<br />

HARMONI<br />

LTAO<br />

modules<br />

METIS<br />

EPICS+<br />

XAO


EAGLE<br />

+MOAO<br />

TEST INSTRUMENT DISTRIBUTION (GI and COUDE foci)<br />

CODEX


PRELIMINARY<br />

NIRSpec<br />

E-ELT Instrumentation Project Office<br />

WAVELENGTH vs. SPECTRAL RESOLUTION<br />

Wavelength (nm)<br />

MET<br />

IS


PRELIMINARY<br />

JWST MIRI<br />

Strehl<br />

0 0.5 1<br />

E-ELT Instrumentation Project Office<br />

PIXEL SAMPLING vs.STREHL for diffraction limited E-ELT INSTRUMENTS<br />

Pixel size<br />

0.90(N)<br />

0.72 (K)<br />

JWST NIRCam<br />

0.5 (K)<br />

30” field<br />

20


PRELIMINARY<br />

WF, visual-red camera or<br />

spectrograph with GLAO<br />

E-ELT Instrumentation Project Office<br />

PIXEL SAMPLING, EE within 2x2 spaxels of Wide Field E-ELT INSTRUMENTS<br />

EE<br />

0 100<br />

Pixel size (mas)<br />

EE 30% at I<br />

5’<br />

EAGLE, NIR<br />

MIFU with<br />

MOAO


<strong>Science</strong> <strong>Case</strong>


The <strong>Science</strong> <strong>Case</strong> for Giant Telescope builds on three pillars:<br />

Discovery / the unknown<br />

Synergy with large facilities (VLT/I, JWST, ALMA, LSST, SKA, ...)<br />

Contemporary <strong>Science</strong><br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


The Unknown<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Enabling discovery by opening parameter space<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Synergy with Large Facilities<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


The main synergy is expected with:<br />

The 8-10m class Telescopes (VLT/I, ...)<br />

The JWST<br />

ALMA<br />

LSST<br />

SKA / SKA Pathfinders<br />

...<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


JWST key science<br />

The End of the Dark Ages: First Light and Reionization<br />

Assembly of Galaxies<br />

➱ suite of optical/NIR sensitive multi-object spectrographs<br />

The Birth of Stars and Protoplanetary Systems<br />

Planetary Systems and the Origins of Life<br />

➱ METIS: mid-IR instrument (high spatial/spectral resolution at<br />

3-15 μm)<br />

➱ EPICS: planet-finder (incl. low-resolution spectroscopy and<br />

polarimetry)<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


ALMA key science<br />

Detect spectral line emission from CO or CII in a normal<br />

galaxy like the Milky Way at a redshift of z = 3, in less than 24<br />

hours of observation.<br />

➱ NIR sensitive integral spectrograph and imager<br />

Image the gas kinematics in protostars and in protoplanetary<br />

disks around young Sun-like stars at a distance of the nearest<br />

star-forming clouds.<br />

➱ NIR and mid-IR high-spectral resolution instruments<br />

Provide precise images at an angular resolution of 0.1 arcsec.<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Contemporary <strong>Science</strong><br />

The Design Reference Mission<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Planets & Stars<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Planets & Stars<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Planets & Stars<br />

Stars & Galaxies<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Planets & Stars<br />

Stars & Galaxies<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Planets & Stars<br />

Stars & Galaxies<br />

Galaxies & Cosmology<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Planets & Stars<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


From giant to terrestrial exo-planets:<br />

detection, characterisation and evolution<br />

Circumstellar disks<br />

Young clusters and the Initial Mass Function<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


From giant to terrestrial exo-planets:<br />

detection, characterisation and evolution<br />

Circumstellar disks<br />

Young clusters and the Initial Mass Function<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Today, we can detect Jupiter-mass planets indirectly.<br />

What the ELT would allow us to do:<br />

1- detect Earth-mass planets indirectly<br />

2- perform direct imaging of planets<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

To date: 270 extra-solar planets<br />

have been detected


Derived key requirements:<br />

• measure radial velocities with


From giant to terrestrial exo-planets:<br />

detection, characterisation and evolution<br />

Circumstellar disks<br />

Young clusters and the Initial Mass Function<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Evolution of planetary systems in Orion<br />

Transition from disks to planetary systems<br />

McCaughrean, Stapelfeldt, & Close PPIV, 2000<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

McCaughrean


Circumstellar disks are the birthplaces of planets<br />

How is material assembled?<br />

And on which time scales?<br />

The ELT will allow us to study the morphology, dynamics<br />

and chemistry of the young disks.<br />

The ELT has ~10 the spatial resolution of the JWST in<br />

the mid-infrared<br />

Artist’s representation of a protoplanetary disk<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

Hartmann


Derived key requirements:<br />

• diffraction limited imaging at 2-10 μm wavelength<br />

‣ efficient telescope and AO in the mid-infrared<br />

• diffraction limited spectroscopy at 2-20 μm wavelength<br />

‣ telescope transmitting all the way to 20 μm<br />

‣ spectrograph with high resolution (100.000) at 5 μm<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


From giant to terrestrial exo-planets:<br />

detection, characterisation and evolution<br />

Circumstellar disks<br />

Young clusters and the Initial Mass Function<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


How do molecular clouds fragment?<br />

What is the mass spectrum of stars?<br />

(Extension of ALMA science) !<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

-<br />

0<br />

8


Derived key requirements:<br />

• “wide field” diffraction limited imaging at 2 μm wavelength<br />

‣ Multi-Conjugate AO over >30” FoV in the near<br />

infrared<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Stars & Galaxies<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Imaging and spectroscopy of resolved stellar<br />

populations in galaxies<br />

Black holes and AGN<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Imaging and spectroscopy of resolved stellar<br />

populations in galaxies<br />

Black holes and AGN<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Understanding the formation and evolution of galaxies<br />

The goals with the ELT are:<br />

Leo A<br />

Deepest ever CMD (in<br />

absolute mag) for an<br />

isolated dwarf irregular.<br />

M814 ! +3.4<br />

M475 ! +4.2<br />

1- to obtain ultra-deep photometry of stars in nearby galaxies<br />

2- to understand the very first stars formed in our galaxy<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

Cole et al. 2007<br />

Leo A: Deepest colourmagnitude<br />

diagram ever<br />

obtained for a galaxy


Derived key requirements:<br />

• “wide field” diffraction limited imaging down to visible<br />

wavelength<br />

‣ Multi-Conjugate AO over >60” FoV down to 0.6 μm<br />

• high-resolution spectrograph in the UV<br />

‣ telescope efficient down to the atmospheric cut-off<br />

(340 nm)<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Imaging and spectroscopy of resolved stellar<br />

populations in galaxies<br />

Black holes and AGN (Active Galactic Nuclei)<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Probing closer to black holes:<br />

Is the black hole intimately connected with the<br />

evolution of the galaxy?<br />

With a combination of high spatial and spectral resolution, the<br />

ELT will be able to probe black hole over a large range of masses<br />

in all types of galaxies<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

M87 hosts a 10 9 Mo black hole


Derived key requirements:<br />

• high spatial and spectral resolution spectroscopy<br />

‣ spectroscopy with resolution 5.000 to 10.000 at the<br />

diffraction limit in the near-infrared<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Galaxies & Cosmology<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


The physics of high-redshift galaxies<br />

First light - the highest redshift galaxies<br />

Is the low-density intergalactic medium<br />

metal enriched?<br />

A dynamical measurement of the expansion<br />

history of the universe<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


The physics of high-redshift galaxies<br />

First light - the highest redshift galaxies<br />

Is the low-density intergalactic medium<br />

metal enriched?<br />

A dynamical measurement of the expansion<br />

history of the universe<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


What did galaxies look like 10 billion years ago?<br />

The ELT will allow to measure the kinematics (masses/structure)<br />

of galaxies in the very early universe (redshifts between 2 and 6)<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

V σ<br />

z ~ 4 50 mas pixels<br />

z=0 rotating disk simulations (M. Puech)<br />

42-m, 10-hr integration, MOAO (MCAO)


Derived key requirements:<br />

• spectroscopy at high spatial resolution for multiple sources<br />

in a large field<br />

‣ field of view of 5’ to 10’<br />

‣ FoV corrected locally with Mutli-Object AO<br />

‣ gravity invariant focus<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


The physics of high-redshift galaxies<br />

First light - the highest redshift galaxies<br />

Is the low-density intergalactic medium<br />

metal enriched?<br />

A dynamical measurement of the expansion<br />

history of the universe<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Scanning the Inter-Galactic Medium back in time with Quasars:<br />

Where are the metals formed by the galaxies?<br />

To Earth<br />

The ELT with its large collecting area allows to probe the faintest<br />

lines in the IGM at high redshift<br />

QSO absorption lines<br />

Lyman limit Ly"<br />

Ly!<br />

Ly" em<br />

Ly! forest<br />

Quasar<br />

Ly! em<br />

SiII<br />

CII<br />

NV em<br />

SiIV<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong><br />

SiIV em<br />

SiII CIV<br />

CIV em


Derived key requirements:<br />

• high spectral resolution spectrograph in the blue/UV<br />

‣ spectroscopy with resolution 50.000+ down to 380 nm<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


The physics of high-redshift galaxies<br />

First light - the highest redshift galaxies<br />

Is the low-density intergalactic medium<br />

metal enriched?<br />

A dynamical measurement of the expansion<br />

history of the universe<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


For the very first time, a direct measurement of the dynamical<br />

evolution of the universe is possible.<br />

The experiment requires 4000h of observations over 20 years.<br />

The systematic errors must be kept below 1cm/s spectral<br />

resolution.<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Derived key requirements:<br />

• lifetime of the telescope > 20 years<br />

‣ reproducibility of the wavelength calibration over that<br />

time<br />

• Ultra-high resolution (i.e. stable) spectrograph<br />

‣ Coudé focus for the spectrograph<br />

Markus Kissler-Patig - ELT <strong>Science</strong> <strong>Case</strong>


Thank You

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!