21.07.2013 Views

4_DC Biasing BJTs - MavDISK

4_DC Biasing BJTs - MavDISK

4_DC Biasing BJTs - MavDISK

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong><br />

4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong><br />

1 of 31<br />

4.1 Introduction<br />

Active or Linear Region Operation<br />

Base – Emitter junction is forward biased<br />

4.2 Operating Point<br />

Base – Collector junction is reverse biased<br />

Good operating point<br />

• Cutoff Region Operation<br />

Base – Emitter junction is reverse biased<br />

• Saturation Region Operation<br />

Base – Emitter junction is forward biased<br />

Base – Collector junction is forward biased


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 2 of 31<br />

4.3 Fixed-Bias Circuit<br />

-VCE– ICRC + VCC = 0<br />

VCE = VCC – ICRC<br />

Base Loop (voltage drops)<br />

-VCC + IB RB + VBE = 0<br />

IB = (VCC – VBE)/RB


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 3 of 31<br />

Fixed_base_current_load_line.obj simulation<br />

I1<br />

0.5mAdc<br />

400mA<br />

200mA<br />

Q1<br />

I<br />

Q2N2222<br />

0<br />

0Vdc<br />

V1<br />

R1<br />

40<br />

I<br />

10Vdc<br />

0A<br />

0V<br />

IC(Q1)<br />

1V<br />

-I(R1)<br />

2V 3V 4V 5V<br />

V_V1<br />

6V 7V 8V 9V 10V<br />

V2


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 4 of 31<br />

Example 4.1<br />

Work through finding the base and collector currents.


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 5 of 31<br />

Saturation Region<br />

Saturation – 0.2V is<br />

better approximation,<br />

but use 0V for now.<br />

ICsat = (VCC- 0)/RC<br />

and in active region,<br />

IC = β IB or IB = ICmax/β<br />

In saturation<br />

IB is greater than ICmax/β<br />

There is<br />

more base current than needed.


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 6 of 31<br />

Bjt_resistor_bias.obj simulation<br />

5Vdc<br />

V1<br />

R1<br />

150k<br />

Q1<br />

Q2N2222<br />

0<br />

10Vdc<br />

V2<br />

5Vdc<br />

Run simulation and note voltages and currents.<br />

V3<br />

R2<br />

150k<br />

Q2<br />

Q2N2222<br />

0<br />

R3<br />

1k<br />

10Vdc<br />

V4


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 7 of 31<br />

Saturation ....continued<br />

Modify Example 4.1<br />

Find ICmax<br />

Find RB minimum where transistor is on the edge of saturation.<br />

Reduce RB further and find base and collector currents.


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 8 of 31<br />

Load-Line Analysis<br />

Maximum collector-emitter<br />

voltage occurs when IC equals<br />

zero.<br />

No drop across RC.<br />

Maximum current is<br />

ICsat = (VCC- 0)/RC<br />

Collector-emitter volage<br />

equlas zero.


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong><br />

BJT_load_line.obj simulation<br />

9 of 31<br />

I1<br />

0Adc<br />

200mA<br />

100mA<br />

Q1<br />

I<br />

Q2N2222<br />

0<br />

0Vdc<br />

V1<br />

R1<br />

100<br />

I<br />

10Vdc<br />

V2<br />

0A<br />

0V<br />

IC(Q1)<br />

1V<br />

-I(R1)<br />

2V 3V 4V 5V<br />

V_V1<br />

6V 7V 8V 9V 10V


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 10 of 31


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 11 of 31


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 12 of 31<br />

4.4 Emitter-Stabilized Bias Circuit<br />

Find the base current. Use Kirchhoff’s voltage around the base-emitter loop.


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 13 of 31<br />

Show that,<br />

IC = β(VCC – VBE)<br />

RB + (β + 1)RE<br />

and when,<br />

RB


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 14 of 31<br />

Use the base current equation to find the part of the input resistance due to the emitter resistor.<br />

Look at the loop equation written earlier<br />

VCC – IB RB – VBE - (β + 1)RE = 0<br />

Now draw the circuit that matches this equation,<br />

Note that the voltage drop across Re has not changed. The resistor Re is reflected back into the base input<br />

circuit and multiplied.


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 15 of 31<br />

Collector-emitter loop<br />

Go around the loop and show the voltage relationships including<br />

VC, VE, and VB


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 16 of 31<br />

R1<br />

20k<br />

R3<br />

R2<br />

10k<br />

100k<br />

Q1<br />

0<br />

Rc<br />

1k<br />

Q2N2222<br />

Re<br />

1k<br />

15Vdc<br />

Run simulation and note the voltages and currents.<br />

Vcc


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 17 of 31<br />

Emitter-stabilized bias circuit for Example 4.4.<br />

Find the currents and voltages for this circuit.<br />

Review the load line for the circuit.<br />

Write the collect-emitter loop equation again and show the min and max current conditions.


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 18 of 31<br />

4.5 Voltage-Divider Bias<br />

Show that by developing a Thevenin equivalent for the input the circuit becomes the same as the emitterstabilized<br />

circuit.


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 19 of 31


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 20 of 31<br />

4.6 Beta-stabilized circuit for Example 4.7.<br />

Work the circuit.


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 21 of 31<br />

Common_base<br />

CB-1.obj simulation<br />

5Vdc<br />

V1<br />

R1<br />

1k<br />

CB-2.obj simulation<br />

3Vdc<br />

V1<br />

Q1<br />

Q2N2222<br />

3.5Vdc<br />

0<br />

Rc<br />

1.5k<br />

Rc1<br />

2.5k<br />

Vee<br />

Q1<br />

Q2N2222<br />

15Vdc<br />

0<br />

Vcc<br />

Rc<br />

1k<br />

12Vdc<br />

Vcc


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 22 of 31<br />

Common Collector (Emitter Follower)<br />

CC-1.obj simulation<br />

5Vdc<br />

VB<br />

RB<br />

1k<br />

Q1<br />

CC-2.obj simulation<br />

5Vdc<br />

VB<br />

RB<br />

100k<br />

0<br />

0<br />

Q2N2222<br />

V<br />

Re<br />

1k<br />

Q1<br />

Q2N2222<br />

Re<br />

1k<br />

Re1<br />

1k<br />

12Vdc<br />

Vcc<br />

12Vdc<br />

Vcc


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 23 of 31<br />

<strong>DC</strong> bias circuit with voltage feedback.


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 24 of 31


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 25 of 31<br />

Network for Example 4.11.


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 26 of 31<br />

4.8 Design Operations<br />

Start with a set of transistor collector-emitter characteristics.<br />

Draw a load line.<br />

Determine the values of component values, voltages and currents.<br />

Perform for,<br />

Fixed bias circuit.<br />

Emitter-stabilized circuit.<br />

Voltage-divider circuit.


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 27 of 31<br />

4.9 Transistor Switching Networks


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 28 of 31


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 29 of 31<br />

4.11 PNP Transistors<br />

Perform for,<br />

Fixed bias circuit.<br />

Emitter-stabilized circuit.


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 30 of 31<br />

4.12 Bias Stabilization<br />

Shift in dc bias point (Q-point) due to change in<br />

temperature: 100 degrees C


4_<strong>DC</strong> <strong>Biasing</strong> <strong>BJTs</strong> 31 of 31<br />

4.13 Practical Applications<br />

Relay driver<br />

Transistor switch<br />

Constant current source - CB and CE configurations.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!