21.07.2013 Views

Safety and Efficacy Pharmacogenomics in Pediatric ...

Safety and Efficacy Pharmacogenomics in Pediatric ...

Safety and Efficacy Pharmacogenomics in Pediatric ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Safety</strong> <strong>and</strong> <strong>Efficacy</strong> <strong>Pharmacogenomics</strong><br />

<strong>in</strong> <strong>Pediatric</strong> Psychopharmacology<br />

Christopher A. Wall, MD, Cather<strong>in</strong>e Oldenkamp, MMSII, <strong>and</strong> Cosima Sw<strong>in</strong>tak, MD<br />

ABSTRACT<br />

Historically, cl<strong>in</strong>icians have had few resources beyond empiric tools<br />

derived from population-based treatment algorithms <strong>and</strong> patient/<br />

family <strong>in</strong>terviews to <strong>in</strong>form the “best choice” for psychopharmacolog-<br />

ic <strong>in</strong>tervention. Previously unappreciated <strong>in</strong>ter<strong>in</strong>dividual variance <strong>in</strong><br />

activity of cytochrome P450 enzymatic activity can lead to abnormal<br />

metabolism of many psychotropics <strong>and</strong> poor outcomes. Fortunately,<br />

advances <strong>in</strong> our underst<strong>and</strong><strong>in</strong>g <strong>and</strong> application of psychiatric phar-<br />

macogenomic <strong>in</strong>formation have the potential to improve the quality of<br />

medical care for children at the level of the <strong>in</strong>dividual prescription.<br />

INTRODUCTION<br />

A large number of children <strong>and</strong> adolescents present<strong>in</strong>g for<br />

health care are affected by mental illness <strong>and</strong> many require<br />

psychotropic medications as a component of their overall<br />

care. 1,2 Despite <strong>in</strong>creas<strong>in</strong>g choices <strong>in</strong> medication management,<br />

many of these patients still experience poor outcomes<br />

related to <strong>in</strong>adequate medication response <strong>and</strong> significant<br />

adverse drug events (ADEs). 3 Given ongo<strong>in</strong>g shortages <strong>in</strong> the<br />

specialty of child <strong>and</strong> adolescent psychiatry, 4 the considerable<br />

challenge of prescrib<strong>in</strong>g psychotropics <strong>in</strong> the pediatric<br />

population is often managed by adult psychiatrists, family<br />

physicians, <strong>and</strong> pediatricians. In consider<strong>in</strong>g whether a<br />

medication is the “right” one for a given patient, all cl<strong>in</strong>icians<br />

must weigh not only issues such as the potential for side<br />

effects, family responses to similar psychotropic medications,<br />

<strong>and</strong> the nature <strong>and</strong> <strong>in</strong>tensity of the patient’s illness, but also<br />

psychosocial concerns. This is a process which is complicated<br />

by the knowledge that an <strong>in</strong>correct choice could result <strong>in</strong><br />

Primary Psychiatry<br />

53<br />

<strong>in</strong>tolerable side effects, poor efficacy, <strong>and</strong> ultimately—perhaps<br />

most importantly—a negative view towards medication<br />

that may have proved helpful. Lack of efficacy <strong>and</strong> ADEs are<br />

frequently cited as reasons for noncompliance <strong>in</strong> pediatric<br />

psychopharmacology.<br />

Currently, children who are treated without the benefit of<br />

<strong>in</strong>dividualized molecular genotyp<strong>in</strong>g have only a 60% chance<br />

of successful long-term treatment. 5 Fortunately, advances <strong>in</strong><br />

our underst<strong>and</strong><strong>in</strong>g <strong>and</strong> application of <strong>in</strong>dividual pharmacogenetic<br />

profiles have the potential to improve the quality<br />

of medical care for children at the level of the <strong>in</strong>dividual<br />

prescription. 6 Pickar 7 has suggested that there is no specialty<br />

where the need for pharmacogenetics seems more compell<strong>in</strong>g<br />

than for psychiatry. Psychiatric pharmacogenomics is<br />

an emerg<strong>in</strong>g tool to assist cl<strong>in</strong>icians <strong>in</strong> develop<strong>in</strong>g strategies<br />

to personalize treatment <strong>and</strong> tailor therapy to <strong>in</strong>dividual<br />

patients, with the goal of optimiz<strong>in</strong>g efficacy <strong>and</strong> safety<br />

through better underst<strong>and</strong><strong>in</strong>g of genetic variability <strong>and</strong> its<br />

<strong>in</strong>fluence on drug response. This article provides discussion<br />

of the role emerg<strong>in</strong>g pharmacogenomic advancement is<br />

Dr. Wall is <strong>in</strong>structor of psychiatry <strong>and</strong> consultant <strong>in</strong> child psychiatry <strong>and</strong> Dr. Sw<strong>in</strong>tak is <strong>in</strong>structor <strong>in</strong> psychiatry <strong>and</strong> senior associate consultant <strong>in</strong> child psychiatry, both <strong>in</strong> the Department of Psychiatry <strong>and</strong><br />

Psychology at the Mayo Cl<strong>in</strong>ic <strong>in</strong> Rochester, M<strong>in</strong>nesota. Ms. Oldenkamp is a medical student at the Mayo Medical School <strong>in</strong> Rochester.<br />

Disclosure: The authors report no affiliation with or f<strong>in</strong>ancial <strong>in</strong>terest <strong>in</strong> any organization that may pose a conflict of <strong>in</strong>terest.<br />

FOCUS POINTS<br />

CLINICAL FOCUS<br />

Primary Psychiatry. 2010;17(5):53-58<br />

• Advances <strong>in</strong> pharmacogenomics have the potential to<br />

improve the quality of medical care for children at the level<br />

of the <strong>in</strong>dividual prescription.<br />

• Nearly 80% of all drugs <strong>in</strong> use today, along with most psychotropics,<br />

are metabolized via testable metabolic pathways.<br />

• Children <strong>and</strong> adolescents with metabolic polymorphisms<br />

may be at greater risk for adverse drug events than children<br />

with normal metabolism.<br />

• <strong>Pediatric</strong> psychotropic prescribers must consider treatmentresistant<br />

patients as potential abnormal metabolizers.<br />

Please direct all correspondence to: Christopher A. Wall, MD, Instructor of Psychiatry, Consultant–Child Psychiatry, Dept of Psychiatry <strong>and</strong> Psychology, Mayo Cl<strong>in</strong>ic, 200 1st St, SW, Rochester, MN 55905;<br />

Tel: 507-284-3352; Fax: 507-533-5353; E-mail: wall.chris@mayo.edu.<br />

© MBL Communications Inc. May 2010


C.A. Wall, C. Oldenkamp, C. Sw<strong>in</strong>tak<br />

play<strong>in</strong>g <strong>in</strong> the cl<strong>in</strong>ical practice of <strong>in</strong>dividualized psychopharmacology:<br />

mov<strong>in</strong>g away from “trial <strong>and</strong> error” prescriptions<br />

to <strong>in</strong>dividualized prescrib<strong>in</strong>g. The article also highlights the<br />

grow<strong>in</strong>g literature <strong>and</strong> adoption of pharmacogenomic pr<strong>in</strong>ciples<br />

guid<strong>in</strong>g modern psychotropic prescrib<strong>in</strong>g practices<br />

focus<strong>in</strong>g on the pediatric population.<br />

BACKGROUND OF PSYCHIATRIC<br />

PHARMACOGENOMICS<br />

Psychiatric pharmacogenomics is the study of how gene<br />

variations <strong>in</strong>fluence the responses of a patient to treatment<br />

with psychotropics. The most commonly studied cytochrome<br />

P450 (CYP) enzymes <strong>in</strong>clude 2D6, 2C19, <strong>and</strong> 2C9.<br />

Polymorphisms <strong>and</strong> gene duplications <strong>in</strong> these enzymes<br />

account for the most frequent variations <strong>in</strong> phase I metabolism<br />

of drugs s<strong>in</strong>ce nearly 80% of all drugs <strong>in</strong> use today, along<br />

with most psychotropics (Tables 1 <strong>and</strong> 2), 8 are metabolized<br />

via these pathways. 9 It should also be noted that genetics may<br />

account for 20% to 95% percent of variability <strong>in</strong> drug disposition<br />

<strong>and</strong> effects. 10<br />

Historic <strong>and</strong> current literature divides metabolic phenotypes<br />

<strong>in</strong>to four basic categories. These categories presented<br />

from least to most efficient metabolism are as follows: poor<br />

metabolism (PM; essentially no metabolism at a given<br />

enzyme pathway), <strong>in</strong>termediate metabolism (IM), extensive<br />

TABLE 1<br />

ANTIDEPRESSANT METABOLISM BY CYP ENZYME 8<br />

CYP<br />

Enzyme<br />

Primarily<br />

Metabolized<br />

2D6 desipram<strong>in</strong>e<br />

doxep<strong>in</strong><br />

fluoxet<strong>in</strong>e<br />

nortriptyl<strong>in</strong>e<br />

paroxet<strong>in</strong>e<br />

venlafax<strong>in</strong>e<br />

2C19 amitriptyl<strong>in</strong>e<br />

citalopram<br />

clomipram<strong>in</strong>e<br />

escitalopram<br />

Substantially<br />

Metabolized<br />

amitriptyl<strong>in</strong>e<br />

bupropion<br />

duloxet<strong>in</strong>e<br />

imipram<strong>in</strong>e<br />

mirtazap<strong>in</strong>e<br />

trazodone<br />

doxep<strong>in</strong><br />

imipram<strong>in</strong>e<br />

moclobemide<br />

notriptyl<strong>in</strong>e<br />

sertral<strong>in</strong>e<br />

1A2 fluvoxam<strong>in</strong>e clomipram<strong>in</strong>e<br />

duloxet<strong>in</strong>e<br />

imipram<strong>in</strong>e<br />

2C9 None amitriptyl<strong>in</strong>e<br />

fluoxet<strong>in</strong>e<br />

M<strong>in</strong>imally<br />

Metabolized<br />

citalopram<br />

escitalopram<br />

fluvoxam<strong>in</strong>e<br />

sertral<strong>in</strong>e<br />

venlafax<strong>in</strong>e<br />

amitriptyl<strong>in</strong>e<br />

mirtazap<strong>in</strong>e<br />

sertral<strong>in</strong>e<br />

Mrazek D. Psychiatric <strong>Pharmacogenomics</strong>. New York, NY: Oxford University Press; 2010.<br />

Repr<strong>in</strong>ted with permission from Oxford University Press. Copyright 2010.<br />

CYP=cytochrome P450.<br />

Wall CA, Oldenkamp C, Sw<strong>in</strong>tak C. Primary Psychiatry. Vol 17, No 5. 2010.<br />

metabolism (EM; essentially “normal” metabolism), <strong>and</strong><br />

ultra-rapid metabolism (UM). For the purpose of discussion,<br />

this article will highlight safety <strong>and</strong> efficacy concerns related<br />

to the 15% to 25% of pediatric patients that are either PM<br />

or UM metabolizers. 11<br />

SAFETY AND EFFICACY IN ABNORMAL<br />

METABOLIZERS<br />

The two primary tenets considered <strong>in</strong> all pediatric prescriptions<br />

are safety <strong>and</strong> efficacy, <strong>and</strong> both can be more precisely<br />

addressed through pharmacogenomics. “<strong>Safety</strong> pharmacogenomics”<br />

aims to avoid ADEs <strong>and</strong> side effects by identify<strong>in</strong>g<br />

<strong>in</strong>dividuals who are likely to have difficulty with certa<strong>in</strong><br />

medications due to either <strong>in</strong>creased activity of an enzymatic<br />

pathway (UMs), or lack of activity (PMs). “<strong>Efficacy</strong> pharmacogenomics”<br />

attempts to predict an <strong>in</strong>dividual’s likely response<br />

to a medication at the outset of treatment. 12<br />

Inter<strong>in</strong>dividual variance of activity of CYP enzymes can lead<br />

to abnormal metabolism of most antidepressants (Table 1) <strong>and</strong><br />

antipsychotics (Table 2). These medications have been associated<br />

with a variety of ADEs, rang<strong>in</strong>g from milder side effects,<br />

such as activation, irritability, sexual dysfunction, <strong>and</strong> sedation,<br />

to more significant ADEs, such as weight ga<strong>in</strong>, extrapyramidal<br />

symptoms, metabolic syndrome, hyperprolact<strong>in</strong>emia,<br />

manic-<strong>in</strong>duction, neuroleptic malignant syndrome, <strong>and</strong> even<br />

suicidality. 13 Children <strong>and</strong> adolescents with polymorphisms<br />

lead<strong>in</strong>g to abnormal drug metabolism may be at greater risk for<br />

some of these ADEs than children with normal metabolism, as<br />

medications adm<strong>in</strong>istered at normal therapeutic doses to poor<br />

metabolizers may result <strong>in</strong> toxicity, <strong>and</strong> consequently ADEs.<br />

Conversely, UMs may not atta<strong>in</strong> therapeutic plasma levels on<br />

typical therapeutic doses of medications <strong>and</strong> the treatment may<br />

TABLE 2<br />

ANTIPSYCHOTIC METABOLISM BY CYP ENZYME 8<br />

CYP<br />

Enzyme<br />

Primarily<br />

Metabolized<br />

2D6 chlorpromaz<strong>in</strong>e<br />

haloperidol<br />

perphenaz<strong>in</strong>e<br />

risperidone<br />

thioridaz<strong>in</strong>e<br />

Substantially<br />

Metabolized<br />

aripiprazole<br />

olanzap<strong>in</strong>e<br />

M<strong>in</strong>imally<br />

Metabolized<br />

clozap<strong>in</strong>e<br />

quetiap<strong>in</strong>e<br />

ziprasidone<br />

2C19 None clozap<strong>in</strong>e thioridaz<strong>in</strong>e<br />

1A2 clozap<strong>in</strong>e<br />

olanzap<strong>in</strong>e<br />

chlorpromaz<strong>in</strong>e haloperidol<br />

thioridaz<strong>in</strong>e<br />

Mrazek D. Psychiatric <strong>Pharmacogenomics</strong>. New York, NY: Oxford University Press; 2010.<br />

Repr<strong>in</strong>ted with permission from Oxford University Press. Copyright 2010.<br />

CYP=cytochrome P450.<br />

Wall CA, Oldenkamp C, Sw<strong>in</strong>tak C. Primary Psychiatry. Vol 17, No 5. 2010.<br />

Primary Psychiatry 54<br />

© MBL Communications Inc. May 2010


fail or lead to rapid conversion of prodrug to potentially toxic<br />

active metabolites.<br />

Table 3 13-51 <strong>in</strong>cludes a list of ADEs that have been l<strong>in</strong>ked to<br />

abnormal metabolism of psychotropics by at least one study<br />

<strong>in</strong>volv<strong>in</strong>g abnormal metabolizers. As pharmacogenomic test<strong>in</strong>g<br />

is a relatively new technology, not many studies have been<br />

performed <strong>in</strong>vestigat<strong>in</strong>g these l<strong>in</strong>ks, but identify<strong>in</strong>g the at-risk<br />

population <strong>in</strong> advance could do much to positively affect<br />

quality of life, <strong>in</strong>crease compliance with medications, <strong>and</strong><br />

even circumvent death <strong>in</strong> rare cases. Pharmacogenomic test<strong>in</strong>g<br />

has the potential to offer a more complete, <strong>in</strong>dividualized<br />

risk profile enabl<strong>in</strong>g tailored choices of medication with doses<br />

appropriately adjusted for <strong>in</strong>dividual metabolism <strong>and</strong> advanced<br />

screen<strong>in</strong>g for the propensity of certa<strong>in</strong> undesirable effects.<br />

SAFETY AND EFFICACY IMPLICATIONS<br />

IN POOR METABOLISM<br />

Weight Ga<strong>in</strong> <strong>and</strong> Metabolic Syndrome<br />

There is no doubt that weight ga<strong>in</strong> can be detrimental to a<br />

young person’s physical <strong>and</strong> mental health <strong>and</strong> can exacerbate<br />

problems with self-esteem dur<strong>in</strong>g all developmental stages.<br />

Obesity, which is common among schizophrenic patients, 52<br />

may be further exacerbated by antipsychotics. It has been shown<br />

that decreased metabolism due to variations <strong>in</strong> several CYP<br />

genes may contribute to a patient’s risk profile while tak<strong>in</strong>g an<br />

antipsychotic. For example, decreased metabolism at CYP1A2,<br />

which is known to be <strong>in</strong>volved <strong>in</strong> the metabolism of some antipsychotics,<br />

is associated with <strong>in</strong>creased risk for weight ga<strong>in</strong> <strong>and</strong> a<br />

TABLE 3<br />

ADVERSE EFFECTS ASSOCIATED WITH ABNORMAL METAB-<br />

OLISM 13-51<br />

Reduced metabolism (ie, poor) Increased metabolism (ie, ultrarapid)<br />

EPS 14-22 Opioid toxicity 23-33<br />

Tardive dysk<strong>in</strong>esia 14,34-36 Nausea 37<br />

Oversedation 38-40 Paradoxical excitation 41<br />

Cardiovascular complications<br />

(ie, tachycardia, hypertension,<br />

hypotension) 46,47<br />

Weight ga<strong>in</strong> 46,47 Suicidality 13<br />

Neuroleptic malignant syndrome 48-50<br />

Seroton<strong>in</strong> syndrome 51<br />

Suicidality 22,51<br />

EPS=extrapyramidal symptoms.<br />

Treatment nonresponse 43-45<br />

Wall CA, Oldenkamp C, Sw<strong>in</strong>tak C. Primary Psychiatry. Vol 17, No 5. 2010.<br />

<strong>Safety</strong> <strong>and</strong> <strong>Efficacy</strong> <strong>Pharmacogenomics</strong> <strong>in</strong> <strong>Pediatric</strong> Psychopharmacology<br />

cluster of cl<strong>in</strong>ical features <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>creased visceral adiposity,<br />

hyperglycemia, hypertension, <strong>and</strong> dyslipidemia known as “metabolic<br />

syndrome.” 53 Prevalence of metabolic syndrome is higher<br />

<strong>in</strong> women than it is <strong>in</strong> men as demonstrated <strong>in</strong> the Cl<strong>in</strong>ical<br />

Antipsychotic Trials of Intervention Effectiveness schizophrenia<br />

trial. 53 Lower activity of CYP1A2 may also contribute to the<br />

risk for metabolic syndrome by lead<strong>in</strong>g to <strong>in</strong>creased serum<br />

concentrations of antipsychotics at st<strong>and</strong>ard doses. Children,<br />

especially young females, may be more susceptible to weight<br />

ga<strong>in</strong> while on antipsychotics, 53-55 <strong>and</strong> weight ga<strong>in</strong> may lead to<br />

noncompliance <strong>and</strong> subsequent relapse. 52-56<br />

All of this evidence suggests that pediatric patients are likely<br />

to be at <strong>in</strong>creased risk of weight ga<strong>in</strong> <strong>and</strong> metabolic syndrome if<br />

carry<strong>in</strong>g polymorphisms associated with decreased or absent 1A2<br />

activity. Identify<strong>in</strong>g poor metabolizers at this <strong>and</strong> other genes<br />

associated with atypical antipsychotic metabolism could allow a<br />

physician to be better <strong>in</strong>formed of all risks when prescrib<strong>in</strong>g, <strong>and</strong><br />

heighten awareness related to early signs of metabolic syndrome<br />

or weight ga<strong>in</strong>. This may be especially pert<strong>in</strong>ent to young female<br />

patients, who appear to carry the most risk.<br />

Extrapyramidal Symptoms<br />

Extrapyramidal symptoms (EPS) are frequent <strong>and</strong> serious<br />

acute adverse reactions to antipsychotics. These symptoms<br />

<strong>in</strong>clude pseudopark<strong>in</strong>sonism, acute dystonia, akathisia, <strong>and</strong><br />

tardive dysk<strong>in</strong>esia, 34 which may be permanent even after<br />

removal of the drug.<br />

Several hypotheses <strong>and</strong> studies <strong>in</strong>dicate that PM at CYP2D6,<br />

which metabolizes several of the typical <strong>and</strong> atypical psychotropics,<br />

may <strong>in</strong>crease the risk of develop<strong>in</strong>g EPS. Poor<br />

CYP2D6 metabolizers are likely to have higher than average<br />

plasma concentrations of neuroleptics with an <strong>in</strong>creased risk<br />

for develop<strong>in</strong>g EPS, <strong>in</strong>clud<strong>in</strong>g tardive dysk<strong>in</strong>esia. 14,34,57-59 PM<br />

or <strong>in</strong>hibition of CYP2D6 may be l<strong>in</strong>ked to the <strong>in</strong>duction of<br />

EPS. CYP2D6 <strong>in</strong> the bra<strong>in</strong> is <strong>in</strong>volved <strong>in</strong> the metabolism of<br />

dopam<strong>in</strong>e <strong>and</strong> has a possible functional association with the<br />

dopam<strong>in</strong>e transporter. 59,60 Several selective seroton<strong>in</strong> reuptake<br />

<strong>in</strong>hibiters <strong>and</strong> tricyclic antidepressants <strong>in</strong>hibit CYP2D6, as do<br />

a number of non-psychotropic drugs such as qu<strong>in</strong>id<strong>in</strong>e. Methy<br />

lphenyltetrahydropyrid<strong>in</strong>e, a dopam<strong>in</strong>e neurotox<strong>in</strong> able to produce<br />

Park<strong>in</strong>sonism, is metabolized by 2D6 <strong>and</strong> is also a 2D6<br />

<strong>in</strong>hibitor. V<strong>and</strong>el <strong>and</strong> colleagues 59 concluded that <strong>in</strong>hibition of<br />

CYP2D6 may be <strong>in</strong>volved <strong>in</strong> the genesis of EPS observed <strong>in</strong><br />

treatment with 2D6 substrate psychotropics.<br />

It follows that poor CYP2D6 metabolizers may be at <strong>in</strong>creased<br />

risk for EPS while on certa<strong>in</strong> antidepressants due to high plasma<br />

levels. 59 Indeed, it has been shown that there is a significant association<br />

between EPS <strong>and</strong> the CYP2D6*4 <strong>and</strong> CYP2D6*6 polymorphisms<br />

that are both associated with the poor metabolizer<br />

phenotype. 61,62 Furthermore, there may be a relationship between<br />

the degree of impaired CYP2D6 activity <strong>and</strong> the severity of EPS<br />

dur<strong>in</strong>g neuroleptic treatment. 34 One study 14 demonstrat<strong>in</strong>g that<br />

Primary Psychiatry 55<br />

© MBL Communications Inc. May 2010


C.A. Wall, C. Oldenkamp, C. Sw<strong>in</strong>tak<br />

the development of EPS or tardive dysk<strong>in</strong>esia while on antipsychotic<br />

medication is significantly more frequent among PMs<br />

than among matched IM <strong>and</strong> EM patients, also found a significantly<br />

higher prevalence of noncompliance among the same PM<br />

patients. These f<strong>in</strong>d<strong>in</strong>gs highlight the importance of identify<strong>in</strong>g<br />

those at greater risk for experienc<strong>in</strong>g these serious ADEs.<br />

Neuroleptic Malignant Syndrome<br />

Neuroleptic malignant syndrome (NMS) is a life-threaten<strong>in</strong>g<br />

ADE associated with antipsychotics, antidepressants, <strong>and</strong><br />

other psychotropics. Signs of NMS <strong>in</strong>clude hyperthermia,<br />

EPS, altered consciousness, fluctuat<strong>in</strong>g blood pressure, <strong>in</strong>cont<strong>in</strong>ence,<br />

<strong>and</strong> dyspnea. 48,63,64 While some studies were unable to<br />

f<strong>in</strong>d a significant l<strong>in</strong>k between reduced function of CYP2D6<br />

<strong>and</strong> NMS, 65,66 more recent case studies suggest pharmacogenomic<br />

factors cannot yet be excluded as risk factors for this<br />

serious condition. In two separate case studies, four patients<br />

who developed NMS were later determ<strong>in</strong>ed to have mutations<br />

<strong>in</strong> CYP2D6 conferr<strong>in</strong>g the PM phenotype. 48 It was concluded<br />

that while not all NMS patients have this poor metabolizer<br />

phenotype, poor metabolizers at CYP2D6 may be at <strong>in</strong>creased<br />

risk for develop<strong>in</strong>g NMS. 49<br />

Hyperprolact<strong>in</strong>emia<br />

Conventional antipsychotics <strong>and</strong> certa<strong>in</strong> atypical antipsychotics,<br />

such as risperidone, can cause significant elevations<br />

<strong>in</strong> prolact<strong>in</strong>. 53 For risperidone, <strong>in</strong>creases <strong>in</strong> prolact<strong>in</strong> levels are<br />

dose related. 53,67 Though no studies have yet been conducted<br />

to show a l<strong>in</strong>k between PM phenotypes <strong>and</strong> ADEs related to<br />

hyperprolact<strong>in</strong>emia, this l<strong>in</strong>k rema<strong>in</strong>s not only possible, but an<br />

important consideration <strong>in</strong> the pediatric population. Amongst<br />

other potential developmental concerns, complications from<br />

early hyperprolact<strong>in</strong>emia may <strong>in</strong>clude bone loss, which <strong>in</strong> turn<br />

could lead to significant consequences upon reach<strong>in</strong>g adulthood.<br />

Furthermore, if this <strong>in</strong>crease <strong>in</strong> prolact<strong>in</strong> is dose related, PMs<br />

may have elevated risk as they may experience higher serum<br />

concentrations of poorly metabolized medication.<br />

Additional Considerations<br />

Prescribers should also bear <strong>in</strong> m<strong>in</strong>d that over sedation,<br />

postural hypotension, <strong>and</strong> cardiovascular complications may<br />

be additional significant concerns <strong>in</strong> poor metabolizers. 68<br />

Likewise, as cl<strong>in</strong>icians follow their natural tendency to optimize<br />

dos<strong>in</strong>g <strong>in</strong> their treatment of psychiatric symptoms, it may<br />

be helpful to remember that, <strong>in</strong> the PM population, so called<br />

“somatic symptoms” associated with psychiatric diagnoses<br />

(<strong>and</strong> subsequent treatment) may <strong>in</strong> fact be medication <strong>in</strong>tolerance<br />

exacerbated by dose titration. Without knowledge of the<br />

patient’s metabolic phenotype, the cl<strong>in</strong>ician must “guess” as to<br />

the cause of these symptoms <strong>and</strong> may <strong>in</strong>correctly conclude that<br />

the patient is just “anxious” or “dramatic.” Furthermore, the<br />

cl<strong>in</strong>ician must also wonder whether or not the patient will be<br />

able to adequately tolerate the next medication choice.<br />

SAFETY AND EFFICACY IMPLICATIONS<br />

IN ULTRA-RAPID METABOLISM<br />

UMs present their own set of treatment challenges as they may<br />

not atta<strong>in</strong> therapeutic plasma levels on normal doses of medications,<br />

<strong>and</strong> thus treatment may have a higher propensity to fail. 69<br />

For example, a recent Swedish autopsy study 13 found that among<br />

those who died of suicide, there was a higher number carry<strong>in</strong>g<br />

>2 active CYP2D6 genes (UM phenotype) as compared with<br />

those who died of natural causes. Postulated explanations for this<br />

f<strong>in</strong>d<strong>in</strong>g <strong>in</strong>clude accumulation of higher levels of metabolites at a<br />

faster rate which is a known risk of UM. This buildup may lead<br />

to adverse drug reactions if the metabolite is active or toxic. It<br />

could also be argued that <strong>in</strong> this population, UMs did not reach<br />

the desired therapeutic concentration of their prescribed medications<br />

<strong>and</strong> thus had not been treated effectively. This hypothesis<br />

is supported by Kawanishi <strong>and</strong> colleagues 43 who found UMs<br />

as more likely to fail to respond to antidepressants. The ultrarapid<br />

metabolizers <strong>in</strong> the study also had the worst scores on the<br />

Hamilton Rat<strong>in</strong>g Scale for Depression lead<strong>in</strong>g the authors to<br />

conclude that ultra rapid metabolism may be a risk factor for<br />

persistent mood disorders.<br />

Case studies <strong>in</strong> UMs suggest that diphenhydram<strong>in</strong>e may be<br />

converted to a compound which causes paradoxical excitation<br />

due to the abnormally high CYP2D6 activity. 41 More serious<br />

consequences might be seen <strong>in</strong> children treated with other<br />

medications like code<strong>in</strong>e whose ultra-rapid conversion might<br />

result <strong>in</strong> toxic accumulation of morph<strong>in</strong>e lead<strong>in</strong>g to death. 23<br />

It follows that UMs could be at <strong>in</strong>creased risk of ADEs from<br />

higher levels of toxic or active metabolites from psychotropics.<br />

DISCUSSION<br />

To date, much of the available literature on pharmacogenomic<br />

test<strong>in</strong>g <strong>in</strong> the pediatric population has focused on the spectrum<br />

of efficacy related to cancer treatments. 70-75 Impressive results <strong>in</strong><br />

leukemia remission rates have been described as partly due to<br />

advancements <strong>in</strong> pharmacogenomically derived <strong>in</strong>dividualized<br />

prescrib<strong>in</strong>g practices. Cheok <strong>and</strong> colleagues 70 highlighted the<br />

progress made <strong>in</strong> the treatment of acute lymphoblastic leukemia<br />

<strong>in</strong> children not<strong>in</strong>g the disease as be<strong>in</strong>g lethal 4 decades ago to<br />

current cure rates exceed<strong>in</strong>g 80%. This progress is largely due to<br />

the optimization of exist<strong>in</strong>g treatment modalities rather than the<br />

discovery of new antileukemic agents. The literature regard<strong>in</strong>g<br />

the pharmacogenomics of asthma treatment <strong>and</strong> research design<br />

has also been quite active <strong>in</strong> the pediatric population <strong>in</strong> the past<br />

few years. 76-83 In both cancer <strong>and</strong> asthma research, there are clear<br />

Primary Psychiatry 56<br />

© MBL Communications Inc. May 2010


outcomes <strong>and</strong> endpo<strong>in</strong>ts to def<strong>in</strong>e treatment response <strong>and</strong> the<br />

role that <strong>in</strong>ter<strong>in</strong>dividual variability plays.<br />

Historically, the process of <strong>in</strong>itiat<strong>in</strong>g psychopharmacologic<br />

agents <strong>in</strong> the child <strong>and</strong> adolescent population has been<br />

empirically based <strong>and</strong> one <strong>in</strong> which the cl<strong>in</strong>ician considers<br />

many variables <strong>in</strong>clud<strong>in</strong>g age, gender, access to health care,<br />

<strong>and</strong> ability to rema<strong>in</strong> compliant with the proposed treatment.<br />

Frequently factored <strong>in</strong>to this consideration are quasi-genetic<br />

questions relat<strong>in</strong>g to family history of illness as well as family<br />

history of medication response. Until very recently, the use of<br />

family history has been the only tool available to better underst<strong>and</strong><br />

genetic makeup <strong>and</strong> its resultant <strong>in</strong>terplay with efficacy<br />

<strong>and</strong> ADEs. In fact, as early as the 19th century, Holmes 84<br />

commented that, “All medications are directly harmful; the<br />

question is whether they are <strong>in</strong>directly beneficial.” Fortunately,<br />

unlike <strong>in</strong> Holmes’ day, we now have the potential capability to<br />

resolve that very question; pharmacogenomic test<strong>in</strong>g can help<br />

determ<strong>in</strong>e <strong>in</strong> advance whether an <strong>in</strong>dividual will respond favorably.<br />

Ongo<strong>in</strong>g central nervous system maturation coupled with<br />

an <strong>in</strong>creased risk for ADEs makes the utility of this advance<br />

most relevant <strong>in</strong> pediatric psychopharmacology.<br />

Though most prescrib<strong>in</strong>g <strong>in</strong> pediatric psychiatry is still off label,<br />

treatment algorithms do currently exist for most classes of psychotropics.<br />

Unfortunately, none of these algorithms base their recommendations<br />

on psychiatric pharmacogenomics. Furthermore,<br />

s<strong>in</strong>ce dos<strong>in</strong>g recommendations are based on “normal” metabolizers,<br />

they do not <strong>in</strong>clude the estimated 15% to 25% of the population<br />

who is either UMs (<strong>and</strong> therefore at much higher risk for<br />

resultant noncompliance due to never reach<strong>in</strong>g therapeutic <strong>and</strong>/or<br />

beneficial levels) or poor with non-compliance result<strong>in</strong>g from<br />

ADEs. These outliers, who frequently end up <strong>in</strong> treatment-resistant<br />

categories of patients, might have entirely different outcomes<br />

if medication management were tailored to their genetic—<strong>and</strong><br />

therefore most fundamental—needs.<br />

When consider<strong>in</strong>g the “stakes” <strong>in</strong>volved <strong>in</strong> the early patientphysician-family<br />

relationship, it is clear that prescrib<strong>in</strong>g with<br />

improved confidence, <strong>and</strong> less risk of ADEs, will pay significant<br />

dividends. For example, if a cl<strong>in</strong>ician thoughtfully considers<br />

not only the symptoms <strong>in</strong>volved <strong>in</strong> the patient’s illness<br />

process, but also the likelihood that the patient will experience<br />

difficulties with certa<strong>in</strong> medications, the patient <strong>and</strong> family<br />

cannot help but be appreciative of the efforts <strong>in</strong>volved at def<strong>in</strong><strong>in</strong>g<br />

their particular risks. This transparency of process <strong>and</strong> subsequent<br />

conversations about the role for medications will allow<br />

for greater trust <strong>and</strong> a sense of improved objectivity.<br />

Widespread adoption of pharmacogenomic test<strong>in</strong>g will be<br />

hampered by several factors <strong>in</strong>clud<strong>in</strong>g costs, limited sample<br />

sizes <strong>in</strong> research reports, <strong>and</strong> <strong>in</strong>gra<strong>in</strong>ed practice habits fueled by<br />

underst<strong>and</strong>able skepticism <strong>and</strong> access challenges. Each of these<br />

issues will need to be <strong>in</strong>dividually addressed <strong>and</strong> overcome <strong>in</strong> the<br />

foreseeable future. Several academic medical centers are <strong>in</strong>corporat<strong>in</strong>g<br />

this form of test<strong>in</strong>g <strong>in</strong>to the comprehensive biopsycho-<br />

<strong>Safety</strong> <strong>and</strong> <strong>Efficacy</strong> <strong>Pharmacogenomics</strong> <strong>in</strong> <strong>Pediatric</strong> Psychopharmacology<br />

social workup <strong>and</strong> results appear promis<strong>in</strong>g. 11,85 Today, the cost<br />

of the genotyp<strong>in</strong>g of a s<strong>in</strong>gle gene varies between $300–$700<br />

depend<strong>in</strong>g upon the complexity of the variants that are be<strong>in</strong>g<br />

identified. Fortunately, panels of <strong>in</strong>formative genes can now be<br />

ordered for between $800–$1,500. With the rapid improvement<br />

<strong>in</strong> sequenc<strong>in</strong>g technologies that is now occurr<strong>in</strong>g, these costs will<br />

<strong>in</strong>evitably decrease <strong>in</strong> the near future.<br />

As psychiatric illnesses are <strong>in</strong>creas<strong>in</strong>gly recognized <strong>and</strong><br />

treated <strong>in</strong> the pediatric population, cl<strong>in</strong>icians now have access<br />

to an emerg<strong>in</strong>g set of pharmacogenomic pr<strong>in</strong>ciples to guide<br />

their prescrib<strong>in</strong>g practices. The primary pr<strong>in</strong>ciple is to use<br />

pharmacogenomic test<strong>in</strong>g to <strong>in</strong>crease the safety of psychotropics.<br />

A second pr<strong>in</strong>ciple is to use test<strong>in</strong>g to identify medications<br />

that are unlikely to be effective. The ultimate goal of pharmacogenomic<br />

test<strong>in</strong>g is to f<strong>in</strong>d the “right medication” on the first<br />

try. As pharmacogenomic test<strong>in</strong>g becomes more sophisticated,<br />

it will be possible to ab<strong>and</strong>on “trial <strong>and</strong> error” strategies <strong>and</strong><br />

beg<strong>in</strong> to provide <strong>in</strong>dividualized care utiliz<strong>in</strong>g metabolic <strong>and</strong><br />

receptor pharmacogenomics. Us<strong>in</strong>g composite data, cl<strong>in</strong>icians<br />

will have an unprecedented degree of molecular <strong>in</strong>formation<br />

available to help them choose effective medication-based treatments<br />

while m<strong>in</strong>imiz<strong>in</strong>g the potential for ADEs.<br />

CONCLUSION<br />

As cl<strong>in</strong>icians cont<strong>in</strong>ue to treat pediatric patients with psychotropics,<br />

every relevant cl<strong>in</strong>ical observation <strong>and</strong> laboratory<br />

assessment should be considered to <strong>in</strong>crease the likelihood<br />

of achiev<strong>in</strong>g remission of symptoms with m<strong>in</strong>imal ADEs.<br />

Review<strong>in</strong>g the results of pharmacogenomic test<strong>in</strong>g prior to<br />

writ<strong>in</strong>g an <strong>in</strong>itial prescription now provides cl<strong>in</strong>icians useful<br />

<strong>in</strong>dividualized data that can be reviewed with the patient <strong>and</strong><br />

family to <strong>in</strong>form them about the role that metabolism may<br />

play <strong>in</strong> treatment response as well as the possibility of ADEs. It<br />

is the authors’ belief that pharmacogenomic test<strong>in</strong>g has a significant<br />

role <strong>in</strong> modern psychopharmacologic practice <strong>and</strong> that<br />

the associated expenses are already outweighed by the potential<br />

benefits of more <strong>in</strong>dividualized prescriptions. PP<br />

REFERENCES<br />

1. Kessler RC, Wang PS. The descriptive epidemiology of commonly occurr<strong>in</strong>g mental disorders <strong>in</strong> the United<br />

States. Annu Rev Public Health. 2008;29:115-129.<br />

2. McVoy M, F<strong>in</strong>dl<strong>in</strong>g R. Child <strong>and</strong> Adolescent Psychopharmacology Update. Psychiatr Cl<strong>in</strong> North Am.<br />

2009;32(1):111-133.<br />

3. Bourgeois FT, M<strong>and</strong>l KD, Valim C, Shannon MW. <strong>Pediatric</strong> adverse drug events <strong>in</strong> the outpatient sett<strong>in</strong>g:<br />

An 11-year national analysis. <strong>Pediatric</strong>s. 2009;124(4):e744-e750.<br />

4. Thomas CR, Holzer CE. The cont<strong>in</strong>u<strong>in</strong>g shortage of child <strong>and</strong> adolescent psychiatrists. J Am Acad Child<br />

Adolesc Psychiatry. 2006;45(9):1023-1031.<br />

5. Mrazek DA. <strong>Pharmacogenomics</strong> of methylphenidate response: mak<strong>in</strong>g progress. J Am Acad Child Adolesc<br />

Psychiatry. 2009;48(12):1140-1142.<br />

6. Husa<strong>in</strong> A, Loehle JA, He<strong>in</strong> DW. Cl<strong>in</strong>ical pharmacogenetics <strong>in</strong> pediatric patients. <strong>Pharmacogenomics</strong>.<br />

2007;8(10):1403-1411.<br />

7. Pickar D. <strong>Pharmacogenomics</strong> of psychiatric drug treatment. Psychiatr Cl<strong>in</strong> North Am. 2003;26(2):303-321.<br />

8. Mrazek D. Psychiatric <strong>Pharmacogenomics</strong>. New York, NY: Oxford University Press; 2010.<br />

9. Zhou SF, Di YM, Chan E, et al. Cl<strong>in</strong>ical pharmacogenetics <strong>and</strong> potential application <strong>in</strong> personalized<br />

medic<strong>in</strong>e. Curr Drug Metab. 2008;9(8):738-784.<br />

Primary Psychiatry 57<br />

© MBL Communications Inc. May 2010


C.A. Wall, C. Oldenkamp, C. Sw<strong>in</strong>tak<br />

10. Kalow W, Tang BK, Endrenyi L. Hypothesis: comparisons of <strong>in</strong>ter- <strong>and</strong> <strong>in</strong>tra-<strong>in</strong>dividual variations can<br />

substitute for tw<strong>in</strong> studies <strong>in</strong> drug research. Pharmacogenetics. 1998;8(4):283-289.<br />

11. Wall CA, Wells L, Mohan A, Odegarden S, Drews M, Mrazek DA. <strong>Pharmacogenomics</strong> <strong>and</strong> its emerg<strong>in</strong>g role<br />

<strong>in</strong> <strong>in</strong>dividualized pediatric psychopharmacology. Poster presented at the 55th Annual Meet<strong>in</strong>g of the<br />

American Academy of Child <strong>and</strong> Adolescent Psychiatry; Chicago, IL; October 28-November 2, 2008.<br />

12. Roses AD. Pharmacogenetics <strong>and</strong> drug development: The path to safer <strong>and</strong> more effective drugs. Nat Rev<br />

Genet. 2004;5(9):645-656.<br />

13. Zackrisson AL, L<strong>in</strong>dblom B, Ahlner J. High frequency of occurrence of CYP2D6 gene duplication/multiduplication<br />

<strong>in</strong>dicat<strong>in</strong>g ultrarapid metabolism among suicide cases. Cl<strong>in</strong> Pharmacol Ther. November 11,<br />

2009. [Epub ahead of pr<strong>in</strong>t].<br />

14. Kobylecki CJ, Jakobsen KD, Hansen T, Jakobsen IV, Rasmussen HB, Werge T. CYP2D6 genotype predicts<br />

antipsychotic side effects <strong>in</strong> schizophrenia <strong>in</strong>patients: a retrospective matched case-control study.<br />

Neuropsychobiology. 2009;59(4):222-226.<br />

15. Subuh Surja AA, Reynolds KK, L<strong>in</strong>der MW, El-Mallakh RS. Pharmacogenetic test<strong>in</strong>g of CYP2D6 <strong>in</strong> patients<br />

with aripiprazole-related extrapyramidal symptoms: a case-control study. Per Med. 2008;5(4):361-365.<br />

16. Scordo MG, Sp<strong>in</strong>a E, Romeo P, et al. CYP2D6 genotype <strong>and</strong> antipsychotic-<strong>in</strong>duced extrapyramidal side<br />

effects <strong>in</strong> schizophrenic patients. Eur J Cl<strong>in</strong> Pharmacol. 2000;56(9-10):679-683.<br />

17. Inada T, Senoo H, Iijima Y, Yamauchi T, Yagi G. Cytochrome P450 II D6 gene polymorphisms <strong>and</strong> the<br />

neuroleptic-<strong>in</strong>duced extrapyramidal symptoms <strong>in</strong> Japanese schizophrenic patients. Psychiatr Genet.<br />

2003;13(3):163-168.<br />

18. Kobylecki CJ, Hansen T, Timm S, et al. The impact of CYP2D6 <strong>and</strong> CYP2C19 Polymorphisms on suicidal<br />

behavior <strong>and</strong> substance abuse disorder among patients with schizophrenia: a retrospective study. Ther<br />

Drug Monit. 2008;30(3):265-270.<br />

19. Köhnke MD, Griese EU, Stösser D, Gaertner I, Barth G. Cytochrome P450 2D6 deficiency <strong>and</strong> its cl<strong>in</strong>ical<br />

relevance <strong>in</strong> a patient treated with risperidone. Pharmacopsychiatry. 2002;35(3):116-118.<br />

20. Jaanson P, Mar<strong>and</strong>i T, Kiivet RA, et al. Ma<strong>in</strong>tenance therapy with zuclopenthixol decanoate: Associations<br />

between plasma concentrations, neurological side effects <strong>and</strong> CYP2D6 genotype. Psychopharmacology.<br />

2002;162(1):67-73.<br />

21. Ell<strong>in</strong>grod VL, Schultz SK, Arndt S. Association between cytochrome P4502D6 (CYP2D6) genotype, antipsychotic<br />

exposure, <strong>and</strong> abnormal <strong>in</strong>voluntary movement scale (AIMS) score. Psychiatr Genet. 2000;10(1):9-11.<br />

22. Koski A, Sistonen J, Ojanperä I, Gergov M, Vuori E, Sajantila A. CYP2D6 <strong>and</strong> CYP2C19 genotypes <strong>and</strong> amitriptyl<strong>in</strong>e<br />

metabolite ratios <strong>in</strong> a series of medicolegal autopsies. Forensic Sci Int. 2006;158(2-3):177-183.<br />

23. Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G. Code<strong>in</strong>e, ultrarapid-metabolism genotype,<br />

<strong>and</strong> postoperative death. N Engl J Med. 2009;361(8):827-828.<br />

24. Stamer UM, Stüber F, Muders T, Musshoff F. Respiratory depression with tramadol <strong>in</strong> a patient with renal<br />

impairment <strong>and</strong> CYP2D6 gene duplication. Anesth Analg. 2008;107(3):926-929.<br />

25. He YJ, Brockmöller J, Schmidt H, Roots I, Kirchhe<strong>in</strong>er J. CYP2D6 ultrarapid metabolism <strong>and</strong> morph<strong>in</strong>e/<br />

code<strong>in</strong>e ratios <strong>in</strong> blood: was it code<strong>in</strong>e or hero<strong>in</strong>? J Anal Toxicol. 2008;32(2):178-182.<br />

26. Madadi P, Ross CJD, Hayden MR, et al. Pharmacogenetics of neonatal opioid toxicity follow<strong>in</strong>g maternal<br />

use of code<strong>in</strong>e dur<strong>in</strong>g breastfeed<strong>in</strong>g: a case-control study. Cl<strong>in</strong> Pharmacol Ther. 2009;85(1):31-35.<br />

27. Madadi P, Koren G, Cairns J, et al. <strong>Safety</strong> of code<strong>in</strong>e dur<strong>in</strong>g breastfeed<strong>in</strong>g: fatal morph<strong>in</strong>e poison<strong>in</strong>g <strong>in</strong><br />

the breastfed neonate of a mother prescribed code<strong>in</strong>e. Can Fam Physician. 2007;53(1):33-35.<br />

28. Gasche Y, Daali Y, Fathi M, et al. Code<strong>in</strong>e <strong>in</strong>toxication associated with ultrarapid CYP2D6 metabolism.<br />

N Engl J Med. 2004;351(27):2827-2831.<br />

29. Voronov P, Przybylo HJ, Jagannathan N. Apnea <strong>in</strong> a child after oral code<strong>in</strong>e: a genetic variant - an ultrarapid<br />

metabolizer. Paediatr Anaesth. 2007;17(7):684-687.<br />

30. Kirchhe<strong>in</strong>er J, Schmidt H, Tzvetkov M, et al. Pharmacok<strong>in</strong>etics of code<strong>in</strong>e <strong>and</strong> its metabolite morph<strong>in</strong>e <strong>in</strong><br />

ultra-rapid metabolizers due to CYP2D6 duplication. <strong>Pharmacogenomics</strong> J. 2007;7(4):257-265.<br />

31. de Wildt SN, Koren G. Re: Apnea <strong>in</strong> a child after oral code<strong>in</strong>e: a genetic variant - an ultra-rapid metabolizer<br />

[corrected]. Paediatr Anaesth. 2008 Mar;18(3):273-276. Erratum <strong>in</strong>: Paediatr Anaesth. 2008;18(5):454.<br />

32. De Leon J, D<strong>in</strong>smore L, Wedlund P. Adverse drug reactions to oxycodone <strong>and</strong> hydrocodone <strong>in</strong> CYP2D6<br />

ultrarapid metabolizers. J Cl<strong>in</strong> Psychopharmacol. 2003;23(4):420-421.<br />

33. Dalén P, Frengell C, Dahl ML, Sjöqvist F. Quick onset of severe abdom<strong>in</strong>al pa<strong>in</strong> after code<strong>in</strong>e <strong>in</strong> an<br />

ultrarapid metabolizer of debrisoqu<strong>in</strong>e. Ther Drug Monit. 1997;19(5):543-544.<br />

34. Arthur H, Dahl ML, Siwers B, Sjoqvist F. Polymorphic drug metabolism <strong>in</strong> schizophrenic patients with<br />

tardive dysk<strong>in</strong>esia. J Cl<strong>in</strong> Psychopharmacol. 1995;15(3):211-216.<br />

35. Zhou SF. Polymorphism of human cytochrome P450 2D6 <strong>and</strong> its cl<strong>in</strong>ical significance: part II. Cl<strong>in</strong><br />

Pharmacok<strong>in</strong>et. 2009;48(12):761-804.<br />

36. Arranz MJ, De Leon J. Pharmacogenetics <strong>and</strong> pharmacogenomics of schizophrenia: a review of last<br />

decade of research. Mol Psychiatry. 2007;12(8):707-747.<br />

37. Kirchhe<strong>in</strong>er J, Keulen JTHA, Bauer S, Roots I, Brockmöller J. Effects of the CYP2D6 gene duplication on<br />

the pharmacok<strong>in</strong>etics <strong>and</strong> pharmacodynamics of tramadol. J Cl<strong>in</strong> Psychopharmacol. 2008;28(1):78-83.<br />

38. Pollock BG, Mulsant BH, Sweet RA, Rosen J, Altieri LP, Perel JM. Prospective cytochrome P450 phenotyp<strong>in</strong>g<br />

for neuroleptic treatment <strong>in</strong> dementia. Psychopharmacol Bull. 1995;31(2):327-332.<br />

39. Meyer JW, Woggon B, Baumann P, Meyer UA. Cl<strong>in</strong>ical implications of slow sulphoxidation of thioridaz<strong>in</strong>e<br />

<strong>in</strong> a poor metabolizer of the debrisoqu<strong>in</strong>e type. Eur J Cl<strong>in</strong> Pharmacol. 1990;39(6):613-614.<br />

40. Sp<strong>in</strong>a E, Ancione M, Di Rosa AE, Meduri M, Caputi AP. Polymorphic debrisoqu<strong>in</strong>e oxidation <strong>and</strong> acute<br />

neuroleptic-<strong>in</strong>duced adverse effects. Eur J Cl<strong>in</strong> Pharmacol. 1992;42(3):347-348.<br />

41. de Leon J, Nikoloff DM. Paradoxical excitation on diphenhydram<strong>in</strong>e may be associated with be<strong>in</strong>g a<br />

CYP2D6 ultrarapid metabolizer: three case reports. CNS Spectr. 2008;13(2):133-135.<br />

42. Michelson D, Read HA, Ruff DD, Witcher J, Zhang S, McCracken J. CYP2D6 <strong>and</strong> cl<strong>in</strong>ical response to atomoxet<strong>in</strong>e<br />

<strong>in</strong> children <strong>and</strong> adolescents with ADHD. J Am Acad Child Adolesc Psychiatry. 2007;46(2):242-251.<br />

43. Kawanishi C, Lundgren S, Ågren H, Bertilsson L. Increased <strong>in</strong>cidence of CYP2D6 gene duplication <strong>in</strong><br />

patients with persistent mood disorders: Ultrarapid metabolism of antidepressants as a cause of<br />

nonresponse. A pilot study. Eur J Cl<strong>in</strong> Pharmacol. 2004;59(11):803-807.<br />

44. Gorny M, Röhm S, Läer S, Morali N, Niehues T. Pharmacogenomic adaptation of antiretroviral therapy:<br />

overcom<strong>in</strong>g the failure of lop<strong>in</strong>avir <strong>in</strong> an African <strong>in</strong>fant with CYP2D6 ultrarapid metabolism. Eur J Cl<strong>in</strong><br />

Pharmacol. 2010;66(1):107-108.<br />

45. Breil F, Verstuyft C, Orostegui L, et al. Non-response to consecutive antidepressant therapy caused by<br />

CYP2D6 ultrarapid metabolizer phenotype. Int J Neuropsychopharmacol. 2008;11(5):727-728.<br />

46. Ell<strong>in</strong>grod VL, Miller D, Schultz SK, Wehr<strong>in</strong>g H, Arndt S. CYP2D6 polymorphisms <strong>and</strong> atypical antipsychotic<br />

weight ga<strong>in</strong>. Psychiatr Genet. 2002;12(1):55-58.<br />

47. Lane HY, Liu YC, Huang CL, et al. Risperidone-related weight ga<strong>in</strong>: genetic <strong>and</strong> nongenetic predictors. J<br />

Cl<strong>in</strong> Psychopharmacol. 2006;26(2):128-134.<br />

48. Kawanishi C, Shimoda Y, Fujimaki J, et al. Mutation <strong>in</strong>volv<strong>in</strong>g cytochrome P450IID6 <strong>in</strong> two Japanese<br />

patients with neuroleptic malignant syndrome. J Neurol Sci. 1998;160(1):102-104.<br />

49. Kato D, Kawanishi C, Kishida I, et al. Effects of CYP2D6 polymorphisms on neuroleptic malignant<br />

syndrome. Eur J Cl<strong>in</strong> Pharmacol. 2007;63(11):991-996.<br />

50. Kato D, Kawanishi C, Kishida I, et al. CYP2D6 gene deletion allele <strong>in</strong> patients with neuroleptic malignant<br />

syndrome: prelim<strong>in</strong>ary report. Psychiatry Cl<strong>in</strong> Neurosci. 2005;59(4):504-507.<br />

51. Tang SW, Helmeste D. Paroxet<strong>in</strong>e. Expert Op<strong>in</strong> Pharmacother. 2008;9(5):787-794.<br />

52. Allison DB, Mentore JL, Heo M, et al. Antipsychotic-<strong>in</strong>duced weight ga<strong>in</strong>: a comprehensive research<br />

synthesis. Am J Psychiatry. 1999;156(11):1686-1696.<br />

53. Aichhorn W, Whitworth AB, Weiss EM, Markste<strong>in</strong>er J. Second-generation antipsychotics: Is there evidence<br />

for sex differences <strong>in</strong> pharmacok<strong>in</strong>etic <strong>and</strong> adverse effect profiles? Drug Saf. 2006;29(7):587-598.<br />

54. Correll CU. Weight ga<strong>in</strong> <strong>and</strong> metabolic effects of mood stabilizers <strong>and</strong> antipsychotics <strong>in</strong> pediatric<br />

bipolar disorder: A systematic review <strong>and</strong> pooled analysis of short-term trials. J Am Acad Child Adolesc<br />

Psychiatry. 2007;46(6):687-700.<br />

55. Safer DJ. A comparison of risperidone-<strong>in</strong>duced weight ga<strong>in</strong> across the age span. J Cl<strong>in</strong> Psychopharmacol.<br />

2004;24(4):429-436.<br />

56. Bernste<strong>in</strong> JG. Induction of obesity by psychotropic drugs. Ann N Y Acad Sci. 1987;499:203-215.<br />

57. Topic E, Stefanovic M, Ivanisevic AM, Blaz<strong>in</strong>ic F, Culav J, Skocilic Z. CYP2D6 genotyp<strong>in</strong>g <strong>in</strong> patients on<br />

psychoactive drug therapy. Cl<strong>in</strong> Chem Lab Med. 2000;38(9):921-927.<br />

58. de Leon J, Susce MT, Pan RM, Fairchild M, Koch WH, Wedlund PJ. The CYP2D6 poor metabolizer phenotype<br />

may be associated with risperidone adverse drug reactions <strong>and</strong> discont<strong>in</strong>uation. J Cl<strong>in</strong> Psychiatry.<br />

2005;66(1):15-27.<br />

59. V<strong>and</strong>el P, Bon<strong>in</strong> B, V<strong>and</strong>el S, Sechter D, Bizouard P. CYP 2D6 PM phenotype hypothesis of antidepressant<br />

extrapyramidal side-effects. Med Hypotheses. 1996;47(6):439-442.<br />

60. Niznik HB, Tyndale RF, Sallee FR, et al. The dopam<strong>in</strong>e transporter <strong>and</strong> cytochrome P450IID1 (debrisoqu<strong>in</strong>e<br />

4-hydroxylase) <strong>in</strong> bra<strong>in</strong>: resolution <strong>and</strong> identification of two dist<strong>in</strong>ct [3H]GBR-12935<br />

b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s. Arch Biochem Biophys. 1990;276(2):424-432.<br />

61. Crescenti A, Mas S, Gassó P, Parellada E, Bernardo M, Lafuente A. CYP2D6*3, *4, *5 <strong>and</strong> *6 polymorphisms<br />

<strong>and</strong> antipsychotic-<strong>in</strong>duced extrapyramidal side-effects <strong>in</strong> patients receiv<strong>in</strong>g antipsychotic<br />

therapy. Cl<strong>in</strong> Exp Pharmacol Physiol. 2008;35(7):807-811.<br />

62. Sachse C, Brockmöller J, Bauer S, Roots I. Cytochrome P450 2D6 variants <strong>in</strong> a Caucasian population:<br />

allele frequencies <strong>and</strong> phenotypic consequences. Am J Hum Genet. 1997;60(2):284-295.<br />

63. Pope Jr HG, Keck Jr PE, McElroy SL. Frequency <strong>and</strong> presentation of neuroleptic malignant syndrome <strong>in</strong> a<br />

large psychiatric hospital. Am J Psychiatry. 1986;143(10):1227-1233.<br />

64. Kawanishi C, Furuno T, Onishi H, et al. Lack of association <strong>in</strong> Japanese patients between neuroleptic<br />

malignant syndrome <strong>and</strong> a debrisoqu<strong>in</strong>e 4-hydroxylase genotype with low enzyme activity. Psychiatr<br />

Genet. 2000;10(3):145-147.<br />

65. Kawanishi C, Hanihara T, Maruyama Y, et al. Neuroleptic malignant syndrome <strong>and</strong> hydroxylase gene<br />

mutations: No association with CYP2D6A or CYP2D6B. Psychiatr Genet. 1997;7(3):127-129.<br />

66. Iwahashi K, Yoshihara E, Nakamura K, et al. CYP2D6 HhaI genotype <strong>and</strong> the neuroleptic malignant<br />

syndrome. Neuropsychobiology. 1999;39(1):33-37.<br />

67. Volavka J, Czobor P, Cooper TB, et al. Prolact<strong>in</strong> levels <strong>in</strong> schizophrenia <strong>and</strong> schizoaffective disorder patients<br />

treated with clozap<strong>in</strong>e, olanzap<strong>in</strong>e, risperidone, or haloperidol. J Cl<strong>in</strong> Psychiatry. 2004;65(1):57-61.<br />

68. Dahl ML. Cytochrome P450 phenotyp<strong>in</strong>g/genotyp<strong>in</strong>g <strong>in</strong> patients receiv<strong>in</strong>g antipsychotics: useful aid to<br />

prescrib<strong>in</strong>g? Cl<strong>in</strong> Pharmacok<strong>in</strong>et. 2002;41(7):453-470.<br />

69. Bertilsson L, Dahl ML, Sjöqvist F, et al. Molecular basis for rational megaprescrib<strong>in</strong>g <strong>in</strong> ultrarapid<br />

hydroxylators of debrisoqu<strong>in</strong>e. Lancet. 1993;341(8836):63.<br />

70. Cheok MH, Pottier N, Kager L, Evans WE. Pharmacogenetics <strong>in</strong> acute lymphoblastic leukemia. Sem<strong>in</strong><br />

Hematol. 2009;46(1):39-51.<br />

71. Pottier N, Cheok M, Kager L. Antileukemic drug effects <strong>in</strong> childhood acute lymphoblastic leukemia. Expert<br />

Rev Cl<strong>in</strong> Pharmacol. 2008;1(3):401-413.<br />

72. Ansari M, Kraj<strong>in</strong>ovic M. <strong>Pharmacogenomics</strong> <strong>in</strong> cancer treatment def<strong>in</strong><strong>in</strong>g genetic bases for <strong>in</strong>ter-<strong>in</strong>dividual<br />

differences <strong>in</strong> responses to chemotherapy. Curr Op<strong>in</strong> Pediatr. 2007;19(1):15-22.<br />

73. Ansari M, Kraj<strong>in</strong>ovic M. <strong>Pharmacogenomics</strong> of acute leukemia. <strong>Pharmacogenomics</strong>. 2007;8(7):817-834.<br />

74. Cheok MH, Evans WE. Acute lymphoblastic leukaemia: A model for the pharmacogenomics of cancer<br />

therapy. Nat Rev Cancer. 2006;6(2):117-129.<br />

75. Brenner TL, Pui CH, Evans WE. <strong>Pharmacogenomics</strong> of childhood acute lymphoblastic leukemia. Curr Op<strong>in</strong><br />

Mol Ther. 2001;3(6):567-578.<br />

76. Rogers AJ, Tantisira KG, Fuhlbrigge AL, et al. Predictors of poor response dur<strong>in</strong>g asthma therapy differ<br />

with def<strong>in</strong>ition of outcome. <strong>Pharmacogenomics</strong>. 2009;10(8):1231-1242.<br />

77. Q<strong>in</strong>g LD, Tantisira KG. Pharmacogenetics of asthma therapy. Curr Pharm Des. 2009;15(32):3742-3753.<br />

78. Koster ES, Raaijmakers JA, Koppelman GH, et al. Pharmacogenetics of anti-<strong>in</strong>flammatory treatment<br />

<strong>in</strong> children with asthma: Rationale <strong>and</strong> design of the PACMAN cohort. <strong>Pharmacogenomics</strong>.<br />

2009;10(8):1351-1361.<br />

79. Warrier MR, Hershey GK. Asthma genetics: personaliz<strong>in</strong>g medic<strong>in</strong>e. J Asthma. 2008;45(4):257-264.<br />

80. Szalai C, Ungvári I, Pelyhe L, Tölgyesi G, Falus A. Asthma from a pharmacogenomic po<strong>in</strong>t of view. Br J<br />

Pharmacol. 2008;153(8):1602-1614.<br />

81. Weiss ST, Litonjua AA, Lange C, et al. Overview of the pharmacogenetics of asthma treatment.<br />

<strong>Pharmacogenomics</strong> J. 2006;6(5):311-326.<br />

82. Wechsler ME. Manag<strong>in</strong>g asthma <strong>in</strong> the 21st century: the role of pharmacogenetics. Pediatr Ann.<br />

2006;35(9):660-669.<br />

83. Drazen JM, Y<strong>and</strong>ava CN, Dubé L, et al. Pharmacogenetic association between ALOX5 promoter genotype<br />

<strong>and</strong> the response to anti-asthma treatment. Nat Genet. 1999;22(2):168-170.<br />

84. Holmes OW. Currents <strong>and</strong> Counter-Currents <strong>in</strong> Medical Science: Medical Essays. 1842-1882. Boston, MA:<br />

Houghton-Miffl<strong>in</strong>; 1891.<br />

85. Oldenkamp C, Wall CA, Mrazek DA. An analysis of the cl<strong>in</strong>ical usefulness of psychiatric pharmacogenomic<br />

test<strong>in</strong>g <strong>in</strong> children <strong>and</strong> adolescents. Poster presented at: the 56th Annual Meet<strong>in</strong>g of the American<br />

Academy of Child <strong>and</strong> Adolescent Psychiatry; October 27-November 1, 2009; Honolulu, HI.<br />

Primary Psychiatry 58<br />

© MBL Communications Inc. May 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!