Topics in Finite Geometry: Ovals, Ovoids and Generalized ...

Topics in Finite Geometry: Ovals, Ovoids and Generalized ... Topics in Finite Geometry: Ovals, Ovoids and Generalized ...

math.ucdenver.edu
from math.ucdenver.edu More from this publisher
20.07.2013 Views

Topics in Finite Geometry: Ovals, Ovoids and Generalized Quadrangles S. E. Payne Edition of 16 May 2007

<strong>Topics</strong> <strong>in</strong> F<strong>in</strong>ite <strong>Geometry</strong>: <strong>Ovals</strong>, <strong>Ovoids</strong> <strong>and</strong><br />

<strong>Generalized</strong> Quadrangles<br />

S. E. Payne<br />

Edition of 16 May 2007


Contents<br />

1 Synthetic Axioms for <strong>Geometry</strong> 15<br />

1.1 L<strong>in</strong>ear Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

1.2 Axioms for Projective Space . . . . . . . . . . . . . . . . . . . 17<br />

1.3 The Axioms of Aff<strong>in</strong>e Space . . . . . . . . . . . . . . . . . . . 20<br />

1.4 Planes <strong>in</strong> Aff<strong>in</strong>e Space . . . . . . . . . . . . . . . . . . . . . . 25<br />

1.5 Buekenhout’s Characterization of Aff<strong>in</strong>e Space . . . . . . . . . 28<br />

1.6 Embedd<strong>in</strong>g Aff<strong>in</strong>e Space <strong>in</strong> Projective Space . . . . . . . . . . 43<br />

1.7 The Pr<strong>in</strong>ciple of Duality . . . . . . . . . . . . . . . . . . . . . 48<br />

1.8 Structure of Projective <strong>Geometry</strong> . . . . . . . . . . . . . . . . 49<br />

1.9 Quotient Geometries: a First Look . . . . . . . . . . . . . . . 56<br />

1.10 Comb<strong>in</strong>atorics of F<strong>in</strong>ite Projective Spaces . . . . . . . . . . . 57<br />

2 Analytic <strong>Geometry</strong> 63<br />

2.1 The Projective Space P(V ) . . . . . . . . . . . . . . . . . . . 64<br />

2.2 The Theorems of Desargues <strong>and</strong> Pappus . . . . . . . . . . . . 67<br />

2.3 Coord<strong>in</strong>ates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

2.4 Semil<strong>in</strong>ear Maps: A First Glance . . . . . . . . . . . . . . . . 80<br />

2.5 Some Comb<strong>in</strong>atorics of F<strong>in</strong>ite Geometries . . . . . . . . . . . 81<br />

2.6 Some <strong>Geometry</strong> <strong>in</strong> P G(2, q) . . . . . . . . . . . . . . . . . . . 90<br />

2.7 Some <strong>Geometry</strong> <strong>in</strong> P G(3, q) . . . . . . . . . . . . . . . . . . . 92<br />

2.8 Polarities, Etc. . . . . . . . . . . . . . . . . . . . . . . . . . . 101<br />

2.9 The Projective L<strong>in</strong>e - Cross Ratio . . . . . . . . . . . . . . . . 105<br />

2.10 Theorem of the Complete Quadrilateral . . . . . . . . . . . . . 110<br />

2.11 Involutions of the Projective L<strong>in</strong>e . . . . . . . . . . . . . . . . 112<br />

2.12 The Hyperbolic Quadric of P G(3, q) - A First Look . . . . . . 115<br />

2.13 3-Dimensional Projective Spaces Are Desarguesian . . . . . . . 118<br />

3


4 CONTENTS<br />

3 The Fundamental Theorem for P G(n, q) 121<br />

3.1 Central Coll<strong>in</strong>eations . . . . . . . . . . . . . . . . . . . . . . . 121<br />

3.2 The Group of Translations . . . . . . . . . . . . . . . . . . . . 128<br />

3.3 The Division R<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

3.4 The Representation Theorems . . . . . . . . . . . . . . . . . . 138<br />

3.5 The Fundamental Theorem . . . . . . . . . . . . . . . . . . . 140<br />

3.6 Projective Coll<strong>in</strong>eations . . . . . . . . . . . . . . . . . . . . . 148<br />

3.7 A Collection of Coll<strong>in</strong>eations . . . . . . . . . . . . . . . . . . . 154<br />

4 The Ubiquitous Oval 157<br />

4.1 Arcs <strong>and</strong> <strong>Ovals</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

4.2 Conics: The Classical Examples . . . . . . . . . . . . . . . . . 160<br />

4.3 The Group of the Conic . . . . . . . . . . . . . . . . . . . . . 165<br />

4.4 Segre’s Theorem for q Odd . . . . . . . . . . . . . . . . . . . . 174<br />

4.5 o- Polynomials & the Criterion of Glynn . . . . . . . . . . . . 179<br />

4.6 Arcs <strong>in</strong> <strong>Ovals</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 191<br />

4.7 What is a translation oval? . . . . . . . . . . . . . . . . . . . . 197<br />

4.8 L<strong>in</strong>ear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198<br />

4.9 Additive Maps on Fq . . . . . . . . . . . . . . . . . . . . . . . 202<br />

4.10 A Characterization of Translation <strong>Ovals</strong> . . . . . . . . . . . . 206<br />

4.11 Stabilizers of Arcs . . . . . . . . . . . . . . . . . . . . . . . . . 207<br />

4.12 Monomial Hyperovals . . . . . . . . . . . . . . . . . . . . . . . 211<br />

4.13 The Trace Map . . . . . . . . . . . . . . . . . . . . . . . . . . 218<br />

4.14 Translation <strong>Ovals</strong> <strong>and</strong> the External L<strong>in</strong>es Lemma . . . . . . . 222<br />

4.15 Oval Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 229<br />

4.16 Translation <strong>Ovals</strong> Aga<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . 233<br />

5 Quadratic Forms 237<br />

5.1 Basic Def<strong>in</strong>itions <strong>and</strong> Results . . . . . . . . . . . . . . . . . . 237<br />

5.2 Structure of Quadrics . . . . . . . . . . . . . . . . . . . . . . . 243<br />

5.3 Change of Basis . . . . . . . . . . . . . . . . . . . . . . . . . . 249<br />

5.4 Canonical Forms over F<strong>in</strong>ite Fields . . . . . . . . . . . . . . . 253<br />

5.5 The Discrim<strong>in</strong>ant <strong>in</strong> Odd Characteristic . . . . . . . . . . . . 262<br />

5.6 Action of the Orthogonal Group . . . . . . . . . . . . . . . . . 265<br />

5.7 The Cartan-Dieudonné Theorem . . . . . . . . . . . . . . . . . 272


CONTENTS 5<br />

6 Quadrics <strong>in</strong> P G(3, q) 277<br />

6.1 Hyperbolic quadrics <strong>in</strong> P G(3, q) . . . . . . . . . . . . . . . . . 277<br />

6.2 Quadratic cones <strong>in</strong> P G(3, q) . . . . . . . . . . . . . . . . . . . 289<br />

6.3 Elliptic quadrics <strong>in</strong> P G(3, q) . . . . . . . . . . . . . . . . . . . 295<br />

6.4 The (Elliptic) Orthogonal Group . . . . . . . . . . . . . . . . 297<br />

6.5 Elliptic Quadrics Conta<strong>in</strong><strong>in</strong>g a Conic . . . . . . . . . . . . . . 299<br />

6.6 A Condition that Determ<strong>in</strong>es a Quadric . . . . . . . . . . . . 311<br />

6.7 Nons<strong>in</strong>gular Quadrics <strong>in</strong> PG(3,q) with q odd . . . . . . . . . . 320<br />

7 <strong>Ovoids</strong> <strong>in</strong> 3-Dimensional Space 329<br />

7.1 L<strong>in</strong>es <strong>and</strong> Planes related to an Ovoid . . . . . . . . . . . . . . 329<br />

7.2 <strong>Ovoids</strong> as Caps <strong>and</strong> with many Conics . . . . . . . . . . . . . 330<br />

7.3 Null polarities <strong>and</strong> skew-symmetric matrices . . . . . . . . . . 336<br />

7.4 <strong>Ovoids</strong> Yield Null Polarities <strong>in</strong> Characteristic 2 . . . . . . . . 337<br />

7.5 Symplectic <strong>Geometry</strong> <strong>and</strong> Normalized Coord<strong>in</strong>ates . . . . . . 339<br />

7.5.2 Coord<strong>in</strong>ates for the known examples . . . . . . . . . . 341<br />

7.6 The plane representation theorem . . . . . . . . . . . . . . . . 346<br />

7.7 Semi-ovals <strong>and</strong> Semi-ovoids . . . . . . . . . . . . . . . . . . . 350<br />

8 Trace Equations 353<br />

8.1 Cyclotomic Cosets . . . . . . . . . . . . . . . . . . . . . . . . 354<br />

8.2 More Basic Trace Equations . . . . . . . . . . . . . . . . . . . 355<br />

8.3 Trace Equations by Glynn . . . . . . . . . . . . . . . . . . . . 359<br />

8.4 <strong>Ovoids</strong> with a pencil of conics . . . . . . . . . . . . . . . . . . 367<br />

8.5 More Trace Equations . . . . . . . . . . . . . . . . . . . . . . 368<br />

9 F<strong>in</strong>ite <strong>Generalized</strong> Quadrangles 375<br />

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375<br />

9.2 Axioms <strong>and</strong> Prelim<strong>in</strong>ary Def<strong>in</strong>itions . . . . . . . . . . . . . . . 377<br />

9.3 Basic Comb<strong>in</strong>atorics of GQ . . . . . . . . . . . . . . . . . . . 380<br />

9.4 The Symplectic GQ W (q) . . . . . . . . . . . . . . . . . . . . 384<br />

9.5 Some GQ derived from Quadratic Forms . . . . . . . . . . . . 392<br />

9.6 Triads with Restricted Perp Size . . . . . . . . . . . . . . . . . 396<br />

9.7 The Incidence Matrix . . . . . . . . . . . . . . . . . . . . . . . 401<br />

9.8 Regularity: Variations on a Theme . . . . . . . . . . . . . . . 408<br />

9.9 Bagchi, Brouwer <strong>and</strong> Wilbr<strong>in</strong>k . . . . . . . . . . . . . . . . . . 413<br />

9.10 <strong>Ovoids</strong>, Spreads <strong>and</strong> Polarities . . . . . . . . . . . . . . . . . . 416<br />

9.11 Subquadrangles . . . . . . . . . . . . . . . . . . . . . . . . . . 419


6 CONTENTS<br />

9.12 Coll<strong>in</strong>eations . . . . . . . . . . . . . . . . . . . . . . . . . . . 422<br />

9.13 A Coset <strong>Geometry</strong> . . . . . . . . . . . . . . . . . . . . . . . . 427<br />

9.14 Weak 4-Gonal Families . . . . . . . . . . . . . . . . . . . . . . 431<br />

9.15 Elation <strong>Generalized</strong> Quadrangles . . . . . . . . . . . . . . . . 432<br />

9.16 Elation Groups as p-Groups . . . . . . . . . . . . . . . . . . . 438<br />

9.17 A Model for STGQ . . . . . . . . . . . . . . . . . . . . . . . . 440<br />

10 GQ Associated with an Oval or Ovoid 445<br />

10.1 Expansion about a Regular Po<strong>in</strong>t . . . . . . . . . . . . . . . . 445<br />

10.2 The Construction of T2(O) . . . . . . . . . . . . . . . . . . . . 446<br />

10.3 T2(Oα) is Self-dual when α is Additive . . . . . . . . . . . . . 452<br />

10.4 The isomorphism from T2(C) to W (q) . . . . . . . . . . . . . . 453<br />

10.5 Coord<strong>in</strong>ates for the general T2(O) . . . . . . . . . . . . . . . . 456<br />

10.6 Exp<strong>and</strong><strong>in</strong>g T2(O) about a Regular Element . . . . . . . . . . . 461<br />

10.6.1 P(T2(O), π) . . . . . . . . . . . . . . . . . . . . . . . . 461<br />

10.6.2 P(T2(O), L) . . . . . . . . . . . . . . . . . . . . . . . . 461<br />

10.7 Constrict<strong>in</strong>g about a Regular Spread . . . . . . . . . . . . . . 463<br />

10.8 Characteriz<strong>in</strong>g T ∗ 2 (O+ ) with (0, 2)-Sets . . . . . . . . . . . . . 465<br />

10.9 The Basic Assumptions . . . . . . . . . . . . . . . . . . . . . . 468<br />

10.10Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475<br />

10.10.1 Parallelism <strong>in</strong> the set of aff<strong>in</strong>e planes of type 1 . . . . . 475<br />

10.11A Characterization of T ∗ 2<br />

(O), s + 1 even . . . . . . . . . . . . 480<br />

10.12Regular <strong>Ovoids</strong> <strong>in</strong> P(T2(O), L) . . . . . . . . . . . . . . . . . 481<br />

10.13 A Regular Ovoid <strong>in</strong> GQ(q + 1, q − 1) . . . . . . . . . . . . . . 482<br />

10.14Constrict<strong>in</strong>g about a Regular Ovoid . . . . . . . . . . . . . . . 485<br />

10.15Quivers - <strong>and</strong> A3 . . . . . . . . . . . . . . . . . . . . . . . . . 491<br />

10.16A1, A2, A3 <strong>and</strong> A4 . . . . . . . . . . . . . . . . . . . . . . . . . 494<br />

10.17Pseudol<strong>in</strong>es: A1, · · · , A6 . . . . . . . . . . . . . . . . . . . . 495<br />

10.18The Construction of T3(Ω) . . . . . . . . . . . . . . . . . . . . 502<br />

10.19The Po<strong>in</strong>t-L<strong>in</strong>e Dual of T3(Ω) . . . . . . . . . . . . . . . . . . 502<br />

11 Classifiy<strong>in</strong>g <strong>Ovoids</strong> - Part 2 509<br />

11.1 <strong>Ovoids</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509<br />

11.2 A restriction on plane sections of an ovoid . . . . . . . . . . . 513<br />

11.3 <strong>Ovoids</strong> of P G(3, q) conta<strong>in</strong><strong>in</strong>g a conic . . . . . . . . . . . . . . 516<br />

11.4 Restrictions on a secant plane section of Ω . . . . . . . . . . . 517<br />

11.5 Sparse <strong>and</strong> spare o-polynomials . . . . . . . . . . . . . . . . . 522<br />

11.6 The classification of ovoids conta<strong>in</strong><strong>in</strong>g a conic . . . . . . . . . 530


CONTENTS 7<br />

11.7 Translation ovals aga<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . 531<br />

12 The Kle<strong>in</strong> Correspondence 537<br />

12.1 Plücker Coord<strong>in</strong>ates . . . . . . . . . . . . . . . . . . . . . . . 537<br />

12.2 Time out for H5 . . . . . . . . . . . . . . . . . . . . . . . . . . 541<br />

12.3 Return to the Kle<strong>in</strong> Correspondence . . . . . . . . . . . . . . 545<br />

12.4 Dual Coord<strong>in</strong>ates for L<strong>in</strong>es . . . . . . . . . . . . . . . . . . . . 548<br />

12.5 L<strong>in</strong>ear Congruences . . . . . . . . . . . . . . . . . . . . . . . . 554<br />

12.6 The null system ν . . . . . . . . . . . . . . . . . . . . . . . . . 557<br />

12.7 A polarity π of W (q) when q = 2 2m+1 . . . . . . . . . . . . . . 565<br />

12.8 The ovoid of J. Tits . . . . . . . . . . . . . . . . . . . . . . . . 569<br />

12.9 The Hermitian geometry H(3, q 2 ) . . . . . . . . . . . . . . . . 576<br />

12.10A Closer Look at the Kle<strong>in</strong> Correspondence . . . . . . . . . . 579<br />

12.11Spreads from Flocks: The Thas-Walker Construction . . . . . 584<br />

13 q-Clans <strong>and</strong> Their Geometries 587<br />

13.1 Prelim<strong>in</strong>aries . . . . . . . . . . . . . . . . . . . . . . . . . . . 587<br />

13.2 q-Clans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589<br />

13.3 Flocks of a Quadratic Cone . . . . . . . . . . . . . . . . . . . 590<br />

13.4 4-Gonal Families from q-Clans . . . . . . . . . . . . . . . . . . 593<br />

13.5 Some Families of q-Clans . . . . . . . . . . . . . . . . . . . . . 595<br />

13.5.1 The Classical q-Clans . . . . . . . . . . . . . . . . . . . 595<br />

13.5.2 W.M. Kantor [Ka80]; J.C. Fisher <strong>and</strong> J.A. Thas [FT79];<br />

M. Walker [Wa76] . . . . . . . . . . . . . . . . . . . . . 596<br />

13.5.3 W.M Kantor [Ka86] . . . . . . . . . . . . . . . . . . . 596<br />

13.5.4 W.M. Kantor [Ka86] for q odd; S.E. Payne [Pa85] for<br />

q even . . . . . . . . . . . . . . . . . . . . . . . . . . . 597<br />

13.5.5 H. Gevaert <strong>and</strong> N.L. Johnson [GJ88]; q = 5 e . . . . . . 597<br />

13.5.6 H. Gevaert <strong>and</strong> N.L. Johnson [GJ88]; q = 3 e . . . . . . 597<br />

13.6 q-Clans, Flocks & Spreads of PG(3,q) . . . . . . . . . . . . . . 598<br />

13.7 The Classical Examples . . . . . . . . . . . . . . . . . . . . . 606<br />

13.8 The Bose-Barlotti ∆-Planes . . . . . . . . . . . . . . . . . . . 607<br />

13.9 Property (G); some projective planes . . . . . . . . . . . . . . 608<br />

13.10The Fundamental Lemma . . . . . . . . . . . . . . . . . . . . 611<br />

13.11The Fundamental Theorem . . . . . . . . . . . . . . . . . . . 617<br />

13.12Recoord<strong>in</strong>atization: Shifts, Flips<br />

& Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621<br />

13.13Additive q-Clans <strong>and</strong> Dual TGQ . . . . . . . . . . . . . . . . 624


8 CONTENTS<br />

13.14Property (G) at a second po<strong>in</strong>t of ∞ ⊥ . . . . . . . . . . . . . 626<br />

13.15An additional regular pair of po<strong>in</strong>ts . . . . . . . . . . . . . . . 628<br />

13.16Flocks Whose Planes Conta<strong>in</strong> a Common Po<strong>in</strong>t . . . . . . . . 628<br />

14 F<strong>in</strong>ite Circle Geometries 635<br />

14.1 The Circle Geometries . . . . . . . . . . . . . . . . . . . . . . 635<br />

14.2 F<strong>in</strong>ite Inversive Planes . . . . . . . . . . . . . . . . . . . . . . 638<br />

14.3 Miquelian Inversive Planes of Odd Order . . . . . . . . . . . . 646<br />

14.4 Dembowski’s Theorem . . . . . . . . . . . . . . . . . . . . . . 667<br />

14.5 F<strong>in</strong>ite Laguerre Planes . . . . . . . . . . . . . . . . . . . . . . 669<br />

14.6 F<strong>in</strong>ite M<strong>in</strong>kowski Planes . . . . . . . . . . . . . . . . . . . . . 674<br />

15 Property G 681<br />

15.1 Property (G) <strong>in</strong> GQ(s, s 2 ) . . . . . . . . . . . . . . . . . . . . 681<br />

15.2 Property (G) <strong>and</strong> Subquadrangles . . . . . . . . . . . . . . . . 685<br />

15.3 Tetradic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 689<br />

15.4 Tetradic Sets of Elliptic Quadrics . . . . . . . . . . . . . . . . 692<br />

15.5 Flocks <strong>and</strong> Tetradic Sets . . . . . . . . . . . . . . . . . . . . . 697<br />

15.6 Coord<strong>in</strong>ates for the AG(3, q) from Flock GQ . . . . . . . . . 700<br />

15.7 Prop.(G) & Tetradic Sets of Quadrics . . . . . . . . . . . . . . 703<br />

15.8 The ⊲⊳ Equivalence Relation . . . . . . . . . . . . . . . . . . . 709<br />

15.9 Prop.(G) & Tetradic Sets of <strong>Ovoids</strong> . . . . . . . . . . . . . . . 721<br />

15.10Us<strong>in</strong>g Tetradic Sets to Characterize GQ . . . . . . . . . . . . 726<br />

15.11Dual Tetradic Sets with q = 2 e . . . . . . . . . . . . . . . . . . 727<br />

16 Laguerre Geometries <strong>and</strong> GQ 731<br />

16.1 Laguerre po<strong>in</strong>ts . . . . . . . . . . . . . . . . . . . . . . . . . . 731<br />

16.2 <strong>Ovoids</strong> <strong>and</strong> Laguerre Geometries . . . . . . . . . . . . . . . . 734<br />

16.3 Internal Structure at a Po<strong>in</strong>t . . . . . . . . . . . . . . . . . . . 735<br />

16.4 Laguerre Geometries <strong>and</strong> GQ . . . . . . . . . . . . . . . . . . 740<br />

16.5 Property (G) . . . . . . . . . . . . . . . . . . . . . . . . . . . 743<br />

16.6 Laguerre Sets of <strong>Ovoids</strong> with q even . . . . . . . . . . . . . . . 746<br />

17 Translation Oval Cones 757<br />

17.1 Representations of Flocks . . . . . . . . . . . . . . . . . . . . 757<br />

17.2 Normalized α-Cones . . . . . . . . . . . . . . . . . . . . . . . 759<br />

17.3 α-Flocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761<br />

17.4 α-Clans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765


CONTENTS 9<br />

17.5 Some Families of α-Clans . . . . . . . . . . . . . . . . . . . . . 766<br />

17.6 Herds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771<br />

17.7 Flippable α-Clans . . . . . . . . . . . . . . . . . . . . . . . . . 773<br />

17.8 A Special α-Clan . . . . . . . . . . . . . . . . . . . . . . . . . 776<br />

17.9 The ovals σ + γ of Glynn . . . . . . . . . . . . . . . . . . . . 780<br />

17.10Cherowitzo Hyperovals . . . . . . . . . . . . . . . . . . . . . . 785<br />

18 <strong>Generalized</strong> Fans <strong>and</strong> Spreads of T2(O)) 793<br />

18.1 <strong>Generalized</strong> f-Fans . . . . . . . . . . . . . . . . . . . . . . . . 793<br />

18.2 Spreads of T2(Of) . . . . . . . . . . . . . . . . . . . . . . . . . 794<br />

19 Appendix 1: Some Elementary Number Theory 797<br />

19.1 Basic Facts about Congruences . . . . . . . . . . . . . . . . . 797<br />

19.2 A Theorem of Lucas . . . . . . . . . . . . . . . . . . . . . . . 799<br />

19.3 The Ch<strong>in</strong>ese Rema<strong>in</strong>der Theorem . . . . . . . . . . . . . . . . 800<br />

19.4 Solv<strong>in</strong>g Congruences: The Case of a Prime Modulus . . . . . . 803<br />

19.5 The Case of a Prime Power Modulus, etc. . . . . . . . . . . . 805<br />

19.6 Power Residues . . . . . . . . . . . . . . . . . . . . . . . . . . 807<br />

19.7 The 4-Square Theorem of Lagrange . . . . . . . . . . . . . . . 809<br />

19.8 Congruence of Symmetric Matrices . . . . . . . . . . . . . . . 811<br />

19.9 The Bruck-Ryser Theorem . . . . . . . . . . . . . . . . . . . . 812<br />

19.10Number Theoretic Functions . . . . . . . . . . . . . . . . . . . 815<br />

20 Appendix 2: Algebra <strong>in</strong> Fq[x] 819<br />

20.1 The Galois Field GF (q) = Fq . . . . . . . . . . . . . . . . . . 819<br />

20.2 Relative Trace <strong>and</strong> Norm . . . . . . . . . . . . . . . . . . . . . 822<br />

20.3 Polynomials over Fq . . . . . . . . . . . . . . . . . . . . . . . . 824<br />

20.4 Symmetric Polynomials . . . . . . . . . . . . . . . . . . . . . . 826<br />

20.5 Newton’s Formulas . . . . . . . . . . . . . . . . . . . . . . . . 828<br />

20.6 The Resultant of Two Polynomials . . . . . . . . . . . . . . . 830<br />

20.7 The Discrim<strong>in</strong>ant of a Polynomial . . . . . . . . . . . . . . . . 832<br />

20.8 Reverse Polynomials . . . . . . . . . . . . . . . . . . . . . . . 834<br />

20.9 Roots of Irreducible Polynomials <strong>in</strong> Zp[x] . . . . . . . . . . . . 835<br />

20.10Stickelberger’s theorem . . . . . . . . . . . . . . . . . . . . . . 836<br />

20.11Factor<strong>in</strong>g x q − 1 <strong>in</strong> Zp[x] . . . . . . . . . . . . . . . . . . . . . 838<br />

20.12Quadratic Reciprocity . . . . . . . . . . . . . . . . . . . . . . 839<br />

20.13Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841<br />

20.14Lift<strong>in</strong>g Roots Modulo Powers of p . . . . . . . . . . . . . . . . 842


10 CONTENTS<br />

20.15Resultants as Determ<strong>in</strong>ants . . . . . . . . . . . . . . . . . . . 846<br />

20.16Bezout’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 852<br />

20.17The Hermite-Dickson Criterion . . . . . . . . . . . . . . . . . 855<br />

20.18Greatest Common Divisors of a m ± 1 <strong>and</strong> a n ± 1 . . . . . . . . 857<br />

20.18.1 Basic Identities . . . . . . . . . . . . . . . . . . . . . . 857<br />

20.18.6 gcd(a m + 1, a n + 1), a > 1 . . . . . . . . . . . . . . . . 859<br />

20.18.13An Application to F<strong>in</strong>ite Fields of Characteristic 2 . . 863<br />

20.18.14Application to F<strong>in</strong>ite Fields of Odd Characteristic . . . 864<br />

20.19L<strong>in</strong>ear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865<br />

20.20K-Subspaces of F as L<strong>in</strong>earized Polynomials . . . . . . . . . . 870<br />

20.21Additive Maps on Fq . . . . . . . . . . . . . . . . . . . . . . . 874<br />

20.22The Number of Roots of a Special Polynomial . . . . . . . . . 880<br />

20.23Equations Involv<strong>in</strong>g Squares . . . . . . . . . . . . . . . . . . . 882<br />

20.24V<strong>and</strong>ermonde Determ<strong>in</strong>ant . . . . . . . . . . . . . . . . . . . . 884<br />

20.25A Theorem of Blokhuis . . . . . . . . . . . . . . . . . . . . . . 885<br />

20.26Theorems of Bruen, Lev<strong>in</strong>ger <strong>and</strong> Carlitz . . . . . . . . . . . . 889<br />

20.27Wedderburn’s Theorem . . . . . . . . . . . . . . . . . . . . . . 901<br />

21 Appendix 3: Review of Sesquil<strong>in</strong>ear Forms 903<br />

21.1 Sesquil<strong>in</strong>ear <strong>and</strong> Quadratic Forms . . . . . . . . . . . . . . . . 903<br />

21.2 Perps <strong>and</strong> Radicals . . . . . . . . . . . . . . . . . . . . . . . . 908<br />

21.3 Quotient spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 909<br />

21.4 Polar Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910<br />

21.5 Hyperbolic Pairs . . . . . . . . . . . . . . . . . . . . . . . . . 914<br />

22 Appendix 4: Interlac<strong>in</strong>g of Eigenvalues 917<br />

22.1 Real Symmetric Matrices: A Review . . . . . . . . . . . . . . 917


CONTENTS 11<br />

Prolegomena<br />

One of the most challeng<strong>in</strong>g open problems <strong>in</strong> f<strong>in</strong>ite geometry is the determ<strong>in</strong>ation<br />

of all ovoids <strong>in</strong> f<strong>in</strong>ite three dimensional projective space P G(3, q). In<br />

1955 A. Barlotti [Ba55] <strong>and</strong> G. Panella [Pa55] (<strong>in</strong>dependently) showed that<br />

if each plane section of an ovoid Ω is a conic, then Ω must be an elliptic<br />

quadric. S<strong>in</strong>ce B. Segre had just proved his famous theorem that each oval<br />

<strong>in</strong> the Desarguesian plane P G(2, q) with q odd must be a conic, it was known<br />

that each ovoid of P G(3, q) with q odd must be an elliptic quadric. Not long<br />

afterwards J. Tits [Ti62] discovered the examples known as the Tits ovoids<br />

(or sometiimes the Suzuki-Tits ovoids because of their connection with the<br />

Suziki groups) for q = 2 e , e odd. These two families rema<strong>in</strong> the only known<br />

ovoids <strong>in</strong> P G(3, q), <strong>and</strong> many researchers believe they will turn out to be<br />

the only ones. However, additional improvements on the characterization<br />

theorems were slow <strong>in</strong> com<strong>in</strong>g. In 1977 Prohaska <strong>and</strong> Walker [PW77] proved<br />

that an ovoid with even one bundle of conics must be an elliptic quadric.<br />

Several years later D. Glynn [Gl84] succeeded <strong>in</strong> show<strong>in</strong>g that an ovoid with<br />

a pencil of conics must be an elliptic quadric. The computations <strong>in</strong> [Gl84]<br />

have rema<strong>in</strong>ed the central <strong>in</strong>spiration for several of the more recent papers by<br />

T. Penttila <strong>and</strong> his coterie of co-authors, <strong>in</strong> which truly impressive progress<br />

has been made. These papers have become, <strong>in</strong> our op<strong>in</strong>ion, <strong>in</strong>creas<strong>in</strong>gly challeng<strong>in</strong>g<br />

to read, especially because there is so much dependence on earlier<br />

work with many details left to the reader. Possibly the biggest breakthrough<br />

<strong>in</strong> recent years was the paper [Br00a] by M. Brown show<strong>in</strong>g that even one<br />

conic among the plane sections of an ovoid forces it to be an elliptic quadric.<br />

One major goal of the present treatment is to give a self-conta<strong>in</strong>ed exposition<br />

of most of this material.<br />

As progress on the problem of determ<strong>in</strong><strong>in</strong>g the ovoids <strong>in</strong> P G(3, q) was<br />

be<strong>in</strong>g made, the study of ovals naturally played a hugh role, so that we<br />

must <strong>in</strong>clude a major part of the theory of ovals <strong>in</strong> P G(2, q). However,<br />

the theory of generalized quadrangles has also become <strong>in</strong>creas<strong>in</strong>gly central<br />

to the study of ovoids. The appearance <strong>in</strong> 1984 of the monograph [PT84]<br />

contributed to the grow<strong>in</strong>g <strong>in</strong>terest <strong>in</strong> GQ, <strong>and</strong> although it cont<strong>in</strong>ues to<br />

provide a significant <strong>in</strong>troduction to the theory, it has become quite out<br />

of date. There are a few detailed surveys (see especially the chapter on<br />

generalized polygons by J. A. Thas <strong>in</strong> [Bu95]) <strong>and</strong> the survey [JP97]. The<br />

recent book by H. van Maldeghem [HVM98] is a good general reference, but<br />

it does not really contribute much to the study of f<strong>in</strong>ite GQ. The book [KT04]


12 CONTENTS<br />

by K. Thas does give proofs of many new results on f<strong>in</strong>ite GQ, but that book<br />

gives relatively few results that relate to the problems that are central to<br />

the study of ovoids. The manuscript [CP02] by Card<strong>in</strong>ali <strong>and</strong> Payne does<br />

give a fairly complete treatment of flock GQ of even order, but it is written<br />

for readers who are already somewhat familiar with f<strong>in</strong>ite GQ. S<strong>in</strong>ce many<br />

readers of this book are likely to be new to the theory of GQ, <strong>and</strong> there are a<br />

great many pert<strong>in</strong>ent results that have not yet appeared with complete proofs<br />

<strong>in</strong> book form, we have decided to present a fairly extensive <strong>in</strong>troduction to<br />

the theory of f<strong>in</strong>ite GQ.<br />

It was our orig<strong>in</strong>al expectation that the reader of this book would have<br />

already studied the basics of f<strong>in</strong>ite projective <strong>and</strong> aff<strong>in</strong>e spaces <strong>and</strong> that our<br />

primary contribution should be to present a careful <strong>and</strong> thorough treatment<br />

of the many results that have appeared dur<strong>in</strong>g the past twenty years <strong>and</strong><br />

have not yet found their way <strong>in</strong>to the available texts. However, <strong>in</strong> us<strong>in</strong>g<br />

this book with our students we have found it expedient to <strong>in</strong>clude a considerable<br />

amount of fairly st<strong>and</strong>ard material. Moreover, at certa<strong>in</strong> places<br />

it is expedient to rely on a theorem of F. Buekenhout [Bu69] that gives a<br />

synthetic axiomatic approach to f<strong>in</strong>ite aff<strong>in</strong>e spaces. This material is not<br />

readily available <strong>in</strong> English (as far as we are aware) <strong>and</strong> relies on an earlier<br />

axiomatization of aff<strong>in</strong>e space, so to be complete we have decided to <strong>in</strong>clude<br />

a complete treatment of this material also.<br />

So what are the prerequisites for read<strong>in</strong>g this book? The answer is that,<br />

for the reader who will make use of the appendices to become familiar with<br />

some nearly classical material that is needed <strong>in</strong> the ma<strong>in</strong> chapters, only some<br />

basic abstract algebra, l<strong>in</strong>ear algebra, <strong>and</strong> mathematical maturity are needed.<br />

We have <strong>in</strong>cluded appendices on basic number theory, equations over f<strong>in</strong>ite<br />

fields, <strong>and</strong> sesquil<strong>in</strong>ear forms. One of the theorems that plays a role <strong>in</strong> f<strong>in</strong>ite<br />

geometry is the theorem of Wedderburn that characterizes f<strong>in</strong>ite skew-fields<br />

as fields. In the chapter on f<strong>in</strong>ite fields we give Witt’s well known proof.<br />

Chapters 1, 2 <strong>and</strong> 3 give a synthetic approach to f<strong>in</strong>ite projective <strong>and</strong> <strong>and</strong><br />

aff<strong>in</strong>e geometry <strong>and</strong> establish many of the st<strong>and</strong>ard results of f<strong>in</strong>ite projective<br />

<strong>and</strong> affi<strong>in</strong>e spaces, the so-called Galois geometries. These chapters might be<br />

viewed as giv<strong>in</strong>g an entire first course on these topics. Then Chapter 4 gives<br />

a fairly thorough <strong>in</strong>troduction to the theory of ovals <strong>in</strong> P G(2, q). Chapter 5<br />

presents the usual treatment of quadrics <strong>in</strong> f<strong>in</strong>ite projective spaces. Much of<br />

the material <strong>in</strong> these first five chapters (<strong>and</strong> <strong>in</strong> the later chapter on the Kle<strong>in</strong><br />

correspondence) is <strong>in</strong>cluded <strong>in</strong> the major treatise by Hirschfeld <strong>and</strong> Thas<br />

([Hi98], [Hi85] <strong>and</strong> [HT91]. However, we offer a more thorough <strong>and</strong> leisurely


CONTENTS 13<br />

treatment of just that part of the general theory that seems relevant to our<br />

overall goals.<br />

In the other chapters we offer complete proofs of many results that were<br />

discovered after the appearance of the references mentioned above. Perhaps<br />

most notable is the <strong>in</strong>clusion of the complete solution of the problem of<br />

show<strong>in</strong>g that a GQ of order (q 2 , q) with Property (G) at a po<strong>in</strong>t must be a<br />

flock GQ. The f<strong>in</strong>al step <strong>in</strong> this solution was given by M. R. Brown, <strong>in</strong>spired<br />

by the deep <strong>and</strong> amaz<strong>in</strong>g work by J. A. Thas. We believe that the treatment<br />

by Brown places the work of Thas with<strong>in</strong> the grasp of a larger group of<br />

readers.<br />

Many of the very technical computations that were <strong>in</strong>itially undertaken<br />

<strong>in</strong> the study of ovoids have turned out to be useful <strong>in</strong> the study of f<strong>in</strong>ite<br />

GQ. Our treatment of the (not completely solved) problem of determ<strong>in</strong><strong>in</strong>g<br />

all spreads of T2(O) appears here for the first time <strong>in</strong> book form with fairly<br />

complete proofs. Although great progress has been made, we hope that the<br />

<strong>in</strong>clusion of this material will <strong>in</strong>spire a great deal more.<br />

The present book grew out of notes written for a course by the same<br />

name taught by the author dur<strong>in</strong>g the Academic Year 2004 – 2005. I would<br />

like to thank the follow<strong>in</strong>g students <strong>and</strong> colleague whose constant vigilance<br />

<strong>and</strong> enthusiastic participation contributed greatly to the current form of this<br />

work: Art Busch, Bill Cherowitzo, Steve Fl<strong>in</strong>k, Oscar Jenk<strong>in</strong>s, <strong>and</strong> Ryan<br />

Pedersen. Dur<strong>in</strong>g these years that immediately follow the orig<strong>in</strong>al sem<strong>in</strong>ar,<br />

other students cont<strong>in</strong>ue to make their own contributions to this work, <strong>and</strong> it<br />

cont<strong>in</strong>ues to evolve .<br />

I would also like to thank my partner <strong>in</strong> life Angelika Adamic-Payne who<br />

ma<strong>in</strong>ta<strong>in</strong>s a wonderful nurtur<strong>in</strong>g atmosphere <strong>in</strong> our home throughout the<br />

times when I seem to be liv<strong>in</strong>g off <strong>in</strong> my own imag<strong>in</strong>ary world.<br />

Stanley E. Payne


14 CONTENTS


Chapter 1<br />

Synthetic Axioms for <strong>Geometry</strong><br />

In the usual synthetic approaches to Galois geometry (aff<strong>in</strong>e or projective<br />

space over a f<strong>in</strong>ite field) there seems to be a tendency to treat projective<br />

space synthetically <strong>and</strong> then derive aff<strong>in</strong>e space from it without offer<strong>in</strong>g a<br />

correspond<strong>in</strong>g synthetic foundation for aff<strong>in</strong>e space. In our study of generalized<br />

quadrangles we have on occasion found it convenient to quote the<br />

theorem of Buekenhout [Bu69] characteriz<strong>in</strong>g aff<strong>in</strong>e space with at least three<br />

po<strong>in</strong>ts on each l<strong>in</strong>e by means of a simple set of axioms. His proof is based<br />

on a paper by Lenz [Le54] which is not quite self-conta<strong>in</strong>ed. Hence we have<br />

decided to offer here a more nearly complete synthetic treatment of both<br />

aff<strong>in</strong>e <strong>and</strong> projective space. Our treatment owes much to the two references<br />

just mentioned, along with the article [Ha72] by M. Hall, Jr., <strong>and</strong> the books<br />

[BR98] by Beutelspacher <strong>and</strong> Rosenbaum (with its reference to [Tam72]) <strong>and</strong><br />

[WM69] by Murtha <strong>and</strong> Willard.<br />

1.1 L<strong>in</strong>ear Space<br />

Def<strong>in</strong>ition 1.1.1. A l<strong>in</strong>ear space L is a set of po<strong>in</strong>ts, along with a set of<br />

dist<strong>in</strong>guished subsets of these po<strong>in</strong>ts, called l<strong>in</strong>es, such that (1) each pair P, Q<br />

of dist<strong>in</strong>ct po<strong>in</strong>ts belongs to exactly one l<strong>in</strong>e, denoted P Q, <strong>and</strong> (2) each l<strong>in</strong>e<br />

conta<strong>in</strong>s at least two po<strong>in</strong>ts.<br />

Def<strong>in</strong>ition 1.1.2. A set U of po<strong>in</strong>ts of a l<strong>in</strong>ear space L is said to be a<br />

subspace of L provided that for each pair P, Q of dist<strong>in</strong>ct po<strong>in</strong>ts of U, each<br />

po<strong>in</strong>t of the l<strong>in</strong>e P Q is conta<strong>in</strong>ed <strong>in</strong> U. We may express this by say<strong>in</strong>g<br />

P Q ⊆ U.<br />

15


16 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

The empty set, a s<strong>in</strong>gle po<strong>in</strong>t, a l<strong>in</strong>e, <strong>and</strong> the entire space L are examples<br />

of subspaces. The follow<strong>in</strong>g lemma is self-evident.<br />

Lemma 1.1.3. The <strong>in</strong>tersection of any collection of subspaces is a subspace.<br />

Def<strong>in</strong>ition 1.1.4. Let A1, A2, . . . , Ak be arbitrary sets of po<strong>in</strong>ts. Then the<br />

<strong>in</strong>tersection of all subspaces conta<strong>in</strong><strong>in</strong>g the union of these sets is denoted<br />

〈A1, A2, . . . , Ak〉 <strong>and</strong> is sometimes called the span or hull of A1, A2, . . . , Ak,<br />

<strong>and</strong> can be thought of as the smallest subspace conta<strong>in</strong><strong>in</strong>g A1, A2, . . . , Ak. In<br />

an abuse of notation, for a po<strong>in</strong>tset A <strong>and</strong> a s<strong>in</strong>gle po<strong>in</strong>t P , we let 〈A, P 〉<br />

denote the span of A, {P }.<br />

Note that a l<strong>in</strong>e P Q of a l<strong>in</strong>ear space is equal to 〈P, Q〉.<br />

Def<strong>in</strong>ition 1.1.5. A subspace U of a l<strong>in</strong>ear space L is called a plane if there<br />

exist three noncoll<strong>in</strong>ear (hence pairwise dist<strong>in</strong>ct) po<strong>in</strong>ts P, Q, R ∈ L such that<br />

U = 〈P, Q, R〉.<br />

Def<strong>in</strong>ition 1.1.6. A projective plane is a l<strong>in</strong>ear space P hav<strong>in</strong>g the follow<strong>in</strong>g<br />

properties: (1) every two l<strong>in</strong>es meet <strong>in</strong> at least one po<strong>in</strong>t, <strong>and</strong> (2) there are<br />

at least four po<strong>in</strong>ts, no three coll<strong>in</strong>ear.<br />

Exercise 1.1.6.1. Show that a projective plane is a plane.<br />

Exercise 1.1.6.2. Show that a projective plane has at least three po<strong>in</strong>ts on<br />

each l<strong>in</strong>e.<br />

Def<strong>in</strong>ition 1.1.7. An aff<strong>in</strong>e plane is a l<strong>in</strong>ear space πA hav<strong>in</strong>g the properties:<br />

(1) for each l<strong>in</strong>e q <strong>and</strong> each po<strong>in</strong>t P not on q, there exsits a unique l<strong>in</strong>e<br />

conta<strong>in</strong><strong>in</strong>g P <strong>and</strong> disjo<strong>in</strong>t from q, <strong>and</strong> (2) there are at least three noncoll<strong>in</strong>ear<br />

po<strong>in</strong>ts.<br />

The aff<strong>in</strong>e plane hav<strong>in</strong>g four po<strong>in</strong>ts is shown below. It is known as the<br />

aff<strong>in</strong>e plane of order 2 because it has two po<strong>in</strong>ts on each l<strong>in</strong>e. One can<br />

deduce from the def<strong>in</strong>ition of a plane, that the aff<strong>in</strong>e plane of order 2 is not<br />

a plane.


1.2. AXIOMS FOR PROJECTIVE SPACE 17<br />

It can be observed <strong>in</strong> the aff<strong>in</strong>e plane of order 2, that every set consist<strong>in</strong>g<br />

of a pair of dist<strong>in</strong>ct po<strong>in</strong>ts is a subspace.<br />

Exercise 1.1.7.1. Show if an aff<strong>in</strong>e plane πA has at least three po<strong>in</strong>ts on<br />

each l<strong>in</strong>e, then πA is a plane.<br />

1.2 Axioms for Projective Space<br />

Our axioms for projective space are written <strong>in</strong> terms of two types of objects<br />

called ”po<strong>in</strong>ts” <strong>and</strong> ”l<strong>in</strong>es,” respectively, <strong>and</strong> prescribe rules for the ”<strong>in</strong>cidence”<br />

relation between them.<br />

Def<strong>in</strong>ition 1.2.1. A projective space P is a set of objects of two types. An<br />

object of the first type is called a po<strong>in</strong>t; one of the second type is called a l<strong>in</strong>e.<br />

A po<strong>in</strong>t <strong>and</strong> a l<strong>in</strong>e may or may not be <strong>in</strong>cident, <strong>and</strong> the <strong>in</strong>cidence relation is<br />

subject to the follow<strong>in</strong>g axioms.<br />

P1. Given two dist<strong>in</strong>ct po<strong>in</strong>ts A <strong>and</strong> B there is a unique l<strong>in</strong>e ℓ <strong>in</strong>cident with<br />

both. We may write ℓ = AB or ℓ = 〈A, B〉, or ℓ = A + B.<br />

P2. Let A, B, C, D be four dist<strong>in</strong>ct po<strong>in</strong>ts. If there is a po<strong>in</strong>t <strong>in</strong>cident with<br />

both l<strong>in</strong>es AB <strong>and</strong> CD, then there is a po<strong>in</strong>t <strong>in</strong>cident with both l<strong>in</strong>es<br />

AC <strong>and</strong> BD.<br />

Often Axiom P2 is expressed as follows: If A, B, C are dist<strong>in</strong>ct po<strong>in</strong>ts<br />

not on a l<strong>in</strong>e <strong>and</strong> if D = A is a po<strong>in</strong>t of AB, <strong>and</strong> if E = A is a po<strong>in</strong>t of<br />

AC, then there is a po<strong>in</strong>t F common to DE <strong>and</strong> BC.


18 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

P3. Each l<strong>in</strong>e is <strong>in</strong>cident with at least three po<strong>in</strong>ts.<br />

The next axiom is sometimes called the ”space axiom” s<strong>in</strong>ce it rules out<br />

the possiblity that the entire space is merely a plane. We will alert the<br />

reader on those occasions when we want to assume this axiom, but often<br />

we will not need it.<br />

P4. (Space Axiom) There exist two l<strong>in</strong>es that are <strong>in</strong>cident with no po<strong>in</strong>t <strong>in</strong><br />

common.<br />

When we do not wish to exclude the possibility that the entire space<br />

is just a projective plane, we use the follow<strong>in</strong>g weaker version of the<br />

preced<strong>in</strong>g axiom.<br />

P5. There exist at least two l<strong>in</strong>es.<br />

Often it is the case that a l<strong>in</strong>e is considered to be the set of po<strong>in</strong>ts <strong>in</strong>cident<br />

with it. However, there will be many times when we wish to construct po<strong>in</strong>tl<strong>in</strong>e<br />

<strong>in</strong>cidence geometries start<strong>in</strong>g with objects for which it is not convenient<br />

to take this po<strong>in</strong>t of view. Usually we let I denote the <strong>in</strong>cidence relation<br />

<strong>and</strong> write AIℓ to <strong>in</strong>dicate that the po<strong>in</strong>t A <strong>and</strong> the l<strong>in</strong>e ℓ are <strong>in</strong>cident. Alternatively,<br />

the pair (A, ℓ) is said to be a flag provided AIℓ. Later we will<br />

generalize this notion of flag.<br />

Def<strong>in</strong>ition 1.2.2. A set U of po<strong>in</strong>ts of P is said to be a subspace of P<br />

provided that for each pair (A, B) of dist<strong>in</strong>ct po<strong>in</strong>ts of U, each po<strong>in</strong>t of the<br />

l<strong>in</strong>e AB is conta<strong>in</strong>ed <strong>in</strong> U. We may express this by say<strong>in</strong>g AB ⊆ U. In<br />

spite of our remark above about a l<strong>in</strong>e sometimes be<strong>in</strong>g dist<strong>in</strong>ct from the set<br />

of po<strong>in</strong>ts <strong>in</strong>cident with it, <strong>in</strong> general a l<strong>in</strong>e, considered as a subspace of P, is<br />

<strong>in</strong>deed identified with the set of po<strong>in</strong>ts <strong>in</strong>cident with it.<br />

The follow<strong>in</strong>g lemma is self-evident.<br />

Lemma 1.2.3. The <strong>in</strong>tersection of any collection of subspaces is a subspace.<br />

Def<strong>in</strong>ition 1.2.4. If {A1, A2, . . . , Ak} is any set of po<strong>in</strong>tsets, the <strong>in</strong>tersection<br />

of all subspaces conta<strong>in</strong><strong>in</strong>g this set is denoted A1, A2, . . . , Ak, or 〈A1, . . . , Ak〉<br />

or A1 + A2 + · · · + Ak. It is the subspace spanned by these po<strong>in</strong>ts <strong>and</strong> is<br />

sometimes called the hull of the set of po<strong>in</strong>tsets or the simply their span.


1.2. AXIOMS FOR PROJECTIVE SPACE 19<br />

Lemma 1.2.5. Let U be a subspace of P <strong>and</strong> P a po<strong>in</strong>t not <strong>in</strong> U. The span<br />

UP is the set of po<strong>in</strong>ts <strong>in</strong>cident with the l<strong>in</strong>es UP for all U ∈ U. Moreover,<br />

each l<strong>in</strong>e of UP meets U.<br />

Proof. Let A <strong>and</strong> B be any two po<strong>in</strong>ts of UP . We need to show that AB ⊆<br />

UP . This is clear if AP = BP , so suppose that this is not the case. There<br />

must be po<strong>in</strong>ts C <strong>and</strong> D <strong>in</strong> U such that CP = AP <strong>and</strong> DP = BP . By<br />

hypothesis any po<strong>in</strong>t of CD is <strong>in</strong> U. Let E be any po<strong>in</strong>t of AB \ {A, B}. We<br />

need to show that P E conta<strong>in</strong>s a po<strong>in</strong>t of U. To do this we apply Axiom 2<br />

three times.<br />

CA ∩ DB = P =⇒ CD ∩ AB = F ∈ U.<br />

CD ∩ AE = F =⇒ CA ∩ DE = G.<br />

CP ∩ DE = G =⇒ CD ∩ P E = H ∈ U.<br />

By now it is clear that each l<strong>in</strong>e of UP meets U.<br />

Corollary 1.2.6. Let U be a subspace of a projective space P, <strong>and</strong> let P be<br />

a po<strong>in</strong>t of P that is not conta<strong>in</strong>ed <strong>in</strong> U. For any po<strong>in</strong>t Q ∈ U, the span<br />

〈U, P 〉 of U <strong>and</strong> P consists precisely of the po<strong>in</strong>ts <strong>in</strong> the planes 〈g, P 〉, where<br />

g runs over all l<strong>in</strong>es of U through Q.<br />

Proof. Easy exercise.<br />

Corollary 1.2.7. Let g1 <strong>and</strong> g2 be two skew l<strong>in</strong>es of a projective space P.<br />

Let X1, Y1 be po<strong>in</strong>ts on g1, <strong>and</strong> X2, Y2 be po<strong>in</strong>ts on g2. Let X be a po<strong>in</strong>t<br />

on 〈X1, X2〉 <strong>and</strong> Y a po<strong>in</strong>t on 〈Y1, Y2〉 such that 〈X, Y 〉 is skew to g1 <strong>and</strong> g2.<br />

Then each po<strong>in</strong>t Z on 〈X, Y 〉 is on some l<strong>in</strong>e (transversal) that <strong>in</strong>tersects g1<br />

<strong>and</strong> g2.<br />

Proof. Exercise. (H<strong>in</strong>t: Show that the l<strong>in</strong>e g2 <strong>in</strong>tersects the plane π :=<br />

〈g1, Z〉.)<br />

Corollary 1.2.8. (The ’Jo<strong>in</strong> theorem’) Let U <strong>and</strong> V be nonempty subspaces<br />

of P. then the span 〈U, V〉 can be described as follows:<br />

Proof. Exercise.<br />

〈U, V〉 = ∪{〈P, Q〉 : p ∈ U, Q ∈ V, P = Q}.


20 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

1.3 The Axioms of Aff<strong>in</strong>e Space<br />

Aff<strong>in</strong>e space is l<strong>in</strong>ear space <strong>in</strong> which certa<strong>in</strong> parallel l<strong>in</strong>es exist. The follow<strong>in</strong>g<br />

axiomatization of aff<strong>in</strong>e space is due to Lenz.<br />

Def<strong>in</strong>ition 1.3.1. An aff<strong>in</strong>e space A is a set of po<strong>in</strong>ts <strong>in</strong> which there are<br />

dist<strong>in</strong>guished subsets called l<strong>in</strong>es <strong>and</strong> an equivalence relation denoted def<strong>in</strong>ed<br />

on the set of l<strong>in</strong>es, <strong>in</strong> such a way that the follow<strong>in</strong>g axioms are satisfied.<br />

A1. Each pair P, Q of dist<strong>in</strong>ct po<strong>in</strong>ts is conta<strong>in</strong>ed <strong>in</strong> a unique l<strong>in</strong>e P Q.<br />

A2. For each po<strong>in</strong>t P <strong>and</strong> each l<strong>in</strong>e ℓ there is a unique l<strong>in</strong>e ℓ ′ such that P ∈ ℓ ′<br />

<strong>and</strong> ℓℓ ′ .<br />

Of course if the po<strong>in</strong>t P is <strong>in</strong>cident with ℓ, then ℓ itself is the unique<br />

l<strong>in</strong>e through P parallel to ℓ. This means that two l<strong>in</strong>es that meet <strong>in</strong> a<br />

s<strong>in</strong>gle po<strong>in</strong>t cannot be parallel.<br />

A3. (Trapezoid axiom) Let P Q <strong>and</strong> RS be dist<strong>in</strong>ct parallel l<strong>in</strong>es <strong>and</strong> let T<br />

be a po<strong>in</strong>t of P R \ {P, R}. Then there must be a po<strong>in</strong>t <strong>in</strong>cident with<br />

P Q <strong>and</strong> T S.<br />

P<br />

R<br />

T<br />

Q<br />

S<br />

Another way to express the Trapezoid axiom is the follow<strong>in</strong>g: If P , R<br />

<strong>and</strong> S are three noncoll<strong>in</strong>ear po<strong>in</strong>ts, <strong>and</strong> T is a third po<strong>in</strong>t on the l<strong>in</strong>e<br />

P R, then the l<strong>in</strong>e through P parallel to RS meets the third side T S.<br />

A4. (Parallelogram axiom) If no l<strong>in</strong>e of A has more than two po<strong>in</strong>ts, <strong>and</strong> if<br />

P , Q <strong>and</strong> R are three dist<strong>in</strong>ct po<strong>in</strong>ts, then the l<strong>in</strong>e through R parallel<br />

to P Q must have a po<strong>in</strong>t <strong>in</strong> common with the l<strong>in</strong>e through P parallel<br />

to QR. See the follow<strong>in</strong>g diagram.<br />

S<br />

P<br />

T<br />

Q<br />

R


1.3. THE AXIOMS OF AFFINE SPACE 21<br />

Q<br />

P<br />

R<br />

Remark: If the l<strong>in</strong>es all conta<strong>in</strong> at least three po<strong>in</strong>ts, the Trapezoid<br />

axiom <strong>and</strong> the Parallelogram axiom are equivalent. Hence <strong>in</strong> this case<br />

we omit the Parallelogram axiom.<br />

A5. Each l<strong>in</strong>e conta<strong>in</strong>s at least two po<strong>in</strong>ts.<br />

A6. (Space axiom) There exist two disjo<strong>in</strong>t l<strong>in</strong>es ℓ <strong>and</strong> ℓ ′ such that ℓ ℓ ′ .<br />

This axiom excludes aff<strong>in</strong>e planes from the aff<strong>in</strong>e spaces.<br />

A7. (Triangle axiom) Let P, Q, R be three noncoll<strong>in</strong>ear po<strong>in</strong>ts <strong>and</strong> let P ′ , Q ′<br />

be po<strong>in</strong>ts such that P QP ′ Q ′ . If ℓ is the l<strong>in</strong>e through P ′ parallel to<br />

P R <strong>and</strong> ℓ ′ is the l<strong>in</strong>e through Q ′ parallel to QR, then ℓ <strong>in</strong>tersects ℓ ′ <strong>in</strong><br />

a po<strong>in</strong>t R ′ . This axiom is due to O. Tamaschke <strong>and</strong> may be used to<br />

replace both trapezoid <strong>and</strong> parallelogram axioms.<br />

P Q P ′<br />

R<br />

Exercise 1.3.1.1. Show the triangle axiom holds if <strong>and</strong> only if the trapezoid<br />

<strong>and</strong> parallelogram axioms hold.<br />

ℓ<br />

ℓ ′<br />

R ′<br />

Q ′


22 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

Lemma 1.3.2. All l<strong>in</strong>es <strong>in</strong> an aff<strong>in</strong>e space are <strong>in</strong>cident with the same number<br />

of po<strong>in</strong>ts.<br />

Proof. If no l<strong>in</strong>e has more than two po<strong>in</strong>ts we are done. Otherwise, let g be<br />

a l<strong>in</strong>e with three dist<strong>in</strong>ct po<strong>in</strong>ts A, B <strong>and</strong> C <strong>and</strong> let D be an arbitrary po<strong>in</strong>t<br />

not on g. By the trapezoid axiom the l<strong>in</strong>e AD must meet the l<strong>in</strong>e through<br />

C parallel to the l<strong>in</strong>e BD <strong>in</strong> a po<strong>in</strong>t E. By vary<strong>in</strong>g the po<strong>in</strong>t C on AB we<br />

see that AD has at least as many po<strong>in</strong>ts as AB. Interchang<strong>in</strong>g the roles of<br />

AB <strong>and</strong> AD shows that any two l<strong>in</strong>es that meet have the same number of<br />

po<strong>in</strong>ts. If l<strong>in</strong>es g <strong>and</strong> h are parallel <strong>and</strong> A is a po<strong>in</strong>t of g, B is a po<strong>in</strong>t of h,<br />

then both g <strong>and</strong> h have the same number of po<strong>in</strong>ts as AB.<br />

Lemma 1.3.3. (The parallelogram theorem) Let A, B <strong>and</strong> C be three dist<strong>in</strong>ct<br />

po<strong>in</strong>ts. Then the l<strong>in</strong>e through C parallel to AB has at least one po<strong>in</strong>t <strong>in</strong><br />

common with the l<strong>in</strong>e through B parallel to AC.<br />

Proof. If A, B <strong>and</strong> C are on one l<strong>in</strong>e, the proof is obvious. So suppose this<br />

is not the case. If each l<strong>in</strong>e has exactly two po<strong>in</strong>ts, the result follows from<br />

the parallelogram axiom. Otherwise, by Lemma 1.3.2 the l<strong>in</strong>e AB has a<br />

third po<strong>in</strong>t P . By the Trapezoid axiom, the l<strong>in</strong>e P C meets the l<strong>in</strong>e through<br />

B parallel to AC <strong>in</strong> a po<strong>in</strong>t D. Then DB must meet the parallel to P B<br />

through C.<br />

Lemma 1.3.4. If the l<strong>in</strong>es AB <strong>and</strong> CD have a po<strong>in</strong>t <strong>in</strong> common or are<br />

parallel, then the l<strong>in</strong>es AC <strong>and</strong> BD have a po<strong>in</strong>t <strong>in</strong> common or are parallel.<br />

Proof. If three of the po<strong>in</strong>ts A, B, C <strong>and</strong> D lie on a l<strong>in</strong>e then result is trivial.<br />

Suppose otherwise.<br />

(i) ABCD. Accord<strong>in</strong>g to Lemma 1.3.3, the l<strong>in</strong>e CD has a po<strong>in</strong>t E <strong>in</strong><br />

common with the l<strong>in</strong>e through B parallel to the l<strong>in</strong>e AC. If E = D we<br />

are done s<strong>in</strong>ce that gives ACBD. Otherwise by the Trapezoid axiom,<br />

the l<strong>in</strong>es AC <strong>and</strong> BD have a po<strong>in</strong>t <strong>in</strong> common.<br />

(ii) AB ∩ CD = {S}. By the Trapezoid axiom the l<strong>in</strong>e through B parallel<br />

to AC has a po<strong>in</strong>t E <strong>in</strong> common with the l<strong>in</strong>e SC = CD. If E = D,<br />

then ACBC. Otherwise, the l<strong>in</strong>e through C parallel to BE (i.e., the<br />

l<strong>in</strong>e AC) has a po<strong>in</strong>t <strong>in</strong> common with BD.


1.3. THE AXIOMS OF AFFINE SPACE 23<br />

Lemma 1.3.5. Let U be a nonempty subspace; let P a po<strong>in</strong>t not <strong>in</strong> U; <strong>and</strong><br />

let O be a po<strong>in</strong>t of U. The subspace 〈U, P 〉 consists of exactly the po<strong>in</strong>ts ly<strong>in</strong>g<br />

on l<strong>in</strong>es that are parallel to OP <strong>and</strong> are <strong>in</strong>cident with a po<strong>in</strong>t of U.<br />

Proof. let M be the set of po<strong>in</strong>ts on parallels to OP through po<strong>in</strong>ts of U.<br />

We will first show that M is a subspace. Let U1, U2, . . . be po<strong>in</strong>ts of U.<br />

(i) Each l<strong>in</strong>e conta<strong>in</strong>s at least three po<strong>in</strong>ts. Let A1, A2 be dist<strong>in</strong>ct po<strong>in</strong>ts<br />

of M with A1U1A2U2OP . By Lemma 1.3.4 either A1A2 <strong>and</strong> U1U2<br />

are parallel or they meet <strong>in</strong> a po<strong>in</strong>t S. Let A be a third po<strong>in</strong>t of A1A2.<br />

Let ℓ be the l<strong>in</strong>e through A parallel to A1U1 so parallel to OP. If A1A2<br />

<strong>and</strong> U1U2 meet <strong>in</strong> a po<strong>in</strong>t S, which must be <strong>in</strong> the subspace U, then<br />

the l<strong>in</strong>e ℓ meets one side of the triangle (A1, U1, S) <strong>and</strong> is parallel to<br />

a second, so it meets the third, i.e., ℓ meets SU1 <strong>in</strong> a po<strong>in</strong>t U2 which<br />

must be <strong>in</strong> U. So A is <strong>in</strong> M by def<strong>in</strong>ition.<br />

If A1A2U1U2, then by Lemma 1.3.3 ℓ meets U1U2, putt<strong>in</strong>g A <strong>in</strong> M.<br />

(ii) Every l<strong>in</strong>e has exactly two po<strong>in</strong>ts. Let A, B, C, D be any four po<strong>in</strong>ts<br />

(so automatically no three are on a l<strong>in</strong>e). Suppose that ABCD. Then<br />

ACBD <strong>and</strong> ADBC. For example, by the Parallelogram axiom the<br />

l<strong>in</strong>e through A parallel to BD must meet the l<strong>in</strong>e CD. But it cannot<br />

meet at D, s<strong>in</strong>ce it is parallel to BD <strong>and</strong> conta<strong>in</strong>s the po<strong>in</strong>t A not on<br />

BD. Hence it must meet at C, so ACBD.<br />

Suppose that A1U1A2U2A3U3OP <strong>and</strong> A3AA1A2. Then U1U2A1A2A3A.<br />

There must be a po<strong>in</strong>t U ∈ U such that U3UU1U2, which forces<br />

U3UA3A <strong>and</strong> hence AUA3U3. This says A ∈ M.<br />

The rema<strong>in</strong><strong>in</strong>g case is that U1A1OP <strong>and</strong> U2AU3A1, imply<strong>in</strong>g A1AU3U2.<br />

There must be a po<strong>in</strong>t U ∈ U such that UU1||U2U3||AA1. It follows that<br />

UAU1A1OP , complet<strong>in</strong>g the proof.<br />

We have shown that M is a subspace <strong>and</strong> clearly it conta<strong>in</strong>s the po<strong>in</strong>ts of<br />

U <strong>and</strong> {P } so that we know 〈U, P 〉 ⊆ M. We must argue that M ⊆ 〈U, P 〉.<br />

Any po<strong>in</strong>t of a l<strong>in</strong>e OP , O ∈ U is <strong>in</strong> 〈U, P 〉 by def<strong>in</strong>ition of a subspace. Now<br />

consider a po<strong>in</strong>t X of a parallel l<strong>in</strong>e ℓ to OP where ℓ meets U <strong>in</strong> some po<strong>in</strong>t<br />

U. If U has only one po<strong>in</strong>t, then there are no such X’s <strong>and</strong> we are done. If<br />

U has only two po<strong>in</strong>ts, then it must be that each l<strong>in</strong>e has exactly two po<strong>in</strong>ts<br />

<strong>and</strong> we have a problem. Otherwise everyth<strong>in</strong>g’s ok.


24 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

***********************************************<br />

Lemma 1.3.6. Let U be a nonempty subspace of an aff<strong>in</strong>e space A that has<br />

at least three po<strong>in</strong>ts on each l<strong>in</strong>e; let P a po<strong>in</strong>t not <strong>in</strong> U; <strong>and</strong> let O be a po<strong>in</strong>t<br />

of U. The subspace 〈U, P 〉 consists of exactly the po<strong>in</strong>ts ly<strong>in</strong>g on l<strong>in</strong>es that<br />

are parallel to OP <strong>and</strong> are <strong>in</strong>cident with a po<strong>in</strong>t of U.<br />

Proof. let M be the set of po<strong>in</strong>ts on parallels to OP which conta<strong>in</strong> a po<strong>in</strong>t<br />

O of U. We will first show that M is a subspace. Let A1, A2 be dist<strong>in</strong>ct<br />

po<strong>in</strong>ts of M. Let A be a po<strong>in</strong>t of A1A2 <strong>and</strong> we wish to show that A ∈ M.<br />

S<strong>in</strong>ce A1, A2 ∈ M, there exist po<strong>in</strong>ts O1, O2 ∈ U such that A1O1 <strong>and</strong> A2O2<br />

are both parallel to OP . By Lemma 1.3.4, either A1A2 <strong>and</strong> O1O2 are parallel<br />

or they meet <strong>in</strong> a po<strong>in</strong>t S which must be <strong>in</strong> U s<strong>in</strong>ce O1O2 ⊆ U. Let ℓ be the<br />

l<strong>in</strong>e through A parallel to A1O1 so parallel to OP. If A1A2 <strong>and</strong> O1O2 meet<br />

<strong>in</strong> the po<strong>in</strong>t S, then the l<strong>in</strong>e ℓ meets one side of the triangle (A1, O1, S) <strong>and</strong><br />

is parallel to a second, so it meets the third; i.e., ℓ meets O1S <strong>in</strong> a po<strong>in</strong>t O3<br />

which must be <strong>in</strong> U. So A is <strong>in</strong> M by def<strong>in</strong>ition.<br />

P<br />

O<br />

A1<br />

A2<br />

O1 O2 O3<br />

If A1A2O1O2, then by Lemma 1.3.3, ℓ meets O1O2, putt<strong>in</strong>g A <strong>in</strong> M.<br />

Now we must show that M is the smallest subspace conta<strong>in</strong><strong>in</strong>g U <strong>and</strong><br />

P . We will show that every po<strong>in</strong>t X of M is necessarily <strong>in</strong> every subspace<br />

conta<strong>in</strong><strong>in</strong>g U <strong>and</strong> P . Fix a po<strong>in</strong>t O of U <strong>and</strong> let O ′ be the po<strong>in</strong>t where the<br />

parallel l<strong>in</strong>e to P O through X meets U. Consider a third po<strong>in</strong>t Q of P O.<br />

Then by the trapezoid axiom, QX meets OO ′ <strong>in</strong> a po<strong>in</strong>t O ′′ which must be<br />

<strong>in</strong> U. Thus the l<strong>in</strong>e QO ′′ , which conta<strong>in</strong>s X, is <strong>in</strong> every subspace conta<strong>in</strong><strong>in</strong>g<br />

P <strong>and</strong> U.<br />

U<br />

ℓ<br />

A<br />

S


1.4. PLANES IN AFFINE SPACE 25<br />

In the case that an aff<strong>in</strong>e space A has two po<strong>in</strong>ts on each l<strong>in</strong>e, we make<br />

an observation. Let A, B, C, D be any four po<strong>in</strong>ts (so automatically no<br />

three are on a l<strong>in</strong>e). Suppose that ABCD. Then ACBD <strong>and</strong> ADBC.<br />

For example, by the Parallelogram axiom the l<strong>in</strong>e through A parallel to BD<br />

must meet the l<strong>in</strong>e CD. But it cannot meet at D, s<strong>in</strong>ce it is parallel to BD<br />

<strong>and</strong> conta<strong>in</strong>s the po<strong>in</strong>t A not on BD. Hence it must meet at C, so ACBD.<br />

********************************************<br />

1.4 Planes <strong>in</strong> Aff<strong>in</strong>e Space<br />

Exercise 1.4.0.1. Show disjo<strong>in</strong>tness of l<strong>in</strong>es <strong>in</strong> a plane is transitive.<br />

Exercise 1.4.0.2. In an aff<strong>in</strong>e space A, show two dist<strong>in</strong>ct l<strong>in</strong>es ℓ1, ℓ2 of A<br />

satisfy ℓ1ℓ2 if <strong>and</strong> only if (ℓ1 ∩ ℓ2 = ∅ <strong>and</strong> ℓ1, ℓ2 coplanar).<br />

Exercise 1.4.0.3. Consider an aff<strong>in</strong>e space A. Show that if the l<strong>in</strong>es have<br />

more than two po<strong>in</strong>ts, then the plane generated by three noncoll<strong>in</strong>ear po<strong>in</strong>ts<br />

of A is an aff<strong>in</strong>e plane.<br />

Includ<strong>in</strong>g the space axiom among the axioms for aff<strong>in</strong>e space would preclude<br />

the entire space be<strong>in</strong>g an aff<strong>in</strong>e plane. However for now we now we<br />

want to study subspaces that are planes, so we omit the space axiom. There<br />

are several ways of construct<strong>in</strong>g (or generat<strong>in</strong>g) a plane as a subspace of an<br />

aff<strong>in</strong>e space, but we choose the follow<strong>in</strong>g after M. Hall, Jr. [Ha72]. Note that<br />

it will turn out that a plane given by this construction is an aff<strong>in</strong>e plane<br />

accord<strong>in</strong>g to Def. 1.1.7.<br />

Def<strong>in</strong>ition 1.4.1. Given a l<strong>in</strong>e m <strong>and</strong> a po<strong>in</strong>t P not on m, a plane π =<br />

π(P, m) is the set of po<strong>in</strong>ts on l<strong>in</strong>es P S where S is a po<strong>in</strong>t of m together with<br />

the po<strong>in</strong>ts on the l<strong>in</strong>e k through P <strong>and</strong> parallel to m.<br />

We will show that π(P, m) is a subspace <strong>in</strong>dependent of the particular<br />

po<strong>in</strong>t-l<strong>in</strong>e pair used to def<strong>in</strong>e it.<br />

Lemma 1.4.2. If Q ∈ π(P, m) <strong>and</strong> Q ∈ m, then π(Q, m) = π(P, m).<br />

Proof. There are two cases to be considered: (i) Q is on a l<strong>in</strong>e P S, S ∈ m,<br />

<strong>and</strong> (ii) Q is on k, the paralle to m through P . Of course, if P = Q there is<br />

noth<strong>in</strong>g to prove.


26 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

(i) Suppose Q is on a l<strong>in</strong>e P S with S ∈ m. Let W be a po<strong>in</strong>t on a l<strong>in</strong>e QT<br />

with T ∈ m. If T = S, then W is a po<strong>in</strong>t on QP S <strong>and</strong> so is a po<strong>in</strong>t<br />

of π(P, m). If T = S, then Q, T, S are three po<strong>in</strong>ts not on a l<strong>in</strong>e, <strong>and</strong><br />

by Lemma 1.2.5 the l<strong>in</strong>e P W either <strong>in</strong>tersects the l<strong>in</strong>e ST , which is m,<br />

<strong>in</strong> a po<strong>in</strong>t R or is the parallel to m throughP . In either case W is a<br />

po<strong>in</strong>t of π(P, m). Thus all po<strong>in</strong>ts on l<strong>in</strong>es QT with T ∈ m are po<strong>in</strong>ts<br />

of π(P, m). Consider a po<strong>in</strong>t Y = Q on the parallel to m through Q.<br />

P , Q <strong>and</strong> Y are three noncoll<strong>in</strong>ear po<strong>in</strong>ts <strong>and</strong> T = S is a po<strong>in</strong>t of QP<br />

different from Q. Then m is the l<strong>in</strong>e through T = Q parallel to QY , so<br />

it meets the third side Y P of the triangle P QY <strong>in</strong> a po<strong>in</strong>t E (by A3).<br />

As E ∈ m, Y (as a po<strong>in</strong>t of P E) is a po<strong>in</strong>t of π(P, m). Hence each<br />

po<strong>in</strong>t of π(Q, m) is a po<strong>in</strong>t of π(P, m).<br />

(ii) Suppose Q is on k, the parallel to m through P . Here, of course, every<br />

po<strong>in</strong>t of k is a po<strong>in</strong>t of π(P, m). Let T be a po<strong>in</strong>t on a l<strong>in</strong>e QT S with<br />

S ∈ m. Then P, Q, T are three po<strong>in</strong>ts not on a l<strong>in</strong>e, <strong>and</strong> by A3, m (the<br />

parallel to P Q through S) <strong>in</strong>tersects P T <strong>in</strong> a po<strong>in</strong>t W . Hence T is a<br />

po<strong>in</strong>t of the l<strong>in</strong>e P W with W ∈ m so is a po<strong>in</strong>t of π(P, m). So also <strong>in</strong><br />

this case every po<strong>in</strong>t of π(P, m) is a po<strong>in</strong>t of π(P, m).<br />

If Q is a po<strong>in</strong>t of π(P, m) <strong>and</strong> Q ∈ m, it is immediate that P is a po<strong>in</strong>t<br />

of π(Q, m), <strong>and</strong> P ∈ m. Thus <strong>in</strong>terchang<strong>in</strong>g the roles of P <strong>and</strong> Q, the above<br />

argument shows that every po<strong>in</strong>t of π(P, m) is a po<strong>in</strong>t of π(Q, m). Hence<br />

π(Q, m) = π(P, m), as claimed by the lemma.<br />

Lemma 1.4.3. If R = S are two dist<strong>in</strong>ct po<strong>in</strong>ts of π(P, m), then every po<strong>in</strong>t<br />

of the l<strong>in</strong>e RS is a po<strong>in</strong>t of π(P, m).<br />

Proof. If both R <strong>and</strong> S are on m, then the l<strong>in</strong>e RS is the l<strong>in</strong>e m <strong>and</strong> the<br />

conclusion holds. If, say, R ∈ m, then by Lemma 1.4.2, π(P, m) = π(R, m).<br />

With S ∈ π(R, m), either S is on a l<strong>in</strong>e RT with T ∈ m or RS is the parallel<br />

to m through R. In both cases all po<strong>in</strong>ts of RS are po<strong>in</strong>ts of π(R, m) =<br />

π(P, m).<br />

Lemma 1.4.4. If k is a l<strong>in</strong>e of π(P, m) <strong>in</strong>tersect<strong>in</strong>g m <strong>in</strong> a po<strong>in</strong>t A, then<br />

there is a po<strong>in</strong>t Q of π(P, m) not on m <strong>and</strong> not on k.<br />

Proof. If P ∈ k, take Q = P . If P ∈ k, take Q = P on the parallel to m<br />

through P .


1.4. PLANES IN AFFINE SPACE 27<br />

Lemma 1.4.5. Let k be a l<strong>in</strong>e of π(P, m) <strong>in</strong>tersect<strong>in</strong>g m <strong>in</strong> a po<strong>in</strong>t B. Let<br />

Q be a po<strong>in</strong>t of π(P, m) not on m <strong>and</strong> not on k. Then π(P, m) = π(Q, m) =<br />

π(Q, k).<br />

Proof. As Q ∈ m, π(P, m) = π(Q, m) from Lemma 1.4.2. Let C be a po<strong>in</strong>t on<br />

k different from B. S<strong>in</strong>ce C ∈ π(Q, m), either QC <strong>in</strong>tersects m <strong>in</strong> a po<strong>in</strong>t S or<br />

QC is the parallel to m through Q. Hence by axiom A3 or Lemma 1.3.3(the<br />

parallelogram theorem) the parallel to k through Q <strong>in</strong>tersects m <strong>in</strong> a po<strong>in</strong>t<br />

T . Thus by Lemma 1.4.3 all po<strong>in</strong>ts of QT are po<strong>in</strong>ts of π(Q, m). Similarly,<br />

all po<strong>in</strong>ts on l<strong>in</strong>es QS with S ∈ k are po<strong>in</strong>ts of π(Q, m). Thus all po<strong>in</strong>ts of<br />

π(Q, m) are po<strong>in</strong>ts of π(Q, m). By the same argument, all po<strong>in</strong>ts of π(Q, m)<br />

are po<strong>in</strong>ts of π(Q, k).<br />

Theorem 1.4.6. If k is a l<strong>in</strong>e of π(P, m) <strong>and</strong> Q is a po<strong>in</strong>t of π(P, m) not<br />

on k, then π(P, m) = π(Q, k).<br />

Proof. If k <strong>and</strong> m <strong>in</strong>tersect <strong>in</strong> a po<strong>in</strong>t B, then by Lemma 1.4.4 there is a<br />

po<strong>in</strong>t T not on k <strong>and</strong> not on m. Hence by Lemmas 1.4.2 <strong>and</strong> 1.4.5 we have<br />

π(P, m) = π(T, m) = π(T, k) = π(Q, k). If k <strong>and</strong> m do not <strong>in</strong>tersect, choose a<br />

po<strong>in</strong>t B on m <strong>and</strong> a po<strong>in</strong>t C on k, <strong>and</strong> let BC be a l<strong>in</strong>e r. Let S be a po<strong>in</strong>t not<br />

on m or r, <strong>and</strong> let V be a po<strong>in</strong>t not on r or k. Then by Lemmas 1.4.2 <strong>and</strong> 1.4.5<br />

we have π(P, m) = π(S, m) = π(S, r) = π(V, r) = π(V, k) = π(Q, k).<br />

From here on we may speak of a plane π without reference to the particular<br />

po<strong>in</strong>t-l<strong>in</strong>e pair (P, m) used to def<strong>in</strong>e it. Such a plane is an aff<strong>in</strong>e plane.<br />

It should be clear that if π is a subspace of an aff<strong>in</strong>e space which is an aff<strong>in</strong>e<br />

plane by Def. 1.1.7, then π = π(P, m) for any po<strong>in</strong>t-l<strong>in</strong>e pair (P, m) with P<br />

not on m.<br />

Theorem 1.4.7. If k <strong>and</strong> m are two l<strong>in</strong>es of a plane π then either k <strong>and</strong> m<br />

<strong>in</strong>tersect or k <strong>and</strong> m are parallel.<br />

Proof. Choose two dist<strong>in</strong>ct po<strong>in</strong>ts P <strong>and</strong> Q on k. If either of these is on m,<br />

then k <strong>and</strong> m <strong>in</strong>tersect. If not, then π = π(P, m). If Q is on the parallel to<br />

m through P , then P Q = k is parallel to m. Otherwise Q is on a l<strong>in</strong>e P S<br />

with S ∈ m <strong>and</strong> k = P Q = P S <strong>in</strong>tersects m <strong>in</strong> S.<br />

It is worth not<strong>in</strong>g that there is one <strong>and</strong> only one aff<strong>in</strong>e plane conta<strong>in</strong><strong>in</strong>g<br />

two <strong>in</strong>tersect<strong>in</strong>g l<strong>in</strong>es <strong>and</strong> one <strong>and</strong> only one aff<strong>in</strong>e plane conta<strong>in</strong><strong>in</strong>g two parallel<br />

l<strong>in</strong>es. For if we call one of the l<strong>in</strong>es m <strong>and</strong> take P as a po<strong>in</strong>t of the other<br />

l<strong>in</strong>e but not on m, then both l<strong>in</strong>es lie <strong>in</strong> π(P, m).


28 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

The primary reason we needed to <strong>in</strong>clude a synthetic approach to aff<strong>in</strong>e<br />

space <strong>in</strong> this book is that on various occasions we make use of a famous<br />

result of F. Buekenhout [Bu69] giv<strong>in</strong>g an alternative approach to those aff<strong>in</strong>e<br />

spaces <strong>in</strong> which each l<strong>in</strong>e has at least four po<strong>in</strong>ts. Hence we devote the next<br />

section to this result.<br />

1.5 Buekenhout’s Characterization of Aff<strong>in</strong>e<br />

Space<br />

This section is based on the paper [Bu69] by F. Buekenhout. It is wellknown<br />

(implicitly given <strong>in</strong> Veblen <strong>and</strong> Young [VY38]) that the projective<br />

spaces can be characterized among the l<strong>in</strong>ear spaces by the fact that each of<br />

their planes is a projective plane. One can ask whether or not an analogous<br />

result holds for aff<strong>in</strong>e spaces, i.e., is a l<strong>in</strong>ear space all of whose planes are<br />

aff<strong>in</strong>e planes necessarily an aff<strong>in</strong>e space? Marshall Hall, Jr. [Ha60] gave an<br />

example of a Ste<strong>in</strong>er triple system on 81 po<strong>in</strong>ts whose triangles generate an<br />

aff<strong>in</strong>e plane of of 3 2 = 9 po<strong>in</strong>ts but which is not an aff<strong>in</strong>e space. (These Hall<br />

Triple Systems have been greatly generalized <strong>and</strong> thoroughly studied. See<br />

[Be80].) However, the ma<strong>in</strong> theorem of this section is a celebrated result of<br />

F. Buekenhout [Bu69] show<strong>in</strong>g that the answer to the question just posed<br />

is affirmative when the l<strong>in</strong>es of the space considered have more than three<br />

po<strong>in</strong>ts. Our proof assumes that the order of the underly<strong>in</strong>g space is f<strong>in</strong>ite.<br />

Theorem 1.5.1. Let L be a l<strong>in</strong>ear space such that<br />

(i) each plane of L is an aff<strong>in</strong>e plane,<br />

(ii) L has at least three noncoll<strong>in</strong>ear po<strong>in</strong>ts, <strong>and</strong><br />

(iii) each l<strong>in</strong>e of L has at least four po<strong>in</strong>ts.<br />

Then L is an aff<strong>in</strong>e space.<br />

Proof. We will first def<strong>in</strong>e a relation on the set of l<strong>in</strong>es of L <strong>and</strong> then<br />

prove that it is an equivalence relation. Once that is accomplished we will<br />

show that L satisfies the axioms of aff<strong>in</strong>e space given our hypotheses <strong>and</strong><br />

equivalance relation .<br />

Def<strong>in</strong>e the parallel relation by two l<strong>in</strong>es ℓ1, ℓ2 ∈ L are parallel <strong>and</strong> we<br />

write ℓ1ℓ2 if <strong>and</strong> only if either (ℓ1 ∩ ℓ2 = ∅ <strong>and</strong> ℓ1, ℓ2 coplanar) or (ℓ1 = ℓ2).


1.5. BUEKENHOUT’S CHARACTERIZATION OF AFFINE SPACE 29<br />

That the relation is reflexive <strong>and</strong> symmetric follows immediately from the<br />

def<strong>in</strong>ition of . We must show that is transitive on the set of l<strong>in</strong>es of L. So<br />

suppose that ℓ1ℓ2 <strong>and</strong> ℓ2ℓ3. We have several possibilities to <strong>in</strong>vestigate.<br />

I. If ℓ1 = ℓ2 <strong>and</strong> ℓ2 = ℓ3, then clearly ℓ1 = ℓ3, imply<strong>in</strong>g ℓ1ℓ3.<br />

II. If ℓ1 = ℓ2 <strong>and</strong> (ℓ2 ∩ ℓ3 = ∅ <strong>and</strong> ℓ2, ℓ3 coplanar), then clearly (ℓ1 ∩ ℓ3 = ∅<br />

<strong>and</strong> ℓ1, ℓ3 coplanar), imply<strong>in</strong>g ℓ1ℓ3.<br />

III. If (ℓ1 ∩ ℓ2 = ∅ <strong>and</strong> ℓ1, ℓ2 coplanar) <strong>and</strong> ℓ2 = ℓ3, then clearly (ℓ1 ∩ ℓ3 = ∅<br />

<strong>and</strong> ℓ1, ℓ3 coplanar), imply<strong>in</strong>g ℓ1ℓ3.<br />

IV. For the case of (ℓ1 ∩ ℓ2 = ∅ <strong>and</strong> ℓ1, ℓ2 coplanar) <strong>and</strong> (ℓ2 ∩ ℓ3 = ∅ <strong>and</strong><br />

ℓ2, ℓ3 coplanar), we have two subcases.<br />

A. Suppose ℓ1, ℓ2, <strong>and</strong> ℓ3 all reside <strong>in</strong> the same plane. For sake of<br />

contradiction, suppose that ℓ1 ∩ ℓ3 = ∅. If ℓ1 = ℓ3 then we are done<br />

so we may suppose by the def<strong>in</strong>ition of l<strong>in</strong>ear space that ℓ1 ∩ ℓ3 =<br />

{P } for some po<strong>in</strong>t P . Then we contradict the uniqueness of the<br />

l<strong>in</strong>e through P disjo<strong>in</strong>t from ℓ2. Therefore, ℓ1 ∩ ℓ3 = ∅, imply<strong>in</strong>g<br />

that ℓ1ℓ3. Transitivity of disjo<strong>in</strong>tness of l<strong>in</strong>es <strong>in</strong> an aff<strong>in</strong>e plane is<br />

important: we shall call it Property I <strong>and</strong> cite it often.<br />

ℓ2<br />

ℓ1<br />

ℓ3<br />

B. Now suppose ℓ1, ℓ2, <strong>and</strong> ℓ3 are not coplanar. Here we need to prove<br />

a strong result of a certa<strong>in</strong> structure to proceed.<br />

Let π be a plane of L <strong>and</strong> let ℓ be a l<strong>in</strong>e of L that conta<strong>in</strong>s a unique po<strong>in</strong>t<br />

R ∈ π. Let V be the union of the planes that conta<strong>in</strong> both (1) ℓ <strong>and</strong> (2) a<br />

l<strong>in</strong>e of π pass<strong>in</strong>g through R. We will show that V is a subspace of L.<br />

P


30 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

π<br />

V<br />

<br />

R<br />

Note that it is not clear that a plane conta<strong>in</strong><strong>in</strong>g ℓ meets π <strong>in</strong> a l<strong>in</strong>e so we<br />

must proceed with care. First we <strong>in</strong>troduce some notation. For each po<strong>in</strong>t<br />

P ∈ V such that P ∈ ℓ, we denote by ℓ(P ) the po<strong>in</strong>t of <strong>in</strong>tersection of ℓ <strong>and</strong><br />

the parallel m to the l<strong>in</strong>e n = 〈ℓ, P 〉 ∩ π through P , where 〈ℓ, P 〉 denotes<br />

the plane generated by ℓ <strong>and</strong> P . S<strong>in</strong>ce each plane is an aff<strong>in</strong>e plane <strong>in</strong> L,<br />

we know that this l<strong>in</strong>e m exists. Furthermore, m meets ℓ s<strong>in</strong>ce otherwise m<br />

coplanar <strong>and</strong> disjo<strong>in</strong>t to both ℓ <strong>and</strong> n implies by Property I that ℓ ∩ n = ∅, a<br />

contradiction. If Q ∈ ℓ, R = Q = ℓ(P ), then the l<strong>in</strong>e P Q meets n <strong>in</strong> a po<strong>in</strong>t<br />

designated by Q(P ). Clearly Q(P ) = R, else P ∈ ℓ.<br />

π<br />

n<br />

R<br />

ℓ<br />

P ℓ(P )<br />

ℓ<br />

Q<br />

m<br />

Q(P )


1.5. BUEKENHOUT’S CHARACTERIZATION OF AFFINE SPACE 31<br />

To show that V is a subspace, take arbitrary dist<strong>in</strong>ct po<strong>in</strong>ts X <strong>and</strong> Y of<br />

V <strong>and</strong> we will show that XY ⊆ V. We will case on whether or not XY is<br />

coplanar with ℓ.<br />

1. Suppose that X, Y , <strong>and</strong> ℓ are coplanar <strong>in</strong> some plane π ′ . S<strong>in</strong>ce X <strong>and</strong> Y<br />

are <strong>in</strong> V, they have correspond<strong>in</strong>g planes πX <strong>and</strong> πY that conta<strong>in</strong> ℓ <strong>and</strong><br />

meet π <strong>in</strong> a l<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g R. Now s<strong>in</strong>ce X <strong>and</strong> ℓ span a unique plane<br />

πX, πX = π ′ . Similarly, πY = π ′ . Thus every po<strong>in</strong>t of XY is <strong>in</strong> π ′ which<br />

is a plane of V s<strong>in</strong>ce it conta<strong>in</strong>s ℓ <strong>and</strong> a l<strong>in</strong>e of π through R.<br />

2. Now suppose that X, Y , <strong>and</strong> ℓ are not coplanar. S<strong>in</strong>ce each l<strong>in</strong>e has<br />

at least four po<strong>in</strong>ts, ℓ has some po<strong>in</strong>t Q with Q = ℓ(X), Q = ℓ(Y ),<br />

<strong>and</strong> Q = R. Construct the po<strong>in</strong>ts Q(X) <strong>and</strong> Q(Y ) as discussed <strong>in</strong> the<br />

notation above. Now Q(X) = Q(Y ) else ℓ <strong>and</strong> XY would be coplanar.<br />

Furthermore, we have the plane 〈X, Y, Q〉 = 〈Q, Q(X), Q(Y )〉.<br />

Y<br />

π<br />

X<br />

R<br />

ℓ<br />

Q<br />

Q(X)<br />

Q(Y )<br />

Note that XY <strong>and</strong> Q(X)Q(Y ) are coplanar. We case on whether they<br />

meet or not.<br />

a. Suppose XY ∩ Q(X)Q(Y ) = ∅. Take arbitrary po<strong>in</strong>t Z ∈ XY . We will<br />

show that Z ∈ V. Now ZQ is <strong>in</strong> the plane 〈X, Y, Q〉. Thus ZQ either<br />

meets Q(X)Q(Y ) or is the l<strong>in</strong>e through Q disjo<strong>in</strong>t from Q(X)Q(Y ) which<br />

cannot be the case from Property I. Therefore ZQ meets Q(X)Q(Y ) <strong>in</strong> the<br />

po<strong>in</strong>t Q(Z). Now R Q(Z) is a l<strong>in</strong>e <strong>in</strong> π conta<strong>in</strong>ed by the plane 〈ℓ, Q(Z)〉<br />

<strong>and</strong> this plane also conta<strong>in</strong>es Z. Therefore, Z ∈ V.


32 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

Y<br />

π<br />

Z<br />

X<br />

R<br />

ℓ<br />

Q<br />

Q(X)<br />

Q(Y )<br />

Q(Z)<br />

b. Suppose XY is not disjo<strong>in</strong>t to Q(x)Q(Y ) so that they meet <strong>in</strong> a po<strong>in</strong>t<br />

S ∈ π (s<strong>in</strong>ce Q(x)Q(Y ) ⊆ π). S = R s<strong>in</strong>ce otherwise XY <strong>and</strong> ℓ would<br />

be coplanar. Let q be the parallel l<strong>in</strong>e of Q(X)Q(Y ) pass<strong>in</strong>g through Q.<br />

S<strong>in</strong>ce XY <strong>and</strong> Q(X)Q(Y ) meet, so do q <strong>and</strong> XY <strong>in</strong> some po<strong>in</strong>t T . We<br />

will first show that if a po<strong>in</strong>t of XY does not belong to V, it must be the<br />

po<strong>in</strong>t T . Then we will show that T ∈ V.<br />

π<br />

X<br />

Y<br />

T<br />

S<br />

ℓ<br />

R<br />

q<br />

Q<br />

Q(X)<br />

Q(Y )<br />

Consider Z ∈ XY such that Z = T . Then ZQ <strong>in</strong>tersects Q(X)Q(Y ) <strong>in</strong><br />

some po<strong>in</strong>t Q(Z). As Q, Q(Z), <strong>and</strong> ℓ are coplanar <strong>in</strong> a plane conta<strong>in</strong><strong>in</strong>g


1.5. BUEKENHOUT’S CHARACTERIZATION OF AFFINE SPACE 33<br />

the l<strong>in</strong>e R Q(Z) ⊆ π, we have Z ∈ V. Now the difficult work consists of<br />

show<strong>in</strong>g that T ∈ V . We case on two configurations: whether ℓ(X) equals<br />

ℓ(Y ) or not.<br />

i. Suppose that ℓ(X) = ℓ(Y ). First we will show that for any Z ∈ XY<br />

such that Z ∈ V <strong>and</strong> Z = S, that ℓ(Z) = ℓ(X) = ℓ(Y ). For sake of<br />

contradiction, suppose ℓ(Z) = ℓ(X). Consider the l<strong>in</strong>e ℓ(X) Z. S<strong>in</strong>ce<br />

Z ∈ V, there is some plane πZ conta<strong>in</strong><strong>in</strong>g Z, ℓ, <strong>and</strong> a l<strong>in</strong>e b of π. Note<br />

that both ℓ(X) Z <strong>and</strong> ℓ(Z) Z are l<strong>in</strong>es of πZ. By def<strong>in</strong>ition of ℓ(Z),<br />

ℓ(Z) Z is the unique l<strong>in</strong>e <strong>in</strong> πZ parallel to b so that ℓ(X) Z must meet b<br />

(<strong>and</strong> hence π) <strong>in</strong> some po<strong>in</strong>t Z ′ .<br />

π<br />

Z ′<br />

X<br />

b<br />

Y<br />

Z<br />

S<br />

ℓ<br />

ℓ(X) = ℓ(Y )<br />

ℓ(Z)<br />

R<br />

Q(Y )<br />

Q(X)<br />

Note Z ′ = S else XY <strong>and</strong> ℓ coplanar. Now exam<strong>in</strong>e the plane 〈ℓ(X), Z, S〉<br />

<strong>and</strong> see that it must conta<strong>in</strong> a l<strong>in</strong>e of π, namely SZ ′ because both S <strong>and</strong><br />

Z ′ are <strong>in</strong> this plane <strong>and</strong> both on π. Now the plane 〈ℓ(X), Z, S〉 also<br />

conta<strong>in</strong>s X <strong>and</strong> Y s<strong>in</strong>ce they are on the l<strong>in</strong>e ZS. Thus at least one of<br />

X ℓ(X), Y ℓ(X) must meet the l<strong>in</strong>e SZ ′ , <strong>in</strong> particular <strong>in</strong> a po<strong>in</strong>t of π.


34 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

(Now here we will assume that not both X <strong>and</strong> Y lie <strong>in</strong> π; if they did,<br />

then XY is trivially with<strong>in</strong> V. Therefore, s<strong>in</strong>ce ℓ(X) = ℓ(Y ), neither<br />

of X, Y lie <strong>in</strong> π.) Suppose the l<strong>in</strong>e that meets SZ ′ is X ℓ(X). But this<br />

contradicts the def<strong>in</strong>ition of ℓ(X) s<strong>in</strong>ce this l<strong>in</strong>e is parallel to the l<strong>in</strong>e<br />

of the plane of V with<strong>in</strong> π <strong>and</strong> X does not lie <strong>in</strong> π. Similarily, Y ℓ(X)<br />

does not meet SZ ′ . So we have shown that ℓ(X) = ℓ(Y ) = ℓ(Z) for<br />

Z ∈ V ∩ XY whenever ℓ(X) = ℓ(Y ) <strong>and</strong> Z = S.<br />

We now exam<strong>in</strong>e the plane 〈X, Y, ℓ(X)〉 <strong>and</strong> note that if it conta<strong>in</strong>ed<br />

two po<strong>in</strong>ts of π, then it would conta<strong>in</strong> a l<strong>in</strong>e of π; <strong>and</strong> one of the l<strong>in</strong>es<br />

X ℓ(X), Y ℓ(X) would aga<strong>in</strong> have to meet this l<strong>in</strong>e of π, a contradiction<br />

as before. So we conclude that the plane 〈X, Y, ℓ(X)〉 conta<strong>in</strong>s the s<strong>in</strong>gle<br />

po<strong>in</strong>t S of π, which is where the l<strong>in</strong>e XY meets π.<br />

Let X ′ ∈ X ℓ(X) with X ′ = X <strong>and</strong> X ′ = ℓ(X). We wish to show that<br />

X ′ Y ⊆ V. Suppose not, then X ′ Y is not coplanar to ℓ. Also, we have<br />

that X ′ Y meets π <strong>in</strong> a po<strong>in</strong>t S ′ of Q(X ′ )Q(Y ). Also, it must be that<br />

S ′ = S s<strong>in</strong>ce 〈X, Y, ℓ(X)〉 ∩ π = {S} <strong>and</strong> the preced<strong>in</strong>g paragraph. But<br />

this implies X = X ′ , an impossibility. Therefore X ′ Y ⊆ V.<br />

π<br />

X<br />

X ′<br />

Y<br />

ℓ<br />

ℓ(X) = ℓ(Y )<br />

R<br />

S<br />

S ′ ∈ π<br />

Q(Y )<br />

Q(X)<br />

There are at least two dist<strong>in</strong>ct po<strong>in</strong>ts X ′ , X ′′ of X ℓ(X) different from X<br />

<strong>and</strong> ℓ(X). Thus both X ′ Y <strong>and</strong> X ′′ Y are conta<strong>in</strong>ed <strong>in</strong> V ∩ 〈X, Y, ℓ(X)〉<br />

<strong>and</strong> neither l<strong>in</strong>e conta<strong>in</strong>s ℓ(X). If W is a po<strong>in</strong>t on one of these l<strong>in</strong>es (so


1.5. BUEKENHOUT’S CHARACTERIZATION OF AFFINE SPACE 35<br />

W ∈ V), then ℓ(X) W is conta<strong>in</strong>ed <strong>in</strong> V, this be<strong>in</strong>g the unique plane of<br />

V correspond<strong>in</strong>g to W .<br />

Each l<strong>in</strong>e of the plane 〈X, Y, ℓ(X)〉 pass<strong>in</strong>g through ℓ(X) meets one of<br />

the l<strong>in</strong>es X ′ Y , X ′′ Y (by Property I) <strong>in</strong> a po<strong>in</strong>t W . S<strong>in</strong>ce W is <strong>in</strong> V,<br />

this l<strong>in</strong>e through ℓ conta<strong>in</strong><strong>in</strong>g W is also <strong>in</strong> V, ly<strong>in</strong>g <strong>in</strong> W ′ s plane of V.<br />

Recall that the only po<strong>in</strong>t of XY possibly not <strong>in</strong> V is T . Consider the<br />

l<strong>in</strong>e T ℓ(X) ⊂ 〈X, Y, ℓ(X)〉. T is on one of these l<strong>in</strong>es through ℓ meet<strong>in</strong>g<br />

X ′ Y or X ′′ Y . Thus T ∈ V <strong>and</strong> we are done with this case.<br />

ii. Suppose that ℓ(X) = ℓ(Y ). We will first show that for each po<strong>in</strong>t Q ′<br />

of ℓ such that Q ′ = R, there is some po<strong>in</strong>t Z ′ ∈ XY such that Z ′ ∈ V,<br />

ℓ(Z ′ ) = Q ′ , <strong>and</strong> Z ′ = S. XY has at least four po<strong>in</strong>ts. We now argue that<br />

at most three of these po<strong>in</strong>ts will not be satisfactory for the selection of<br />

Q ′ . First, the only po<strong>in</strong>t of XY that might not be <strong>in</strong> V, is T . Second,<br />

we may not use S. Third, given the choice of the rema<strong>in</strong><strong>in</strong>g two po<strong>in</strong>ts<br />

(there may be more) on XY , at most one of them, call it X ′ , <strong>in</strong> this case<br />

may have the property that ℓ(X ′ ) = Q.<br />

Then Q(Z ′ ) is def<strong>in</strong>ed <strong>in</strong> π where Z ′ ∈ XY , Z ′ ∈ V, ℓ(Z ′ ) = Q <strong>and</strong><br />

Z ′ = S. Note from the argument <strong>in</strong> the previous paragraph that it is<br />

entirely possible for Z ′ to be either X or Y . Consider the l<strong>in</strong>e c = S Q(Z ′ )<br />

which is the <strong>in</strong>tersection of π <strong>and</strong> 〈Q, X, Y 〉, i.e., c = Q(X)Q(Y ). In<br />

〈Q, X, Y 〉, by Property I, the parallel to XY pass<strong>in</strong>g through Q meets c<br />

<strong>in</strong> a po<strong>in</strong>t Q ′ .


36 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

S<br />

c<br />

Z ′<br />

Y<br />

X<br />

Q ′<br />

ℓ<br />

R<br />

ℓ(X)<br />

ℓ(Y )<br />

Q<br />

Q(X)<br />

Q(Z ′ )<br />

Q(Y )<br />

Consider any l<strong>in</strong>e d of π pass<strong>in</strong>g through R. There are three possibilities<br />

for d: (1) d meets c <strong>in</strong> a po<strong>in</strong>t other than Q ′ , (2) d meets c <strong>in</strong> Q ′ , or (3)<br />

d is disjo<strong>in</strong>t to c. We are <strong>in</strong>terested <strong>in</strong> the planes 〈d, ℓ〉. We will study<br />

these planes to see if they meet XY . In particular, if any one conta<strong>in</strong>s<br />

T (imply<strong>in</strong>g T ∈ V), then we have XY ∈ V.<br />

(1) Suppose d meets c <strong>in</strong> a po<strong>in</strong>t dist<strong>in</strong>ct from Q ′ . Note that the l<strong>in</strong>es<br />

(d ∩ c) Q <strong>and</strong> XY lie <strong>in</strong> the plane 〈X, Y, Q〉 so that they meet <strong>in</strong> a unique<br />

po<strong>in</strong>t of XY (us<strong>in</strong>g Property I <strong>and</strong> the fact that Q ′ is where the parallel<br />

to XY meets c). Thus the plane 〈ℓ, d〉 conta<strong>in</strong>s a unique po<strong>in</strong>t of XY ,<br />

namely (d ∩ c) Q ∩ XY . Therefore this type of plane always meets XY .<br />

π


1.5. BUEKENHOUT’S CHARACTERIZATION OF AFFINE SPACE 37<br />

〈ℓ, d〉 ∩ XY<br />

S<br />

Y<br />

c<br />

Z ′<br />

X<br />

Q ′<br />

ℓ<br />

R<br />

Q(X)<br />

Q(Y )<br />

Q(Z ′ d ∩ c<br />

)<br />

d<br />

(2) Denote by α(Q) the plane 〈d, ℓ〉 where d meets c <strong>in</strong> the po<strong>in</strong>t Q ′ . Note<br />

that this plane <strong>and</strong> 〈Q, XY 〉 are dist<strong>in</strong>ct planes (otherwise ℓ <strong>and</strong> XY<br />

coplanar) whose <strong>in</strong>tersection is the l<strong>in</strong>e QQ ′ . A po<strong>in</strong>t <strong>in</strong> common to the<br />

plane 〈d, ℓ〉 <strong>and</strong> to XY must belong to the l<strong>in</strong>e QQ ′ which is disjo<strong>in</strong>t to<br />

XY . Thus the plane α(Q) does not meet XY .<br />

π


38 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

S<br />

Y<br />

c<br />

Z ′<br />

d<br />

X<br />

Q ′<br />

ℓ<br />

R<br />

Q(X)<br />

Q(Z ′ )<br />

Q(Y )<br />

(3) Denote by β(Q) the plane 〈ℓ, d〉 where d ∩ c = ∅. If β(Q) has a po<strong>in</strong>t<br />

W on XY , then we are go<strong>in</strong>g to show that W is necessarily the po<strong>in</strong>t T ;<br />

then XY ⊆ V. For, if W is not on the l<strong>in</strong>e disjo<strong>in</strong>t to c pass<strong>in</strong>g through<br />

Q <strong>in</strong> plane 〈X, Y, Q〉, then the l<strong>in</strong>e QW meets c <strong>in</strong> a po<strong>in</strong>t J. This po<strong>in</strong>t<br />

J is common to β(Q) so J ∈ β(Q) ∩ π imply<strong>in</strong>g J ∈ d. But <strong>in</strong> this case,<br />

d <strong>and</strong> c are disjo<strong>in</strong>t so we have a contradiction. Therefore, if β(Q) has<br />

a po<strong>in</strong>t W on XY , then it is necessarily the po<strong>in</strong>t T . If this is the case,<br />

then we have shown a construction for T putt<strong>in</strong>g it <strong>in</strong> V.<br />

Q<br />

π


1.5. BUEKENHOUT’S CHARACTERIZATION OF AFFINE SPACE 39<br />

Y<br />

Z ′<br />

d<br />

X<br />

Q(X)<br />

Q(Z ′ )<br />

Q(Y )<br />

c<br />

S π<br />

We now have the tools to show that XY ∈ V. For suppose XY is not<br />

conta<strong>in</strong>ed <strong>in</strong> V. Then our po<strong>in</strong>t T is not <strong>in</strong> mV . Then we do not have a<br />

plane of type β(Q) meet<strong>in</strong>g XY . We now establish a contradiction. Let Q1,<br />

Q2, <strong>and</strong> Q3 be three dist<strong>in</strong>ct po<strong>in</strong>ts of ℓ \ {R}. We know that the planes<br />

α(Qi), i = 1, 2, 3 are disjo<strong>in</strong>t from XY <strong>and</strong> we must assume that the planes<br />

β(Qi), i = 1, 2, 3 are also disjo<strong>in</strong>t from XY (else T <strong>in</strong> V). S<strong>in</strong>ce we are<br />

assum<strong>in</strong>g that the α <strong>and</strong> β planes of Q1 <strong>and</strong> Q2 do not meet XY , it must<br />

be that these planes equal each other <strong>in</strong> one of the follow<strong>in</strong>g two fashions.<br />

(Recall that all other planes of Q1 <strong>and</strong> Q2 meet XY as described <strong>in</strong> Case (1)<br />

above.)<br />

(1) α(Q1) = α(Q2) <strong>and</strong> β(Q1) = β(Q2). Note that by Property I, β(Q1) =<br />

β(Q2) implies Q1(X)Q1(Y ) <strong>and</strong> Q2(X)Q2(Y ) are parallel <strong>in</strong> π. S<strong>in</strong>ce<br />

both Q1(X)Q1(Y ) <strong>and</strong> Q2(X)Q2(Y ) meet π <strong>in</strong> the po<strong>in</strong>t S, they must<br />

be the same l<strong>in</strong>e. A couple of contradictions are immediate: (1) D <strong>and</strong><br />

A would then be coplanar, or (2) Q1 would have to equal Q2.<br />

Q ′<br />

ℓ<br />

R<br />

Q


40 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

Q ′ 2<br />

Q ′ 1<br />

X<br />

Y<br />

ℓ<br />

α(Q1) = α(Q2)<br />

β(Q1) = β(Q2)<br />

Q1(X)Q1(Y )<br />

Q2(X)Q2(Y )<br />

(2) α(Q1) = β(Q2) <strong>and</strong> β(Q1) = α(Q2). Consider po<strong>in</strong>t Q3. By the previous<br />

case we have α(Q3) = β(Q1) <strong>and</strong> α(Q3) = β(Q2), imply<strong>in</strong>g β(Q1) =<br />

β(Q2), a contradiction.<br />

Therefore, some plane β(Qi), i = 1, 2, 3, meets XY . So the po<strong>in</strong>t T on<br />

XY is constructed <strong>and</strong> an element of V. F<strong>in</strong>ally, we see that V as constructed<br />

above must be a subspace of L.<br />

Recall that we have one last case to show concern<strong>in</strong>g the transitivity of .<br />

We are assum<strong>in</strong>g that ℓ1, ℓ2 coplanar, ℓ2, ℓ3 coplanar, not all three coplanar,<br />

ℓ1 ∩ ℓ2 = ∅, <strong>and</strong> ℓ2 ∩ ℓ3 = ∅. We need to show that ℓ1 ∩ ℓ3 = ∅ <strong>and</strong> ℓ1, ℓ3<br />

coplanar.<br />

π


1.5. BUEKENHOUT’S CHARACTERIZATION OF AFFINE SPACE 41<br />

A<br />

ℓ1<br />

ℓ2 = ℓ<br />

C<br />

P<br />

B<br />

ℓ3<br />

π = 〈A, B, C〉<br />

For sake of contradiction, suppose that ℓ1 <strong>and</strong> ℓ3 meet <strong>in</strong> some po<strong>in</strong>t P .<br />

Choose po<strong>in</strong>ts A ∈ ℓ1, C ∈ ℓ2, <strong>and</strong> B ∈ ℓ3 such that A = P , B = P , <strong>and</strong><br />

C = P . To form our subspace V, let π = 〈A, B, C〉, ℓ = ℓ2, <strong>and</strong> note that C<br />

is the po<strong>in</strong>t where ℓ meets π. Now 〈A, C, P 〉 is a plane conta<strong>in</strong><strong>in</strong>g the l<strong>in</strong>e<br />

AC of π, the po<strong>in</strong>t C of π, <strong>and</strong> the l<strong>in</strong>e ℓ. Therefore we know P ∈ V. But<br />

P is <strong>in</strong> precisely one plane of V conta<strong>in</strong><strong>in</strong>g ℓ, the po<strong>in</strong>t C, <strong>and</strong> a l<strong>in</strong>e of π<br />

through C. Therefore s<strong>in</strong>ce P is also <strong>in</strong> the plane 〈B, C, P 〉 which meets this<br />

criterian, the planes 〈A, C, P 〉 <strong>and</strong> 〈B, C, P 〉 must be equal, a contradiction of<br />

the hypothesis that not all three of ℓ1, ℓ2, ℓ3 are <strong>in</strong> the same plane. Therefore<br />

ℓ1 <strong>and</strong> ℓ3 are disjo<strong>in</strong>t.<br />

Now we will show that ℓ1, ℓ3 coplanar. Suppose that they are not. Choose<br />

a po<strong>in</strong>t R of ℓ3. S<strong>in</strong>ce ℓ1 ∩ ℓ3 = ∅, we can let π be the plane 〈ℓ1, R〉. For this<br />

configuration we know that V is a subspace. Now ℓ2 is coplanar to ℓ <strong>and</strong> is <strong>in</strong><br />

the plane 〈ℓ2, ℓ〉 of V. In particular, there is a l<strong>in</strong>e g of π where 〈ℓ2, ℓ〉 meets<br />

π. By Property I, some po<strong>in</strong>t of ℓ2, call it X, must lie on this l<strong>in</strong>e g; else g<br />

is disjo<strong>in</strong>t to ℓ2 <strong>in</strong> 〈ℓ1, ℓ〉 <strong>and</strong> hence disjo<strong>in</strong>t to ℓ, contradict<strong>in</strong>g the fact that<br />

g conta<strong>in</strong>s R.


42 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

g<br />

ℓ2<br />

ℓ3 = ℓ<br />

X π<br />

Note that the plane π conta<strong>in</strong>s ℓ1 as well as the po<strong>in</strong>t X of ℓ2. We conclude<br />

that ℓ2 must reside <strong>in</strong> π, else ℓ1, ℓ2 are not coplanar (ℓ1 <strong>and</strong> any po<strong>in</strong>t of ℓ2<br />

will generate the plane that they share s<strong>in</strong>ce they are disjo<strong>in</strong>t <strong>in</strong> this plane).<br />

Therefore π is 〈ℓ2, ℓ〉, conta<strong>in</strong><strong>in</strong>g all three of ℓ1, ℓ2, ℓ3. This contradicts the<br />

hypothesis that ℓ1 <strong>and</strong> ℓ3 are not coplanar f<strong>in</strong>ish<strong>in</strong>g this argument. (Although<br />

this seems like a direct proof, it is not. It is not necessary that all three of<br />

ℓ1, ℓ2, ℓ3 lie <strong>in</strong> the same plane.)<br />

We have shown that is an equivalence relation on the l<strong>in</strong>es of L. Now<br />

show that the axioms of an aff<strong>in</strong>e space are satisfied.<br />

A1. By the def<strong>in</strong>ition of a l<strong>in</strong>ear space we have that each pair P, Q of dist<strong>in</strong>ct<br />

po<strong>in</strong>ts of L is conta<strong>in</strong>ed <strong>in</strong> a unique l<strong>in</strong>e P Q.<br />

A2. By our def<strong>in</strong>ition of the equivalence relation on the l<strong>in</strong>es of V, only<br />

l<strong>in</strong>es <strong>in</strong> the same plane may be equivalent. In the plane conta<strong>in</strong><strong>in</strong>g ℓ <strong>and</strong><br />

P , by the def<strong>in</strong>ition of aff<strong>in</strong>e plane, there is exactly one l<strong>in</strong>e ℓ ′ through P<br />

that is disjo<strong>in</strong>t from ℓ. Thus, apply<strong>in</strong>g the def<strong>in</strong>it<strong>in</strong> of , there is exactly<br />

one l<strong>in</strong>e ℓ ′ through P such that ℓ ′ ℓ.<br />

A3. (Trapezoid axiom) Let P Q <strong>and</strong> RS be dist<strong>in</strong>ct parallel l<strong>in</strong>es <strong>and</strong> let T be<br />

a po<strong>in</strong>t of P R \ {P, R}. By the def<strong>in</strong>ition of , P Q <strong>and</strong> RS are coplanar<br />

<strong>and</strong> disjo<strong>in</strong>t. S<strong>in</strong>ce T S meets RS, it cannot be the parallel l<strong>in</strong>e of P Q<br />

through T by Property I. Hence T S meets P Q.<br />

A4. (Parallelogram axiom) S<strong>in</strong>ce each of our l<strong>in</strong>es has more than two po<strong>in</strong>ts,<br />

the parallelogram axiom is satisfied vacuously.<br />

R<br />

ℓ1


1.6. EMBEDDING AFFINE SPACE IN PROJECTIVE SPACE 43<br />

A5. By our def<strong>in</strong>ition of a l<strong>in</strong>ear space, we know that each l<strong>in</strong>e conta<strong>in</strong>s at<br />

least two po<strong>in</strong>ts.<br />

A6. (Space axiom) If L has only one plane, then the theorem is trivial. So<br />

suppose that L has a plane π <strong>and</strong> at least one po<strong>in</strong>t P not on π. Take<br />

two po<strong>in</strong>ts Q, R of π <strong>and</strong> we have another plane 〈P, Q, R〉. Take another<br />

po<strong>in</strong>t S of π that is not on QR. Inspection shows that P Q RS s<strong>in</strong>ce<br />

they are not coplanar (〈P, Q, S〉 = 〈P, Q, R〉).<br />

π<br />

P<br />

Q S R<br />

For ease of application we state Buekenhout’s result <strong>in</strong> terms of the most<br />

basic notions.<br />

Theorem 1.5.2. Let L = (P, B) be a l<strong>in</strong>ear space with po<strong>in</strong>t-set P <strong>and</strong><br />

l<strong>in</strong>e-set B. This means that each pair of dist<strong>in</strong>ct po<strong>in</strong>ts belongs to a unique<br />

l<strong>in</strong>e, <strong>and</strong> we suppose that each l<strong>in</strong>e has at least 4 po<strong>in</strong>ts <strong>and</strong> that there are at<br />

least 3 noncoll<strong>in</strong>ear po<strong>in</strong>ts. For each three po<strong>in</strong>ts P, Q, R not on a l<strong>in</strong>e, the<br />

subspace π = 〈P, Q, R〉, which is the <strong>in</strong>tersection of all subspaces conta<strong>in</strong><strong>in</strong>g<br />

{P, Q, R}, must be an aff<strong>in</strong>e plane. This means that if S is any po<strong>in</strong>t of π<br />

<strong>and</strong> m is any l<strong>in</strong>e of π with S ∈ m, there is a unique l<strong>in</strong>e ℓ of π through S<br />

which is disjo<strong>in</strong>t from m. Then L is an aff<strong>in</strong>e space.<br />

P Q<br />

1.6 Embedd<strong>in</strong>g Aff<strong>in</strong>e Space <strong>in</strong> Projective Space<br />

We start with a given aff<strong>in</strong>e space (possibly an aff<strong>in</strong>e plane) <strong>and</strong> adjo<strong>in</strong> certa<strong>in</strong><br />

additional po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es to the po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of our given aff<strong>in</strong>e<br />

RS


44 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

geometry <strong>and</strong> then show that the enlarged system of po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es is a<br />

projective geometry. We shall speak of the po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of the orig<strong>in</strong>al<br />

aff<strong>in</strong>e geometry as “f<strong>in</strong>ite” po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es <strong>and</strong> the new po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es as<br />

“<strong>in</strong>f<strong>in</strong>ite” po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es.<br />

Def<strong>in</strong>ition 1.6.1. For each parallel class of l<strong>in</strong>es, an <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t is adjo<strong>in</strong>ed<br />

to each of these l<strong>in</strong>es <strong>and</strong> to no other f<strong>in</strong>ite l<strong>in</strong>es.<br />

Def<strong>in</strong>ition 1.6.2. If π is an aff<strong>in</strong>e plane, the set of <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>ts adjo<strong>in</strong>ed<br />

to the l<strong>in</strong>es of π is an <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e.<br />

Hav<strong>in</strong>g adjo<strong>in</strong>ed <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>ts to our geometry <strong>and</strong> def<strong>in</strong>ed l<strong>in</strong>es <strong>in</strong> the<br />

enlarged geometry, we must now show that the axioms P1, P2 <strong>and</strong> P3 hold<br />

<strong>in</strong> this enlarged geometry.<br />

S<strong>in</strong>ce a f<strong>in</strong>ite l<strong>in</strong>e conta<strong>in</strong>s at least two dist<strong>in</strong>ct f<strong>in</strong>ite po<strong>in</strong>ts, <strong>and</strong> an<br />

<strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t has been added to it, <strong>in</strong> the enlarged geometry each f<strong>in</strong>ite l<strong>in</strong>e<br />

conta<strong>in</strong>s at least 3 po<strong>in</strong>ts. In a plane π(P, m), if R <strong>and</strong> S are two f<strong>in</strong>ite po<strong>in</strong>ts<br />

on m, then through P there are at least the three dist<strong>in</strong>ct l<strong>in</strong>es P R, P S <strong>and</strong><br />

the parallel to m. Hence there are at least three different <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>ts on<br />

the <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e l<strong>in</strong>e of <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>ts adjo<strong>in</strong>ed to l<strong>in</strong>es of π. Thus axiom P3<br />

holds <strong>in</strong> the enlarged geometry.<br />

If two dist<strong>in</strong>ct po<strong>in</strong>ts P <strong>and</strong> Q are both f<strong>in</strong>ite, then there is one <strong>and</strong> only<br />

one f<strong>in</strong>ite l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g them, <strong>and</strong> no <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e conta<strong>in</strong>s any f<strong>in</strong>ite po<strong>in</strong>t.<br />

Thus, <strong>in</strong> the enlarged geometry, P <strong>and</strong> Q are conta<strong>in</strong>ed <strong>in</strong> one <strong>and</strong> only one<br />

l<strong>in</strong>e. If one of the po<strong>in</strong>ts P is f<strong>in</strong>ite <strong>and</strong> the other Q is <strong>in</strong>f<strong>in</strong>ite, let m be a<br />

f<strong>in</strong>ite l<strong>in</strong>e to which Q has been adjo<strong>in</strong>ed. By axiom A1, if P is on m, then<br />

P Q is m, <strong>and</strong> if P is not on m, then P Q is the unique parallel to m through<br />

P . Thus aga<strong>in</strong> there is one <strong>and</strong> only one l<strong>in</strong>e through P <strong>and</strong> Q. We shall<br />

speak somewhat loosely of <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>ts as determ<strong>in</strong><strong>in</strong>g “directions” so that<br />

here we might speak of the l<strong>in</strong>e through P <strong>in</strong> the direction Q. It rema<strong>in</strong>s to<br />

show that axiom P1 holds if both P <strong>and</strong> Q are <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>ts. This is not<br />

trivial <strong>and</strong> we use for the first time the transitive property of the parallelism<br />

relation.<br />

Lemma 1.6.3. Let π1 <strong>and</strong> π2 be two f<strong>in</strong>ite planes whose ideal l<strong>in</strong>es both<br />

conta<strong>in</strong> two dist<strong>in</strong>ct ideal po<strong>in</strong>ts X <strong>and</strong> Y . Then the ideal l<strong>in</strong>es of π1 <strong>and</strong> π2<br />

are identical.<br />

Proof. First note that if π1 <strong>and</strong> π2 have a f<strong>in</strong>ite po<strong>in</strong>t R <strong>in</strong> common, then π1<br />

<strong>and</strong> π2 are identical. For the l<strong>in</strong>es RS <strong>and</strong> RY are <strong>in</strong>tersect<strong>in</strong>g f<strong>in</strong>ite l<strong>in</strong>es


1.6. EMBEDDING AFFINE SPACE IN PROJECTIVE SPACE 45<br />

common to π1 <strong>and</strong> π2 from which it follows that π1 <strong>and</strong> π2 are identical,<br />

forc<strong>in</strong>g their <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>es also to be identical. Hence we may assume that π1<br />

<strong>and</strong> π2 have no f<strong>in</strong>ite po<strong>in</strong>t <strong>in</strong> common.<br />

Let Z be any <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t different from X <strong>and</strong> Y on the ideal l<strong>in</strong>e of<br />

π1. Let Q be any f<strong>in</strong>ite po<strong>in</strong>t of π1. By assumption, some l<strong>in</strong>e of π1 conta<strong>in</strong>s<br />

the <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t X, so this l<strong>in</strong>e or its unique parallel through Q is a l<strong>in</strong>e<br />

of π1, which we shall designate as m. Similarly, QY is a l<strong>in</strong>e t of π1. If P<br />

is a f<strong>in</strong>ite po<strong>in</strong>t of t different from Q, the l<strong>in</strong>e P Z is a l<strong>in</strong>e of π1 different<br />

from t <strong>and</strong> not parallel to m, so that P Z must <strong>in</strong>tersect m <strong>in</strong> a f<strong>in</strong>ite po<strong>in</strong>t<br />

S different from Q. Let R be any f<strong>in</strong>ite po<strong>in</strong>t of π2, <strong>and</strong> let RX be the l<strong>in</strong>e<br />

h of π2 <strong>and</strong> RY the l<strong>in</strong>e k of π2. Now Q <strong>and</strong> R are dist<strong>in</strong>ct po<strong>in</strong>ts, s<strong>in</strong>ce we<br />

are assum<strong>in</strong>g that π1 <strong>and</strong> π2 have no f<strong>in</strong>ite po<strong>in</strong>t <strong>in</strong> common. The l<strong>in</strong>es k<br />

<strong>and</strong> t are parallel, so by Lemma 1.2.2 the parallel to QR through P meets k<br />

<strong>in</strong> a f<strong>in</strong>ite po<strong>in</strong>t M. Similarly, s<strong>in</strong>ce m <strong>and</strong> h are parallel, the parallel to QR<br />

through S meets h <strong>in</strong> a f<strong>in</strong>ite po<strong>in</strong>t T . S<strong>in</strong>ce P M <strong>and</strong> ST are both parallel to<br />

QR, it follows that P M <strong>and</strong> ST are parallel to each other. Hence P M <strong>and</strong><br />

ST lie <strong>in</strong> a unique plane π3. By Theorem 1.4.7 the l<strong>in</strong>e P S <strong>and</strong> MT either<br />

<strong>in</strong>tersect <strong>in</strong> a f<strong>in</strong>ite po<strong>in</strong>t W or they are parallel. But if they <strong>in</strong>tersect <strong>in</strong> a<br />

f<strong>in</strong>ite po<strong>in</strong>t W , this is a f<strong>in</strong>ite po<strong>in</strong>t common to π1 <strong>and</strong> π2, contrary to oour<br />

assumption. Hence P S <strong>and</strong> MT are parallel, imply<strong>in</strong>g that MT conta<strong>in</strong>s the<br />

ideal po<strong>in</strong>t Z of P S. This means that Z is also a po<strong>in</strong>t of the <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e<br />

of π2. Thus every <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t of π1 is an <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t of π2. In the same<br />

way, each <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t of π2 is an <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t of π1.<br />

Note that Lemma 1.6.3 completes a proof that axiom P1 holds <strong>in</strong> the<br />

enlarged geometry.<br />

Now we beg<strong>in</strong> to show that Axiom P2 holds <strong>in</strong> the enlarged geometry. So<br />

let A, B, C be dist<strong>in</strong>ct po<strong>in</strong>ts<br />

not on a l<strong>in</strong>e. Let D = A be a po<strong>in</strong>t of AB <strong>and</strong> E = A a po<strong>in</strong>t of<br />

AC. We must show that there is a po<strong>in</strong>t F common to DE <strong>and</strong> BC. The<br />

proof must be divided <strong>in</strong>to a number of cases that depend on which of the<br />

given po<strong>in</strong>ts are f<strong>in</strong>ite <strong>and</strong> which are <strong>in</strong>f<strong>in</strong>ite. First note that if D = B<br />

or E = C, then the conclusion is trivial. So assume D = B <strong>and</strong> E = C.<br />

Also we may <strong>in</strong>terchange D <strong>and</strong> E <strong>and</strong> simultaneously <strong>in</strong>terchange B <strong>and</strong><br />

C without affect<strong>in</strong>g the axiom. Similarly, we may <strong>in</strong>terchange B <strong>and</strong> D <strong>and</strong><br />

simultaneously <strong>in</strong>terchange E <strong>and</strong> C.<br />

Case 1 All of A, B, C, D, E are f<strong>in</strong>ite.


46 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

This first part of Lemma 1.2.5 gives the existence of F , either as a f<strong>in</strong>ite<br />

po<strong>in</strong>t or as the <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t on the parallel l<strong>in</strong>es BC <strong>and</strong> DE.<br />

Case 2 A is <strong>in</strong>f<strong>in</strong>ite; B, C, D, are f<strong>in</strong>ite.<br />

The second part of Lemma 1.2.5 gives the existence of F either as a f<strong>in</strong>ite<br />

po<strong>in</strong>t, or as the <strong>in</strong>f<strong>in</strong>ite pont on the parallel l<strong>in</strong>es BC <strong>and</strong> DE.<br />

Case 3 A is f<strong>in</strong>ite <strong>and</strong> exactly one of B, C, D, E is <strong>in</strong>f<strong>in</strong>ite, which we may<br />

take to be E.<br />

We are go<strong>in</strong>g to relabel the po<strong>in</strong>ts of this set <strong>and</strong> <strong>in</strong>terpret the desired<br />

result as a consequence of Axiom A3. Relabel po<strong>in</strong>ts as:<br />

A ↦→ A ′<br />

B ↦→ P ′<br />

C ↦→ B ′<br />

D ↦→ C ′<br />

F<strong>in</strong>ally, let D ′ be any f<strong>in</strong>ite po<strong>in</strong>t of DE different from D. So C ′ D ′ is<br />

parallel to C ′ D ′ . Also P ′ is on A ′ C ′ but different from A ′ or C ′ . So by Axiom<br />

A3, P ′ B ′ must meet C ′ D ′ <strong>in</strong> a (f<strong>in</strong>ite) po<strong>in</strong>t F ′ = F . This says BC meets<br />

DE, as desired.<br />

Case 4 A is f<strong>in</strong>ite <strong>and</strong> exactly two of B, C, D, E are <strong>in</strong>f<strong>in</strong>ite. If D <strong>and</strong> E<br />

are <strong>in</strong>f<strong>in</strong>ite, then DE is the <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e of the plane ABC <strong>and</strong> the conclusion<br />

is merely that the <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t of the f<strong>in</strong>ite l<strong>in</strong>e BC lies on the <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e<br />

of the plane. The reason is the same if B <strong>and</strong> C are <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>ts. S<strong>in</strong>ce a<br />

lione conta<strong>in</strong><strong>in</strong>g two dist<strong>in</strong>ct <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>ts cannot conta<strong>in</strong> any f<strong>in</strong>ite po<strong>in</strong>ts,<br />

we cannot have A f<strong>in</strong>ite <strong>and</strong> both B <strong>and</strong> D <strong>in</strong>f<strong>in</strong>ite (or alternatively, both<br />

C <strong>and</strong> E <strong>in</strong>f<strong>in</strong>ite. But we can have A f<strong>in</strong>ite <strong>and</strong> opposite vertices of the<br />

quadrilateral B, C, D, E <strong>in</strong>f<strong>in</strong>ite, <strong>and</strong> we shall take these to be C <strong>and</strong> D.<br />

Let k be the f<strong>in</strong>ite l<strong>in</strong>e BC, i.e., k is the l<strong>in</strong>e through B parallel to AE.<br />

Let ℓ be the f<strong>in</strong>ite l<strong>in</strong>e DE, i.e., ℓ is the l<strong>in</strong>e through E parallel to AB. Then<br />

k meets ℓ <strong>in</strong> a f<strong>in</strong>ite po<strong>in</strong>t F by Lemma 1.2.2, i.e., BC meets DE as desired.<br />

Case 5 B <strong>and</strong> D are f<strong>in</strong>ite; A. C <strong>and</strong> E are <strong>in</strong>f<strong>in</strong>ite. Here A is the <strong>in</strong>f<strong>in</strong>ite<br />

po<strong>in</strong>t on the f<strong>in</strong>ite l<strong>in</strong>e BD. If P = B is a f<strong>in</strong>ite po<strong>in</strong>t on the l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g<br />

B to the <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t C, then the l<strong>in</strong>e BD <strong>and</strong> the po<strong>in</strong>t P determ<strong>in</strong>e a<br />

plane π whose <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e conta<strong>in</strong>s both A <strong>and</strong> C <strong>and</strong> hence by Lemma 1.6.3


1.6. EMBEDDING AFFINE SPACE IN PROJECTIVE SPACE 47<br />

also the <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t E. The l<strong>in</strong>es BC <strong>and</strong> DE are f<strong>in</strong>ite l<strong>in</strong>es of π, but<br />

conta<strong>in</strong><strong>in</strong>g the different <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>ts C <strong>and</strong> E are not parallel. Thus BC<br />

<strong>and</strong> DE <strong>in</strong>tersect <strong>in</strong> a f<strong>in</strong>ite po<strong>in</strong>t F .<br />

If as many as three of B, C, D, E are <strong>in</strong>f<strong>in</strong>ite, then A is also <strong>in</strong>f<strong>in</strong>ite,<br />

imply<strong>in</strong>g that all of A, B, C, D, E are <strong>in</strong>f<strong>in</strong>ite.<br />

Case 6 All of A, B, C, D, E are <strong>in</strong>f<strong>in</strong>ite. Choose P as any f<strong>in</strong>ite po<strong>in</strong>t,<br />

<strong>and</strong> A1, B1, C1 f<strong>in</strong>ite po<strong>in</strong>ts different from P on respectively P A,, P B, P C.<br />

Thus AB is the <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e of the f<strong>in</strong>ite plane P A1B1; AC is the <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e<br />

of the f<strong>in</strong>ite plane P A1C1; <strong>and</strong> BC is the <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e of the plane P B1C1. In<br />

the plane P A1B1 the l<strong>in</strong>e P D <strong>in</strong>tersects A1B1 <strong>in</strong> a po<strong>in</strong>t D1 different from<br />

A1 <strong>and</strong> B1. Here D1 may be a f<strong>in</strong>ite po<strong>in</strong>t, but if D1 is an <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t, then<br />

D1 = D. Similarly, <strong>in</strong> the plane P A1C1, P E <strong>in</strong>tersects A1C1 <strong>in</strong> a po<strong>in</strong>t E1<br />

different from A1 <strong>and</strong> C1, <strong>and</strong> either E1 is f<strong>in</strong>ite or E1 = E. In any event DE<br />

is the <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e of the plane P D1E1. The l<strong>in</strong>es D1E1 <strong>and</strong> B1C1 lie <strong>in</strong> the<br />

plane A1B1C1 <strong>and</strong> so <strong>in</strong>tersect <strong>in</strong> a po<strong>in</strong>t F ∗ which may be f<strong>in</strong>ite or <strong>in</strong>f<strong>in</strong>ite.<br />

It F ∗ is <strong>in</strong>f<strong>in</strong>ite, it is the unique <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t on B1C1. Let the po<strong>in</strong>t F be<br />

def<strong>in</strong>ed as the (necessarily unique) <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t on the l<strong>in</strong>e P F ∗ . S<strong>in</strong>ce F ∗<br />

is on the l<strong>in</strong>e B1C1, it is a po<strong>in</strong>t of the plane P B1C1, <strong>and</strong> therefore, F is on<br />

BC, the l<strong>in</strong>e of <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>ts <strong>in</strong> this plane. Similarly, F ∗ is on the l<strong>in</strong>e D1E1<br />

<strong>and</strong> so is <strong>in</strong> the plane P D1E1. Thus F is a po<strong>in</strong>t of DE, the l<strong>in</strong>e of <strong>in</strong>f<strong>in</strong>ite<br />

po<strong>in</strong>ts <strong>in</strong> this plane. Hence F is the <strong>in</strong>tersection of BC <strong>and</strong> DE, <strong>and</strong> so P2<br />

is satisfied <strong>in</strong> this case.<br />

This last case now shows that <strong>in</strong> every <strong>in</strong>stance the po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of the<br />

enlarged geometry satisfy the axioms P1, P2 <strong>and</strong> P3 of projective geometry.<br />

We state this as a general theorem.<br />

Theorem 1.6.4. Given an aff<strong>in</strong>e geometry satisfy<strong>in</strong>g axioms A1, A2, A3,<br />

A4 <strong>and</strong> A5, we may def<strong>in</strong>e an aff<strong>in</strong>e plane π = π(P, m) <strong>in</strong> terms of a l<strong>in</strong>e<br />

m <strong>and</strong> a po<strong>in</strong>t P not on m as the set of po<strong>in</strong>ts on l<strong>in</strong>es P S where S is on<br />

m along with the po<strong>in</strong>ts of the l<strong>in</strong>e through P parallel to m. If we adjo<strong>in</strong> an<br />

<strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t to each l<strong>in</strong>e, adjo<strong>in</strong><strong>in</strong>g the same <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t to each l<strong>in</strong>e of a<br />

parallel class but to no others, <strong>and</strong> if we def<strong>in</strong>e <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>es as the set of ideal<br />

po<strong>in</strong>ts on the l<strong>in</strong>es of a plane π, then the enlarged geometry is a projective<br />

geometry satisfy<strong>in</strong>g axioms P1, P2 <strong>and</strong> P3.


48 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

1.7 The Pr<strong>in</strong>ciple of Duality<br />

An important pr<strong>in</strong>ciple for projective planes, <strong>and</strong> <strong>in</strong>deed for all projective<br />

spaces, is the so-called pr<strong>in</strong>ciple of duality . We first develop it for the<br />

plane case <strong>and</strong> later for more general projective spaces. First suppose that<br />

A is a proposition concern<strong>in</strong>g po<strong>in</strong>t-l<strong>in</strong>e <strong>in</strong>cidence geometries. We get the<br />

proposition A D dual to A by <strong>in</strong>terchang<strong>in</strong>g the words “po<strong>in</strong>t” <strong>and</strong> “block.”<br />

Example: If A is the proposition ‘there exist four po<strong>in</strong>ts no three of which<br />

are <strong>in</strong>cident with a common l<strong>in</strong>e,’ then A D is the proposition ‘there exist four<br />

l<strong>in</strong>es no three of which meet at a common po<strong>in</strong>t.’<br />

Let G be a po<strong>in</strong>t-l<strong>in</strong>e geometry with po<strong>in</strong>t-set P <strong>and</strong> l<strong>in</strong>e-set B, <strong>and</strong><br />

<strong>in</strong>cidence relation I. Then the geometry G D dual to G has po<strong>in</strong>t-set B, l<strong>in</strong>eset<br />

P , <strong>and</strong> two objects of G D are <strong>in</strong>cident if <strong>and</strong> only if they are <strong>in</strong>cident <strong>in</strong><br />

G. Clearly (G D ) D = G.<br />

Theorem 1.7.1. (Pr<strong>in</strong>ciple of Duality) Let K be a class of po<strong>in</strong>t-l<strong>in</strong>e geometries.<br />

Suppose that K has the follow<strong>in</strong>g property: If K conta<strong>in</strong>s the geometry<br />

G, then it also conta<strong>in</strong>s the dual geometry G D . Then the follow<strong>in</strong>g assertion<br />

is true: If A is a proposition that is true for all geometries <strong>in</strong> K, then A D is<br />

also true for all geometries <strong>in</strong> K.<br />

Proof. Let G be an arbitrary <strong>in</strong> K. For G ′ := G D we have that G ′D = G.<br />

Si<strong>in</strong>ce G ′ is a geometry <strong>in</strong> K, the proposition A holds for G ′ . Hence G ′D = G<br />

satisfies the assertion A D .<br />

Let P be a projective plane. Accord<strong>in</strong>g to Def<strong>in</strong>itions 1.1.1, 1.1.6 <strong>and</strong><br />

Ex. 1.1.6.2, we see that P is characterized by the follow<strong>in</strong>g:<br />

PP1 Each two dist<strong>in</strong>ct po<strong>in</strong>ts of P are <strong>in</strong>cident with a unique l<strong>in</strong>e.<br />

PP2 Each l<strong>in</strong>e is <strong>in</strong>cident with at least three po<strong>in</strong>ts.<br />

PP3 Each two dist<strong>in</strong>ct l<strong>in</strong>es of P meet <strong>in</strong> a unique po<strong>in</strong>t.<br />

PP4 There are four po<strong>in</strong>ts of P with no three of them coll<strong>in</strong>ear.<br />

In order to prove the pr<strong>in</strong>ciple of duality for projective planes we need to<br />

show that any projective plane P must satisfy the propositions that are dual<br />

to PP1, ..., PP4. Clearly PP1 <strong>and</strong> PP3 are dual to each other. The dual to<br />

PP2 is:


1.8. STRUCTURE OF PROJECTIVE GEOMETRY 49<br />

PP2 D : Each po<strong>in</strong>t is <strong>in</strong>cident with at least three l<strong>in</strong>es.<br />

The dual to PP4 is:<br />

PP4 D : There are four l<strong>in</strong>es of P with no three of them concurrent.<br />

So we need to show that each projective plane P satisfies PP2 D <strong>and</strong><br />

PP4 D . First let P be an arbitrary po<strong>in</strong>t of P. It easily follows from PP1<br />

through PP4 that there is some l<strong>in</strong>e m not <strong>in</strong>cident with P . By PP2 there<br />

must be at least three dist<strong>in</strong>ct po<strong>in</strong>t P1, P2 <strong>and</strong> P3 <strong>in</strong>cident with m. The<br />

P P1, P P2 <strong>and</strong> P P3 are three dist<strong>in</strong>ct l<strong>in</strong>es through P .<br />

It is also easy to verify that PP4 D follows from PP4. Hence each projective<br />

plane P satisfies the propositions that are the duals of the axioms that<br />

characterize projective planes.<br />

Theorem 1.7.2. (Pr<strong>in</strong>ciple of duality for projective planes) If a proposition<br />

A is true for all projective planes, then the dual propositio<strong>in</strong> A D also holds<br />

for all projective planes.<br />

Proof. If A is true for all projective planes P, then A D holds for all geometries<br />

of the form P D , hence for all dual projective planes. Furthermore we can<br />

represent any projective plane P as a dual projective plane: P = (P D ) D .<br />

NOTE: A projective plane P may or may not be isomorphic to its dual<br />

P D .<br />

1.8 Structure of Projective <strong>Geometry</strong><br />

Lemma 1.2.5 says that all subspaces of a projective space are determ<strong>in</strong>ed by<br />

their sets of po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es. This means that the entire projective geometry<br />

is determ<strong>in</strong>ed by its po<strong>in</strong>t-l<strong>in</strong>e geometry. We now cont<strong>in</strong>ue to develop the<br />

structure of projective space, especially the notions of basis <strong>and</strong> dimension<br />

of a projective space. The follow<strong>in</strong>g exchange property is fundamental.<br />

Theorem 1.8.1. (Exchange property) Let U be a l<strong>in</strong>ear set of the projective<br />

space P, <strong>and</strong> let P be a po<strong>in</strong>t of P that does not lie <strong>in</strong> U. Then the follow<strong>in</strong>g<br />

implication is true:<br />

If Q ∈ UP , then P ∈ UQ, hence also UP = UQ.<br />

One can also express this by say<strong>in</strong>g that any two dist<strong>in</strong>ct subspaces through<br />

U that are spanned by U <strong>and</strong> a po<strong>in</strong>t outside U <strong>in</strong>tersect only <strong>in</strong> po<strong>in</strong>ts of U.


50 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

Proof. S<strong>in</strong>ce Q ∈ UP \ U, Lemma 1.2.5, there is a po<strong>in</strong>t Q ′ <strong>in</strong> U such that<br />

P ∈ QQ ′ ⊆ UQ. It then follows easily that the two subspaces <strong>in</strong> question<br />

are equal: viz, from U ⊆ UQ <strong>and</strong> P ∈ UQ it follows that UP ⊆ UQ. The<br />

other <strong>in</strong>clusion follows similarly.<br />

Def<strong>in</strong>ition 1.8.2. A set B of po<strong>in</strong>ts <strong>in</strong> the projective space P is called <strong>in</strong>dependent<br />

provided that for any subset set B ′ ⊆ B <strong>and</strong> any po<strong>in</strong>t P ∈ B \B ′ , we<br />

have P /∈ 〈B ′ 〉. This is the same as say<strong>in</strong>g that for each P ∈ B, P /∈ 〈B\{P }〉.<br />

We say that B is dependent provided there is some po<strong>in</strong>t P ∈ B for which<br />

P ∈ 〈B \ {P }〉. A basis for P is an <strong>in</strong>dependent set B for which 〈B〉 = P,<br />

i.e., B spans P.<br />

Note: The empty set of po<strong>in</strong>ts is <strong>in</strong>dependent; a s<strong>in</strong>gle po<strong>in</strong>t forms an<br />

<strong>in</strong>dependent set; two dist<strong>in</strong>ct po<strong>in</strong>ts form an <strong>in</strong>dependent set; three po<strong>in</strong>ts<br />

form an <strong>in</strong>dependent set provided they are not <strong>in</strong>cident with a common l<strong>in</strong>e.<br />

Clearly every subset of an <strong>in</strong>dependent set is <strong>in</strong>dependent.<br />

Theorem 1.8.3. A set B of po<strong>in</strong>ts of P is a basis of P provided B is a<br />

m<strong>in</strong>imal spann<strong>in</strong>g set of P, that is, 〈B〉 = P, but no proper subset of B spans<br />

P.<br />

Proof. Easy exercise.<br />

Def<strong>in</strong>ition 1.8.4. The projective space P is said to be f<strong>in</strong>itely generated<br />

provided there is a f<strong>in</strong>ite set B that spans P.<br />

Note: For the rema<strong>in</strong>der of this chapter we let P denote a f<strong>in</strong>itely generated<br />

projective space.<br />

Eventually we will show that each f<strong>in</strong>itely generated projective has a f<strong>in</strong>ite<br />

basis, <strong>and</strong> that any two bases have the same f<strong>in</strong>ite number of elements.<br />

Theorem 1.8.5. Let E be a f<strong>in</strong>ite spann<strong>in</strong>g set of P. Then there exists a<br />

basis B of P such that B ⊆ E, imply<strong>in</strong>g that P has a f<strong>in</strong>ite basis.<br />

Proof. Def<strong>in</strong>e E0 := E. If E0 is a m<strong>in</strong>imal generat<strong>in</strong>g set, then by the preced<strong>in</strong>g<br />

theorem E0 is a basis. Otherwise there is a proper subset E1 of E0 that<br />

spans P also. S<strong>in</strong>ce E is f<strong>in</strong>ite, after a f<strong>in</strong>ite number of steps we must obta<strong>in</strong><br />

a m<strong>in</strong>imal spann<strong>in</strong>g set B = En ⊆ E, which is a basis.<br />

Lemma 1.8.6. Let B be an <strong>in</strong>dependent set of po<strong>in</strong>ts of P, <strong>and</strong> let B1, B2<br />

be subsets of B. If B is f<strong>in</strong>ite, then<br />

〈B1 ∩ B2〉 = 〈B1〉 ∩ 〈B2〉.


1.8. STRUCTURE OF PROJECTIVE GEOMETRY 51<br />

Proof. S<strong>in</strong>ce B1 ∩ B2 ⊆ B1, B2, clearly 〈B1 ∩ B2〉 ⊆ 〈B1〉 ∩ 〈B2〉. Inclusion <strong>in</strong><br />

the other direction is more difficult <strong>and</strong> will be proved by <strong>in</strong>duction on the<br />

size of B1.<br />

If B1 = ∅, then the assertion is clearly true. Suppose that the statement of<br />

the Lemma holds for all B1 with |B1| = k −1, <strong>and</strong> suppose that |B1| = k ≥ 1.<br />

We may suppose that B1 is not a subset of B2, s<strong>in</strong>ce <strong>in</strong> that case the result<br />

clearly holds. So we may suppose that there is a po<strong>in</strong>t P ∈ B1 \ B2. By the<br />

<strong>in</strong>duction hypothesis, the assertion is true for the set B ′ 1 := B1 \ {P }. By<br />

way of contradiction, suppose that there is a po<strong>in</strong>t X such that<br />

X ∈ (〈B1〉 ∩ 〈B2〉) \ 〈B1 ∩ B2〉.<br />

If X were a po<strong>in</strong>t of 〈B ′ 1 〉, then it would be conta<strong>in</strong>ed <strong>in</strong> 〈B′ 1 〉 ∩ 〈B2〉, so<br />

by the <strong>in</strong>duction hypothesis X ∈ 〈B ′ 1 ∩ B2〉, <strong>and</strong> hence X ∈ 〈B1 ∩ B2〉, giv<strong>in</strong>g<br />

the desired contradiction. Hence the hypothetical po<strong>in</strong>t X must be a po<strong>in</strong>t<br />

of 〈B1〉 \ B ′ 1 〉 = 〈B′ 1 , P 〉 \ 〈B′ 1 〉. Us<strong>in</strong>g the exchange property, we see that<br />

P ∈ 〈B ′ 1, X〉. S<strong>in</strong>ce X also lies <strong>in</strong> 〈B2〉, we obta<strong>in</strong><br />

P ∈ 〈B ′ 1 , X〉 ⊆ 〈B′ 1 , 〈B2〉〉 = 〈B ′ 1 , B2〉 = 〈B ′ 1 ∪ B2〉.<br />

By the choice of P we have P /∈ B2. Moreover, P ∈ B ′ 1. Therefore we<br />

get a contradiction to the <strong>in</strong>dependence of B (for B0 := B ′ 1 ∪ B2 ⊆ B satisfies<br />

P ∈ 〈B0〉 but P ∈ B0).<br />

The next theorem is the Ste<strong>in</strong>itz exchange theorem for f<strong>in</strong>itely generated<br />

projective spaces. We h<strong>and</strong>le the most important special case first.<br />

Lemma 1.8.7. (Exchange lemma) Let B be a f<strong>in</strong>ite basis of P, <strong>and</strong> let P be<br />

a po<strong>in</strong>t of P. Then there is a po<strong>in</strong>t Q <strong>in</strong> B with the property that the set<br />

(B \ {Q}) ∪ {P }<br />

is also a basis of P.<br />

Such a po<strong>in</strong>t Q can be found <strong>in</strong> the follow<strong>in</strong>g way. There is a subset B ′<br />

of B such that P ∈ 〈B ′ 〉, but P ∈ 〈B ′′ 〉 for any proper subset B ′′ of B ′ . Then<br />

for any po<strong>in</strong>t Q ∈ B ′ the set (B \ {Q}) ∪ {P } is a basis of P.<br />

Proof. S<strong>in</strong>ce B is a f<strong>in</strong>ite set there exists a subset B ′ of B with the follow<strong>in</strong>g<br />

property:<br />

P ∈ 〈B ′ 〉, but P ∈ 〈B ′′ 〉 for any proper subset B ′′ of B ′ .


52 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

Let Q be an arbitrary po<strong>in</strong>t of B ′ . We claim that the set B1 := (B \<br />

{Q}) ∪ {P } is a basis of P.<br />

We first show that P ∈ 〈B \ {Q}〉. So suppose that P ∈ 〈B \ {Q}〉. Then<br />

by Lemma 1.8.6 we have<br />

P ∈ 〈B \ {Q}〉 ∩ 〈B ′ 〉 = 〈(B \ {Q}) ∩ B ′ 〉 = 〈B ′ \ {Q}〉,<br />

contradict<strong>in</strong>g the m<strong>in</strong>imality of B ′ .<br />

Us<strong>in</strong>g the Exchange property (Theorem 1.8.1) we obta<strong>in</strong><br />

〈B1〉 = 〈B \ {Q}, P 〉 = 〈B \ {Q}Q〉 = 〈B〉 = P.<br />

Thus B1 spans P.<br />

It rema<strong>in</strong>s to show that B1 is <strong>in</strong>dependent. So suppose there is some po<strong>in</strong>t<br />

X ∈ B1 for which X ∈ 〈B1 \ {X}〉. If X = P , then P ∈ 〈B1 \ {P }〉. S<strong>in</strong>ce<br />

B1 \ {P } = B \ {Q}, <strong>and</strong> P ∈ 〈B ′ 〉, we get<br />

P ∈ 〈B \ {Q}〉 ∩ 〈B ′ 〉 = 〈(B \ {Q}) ∩ B ′ 〉 = 〈B ′ \ {Q}〉,<br />

contradict<strong>in</strong>g the m<strong>in</strong>imality of B ′ .<br />

So X = P . From the def<strong>in</strong>ition of B1, we have X ∈ B \ {Q}, <strong>and</strong><br />

X ∈ 〈B1 \ {S}〉 = 〈B \ {Q, X}, P 〉. S<strong>in</strong>ce B \ {Q} is <strong>in</strong>dependent, it follows<br />

that X ∈ 〈B \ {Q, X}〉. By the exchange property we get<br />

Hence<br />

P ∈ 〈〈B \ {Q, X}〉, X〉 = 〈B \ {Q, X}, X〉 = 〈B \ {Q}〉.<br />

P ∈ 〈B \ {Q}〉 ∩ 〈B ′ \ {Q}〉.<br />

But this contradicts the m<strong>in</strong>imality of B ′ (w.r.t. P ). This shows that B1 is<br />

<strong>in</strong>dependent, <strong>and</strong> hence is a basis for P.<br />

Theorem 1.8.8. (Ste<strong>in</strong>itz exchange theorem for projective spaces) Let B be<br />

a f<strong>in</strong>ite basis of P, <strong>and</strong> let r := |B|. If C is an <strong>in</strong>dependent set hav<strong>in</strong>g s<br />

po<strong>in</strong>ts, then we have:<br />

(a) s ≤ r;<br />

(b) There is a subset B ∗ of B with |B ∗ | = r − s such that C ∪ B ∗ is a basis<br />

of P.


1.8. STRUCTURE OF PROJECTIVE GEOMETRY 53<br />

Proof. The proof is by <strong>in</strong>duction on the size s of C. If s = 0, the result is<br />

clearly true. If s = 1, the result is true by the Exchange Lemma. Suppose<br />

s > 1 <strong>and</strong> assume the result is true for s − 1. Let P be an arbitrary po<strong>in</strong>t<br />

of C. Then C ′ := C \ {P } is an <strong>in</strong>dependent set with |C ′ | = s − 1. By the<br />

<strong>in</strong>duction hypothesis we know that<br />

(i) s − 1 ≤ r;<br />

(ii) There is a subset B ′ of B with |B ′ | = r − (s − 1) such that C ′ ∪ B ′ is<br />

a basis of P .<br />

Claim: We also have s ≤ r. Otherwise, s − 1 = r, so B ′ = ∅. Thus C ′<br />

would be a basis of P. In particular, P ∈ 〈C ′ 〉, contradict<strong>in</strong>g the <strong>in</strong>dependence<br />

of C. Hence part (a) is proved.<br />

For part (b), s<strong>in</strong>ce B is f<strong>in</strong>ite there exists a subset B ′′ of C ′ ∪ B ′ such that<br />

P ∈ 〈B ′′ 〉, but P is not conta<strong>in</strong>ed <strong>in</strong> the span of any proper subset of B ′′ .<br />

Then B ′′ ∩ B ′ = ∅, s<strong>in</strong>ce otherwise us<strong>in</strong>g Lemma 1.8.6 we have<br />

P ∈ 〈B ′′ 〉 ∩ 〈(C ′ ∪ B ′ )〉 = 〈B ′′ ∩ (C ′ ∪ B ′ )〉 ⊆ 〈B ′′ ∩ C ′ 〉 ⊆ 〈C ′ 〉 = 〈C \ {P }〉.<br />

By the Exchange Lemma, for each Q ∈ B ′′ ∩B ′ the set (C ′ ∪(B ′ \{Q}))∪{P }<br />

is a basis. S<strong>in</strong>ce<br />

(C ′ ∪ −(B ′ \ {Q})) ∪ {P } = (C ′ ∪ {P }) ∪ (B ′ \ {Q}) = C ∪ (B ′ \ {Q}),<br />

part (b) follows with B ∗ def<strong>in</strong>ed by B ∗ = B ′ \ {Q}.<br />

F<strong>in</strong>ally we consider the case that C is an <strong>in</strong>f<strong>in</strong>ite set. Then C would<br />

conta<strong>in</strong> a f<strong>in</strong>ite subset hav<strong>in</strong>g exactly s ′ = s + 1 elements, <strong>and</strong> by the above<br />

arguments we would get<br />

r + 1 = s ′ ≤ r,<br />

an impossibility that completes the proof.<br />

The preced<strong>in</strong>g results have an immediate corollary that is quite important.<br />

Corollary 1.8.9. (Basis extension theorem) Let P be a f<strong>in</strong>itely generated<br />

projective space. Then any <strong>in</strong>dependent set (<strong>in</strong> particular the empty set, or<br />

any basis of some subspace) can be extended to a basis of P. Moreover, any<br />

two bases of P have the same number of elements.<br />

Def<strong>in</strong>ition 1.8.10. Let P be a f<strong>in</strong>itely generated projective space. If each<br />

basis of P has exactly d + 1 elements, we say that d is the dimension of the<br />

space <strong>and</strong> write d = dim(P).


54 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

Lemma 1.8.11. Let U be a subspace of the f<strong>in</strong>itely generated projective space<br />

P. Then the followi<strong>in</strong>g are true:<br />

(a) dim(U) ≤ dim(P)<br />

(b) dim(U) = dim(P) if <strong>and</strong> only if U = P.<br />

Proof. Easy exercise.<br />

Def<strong>in</strong>ition 1.8.12. Let P be a projective space of f<strong>in</strong>ite dimension d. the<br />

subspaces of dimension 2 are called planes, <strong>and</strong> the subspaces of dimension<br />

d − 1 are called hyperplanes of P. The set of all subspaces of P is denoted<br />

by U(P). The set U(P) together with the subset relation ⊆ is called the<br />

projective geometry belong<strong>in</strong>g to the projective space P. The empty set <strong>and</strong><br />

the whole space are called the trivial subspaces. The set of all nontrivial<br />

subspaces is denoted by U ∗ (P).<br />

In practice we do not usually dist<strong>in</strong>guish between a ’projective space’<br />

<strong>and</strong> its correspond<strong>in</strong>g ”projective geometry,’ s<strong>in</strong>ce each uniquely determ<strong>in</strong>es<br />

the other. In the projective geometry (U(P), ⊆) we have the follow<strong>in</strong>g more<br />

general concept of flag. A flag of (U(P), ⊆) is a set of (dist<strong>in</strong>ct) elements of<br />

U(P) that are mutually <strong>in</strong>cident. A flag F is called maximal provided there<br />

is no element x ∈ U(P) \ F such that F ∪ {x} is also a flag.<br />

Lemma 1.8.13. Let P be a d-dimensional projective space, <strong>and</strong> let U be<br />

a t-dimensional subspace of P (with −1 ≤ t ≤ d). Then there exist d − t<br />

hyperplanes of P such that U is the <strong>in</strong>tersection of these hyperplanes.<br />

Proof. Let {P0, P1, . . . , Pt} be a basis of U. By Theorem 1.8.8 we can extend<br />

it to a basis B = {P0, P1, . . . , Pt, Pt+1, . . . , Pd} of P. If we def<strong>in</strong>e<br />

Hi := 〈B \ {Pt+i}〉, (i = 1, . . . , d − t),<br />

then we obta<strong>in</strong> d − t hyperplanes H1, . . . , Hd−t. By Lemma 1.8.6 their <strong>in</strong>tersection<br />

can be computed as follows:<br />

H1 ∩ · · · ∩ Hd−t = 〈{P0, P1, . . . , Pt, Pt+2, . . . , Pd}〉 ∩ . . .<br />

∩〈{P0, P1, . . . , Pt, Pt+1, . . . , Pd−1}〉<br />

= 〈{P0, P1, . . . , Pt, Pt+2, . . . , Pd} ∩ . . .<br />

∩{P0, . . . , Pt, Pt+1, . . . , Pd−1}〉<br />

= 〈{P0, . . . , Pt, Pt}〉 = U.


1.8. STRUCTURE OF PROJECTIVE GEOMETRY 55<br />

Theorem 1.8.14. (dimension formula) Let U <strong>and</strong> W be subspacers of P.<br />

Then<br />

dim(〈U, W〉) = dim(U) + dim(W) − dim(U ∩ W).<br />

Proof. Choose a basis A = {P1, . . . , Ps} of U ∩ W <strong>and</strong> extend it to a basis B<br />

of U <strong>and</strong> also to a basis C of W:<br />

B = {P1, . . . , Ps, Ps+1, . . . , Ps+t}, C = {P1, . . . , Ps, Qs+1, . . . , Qs+t ′}.<br />

If we show that B ∪ C is a b asis of 〈U, W〉, then<br />

dim(〈U, W〉) = |B ∪ C| − 1<br />

= s + t + s + t ′ − s − 1<br />

= s + t − 1 + s + t ′ − 1 − (s − 1)<br />

= dim(U) + dim(W) − dim(U ∩ W).<br />

Because 〈U, W〉 = 〈B, C〉, the set B ∪C certa<strong>in</strong>ly spans 〈U, W〉. So it rema<strong>in</strong>s<br />

only to show that B ∪ C is an <strong>in</strong>dependent set.<br />

Claim: U ∩ 〈C \ A〉 = ∅.<br />

By way of contradiction, suppose that there is a po<strong>in</strong>t X ∈ U ∩ 〈C \ A〉.<br />

S<strong>in</strong>ce 〈C \ A〉 ⊆ W, the po<strong>in</strong>t X would be conta<strong>in</strong>ed <strong>in</strong> W <strong>and</strong> hence <strong>in</strong><br />

U ∩ W. Us<strong>in</strong>g Lemma 1.8.6 we get the follow<strong>in</strong>g contradiction:<br />

X ∈ (U ∩ W) ∩ 〈C \ A〉 = 〈A〉 ∩ 〈C \ A = 〈∅〉 = ∅.<br />

So the claim is established. Now suppose that B ∪ C is not <strong>in</strong>dependent.<br />

Then there is a po<strong>in</strong>t P ∈ B ∪ C with P ∈ 〈(B ∪ C) \ {P }〉. WOLG we may<br />

assume that P ∈ B. It follows that<br />

P ∈ 〈(B ∪ C) \ {P }〉 = 〈B \ {P }, C \ A〉 = 〈〈B \ {P }〉, 〈C \ A〉〉.<br />

The ’Jo<strong>in</strong> theorem’ (Cor. 1.2.8) says that there are po<strong>in</strong>ts T ∈ 〈C \ A〉<br />

<strong>and</strong> S ∈ 〈B \ {P }〉 ⊆ U such that P ∈ 〈S, T 〉.<br />

We claim that the l<strong>in</strong>e 〈S, T 〉 <strong>in</strong>tersects U <strong>in</strong> a unique po<strong>in</strong>t, i.e., the po<strong>in</strong>t<br />

S. For if there were two po<strong>in</strong>ts of U on 〈S, T 〉, then each po<strong>in</strong>t of 〈S, T 〉 would<br />

be conta<strong>in</strong>ed <strong>in</strong> U. In particular, T would be <strong>in</strong> U, contradict<strong>in</strong>g the fact that<br />

U <strong>and</strong> C \A are disjo<strong>in</strong>t. But then, s<strong>in</strong>ce the po<strong>in</strong>t P satisfies P ∈ U ∩〈S, T 〉,<br />

we have P = S ∈ 〈B \ {P }〉, contradict<strong>in</strong>g the <strong>in</strong>dependence of B.


56 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

Corollary 1.8.15. Let P be a projective space <strong>and</strong> let H be a hyperplane of<br />

P. Then for any subspace U of P we have the follow<strong>in</strong>g:<br />

Either U ⊆ H, or<br />

dim(U ∩ H) = dim(U) − 1.<br />

In particular, any l<strong>in</strong>e that is not conta<strong>in</strong>ed <strong>in</strong> H <strong>in</strong>tersects H <strong>in</strong> a unique<br />

po<strong>in</strong>t.<br />

1.9 Quotient Geometries: a First Look<br />

In this section we only consider quotient geometries that arise as a ”space<br />

modulo a po<strong>in</strong>t.”<br />

Def<strong>in</strong>ition 1.9.1. Let Q be a po<strong>in</strong>t of P. The ”po<strong>in</strong>t-l<strong>in</strong>e” geometry whose<br />

po<strong>in</strong>ts are the l<strong>in</strong>es of P through Q, whose l<strong>in</strong>es are the planes of P through<br />

Q, <strong>and</strong> whose <strong>in</strong>cidence is the <strong>in</strong>cidence <strong>in</strong>duced by that <strong>in</strong> P, is called the<br />

quotient geometry of Q, or the quotient geometry P modulo Q.<br />

We shall show that a quotient geometry of a po<strong>in</strong>t is a projective space.<br />

In order to do this we need to discuss the concept of isomorphism.<br />

Def<strong>in</strong>ition 1.9.2. Let G = (P, B, I) <strong>and</strong> G ′ = (P ′ , B ′ , I ′ ) be po<strong>in</strong>t-l<strong>in</strong>e geometries<br />

with po<strong>in</strong>t-sets P <strong>and</strong> P ′ , respectively, <strong>and</strong> l<strong>in</strong>e-sets B <strong>and</strong> B ′ , respectively.<br />

We say that G <strong>and</strong> G ′ are isomorphic provided there are bijections<br />

α : P → P ′ <strong>and</strong> β : B → B ′ such that for all P ∈ P <strong>and</strong> all B ∈ B the<br />

follow<strong>in</strong>g equivalence is true:<br />

P IB ⇐⇒ α(P )I ′ α(B).<br />

Such a pair (α, β) is called an isomorphism from G onto G ′ . Often the<br />

symbol α is used to represent both the map α on po<strong>in</strong>ts <strong>and</strong> the map β on<br />

l<strong>in</strong>es.<br />

Theorem 1.9.3. Let P be a d-dimensional projective space, <strong>and</strong> let Q be a<br />

po<strong>in</strong>t of P. Then the quotient geometry P/Q of P modulo Q is a projective<br />

space of dimension d − 1.<br />

Proof. The idea of the proof is to show that there is a hyperplane H of P<br />

not through Q, <strong>and</strong> then to show that P/Q is isomorphic to H.


1.10. COMBINATORICS OF FINITE PROJECTIVE SPACES 57<br />

First, extend {Q} to a basis {Q, P1, . . . , Pd} of P. The subspace H =<br />

〈P1, . . . , Pd〉 is spanned by d <strong>in</strong>dependent po<strong>in</strong>ts, so that H had dimension<br />

d − 1 <strong>and</strong> is a hyperplane. S<strong>in</strong>ce the set {Q, P1, . . . , Pd} is <strong>in</strong>dependent, it<br />

follows that Q ∈ H.<br />

Now let H be any hyperplane of P not conta<strong>in</strong><strong>in</strong>g Q. Def<strong>in</strong>e the map α<br />

from the po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of P/Q to the po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of H as follows:<br />

If g is a po<strong>in</strong>t of P/Q (i.e., a l<strong>in</strong>e of P through Q), put<br />

α : g ↦→ g ∩ H.<br />

If π is a l<strong>in</strong>e of P/Q (i.e., a plane of P through Q), put<br />

α : π ↦→ π ∩ H.<br />

It is almost trivial to show that α is bijective <strong>and</strong> preserves <strong>in</strong>cidence.<br />

For future reference we note that follow<strong>in</strong>g fact whose proof is conta<strong>in</strong>ed<br />

<strong>in</strong> the preced<strong>in</strong>g proof.<br />

Corollary 1.9.4. Let P be a d-dimensional projective space, <strong>and</strong> let Q be a<br />

po<strong>in</strong>t of P. Then there is a hyperplane of P that does not conta<strong>in</strong> Q.<br />

1.10 Comb<strong>in</strong>atorics of F<strong>in</strong>ite Projective Spaces<br />

In this section we count the po<strong>in</strong>ts, l<strong>in</strong>es <strong>and</strong> hyperplanes of f<strong>in</strong>ite projective<br />

spaces. Later on we will revisit this topic <strong>and</strong> count ”flags” of various types.<br />

First we need the follow<strong>in</strong>g lemma.<br />

Lemma 1.10.1. Let g1 <strong>and</strong> g2 be two l<strong>in</strong>es of a projective space P. Then<br />

there is a bijective map<br />

φ : (g1) → (g2)<br />

from the set (g1) of po<strong>in</strong>ts on g1 onto the set (g2) of po<strong>in</strong>ts on g2.<br />

Proof. WOLG we may assume that g1 = g2.<br />

Case 1. The l<strong>in</strong>es g1 <strong>and</strong> g2 <strong>in</strong>tersect <strong>in</strong> a po<strong>in</strong>t S.<br />

Let P1 be a po<strong>in</strong>t on g1 <strong>and</strong> P2 a po<strong>in</strong>t on g2 such that P1 = S = P2. By<br />

axiom P3 there is a third po<strong>in</strong>t P on the li<strong>in</strong>e 〈P1, P2〉. by def<strong>in</strong>ition, P is<br />

neither on g1 nor on g2. By axiom P2 any li<strong>in</strong>e through P that conta<strong>in</strong>s a


58 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

po<strong>in</strong>t X = S of g1 <strong>in</strong>tersects the l<strong>in</strong>e g2 <strong>in</strong> a uniquely determ<strong>in</strong>ed po<strong>in</strong>t φ(X)<br />

with φ(X) = S. Hence the map φ def<strong>in</strong>ed by<br />

φ : X ↦→ 〈X, P 〉 ∩ g2<br />

is a bijection form (g1) \ {S} onto (g2) \ {S}. Extend this to a bijection from<br />

(g1) to (g2) by def<strong>in</strong><strong>in</strong>g φ : S ↦→ S.<br />

Case 2. The l<strong>in</strong>es g1 <strong>and</strong> g2 have no po<strong>in</strong>t <strong>in</strong> common. Let h be a l<strong>in</strong>e<br />

connect<strong>in</strong>g some po<strong>in</strong>t of g1 to some po<strong>in</strong>t of g2. By the first case, there are<br />

bijections<br />

φ1 : (g1) → (h) <strong>and</strong> φ2 : (h) → (g2).<br />

Then φ := φ2 ◦ φ1 is a bijective map from (g1) onto (g2).<br />

A projective space is said to be f<strong>in</strong>ite provided its po<strong>in</strong>t-set is a f<strong>in</strong>ite<br />

set, <strong>in</strong> which case it is clear that there could only be f<strong>in</strong>itely many l<strong>in</strong>es.<br />

Conversely, if there were only f<strong>in</strong>itely many l<strong>in</strong>es, <strong>and</strong> the dimension of the<br />

space was at least 2, there would be a l<strong>in</strong>e g with <strong>in</strong>f<strong>in</strong>itely many po<strong>in</strong>ts <strong>and</strong><br />

a po<strong>in</strong>t P not on g. The l<strong>in</strong>es jo<strong>in</strong><strong>in</strong>g P to po<strong>in</strong>ts of g could not be f<strong>in</strong>ite<br />

<strong>in</strong> number, so if dim(P) is at least 2, then P has f<strong>in</strong>itely many po<strong>in</strong>ts if <strong>and</strong><br />

only if it has f<strong>in</strong>itely many l<strong>in</strong>es.<br />

In this book we are really only <strong>in</strong>terested <strong>in</strong> f<strong>in</strong>ite projective (<strong>and</strong> aff<strong>in</strong>e)<br />

spaces.<br />

Let P be a f<strong>in</strong>ite projective space. We now know that each l<strong>in</strong>e of P is<br />

<strong>in</strong>cident with the same number of po<strong>in</strong>ts. Let q be the positive <strong>in</strong>teger for<br />

which each l<strong>in</strong>e is <strong>in</strong>cident with q + 1 po<strong>in</strong>ts. By axiom P3 we have q ≥ 2.<br />

This <strong>in</strong>teger q is called the order of the f<strong>in</strong>ite projective space P.<br />

Lemma 1.10.2. Let P be a f<strong>in</strong>ite projective space of dimension d ≥ 2 <strong>and</strong><br />

order q. Then for each po<strong>in</strong>t Q of P, the quotient geometry P/Q has order<br />

q.<br />

Proof. S<strong>in</strong>ce P/Q is isomorphic to any hyperplane H not through Q, <strong>and</strong><br />

there is such a hyperplane which must have order q s<strong>in</strong>ce all subspaces of<br />

a projective space of order q clearly have order q. In particular, P/Q must<br />

have order q.<br />

Theorem 1.10.3. Let P be a f<strong>in</strong>ite projective space of dimension d <strong>and</strong><br />

order q, <strong>and</strong> let U be a t-dimensional subspace of P (1 ≤ t ≤ d). Then the<br />

follow<strong>in</strong>g are true:


1.10. COMBINATORICS OF FINITE PROJECTIVE SPACES 59<br />

(a) The number of po<strong>in</strong>ts of U is<br />

q t + q t−1 + · · · + q + 1 = qt+1 − 1<br />

q − 1 .<br />

In particular, P has exactly q d + q d−1 + · · · + q + 1 po<strong>in</strong>ts.<br />

(b) The number of l<strong>in</strong>es of U through a fixed po<strong>in</strong>t of U equals<br />

q t−1 + · · · + q + 1.<br />

(c) The total number of l<strong>in</strong>es of U equals<br />

(qt + qt−1 + · · · + q + 1)(qt−1 + · · · + q + 1)<br />

.<br />

q + 1<br />

Proof. We can prove (a) <strong>and</strong> (b) simultaneously by <strong>in</strong>duction on t. If t = 1<br />

then (a) <strong>and</strong> (b) are rather trivially true. Suppose that (a) <strong>and</strong> (b) are true<br />

for projective spaces of dimension t−1 ≥ 1, <strong>and</strong> let Q be an arbitrary po<strong>in</strong>t of<br />

U. S<strong>in</strong>ce the quotient geometry U/Q is a (t−1)-dimensional projective space<br />

of order q, by the <strong>in</strong>duction hypothesis, its number of po<strong>in</strong>ts is q t−1 +· · ·+q+1.<br />

S<strong>in</strong>ce by the def<strong>in</strong>ition of U/Q this is the number of l<strong>in</strong>es of U through Q,<br />

we already have (b). S<strong>in</strong>ce each l<strong>in</strong>e through Q has exactly q po<strong>in</strong>ts different<br />

from Q, <strong>and</strong> s<strong>in</strong>ce each po<strong>in</strong>t R = Q of U is on exactly one of these l<strong>in</strong>es<br />

(i.e., on 〈Q, r〉), U conta<strong>in</strong>s exactly<br />

po<strong>in</strong>ts, prov<strong>in</strong>g (a).<br />

1 + (q t−1 + · · · + q + 1)(q = q t + q t−1 + · · · + q + 1<br />

(c) Let b be the number of all l<strong>in</strong>es of U. S<strong>in</strong>ce U has exactly q t +· · ·+q+1<br />

po<strong>in</strong>ts <strong>and</strong> any po<strong>in</strong>t of U is on exactly q t−1 + · · · + q + 1 l<strong>in</strong>es of U, <strong>and</strong> each<br />

l<strong>in</strong>e is on q + 1 po<strong>in</strong>ts, it follows that<br />

b = (qt + · · · + q + 1)(qt−1 + · · · + q + 1)<br />

.<br />

q + 1<br />

Theorem 1.10.4. Let P be a f<strong>in</strong>ite projective space of dimension d <strong>and</strong> order<br />

q. Then


60 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY<br />

(a) the number of hyperplanes of P is exactly<br />

q d + q d−1 + · · · + q + 1;<br />

(b) the number of hyperplanes of P through a fixed po<strong>in</strong>t of P equals<br />

q d−1 + · · · + q + 1.<br />

Proof. First consider part (a). For d = 1 the theorem says that each l<strong>in</strong>e has<br />

q + 1 po<strong>in</strong>ts, which is clearly true. For d = 2, a hyperplane is a l<strong>in</strong>e, so part<br />

(a) says that the number of l<strong>in</strong>es of a projective plane is q 2 + q + 1. This is<br />

true by part (c) of Theorem 1.10.3. So suppose that the statement of part (a)<br />

is true for projective spaces of dimension d−1 ≥ 1. Consider a hyperplane H<br />

of P. By the dimension formula (Theorem 1.8.14) every hyperplane different<br />

from H <strong>in</strong>tersects H <strong>in</strong> a subspace of dimension d − 2. Thus any hyperplane<br />

of P different from H is spanned by a (d − 2)-dimensional subspace of H <strong>and</strong><br />

a po<strong>in</strong>t outside H.<br />

For each (d − 2)-dimensional subspace U of H <strong>and</strong> each po<strong>in</strong>t P ∈ P \ H,<br />

the subspace 〈U, P〉 is a hyperplane, which conta<strong>in</strong>s exactly<br />

(q d−1 + · · · + 1) − (q d−2 + · · · + q + 1) = q d−1<br />

po<strong>in</strong>ts outside H. S<strong>in</strong>ce there exist q d po<strong>in</strong>ts of P outside H, there are<br />

q hyperplanes different from H through U. By the <strong>in</strong>duction hypothesis<br />

there are exactly q d−1 + · · · + q + 1 hyperplanes of H, which are subspaces<br />

of dimension d − 1 of P. Thus the total number of hyperplanes of P is<br />

q · (q d−1 + · · · + q + 1) + 1. This completes the proof of part (a).<br />

For part (b), let P be a po<strong>in</strong>t of P <strong>and</strong> let H be a hyperplane not through<br />

P . Then any hyperplane of P through P <strong>in</strong>tersects H <strong>in</strong> a hyperplane of H.<br />

Thus by (a), there are exactly q d−1 + · · · + q + 1 such hyperplanes.<br />

Corollary 1.10.5. Let P be a f<strong>in</strong>ite projective plane. Then there exists an<br />

<strong>in</strong>teger q ≥ 2 such that any l<strong>in</strong>e of P has exactly q + 1 po<strong>in</strong>ts, each po<strong>in</strong>t is<br />

on q + 1 l<strong>in</strong>es, <strong>and</strong> the total number of po<strong>in</strong>ts (resp., l<strong>in</strong>es) is q 2 + q + 1.<br />

For each q that is a power of a s<strong>in</strong>gle prime there is known at least one<br />

projective plane of order q, <strong>and</strong> no plane with order not a prime power has<br />

ever been found. The theorem of Bruck-Ryser says the follow<strong>in</strong>g: If q is a<br />

positive <strong>in</strong>teger of the form q = 4n+1 or q = 4n+2, n a positive <strong>in</strong>teger, <strong>and</strong><br />

if there is a projective plane of order q, then q is the sum of two squares, one


1.10. COMBINATORICS OF FINITE PROJECTIVE SPACES 61<br />

of which might be 0. Alternatively, this says exactly that each odd prime<br />

divid<strong>in</strong>g the square-free part of q must be congruent to 1 modulo 4. We<br />

have <strong>in</strong>cluded a proof of this celebrated theorem <strong>in</strong> the appendix on number<br />

theory. The Bruck-Ryser theorem implies that there is no projective plane<br />

of order q = 8n + 6, <strong>in</strong> particular there is no plane of order 6. The only<br />

other <strong>in</strong>teger q that has been excluded as the possible order of a projective<br />

plane is q = 10. This result required many hours on several computers with<br />

the assistance of several mathematicians <strong>and</strong> a significant body of theory<br />

developed over a period of several years. See [La91].


62 CHAPTER 1. SYNTHETIC AXIOMS FOR GEOMETRY


Chapter 2<br />

Analytic <strong>Geometry</strong><br />

Projective (<strong>and</strong> aff<strong>in</strong>e) spaces of dimension at least 3 with order at least 4<br />

can all be ”coord<strong>in</strong>atized” us<strong>in</strong>g the elements of a skewfield F . (Recall that<br />

a skewfield - or division r<strong>in</strong>g - is just a field without the assumption that<br />

multiplication is commutative.) Then certa<strong>in</strong> problems that seem <strong>in</strong>tractable<br />

(or very awkward) us<strong>in</strong>g only the synthetic approach can sometimes be solved<br />

<strong>in</strong> a rout<strong>in</strong>e fashion us<strong>in</strong>g algebra. In the appendix 20 we give a proof of<br />

the celebrated theorem of Wedderburn that says that any f<strong>in</strong>ite skewfield is a<br />

field. S<strong>in</strong>ce we are consider<strong>in</strong>g only f<strong>in</strong>ite geometries, at first glance it might<br />

seem that we need not bother with (noncommutative) skewfields. On the<br />

other h<strong>and</strong>, they do facilitate our general treatment, so we <strong>in</strong>clude them to<br />

beg<strong>in</strong> with.<br />

Vector spaces over skewfields are def<strong>in</strong>ed <strong>in</strong> the same way as vector spaces<br />

over fields. When we say “V is a left vector space over the skewfield F” we<br />

mean that for each element (vector) v ∈ V <strong>and</strong> each a ∈ F , the “scalar<br />

product” av is a uniquely def<strong>in</strong>ed vector <strong>in</strong> V . We shall deal only with left<br />

vector spaces <strong>in</strong> this book <strong>and</strong> refer to them simply as vector spaces. (Note:<br />

When the skewfield F is actually a field, the scalar a may be written either on<br />

the left or on the right of the vector it is multiply<strong>in</strong>g without any confusion.)<br />

The basic theory of vector spaces over skewfields can be developed <strong>in</strong> the<br />

same way as for vector spaces over fields. The usual elementary properties<br />

of <strong>in</strong>dependence, basis, dimension, subspaces, l<strong>in</strong>ear maps, etc., hold <strong>in</strong> the<br />

more general sett<strong>in</strong>g. We do not develop these ideas here, partly because<br />

we assume that the reader has a thorough background <strong>in</strong> l<strong>in</strong>ear algebra <strong>and</strong><br />

because ultimately we will deal only with vector spaces over fields.<br />

63


64 CHAPTER 2. ANALYTIC GEOMETRY<br />

2.1 The Projective Space P(V )<br />

Def<strong>in</strong>ition 2.1.1. Let V be a vector space of dimension d + 1 ≥ 3 over a<br />

skewfield F . We def<strong>in</strong>e the po<strong>in</strong>t-l<strong>in</strong>e geometry P(V ) as follows:<br />

• The po<strong>in</strong>ts of P(V ) are the 1-dimensional subspaces of V ;<br />

• The l<strong>in</strong>es of P(V ) are the 2-dimensional subspaces of V ;<br />

• The <strong>in</strong>cidence relation <strong>in</strong> P(V ) is set-theoretical conta<strong>in</strong>ment.<br />

We shall have to dist<strong>in</strong>guish between the dimension of a vector space V<br />

<strong>and</strong> the dimension of the associated projective space P(V ). For the time<br />

be<strong>in</strong>g we will denote the dimension of a vector space V by dimV . Our first<br />

goal is to show that the geometry P(V ) is a projective space. Later we will<br />

show that if a projective space has dimension 3 or greater, then it is essentially<br />

P(V ) for some vector space V . There are many projective planes that are<br />

not of this type, but <strong>in</strong> this book we will mention them only occasionally <strong>in</strong><br />

pass<strong>in</strong>g.<br />

If v, w ∈ V , the subspace of V spanned by {v, w} will be denoted by<br />

〈v, w〉. If 〈v〉 denotes the subspace spanned by v, it is also the subspace of<br />

P(V ) spanned by the po<strong>in</strong>t 〈v〉, which might have denoted by 〈〈v〉〉. However,<br />

we write 〈v〉 for either the subspace of V or the po<strong>in</strong>t of P(V ), s<strong>in</strong>ce they<br />

really are the same th<strong>in</strong>g. Then 〈v, w〉<br />

Theorem 2.1.2. Let V be a vector space of dimension d + 1 ≥ 3 over a<br />

skewfield F . Then P(V ) is a projective space called the projective space<br />

coord<strong>in</strong>atized by F .<br />

Proof. We have four axioms to verify. For P1 suppose that P <strong>and</strong> Q are<br />

dist<strong>in</strong>ct po<strong>in</strong>ts of P(V ). So there are nonzero vectors v, w ∈ V with P =<br />

〈v〉 = 〈w〉 = Q. It is easy to check that 〈v, w〉 is the unique l<strong>in</strong>e of P(V )<br />

conta<strong>in</strong><strong>in</strong>g both v <strong>and</strong> w.<br />

For P2, let g1 = 〈P0P1〉 <strong>and</strong> g2 = 〈P0, P2〉 be l<strong>in</strong>es through a common<br />

po<strong>in</strong>t P0 that are <strong>in</strong>tersected by the l<strong>in</strong>e h = 〈P1, P2〉. Also, let Q = P1, P2<br />

be a po<strong>in</strong>t on h <strong>and</strong> Q1 = P0, P1 a po<strong>in</strong>t on g1. We need to show that 〈Q, Q1〉<br />

<strong>in</strong>tersects the l<strong>in</strong>e g2 <strong>in</strong> some po<strong>in</strong>t.<br />

If g1 = g2, the desired result is clearly true. So suppose that g1 = g2 <strong>and</strong><br />

choose vectors v0, v1, v2 ∈ V so that P0 = 〈v0〉, P1 = 〈v1〉 <strong>and</strong> P2 = 〈v2〉.


2.1. THE PROJECTIVE SPACE P(V ) 65<br />

S<strong>in</strong>ce the po<strong>in</strong>ts P0, P1 <strong>and</strong> P2 are noncoll<strong>in</strong>ear, the vectors v0, v1, v2 form<br />

an <strong>in</strong>dependent set.<br />

Consider the subspace V ′ of V that is generated by v0, v1 <strong>and</strong> v2. Choose<br />

w1 so that Q1 = 〈w1〉, so w1 ∈ 〈v0, v1〉 ⊆ V ′ . Moreover, Q = 〈w〉 ⊆<br />

〈v0, v1, v2〉 = V ′ . The l<strong>in</strong>e 〈Q, Q1〉 is a 2-dimensional subspace of V ′ . S<strong>in</strong>ce<br />

Q ∈ g2 <strong>and</strong> 〈g2, 〈Q, Q1〉〉 ⊆ V ′ , it follows that V ′ = 〈g2, 〈Q, Q1〉〉.<br />

S<strong>in</strong>ce g2 is also a 2-dimensional subspace of V ′ , by the dimension formula<br />

for vector spaces,<br />

dimV (g2 ∩ 〈Q, Q1〉〉) = dimV (g2) + dimV (〈Q, Q1〉) − dimV (〈g2, 〈Q, Q1〉〉<br />

= 2 + 2 − 3 = 1.<br />

Hence g2 <strong>in</strong>tersects the l<strong>in</strong>e 〈Q, Q1〉 <strong>in</strong> a 1-dimensional subspace of V , i.e., <strong>in</strong><br />

a po<strong>in</strong>t of P(V ).<br />

For axiom P3, an arbitrary l<strong>in</strong>e 〈v1, v2〉 conta<strong>in</strong>s at least the three dist<strong>in</strong>ct<br />

po<strong>in</strong>ts 〈v1〉, 〈v2〉, 〈v2〉.<br />

F<strong>in</strong>ally, for axiom P5 (s<strong>in</strong>ce we do not wish to exclude the case d =<br />

2), s<strong>in</strong>ce V has dimension at least 3, there exist three l<strong>in</strong>early <strong>in</strong>dependent<br />

vectors v0, v1, v2 ∈ V . Then 〈v0, v1〈 <strong>and</strong> 〈v0, v2〉 are two dist<strong>in</strong>ct l<strong>in</strong>es of<br />

P(V ). At the same time we notice that if d + 1 ≥ 4, then there are four<br />

nonzero vectors with {v0, v1, v2, v3} an <strong>in</strong>dependent set. Then 〈v0, v1〉 <strong>and</strong><br />

〈v2, v3〉 are two disjo<strong>in</strong>t l<strong>in</strong>es.<br />

Lemma 2.1.3. The vector subspaces of V are <strong>in</strong> bijective correspondence<br />

with the geometric subspaces of P(V ), that is:<br />

(a) If V ′ is a subspace of the vector space V , then P(V ′ ) is a subspace of<br />

P(V ).<br />

(b) If U is a subspace of the projective space P(V ), then there is a vector<br />

subspace V ′ of V for such P(V ′ ) = U.<br />

Proof. For (a) we need to show that the set of 1-dimensional subspaces conta<strong>in</strong>ed<br />

<strong>in</strong> V ′ forms a l<strong>in</strong>ear set (a subspace) of P(V ). Let 〈v〉, 〈w〉 ⊆ V ′ .<br />

Then v, w ∈ V , so clearly 〈v, w〉 ⊆ V ′ .<br />

For (b), let {P0, . . . , Pt} be a basis of U. Then there are vectors v0, . . . , vt<br />

for which Pi = 〈vi〉, 0 ≤ i ≤ t. Def<strong>in</strong>e V ′ by<br />

V ′ = 〈v0, v1, . . . , vt〉 ⊆ V.<br />

We claim that P(V ′ ) = U. We show this by <strong>in</strong>duction on t. For t = 0<br />

the claim is trivially true. Also consider separately the case t = 1. Let


66 CHAPTER 2. ANALYTIC GEOMETRY<br />

g = P0P1 be a l<strong>in</strong>e of P(V ) with P0 = 〈v0〉 <strong>and</strong> P1 = 〈v1〉. S<strong>in</strong>ce the vector<br />

subspace V ′ = 〈v0, v1〉 is the unique l<strong>in</strong>e through the po<strong>in</strong>ts P0 <strong>and</strong> P1, <strong>and</strong> its<br />

1-dimensional subspaces are exactly the po<strong>in</strong>ts of P(V ′ ), clearly P(V ′ ) = g.<br />

Assume now that the claim is true for t ≥ 1. Let<br />

U = 〈P0, P1, . . . , Pt+1〉<br />

be a subspace of P(V ). By the <strong>in</strong>duction hypothesis there is a vector subspace<br />

V ′′ of V such that P(V ′′ ) = 〈P0, P1, . . . , Pt〉. Thus<br />

U = 〈〈P0, . . . , Pt〉, Pt+1〉 = 〈P(V ′′ ), Pt+1〉.<br />

Let vt+1 be a vector for which Pt+1 = 〈vt+1〉, <strong>and</strong> let V ′ be the vector<br />

subspace spanned by V ′′ <strong>and</strong> vt+1.<br />

First we show the <strong>in</strong>clusion P(V ′ ) ⊆ U. Let P = 〈v〉 be a po<strong>in</strong>t of P(V ′ ).<br />

Then there is a vector v ′′ ∈ V ′′ such that<br />

v = av ′′ + bvt+1 (a, b ∈ F ).<br />

Therefore the po<strong>in</strong>t P is <strong>in</strong>cident with the l<strong>in</strong>e of U that passes through<br />

the po<strong>in</strong>ts 〈v ′′ 〉 <strong>and</strong> 〈vt+1〉 of U. Thus any po<strong>in</strong>t of P(V ′ ) lies <strong>in</strong> U.<br />

Conversely, let Q be a po<strong>in</strong>t of U. Then by Lemma 1.2.5 Q is <strong>in</strong>cident<br />

with a l<strong>in</strong>e XPt+1, where X is a po<strong>in</strong>t of P(V ′′ ). If v ′′ is a vector with<br />

X = 〈v ′′ 〉, then Q is on the l<strong>in</strong>e through 〈v ′′ 〉 <strong>and</strong> 〈Vt+1〉. By the case with<br />

t = 1 there exist a, b ∈ F with<br />

v = av ′′ + bvt+1 ∈ V ′′<br />

<strong>and</strong> Q = 〈v〉. Hence Q is a po<strong>in</strong>t of P(V ′ ).<br />

Corollary 2.1.4. The projective space P(V ) has dimension d (when V has<br />

vector space dimension dimV (V ) = d + 1).<br />

Proof. If dimP(V ) ≥ d + 1, there would exist a flag<br />

U0 ⊂ U1 ⊂ · · · ⊂ Ud<br />

of nontrivial subspaces of P(V ). By Lemma 2.1.3 this corresponds to a cha<strong>in</strong><br />

of d nontrivial subspaces of V that are properly conta<strong>in</strong>ed <strong>in</strong> each other. This<br />

is impossible s<strong>in</strong>ce dimV (V ) = d + 1. Conversely, s<strong>in</strong>ce dimV (V ) = d + 1,<br />

there is a cha<strong>in</strong> of d + 1 nontrivial subspaces of V properly conta<strong>in</strong>ed <strong>in</strong> each<br />

other. These subspaces correspond to a flag of d + 1 nontrivial subspaces of<br />

P(V ).


2.2. THE THEOREMS OF DESARGUES AND PAPPUS 67<br />

Lemma 2.1.5. The l<strong>in</strong>e of P(V ) through the po<strong>in</strong>ts 〈v〉 <strong>and</strong> 〈w〉 consists of<br />

the po<strong>in</strong>t 〈w〉 <strong>and</strong> the po<strong>in</strong>ts 〈v + aw〉, a ∈ F . Inparticular, if F is a f<strong>in</strong>ite<br />

field with q elements, then any l<strong>in</strong>e of P(v) has exactly q +1 po<strong>in</strong>t, i.e., P(V )<br />

has order q.<br />

Proof. Each po<strong>in</strong>t 〈u〉 of the l<strong>in</strong>e through 〈v〉 <strong>and</strong> 〈w〉 can be written as<br />

〈u〉 = 〈av + bw〉 with a, b ∈ F.<br />

If a = 0, then b = 0, so that 〈u〉 = 〈bw〉 = 〈w〉. If a = 0, then<br />

〈u〉 = 〈av + bw〉 = 〈v + ba −1 w〉.<br />

Conversely, any po<strong>in</strong>t of the form 〈v + aw〉 is a po<strong>in</strong>t on the l<strong>in</strong>e through 〈v〉<br />

<strong>and</strong> 〈w〉.<br />

See the appendix Chapter 20 for a reasonably thorough <strong>in</strong>troduction to<br />

arithmetic <strong>in</strong> f<strong>in</strong>ite fields. If V is a (d + 1)-dimensional vector space over the<br />

skewfield F , then the projective space P(V ) is denoted by P G(d, F ). Here<br />

P(V ) is the d-dimensional projective space over the skewfield F . If F is a<br />

f<strong>in</strong>ite field of order q, then P(V ) is also denoted by P G(d, q). This makes<br />

sense s<strong>in</strong>ce up to isomorphism there is only one f<strong>in</strong>ite field with q elements<br />

( for each prime power q), <strong>and</strong> any two vector spaces of the same f<strong>in</strong>ite<br />

dimension of a skewfield are isomorphic.<br />

2.2 The Theorems of Desargues <strong>and</strong> Pappus<br />

Def<strong>in</strong>ition 2.2.1. Let P be a projective space. We say that the Theorem of<br />

Desargues holds <strong>in</strong> P provided the follow<strong>in</strong>g statement is true:<br />

Let A1, A2, A3, B1, B2, B3 be any po<strong>in</strong>ts with the follow<strong>in</strong>g properties:<br />

• Ai, Bi <strong>and</strong> P are three dist<strong>in</strong>ct coll<strong>in</strong>ear po<strong>in</strong>ts, i = 1, 2, 3.<br />

• No three of the po<strong>in</strong>ts A1, A2, A3, P <strong>and</strong> no three of the po<strong>in</strong>ts B1, B2, B3, P<br />

are coll<strong>in</strong>ear.<br />

• The l<strong>in</strong>e Bi−1, Bi+1 meets the l<strong>in</strong>e Ai−1, Ai+1 at the po<strong>in</strong>t Ci, i = 1, 2, 3.<br />

Here the subscripts are taken modulo 3 to be one of 1,2,3.<br />

Then the three po<strong>in</strong>ts C1, C2, C3 lie on a common l<strong>in</strong>e.


68 CHAPTER 2. ANALYTIC GEOMETRY<br />

C3<br />

A1<br />

B1<br />

A2<br />

B2<br />

A3<br />

B3<br />

C1<br />

Figure 2.1: Desargues’ Configuration<br />

In the above configuration we say that triangles A1A2A3 <strong>and</strong> B1B2B3<br />

are <strong>in</strong> perspective from the po<strong>in</strong>t P . When the three po<strong>in</strong>ts C1, C2, C3 lie<br />

on a common l<strong>in</strong>e ℓ, we say the two triangles A1A2A3 <strong>and</strong> B1B2B3 are <strong>in</strong><br />

perspective from the l<strong>in</strong>e ℓ. When the two triangles are <strong>in</strong> perspective from<br />

a po<strong>in</strong>t P <strong>and</strong> <strong>in</strong> perspective from a l<strong>in</strong>e ℓ, the configuration is called a<br />

Desargues’ Configuration with vertex P <strong>and</strong> axis ℓ.<br />

We are go<strong>in</strong>g to show that the Theorem of Desargues does hold <strong>in</strong> projective<br />

spaces of dimension at least 3. However, it may or may not hold<br />

<strong>in</strong> a projective plane. Note that there are ten dist<strong>in</strong>ct po<strong>in</strong>ts <strong>in</strong> a Desargues’<br />

Configuration (See Fig. 2.1). S<strong>in</strong>ce a projective plane of order 2 has<br />

1 + 2 + 2 2 = 7 po<strong>in</strong>ts, clearly the statement does not even make sense if the<br />

coord<strong>in</strong>atiz<strong>in</strong>g field has only order 2. But there are no such configurations<br />

where the C1, C2, C3 are not coll<strong>in</strong>ear, so we could say the Theorem of Desargues<br />

holds vacuously. In this sense, it has been checked (by computer <strong>in</strong><br />

case q = 8) that for each projective plane of order q ≤ 8 the Theorem of<br />

Desargues does hold.<br />

P<br />

C2


2.2. THE THEOREMS OF DESARGUES AND PAPPUS 69<br />

Theorem 2.2.2. Let π be a f<strong>in</strong>ite projective plane of order q ≥ 4. Then π<br />

conta<strong>in</strong>s ”many” Desarguesian configurations.<br />

Proof. Take any po<strong>in</strong>t V , any l<strong>in</strong>e ℓ with V ∈ ℓ. Take any three l<strong>in</strong>es p, q, r<br />

through the po<strong>in</strong>t V , <strong>and</strong> let<br />

p ∩ ℓ = X, q ∩ ℓ = Y, r ∩ ℓ = Z.<br />

Let N, L be po<strong>in</strong>ts of ℓ dist<strong>in</strong>ct from X, Y, Z. This is possible s<strong>in</strong>ce ℓ has at<br />

least 5 po<strong>in</strong>ts. Def<strong>in</strong>e a map σ : A → L, where<br />

as follows:<br />

A = p \ {V, X}, L = ℓ \ {N, LO, Y, X},<br />

• Let A ∈ A, <strong>and</strong> let NA ∩ V Z = B. So B = V, Z.<br />

• Put C = BL ∩ q., so C = Y .<br />

• Put M = AC ∩ ℓ, so M ∈ {N, L, Y, X}.<br />

• Def<strong>in</strong>e σ : A → L by A σ = M.<br />

Now A has q − 1 elements while L has q − 3 elements. Therefore σ is not<br />

one-to-one. Hence there exist dist<strong>in</strong>ct po<strong>in</strong>t A, A ′ ∈ A with σ(A) = σ(A ′ ).<br />

Let B ′ = NA ′ <strong>and</strong> C ′ = LB ′ ∩ q. Then triangles ABC <strong>and</strong> A ′ B ′ C ′ are <strong>in</strong><br />

perspective from the po<strong>in</strong>t V <strong>and</strong> from the l<strong>in</strong>e ℓ.<br />

Theorem 2.2.3. Desargues’ Theorem is valid <strong>in</strong> a projective space of dimension<br />

d, d ≥ 3, for any two non-coplanar triangles ABC <strong>and</strong> A ′ BC ′ <strong>in</strong><br />

perspective from a po<strong>in</strong>t V .<br />

Proof. Let triangles ABC <strong>and</strong> A ′ B ′ C ′ belong to dist<strong>in</strong>ct planes π, α, respectively.<br />

We first note that the two triangles belong to a projective space Σ of<br />

dimension 3, because Σ = 〈π, V 〉 = 〈α, V 〉. Therefore π ∩ α is a l<strong>in</strong>e by the<br />

Dimension Theorem. As l<strong>in</strong>es AB <strong>and</strong> A ′ B ′ lie <strong>in</strong> the plane 〈V, A, B〉, they<br />

must <strong>in</strong>tersect <strong>in</strong> a po<strong>in</strong>t. Similarly, BC <strong>and</strong> B ′ C ′ <strong>in</strong>tersect <strong>in</strong> a po<strong>in</strong>t <strong>and</strong> so<br />

do the l<strong>in</strong>es AC <strong>and</strong> A ′ C ′ . It follows that the ponts AB ∩ A ′ B ′ , BC ∩ B ′ C ′<br />

<strong>and</strong> CA ∩ C ′ A ′ belong to the l<strong>in</strong>e π ∩ α.<br />

PUT NEW FIGURE HERE (3.5.5 FROM CASSE)


70 CHAPTER 2. ANALYTIC GEOMETRY<br />

Theorem 2.2.4. Let π be a projective plane of order at least 3 embedded<br />

(as a subspace) <strong>in</strong> a projective space P with dimension d ≥ 3. Then π is<br />

Desarguesian.<br />

Proof. Let π be a projective plane of order at least 3 embedded <strong>in</strong> a projective<br />

space P with dimension d ≥ 3. Let ABC, A ′ B ′ C ′ be two triangles of π <strong>in</strong><br />

perspective from a po<strong>in</strong>t X. Take any l<strong>in</strong>e ℓ ⊆ π through X. There are at<br />

least two other po<strong>in</strong>ts (dist<strong>in</strong>ct from X) on ℓ. Let O, O ′ be two such po<strong>in</strong>ts.<br />

Then A ′ O, O ′ A <strong>in</strong>tersect <strong>in</strong> a po<strong>in</strong>t s<strong>in</strong>ce they are dist<strong>in</strong>ct l<strong>in</strong>e of the plane<br />

〈O, X, A〉. Let A ′ O ∩O ′ A = A1. Similarly, def<strong>in</strong>e the po<strong>in</strong>ts B1 <strong>and</strong> C1. Note<br />

that the po<strong>in</strong>ts A1, B1 <strong>and</strong> C1 (∈ π) are not coll<strong>in</strong>ear.<br />

Denote the plane 〈A1, B1, C1〉 by π1. Clearly π = π1. Note that triangles<br />

ABC <strong>and</strong> A1B1C1 are <strong>in</strong> perspective from O ′ . From the proof of Theorem<br />

2.2.3, A1C1 ∩ AC ∈ π ∩ π1. Let A1C1 ∩ π = P . Similarly, triangles<br />

A ′ B ′ C ′ <strong>and</strong> A1B1C1 are <strong>in</strong> perspective from O, so A1C1 ∩ A ′ C ′ ∈ π ∩ π1.<br />

Hence AC ∩ A ′ C ′ = P lies on the l<strong>in</strong>e π ∩ π1. In other words, we have a<br />

Desargues’ Configuration with π ∩ π1 as the axis.<br />

PUT NEW FIGURE HERE (3.5.6 FROM CASSE)<br />

In view of the two preced<strong>in</strong>g theorems the follow<strong>in</strong>g theorem is superfluous,<br />

but we like the idea of see<strong>in</strong>g the proof us<strong>in</strong>g coord<strong>in</strong>ates along with the<br />

synthetic proof.<br />

Theorem 2.2.5. Let V be a vector space of dimension d + 1 over a skewfield<br />

F . Then the Theorem of Desargues holds <strong>in</strong> P(V ).<br />

Proof. Suppose that the hypotheses of the theorem are fulfilled. Let vi be a<br />

vector such that Ai = 〈vi〉, i = 1, 2, 3. S<strong>in</strong>ce A1, A2, A3 are not coll<strong>in</strong>ear, the<br />

set {v1, v2, v3} is l<strong>in</strong>early <strong>in</strong>dependent, so form a basis of the 3-dimensional<br />

vector space V ′ := 〈v1, v2, v3〉. There are two cases.<br />

Case 1. The po<strong>in</strong>t P lies <strong>in</strong> the plane spanned by the po<strong>in</strong>ts A1, A2, A3.<br />

Then there are a1, a2, a3 ∈ F with P = 〈a1v1 + a2v2 + a3v3〉. S<strong>in</strong>ce no three<br />

of the po<strong>in</strong>ts A1, A2, A3, P are coll<strong>in</strong>ear, we have a1a2a3 = 0. So replac<strong>in</strong>g vi<br />

with aivi if necessary, we may assume that P = 〈v1 + v2 + v3〉. S<strong>in</strong>ce P, Ai<br />

<strong>and</strong> Bi are coll<strong>in</strong>ear there are a1, a2, a3 ∈ F such that<br />

B1 = 〈v + 1 + v2 + v3 + a1v1 + a1v1〉 = 〈(a1 + 1)v1 + v2 + v3〉;<br />

B2 = 〈v1 + (a2 + 1)v2 + v3〉;<br />

B3 = 〈v1 + v2 + (a3 + 1)v3〉.


2.2. THE THEOREMS OF DESARGUES AND PAPPUS 71<br />

Hence Bi = (ai + 1)vi + vi−1 + vi+1, where subscripts are modulo 3. Then<br />

a little computation shows that<br />

Ci = 〈vi−1, vi+1〉 ∩ 〈(ai−1 + 1)vi−1 + vi + vi+1, (ai+1 + 1)vi+1 + vi + vi−1〉<br />

= 〈ai−1vi−1 − ai+1vi+1〉.<br />

This shows that all three po<strong>in</strong>ts C1, C2, C3 lie on the l<strong>in</strong>e<br />

〈a1v1 − a2v2, a2v2 − a3v3〉.<br />

Case 2. The po<strong>in</strong>t P = 〈v〉 does not lie <strong>in</strong> the plane 〈A1, A2, A3〉. The vectors<br />

v, v1, v2, v3 are l<strong>in</strong>early <strong>in</strong>dependent. Therefore we may assume WOLG<br />

that Bi = 〈v + vi〉, i = 1, 2, 3. Hence<br />

Ci = Ai−1Ai+1 ∩ Bi−1Bi+1<br />

= 〈vi−1, vi+1〉 ∩ 〈v + vi−1, v + vi+1〉<br />

= 〈vi−1 − vi+1〉.<br />

Hence the po<strong>in</strong>ts Ci all lie on the l<strong>in</strong>e 〈v1 − v2, v2 − v3〉, prov<strong>in</strong>g the<br />

theorem.<br />

Def<strong>in</strong>ition 2.2.6. Let P be a projective space. We say that the Theorem of<br />

Pappus holds <strong>in</strong> P provided the follow<strong>in</strong>g statement is true:<br />

Let g <strong>and</strong> h be two l<strong>in</strong>es of P meet<strong>in</strong>g at a po<strong>in</strong>t P . Let A1, A2, A3 be three<br />

dist<strong>in</strong>ct po<strong>in</strong>ts of g different from P ; let B1, B2, B3 be three dist<strong>in</strong>ct po<strong>in</strong>ts of<br />

h different from P . For i = 1, 2, 3, put Ci = Ai+1Bi−1 ∩ Ai−1Bi+1. Then C1,<br />

C2 <strong>and</strong> C3 lie on a l<strong>in</strong>e.<br />

Note that the ten po<strong>in</strong>ts of a Pappus’ configuration always lie <strong>in</strong> a plane<br />

(spanned by g <strong>and</strong> h).<br />

Theorem 2.2.7. Let V be a vector space over the skewfield F . Then the<br />

theorem of Pappus holds <strong>in</strong> P(V ) if <strong>and</strong> only if F is a field.<br />

Proof. First consider only the po<strong>in</strong>ts A1, A2, B1, B2 <strong>and</strong> P = g ∩ h = A1A2 ∩<br />

B1B2. Let u, v, w be vectors with P = 〈u〉, A1 = 〈v〉 <strong>and</strong> B1 = 〈w〉. Then<br />

A2 = 〈u+av〉 <strong>and</strong> B2 = 〈u+a ′ v〉 for some a, a ′ ∈ F \{0}. So we may assume<br />

WOLG that<br />

A1 = 〈v〉, A2 = 〈u + v〉, B1 = 〈w〉, <strong>and</strong> B2 = 〈u + w〉.


72 CHAPTER 2. ANALYTIC GEOMETRY<br />

Let a, b be any elements of F \ {0, 1} (s<strong>in</strong>ce 0 <strong>and</strong> 1 commute with each<br />

element of F ). Put<br />

A3 := 〈u + av〉, B3 := 〈u + bw〉.<br />

S<strong>in</strong>ce a, b = 0, 1, we have A3 = A1, A2, P <strong>and</strong> B3 = B1, B2, P .<br />

We claim that ab = ba if <strong>and</strong> only if the po<strong>in</strong>ts Ci = Ai+1Bi−1 ∩Ai−1Bi+1,<br />

i = 1, 2, 3, are coll<strong>in</strong>ear. Note that <strong>in</strong> comput<strong>in</strong>g a spann<strong>in</strong>g vector of Ci we<br />

do not use commutativity of F .<br />

Similarly,<br />

C3 = A1B2 ∩ A2B1 = 〈v, u + w〉 ∩ 〈u + v, w〉 = 〈u + v + w〉.<br />

C2 = A1B3 ∩ A3B1 = 〈u + av, w〉 ∩ 〈v, u + bw〉 = 〈u + av + bw〉.<br />

F<strong>in</strong>ally, we get<br />

C1 = A2B3 ∩ A3B2 = 〈u + v, u + bw〉 ∩ 〈u + av, u + w〉<br />

= 〈u + av + bw〉.<br />

Clearly this must be a 1-dimensional vector space, <strong>and</strong> we claim it is<br />

C ′ = 〈(a + (a − 1)(b − 1) −1 ) · u + a · v + (a − 1)(b − 1) −1 · bw〉.<br />

To see this, note first that<br />

C ′ = 〈a · (u + v) + (a − 1)(b − 1) −1 · (u + bw)〉 ∈ 〈u + v, u + bw〉,<br />

<strong>and</strong> second that<br />

C ′ = (a + (a − 1)(b − 1) −1 + (a − 1)(b − 1) −1 b − (a − 1)(b − 1) −1 b) · u<br />

+a · v + (a − 1)(b − 1) −1 · bw<br />

= (a + (a − 1)(b − 1) −1 (1 − b) + (a − 1)(b − 1) −1 b) · u<br />

+a · v + (a − 1)(b − 1) −1 · bw<br />

= (a − (a − 1) + (a − 1)(b − 1) −1 b) · u + a · v + (a − 1)(b − 1) −1 · bw<br />

= (u + av) + (a − 1)(b − 1) −1 b · (u + w)<br />

∈ 〈u + av, u + w〉.<br />

This proves the claim. We are now ready to analyze just when C1 ∈ C2C3.


2.2. THE THEOREMS OF DESARGUES AND PAPPUS 73<br />

C1 ∈ C2C3<br />

⇐⇒ 〈(a + (a − 1)(b − 1) −1 ) · u + a · v + (a − 1)(b − 1) −1 · bw〉<br />

⊆ 〈u + v + w, u + av + bw〉<br />

⇐⇒ there exist x, y ∈ F with<br />

(a + (a − 1)(b − 1) −1 ) · u + a · v + (a − 1)(b − 1) −1 · bw〉<br />

= xu + xav + xbw + yu + yv + yw<br />

⇐⇒ the follow<strong>in</strong>g equations hold :<br />

a + (a − 1)(b − 1) −1 = x + y;<br />

a = xa + y;<br />

(a − 1)(b − 1) −1 b = xb + y.<br />

The first equation means y = a + (a − 1)(b − 1) −1 − x, <strong>and</strong> together with<br />

the second equation gives<br />

hence<br />

x = (a − 1)(b − 1) −1 (1 − a) −1 ;<br />

y = a + (a − 1)(b − 1) −1 (1 − (1 − a) −1 ).<br />

Substitut<strong>in</strong>g these formulas for x <strong>and</strong> y <strong>in</strong>to the third equation we get (with<br />

some computation!)


74 CHAPTER 2. ANALYTIC GEOMETRY<br />

C1 ∈ C2C3<br />

⇐⇒ (a − 1)(b − 1) −1 b<br />

= (a − 1)(b − 1) −1 (1 − a) −1 b + a + (a − 1)(b − 1) −1 (1 − (1 − a) −1 )<br />

⇐⇒ b = (1 − a) −1 b + (b − 1)(a − 1) −1 a + (1 − (1 − a) −1 )<br />

⇐⇒ (1 − a)b = b + (1 − a)(b − 1)(a − 1) −1 a + (1 − a) − 1<br />

⇐⇒ (1 − a)b<br />

= b + (1 − a)(b − 1)(a − 1) −1 a<br />

+(1 − a)(b − 1)(a − 1) −1 − (1 − a)(b − 1)(a − 1) −1 − a<br />

⇐⇒ (1 − a)b<br />

= b + (1 − a)(b − 1)(a − 1) −1 (a − 1) + (1 − a)(b − 1)(a − 1) −1 − a<br />

⇐⇒ (1 − a)b<br />

= b + (1 − a)(b − 1) − a + (1 − a)(b − 1)(a − 1) −1<br />

⇐⇒ 0 = b − (1 − a) − a + (1 − a)(b − 1)(a − 1) −1<br />

⇐⇒ 1 − b = (1 − a)(b − 1)(a − 1) −1<br />

⇐⇒ (1 − b)(a − 1) = (1 − a)(b − 1)<br />

⇐⇒ ba = ab.<br />

Hence the theorem of Pappus holds <strong>in</strong> projective spaces of the form P(V )<br />

if <strong>and</strong> only if the coord<strong>in</strong>atiz<strong>in</strong>g skewfield F is actually a field.<br />

Corollary 2.2.8. By Wedderburn’s theorem we see that if F is f<strong>in</strong>ite, both<br />

the theorem of Desargues <strong>and</strong> the theorem of Pappus hold <strong>in</strong> P(V ).<br />

We are go<strong>in</strong>g to prove later that any projective space of dimension 3 or<br />

greater can be viewed as a P(V ) for some vector space over some skewfield


2.2. THE THEOREMS OF DESARGUES AND PAPPUS 75<br />

F . We have seen that <strong>in</strong> any projective space of dimension 3 or greater the<br />

Theorem of Desargues must hold, <strong>and</strong> that any projective plane that can be<br />

embedded as a plane <strong>in</strong> a projective space of dimension 3 or greater must be<br />

Desarguesian. If the space P(V ) is f<strong>in</strong>ite, then the skewfield F is actually a<br />

field, so the theorem of Pappus holds also. It will also be shown that any<br />

Desarguesian plane can be coord<strong>in</strong>atized by a skewfield, which is a field <strong>in</strong><br />

the f<strong>in</strong>ite case. In the <strong>in</strong>f<strong>in</strong>ite case if we start with a 3-dimensional vector<br />

space V over a skewfield F which is not a field (say, the quaternions), the<br />

correspond<strong>in</strong>g projective plane P(V ) is Desarguesian but not Pappian.<br />

On the other h<strong>and</strong>, it was proved by Hessenberg that any Pappian plane<br />

must be Desarguesian. We just sketch a proof of this below. There are many<br />

f<strong>in</strong>ite projective planes that are not Desarguesian <strong>and</strong> hence not Pappian,<br />

but we give them only pass<strong>in</strong>g mention <strong>in</strong> this book.<br />

Theorem 2.2.9. Let π be a given Pappian plane (i.e., a projective plane <strong>in</strong><br />

which the Theorem of Pappus is valid).<br />

(a) Let ABC <strong>and</strong> DEF be two triangles <strong>in</strong> π such that l<strong>in</strong>es AD, BE,<br />

CF meet <strong>in</strong> a po<strong>in</strong>t O <strong>and</strong> the l<strong>in</strong>es AE, BF , CD meet <strong>in</strong> a po<strong>in</strong>t O ′ . Prove<br />

that AF , BD, CE meet <strong>in</strong> a po<strong>in</strong>t.<br />

(b) Prove that π is Desarguesian.<br />

Proof. (Mostly left as an exercise.) For part (a), use the pr<strong>in</strong>ciple of duality.<br />

For part (b), suppose the triangles ABC <strong>and</strong> A ′ B ′ C ′ are <strong>in</strong> perspective from<br />

V . Def<strong>in</strong>e the follow<strong>in</strong>g po<strong>in</strong>ts:<br />

B ′ C ′ ∩ AC = S, B ′ A ∩ CC ′ = T,<br />

B ′ A ′ ∩ V S = P, BAV S = U,<br />

BC ∩ B ′ C ′ = L, CA ∩ C ′ A ′ = M,<br />

AB ∩ A ′ B ′ = N.<br />

Use the Theorem of Pappus to show that<br />

(i) the po<strong>in</strong>ts U, T, L are coll<strong>in</strong>ear (consider the l<strong>in</strong>es 〈B, B ′ , V 〉 <strong>and</strong> 〈S, C, A〉).<br />

(ii) the po<strong>in</strong>ts P, M, T are coll<strong>in</strong>ear (consider the l<strong>in</strong>es 〈A, A ′ , V 〉 <strong>and</strong> 〈C ′ , S, B ′ 〉).<br />

(iii) the po<strong>in</strong>ts L, M, N are coll<strong>in</strong>ear (consider the l<strong>in</strong>es 〈B ′ , A, T 〉 <strong>and</strong> 〈U, P, S〉).


76 CHAPTER 2. ANALYTIC GEOMETRY<br />

2.3 Coord<strong>in</strong>ates<br />

From now on when we consider a projective space P(V ) we may consider V<br />

to be a f<strong>in</strong>ite-dimensional vector space over the f<strong>in</strong>ite field F = Fq = GF (q)<br />

for some prime power q. For such a V choose a basis {v0, v1, . . . , vd}. Then<br />

each vector v ∈ V has a unique representation <strong>in</strong> the form v = d i=0 aivi,<br />

i.e., it is uniquely determ<strong>in</strong>ed by its coord<strong>in</strong>ates (a0, a1, . . . , ad).<br />

We defi<strong>in</strong>e an equivalence relation ∼ on the set of (d+1)-tuples of elements<br />

of F different from (0, 0, . . . , 0) by<br />

(a0, a1, . . . , ad) ∼ (b0, b1, . . . , bd) : ⇐⇒<br />

there is an a ∈ F \ {0} with (a0, . . . , ad) = a · (b0, . . . , bd).<br />

We say that a po<strong>in</strong>t 〈v〉 of P(V ) has homogeneous coord<strong>in</strong>ates (a0, a1, . . . , ad)<br />

provided<br />

d<br />

〈v〉 = 〈 aivi〉.<br />

i=0<br />

Clearly two such (d + 1)-tuples are equivalent if <strong>and</strong> only if they are<br />

homogeneous coord<strong>in</strong>ates of the same po<strong>in</strong>t of P(V ). It is also common to<br />

denote the equivalence class conta<strong>in</strong><strong>in</strong>g (a0, a1, . . . , ad) by (a0 : a1 : · · · : ad)<br />

<strong>and</strong> then write<br />

P = (a0 : a1 : · · · : ad) if P = 〈<br />

d<br />

aivi〉.<br />

We then also call (a0 : a1 : · · · : ad) the homogeneous coord<strong>in</strong>ates of P .<br />

Homogeneous coord<strong>in</strong>ates are quite convenient to use. For example, WOLG<br />

we may assume that the first (or last) nonzero coord<strong>in</strong>ate of a po<strong>in</strong>t is equal<br />

to 1. The l<strong>in</strong>e through the po<strong>in</strong>ts (a0 : a1 : · · · ad) <strong>and</strong> (b0 : b1 : · · · bd) consists<br />

of the po<strong>in</strong>ts with the follow<strong>in</strong>g coord<strong>in</strong>ates:<br />

(a0 : a1 : · · · ad) <strong>and</strong> (b0 : b1 : · · · bd) + a · (a0 : a1 : · · · ad), a ∈ F.<br />

In particular, the l<strong>in</strong>e through (1 : 0 : · · · : 0) <strong>and</strong> (0 : 1 : 0 : · · · : 0)<br />

consists of the po<strong>in</strong>ts<br />

i=0<br />

(1 : 0 : · · · : 0) <strong>and</strong> (a : 1 : 0 : · · · : 0), a ∈ F.


2.3. COORDINATES 77<br />

Now we consider the description of higher-dimensional subspaces by means<br />

of coord<strong>in</strong>ates.<br />

Theorem 2.3.1. Let P1, P2, . . . , Pt be po<strong>in</strong>ts of P(V ) with homogeneous coord<strong>in</strong>ates<br />

Pi = (ai0 : ai1 : · · · : aid), 1 ≤ i ≤ t.<br />

Then the set {P1, P2, . . . , Pt} is l<strong>in</strong>early <strong>in</strong>dependent provided the matrix<br />

⎛<br />

⎞<br />

⎜<br />

⎝<br />

a10 a11 · · · a1d<br />

.<br />

.<br />

at0 at1 · · · atd<br />

has rank t<br />

In particular, d + 1 po<strong>in</strong>ts form a basis of V if <strong>and</strong> only if the matrix<br />

whose rows are the homogeneous coord<strong>in</strong>ates of the po<strong>in</strong>ts is nons<strong>in</strong>gular.<br />

Proof. If the above matrix has rank t, then the homogeneous coord<strong>in</strong>ates<br />

of the po<strong>in</strong>ts span a t-dimensional subspace of V . So by Lemma 2.1.3 the<br />

po<strong>in</strong>ts P1, . . . , Pt span a (t − 1)-dimensional subspace of P(V ) <strong>and</strong> form an<br />

<strong>in</strong>dependent set.<br />

Conversely, suppose that P1, . . . , Pt form an <strong>in</strong>dependent set. If the rank<br />

of the above matrix were smaller than t, then the homogeneous coord<strong>in</strong>ates<br />

of the po<strong>in</strong>ts would span a subspace of V with dimension smaller than t.<br />

Thus P1, . . . , Pt would span a subspace of P(V ) with dimension smaller than<br />

t − 1, forc<strong>in</strong>g P1, . . . , Pt not to be <strong>in</strong>dependent.<br />

Theorem 2.3.2. Let V be a vector space of dimension d + 1 over the field<br />

F , <strong>and</strong> let P(V ) be the correspond<strong>in</strong>g projective space. Let H be a hyperplane<br />

of P(V ). Then the homogeneous coord<strong>in</strong>ates of the po<strong>in</strong>ts of H are the<br />

solutions of a homogeneous equation with coefficients i<strong>in</strong> F . Conversely, any<br />

homogeneous equation that is different from the ’zero equation’ describes a<br />

hyperplane of P(V ).<br />

Proof. Let H ′ be the hyperplane of V that corresponds to H (Lemma 2.1.3(b)).<br />

So P(H ′ ) = H. The coord<strong>in</strong>ates of the vectors <strong>in</strong> H ′ are solutions of a homogeneous<br />

equation. Conversely, we know from l<strong>in</strong>ear algebra that the solutions<br />

of any homogeneous equation different from the zero equation are a subspace<br />

of dimension d. Hence the space of solutions is a hyperplane of V <strong>and</strong> therefore<br />

a hyperplane of P(V ).<br />

.<br />

⎟<br />


78 CHAPTER 2. ANALYTIC GEOMETRY<br />

Corollary 2.3.3. Any t-dimensional subspace U of a projective space of dimension<br />

d given by homogeneous coord<strong>in</strong>ates can be described by a homogeneous<br />

system of d − 1 l<strong>in</strong>ear equations. More precisely, there exists a<br />

(d − t) × (d + 1) matrix H such that a po<strong>in</strong>t P = (a0 : a1 : · · · : ad) is<br />

a po<strong>in</strong>t of U if <strong>and</strong> only if<br />

(a0 : a1 : · · · : ad) · H T = 0.<br />

Proof. By Lemma 1.8.13 U is the <strong>in</strong>tersection of d − 1 hyperplanes.<br />

We can describe any hyperplane by a homogeneous equation. For example,<br />

by the ’hyperplane x0 = 0’ we mean the hyperplane whose po<strong>in</strong>ts<br />

have homogeneous coord<strong>in</strong>ates (0 : a1 : · · · : ad). We can also describe<br />

a hyperplane by the coefficients of a correspond<strong>in</strong>g homogeneous equation.<br />

For example, the hyperplane x0 = 0 will be represented by homogeneous<br />

coord<strong>in</strong>ates [1 : 0 : · · · : 0].<br />

Theorem 2.3.4. Let P = P(V ) be a projective space whose po<strong>in</strong>ts are given<br />

by homogeneous coord<strong>in</strong>ates (a0 : · · · : ad) with ai ∈ F , not all zero. Then<br />

any hyperplane of P can be represented by [b0 : b1 : · · · : bd], bi ∈ F not all<br />

zero. Conversely, to any such (d+1)-tuple [b0 : b1 : · · · : bd] there corresponds<br />

a hyperplane. Moreover, we have<br />

(a0 : a1 : · · · : ad) I [b0 : b1 : · · · : bd] ⇐⇒<br />

d<br />

aibi = 0.<br />

The proof follows directly from Theorem 2.3.2, s<strong>in</strong>ce any homogeneous<br />

l<strong>in</strong>ear equation <strong>in</strong> d + 1 variables can be described by a (d + 1)-tuple [b0 : b1 :<br />

· · · : bd] of homogeneous coord<strong>in</strong>ates.<br />

Now we consider the dual geometry P △ of a projective space P. This<br />

means that we consider P as a rank 2 geometry (two types of objects) whose<br />

po<strong>in</strong>ts are the hyperplanes of P <strong>and</strong> whose l<strong>in</strong>es are the po<strong>in</strong>ts of P.<br />

Corollary 2.3.5. Let P = P(V ) be a coord<strong>in</strong>atized projective space. Then<br />

P △ ∼ = P. In particular, P △ is coordi<strong>in</strong>atized as well. Therefore the pr<strong>in</strong>ciple<br />

of duality holds for the class of all coord<strong>in</strong>atized projective spaces of fixed<br />

dimension d.<br />

At this po<strong>in</strong>t we <strong>in</strong>troduce coord<strong>in</strong>ates for aff<strong>in</strong>e spaces.<br />

i=0


2.3. COORDINATES 79<br />

Theorem 2.3.6. Let H∞ be the hyperplane of P(V ) with equation x0 = 0.<br />

Then the aff<strong>in</strong>e space A = P \ H∞ can be described as follows:<br />

• the po<strong>in</strong>ts of A are the vectors (a1, . . . , ad) of the d-dimensional vector<br />

space F d .<br />

• the l<strong>in</strong>es of A are the cosets of the 1-dimensional subspaces of F d ; i.e.,<br />

the set u + 〈v〉, where u, v ∈ F d , v = 0.<br />

• <strong>in</strong>cidence is set-theoretical conta<strong>in</strong>ment.<br />

Proof. S<strong>in</strong>ce the homogeneous coord<strong>in</strong>ates of the po<strong>in</strong>ts on H∞ have as first<br />

entry 0, any po<strong>in</strong>t P outside H∞has homogeneous coord<strong>in</strong>ates (a0 : a1 : · · · :<br />

ad) with a0 = 0. Thus it has homogeneous coord<strong>in</strong>ates (1 : a1 : · · · : ad) with<br />

uniquely determ<strong>in</strong>ed a1, . . . , ad ∈ F . Hence we can identify a po<strong>in</strong>t P of A<br />

with the d-tuple (a1, . . . , ad). We say that (a1, . . . , ad) are the <strong>in</strong>homogeneous<br />

coord<strong>in</strong>ates of the po<strong>in</strong>t P .<br />

For the l<strong>in</strong>es of A, we know that any l<strong>in</strong>e g of A has precisely one po<strong>in</strong>t<br />

(0 : b1 : · · · : bd) <strong>in</strong> common with H∞. If (1 : a1 : · · · : ad) is an arbitrary<br />

po<strong>in</strong>t of A on g, then the po<strong>in</strong>ts of A on g have the follow<strong>in</strong>g homogeneous<br />

coord<strong>in</strong>ates:<br />

(1 : a1 : · · · : ad) + a · (0 : b1 : · · · : bd) with a ∈ F.<br />

It follows that the <strong>in</strong>homogeneous coord<strong>in</strong>ates of the po<strong>in</strong>ts on g are as<br />

follows:<br />

(a1, . . . , ad) + a · (b1, . . . , bd) with a ∈ F.<br />

In other words, the affi<strong>in</strong>e po<strong>in</strong>ts on g are precisely the po<strong>in</strong>ts of the coset<br />

(a1, . . . , ad) + 〈(b1, . . . , bd)〉<br />

of the 1-dimensional subspace 〈(b1, . . . , bd)〉 of F d .<br />

Conversely, let (a1, . . . , ad) + 〈(b1, . . . , bd)〉 be a coset of a 1-dimensional<br />

subspace 〈(b1, . . . , bd)〉 of F d . Then, by the above construction, this coset<br />

corresponds to the 2-dimensional subspace 〈((1, a1, . . . , ad), (0, b1, . . . , bd)〉 of<br />

F d+1 . It is consequently a l<strong>in</strong>e of P(V ). S<strong>in</strong>ce this l<strong>in</strong>e <strong>in</strong>tersects H∞ just <strong>in</strong><br />

the po<strong>in</strong>t (0 : b1 : · · · : bd), the coset <strong>in</strong> question is a l<strong>in</strong>e of A.


80 CHAPTER 2. ANALYTIC GEOMETRY<br />

If H∞ is a hyperplane of P = P G(d, F ), then we denote the aff<strong>in</strong>e space<br />

A = P \ H∞ by AG(d, F ) <strong>and</strong> call it the aff<strong>in</strong>e space of dimension d coord<strong>in</strong>atized<br />

by F . If F = Fq, we also denote A by AG(d, q).<br />

Later, when we study coll<strong>in</strong>eations of projective space, we will see that any<br />

two hyperplanes of P G(d, F can be mapped onto each other by a coll<strong>in</strong>eation<br />

. Hence AG(d, F ) is <strong>in</strong>dependent of the choice of the hyperplane H∞.<br />

Remark: If the theorem of Desargues holds <strong>in</strong> P, then it also holds <strong>in</strong><br />

A = P \ H∞. However, when formulat<strong>in</strong>g the theorem of Desargues <strong>in</strong> aff<strong>in</strong>e<br />

spaces one has to observe that two l<strong>in</strong>es <strong>in</strong> a plane do not necessarily meet.<br />

2.4 Semil<strong>in</strong>ear Maps: A First Glance<br />

In this section <strong>and</strong> later we often abbreviate the symbol P(V ) to P V .<br />

Recall that σ : Fq → Fq : a ↦→ ap is an automorphism of Fq; σi : Fq →<br />

Fq : a ↦→ api, <strong>and</strong> that {σ, σ2 , . . . , σe = id} is a complete list of all the<br />

automorphisms of Fq. So Aut(Fq) is a cyclic group of order e generated by<br />

σ : a ↦→ xp . See the Appendix 2 on algebra <strong>in</strong> f<strong>in</strong>ite fields for a great deal<br />

more.<br />

Let A be an <strong>in</strong>vertible (n + 1) × (n + 1) matrix over Fq, α ∈ Aut(F ). If<br />

a = (a0, . . . , an) ∈ V , then LA : V → V : a ↦→ (a0, . . . , an)A is an <strong>in</strong>vertible<br />

l<strong>in</strong>ear operator on V . Note that s<strong>in</strong>ce LA is l<strong>in</strong>ear, LA(λa) = λ · LA(a), so<br />

LA actually def<strong>in</strong>es (i.e., <strong>in</strong>duces) an <strong>in</strong>vertible map ¯ LA : P V → P V . These<br />

l<strong>in</strong>ear maps on P G(n, q) are called homographies <strong>and</strong> the set of all of them<br />

forms a group denoted P GL(n + 1, q) <strong>and</strong> called the projective l<strong>in</strong>ear group.<br />

Let α ∈ A = Aut(Fq). Consider the map α : V → V : (a0, . . . , an) ↦→<br />

(aα 0 , . . . , aαn ). Note that α : (λa) ↦→ λα ·a α . So if a <strong>and</strong> λa represent the same<br />

po<strong>in</strong>t <strong>in</strong> P V , then a α <strong>and</strong> λα ·a α represent the same po<strong>in</strong>t <strong>in</strong> P V . Hence T =<br />

α ◦ LA : a ↦→ LA(a α ) = a αA is a bijection on V called a projective semil<strong>in</strong>ear<br />

map, <strong>and</strong> it <strong>in</strong>duces a bijection on P V called a projective semil<strong>in</strong>ear map.<br />

The set of all these maps is a group denoted P ΓL(n + 1, q) <strong>and</strong> called the<br />

projective semil<strong>in</strong>ear group.<br />

Let θ : P G(n, q) → P G(n, q) : (a0, . . . , an) ↦→ (a0, . . . , an)A. The hyperplane<br />

[x0, . . . , xn] is mapped by θ to A−1 [x0, . . . , xn] T , s<strong>in</strong>ce<br />

(a0, . . . , an) · [x0, . . . , xn] T = 0 ⇐⇒ (a0, . . . , an)A · A −1 [x0, . . . , xn] T = 0.<br />

Hence when θ is to be given explicitly it is usually helpful to give both the<br />

matrix A <strong>and</strong> its <strong>in</strong>verse A −1 .


2.5. SOME COMBINATORICS OF FINITE GEOMETRIES 81<br />

Let θ be a given homography. Later we shall show that here is a hyperplane<br />

π such that θ fixes each po<strong>in</strong>t of π if <strong>and</strong> only if there is a po<strong>in</strong>t a such<br />

that θ fixes all hyperplanes through a, <strong>in</strong> which case π is called the axis of θ<br />

<strong>and</strong> a is called the center of θ.<br />

The general projective l<strong>in</strong>ear (respectively, semil<strong>in</strong>ear) groups <strong>and</strong> certa<strong>in</strong><br />

of their subgroups will play an important role throughout this book.<br />

We recall without proof (but will prove it later) a st<strong>and</strong>ard theorem from<br />

the theory of projective spaces.<br />

Theorem 2.4.1. Let P0 = (1, 0, . . . , 0), P1 = (0, 1, 0, . . . , 0), . . . ,<br />

Pn = (0, . . . , 0, 1), Pn+1 = (1, 1, . . . , 1). So P0, P1, . . . , Pn+1 is an ordered<br />

set of n + 2 po<strong>in</strong>ts of P G(n, q), no n + 1 of which lie <strong>in</strong> a hyperplane . If<br />

Q0, Q1, . . . , Qn+1 is any other (not necessarily dist<strong>in</strong>ct) ordered set of n + 1<br />

po<strong>in</strong>ts with no n + 1 <strong>in</strong> a hyperplane, then there is a unique homography of<br />

P G(n, q) mapp<strong>in</strong>g Qi to Pi, 0 ≤ i ≤ n + 1.<br />

If θ is a permutation of the po<strong>in</strong>ts of P G(n, q) that maps the po<strong>in</strong>ts of<br />

each l<strong>in</strong>e to the po<strong>in</strong>ts of some image l<strong>in</strong>e, it follows that it maps the po<strong>in</strong>ts<br />

of each r-dimensional subspace to the po<strong>in</strong>ts of some r-dimensional subspace<br />

<strong>and</strong> it is called a coll<strong>in</strong>eation of P G(n, q). Accord<strong>in</strong>g to the Fundamental<br />

Theorem of Projective <strong>Geometry</strong> (to be proved later), each coll<strong>in</strong>eation of<br />

P G(n, q) is a projective semil<strong>in</strong>ear map.<br />

Theorem 2.4.2. (Fundamental Theorem of Projective <strong>Geometry</strong>) Each<br />

coll<strong>in</strong>eation of P G(n, q) is a projective semil<strong>in</strong>ear map.<br />

A duality of P G(n, q) is a bijection from the po<strong>in</strong>t-set of P G(n, q) to<br />

the set of hyperplanes of P G(n, q) that <strong>in</strong>duces a bijection from the set of<br />

r-dimensional subspaces to the set of subspaces with co-dimension equal to<br />

r. A polarity is a duality that has order 2 as a map. For example, the map<br />

(x0, . . . , xn) ↦→ [x0, . . . , xn] T from po<strong>in</strong>ts to hyperplanes is a duality that is a<br />

correlation.<br />

2.5 Some Comb<strong>in</strong>atorics of F<strong>in</strong>ite Geometries<br />

The material <strong>in</strong> this section extends that <strong>in</strong> Section 1.10. Here we view P V<br />

as a geometry, i.e., not only po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es are elements of the geometry,<br />

but subspaces of all dimensions.


82 CHAPTER 2. ANALYTIC GEOMETRY<br />

A lattice L is a partially ordered set (poset) with the property that any<br />

f<strong>in</strong>ite subset S ⊆ L has a meet (or greatest lower bound), that is, an<br />

element b ∈ L for which<br />

1. b ≤ a for all a ∈ S, <strong>and</strong><br />

2. if c ≤ a for all a ∈ S, then c ≤ b.<br />

And dually, there is a jo<strong>in</strong> (or least upper bound), i.e., an element<br />

b ∈ L for which<br />

1. ′ a ≤ b for all a ∈ S, <strong>and</strong><br />

2. ′ if a ≤ c for all a ∈ S, then b ≤ c.<br />

The meet <strong>and</strong> jo<strong>in</strong> of a two element set S = {x, y} are denoted, respectively,<br />

by x ∧ y <strong>and</strong> x ∨ y. It is easily seen that ∧ <strong>and</strong> ∨ are commutative,<br />

associative, idempotent b<strong>in</strong>ary operations. Moreover, if all 2-element subsets<br />

have meets <strong>and</strong> jo<strong>in</strong>s, then any f<strong>in</strong>ite subset has a meet <strong>and</strong> a jo<strong>in</strong>.<br />

The lattices we will consider have the property that there are no <strong>in</strong>f<strong>in</strong>ite<br />

cha<strong>in</strong>s. Such a lattice has a (unique) least element (denoted ˆ0 or 0L), because<br />

the condition that no <strong>in</strong>f<strong>in</strong>ite cha<strong>in</strong>s exist allows us to f<strong>in</strong>d a m<strong>in</strong>imal element<br />

m, <strong>and</strong> any m<strong>in</strong>imal element m is a m<strong>in</strong>imum, s<strong>in</strong>ce if m ≤ a, then m ∧ a<br />

would be less than m. Similarly, there is a unique largest element 1L (or ˆ1).<br />

For elements a <strong>and</strong> b of a poset, we say a covers b <strong>and</strong> write a ·> b,<br />

provided a > b but there are no elements c with a > c > b. For example,<br />

when U <strong>and</strong> W are l<strong>in</strong>ear subspaces of a vector space, then U ·> W iff U ⊇ W<br />

<strong>and</strong> dim(U) = dim(W ) + 1. A po<strong>in</strong>t of a lattice with ˆ0 is an element that<br />

covers ˆ0. A copo<strong>in</strong>t of a lattice with ˆ1 is an element covered by ˆ1.<br />

Let Vn(q) denote an n-dimensional vector space over Fq = GF (q). The<br />

term k-subspace will denote a k-dimensional subspace. It is fairly easy to<br />

see that the poset Ln(q) of all subspaces of Vn(q) is a lattice with ˆ0 = {0}<br />

<strong>and</strong> ˆ1 = Vn(q). We beg<strong>in</strong> with some count<strong>in</strong>g.<br />

Exercise 2.5.0.1. The number of ordered bases for a k-subspace of Vn(q)<br />

is: (q k − 1)(q k − q)(q k − q 2 ) · · · (q k − q k−1 ). How many ordered, l<strong>in</strong>early<br />

<strong>in</strong>dependent subsets of size k are there <strong>in</strong> Vn(q)?<br />

Solution: Choose a nonzero element v1 of Vn(q) <strong>in</strong> q n − 1 ways. Then<br />

choose v2 so that {v1, v2} is <strong>in</strong>dependent <strong>in</strong> q n − q ways. Then choose v3 so<br />

that {v1, v2, v3} is <strong>in</strong>dependent <strong>in</strong> q n − q 2 ways. Proceed<strong>in</strong>g <strong>in</strong> this fashion


2.5. SOME COMBINATORICS OF FINITE GEOMETRIES 83<br />

we see that there are (q n − 1)(q n − q)(q n − q 2 ) · · · (q n − q k−1 ) ordered k-tuples<br />

of vectors of Vn(q) that form l<strong>in</strong>early <strong>in</strong>dependent sets.<br />

To obta<strong>in</strong> a maximal cha<strong>in</strong> (i.e., a cha<strong>in</strong> of size n + 1 conta<strong>in</strong><strong>in</strong>g one<br />

subspace of each possible dimension) <strong>in</strong> the poset Ln(q) of all subspaces of<br />

Vn(q), we start with the 0-subspace. After we have chosen an i-subspace Ui,<br />

0 ≤ i < n, we can choose an (i + 1)-subspace Ui+1 that conta<strong>in</strong>s Ui, <strong>in</strong> qn−qi qi+1−qi ways, s<strong>in</strong>ce we can take the span of Ui <strong>and</strong> any of the qn − qi vectors not <strong>in</strong><br />

Ui. But an (i + 1)-subspace will arise exactly qi+1 − qi times <strong>in</strong> this manner.<br />

Hence the number of maximal cha<strong>in</strong>s of subspaces <strong>in</strong> Vn(q) is:<br />

This implies that<br />

M(n, q) = (qn − q 0 )<br />

(q 1 − q 0 ) · (qn − q 1 )<br />

(q 2 − q 1 ) · · · (qn − q n−1 )<br />

(q n − q n−1 ) =<br />

= (qn − 1)q(q n−1 − 1)q 2 (q n−2 − 1) · · · q n−1 (q − 1)<br />

(q − 1)q(q − 1)q 2 (q − 1) · · · q n−1 (q − 1)<br />

= (qn − 1)(qn−1 − 1) · · · (q − 1)<br />

(q − 1) n .<br />

M(n, q) = (q n−1 + q n−2 + · · · + q + 1)(q n−2 + · · · q + 1) · · · (q + 1).<br />

We may consider M(n, q) as a polynomial <strong>in</strong> q for each <strong>in</strong>teger n. When<br />

the <strong>in</strong>determ<strong>in</strong>ate q is replaced by a prime power, we have the number of<br />

maximal cha<strong>in</strong>s <strong>in</strong> the poset P G(n, q).<br />

Note: When q is replaced by 1, we have M(n, 1) = n!, which is the<br />

number of maximal cha<strong>in</strong>s <strong>in</strong> the poset of subsets of an n-set.<br />

<br />

n<br />

The Gaussian number (or Gaussian coefficient) can be de-<br />

k<br />

q<br />

f<strong>in</strong>ed as<br />

the number of k-subspaces of Vn(q). This holds for 0 ≤ k ≤ n, where<br />

n<br />

= 1.<br />

0<br />

q<br />

<br />

n<br />

To evaluate , count the number N of pairs (U, C) where U is a<br />

k<br />

q<br />

k-subspace <strong>and</strong> C is a maximal cha<strong>in</strong> that conta<strong>in</strong>s U. S<strong>in</strong>ce every maximal<br />

cha<strong>in</strong> conta<strong>in</strong>s one subspace of dimension k, clearly N = M(n, q). On the<br />

=


84 CHAPTER 2. ANALYTIC GEOMETRY<br />

other h<strong>and</strong>, we get each maximal cha<strong>in</strong> uniquely by append<strong>in</strong>g to a maximal<br />

cha<strong>in</strong> <strong>in</strong> the poset of subspaces of U – of which there are M(k, q) – a maximal<br />

cha<strong>in</strong> <strong>in</strong> the poset of all subspaces of Vn(q) that conta<strong>in</strong> U. There are M(n −<br />

k, q) of these, s<strong>in</strong>ce the poset {W : U ⊆ W ⊆ V } is isomorphic to the poset<br />

of subspaces of V/U, <strong>and</strong> dim(V/U) = n − k. Hence<br />

which implies that<br />

M(n, q) =<br />

n<br />

k<br />

<br />

q<br />

=<br />

n<br />

k<br />

<br />

q<br />

· M(k, q) · M(n − k, q),<br />

M(n, q)<br />

M(k, q)M(n − k, q) =<br />

<br />

n<br />

n − k<br />

= (qn−1 + q n−2 + · · · + q + 1)(q n−2 + q n−3 + · · · + q + 1) · · · (q + 1)<br />

(q k−1 + · · · + 1) · · · (q + 1)(q n−k−1 + · · · + q + 1) · · · (q + 1)<br />

= (qn−1 + · · · + 1)(q n−2 + · · · + 1) · · · (q n−k + · · · + 1)<br />

(q k−1 + · · · + 1) · · · (q + 1)<br />

= (qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)<br />

(qk − 1)(qk−1 .<br />

− 1) · · · (q − 1)<br />

There is a satisfactory way to generalize the notion <strong>and</strong> the notation<br />

of Gaussian coefficient to the mult<strong>in</strong>omial case. However, for our present<br />

purposes it suffices to consider just the b<strong>in</strong>omial case. Def<strong>in</strong>e (0)q = 1, <strong>and</strong><br />

for a positive <strong>in</strong>teger j put (j)q = 1 + q + q 2 + · · · + q j−1 . Then put (0)!q = 1<br />

<strong>and</strong> for a positive <strong>in</strong>teger k, put (k)!q = (1)q(2)q · · · (k)q. So (n)!q = M(n, q).<br />

With this notation we have<br />

<br />

n (n)!q<br />

=<br />

. (2.1)<br />

k<br />

q (k)!q(n − k)!q<br />

<br />

n<br />

For some purposes it is better to th<strong>in</strong>k of as a polynomial <strong>in</strong> an<br />

k<br />

q<br />

<br />

n<br />

<strong>in</strong>determ<strong>in</strong>ate q rather than as a of function of a prime power q. That<br />

k<br />

q<br />

is a polynomial <strong>in</strong> q is an easy corollary of the follow<strong>in</strong>g exercise.<br />

<br />

q


2.5. SOME COMBINATORICS OF FINITE GEOMETRIES 85<br />

Exercise 2.5.0.2. Prove the follow<strong>in</strong>g recurrence:<br />

<br />

n<br />

k<br />

<br />

n − 1<br />

=<br />

k<br />

+ q n−k<br />

<br />

n − 1<br />

k − 1<br />

q<br />

Solution of exercise: Pick a hyperplane H, i.e., an (n − 1)-subspace of<br />

n − 1<br />

Vn(a). There are<br />

k-subspaces conta<strong>in</strong>ed <strong>in</strong> H. The others meet<br />

k<br />

q <br />

n − 1<br />

H <strong>in</strong> a (k−1)-subspace. Each of the<br />

(k−1)-subspaces <strong>in</strong> H is con-<br />

k − 1<br />

<br />

q<br />

n − k + 1<br />

ta<strong>in</strong>ed <strong>in</strong><br />

=<br />

1<br />

qn−k+1 <br />

−1<br />

n − k<br />

k-subspaces of V , of which<br />

=<br />

q−1<br />

1<br />

q<br />

qn−k−1 q−1 are conta<strong>in</strong>ed <strong>in</strong> H. This leaves qn−k+1−1 q−1 − qn−k−1 q−1<br />

= qn−k+1−q n−k<br />

= q q−1<br />

n−k<br />

not conta<strong>in</strong>ed <strong>in</strong> H, from which the desired recurrence follows.<br />

Exercise 2.5.0.3. Prove the follow<strong>in</strong>g recurrence:<br />

<br />

n + 1<br />

k<br />

<br />

n<br />

=<br />

k − 1<br />

+ q k<br />

<br />

n<br />

k<br />

q<br />

Solution: (H<strong>in</strong>t: Use the two previous exercises.) Alternatively, the number<br />

of k-dimensional subspaces of Vn(q) is equal to the number of k × n<br />

matrices over F which are <strong>in</strong> reducedechelon form <strong>and</strong> have no zero rows.<br />

n<br />

This gives another way to calculate . But now the Gaussian coef-<br />

k<br />

q<br />

ficients can be given a comb<strong>in</strong>atorial <strong>in</strong>terpretation for all positive <strong>in</strong>teger<br />

values of q greater than 1, not just prime powers. For let Q be any set of size<br />

q, conta<strong>in</strong><strong>in</strong>g two dist<strong>in</strong>guished elements called 0 <strong>and</strong> 1. Then the def<strong>in</strong>ition<br />

of a matrix <strong>in</strong> reduced echelon form over Q makes sense, even through the<br />

algebraic <strong>in</strong>terpretation is lost. The number of k × n matrices <strong>in</strong> reduced<br />

echelon form with no zero rows is given by a polynomial <strong>in</strong> q. But, for <strong>in</strong>f<strong>in</strong>itely<br />

many values (all the prime powers), this polynomial conicides with<br />

the Gaussian coefficient (which is also a polynomial). Hence they are identically<br />

equal. (Expla<strong>in</strong> this.) Us<strong>in</strong>g this matrix <strong>in</strong>terpretation we are able<br />

to establish the recurrence relation for the Gaussian coefficients given <strong>in</strong> this<br />

exercise.<br />

Consider k × (n + 1) matrices <strong>in</strong> reduced echelon form, with no zero rows.<br />

Divide them <strong>in</strong>to two classes: those for which the lead<strong>in</strong>g 1 <strong>in</strong> the last row<br />

q<br />

q<br />

<br />

<br />

.<br />

q<br />

.<br />

q<br />

q


86 CHAPTER 2. ANALYTIC GEOMETRY<br />

occurs <strong>in</strong> the last column; <strong>and</strong> the others. Those of the first type correspond<br />

to (k − 1) × n matrices <strong>in</strong> reduced echelon with no zero rows, s<strong>in</strong>ce the last<br />

row <strong>and</strong> column are zero apart from the bottom-right entry. Those of the<br />

second type consist of a k × n matrix <strong>in</strong> reduced echelon with no zero rows,<br />

with a column conta<strong>in</strong><strong>in</strong>g arbitrary elements adjo<strong>in</strong>ted on the right. S<strong>in</strong>ce<br />

there are q k choices for this column, the recurrence relation follows.<br />

Note that the relation of the previous exercise reduces to the b<strong>in</strong>omial<br />

recurrence when q = 1. However, unlike the b<strong>in</strong>omial recurrence, it is not<br />

‘symmetric’.<br />

<br />

n<br />

Exercise 2.5.0.4. Show that =<br />

k<br />

q<br />

<br />

l≥0 αlql , where αl is the number of<br />

partitions of l <strong>in</strong>to at most k parts, each of which is at most n − k.<br />

Solution: If A is a k × n matrix <strong>in</strong> reduce echelon form, suppose that the<br />

lead<strong>in</strong>g 1 of row i is <strong>in</strong> position ci, 1 ≤ i ≤ k. The ith row has its first nonzero<br />

entry equal to 1 <strong>in</strong> the ci position, <strong>and</strong> then zeros <strong>in</strong> k−i positions to the right<br />

of the lead<strong>in</strong>g 1. The rema<strong>in</strong><strong>in</strong>g (n−ci)−(k −i) = n−k −ci +i positions can<br />

each be filled with any of q elements, giv<strong>in</strong>g qn−k−ci+i ways to fill <strong>in</strong> the ith<br />

row. This means that there are ql ways to complete this row reduced echelon<br />

matrix, where l = (n − k − c1 + 1) + (n − k − c2 + 2) + · · · + (n − k − ck + k).<br />

It is easy to check that (n − k − c1 + 1, n − k − c2 + 2, . . . , n − k − ck + k) is a<br />

partition of l <strong>in</strong>to at most k (nonzero) parts, each of which is at most n − k.<br />

Conversely, if (λ1, λ2, . . . , λk) is a partition of l <strong>in</strong>to at most k parts, each of<br />

which is at most n − k, we can put ci = n − k + i − λi to obta<strong>in</strong> the pattern<br />

of 1’s <strong>in</strong> a row reduced matrix which can then be completed <strong>in</strong> ql ways.<br />

<br />

n<br />

If we regard a Gaussian coefficient as a function of the real variable<br />

k<br />

q<br />

q (where n <strong>and</strong> k are fixed <strong>in</strong>tegers), then we f<strong>in</strong>d that the limit as q goes to<br />

1 of a Gaussian coefficient is a b<strong>in</strong>omial coefficient.<br />

Exercise 2.5.0.5.<br />

limq→1<br />

n<br />

k<br />

<br />

q<br />

=<br />

<br />

n<br />

.<br />

k<br />

Solution: Us<strong>in</strong>g L’Hospital’s Rule we have (for positive a <strong>and</strong> b):<br />

q<br />

limq→1<br />

a − 1<br />

qb − 1<br />

= limq→1<br />

aqa−1 a<br />

=<br />

bqb−1 b .


2.5. SOME COMBINATORICS OF FINITE GEOMETRIES 87<br />

So<br />

= lim<br />

q → 1<br />

n q − 1<br />

qk <br />

lim<br />

q → 1<br />

− 1<br />

limq→1<br />

n<br />

k<br />

<br />

n−1 q − 1<br />

qk−1 <br />

· · ·<br />

− 1<br />

= n n − 1 n − k + 1<br />

· · ·<br />

k k − 1 1<br />

q<br />

=<br />

lim<br />

q → 1<br />

<br />

n<br />

.<br />

k<br />

<br />

n−k+1 q − 1<br />

q − 1<br />

<br />

n<br />

So when the <strong>in</strong>determ<strong>in</strong>ate q is replaced by 1 <strong>in</strong> we obta<strong>in</strong><br />

k<br />

q<br />

n<br />

. k<br />

Because of this reason the Gaussian coefficients are called the “q-analogs” of<br />

the b<strong>in</strong>omial coeffice<strong>in</strong>t.<br />

Exercise 2.5.0.6. (The q-b<strong>in</strong>omial Theorem) Prove that:<br />

(1 + x)(1 + qx) · · · (1 + q n−1 n<br />

x) = q i(i−1)<br />

<br />

n<br />

2 x<br />

i<br />

q<br />

i , for n ≥ 1.<br />

Solution: The proof is a straightforward <strong>in</strong>duction. For n = 1, both sides<br />

are 1 + x. Suppose that the result is true for n. Then<br />

n<br />

(1 + q i <br />

n<br />

x) = q k)k−1)/2<br />

<br />

n<br />

· (1 + q<br />

k<br />

n x).<br />

i=0<br />

k=0<br />

i=0<br />

x<br />

q<br />

k<br />

The coefficient of xk on the right is<br />

q k(k−1)/2<br />

<br />

n<br />

+ q<br />

k<br />

q<br />

(k−1)(k−2)/2<br />

<br />

n<br />

k − 1<br />

= q k(k−1)/2<br />

<br />

n<br />

+ q<br />

k<br />

q<br />

n−k+1<br />

<br />

n<br />

k − 1<br />

= q k(k−1)/2<br />

<br />

n + 1<br />

,<br />

k<br />

q<br />

as required.<br />

<br />

q<br />

q<br />

n<br />

<br />

Lett<strong>in</strong>g q → 1, we obta<strong>in</strong> the usual B<strong>in</strong>omial Theorem.<br />

q


88 CHAPTER 2. ANALYTIC GEOMETRY<br />

Exercise 2.5.0.7. Prove that:<br />

n + m<br />

k<br />

<br />

q<br />

=<br />

k<br />

i=0<br />

n<br />

i<br />

<br />

q<br />

m<br />

k − i<br />

Solution: From the previous exercise we have:<br />

n+m <br />

k=0<br />

n + m<br />

k<br />

<br />

<br />

q<br />

q<br />

k(k−1)<br />

2 x k<br />

q<br />

q<br />

(n−i)(k−i) .<br />

= (1 + x)(1 + qx) · · · (1 + q n−1 x) · (1 + q n x)(1 + q n+1 x) · · · (1 + q n+m−1 x)<br />

= (1 + x)(1 + qx) · · · (1 + q n−1 x) · (1 + (q n x))(1 + q(q n x)) · · · (1 + q m−1 · (q n x))<br />

=<br />

n<br />

i=0<br />

n<br />

i<br />

<br />

q<br />

q<br />

i(i−1)<br />

2 x i<br />

<br />

·<br />

m<br />

j=0<br />

m<br />

j<br />

<br />

q<br />

· q j(j−1)<br />

2 · (q n x) j<br />

From the top l<strong>in</strong>e it is clear that the coefficient on xk is<br />

<br />

n + m<br />

k<br />

q<br />

q<br />

k(k−1)<br />

2 .<br />

On the other h<strong>and</strong>, the coefficient on x k is seen to be<br />

k<br />

i=0<br />

n<br />

i<br />

<br />

q<br />

q<br />

i(i−1)<br />

2 ·<br />

m<br />

k − i<br />

<br />

q<br />

q<br />

(k−i)(k−i−1)<br />

2 q n(k−i) .<br />

After some simplification, we obta<strong>in</strong> the equality asked for <strong>in</strong> the exercise.<br />

Def<strong>in</strong>e the Gaussian polynomials gn(x) ∈ R[x] as follows: g0(x) =<br />

1; gn(x) = (x − 1)(x − q) · · · (x − q n−1 ) for n > 0. Clearly the Gaussian<br />

polynomials form a basis for R[x] as a vector space over R.<br />

Theorem 2.5.1. The Gaussian coefficients connect the usual monomials to<br />

the Gaussian polynomials, viz.:<br />

(i) xn = n n<br />

k<br />

k=0 (x − 1) ;<br />

k<br />

(ii) xn = <br />

n n<br />

k=0 gk(x).<br />

k<br />

q<br />

<br />

.


2.5. SOME COMBINATORICS OF FINITE GEOMETRIES 89<br />

Proof. (i) is a special case of the b<strong>in</strong>omial theorem. And (ii) becomes (i) if<br />

q = 1. To prove (ii), suppose V, W are vector spaces over F = GF (q) with<br />

dim(V ) = n <strong>and</strong> |W | = r. Here r = q t is any power of q with t ≥ n. Then<br />

|HomF (V, W )| = r n .<br />

Now classify f ∈ HomF (V, W ) accord<strong>in</strong>g to the kernel subspace f −1 (0) ⊆<br />

V . Given some subspace U ⊆ V , let {u1, . . . , uk} be an ordered basis of<br />

U <strong>and</strong> extend it to an ordered basis {u1, . . . , uk, uk+1, . . . , un} of V . Then<br />

f −1 (0) = U iff f(ui) = 0, 1 ≤ i ≤ k, <strong>and</strong> f(uk+1), . . . , f(un) are l<strong>in</strong>early<br />

<strong>in</strong>dependent vectors <strong>in</strong> W . Now<br />

r n = <br />

(r − 1)(r − q) · · · (r − q n−r(U)−1 )<br />

=<br />

=<br />

n<br />

k=0<br />

n<br />

k=0<br />

U⊆V<br />

n<br />

k<br />

n<br />

k<br />

<br />

(Use the fact that<br />

(r − 1)(r − q) · · · (r − q<br />

q<br />

n−k−1 )<br />

<br />

=<br />

(r − 1)(r − q) · · · (r − q<br />

q<br />

k−1 )<br />

n<br />

k=0<br />

n<br />

k<br />

n<br />

k<br />

<br />

<br />

q<br />

<br />

=<br />

gk(r).<br />

q<br />

n<br />

n − k<br />

As r can be any power of q as long as r ≥ qn , the polynomials xn <br />

<strong>and</strong><br />

n n<br />

k=0 gk(x) agree on <strong>in</strong>f<strong>in</strong>itely many values of x <strong>and</strong> hence must be<br />

k<br />

q<br />

identical.<br />

The <strong>in</strong>verse connection can be obta<strong>in</strong>ed from the q-b<strong>in</strong>omial theorem (c.f.<br />

Ex. 2.5.0.6<br />

Exercise 2.5.1.1. Prove that<br />

gn(x) =<br />

n<br />

i=0<br />

n<br />

i<br />

<br />

q<br />

q<br />

(n−i 2 ) n−i i<br />

(−1) x .<br />

<br />

)<br />

q


90 CHAPTER 2. ANALYTIC GEOMETRY<br />

(H<strong>in</strong>t: In Ex. 2.5.0.6 first replace x with −x <strong>and</strong> then replace q with q −1<br />

<strong>and</strong> simplify.)<br />

If {an} ∞ n=0 is a given sequence of numbers we have considered its ordi-<br />

nary generat<strong>in</strong>g function <br />

n≥0 anxn <strong>and</strong> its exponential generat<strong>in</strong>g function<br />

xn<br />

n≥0<br />

an . There is a vast theory of Eulerian generat<strong>in</strong>g functions def<strong>in</strong>ed<br />

n!<br />

by xn<br />

n≥0<br />

an . The next exercise shows that two specific Eulerian generat<strong>in</strong>g<br />

n!q<br />

functions are <strong>in</strong>verses of each other.<br />

Exercise 2.5.1.2.<br />

<br />

(−t)<br />

k≥0<br />

kq (k2) k!q<br />

<br />

k≥0<br />

tk <br />

= 1.<br />

k!q<br />

(H<strong>in</strong>t: Compute the coefficient on t n separately for n = 0 <strong>and</strong> n ≥ 1.<br />

Then use the q-b<strong>in</strong>omial theorem with x = −1.)<br />

Exercise 2.5.1.3. Gauss <strong>in</strong>version: Let {ui} ∞ i=0 <strong>and</strong> {vi} ∞ i=0 be two sequences<br />

of real numbers. Then<br />

vn =<br />

n<br />

i=0<br />

n<br />

i<br />

<br />

q<br />

ui (n ≥ 0) ⇔ un =<br />

n<br />

i=0<br />

(−1) n−i q (n−i<br />

2 )<br />

<br />

n<br />

vi (n ≥ 0).<br />

i<br />

(H<strong>in</strong>t: Use Exercise 2.5.1.2<br />

Solution: Let A(t) = <br />

k≥0 aktk /k!q <strong>and</strong> B(t) = <br />

k≥0 bktk /k!q. Then<br />

A(t) = B(t) <br />

i≥0 ti /i!q if <strong>and</strong> only if B(t) = A(t) <br />

i≥0 (−1)iq (i 2) i t /i!q. Now<br />

compute the coefficients on tn /n!q on the two sides of these two equations.<br />

2.6 Some <strong>Geometry</strong> <strong>in</strong> P G(2, q)<br />

We have not discussed conics yet, but the reader can check out the appropriate<br />

latter sections if necessary to follow the next historical comment. In 1975<br />

Bruen <strong>and</strong> Thas [BT75] showed that if F is a set of q + 1 po<strong>in</strong>ts of P G(2, q)<br />

<strong>and</strong> C is a nondegenerate conic <strong>in</strong> P G(2, q) such that each l<strong>in</strong>e meet<strong>in</strong>g at<br />

least two po<strong>in</strong>ts of F misses C, then F must be a l<strong>in</strong>e (exterior to C). This<br />

was extended by Segre <strong>and</strong> Korchmáros [SK77] to <strong>in</strong>clude the case q odd.<br />

Ten years later Blokhuis <strong>and</strong> Wilbr<strong>in</strong>k [BW87] generalized the result to the<br />

follow<strong>in</strong>g.<br />

q


2.6. SOME GEOMETRY IN P G(2, Q) 91<br />

Theorem 2.6.1. Let A <strong>and</strong> B be subsets of P G(2, q) such that<br />

(i) |A| = |B| = q + 1;<br />

(ii) A ∩ B = ∅;<br />

(iii) Every l<strong>in</strong>e meet<strong>in</strong>g A meets B.<br />

Then B is a l<strong>in</strong>e.<br />

Proof. Each l<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g a po<strong>in</strong>t P of A conta<strong>in</strong>s precisely one po<strong>in</strong>t of B,<br />

as otherwise there would be a l<strong>in</strong>e through P miss<strong>in</strong>g B. If B is not a l<strong>in</strong>e,<br />

let Q <strong>and</strong> R be two po<strong>in</strong>ts of B, so there must be some po<strong>in</strong>t R of 〈Q, R〉<br />

through which there is some l<strong>in</strong>e ℓ conta<strong>in</strong><strong>in</strong>g no po<strong>in</strong>t of B, <strong>and</strong> hence no<br />

po<strong>in</strong>t of A. Hence we may take A <strong>and</strong> B to be subsets of the aff<strong>in</strong>e plane<br />

AG(2, q) = P G(2, q) \ ℓ, which we identify with F q 2. So each po<strong>in</strong>t a of<br />

AG(2, q) will be denoted by a = a1 + i · a2, where a1, a2 ∈ Fq <strong>and</strong> i is <strong>and</strong><br />

element of F q 2 for which 1, i form a basis for F q 2 as a vector space over Fq.<br />

Let a = a1 + i · a2 ∈ A <strong>and</strong> let b = b1 + i · b2, b ′ = b ′ 1 + i · b′ 2 ∈ B with<br />

b = b ′ . Suppose we could have (a − b) q−1 = (a − b ′ ) q−1 , so there exists a<br />

nonzero t ∈ Fq such that a − b = t(a − b ′ ). This implies that<br />

(t − 1)a1 + b1 = tb ′ 1 (2.2)<br />

(t − 1)a2 + b2 = tb ′ 2. (2.3)<br />

Let ℓx + my + n = 0 be the equation of a l<strong>in</strong>e L conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>ts a<br />

of A <strong>and</strong> b of B.<br />

Hence<br />

so<br />

From Eqs. 2.2 <strong>and</strong> 2.3 we f<strong>in</strong>d<br />

ℓa1 + ma2 + n = 0 (2.4)<br />

ℓb1 + mb2 + n = 0. (2.5)<br />

(t − 1)(ℓa1 + ma2) + (ℓb1 + mb2) = t(ℓb ′ 1 + mb′ 2 ),<br />

(t − 1)(ℓa1 + ma2 + n) + (ℓb − 1 + mb2 + n) = t(ℓb ′ 1 + mb′ 2 + n).<br />

Then from Eqs. 2.4 <strong>and</strong> 2.5 it follows that<br />

ℓb ′ 1 + mb′ 2 + n = 0,


92 CHAPTER 2. ANALYTIC GEOMETRY<br />

imply<strong>in</strong>g that b ′ is on the l<strong>in</strong>e L, contradict<strong>in</strong>g the observation made above<br />

that each l<strong>in</strong>e through a po<strong>in</strong>t of A lies on a unique po<strong>in</strong>t of B. Hence we<br />

have established that if a ∈ A <strong>and</strong> b, b ′ are dist<strong>in</strong>ct po<strong>in</strong>ts of B, then<br />

Put<br />

(a − b) q−1 = (a − b ′ ) q−1 . (2.6)<br />

f(x) = <br />

(x − b) q−1 .<br />

b∈B<br />

By Eq. 2.6, we see that for each a ∈ A, f(a) is the sum of q + 1 dist<strong>in</strong>ct<br />

elements, each of which is a (q + 1) st root of 1. This says that f(a) is the<br />

sum of the dist<strong>in</strong>ct roots of x q+1 −1. Hence f(a) = 0. Sof(x) is a polynomial<br />

of degree at most q − 1 for which f(a) = 0 for each of the q + 1 values of<br />

a ∈ A, i.e., f(x) is identically zero. On the other h<strong>and</strong> the coefficient of x q−1<br />

<strong>in</strong> f(x) is q + 1 = 1 ∈ Fq. This contradiction leads us to conclude that B<br />

actually must be a l<strong>in</strong>e.<br />

2.7 Some <strong>Geometry</strong> <strong>in</strong> P G(3, q)<br />

Here we collect some rather elementary results that are needed later.<br />

Lemma 2.7.1. In Σ = P G(3, q) the number of l<strong>in</strong>es<br />

(i) <strong>in</strong> Σ is (q 2 + q + 1)(q 2 + 1);<br />

(ii) skew to a given l<strong>in</strong>e is q 4 ;<br />

(iii) meet<strong>in</strong>g two skew l<strong>in</strong>es is (q + 1) 2 ;<br />

(iv) skew to each of two skew l<strong>in</strong>es is q(q 2 − 1)(q − 1);<br />

(v) meet<strong>in</strong>g three skew l<strong>in</strong>es is q + 1.<br />

Proof. These facts have easy proofs that we leave as exercises.<br />

Lemma 2.7.2. (J. A. Thas [Th73]) If ℓ is a set of q + 1 po<strong>in</strong>ts <strong>in</strong> P G(3, q)<br />

which has a non-empty <strong>in</strong>tersection with every every plane, then ℓ is a l<strong>in</strong>e<br />

of P G(3, q).<br />

Proof. Let ℓ = {x0, x1, . . . , xq} <strong>and</strong> suppose that ℓ is not a l<strong>in</strong>e. Then the<br />

l<strong>in</strong>e ℓ ′ = 〈x1, x2〉 conta<strong>in</strong>s a po<strong>in</strong>t y with y ∈ ℓ. Let ℓ ′′ be a l<strong>in</strong>e such that<br />

y ∈ ℓ ′′ <strong>and</strong> ℓ ′′ ∩ ℓ = ∅. S<strong>in</strong>ce each plane through ℓ ′′ conta<strong>in</strong>s at least one<br />

po<strong>in</strong>t of ℓ (by hypothesis), <strong>and</strong> s<strong>in</strong>ce ℓ ′′ ∩ ℓ = ∅ <strong>and</strong> |ℓ| = q + 1, each plane<br />

through ℓ ′′ must conta<strong>in</strong> exactly one po<strong>in</strong>t of ℓ. As |ℓ ∩ 〈ℓ ′ , ℓ ′′ 〉| ≥ 2, we have<br />

a contradiction. Hence ℓ must be a l<strong>in</strong>e.


2.7. SOME GEOMETRY IN P G(3, Q) 93<br />

Start with three mutually skew l<strong>in</strong>es ℓ1, ℓ2, ℓ3, so no plane conta<strong>in</strong>s any<br />

two of these l<strong>in</strong>es. If P is any po<strong>in</strong>t on ℓ2, the plane π = 〈ℓ1, P 〉 meets ℓ3<br />

<strong>in</strong> a unique po<strong>in</strong>t R. So the l<strong>in</strong>e 〈P.R〉 meets all three l<strong>in</strong>es ℓ1, ℓ2, ℓ3. If we<br />

do this for each po<strong>in</strong>t P of ℓ2, we get q + 1 l<strong>in</strong>es m1, m2, . . . , mq+1 that are<br />

pairwise skew <strong>and</strong> are all transversals of the the orig<strong>in</strong>al triple of l<strong>in</strong>es. Now<br />

take any three of the transversals <strong>and</strong> repeat the process to get q + 1 l<strong>in</strong>es<br />

ℓ1, ℓ2, . . . , ℓq+1 (<strong>in</strong>clud<strong>in</strong>g the orig<strong>in</strong>al triple of l<strong>in</strong>es) that are pairwise skew.<br />

The set {ℓ1, . . . , ℓq+1} of q + 1 pairwise skew l<strong>in</strong>es is called a regulus, <strong>and</strong> the<br />

set {m1, . . . , mq+1} is its opposite regulus. Us<strong>in</strong>g the fact that the group of<br />

homographies is sharply transitive on ordered sets of five po<strong>in</strong>ts with no four<br />

on a plane, it is a rout<strong>in</strong>e exercise to show that the homography group is<br />

transitive on reguli.<br />

Let S = (P, B, I) be a po<strong>in</strong>t-l<strong>in</strong>e geometry with (nonempty) po<strong>in</strong>t set P ,<br />

(nonempty) l<strong>in</strong>e set B <strong>and</strong> <strong>in</strong>cidence relation I. We say that S is a partial<br />

geometry P aG(α, s, t) provided the follow<strong>in</strong>g hold:<br />

P aG (i) Each l<strong>in</strong>e of S has 1 + s po<strong>in</strong>ts, s ≥ 2.<br />

P aG (ii) Each po<strong>in</strong>t of S is on t + 1 l<strong>in</strong>es.<br />

P aG (iii) If x ∈ P , M ∈ B, <strong>and</strong> x is not <strong>in</strong>cident with M, then there are<br />

α po<strong>in</strong>ts of M coll<strong>in</strong>ear with x.<br />

Often we use the follow<strong>in</strong>g notation. If x <strong>and</strong> y are po<strong>in</strong>ts of an <strong>in</strong>cidence<br />

geometry for which there is a l<strong>in</strong>e ℓ <strong>in</strong>cident with both x <strong>and</strong> y, we write<br />

x ∼ y. If we want to <strong>in</strong>dicate that no such l<strong>in</strong>e exists, we write x ∼ y..<br />

Similarly, of ℓ <strong>and</strong> m are two l<strong>in</strong>es through a common po<strong>in</strong>t, we write ℓ ∼ m,<br />

<strong>and</strong> if the l<strong>in</strong>es ℓ <strong>and</strong> m are known to have no po<strong>in</strong>t <strong>in</strong> common, we write<br />

ℓ ∼ m.<br />

We now give a ”classical” example. The reader will probably see immediately<br />

how to generalize this example, but we concentrate on this particular<br />

case because of its usefulness <strong>in</strong> the study of certa<strong>in</strong> generalized quadrangles.<br />

Construction 2.7.3. The partial geometry H3 q . Start with a fixed l<strong>in</strong>e<br />

ℓ0 <strong>in</strong> P G(3, q). Let P be the set of q3 + q2 po<strong>in</strong>ts of P G(3, q) \ ℓ0. Let B<br />

be the set of q4 l<strong>in</strong>es of P G(3, q) not <strong>in</strong>tersect<strong>in</strong>g ℓ0. F<strong>in</strong>ally, let I be the<br />

<strong>in</strong>cidence <strong>in</strong>herited from P G(3, q). Then S = (P, B, I) := H 3 q<br />

clearly is an<br />

<strong>in</strong>cidence geometry with q + 1 po<strong>in</strong>ts on each l<strong>in</strong>e <strong>and</strong> q 2 l<strong>in</strong>es through each<br />

po<strong>in</strong>t. Now suppose x ∈ P <strong>and</strong> ℓ ∈ B with x not <strong>in</strong>cident with ℓ. Let π be<br />

the plane π = 〈x, ℓ〉. Then ℓ0 must meet π <strong>in</strong> a unique po<strong>in</strong>t y. The l<strong>in</strong>e<br />

m = 〈x, y〉 of π meets ℓ <strong>in</strong> a po<strong>in</strong>t z. But m is the only l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g x with a


94 CHAPTER 2. ANALYTIC GEOMETRY<br />

po<strong>in</strong>t of ℓ that also meets ℓ0. Hence the other q po<strong>in</strong>ts of ℓ are coll<strong>in</strong>ear with<br />

x on a l<strong>in</strong>e of S. It follows that S is a partial geometry P aG(q, q, q 2 − 1)<br />

which we denote by H 3 q .<br />

Suppose that ℓ1 <strong>and</strong> ℓ2 are two dist<strong>in</strong>ct l<strong>in</strong>es of S meet<strong>in</strong>g at a po<strong>in</strong>t y.<br />

Let m1 <strong>and</strong> m2 be two dist<strong>in</strong>ct l<strong>in</strong>es both meet<strong>in</strong>g ℓ1 <strong>and</strong> ℓ2 at po<strong>in</strong>ts different<br />

from y. S<strong>in</strong>ce the plane π = 〈ℓ1, ℓ2〉 must conta<strong>in</strong> both l<strong>in</strong>es µ1 <strong>and</strong> µ2, those<br />

two l<strong>in</strong>es also must meet at a po<strong>in</strong>t. This says that S satisfies the Axiom of<br />

Veblen. It turns out to be useful <strong>in</strong> the study of GQ that a converse result<br />

holds.<br />

Theorem 2.7.4. (J. A. Thas <strong>and</strong> F. De Clerck [TDC77]) Let S = (P, B, I)<br />

be a partial geometry satisfy<strong>in</strong>hg P = ∅ = B <strong>and</strong><br />

(i) Each l<strong>in</strong>e of S has 1 + q po<strong>in</strong>ts, q ≥ 2.<br />

(ii) Each po<strong>in</strong>t of S is on q 2 l<strong>in</strong>es.<br />

(iii) If x ∈ P , M ∈ B, <strong>and</strong> x is not <strong>in</strong>cident with M, then there are<br />

α = q po<strong>in</strong>ts of M coll<strong>in</strong>ear with x.<br />

(iv) S satisfies the Axiom of Veblen: Let L1, L2 be dist<strong>in</strong>ct l<strong>in</strong>es of S<br />

concurrent at a po<strong>in</strong>t x. Let M1, M2 be dist<strong>in</strong>ct l<strong>in</strong>es of S not <strong>in</strong>cident with<br />

x but both concurrent with both L1 <strong>and</strong> L2. Then M1 meets M2.<br />

Then S is isomorphic to H 3 q .<br />

Proof. 1. |P | = q 3 + q 2 ; |B| = q 4 .<br />

Proof. Fix L ∈ B. L is <strong>in</strong>cident with 1 + q po<strong>in</strong>ts. Each po<strong>in</strong>t of<br />

P \ L is coll<strong>in</strong>ear with q po<strong>in</strong>ts of L. Each po<strong>in</strong>t of L is coll<strong>in</strong>ear<br />

with (∗q 2 − 1)q po<strong>in</strong>ts of P \ L. So the total number of po<strong>in</strong>ts is<br />

1 + q + (1 + q)(q 2 − 1)q/q = q 2 + q 3 . And (q 2 + q 3 )q 2 = |B|(1 + q),<br />

imply<strong>in</strong>g |B| = q 4 .<br />

2. Let L, M be dist<strong>in</strong>ct l<strong>in</strong>es concurrent at the po<strong>in</strong>t x. Let N <strong>and</strong> N ′ be<br />

dist<strong>in</strong>ct l<strong>in</strong>es, not through x, meet<strong>in</strong>g L <strong>and</strong> M at four dist<strong>in</strong>ct po<strong>in</strong>ts.<br />

The q l<strong>in</strong>es through x meet<strong>in</strong>g N are also the q l<strong>in</strong>es through x meet<strong>in</strong>g<br />

N ′ .<br />

Proof. By the axiom of Veblen (AV), N <strong>and</strong> N ′ meet at a po<strong>in</strong>t y. Label<br />

z = N ∩ M. Let M ′ be any l<strong>in</strong>e through x meet<strong>in</strong>g N, L = M ′ = M.


2.7. SOME GEOMETRY IN P G(3, Q) 95<br />

So N <strong>and</strong> M are two l<strong>in</strong>es through z, <strong>and</strong> both M ′ <strong>and</strong> N ′ meet both<br />

N <strong>and</strong> M (at four dist<strong>in</strong>ct po<strong>in</strong>ts different from z). Hence by AV it<br />

must be that M ′ meets N ′ .<br />

3. Let y, z be noncoll<strong>in</strong>ear po<strong>in</strong>ts, L1IyIL2, L1 = L2 <strong>and</strong> M1IzIM2,<br />

M1 = M2. If M1 meets both L1 <strong>and</strong> L2 <strong>and</strong> M2 meets L2, then M2<br />

meets L1 also.<br />

Proof. Let x = M1 ∩ L2. Then M2 meets L2 <strong>and</strong> M1, L1 meets L2 <strong>and</strong><br />

M1. So by AV, M2 meets L1.<br />

This last result says, <strong>in</strong> effect, that if x <strong>and</strong> y are not coll<strong>in</strong>ear, if xIL1,<br />

<strong>and</strong> if M1, . . . , Mq xL1, . . . , Lq are the l<strong>in</strong>es through x meet<strong>in</strong>g M1, then<br />

Li meets Mj for all i, j, 1 ≤ i, j ≤ q.<br />

4. Now suppose that L, M are dist<strong>in</strong>ct l<strong>in</strong>es concurrent at x. We def<strong>in</strong>e a<br />

substructure S(L, M) = (P ∗ , B ∗ , I ∗ ) of S. Here B ∗ = B1 ∪ B2, where<br />

B1 is the set of q(q − 1) l<strong>in</strong>es N for which x IN <strong>and</strong> N meets both L<br />

<strong>and</strong> M, <strong>and</strong> B2 is the set of the q l<strong>in</strong>es through x <strong>and</strong> concurrent with<br />

some l<strong>in</strong>e N ∈ B1 (<strong>and</strong> hence concurrent with all l<strong>in</strong>es of B1 by Step<br />

2. P ∗ is the set of po<strong>in</strong>ts <strong>in</strong>cident with a l<strong>in</strong>e of B ∗ .<br />

Each po<strong>in</strong>t on some l<strong>in</strong>e of S(L, M) through x is on q l<strong>in</strong>es of S(L, M).<br />

If y is a po<strong>in</strong>t of S(L, M) not coll<strong>in</strong>ear with x, it follows from Step 3<br />

that y is on q l<strong>in</strong>es of B1. Hence S(L, M) is a partial geometry with<br />

parameters s ∗ = q, t ∗ = q − 1, α ∗ = q. In fact, this just says S(L, M)<br />

is the dualo of an aff<strong>in</strong>e plane of order q. Hence any two l<strong>in</strong>es N1, N2<br />

of S(L, M) must concurrent, <strong>and</strong> S(L, M) = S(N1, N2). We also note<br />

that if x ∈ P ∗ , N ∈ B ∗ , <strong>and</strong> x is not on N, then there is just one<br />

substructure S(L, M) = (P ∗ , B ∗ , I ∗ ) for which x ∈ P ∗ <strong>and</strong> N ∈ B ∗ .<br />

Hence this structure is also denoted S(x, N).<br />

Note: S(L, M) has q 2 l<strong>in</strong>es, q + q 2 po<strong>in</strong>ts, each two l<strong>in</strong>es meet, <strong>and</strong><br />

“parallelism” is an equivalence relation on the po<strong>in</strong>ts.<br />

5. Let S(L, M) = (P ∗ , B ∗ , I ∗ ) be as above. Then each l<strong>in</strong>e not <strong>in</strong> B ∗ has<br />

a unique po<strong>in</strong>t <strong>in</strong> P ∗ .<br />

Proof. Clearly any l<strong>in</strong>e with at least two po<strong>in</strong>ts of P ∗ must lie <strong>in</strong> B ∗ .<br />

Let N be a l<strong>in</strong>e of B \ B ∗ . There is a unique po<strong>in</strong>t z of N with x


96 CHAPTER 2. ANALYTIC GEOMETRY<br />

not coll<strong>in</strong>ear with z, so each l<strong>in</strong>e through z is <strong>in</strong>cident with at most<br />

one po<strong>in</strong>t of P ∗ . If L = L1, M = L2, . . . , Lq are the l<strong>in</strong>es of S(L, M)<br />

through x, there are q l<strong>in</strong>es through z meet<strong>in</strong>g each Li, account<strong>in</strong>g for<br />

q 2 l<strong>in</strong>es through z. But this is all the l<strong>in</strong>es through z, so N is one of<br />

the l<strong>in</strong>es meet<strong>in</strong>g a l<strong>in</strong>e of B ∗ 2.<br />

Let x, y ∈ P , x ∼ y. There are q2 /q = q subgeometries S(L, M) which<br />

conta<strong>in</strong> x <strong>and</strong> y. They are denoted S∗ ∗<br />

i = (Pi , B∗ i , I∗ i ), 1 ≤ i ≤ q. The<br />

“l<strong>in</strong>e” xy is def<strong>in</strong>ed to be the set xy = ∩iP ∗<br />

i .<br />

6. Each two dist<strong>in</strong>ct po<strong>in</strong>ts of xy are non-coll<strong>in</strong>ear <strong>in</strong> S.<br />

Proof. Suppose z1, z2 ∈ xy, z1 = z2 <strong>and</strong> z1 ∼ z2, i.e., z1 <strong>and</strong> z2 are<br />

coll<strong>in</strong>ear <strong>in</strong> S, say on a l<strong>in</strong>e L. Then L ∈ B∗ i for 1 ≤ i ≤ q. If x is not<br />

<strong>in</strong>cident with L, then there is only one structure S(L, M) conta<strong>in</strong><strong>in</strong>g x<br />

<strong>and</strong> L. But x <strong>and</strong> L are <strong>in</strong> all the S∗ i , so it must be that xIL. Similarly,<br />

yIL, contradict<strong>in</strong>g the hypothesis that x ∼ y. It is also clear that the<br />

l<strong>in</strong>es xy <strong>and</strong> z1z2 co<strong>in</strong>cide.<br />

The l<strong>in</strong>es L ∈ B are said to be of the first type, <strong>and</strong> the l<strong>in</strong>es xy, x ∼ y,<br />

are of the second type. S<strong>in</strong>ce xy is a set of pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts<br />

of the dual aff<strong>in</strong>e plane S ∗ 1, we can show that |xy| ≤ q.<br />

S<strong>in</strong>ce S(L, M) is a dual aff<strong>in</strong>e plane, the relation on P ∗ of be<strong>in</strong>g noncoll<strong>in</strong>ear<br />

is an equivalence relation on P ∗ , with equivalence classes of<br />

size q. So clearly |xy| ≤ q. One goal is to show that always |xy| = q.<br />

First, note that each poiknt of S is coll<strong>in</strong>ear with 1 + q 3 po<strong>in</strong>ts, <strong>and</strong><br />

hence not coll<strong>in</strong>ear with (q 2 +q 3 )−(q 3 +1) = q 2 −1 po<strong>in</strong>ts. And if x, y, z<br />

are three po<strong>in</strong>ts with x ∼ y ∼ z, then if x ∼ z, y would be not coll<strong>in</strong>ear<br />

with two po<strong>in</strong>ts of xz. Hence “noncoll<strong>in</strong>earity” is an equivalence relation<br />

of the q 2 + q 3 po<strong>in</strong>ts of S, with equivalence classes of size q 2 . (We<br />

allow a po<strong>in</strong>t to be not coll<strong>in</strong>ear with itself for this relation.)<br />

7. Let x, y be two noncoll<strong>in</strong>ear po<strong>in</strong>ts of S. Let S ∗ i<br />

∗ = (Pi , B∗ i ), i = 1, 2,<br />

be two subgeometries of the type S(L, M) that conta<strong>in</strong> x <strong>and</strong> y. Then<br />

|P ∗ 1 ∩ P ∗ 2 | = q.<br />

Proof. If z1 ∈ P ∗ 1 with x ∼ z1 ∼ y, then z1 ∈ P ∗ 2 , so each of the q2<br />

l<strong>in</strong>es through z1 has a unique po<strong>in</strong>t of P ∗ 2 , leav<strong>in</strong>g only q po<strong>in</strong>ts of P ∗ 2


2.7. SOME GEOMETRY IN P G(3, Q) 97<br />

not coll<strong>in</strong>ear with z1. Hence we may choose z1 ∈ P ∗ 1 , z2 ∈ P ∗ 2 , with<br />

x ∼ z1 ∼ y, x ∼ z2 ∼ y, z ∼ z2.<br />

Put Li = xzi, i = 1, 2; Mi = yzi, i = 1, 2; N = z1z2; <strong>and</strong> let u be the<br />

po<strong>in</strong>t of N not coll<strong>in</strong>ear with y, so also x ∼ u, s<strong>in</strong>ce be<strong>in</strong>g noncoll<strong>in</strong>ear<br />

is an equivalence relation.<br />

Let x1 ∈ L1, x = x1 = z1. So u ∼ x1 , <strong>and</strong> we put U = x1u. S<strong>in</strong>ce U<br />

<strong>and</strong> L2 both meet L1 <strong>and</strong> N (at po<strong>in</strong>ts other than z1, their <strong>in</strong>tersection),<br />

by AV, U meets L2 at a po<strong>in</strong>t x2. Now x1 is coll<strong>in</strong>ear with z1 on M1,<br />

<strong>and</strong> x1 ∼ y, s<strong>in</strong>ce x is the unique po<strong>in</strong>t of L1 not coll<strong>in</strong>ear with y. Let<br />

w1 be the unique po<strong>in</strong>t of M1 not coll<strong>in</strong>ear with x1, so z1 = w1 = y.<br />

Put V = uw1. S<strong>in</strong>ce V <strong>and</strong> M2 meet M1 <strong>and</strong> N (at po<strong>in</strong>ts other than<br />

z1), by AV, V meets M2 at a po<strong>in</strong>t w2.<br />

Coonsider a po<strong>in</strong>t ri on M1, ri ∈ {z1, w1, y}, 1 ≤ i ≤ q −2. S<strong>in</strong>ce u ∼ y,<br />

clearly u ∼ ri, so put Ri = uri. Ri <strong>and</strong> M2 both meet N <strong>and</strong> M1 at<br />

four po<strong>in</strong>ts disti<strong>in</strong>ct from z1, so they have a po<strong>in</strong>t si <strong>in</strong> common.<br />

S<strong>in</strong>ce x1 ∼ w1, we know x1 ∼ ri <strong>in</strong> S ∗ 1. If x2 ∼ si for a particular i,<br />

then U <strong>and</strong> Ri met at u; x1ri meets Ri at ri <strong>and</strong> meets U at x1. And<br />

x2si meets Ri at si <strong>and</strong> meets U at x2. By AV, x1ri meets x2si at a<br />

po<strong>in</strong>t ti. As x2 ∈ L2 <strong>in</strong> S ∗ 2 , si ∈ S ∗ 2 , x2si ∈ B ∗ 2 . So ti ∈ P ∗ 1 ∩ P ∗ 2 .<br />

There are now two cases:<br />

Case 1: w2 happens to be the po<strong>in</strong>t of M2 not coll<strong>in</strong>ear with x2. In<br />

this case, x2 ∼ si for 1 ≤ i ≤ q −2, giv<strong>in</strong>g P ∗ 1 ∩P ∗ 2 = {x, y, t1, . . . , tq−2},<br />

so |P ∗ 1 ∩ P ∗ 2 | = q.<br />

Case 2: x2 ∼ w2. In this case the above construction of the po<strong>in</strong>ts ti<br />

leads to q − 3 po<strong>in</strong>ts t1, . . . , tq−3, so even <strong>in</strong> this case |P ∗ 1 ∩ P ∗ 2 | ≥ q − 1.<br />

But {x, y, t1, . . . , tq−3} is part of a class of q pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts<br />

of S∗ 2 . Let n be the miss<strong>in</strong>g po<strong>in</strong>t. So n ∈ P ∗ 2 , <strong>and</strong> n ∼ x, n ∼ y,<br />

n ∼ ti, 1 ≤ i ≤ q − 3.<br />

Let T be a l<strong>in</strong>e of B ∗ 1 conta<strong>in</strong><strong>in</strong>g x. Let S ∗ 3 = (P ∗ 3 , B ∗ 3, I ∗ 3) be the dual<br />

aff<strong>in</strong>e plane S(n, T ). So P ∗ 2 ∩P ∗ 3 ⊃ {x, n}, <strong>and</strong> by the above paragraphs,<br />

we know |P ∗ 2 ∩ P ∗ 3 | ≥ q − 1. And P ∗ 2 ∩ P ∗ 3 is conta<strong>in</strong>ed <strong>in</strong> the set<br />

of q mutually noncoll<strong>in</strong>ear po<strong>in</strong>ts of P ∗ 2 conta<strong>in</strong><strong>in</strong>g n. Consequently<br />

|P ∗ 1 ∩ P ∗ 2 ∩ P ∗ 3 | ≥ q − 2 ≥ 2 (use q > 3). Hence {y, t1, . . . , tq−3} ∩ P ∗ 3 =<br />

∅. Let d ∈ {y, t1, . . . , tq−3}. S<strong>in</strong>ce P ∗ 1 , respectively P ∗ 3 , is uniquely


98 CHAPTER 2. ANALYTIC GEOMETRY<br />

determ<strong>in</strong>ed by T <strong>and</strong> d, it must be that S ∗ 1 = S∗ 3 . So n ∈ P ∗ 1 <strong>and</strong><br />

|P ∗ 1 ∩ P ∗ 2 | = q.<br />

8. Let S ∗ i<br />

= (P ∗<br />

i , B∗ i , I∗ ) be the q dual aff<strong>in</strong>e planes S(L, M) conta<strong>in</strong><strong>in</strong>g x<br />

<strong>and</strong> y, 1 ≤ i ≤ q. Put xy = ∩iP ∗<br />

i . Then |xy| = q.<br />

Proof. S<strong>in</strong>ce |P ∗<br />

i ∩ Pi| = q, i = 2, 3, . . . , q, the set P ∗<br />

i<br />

po<strong>in</strong>ts of P ∗ 1 not coll<strong>in</strong>ear with x.<br />

conta<strong>in</strong>s the q<br />

Let xy <strong>and</strong> xz be two different l<strong>in</strong>es of the second type. Then y ∼ z,<br />

s<strong>in</strong>ce noncoll<strong>in</strong>earity is an equivalence relation. Let P∗ denote the set<br />

of po<strong>in</strong>ts of S not coll<strong>in</strong>ear with x, <strong>in</strong>clud<strong>in</strong>g x. So |P∗| = q 2 . If B∗<br />

is the set of l<strong>in</strong>es of the second type conta<strong>in</strong>ed <strong>in</strong> P∗, <strong>and</strong> if I∗ is the<br />

natural <strong>in</strong>cidence relation. then S∗ = (P∗, B∗, I∗) is an aff<strong>in</strong>e plane of<br />

order q.<br />

From now on: Subgeometries (dual aff<strong>in</strong>e planes) of the form S(L, M)<br />

are planes of the first type. Aff<strong>in</strong>e planes S∗ are planes of the second<br />

type.<br />

9. Each three po<strong>in</strong>ts which do not belong to a l<strong>in</strong>e of the first or second<br />

type are conta<strong>in</strong>ed <strong>in</strong> exactly one plane (of the first or second type).<br />

Proof. Almost immediate.<br />

Def<strong>in</strong>ition Two l<strong>in</strong>es of the second type are parallel if they co<strong>in</strong>cide<br />

or if they are disjo<strong>in</strong>t subsets of the po<strong>in</strong>tset of a plane of the first or<br />

second type.<br />

10. Parallelism of l<strong>in</strong>es of the second type is an equivalence relation.<br />

Proof. Clearly parallelism is reflexive <strong>and</strong> symmetric. We show that it<br />

is transitive. Suppose that xy, uv, pq are dist<strong>in</strong>ct l<strong>in</strong>es of the second<br />

type, <strong>and</strong> that xyuv <strong>and</strong> xypq. Assume that the plane conta<strong>in</strong><strong>in</strong>g<br />

xy <strong>and</strong> uv (or xy <strong>and</strong> pq) is of the first type. Consider the planes w =<br />

〈xy, uv〉, w ′ = 〈xy, pq〉. If w = w ′ , then clearly uvpq. So suppose w =<br />

w ′ <strong>and</strong> that w is of the first type. S<strong>in</strong>ce w = w ′ , <strong>and</strong> w ′ is determ<strong>in</strong>ed<br />

by xy <strong>and</strong> any po<strong>in</strong>t of pq, clearly pq has no po<strong>in</strong>t <strong>in</strong> common with the<br />

plane w.


2.7. SOME GEOMETRY IN P G(3, Q) 99<br />

There are q + 1 planes through pq, one of them be<strong>in</strong>g of the second<br />

type. (Let L be a l<strong>in</strong>e of the first type of w. L has one po<strong>in</strong>t r not<br />

coll<strong>in</strong>ear with the po<strong>in</strong>ts of pq. And r is <strong>in</strong> a unique l<strong>in</strong>e of the second<br />

type parallel to pq. Each of the other q po<strong>in</strong>ts of L determ<strong>in</strong>es with<br />

pq a unique plane of the first type, which must meet w <strong>in</strong> a l<strong>in</strong>e of the<br />

second type parallel to pq.) But these q + 1 l<strong>in</strong>es of the second type <strong>in</strong><br />

which the planes through pq meet w are all the q + 1 l<strong>in</strong>es of w of the<br />

second type. Hence one of them must be uv, imply<strong>in</strong>g pquv.<br />

The rema<strong>in</strong><strong>in</strong>g case is when both w = 〈xy, uv〉 <strong>and</strong> w ′ = 〈xy, 〉pq〉 are<br />

planes of the second type. Here the po<strong>in</strong>ts of xy, uv <strong>and</strong> pq belong to<br />

one equivalence class C of noncoll<strong>in</strong>ear po<strong>in</strong>ts, i.e., w = w ′ = C. And<br />

C is an aff<strong>in</strong>e plane <strong>in</strong> which l<strong>in</strong>e parallelism is an equivalence relation.<br />

Any parallel class of l<strong>in</strong>es is a partitiion of the po<strong>in</strong>tset P of S. the<br />

parallel classes are called po<strong>in</strong>ts of the second type, <strong>and</strong> the set of these<br />

classes is denoted by P .<br />

Next we def<strong>in</strong>e a parallelism on the set of planes of the second type. Let<br />

w be a plane of the second type, <strong>and</strong> x a po<strong>in</strong>t not <strong>in</strong> w. Clearly each<br />

of the l<strong>in</strong>es of the first type through x has a unique po<strong>in</strong>t of w. Let w ′<br />

be the unique plane of the second type conta<strong>in</strong><strong>in</strong>g x. Let L1, . . . , Lq+1<br />

be the l<strong>in</strong>es (of the second type) through x (conta<strong>in</strong>ed <strong>in</strong> w ′ ). There<br />

is a unique l<strong>in</strong>e xyi ⊆ w ′ ly<strong>in</strong>g <strong>in</strong> the dual aff<strong>in</strong>e plane conta<strong>in</strong><strong>in</strong>g Li<br />

<strong>and</strong> x, <strong>and</strong> hence parallel to Li. It follows that if w, w ′ are any two<br />

planes of the second type, then any l<strong>in</strong>ie of one is parallel to some l<strong>in</strong>e<br />

of the second. Hence we say that each two planes of the second type<br />

are parallel, <strong>and</strong> this parallel class partitions the po<strong>in</strong>ts of S. The set<br />

consist<strong>in</strong>g of this parallel class is denoted L.<br />

Now we <strong>in</strong>troduce a new <strong>in</strong>cidence structure S = (P , B, I):<br />

P = P ∪ P (po<strong>in</strong>ts of S, <strong>and</strong> parallel classes of l<strong>in</strong>es of second type);<br />

B = the set of l<strong>in</strong>es of the first, second <strong>and</strong> third types.


100 CHAPTER 2. ANALYTIC GEOMETRY<br />

Incidence I requires a few cases:<br />

For x ∈ P, L ∈ B, xIL iff xIL.<br />

For x ∈ P, yz a l<strong>in</strong>e of second type, xIyz iff x ∈ yz.<br />

For x ∈ P, x is not I<strong>in</strong>cident withL.<br />

For [yz] ∈ P (a parallel class of l<strong>in</strong>es of second type), L ∈ B,<br />

[yz] is not I <strong>in</strong>cident with L.<br />

For [yz] ∈ P , uv a l<strong>in</strong>e of second tpe,<br />

[yz] is I <strong>in</strong>cident with uv iff uv ∈ [yz]<br />

For [yz] ∈ P , [yz] is I<strong>in</strong>cident with L.<br />

Note : yz is conta<strong>in</strong>ed <strong>in</strong> one of the q + 1 planes<br />

We prove that S ∼ = P G(3, q).<br />

of the second type.<br />

First, it is clear that each two elements of P are I- <strong>in</strong>cident with exactly<br />

one of element of B. For example, if x ∈ P , [yz] ∈ P , then if x ∼ M ∼ y<br />

for M ∈ B, there is a l<strong>in</strong>e xr of the second type (<strong>in</strong> the dual aff<strong>in</strong>e plane<br />

conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> yz). Then xIxr <strong>and</strong> xrI[yz].<br />

Now we prove that any three dist<strong>in</strong>ct elements of P not <strong>in</strong>cident (for<br />

I) with a common element of B generate a projective plane. Let x, y, z<br />

be three such po<strong>in</strong>ts. they cannot all be <strong>in</strong> P , s<strong>in</strong>ce all such po<strong>in</strong>ts are<br />

I-<strong>in</strong>cident with L. So let x ∈ P .<br />

Case 1 y, z ∈ P , xy, xz, yz all l<strong>in</strong>es of the second type.<br />

Here the po<strong>in</strong>ts x, y, z belong to an aff<strong>in</strong>e plane (plane of second type)<br />

that is coompleted to a projective plane by adjo<strong>in</strong><strong>in</strong>g L <strong>and</strong> its po<strong>in</strong>ts.<br />

Case 2 x, y, z ∈ P with some two on a l<strong>in</strong>e of B, say L = yz ∈ B.<br />

So S(x, L) is a dual aff<strong>in</strong>e plane, partitioned by parallel l<strong>in</strong>es of second<br />

type, say belong<strong>in</strong>g to the po<strong>in</strong>t [pq] ∈ P . Then S(x, L) is completed<br />

to a projective plane by adjo<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t [pq] <strong>and</strong> the q + 1 l<strong>in</strong>es of<br />

[pq] conta<strong>in</strong>ed <strong>in</strong> S(x, L).


2.8. POLARITIES, ETC. 101<br />

Hence by (Veblen <strong>and</strong> Young [VY38]), S is the design of po<strong>in</strong>ts <strong>and</strong><br />

l<strong>in</strong>es of a projective space. Clearly S ∼ = P G(3, q). Also clearly P<br />

consists of the po<strong>in</strong>ts not I-<strong>in</strong>cident with L, <strong>and</strong> B consists of the l<strong>in</strong>es<br />

not concurrent with L. Hence S ∼ = H 3 q .<br />

2.8 Polarities, Etc.<br />

Let Π(n, q) denote the set of hyperplanes of P G(n, q). Th<strong>in</strong>k of Π(n, q) as the<br />

dual of P G(n, q) <strong>in</strong> the sense that Π(n, q) is a projective space of dimension<br />

n. The subspaces of dimension r of Π(n, q) are the subspaces of dimension<br />

n − r − 1 of P G(n, q).<br />

Def. A reciprocity σ of P G(n, q) is a coll<strong>in</strong>eation from P G(n, q) onto the<br />

dual space Π(n, q). Let σ be a reciprocity of P G(n, q). Let Sr be a subspace<br />

of dimension r of P G(n, q). Let Sr = 〈P0, P1, . . . , Pr〉, where the po<strong>in</strong>ts Pi<br />

necessarily are l<strong>in</strong>ear <strong>in</strong>dependent. We def<strong>in</strong>e σ(Sr) = S σ r by<br />

S σ r = ∩{P σ<br />

i : 0 ≤ i ≤ r}.<br />

Note: The dimension of Sσ r is n − r − 1. For example, <strong>in</strong> P G(3, q) a<br />

reciprocity σ maps po<strong>in</strong>ts to planes, l<strong>in</strong>es to l<strong>in</strong>es, <strong>and</strong> planes to po<strong>in</strong>ts.<br />

It follows from the def<strong>in</strong>ition that under a reciprocity σ of P G(n, q), <strong>in</strong>cidence<br />

is preserved. Inother words, if X is a po<strong>in</strong>t, <strong>and</strong> Sn−1 is a hyperplane,<br />

under a reciprocity σ,<br />

X is <strong>in</strong>cident with Sn−1 ⇐⇒ Sn−1 σ is <strong>in</strong>cident with X σ .<br />

S<strong>in</strong>ce a reciprocity is a coll<strong>in</strong>eation between dual projective spaces, it follows<br />

from the fundamental theorem of projective geometry that a reciprocity<br />

σ of P G(n, q) is of the type:<br />

X ↦→ X σ = ((X) α A) T = A T (X α ) T = A T (X T ) α ,<br />

where A is a non-s<strong>in</strong>gular (n + 1) × (n + 1) matrix over Fq, <strong>and</strong> α ∈ Aut(Fq).<br />

Consider a po<strong>in</strong>t X of a hyperplane Sn−1, where X is identified with a<br />

row vector of homogeneous coord<strong>in</strong>ates <strong>and</strong> Sn−1 is identified with a column<br />

vector of homogeneous coord<strong>in</strong>ates. Under a reciprocity σ we have:


102 CHAPTER 2. ANALYTIC GEOMETRY<br />

Therefore<br />

XSn−1 = 0 ⇐⇒ (XSn−1) αT = 0<br />

⇐⇒ (S T n−1) α (X T ) α = 0<br />

⇐⇒ (S T n−1 )α (A T ) −1 A T (X T ) α = 0<br />

⇐⇒ (S T n−1 )α A −T X σ = 0.<br />

σ : Sn−1 ↦→ (S T n−1 )α A −T .<br />

If we replace A by A T , we have the follow<strong>in</strong>g:<br />

Lemma 2.8.1. X σ = A(X T ) α ⇐⇒ S σ n−1 = (S T n−1) α A −1 .<br />

Thus we have for a po<strong>in</strong>t X of P G(n, q):<br />

σ 2 (X) = σ(A(X T ) α ) = (((A(X T ) α ) T ) α A −1 = X α2<br />

(A T ) α A −1 .<br />

Hence σ 2 is a coll<strong>in</strong>eation of P G(n, q) with matrix (A T ) α A −1 <strong>and</strong> automorphism<br />

α 2 .<br />

Consider the possibility that a reciprocity σ is such that σ 2 acts as the<br />

identity. In that case σ is said to be <strong>in</strong>volutory <strong>and</strong> is called a polarity. We<br />

have for all po<strong>in</strong>ts P :<br />

σ 2 (P ) = P ⇐⇒ (A T ) α A −1 = λI for some nonzero λ ∈ Fq, <strong>and</strong> α 2 = 1,<br />

⇐⇒ (A T ) α = λA, <strong>and</strong> α 2 = 1,<br />

⇐⇒ A α = λA T , <strong>and</strong> α 2 = 1,<br />

⇐⇒ A = A α2<br />

= λ α (A T ) α = λ α λA, <strong>and</strong> α 2 = 1.<br />

It follows that λ α+1 = 1. If α = 1, then λ 2 = 1, so λ = ±1. The case for<br />

q odd is somewhat different from that for q = 2 e .<br />

Def. Let σ be a polarity of P G(n, q):<br />

(a) Let q = p e with p odd.<br />

1. If n is odd, A T = −A <strong>and</strong> α = 1, then the polarity σ is called a<br />

symplectic polarity or null polarity.


2.8. POLARITIES, ETC. 103<br />

2. If A T = A <strong>and</strong> α = 1, then σ is said to be an orthogonal polarity.<br />

3. If A α = λA T , α 2 = 1, then σ is called a unitary or hermitian polarity.<br />

(b) Let q = 2 e .<br />

1. If n is odd, A T = A, α = 1, <strong>and</strong> if all the diagonal elements of A are<br />

zero, then σ is called a symplectic polarity or null polarity.<br />

2. If A T = A <strong>and</strong> α = 1, <strong>and</strong> if not all the diagonal elements of A equal<br />

zero, then σ is called a pseudo polarity.<br />

3. If A α = λA T <strong>and</strong> α 2 = 1 with α = 1, then σ is called a unitary polarity<br />

or hermitian polarity.<br />

Two cases occur depend<strong>in</strong>g on whether the associated automorphism α<br />

is the identity or not.<br />

Def. A reciprocity σ whose associated automorphism α is the identity is<br />

called a correlation.<br />

Let σ be an <strong>in</strong>volutory correlation with matrix A. Then for all po<strong>in</strong>ts P<br />

σ 2 (P ) = P ⇐⇒ A = λ(A T ) = λ 2 A ⇐⇒ A = λ(A T ) <strong>and</strong> λ 2 = 1.<br />

In any case a po<strong>in</strong>t P is called the pole of its polar P σ .<br />

If σ is a polarity, i.e., σ 2 = 1, then P ∈ Q σ ⇐⇒ (P σ ) σ ∈ Q P σ ⇐⇒ P ∈<br />

Q σ .<br />

Similarly, if σ is a null polarity (i.e., symplectic polarity), then each po<strong>in</strong>t<br />

P lies on its polar P σ = AP T . This is equivalent to P AP T = 0. If the<br />

characteristic of Fq is not 2, then<br />

P AP T = (P AP T ) T , s<strong>in</strong>ce P AP T is a 1 × 1 matrix,<br />

Therefore P AP T = 0.<br />

= P A T P T<br />

= −P AP T , s<strong>in</strong>ce A is skew-symmetric.


104 CHAPTER 2. ANALYTIC GEOMETRY<br />

Now suppose that the characteristic of Fq is 2. Let P = (p0, p1, . . . , pn)<br />

be any po<strong>in</strong>t of P G(n, Q). Then<br />

P AP T = <br />

2aijpipj, where A = (Aij) with aii = 0 for all i,<br />

i=j<br />

= 0, s<strong>in</strong>ce the characteristic of Fq is 2.<br />

Let σ be a null polarity of P G(3, q). If ℓ is a l<strong>in</strong>e, <strong>and</strong> if ℓ σ = ℓ, then ℓ is<br />

said to be a self-polar or totally isotropic l<strong>in</strong>e of P G(3, q).<br />

Lemma 2.8.2. The self-polar l<strong>in</strong>es that pass through a given po<strong>in</strong>t P are all<br />

the l<strong>in</strong>es through P <strong>in</strong> the polar plane P σ of P .<br />

Proof. Let Q be a po<strong>in</strong>t of P σ . It is clear that Q σ conta<strong>in</strong>s both P <strong>and</strong> Q.<br />

Thus (P Q) σ = P Q. In other words, l<strong>in</strong>es of the pencil <strong>in</strong> P σ with P as vertex<br />

are self-polar. Conversely, if ℓ is a self-polar l<strong>in</strong>e through P <strong>and</strong> P1 (= P ),<br />

then ℓ = ℓ σ = P σ ∩ p σ 1, forc<strong>in</strong>g ℓ ⊂ P σ .<br />

Note: The case of an <strong>in</strong>volutory reciprocity σ <strong>in</strong> P G(n, q), q = p h , p a<br />

prime, where the associated automorphism α is not the identity is studied <strong>in</strong><br />

more detail <strong>in</strong> Chapter 21 Such an <strong>in</strong>volutory reciprocity is called a unitary<br />

or hermitian polarity. The pole-polar property still holds. Recall that <strong>in</strong><br />

this case we have<br />

A α = λA T ; α 2 = 1, A = λ α λA T .<br />

Here AutFq is a cyclic group of order h. Therefore a hermitian polarity<br />

can occur only if h is even, <strong>and</strong> consequently q is a square <strong>and</strong> the automorphism<br />

α is the Frobenius automorphism a ↦→ a √ q . If w is a primitive element<br />

of Fq, then s<strong>in</strong>ce λ √ q+1 = 1, we have<br />

λ = w i(√ q−1) , 0 ≤ i ≤ q.<br />

Consider the case where λ = w i(√ q−1) , for some i with 0 ≤ i ≤ q. Put<br />

B = w −i A. Then<br />

A α = λA T =⇒<br />

B α = w −i√ q A α = w −i √ q λA T = w −i √ q · w i( √ q−1) A T = w −i A T = B T .<br />

As B = w −i A is def<strong>in</strong>ed over Fq, the matrices A <strong>and</strong> B yield the same hermitian<br />

polarities. Thus later when we study hermitian polarities of P G(n, q)<br />

it will be sufficient to consider only the case A T = A √ q .


2.9. THE PROJECTIVE LINE - CROSS RATIO 105<br />

2.9 The Projective L<strong>in</strong>e - Cross Ratio<br />

Let ℓ be a projective l<strong>in</strong>e (embedded <strong>in</strong> a projective space of higher dimension<br />

or not). So we can view ℓ as a 2-dimensional vector space V over the field<br />

F . Let ∞ be an abstract symbol <strong>and</strong> extend the algebra of F to that <strong>in</strong><br />

˜F = F ∪ {∞} <strong>in</strong> the follow<strong>in</strong>g way.<br />

∞ + ∞ = ∞; ∞ × ∞ = ∞; a × ∞ = ∞ ∀a ∈ F ∗ = F \ {0}<br />

a<br />

∞<br />

= 0 <strong>and</strong> a + ∞ = ∞ ∀a ∈ F ; ∞<br />

∞<br />

<strong>and</strong> 0 × ∞ are not def<strong>in</strong>ed.<br />

Let (P1, P2, P3, P4) be an ordered 4-tuple of po<strong>in</strong>ts on a l<strong>in</strong>e ℓ with P1, P2, P3<br />

dist<strong>in</strong>ct. Choose a basis B ′ = (e0, e1) such that the coord<strong>in</strong>ate matrix [Pi]B ′<br />

of Pi with respect to the ordered basis B ′ is given as follows:<br />

<br />

0<br />

[P1]B ′ =<br />

1<br />

<br />

1<br />

; [P2]B ′ =<br />

0<br />

<br />

1<br />

; [P3]B ′ =<br />

1<br />

If [P4]B ′ = [a0, a1] T , the aff<strong>in</strong>e coord<strong>in</strong>ate (or non-homogeneous coord<strong>in</strong>ate)<br />

for P4 is the element a1/a0 ∈ ˜ F . So P1 has aff<strong>in</strong>e coord<strong>in</strong>ate ∞, P2<br />

has aff<strong>in</strong>e coord<strong>in</strong>ate 0, <strong>and</strong> P3 has aff<strong>in</strong>e coord<strong>in</strong>ate 1. The po<strong>in</strong>ts of ℓ are<br />

<strong>in</strong> one-to-one correspondence with the elements of ˜ F . A general element θ of<br />

P ΓL(V ) is given by a map (on the coord<strong>in</strong>ate matrices) given by a matrix<br />

A <strong>and</strong> an automorphism α of F as:<br />

θ : [a0 : a1] T ↦→ [b0 : b1] T = A[a α 0 : a α 1 ] T , where A =<br />

d c<br />

b a<br />

<br />

.<br />

<br />

, △ = ad−bc = 0.<br />

As a permutation of the aff<strong>in</strong>e coord<strong>in</strong>ates of po<strong>in</strong>ts on ℓ (<strong>in</strong> case a0 = 0 = b0)<br />

this is easily <strong>in</strong>terpreted to be<br />

θ : x ↦→ axα + b<br />

cxα + d .<br />

In fact with the appropriate <strong>in</strong>terpretation of algebra with ∞ this works out<br />

all the time. We use ∞α a∞+b a<br />

a∞+b<br />

= ∞; = when c = 0; = ∞ when<br />

c∞+d c c∞+d<br />

c = 0; axα +b<br />

cxα +d = ∞ when xα = −d/c if c = 0.<br />

Each homography of ℓ is given by a map on the aff<strong>in</strong>e coord<strong>in</strong>ates <strong>in</strong> the<br />

form<br />

ax + b<br />

θ : x ↦→ , with ad − bc = 0.<br />

cx + d


106 CHAPTER 2. ANALYTIC GEOMETRY<br />

S<strong>in</strong>ce for each t ∈ F ∗ , det(tA) = t 2 ·det(A), each element of P SL(V ) (the<br />

group of θ ∈ P ΓL(V ) with α = id <strong>and</strong> det(A) = 1) has the form<br />

θ : x ↦→<br />

ax + b<br />

, with ad − bc a nonzero square <strong>in</strong> F.<br />

cx + d<br />

Now let (P1, P2, P3, P4) be an ordered 4-tuple of po<strong>in</strong>ts on ℓ with P1, P2, P3<br />

dist<strong>in</strong>ct <strong>and</strong> with a basis B ′ as chosen above, but use the notation [x ′ 0 , x′ 1 ]T =<br />

[P4]B ′. Def<strong>in</strong>e the cross-ratio (P1, P2; P3, P4) by the follow<strong>in</strong>g:<br />

If x ∈ ˜ F is the aff<strong>in</strong>e coord<strong>in</strong>ate of P4 with respect to the ordered basis<br />

(e0, e1), then (P1, P2; P3, P4) = x.<br />

It follows that<br />

(P1, P2; P3, P1) = ∞; (P1, P2; P3, P2) = 0; (P1, P2; P3, P3) = 1.<br />

Now let B = (f0, f1) be an arbitrary ordered basis of V <strong>and</strong> put<br />

Let B =<br />

b00 b01<br />

<br />

i x0 [Pi]B =<br />

b10 b11<br />

Then for arbitrary P ∈ ℓ,<br />

imply<strong>in</strong>g<br />

x i 1<br />

<br />

, <strong>and</strong> Dij =<br />

<br />

<br />

<br />

xi0 xj0<br />

xi 1 x j<br />

1<br />

<br />

<br />

<br />

.<br />

<br />

be the <strong>in</strong>vertible matrix such that<br />

(e0, e1) = (f 0, f 1) · B.<br />

P = (e0, e1)[P ]B ′ = (f 0, f 1)[P ]B = (f 0, f 1)B[P ]B ′,<br />

[P ]B =<br />

b00 b01<br />

b10 b11<br />

<br />

[P ]B ′. (2.7)<br />

S<strong>in</strong>ce the coord<strong>in</strong>ates of a po<strong>in</strong>t are determ<strong>in</strong>ed only up to a nonzero<br />

scalar product, there are nonzero scalars k1, k2, k3 for which the follow<strong>in</strong>g<br />

hold:


2.9. THE PROJECTIVE LINE - CROSS RATIO 107<br />

P = P1 =⇒ k1<br />

=⇒<br />

P = P2 =⇒ k2<br />

x 1 0<br />

x 1 1<br />

<br />

= B<br />

b01 = k1x1 0<br />

b11 = k1x1 1 ;<br />

x 2 0<br />

x 2 1<br />

<br />

= B<br />

b00 = k2x 2 0<br />

=⇒<br />

b10 = k2x2 1;<br />

<br />

3 x0 P = P3 =⇒ k3 = B<br />

=⇒<br />

x 3 1<br />

0<br />

1<br />

1<br />

0<br />

1<br />

1<br />

b00 + b01 = k3x 3 0<br />

b10 + b11 = k3x 3 1;<br />

<br />

=<br />

<br />

=<br />

b01<br />

b11<br />

b00<br />

b10<br />

<br />

<br />

<br />

b00 + b01<br />

=<br />

b10 + b11<br />

After mak<strong>in</strong>g the appropriate substitutions we obta<strong>in</strong><br />

<br />

1 x0 x2 0<br />

<br />

k1<br />

<br />

3 x0 = k3<br />

<br />

x 1 1 x2 1<br />

Us<strong>in</strong>g Cramer’s Rule to solve for k1 <strong>and</strong> k2 <strong>in</strong> terms of k3, we f<strong>in</strong>d<br />

D32<br />

k1 = k3 ;<br />

D12<br />

D13<br />

k2 = k3 .<br />

D12<br />

Put k3 = D12 to get k1 = D32; k2 = D13. It follows that<br />

<br />

2 x0D13 B =<br />

x1 0D32 x2 1D13 x1 1D32 <br />

; B −1 =<br />

−x2 1D13 x2 0D13 k2<br />

1<br />

det(B)<br />

S<strong>in</strong>ce [P ]B ′ = B−1 [P ]B, with P = P4 we have<br />

=<br />

[P4]B ′ =<br />

1<br />

det(B)<br />

x 3 1<br />

x 1 1D32 −x 1 0D32<br />

4 1 x0 (x<br />

det(B)<br />

1 1D32 − x1 ) x41 D32<br />

x4 0 (−x21 D13) + x2 0x41 D13<br />

−x 2 1 D13 x 2 0 D13<br />

<br />

=<br />

x 1 1 D32 −x 1 0 D32<br />

1<br />

det(B)<br />

x 4 0<br />

x 4 1<br />

<br />

D32 D41<br />

D13 C24<br />

It follows that the aff<strong>in</strong>e coord<strong>in</strong>ate of P4 with respect to the basis B ′ is<br />

D13D24<br />

D14D23<br />

.<br />

<br />

.<br />

<br />

.


108 CHAPTER 2. ANALYTIC GEOMETRY<br />

If we write xi = x i 1 /xi 0 for the aff<strong>in</strong>e coord<strong>in</strong>ate of Pi with respect to B,<br />

then a rout<strong>in</strong>e simplification shows that<br />

(P1, P2; P3, P4) = (x3 − x1)(x4 − x2)<br />

. (2.8)<br />

(x4 − x1)(x3 − x2)<br />

In the preced<strong>in</strong>g paragraphs we have def<strong>in</strong>ed the cross-ratio only for those<br />

4-tuples with P1, P2, P3 dist<strong>in</strong>ct. However, by def<strong>in</strong>ition we may allow two of<br />

them to be the same:<br />

(P1, :1; P3, P4) = 1 provided P1, P3, P4 are dist<strong>in</strong>ct;<br />

(P1, P2; P1, P4) = 0 provided P1, P2, P4 are dist<strong>in</strong>ct;<br />

(P1, P2; P2, P4) = ∞ provided P1, P2, P4 are dist<strong>in</strong>ct.<br />

Theorem 2.9.1. Consider projective l<strong>in</strong>es P G(V ) <strong>and</strong> P G(W ) over respective<br />

fields K <strong>and</strong> K ′ . Let θ : P G(V ) → P G(W ) be an isomorphism with<br />

associated field isomorphism α : K → K ′ . Then<br />

(p θ 1 , pθ 2 ; pθ 3 , pθ 4 ) = (p1, p2; p3, p4) α<br />

for each choice of po<strong>in</strong>ts p1, p2, p3, p4 of P G(V ) with at most two of them<br />

equal.<br />

Proof. The cases where two of the po<strong>in</strong>ts are the same all turn out to be<br />

trivial, so we assume thefour po<strong>in</strong>ts<br />

are dist<strong>in</strong>ct. Choose a basis B = (e0, e1)<br />

0<br />

1<br />

1<br />

for V such that [p1]B = ; [p2]B = <strong>and</strong> [p3]B = .<br />

1<br />

0<br />

1<br />

Let φ be the nons<strong>in</strong>gular l<strong>in</strong>ear map from V <strong>in</strong>to W <strong>in</strong>duced by θ. Say<br />

e φ<br />

0 = d0 <strong>and</strong> e φ<br />

1 = d1. So B ′ = (d0, d1) is a basis for W . We have<br />

p θ 1<br />

This implies<br />

= 〈eφ1<br />

〉 = 〈d1〉; p θ 2 = 〈eφ0<br />

〉 = 〈d0〉; p θ 3 = 〈(e0 + e1) φ 〉 = 〈d0 + d1〉.<br />

[p θ <br />

0<br />

1 ]B ′ =<br />

1<br />

<br />

; [p θ <br />

1<br />

2 ]B ′ =<br />

0<br />

<br />

; [p θ <br />

1<br />

3 ]B ′ =<br />

1<br />

If p4 = 〈e0 + xe1〉, then x = (p1, p2; p3, p4). Therefore<br />

<br />

.<br />

p θ 4 = 〈(e0 + xe1) φ 〉 = 〈e φ<br />

0 + xα e φ<br />

1 〉 = 〈d0 + x α d1〉.<br />

So (p θ 1 , pθ 2 , pθ 4 ) = xα = (p1, p2; p3, p4) α .


2.9. THE PROJECTIVE LINE - CROSS RATIO 109<br />

Corollary 2.9.2. State this result with K = K ′ <strong>and</strong> V = W .<br />

As a k<strong>in</strong>d of converse we have:<br />

Theorem 2.9.3. Consider projective l<strong>in</strong>es P G(V ) <strong>and</strong> P G(W ) over respective<br />

fields K <strong>and</strong> K ′ . If θ is a bijection from the po<strong>in</strong>tset of P G(V )<br />

to the po<strong>in</strong>tset of P G(W ) with the property that there is an isomorphism<br />

α : K → K ′ such that (p θ 1, p θ 2; p θ 3, p θ 4) = (p1, p2; p3, p4) α for each choice of four<br />

po<strong>in</strong>ts p1, p2, p3, p4 of P G(V ) with at most two of them the same, then θ may<br />

be extended to an isomorphism from P G(V ) to P G(W ) with correspond<strong>in</strong>g<br />

field isomorphism α. (Here {0} θ = {0} <strong>and</strong> V θ = W .)<br />

Proof. Choose bases B = (e0, e1) of V <strong>and</strong> B ′ = (d0, d1) of W just as <strong>in</strong> the<br />

preced<strong>in</strong>g proof. Then consider the nons<strong>in</strong>gular semil<strong>in</strong>ear map φ from V to <br />

x0<br />

W given by the follow<strong>in</strong>g. If for a general p ∈ P G(V ) we have [p]B = ,<br />

x1<br />

<strong>and</strong> [pφ <br />

′ x 0<br />

]B ′ = , then φ is def<strong>in</strong>ed so that x ′ 0 = aα 0 <strong>and</strong> x′ 1 = xα1 . With<br />

x ′ 1<br />

respect to these bases we have<br />

φ : e0 ↦→ d0; φ : e1 ↦→ d1; (e0 + e1) φ = d0 + d1,<br />

so that for the <strong>in</strong>duced isomorphism γ : P G(V ) → P G(W ) it holds that:<br />

p γ<br />

1 = p θ 1, p γ<br />

2 = p θ 2 <strong>and</strong> p γ<br />

3 = p θ 3.<br />

Let p4 be any po<strong>in</strong>t of P G(V ) with p4 ∈ {p1, p2, p3}. If [p γ<br />

<strong>and</strong> [p4]B ′ =<br />

x ′′<br />

0<br />

x ′′<br />

1<br />

(x ′ 1 )(x′ 0 )1 = (p γ<br />

1<br />

<br />

, then<br />

, pγ<br />

2<br />

4 ]B ′ =<br />

x ′ 0<br />

; pγ3<br />

, pγ4<br />

) = (p1, p2; p3, p4) α = (p θ 1 , pθ2 ; pθ3 , pθ4 ) = (x′′ 1 )(x′′ 0 )−1 .<br />

It follows that p γ<br />

4 = pθ 4 . The restriction of this isomorphism γ to the po<strong>in</strong>tset<br />

of P G(V ) is the same as θ.<br />

Corollary 2.9.4. A permutation θ of the po<strong>in</strong>ts of a projective l<strong>in</strong>e P G(V )<br />

over the field K is <strong>in</strong>duced by an element of P ΓL(V ) if <strong>and</strong> only if there is<br />

an automorphism α of K such that (p θ 1 , pθ 2 ; pθ 3 , pθ 4 ) = (p1, p2; p3, p4) α for each<br />

choice of po<strong>in</strong>ts p1, p2, p3, p4 of P G(V ) with at most two of them equal. A<br />

permutation θ of the po<strong>in</strong>ts of a projective l<strong>in</strong>e P G(V ) over the field K is <strong>in</strong>duced<br />

by an element of P GL(V ) if <strong>and</strong> only if (p θ 1 , pθ 2 ; pθ 3 , pθ 4 ) = (p1, p2; p3, p4)<br />

for each choice of four po<strong>in</strong>ts p1, p2, p3, p4 of P G(V ) with at most two of them<br />

the same,<br />

x ′ 1


110 CHAPTER 2. ANALYTIC GEOMETRY<br />

2.10 Theorem of the Complete Quadrilateral<br />

Consider a projective plane P G(V ) over the field K. If {L1, L2, L3, L4} is a<br />

set of l<strong>in</strong>es of P G(V ) with no three concurrent, then we call the set<br />

{L1, L2, L3, L4, L1 ∩ L2 = p1, L1 ∩ L3 = p2, L1 ∩ L4 = p3,<br />

L2 ∩ L3 = p4, L2 ∩ L4 = p5, L3 ∩ L4 = p6}<br />

a complete quadrilateral. The po<strong>in</strong>ts p1, . . . , p6 are the corner po<strong>in</strong>ts of the<br />

complete quadrilateral. The corner po<strong>in</strong>ts p1, p6 (resp., p2, p5; resp., p3, p4)<br />

are opposite cornerpo<strong>in</strong>ts. The l<strong>in</strong>es p1p6, p2p5, p3p4 are the diagonals of the<br />

complete quadrilateral. The three <strong>in</strong>tersection po<strong>in</strong>ts of the pairs of diagonals<br />

are the diagonalpo<strong>in</strong>ts of the complete quadrilateral.<br />

Interchang<strong>in</strong>g the roles of the po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es gives the def<strong>in</strong>ition of a<br />

complete quadrangle.<br />

Theorem 2.10.1. Let P G(V ) be a projective plane over a field K. In P G(V )<br />

let a1, a2, a3 be any three dist<strong>in</strong>ct coll<strong>in</strong>ear po<strong>in</strong>ts. If T is a complete quadrilateral<br />

with a1 <strong>and</strong> a2 as opposite corner po<strong>in</strong>ts <strong>and</strong> a3 as a diagonal po<strong>in</strong>t,<br />

then the second diagonal po<strong>in</strong>t a4 on the diagonal l<strong>in</strong>e a1a2 is <strong>in</strong>dependent of<br />

the choice of T . Moreover, (a1, a2; a3, a4) = −1.<br />

Proof. Assume that T = {L1, L2, L3, L4, L1 ∩ L2 = a1, L1 ∩ L3 = b1, L1 ∩<br />

L4 = c1, L2 ∩ L3 = c2, L2 ∩ L4 = b2, L3 ∩ L4 = a2}. Further, suppose that<br />

a1a2 ∩ b1b2 = a3 <strong>and</strong> a1a2 ∩ c1c2 = a4. Choose a basis B = (e0, e1, e2) such<br />

that a1 = 〈e1〉, a2 = 〈e0〉, b1 = 〈e2〉, b2 = 〈e0 + e1 + e2〉, from which it follows<br />

that<br />

⎡<br />

[a1]B = ⎣<br />

We also have<br />

0<br />

1<br />

0<br />

⎤<br />

⎡<br />

⎦ ; [a2]B = ⎣<br />

⎡<br />

[a3]B = ⎣<br />

1<br />

1<br />

0<br />

⎤<br />

1<br />

0<br />

0<br />

⎤<br />

⎦ ; [c2]B = ⎣<br />

⎡<br />

⎦ ; [b1]B = ⎣<br />

⎡<br />

1<br />

0<br />

1<br />

⎤<br />

0<br />

0<br />

1<br />

⎤<br />

⎦ ; [c1]B = ⎣<br />

⎡<br />

⎦ ; [b2]B = ⎣<br />

From this we calculate that [a4]B =<br />

1<br />

⎣ −1 ⎦.<br />

0<br />

Hence we have a2 = 〈e0,<br />

a1 = 〈e1, a3 = 〈e0 + e1〉, a4 = 〈e0 − e1〉. It follows that (a1, a2; a3, a4) = −1,<br />

so that <strong>in</strong> general a4 is uniquely determ<strong>in</strong>ed by a1, a2 <strong>and</strong> a3.<br />

⎡<br />

⎤<br />

⎡<br />

0<br />

1<br />

1<br />

⎤<br />

⎦ .<br />

1<br />

1<br />

1<br />

⎤<br />

⎦ .


2.10. THEOREM OF THE COMPLETE QUADRILATERAL 111<br />

Def<strong>in</strong>ition 2.10.2. If a1, a2, a3, a4 are four coll<strong>in</strong>ear po<strong>in</strong>ts with (a1, a2; a3, , a4) =<br />

−1, we say that a4 is the harmonic conjugate of a3 with respect to the po<strong>in</strong>ts<br />

a1 <strong>and</strong> a2.<br />

Observation 1. If a4 is the harmonic conjugate of a3 w. r. t. a1 <strong>and</strong> a2,<br />

it follows from the preced<strong>in</strong>g theorem that a3 is the harmonic conjugate of a4<br />

w. r. t. a1 <strong>and</strong> a2. So we say that a3 <strong>and</strong> a4 are harmonic conjugates w. r.<br />

t. a1 <strong>and</strong> a2.<br />

Observation 2. a3 = a4 if <strong>and</strong> only if the characteristic of K is 2. The<br />

three diagonals of a complete quadrilateral are concurrent if <strong>and</strong> only if the<br />

characteristic of K is 2. Dually, the three diagonal po<strong>in</strong>ts of a complete<br />

quadrangle are coll<strong>in</strong>ear if <strong>and</strong> only if the characteristic of K is 2.<br />

Theorem 2.10.3. Let a1, a2, a3, a4 be four dist<strong>in</strong>ct po<strong>in</strong>ts of a projective<br />

l<strong>in</strong>e P G(V ) over the field K. Then a3 <strong>and</strong> a4 are harmonic conjugates w. r.<br />

t. a1 <strong>and</strong> a2 if <strong>and</strong> only if there is an element of order 2 <strong>in</strong> P G(V ) that fixes<br />

a1 <strong>and</strong> a2 <strong>and</strong> <strong>in</strong>terchanges a3 <strong>and</strong> a4.<br />

Proof. Choose <strong>in</strong> V a basis B = (e0, e1) such that<br />

[a2]B =<br />

1<br />

0<br />

<br />

; [a1]B =<br />

0<br />

1<br />

<br />

; [a3]B =<br />

Then a4 is the harmonic conjugate of a3 w. r. t. a1 <strong>and</strong> a2 if <strong>and</strong> only if<br />

<br />

1<br />

(a1, a2; a3, a4) = −1, which holds if <strong>and</strong> only if [a4]B = .<br />

−1<br />

Now suppose that a3 <strong>and</strong> a4 are harmonic conjugates w. r. t. a1 <strong>and</strong><br />

a2. S<strong>in</strong>ce a3 = a4, the characteristic of K must be different from 2. In aff<strong>in</strong>e<br />

coord<strong>in</strong>ates an element θ of P GL(V ) is given by<br />

θ : x ↦→ x ′ ax + b<br />

= , with ad − bc = 0.<br />

cx + d<br />

Put a = −1, b = c = 0, d = 1. One can then check that θ : a1 ↦→ a1,<br />

θ : a2 ↦→ a2, θ : a3 ↦→ a4 <strong>and</strong> θ : a4 ↦→ a3; θ2 = 1; θ = 1.<br />

For the converse, suppose that θ ∈ P GL(V ) satisfies θ = 1 = θ2 , that θ<br />

fixes a1 <strong>and</strong> a2 <strong>and</strong> maps a3 to a4. If we write out what it means for θ to fix<br />

a1 <strong>and</strong> a2 we f<strong>in</strong>d that b = c = 0. This says that x ′ = kx for some nonzero<br />

k ∈ K. S<strong>in</strong>ce θ = 1 = θ2 <strong>in</strong> P GL(V ), we see that k = 1 = k2 <strong>in</strong> K. Thus<br />

k = −1 <strong>and</strong> the characteristic of Kis different from 2. Thus a4 has aff<strong>in</strong>e<br />

1<br />

coord<strong>in</strong>ate -1, so that [a4]B = <strong>and</strong> a4 is the harmonic conjugate of a3<br />

−1<br />

w. r. t. a1 <strong>and</strong> a2.<br />

1<br />

1<br />

<br />

.


112 CHAPTER 2. ANALYTIC GEOMETRY<br />

2.11 Involutions of the Projective L<strong>in</strong>e<br />

Let P G(V ) be a projective l<strong>in</strong>e over the field K. Recall that θ ∈ P ΓL(V ) is<br />

an <strong>in</strong>volution provided θ 2 = 1. Let θ ∈ P ΓL(V ) be given with respect to a<br />

basis B of V by<br />

θ :<br />

x0<br />

x1<br />

<br />

′ x 0 ↦→<br />

x ′ 1<br />

=<br />

=<br />

<br />

α d c x0 b a xα 1<br />

<br />

α dx0 + cxα <br />

1<br />

bx α 0 + ax α 1<br />

<br />

, (ad − bc = 0)<br />

Now write out the assumption that θ is an <strong>in</strong>volution. It follows that<br />

there is a nonzero scalar ℓ such that<br />

<br />

α<br />

x0 d c dx0 + cx<br />

ℓ =<br />

x1 b a<br />

α 1<br />

bxα 0 + axα α 1<br />

<br />

α+1 α α (d + cb )x<br />

=<br />

2<br />

0 + (dcα + caα )xα2 <br />

1 ,<br />

obta<strong>in</strong><br />

(bd α + ab α )x α2<br />

0 + (bc α + a α+1 )x α2<br />

1<br />

∀ x0, x1 ∈ K with (x0, x1) = (0, 0).<br />

First put x0 = 1, x1 = 0 <strong>and</strong> then x0 = 0, x1 = 1, to obta<strong>in</strong><br />

Hence we have<br />

ℓ = d α+1 + cb α = bc α + a α+1 = 0; (2.9)<br />

0 = bd α + ab a = dc α + ca α . (2.10)<br />

ℓx0<br />

ℓx1<br />

<br />

=<br />

(d α+1 + cb α )x α 2<br />

0 ;<br />

(bc α + a α+1 )x α2<br />

1<br />

<br />

. (2.11)<br />

Multiply the first row of Eq. 2.11 by x1 <strong>and</strong> the second row by x0 to<br />

x0x1ℓ = (d α+1 + cb α )x α2<br />

0 x1 = (bc α + a α+1 )x0x α2<br />

1 .<br />

Hence x0x α2<br />

1 = x α2<br />

0 x1. Take x0 = 1 to see that α 2 = 1.<br />

We summarize these computations with the folow<strong>in</strong>g lemma.<br />

Lemma 2.11.1. For θ given by<br />

<br />

x0<br />

θ : ↦→<br />

<br />

d<br />

b<br />

c<br />

a<br />

x1<br />

x α 0<br />

x α 1<br />

<br />

, (ad − bc = 0),


2.11. INVOLUTIONS OF THE PROJECTIVE LINE 113<br />

it is necessary <strong>and</strong> sufficient that<br />

(i) bd α + ab α = 0;<br />

(ii) dc α + ca α = 0;<br />

(iii) d α+1 + cb α = bc α + a α+1 = 0;<br />

(iv) α 2 = 1.<br />

The case α = id.<br />

In this case we have (a+d)b = 0 = (a+d)c. First suppose that a+d = 0,<br />

so that b = c = 0 <strong>and</strong> a = ±d. If a = d then θ = 1. So we have a non-identity<br />

<strong>in</strong>volution only when K has characteristic different from 2 <strong>and</strong> with a = 1<br />

<strong>and</strong> d = −1. In this case θ has two fixed po<strong>in</strong>ts if the characteristic of K<br />

is not 2, <strong>and</strong> θ is the identity map if the characteristic of K equals 2. So<br />

suppose that either b = 0 or c = 0. In this case a + d = 0 <strong>and</strong> the matrix<br />

looks like −a c<br />

b a<br />

<br />

, with b = 0 or c = 0.<br />

The eigenvalues (if they exist!) are λ = ± √ a 2 + bc with associated eigen-<br />

vectors ±λ − a<br />

b<br />

So <strong>in</strong> odd characteristic there are at most two fixed po<strong>in</strong>ts of θ, <strong>and</strong> <strong>in</strong><br />

characteristic 2 there is at most one. In terms of aff<strong>in</strong>e coord<strong>in</strong>ates we have<br />

θ : x ↦→ x ′ =<br />

<br />

.<br />

ax + b<br />

cx − a .<br />

The case α = id.<br />

First we assume that c = 0 <strong>and</strong> put c α = ℓc. Then<br />

c = c α2<br />

= (ℓc) α = l α · ℓc,<br />

imply<strong>in</strong>g ℓ α+1 = 1 <strong>and</strong> hence ℓ α = ℓ −1 .<br />

From 0 = dc α + ca α = dℓc + ca α = c(dℓ + a α ) we get dℓ + a α = 0. Now<br />

use α 2 = 1 to get d α ℓ α + a = 0 <strong>and</strong> multiply by ℓ to get d α + aℓ = 0. Now<br />

from dℓ + a α = 0 = d α + aℓ, we have −adℓ = a α+1 = d α+1 . So <strong>in</strong> this case<br />

we have:<br />

c α = cℓ; b α = bℓ; a α = −dℓ <strong>and</strong> α 2 = 1 = α.


114 CHAPTER 2. ANALYTIC GEOMETRY<br />

Now suppose that c = 0 = b. Put b α = bℓ. Then b = b α ℓ α which forces<br />

ℓ α = ℓ −1 or ℓ α+1 = 1. Us<strong>in</strong>g Eq. 2.10 we see d α + aℓ = 0 <strong>and</strong> a α+1 = d α+1 ,<br />

α 2 = 1. The bottom l<strong>in</strong>e here is that<br />

α.<br />

or<br />

or<br />

c = 0; b = 0; b α = bℓ; a α = −dℓ; α 2 = 1 = α.<br />

The last case is b = c = 0. Here we just have a α+1 = d α+1 with α 2 = 1 =<br />

Collect<strong>in</strong>g the above <strong>in</strong>to two cases we have the follow<strong>in</strong>g:<br />

(a) (b, c) = (0, 0), b α = bℓ; c α = cℓ; a α = −dℓ,<br />

(b) (b, c) = (0, 0), a α+1 = d α+1 , α 2 = 1.<br />

In aff<strong>in</strong>e coord<strong>in</strong>ates we have<br />

(a) x ′ = axα +b<br />

cx α +d with (b, c) = (0, 0), bα = bℓ; c α = cℓ; a α = −dℓ,<br />

(b) x ′ = kx α with k α+1 = 1, α 2 = 1.<br />

Note 2.11.2. : Let θ ∈ P ΓL(V ) be an <strong>in</strong>volution with θ = 1. Choose a basis<br />

(e0, e1) with θ <strong>in</strong>terchang<strong>in</strong>g those two po<strong>in</strong>ts. Then us<strong>in</strong>g aff<strong>in</strong>e coord<strong>in</strong>ates<br />

w. r. t. that basis, so e0 <strong>and</strong> e1 have aff<strong>in</strong>e coord<strong>in</strong>ates 0 <strong>and</strong> ∞, respectively,<br />

we have a = d = 0. If α = 1, then θ is given <strong>in</strong> aff<strong>in</strong>e coord<strong>in</strong>ates by x ′ = k/x.<br />

So the fixed po<strong>in</strong>ts have aff<strong>in</strong>e coord<strong>in</strong>ates X that satisfy X 2 = k. So suppose<br />

that α = 1. Then θ is given <strong>in</strong> aff<strong>in</strong>e coord<strong>in</strong>ates by x ′ = k/x α with k = k α<br />

<strong>and</strong> α 2 = 1. The fixed po<strong>in</strong>ts have aff<strong>in</strong>e coord<strong>in</strong>ates X that satisfy X α+1 = k.<br />

The f<strong>in</strong>ite case. The Galois field GF (p h ) admits a nontrivial <strong>in</strong>volutory<br />

automorphism α if <strong>and</strong> only if h is even, <strong>in</strong> which case α : x ↦→ x q . In this<br />

case we usually write x q = x. If α = 1, then the <strong>in</strong>volution θ (with respect<br />

to a certa<strong>in</strong> basis) is given by x ′ = k/x. When the characteristic of Fq 2 is 2,<br />

then k = ℓ 2 for some k ∈ F q 2. If we replace the orig<strong>in</strong>al basis with a new one<br />

so that the coord<strong>in</strong>ate x is replaced by y = x/ℓ, then the <strong>in</strong>volution θ is given<br />

by y ′ = 1/y. The unique fixed po<strong>in</strong>t is the po<strong>in</strong>t with aff<strong>in</strong>e coord<strong>in</strong>ate equal<br />

to 1. Now suppose that the characteristic of the field is odd. If k = ℓ 2 , with<br />

the same change of basis as above we aga<strong>in</strong> have that θ is given by x ′ = 1/x.<br />

The two fixed po<strong>in</strong>ts are the po<strong>in</strong>ts with aff<strong>in</strong>e coord<strong>in</strong>ates equal to ±1. If<br />

ν is a fixed nonsquare of F q 2 <strong>and</strong> k = νℓ 2 , then the change of basis yℓ = x


2.12. THE HYPERBOLIC QUADRIC OF P G(3, Q) - A FIRST LOOK115<br />

as before leads to θ be<strong>in</strong>g represented by x ′ = ν/x. In this case there are no<br />

fixed po<strong>in</strong>ts.<br />

Now suppose that α = 1 <strong>and</strong> that with respect to some fixed basis the<br />

<strong>in</strong>volution θ is given by x ′ = k/x q with k = k q , so k is <strong>in</strong> the subfield Fq of<br />

F q 2. We showed above that <strong>in</strong> this case k = ℓ q+1 , ℓ ∈ F q 2. The change of<br />

basis yℓ = x leads to θ be<strong>in</strong>g given by y ′ = 1/y q . The fixed po<strong>in</strong>ts are those<br />

with aff<strong>in</strong>e coord<strong>in</strong>ates Y satisfy<strong>in</strong>g Y q+1 = 1. Hence there are q + 1 fixed<br />

po<strong>in</strong>ts.<br />

2.12 The Hyperbolic Quadric of P G(3, q) - A<br />

First Look<br />

Later we will study quadrics <strong>in</strong> great detail. For the present, we merely<br />

study a specific substructure of P G(3, q) that turns out to be an important<br />

example of a hyperbolic quadric.<br />

In any projective space a set S of subspaces is skew provided no two of<br />

the subspaces <strong>in</strong> S have a po<strong>in</strong>t <strong>in</strong> common. Also, the subspaces are said<br />

to be skew. Then if S is a set of skew subspaces, a l<strong>in</strong>e ℓ is said to be a<br />

transversal of S provided it meets each member of S <strong>in</strong> exactly one po<strong>in</strong>t.<br />

Lemma 2.12.1. Let P be a projective space. Let g1 <strong>and</strong> g2 be two skew l<strong>in</strong>es,<br />

<strong>and</strong> let P denote a po<strong>in</strong>t not on either g1 or g2. Then there is at most one<br />

transversal of g1 <strong>and</strong> g2 through P .<br />

Proof. Assume that there are two transversals h1 <strong>and</strong> h2 through P . Then<br />

each of these transversals meets the l<strong>in</strong>es g1 <strong>and</strong> g2 <strong>in</strong> different po<strong>in</strong>ts. So h1<br />

<strong>and</strong> h2 span a plane which conta<strong>in</strong>s the two skew l<strong>in</strong>es g1 <strong>and</strong> g2, a contradiction.<br />

Now suppose that P is 3-dimensional. Then the plane 〈P, g1〉 must <strong>in</strong>tersect<br />

the l<strong>in</strong>e g2 <strong>in</strong> some po<strong>in</strong>t Q. Hence the l<strong>in</strong>e P Q <strong>in</strong>tersects g1 <strong>and</strong> g2, so<br />

it is a transversal of g1 <strong>and</strong> g2.<br />

Theorem 2.12.2. (16 po<strong>in</strong>t theorem of D<strong>and</strong>el<strong>in</strong>) Let P be a 3-dimensional<br />

projective space over the field K. Let G = {g1, g2, g3} <strong>and</strong> H = {h1, h2, h3}<br />

be two sets of skew l<strong>in</strong>es with the property that each l<strong>in</strong>e gi meets each l<strong>in</strong>e<br />

hj. Then the follow<strong>in</strong>g is true: each transversal g ∈ G of H meets each<br />

transversal h ∈ H of G.


116 CHAPTER 2. ANALYTIC GEOMETRY<br />

Proof. Fix the follow<strong>in</strong>g notation:<br />

〈v1〉 := g1 ∩ h1; 〈v2〉 := g1 ∩ h2;<br />

〈v3〉 := g2 ∩ h1; 〈v4〉 := g2 ∩ h2.<br />

Then g3 ∩ h1 = 〈av1 + bv3〉 for some a, b ∈ F \ {0}. We may assume that<br />

b = 1. Replac<strong>in</strong>g v1 with v ′ 1 = av1 we get g3 ∩ h1 = 〈v ′ 1 + v3〉. Writ<strong>in</strong>g v1 i<strong>in</strong><br />

place of v ′ 1 we have g3 ∩ h1 = 〈v1 + v3〉. Multiply<strong>in</strong>g v2 <strong>and</strong> v4 by suitable<br />

scalars we can arrange to have g1 ∩ h3 = 〈v1 + v2〉 <strong>and</strong> g2 ∩ h3 = 〈v3 + v4〉.<br />

F<strong>in</strong>ally, we have g3 ∩ h2 = 〈v2 + av4〉. By hypothesis there is a unique po<strong>in</strong>t<br />

of <strong>in</strong>tersection of g3 <strong>and</strong> h3. This forces<br />

g3 ∩ h3 = 〈a1(v1 + v3) + a2(v2 + av4)〉 = 〈b1(v1 + v2) + b2(v3 + v4)〉.<br />

S<strong>in</strong>ce the vectors v1, v2, v3, v4 are l<strong>in</strong>ear <strong>in</strong>dependent we get b1 = a1 =<br />

b2 = a2 <strong>and</strong> a = 1. Hence g3 ∩ h2 = 〈v2 + v4〉 <strong>and</strong><br />

g3 ∩ h3 = 〈v1 + v2 + v3 + v4〉.<br />

Let g ∈ G be a transversal of H <strong>and</strong> h ∈ H be a transversal of H. Def<strong>in</strong>e<br />

the elements a <strong>and</strong> b of K by<br />

g ∩ h1 := 〈v1 + av3〉;<br />

h ∩ g1 := 〈v1 + bv2〉.<br />

We need to show that the l<strong>in</strong>es g <strong>and</strong> h <strong>in</strong>tersect each other. By Lemma 2.12.1<br />

we know that there is at most one l<strong>in</strong>e through 〈v1 + av3〉 that <strong>in</strong>tersects<br />

both h2 <strong>and</strong> h3. This must be the l<strong>in</strong>e g. But now the po<strong>in</strong>ts 〈v1 + av3〉,<br />

〈v2 + av4〉 ∈ 〈v2, v4〉 = h2 <strong>and</strong> 〈v1 + v2 + a(v3 + v4)〉 lie on a l<strong>in</strong>e. Therefore<br />

necessarily<br />

g = 〈v1 + av3, v2 + av4〉.<br />

Similarly we get<br />

h = 〈v1 + v2, v3 + bv4〉.<br />

Now we compute the <strong>in</strong>tersection of the subspaces g <strong>and</strong> h. S<strong>in</strong>ce ab = ba it<br />

follows that<br />

〈v1 + av3 + bv2 + bav4〉<br />

is a common po<strong>in</strong>t of<br />

g = 〈v1 + av3, v2 + av4〉 <strong>and</strong> h = 〈v1 + bv2, v3 + bv4〉.


2.12. THE HYPERBOLIC QUADRIC OF P G(3, Q) - A FIRST LOOK117<br />

Def<strong>in</strong>ition 2.12.3. Let P = P G(3, q). A nonempty set R of skew l<strong>in</strong>es of<br />

P is called a regulus provided the follow<strong>in</strong>g hold:<br />

(i) Through each po<strong>in</strong>t of each l<strong>in</strong>e of R there is a transversal of R.<br />

(ii) Through each po<strong>in</strong>t of each transversal of R there is a l<strong>in</strong>e of R.<br />

So the set R ′ of all transversals of a regulus R is a regulus called the<br />

opposite regulus of R. It is clear that any regulus <strong>in</strong> P G(3, q) conta<strong>in</strong>s q + 1<br />

l<strong>in</strong>es.<br />

The follow<strong>in</strong>g theorem is now an easy corollary of the 16 po<strong>in</strong>t theorem.<br />

Theorem 2.12.4. Let g1, g2, g3 be three skew l<strong>in</strong>es of P = P G(3, q). Then<br />

there is exactly one regulus conta<strong>in</strong><strong>in</strong>g g1, g2 <strong>and</strong> g3.<br />

Proof. Exercise.<br />

We now show that the po<strong>in</strong>ts on the l<strong>in</strong>es of a regulus form a ”quadric.”<br />

This just means that their coord<strong>in</strong>ates are the solutions of a quadratic equation.<br />

Theorem 2.12.5. Let g1, g2, g3 be three skew l<strong>in</strong>es of P = P G(3, q). We<br />

may choose coord<strong>in</strong>ates so that<br />

g1 = 〈(1 : 0 : 0 : 0), (0 : 1 : 0 : 0)〉,<br />

g2 = 〈(0 : 0 : 1 : 0), (0 : 0 : 0 : 1)〉<br />

g3 = 〈(1 : 0 : 1 : 0), (0 : 1 : 0 : 1)〉.<br />

Then the set Q of po<strong>in</strong>ts on the uniquely determ<strong>in</strong>ed regulus R through<br />

g1, g2, g3 can be described as<br />

Q = {(a0 : a1 : a2 : a3) : a0a3 = a1a2 with ai ∈ Fq not all zero}.<br />

Hence the coord<strong>in</strong>ates of the po<strong>in</strong>ts of Q satisfy the quadratic equation<br />

x0x3 − x1x2 = 0.<br />

Proof. Use the notation of the 16 po<strong>in</strong>t theorem. If v1 = (1 : 0 : 0 : 0),<br />

v2 = (0 : 1 : 0 : 0), v3 = (0 : 0 : 1 : 0) <strong>and</strong> v4 = (0 : 0 : 0 : 1), then the po<strong>in</strong>ts<br />

(a0 : a1 : a2 : a3) on Q satisfy<br />

(a0 : a1 : a2 : a3) = k · v1 + k · bv2 + k · av3 + k · abv4 = (k : kb : ka : kab),


118 CHAPTER 2. ANALYTIC GEOMETRY<br />

where a, b ∈ Fq are arbitrary <strong>and</strong> k ∈ Fq \ {0}. Hence the coord<strong>in</strong>ates of any<br />

po<strong>in</strong>t of Q satisfy the condition<br />

0 = k · kab − ka · kb = a0a3 − a1a2.<br />

Conversely, let P = (a0 : a1 : a2 : a3) denote a po<strong>in</strong>t with a0a3 = a1a2. If<br />

a0 = 0, then this po<strong>in</strong>t can be written as<br />

P = (a0 : a1 : a2 : a1a2/a0),<br />

<strong>and</strong> this is a po<strong>in</strong>t on Q. If a0 = 0, then a1 = 0 or a2 = 0. Without<br />

loss of generality we may assume that a1 = 0. Then P can be written as<br />

P = (0 : 0 : a2 : a3). Without loss of generality we may assume that a2 = 0.<br />

So P = (0 : 0 : a : ab) with a, b ∈ Fq, <strong>and</strong> it follows that P ∈ Q.<br />

This type of quadric will be called a ruled quadric <strong>in</strong> P G(3, q), or sometimes<br />

called a hyperboloid.<br />

Recall Lemma 2.7.1 to see the follow<strong>in</strong>g.<br />

Lemma 2.12.6. The number of<br />

(i) ruled quadrics conta<strong>in</strong><strong>in</strong>g two skew l<strong>in</strong>es is q(q 2 − 1)(q − 1);<br />

(ii) reguli <strong>in</strong> P G(3, q) is q 4 (q 2 + q + 1)(q 2 + 1)(q − 1).<br />

(iii) ruled quadrics <strong>in</strong> P G(3, q) is q 4 (q 2 + q + 1)(q 2 + 1)(q − 1)/2.<br />

2.13 3-Dimensional Projective Spaces Are Desarguesian<br />

The follow<strong>in</strong>g very important theorem eventually will be used to show that<br />

up to isomorphism the only f<strong>in</strong>ite projective geometries of dimension at least<br />

3 are the P G(n, q) with n ≥ 3.<br />

Theorem 2.13.1. Let P be a projective space of dimension n. If n ≥ 3 then<br />

the theorem of Desargues holds <strong>in</strong> P.<br />

Proof. Let A1, A2, A3, B1, B2, B3, P12, P23, P31 <strong>and</strong> C be po<strong>in</strong>ts of P that satisfy<br />

the hypothesis of the theorem of Desargues. We must show that the<br />

po<strong>in</strong>ts P12, P23, P31 are coll<strong>in</strong>ear.


2.13. 3-DIMENSIONAL PROJECTIVE SPACES ARE DESARGUESIAN119<br />

Case 1. The planes π = 〈A1, A2, A3〉 <strong>and</strong> π ′ = 〈B1, B2, B3〉 are different.<br />

(FIGURE would be nice - 2.7 p. 79 of Beut)<br />

S<strong>in</strong>ce Ai <strong>and</strong> Bi are coll<strong>in</strong>ear with C, we have Bi ∈ U = 〈C, A1, A2, A3〉,<br />

i = 1, 2, 3. Therefore all po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es mentioned above are <strong>in</strong> the 3dimensional<br />

subspace U of P. The po<strong>in</strong>ts P12, P23, P31 all lie <strong>in</strong> π ∩ π ′ . S<strong>in</strong>ce<br />

any two planes of U <strong>in</strong>tersect <strong>in</strong> a l<strong>in</strong>e, the po<strong>in</strong>ts P12, P23, P31 are coll<strong>in</strong>ear.<br />

Case 2. The po<strong>in</strong>ts A1, A2, A3, B1, B2, B3, P12, P23, P31 <strong>and</strong> C lie <strong>in</strong> a<br />

common plane π.<br />

(FIGURE 2.8 of Beut)<br />

The idea is to reduce this case to Case 1. To do this we construct three<br />

noncoll<strong>in</strong>ear po<strong>in</strong>ts D1, D2, D3 not <strong>in</strong> π <strong>and</strong> two po<strong>in</strong>ts C ′ , C ′′ such that for<br />

{D1, D2, D3, A1, A2, A3, C ′ } <strong>and</strong> {D1, D2, D3, B1, B2, B3, C ′′ the hypotheses<br />

of Case 1 are satisfied.<br />

Let C ′ , C ′′ be two dist<strong>in</strong>ct po<strong>in</strong>ts outside π such that the l<strong>in</strong>e C ′ C ′′<br />

<strong>in</strong>tersects the plane π <strong>in</strong> the po<strong>in</strong>t C. S<strong>in</strong>ce C ∈ C ′ C ′′ ∩A1B1, the l<strong>in</strong>es C ′ C ′′<br />

<strong>and</strong> A1B1 span a plane. Therefore the l<strong>in</strong>es C ′ A1 <strong>and</strong> C ′′ B1 <strong>in</strong>tersect a po<strong>in</strong>t<br />

D1 which is outside π.<br />

Similarly, there exist po<strong>in</strong>ts D2 <strong>and</strong> D3 outside π with<br />

D2 = C ′ A2 ∩ C ′′ B2 <strong>and</strong> D3 = C ′ A3 ∩ C ′′ B3.<br />

We now show that {D1, D2, D3, A1, A2, A3, C ′ } satisfy the hypotheses of the<br />

theorem of Desargues.<br />

If three of the po<strong>in</strong>ts C ′ , D1, D2, D3 are coll<strong>in</strong>ear, then the dimension of<br />

〈D1, D2, D3, C ′ 〉 is at most 2. S<strong>in</strong>ce by construction Ai is on C ′ Di, i = 1, 2, 3,<br />

we have that the po<strong>in</strong>ts A1, A2, A3 lie <strong>in</strong> π∩〈D1, D2, D3, C ′ 〉. S<strong>in</strong>ce the dimension<br />

of this <strong>in</strong>tersection is at most 1, it is a po<strong>in</strong>t or a l<strong>in</strong>e. Hence A1, A2, A3<br />

would be coll<strong>in</strong>ear, a contradiction. It follows that {D1, D2, D3, A1, A2, A3, C ′ }<br />

satisfies the hypotheses of the theorem of Desargues.<br />

By the construction of C ′ it is clear that no three of the ponts C ′ , A1, A2, A3<br />

are coll<strong>in</strong>ear. Similarly it follows that {D1, D2, D3, B1, B2, B3, C ′′ } also satisfy<br />

the hypothesis of the theorem of Desargues.<br />

Def<strong>in</strong>e π ′ = 〈D1, D2, D3〉. By Case 1 the l<strong>in</strong>es DiDi+1 <strong>and</strong> AiAi+1 <strong>in</strong>tersect<br />

<strong>in</strong> po<strong>in</strong>ts of the l<strong>in</strong>e g := π ∩ π ′ , i = 1, 2, 2, where subscripts are 1, 2 or 3<br />

modulo 3.


120 CHAPTER 2. ANALYTIC GEOMETRY<br />

Similarly the l<strong>in</strong>es DiDi+1 <strong>and</strong> BiBi+1, i = 1, 2, 3, <strong>in</strong>tersect <strong>in</strong> po<strong>in</strong>ts of<br />

the l<strong>in</strong>e g. In particular, AiAj ∩ BiBj is also a po<strong>in</strong>t of g. If, for <strong>in</strong>stance,<br />

X := D1D2 ∩ A1A2 <strong>and</strong> Y := D1D2 ∩ B1B2, then X = D1D2 ∩ g = Y , <strong>and</strong><br />

this po<strong>in</strong>t is also X = Y = A1A2 ∩ B1B2 = P12. It follows that the ponts<br />

P12, P23 <strong>and</strong> P31 are all <strong>in</strong>cident with the l<strong>in</strong>e g.<br />

Corollary 2.13.2. Let P be a projective plane. If P can be embedded as<br />

a plane <strong>in</strong> a projective space of dimension at least 3, then the theorem of<br />

Desargues holds <strong>in</strong> P.<br />

Exercise 2.13.2.1. (FIGURE P. 89) (Sometimes called the theorem of Fano)<br />

Let the four po<strong>in</strong>ts P1, P2, P3, P4 form a quadrangle <strong>in</strong> a projective plane embedded<br />

<strong>in</strong> P(V ). Then the po<strong>in</strong>ts<br />

Q1 := P1P4 ∩ P2P3; Q2 := P2P4 ∩ P1P3 <strong>and</strong> Q3 := P3P4 ∩ P1P2<br />

are on a common l<strong>in</strong>e if <strong>and</strong> only if the underly<strong>in</strong>g field has characteristic 2.<br />

Exercise 2.13.2.2. (FIGURE P. 90) (Theorem of Menelaus) Let P = 〈u〉,<br />

Q = 〈v〉, R = 〈w〉 be three noncoll<strong>in</strong>ear po<strong>in</strong>ts of a projective plane P(V ).<br />

Let P ′ = 〈v + aw〉 be a po<strong>in</strong>t on QR; Q ′ = 〈w + bu〉 be a po<strong>in</strong>t on RP ; <strong>and</strong><br />

R ′ = 〈u + cv〉 be a po<strong>in</strong>t on P Q. Prove that the po<strong>in</strong>ts P ′ , Q ′ , R ′ are coll<strong>in</strong>ear<br />

if <strong>and</strong> only if abc = −1.<br />

Exercise 2.13.2.3. (FIGURE P. 91) (Theorem of Ceva) Let P = 〈u〉, Q =<br />

〈v〉, R = 〈w〉 be three noncoll<strong>in</strong>ear po<strong>in</strong>ts of a projective plane P(V ). Let<br />

P ′ = 〈v + aw〉 be a po<strong>in</strong>t on QR, Q ′ = 〈w + bu〉 be a po<strong>in</strong>t on RP , <strong>and</strong><br />

R ′ = 〈u + cv〉 be a po<strong>in</strong>t on P Q. Prove that the l<strong>in</strong>es P P ′ , QQ ′ <strong>and</strong> RR ′<br />

pass through a common po<strong>in</strong>t if <strong>and</strong> only if abc = 1.


Chapter 3<br />

The Fundamental Theorem for<br />

P G(n, q)<br />

In this chapter we study representations <strong>and</strong> coll<strong>in</strong>eations of projective spaces.<br />

The ma<strong>in</strong> goal is to show that any projective space of f<strong>in</strong>ite dimension at least<br />

3 must be isomorphic to some P(V ) where V is a f<strong>in</strong>ite dimensional vector<br />

space over a skewfield K. Of course our ma<strong>in</strong> <strong>in</strong>terest is <strong>in</strong> f<strong>in</strong>ite projective<br />

<strong>and</strong> aff<strong>in</strong>e spaces so our skewfields are f<strong>in</strong>ite fields.<br />

3.1 Central Coll<strong>in</strong>eations<br />

In this chapter P will always denote a projective space of dimension d ≥ 2.<br />

The ma<strong>in</strong> aim is to construct, us<strong>in</strong>g the theorem of Desargues, a vector space<br />

V such that P = P(V ). For this we have to construct a division r<strong>in</strong>g K. It<br />

will be composed of coll<strong>in</strong>eations (automorphisms) of P. Hence our first aim<br />

must be to use the theorem of Desargues to construct many coll<strong>in</strong>eations of<br />

P.<br />

Recall that a coll<strong>in</strong>eation of P is a pair of bijections, one from the po<strong>in</strong>t set<br />

of P to itself <strong>and</strong> one from the l<strong>in</strong>e to itself such that <strong>in</strong>cidence is preserved.<br />

If θ is such a coll<strong>in</strong>eation we let θ denote the bijection on po<strong>in</strong>ts <strong>and</strong> also the<br />

bijection on l<strong>in</strong>es. Hence we have that for two po<strong>in</strong>ts X <strong>and</strong> Y it must be<br />

true that<br />

θ(XY ) = θ(X)θ(Y ). (3.1)<br />

Clearly the set of all coll<strong>in</strong>eations of P forms a group with respect to<br />

composition of maps.<br />

121


122 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

Def<strong>in</strong>ition 3.1.1. A coll<strong>in</strong>eation θ of P is called a central coll<strong>in</strong>eation if<br />

there is a hyperplane H (the axis of θ) <strong>and</strong> a po<strong>in</strong>t C (the center of θ) with<br />

the follow<strong>in</strong>g properties:<br />

• Every po<strong>in</strong>t X of H is a fixed po<strong>in</strong>t of θ;<br />

• Every l<strong>in</strong>e x on C is a fixed l<strong>in</strong>e of θ.<br />

Note that the image of each pont on a fixed l<strong>in</strong>e g lies on g, but this does<br />

not mean that every po<strong>in</strong>t on g is a fixed po<strong>in</strong>t.<br />

Lemma 3.1.2. Let H be a hyperplane <strong>and</strong> C a po<strong>in</strong>t of P . Then the set<br />

of central coll<strong>in</strong>eations with axis H <strong>and</strong> center C is a group with respect to<br />

composition of maps.<br />

Proof. Easy exercise.<br />

Lemma 3.1.3. Let θ be a central coll<strong>in</strong>eation of P with axis H <strong>and</strong> center<br />

C. Let P = C be a po<strong>in</strong>t not on H, <strong>and</strong> let P ′ = θ(P ) be the image of P .<br />

Then θ is uniquely determ<strong>in</strong>ed. In particular, the image of each po<strong>in</strong>t X that<br />

is neither on H nor on P P ′ (= P C) satisfies<br />

(FIGURE P. 97)<br />

θ(X) = CX ∩ F P ′ where F = P X ∩ H.<br />

Proof. By the def<strong>in</strong>ition of central coll<strong>in</strong>eation, the image X ′ = θ(X) of a<br />

po<strong>in</strong>t X (not on H nor on P C is determ<strong>in</strong>ed by the follow<strong>in</strong>g restrictions:<br />

On the one h<strong>and</strong> the l<strong>in</strong>e CX is mapped onto itself (as is any l<strong>in</strong>e through<br />

C); hence X ′ must be on θ(CX) = CX.<br />

On the other h<strong>and</strong>, consider the po<strong>in</strong>t P := P X ∩ H. Be<strong>in</strong>g a po<strong>in</strong>t of<br />

the axis H it is fixed by θ. Hence<br />

X ′ = θ(X) I θ(P X) = θ(F P ) = θ(F )θ(P ) = F P ′ .<br />

S<strong>in</strong>ce X is not on P P ′ , F is not on CX. Hence X ′ is the <strong>in</strong>tersection of the<br />

two dist<strong>in</strong>ct l<strong>in</strong>es CX <strong>and</strong> F P ′ , so is uniquely determ<strong>in</strong>ed.<br />

It now follows that the image of each po<strong>in</strong>t Y on CP is also uniquely<br />

determ<strong>in</strong>ed: for just replace (P, P ”) with a pair (F, R ′ ) with R ′ = R <strong>and</strong><br />

R ∈ CP . Then it follows that Y ′ = CY ∩ F ∗ R ′ (with F ∗ = RY ∩ H) is<br />

uniquely determ<strong>in</strong>ed.


3.1. CENTRAL COLLINEATIONS 123<br />

Corollary 3.1.4. (Uniqueness of central coll<strong>in</strong>eations) Let θ be a central<br />

coll<strong>in</strong>eation of P with axis H <strong>and</strong> center C that is not the identity. Then:<br />

(a) If P is a po<strong>in</strong>t different from C <strong>and</strong> not on H, then P is not fixed by<br />

θ.<br />

(b) The central coll<strong>in</strong>eation θ is uniquely determ<strong>in</strong>ed by one pair (P, θ(P ))<br />

with P = θ(P ).<br />

Proof. For (a), assume that P is fixed by θ. The goal is to show that each<br />

po<strong>in</strong>t X is fixed. First, let X not be on the l<strong>in</strong>e CP . Then us<strong>in</strong>g the notation<br />

of Lemma 3.1.3 we have that θ(X) = CX ∩ F P ′ = CX ∩ F P = X s<strong>in</strong>ce X<br />

is on F P .<br />

Us<strong>in</strong>g a (fixed) po<strong>in</strong>t X0 outside P C we see that each po<strong>in</strong>t on P C is also<br />

fixed by θ. Hence θ is the identity map, contradict<strong>in</strong>g the hypothesis. This<br />

proves (a), <strong>and</strong> (b) also follows immediately from Lemma 3.1.3.<br />

A central coll<strong>in</strong>eation whose center lies on its axis is called a translation<br />

or an elation - see below.<br />

The previous corollary is useful <strong>in</strong> the follow<strong>in</strong>g situation. If we have two<br />

translations θ <strong>and</strong> φ whose centers lie on their common axis H, <strong>in</strong> order to<br />

show that θ = φ it suffices to show that they agree on just one po<strong>in</strong>t not on<br />

H.<br />

Corollary 3.1.5. The axis <strong>and</strong> center of a central coll<strong>in</strong>eation θ = id of P<br />

are uniquely determ<strong>in</strong>ed.<br />

Proof. If θ had two axes H <strong>and</strong> H ′ , then any of the (at least two) po<strong>in</strong>ts of<br />

H ′ \ H would be fixed by θ, contradict<strong>in</strong>g the previous corollary. Suppose<br />

that θ had two centers C <strong>and</strong> C ′ . Let P be a po<strong>in</strong>t outside the axis H <strong>and</strong><br />

l<strong>in</strong>e CC ′ . Then P ′ = θ(P ) satisfies<br />

P ′ ∈ P C <strong>and</strong> P ′ ∈ P C ′ ,<br />

forc<strong>in</strong>g P ′ = P . So aga<strong>in</strong> by Cor. 3.1.4 we have a contradiction.<br />

Def<strong>in</strong>ition 3.1.6. Let θ = id be a central coll<strong>in</strong>eation of a projective P. We<br />

call θ an elation if its center is <strong>in</strong>cident with its axis <strong>and</strong> a homology if its<br />

center <strong>and</strong> axis are not <strong>in</strong>cident. The identity is considered to be both an<br />

elation <strong>and</strong> an homology. A set of elations all hav<strong>in</strong>g the same axis H will<br />

be called translations of the aff<strong>in</strong>e space A = P \ H.


124 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

Lemma 3.1.7. Let θ = id be a central coll<strong>in</strong>eation of the projective space P<br />

with center C <strong>and</strong> axis H. If U is a subspace of P with C ∈ U but C ∈ H,<br />

then the restriction of θ to U is a central coll<strong>in</strong>eation which is not the identity.<br />

Proof. S<strong>in</strong>ce C ∈ U <strong>and</strong> each l<strong>in</strong>e through C is fixed, clearly U is <strong>in</strong>variant<br />

under θ. So the restriction θ ′ of θ to U is a coll<strong>in</strong>eation of U with C as center<br />

<strong>and</strong> U ∩ H as axis. Hence θ ′ is a central coll<strong>in</strong>eation. S<strong>in</strong>ce U ⊆ H, θ ′ is not<br />

the identity.<br />

In the situation of Lemma 3.1.7 we say that θ <strong>in</strong>duces a central coll<strong>in</strong>eation<br />

of U. Later we shall see that each central coll<strong>in</strong>eation of a subspace is <strong>in</strong>duced<br />

by a central coll<strong>in</strong>eation of the whole projective space.<br />

The next lemma is a general one on the extendibility of coll<strong>in</strong>eatons.<br />

Lemma 3.1.8. Let P be a projective space of dimension of at least 2, <strong>and</strong> let<br />

g0 be a l<strong>in</strong>e of P. Let P ′ be the po<strong>in</strong>t-l<strong>in</strong>e geometry consist<strong>in</strong>g of the po<strong>in</strong>ts<br />

P that not on g0 <strong>and</strong> the l<strong>in</strong>es of P that are different from g0. Let θ ′ be a<br />

coll<strong>in</strong>eation of P ′ . Then θ can be uniquely extended to a coll<strong>in</strong>eation θ ∗ of<br />

P. This coll<strong>in</strong>eation θ ∗ fixes the l<strong>in</strong>e g0.<br />

Proof. The ma<strong>in</strong> step is to prove the follow<strong>in</strong>g:<br />

Claim: Let g <strong>and</strong> h be two l<strong>in</strong>es that <strong>in</strong>tersect g0 <strong>in</strong> the same po<strong>in</strong>t P .<br />

Then the l<strong>in</strong>es g ′ = θ(g) <strong>and</strong> h ′ = θ(h) also <strong>in</strong>tersect each other <strong>in</strong> a po<strong>in</strong>t<br />

P ′ of g0.<br />

S<strong>in</strong>ce θ preserves the <strong>in</strong>cidence of P ′ , the l<strong>in</strong>es g ′ <strong>and</strong> h ′ have no po<strong>in</strong>t of<br />

P ′ <strong>in</strong> common. We have to dist<strong>in</strong>guish two cases.<br />

Case 1. The order of P is greater than 2.<br />

Then there are a po<strong>in</strong>t Q <strong>in</strong> P ′ <strong>and</strong> two l<strong>in</strong>es m <strong>and</strong> n through Q that<br />

<strong>in</strong>tersect each of the l<strong>in</strong>e g ′ <strong>and</strong> h ′ <strong>in</strong> dist<strong>in</strong>ct po<strong>in</strong>ts. The coll<strong>in</strong>eation θ maps<br />

m <strong>and</strong> n onto two l<strong>in</strong>es m ′ <strong>and</strong> n ′ that pass through a common pont Q ′ of<br />

P ′ <strong>and</strong> <strong>in</strong>tersect each of the l<strong>in</strong>e g ′ <strong>and</strong> h ′ <strong>in</strong> dist<strong>in</strong>ct po<strong>in</strong>ts. So g ′ <strong>and</strong> h ′ lie<br />

<strong>in</strong> a common plane of P, i.e., the plane spanned by m ′ <strong>and</strong> n ′ . Hence these<br />

two l<strong>in</strong>es must <strong>in</strong>tersect at a po<strong>in</strong>t of P. S<strong>in</strong>ce they have no po<strong>in</strong>t of P ′ <strong>in</strong><br />

common, they must <strong>in</strong>tersect <strong>in</strong> a po<strong>in</strong>t of g0.<br />

Case 2. The order of P equals 2.<br />

Here, if g, h <strong>and</strong> g0 do not lie <strong>in</strong> a common plane, then there is a po<strong>in</strong>t<br />

Q as above <strong>and</strong> the proof can be completed just as above. However, if g,


3.1. CENTRAL COLLINEATIONS 125<br />

h <strong>and</strong> g0 all lie <strong>in</strong> a common plane, then these l<strong>in</strong>es cover all po<strong>in</strong>ts of that<br />

plane (s<strong>in</strong>ce they are concurrent) <strong>and</strong> we cannot f<strong>in</strong>d a po<strong>in</strong>t Q as above.<br />

Aga<strong>in</strong> we have to consider two cases. If P is only a plane (the seven-po<strong>in</strong>t<br />

Fano plane), then it is an easy exercise to complete the proof. If P is not<br />

only a plane, then there exists a l<strong>in</strong>e ℓ through the po<strong>in</strong>t P = g ∩ h ∩ g0<br />

that is not conta<strong>in</strong>ed <strong>in</strong> the plane spanned by g <strong>and</strong> h. Then we apply our<br />

results obta<strong>in</strong>ed so far to the pairs (ℓ, g) <strong>and</strong> (ℓ, h). S<strong>in</strong>ce ℓ, g <strong>and</strong> g0 are not<br />

<strong>in</strong> a common plane, the l<strong>in</strong>es ℓ ′ <strong>and</strong> g ′ pass through a common po<strong>in</strong>t of g0.<br />

Similarly ℓ ′ <strong>and</strong> h ′ conta<strong>in</strong> a common po<strong>in</strong>t of g0. Therefore g ′ <strong>and</strong> h ′ also<br />

pass through the same po<strong>in</strong>t of g0, prov<strong>in</strong>g the claim.<br />

From this we obta<strong>in</strong> the follow<strong>in</strong>g: For a po<strong>in</strong>t P on g0 let GP be the set<br />

of l<strong>in</strong>e P ′ through P . Then there is a po<strong>in</strong>t P ′ on g0 such that all images of<br />

the l<strong>in</strong>es of GP pass through P ′ . In other words: θ(GP ) = GP ′.<br />

Now we def<strong>in</strong>e θ ∗ <strong>in</strong> such a way that the restriction of θ ∗ to P ′ is θ; that<br />

θ ∗ (g0) = g0; <strong>and</strong> that for each po<strong>in</strong>t P on g) we have θ ∗ (P ) = P ′ . Then we<br />

see that not only is θ ∗ the only possible extensio<strong>in</strong> of θ to P, but also that<br />

θ ∗ is <strong>in</strong> fact a coll<strong>in</strong>eation.<br />

Lemma 3.1.9. Let θ be a coll<strong>in</strong>eation of P such that there is a hyperplane<br />

H with the property that each of po<strong>in</strong>t of H is fixed by θ. Then there exists a<br />

po<strong>in</strong>t C of P such that each l<strong>in</strong>e through C is fixed by θ. Briefly: each axial<br />

coll<strong>in</strong>eation is central. Dually, each central coll<strong>in</strong>eation is axial, but we leave<br />

the proof of that as an exercise.<br />

Proof. If there is a po<strong>in</strong>t C ∈ H with θ(C) = C, then clearly C is a center.<br />

So consider the case where no po<strong>in</strong>t outside H is fixed by θ. Let P be<br />

an arbitrary po<strong>in</strong>t outside H. Then the l<strong>in</strong>e P θ(P ) must be fixed s<strong>in</strong>ce its<br />

<strong>in</strong>tersection C with H is fixed. In fact, we claim the po<strong>in</strong>t C is a center for<br />

θ. Suppose that g is a l<strong>in</strong>e through C. Clearly each l<strong>in</strong>e <strong>in</strong> H is fixed, so we<br />

may assume that g does not lie <strong>in</strong> H.<br />

Claim: For each po<strong>in</strong>t Q ∈ H, Q ∈ P θ(P ), the l<strong>in</strong>e Qθ(Q) passes<br />

through the po<strong>in</strong>t C = P θ(P ) ∩ H. For let S = P Q ∩ H. Then<br />

S = θ(S) ∈ θ(P Q) = θ(P )θ(Q).<br />

Hence the po<strong>in</strong>ts S, P , Q, θ(P ), θ(Q) are conta<strong>in</strong>ed <strong>in</strong> a common plane<br />

π. There the l<strong>in</strong>es Qθ(Q) <strong>and</strong> P θ(P ) <strong>in</strong>tersect <strong>in</strong> some X of π. S<strong>in</strong>ce the<br />

l<strong>in</strong>es Qθ(Q) <strong>and</strong> P θ(P ) are fixed by θ, the po<strong>in</strong>t X satisfies<br />

θ(X) = θ(P θ(P )) ∩ θ(Qθ(Q)) = P θ(P ) ∩ Qθ(Q) = X.


126 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

Therefore X lies <strong>in</strong> H <strong>and</strong> hence must co<strong>in</strong>cide with the po<strong>in</strong>t P θ(P )∩H = C.<br />

Hence all l<strong>in</strong>es of the form Qθ(Q) pass through C, <strong>and</strong> each l<strong>in</strong>e through<br />

C is fixed by θ.<br />

Now we are ready to prove an important result which <strong>in</strong> the general<br />

form given here was first given by R. Baer <strong>in</strong> 1942, although <strong>in</strong> essence it<br />

was already known long before. Basically it says that <strong>in</strong> a Desarguesian<br />

projective space all possible central coll<strong>in</strong>eations exist.<br />

Theorem 3.1.10. (existence of central coll<strong>in</strong>eations) If <strong>in</strong> the projective<br />

space P the theorem of Desargues is valid we have: if H is a hyperplane <strong>and</strong><br />

C, P <strong>and</strong> P ′ are dist<strong>in</strong>ct coll<strong>in</strong>ear po<strong>in</strong>ts of P with P , P ′ ∈ H, then there is<br />

precisely one central coll<strong>in</strong>eation of P with axis H <strong>and</strong> center C mapp<strong>in</strong>g P<br />

to P ′ .<br />

Proof. The uniqueness of the central coll<strong>in</strong>eation has already been proved<br />

above. So what we have to do now is to prove the existence of the central<br />

coll<strong>in</strong>eation.<br />

The basic idea is to start with the (rank 2) po<strong>in</strong>t-l<strong>in</strong>e geometry P ′ whose<br />

po<strong>in</strong>ts are the po<strong>in</strong>ts of P not on CP <strong>and</strong> the l<strong>in</strong>es of P different from CP .<br />

We shall def<strong>in</strong>e a map θ <strong>and</strong> show that it is a coll<strong>in</strong>eation of P ′ . Then the<br />

previous lemma implies that θ can be extended to a coll<strong>in</strong>eation of P.<br />

Def<strong>in</strong>ition of the map θ: Each po<strong>in</strong>t of H is fixed by θ. For a po<strong>in</strong>t X<br />

outside H def<strong>in</strong>e X ′ = θ(X) := CX ∩ F P ′ , where F = XP ∩ H.<br />

The heart of the proof consists <strong>in</strong> show<strong>in</strong>g that this θ is a coll<strong>in</strong>eation of<br />

P ′ .First we show that θ is a bijection of the po<strong>in</strong>tset of P ′ onto itself.<br />

Suppose that X1 <strong>and</strong> X2 are two dist<strong>in</strong>ct po<strong>in</strong>ts. To show that they have<br />

different images we may certa<strong>in</strong>ly suppose that they are not <strong>in</strong> H. If X1, X2<br />

<strong>and</strong> C are coll<strong>in</strong>ear, then the ponts F1 = X1P ∩ H <strong>and</strong> F2 = X2P ∩ H are<br />

dist<strong>in</strong>ct. Hence θ(X1) <strong>and</strong> θ(X2) are two dist<strong>in</strong>ct po<strong>in</strong>ts on the l<strong>in</strong>e through<br />

C, X1 <strong>and</strong> X2. If X1, X2 <strong>and</strong> C are not coll<strong>in</strong>eat then θ(X1) <strong>and</strong> θ(X2) are<br />

dist<strong>in</strong>ct s<strong>in</strong>ce θ(CX1) is on X1 <strong>and</strong> θ(X2) is on CX2. Hence θ is <strong>in</strong>jective.<br />

The map θ is surjective s<strong>in</strong>ce the po<strong>in</strong>t Y0 := CY ∩ F P , where F =<br />

Y P ′ ∩ H, is a preimage of Y .<br />

We now show that any three coll<strong>in</strong>ear po<strong>in</strong>ts are mapped onto coll<strong>in</strong>ear<br />

po<strong>in</strong>ts. This is enough to show that θ is a coll<strong>in</strong>etion. For this we first need<br />

to prove the follow<strong>in</strong>g<br />

Claim: For any two po<strong>in</strong>ts X <strong>and</strong> Y of P ′ , the l<strong>in</strong>es XY <strong>and</strong> X ′ Y ′<br />

<strong>in</strong>tersect <strong>in</strong> a po<strong>in</strong>t of the axis H. Clearly we may suppose that X, Y ∈ H.


3.1. CENTRAL COLLINEATIONS 127<br />

Recall the construction of X ′ <strong>and</strong> Y ′ . First deal with the “trivial” case that<br />

P , X <strong>and</strong> Y are coll<strong>in</strong>ear. (FIGURE 3.3 P. 101) Then X ′ <strong>and</strong> Y ′ are also on<br />

the l<strong>in</strong>e through F = P X ∩ H <strong>and</strong> P ′ . Hence P ′ , X ′ <strong>and</strong> Y ′ are coll<strong>in</strong>ear. In<br />

particular, XY = P X <strong>and</strong> X ′ Y ′ = X ′ P ′ <strong>in</strong>tersect <strong>in</strong> the po<strong>in</strong>t F of H.<br />

Now study the general case where X, Y <strong>and</strong> P are not coll<strong>in</strong>ear (FIGURE<br />

P. 102). Then the po<strong>in</strong>ts F1 = P X ∩ H <strong>and</strong> F2 = P Y ∩ H are dist<strong>in</strong>ct.<br />

S<strong>in</strong>ce P ′ is not a fixed po<strong>in</strong>t it does not lie <strong>in</strong> H. Thus the l<strong>in</strong>es F1P ′ <strong>and</strong><br />

F2P ′ are dist<strong>in</strong>ct. So X ′ , Y ′ <strong>and</strong> P ′ are also noncoll<strong>in</strong>ear, <strong>and</strong> therefore the<br />

triangle △(X, Y, P <strong>and</strong> △(X ′ , Y ′ , P ′ ) satisfy the hypothesis of the theorem<br />

of Desargues (with center C).<br />

The theorem of Desargues, applied to these triangles, says that the po<strong>in</strong>ts<br />

F1, F2 <strong>and</strong> XY ∩ X ′ Y ′ (the po<strong>in</strong>t we seek) are coll<strong>in</strong>ear. In particular,<br />

XY ∩ X ′ Y ′ lies on H.<br />

It now follows that θ is a coll<strong>in</strong>eation of P ′ : Let X, Y, W be three po<strong>in</strong>ts<br />

on a l<strong>in</strong>e g, <strong>and</strong> let X ′ , Y ′ <strong>and</strong> W ′ be their images under θ. In view of the<br />

above claim, Q = XY ∩ X ′ Y ′ = g ∩ X ′ Y ′ is also a po<strong>in</strong>t of H, <strong>and</strong> this must<br />

be the <strong>in</strong>tersection of g <strong>and</strong> H, hence it is the pont Q. This means that<br />

X ′ W ′ = X ′ Q = g ′ . So W ′ also lies on QX ′ = g ′ . Therefore all three images<br />

lie on a common l<strong>in</strong>e, show<strong>in</strong>g that θ is a coll<strong>in</strong>eation of P ′ . By Lemma 3.1.8<br />

we can extend a coll<strong>in</strong>eation θ ofP ′ to a coll<strong>in</strong>eation θ ∗ of P. It rema<strong>in</strong>s to<br />

show that θ ∗ is a central coll<strong>in</strong>eation. By construction, H is an axis of θ ∗ . As<br />

a consequence of Lemma 3.1.9 we see that θ ∗ must also have a center, which<br />

is <strong>in</strong> fact the po<strong>in</strong>t C.<br />

A simple application of the theorem of Baer is the converse of Lemma 3.1.7.<br />

Theorem 3.1.11. Let P be a Desarguesian projective space of dimension<br />

d ≥ 2. Then each central coll<strong>in</strong>eation γ ∗ of a subspace U of P is <strong>in</strong>duced by<br />

a central coll<strong>in</strong>eation of P. More precisely, for each po<strong>in</strong>t P ∈ U there is a<br />

central coll<strong>in</strong>eation of P whose axis passes through P <strong>and</strong> <strong>in</strong>duces θ ∗ .<br />

Proof. Let C be the center <strong>and</strong> H ∗ the axis of θ ∗ . Let H be a hyperplane<br />

of P through P such that H ∩ U = H ∗ . Consider an arbitrary po<strong>in</strong>t Q of U<br />

with Q = C <strong>and</strong> Q ∈ H ∗ . Let Q ′ = θ ∗ (Q). By the theorem of Baer there is<br />

a central coll<strong>in</strong>eation θ of P with center C <strong>and</strong> axis H that maps Q onto Q ′ .<br />

Let θ ′ be the central coll<strong>in</strong>eation of U that is <strong>in</strong>duced by θ. S<strong>in</strong>ce θ ′ <strong>and</strong><br />

θ ∗ share the same center <strong>and</strong> the same axis <strong>and</strong> map Q onto Q ′ , it follows<br />

that θ ′ = θ ∗ . Hence θ ∗ is <strong>in</strong>duced by the central coll<strong>in</strong>eation θ of P.


128 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

3.2 The Group of Translations<br />

Our present basic goal is to construct a vector space that will be used to<br />

coord<strong>in</strong>atize the projective space P. A ma<strong>in</strong> idea is first to coord<strong>in</strong>atize an<br />

aff<strong>in</strong>e space A = P \ H for some hyperplane H of P. The next theorem says<br />

that this approach should be a good one.<br />

Theorem 3.2.1. Let θ be a coll<strong>in</strong>eation of the aff<strong>in</strong>e space A = P \H. If the<br />

order of P is greater than 2 then there is precisely one coll<strong>in</strong>eation of P such<br />

that its restriction to A is θ. Briefly, θ has a unique projective extension.<br />

Proof. First we show that θ has at most one extension to a coll<strong>in</strong>eation of<br />

P. Let θ ∗ <strong>and</strong> θ + be extensions of θ. Then β := θ + θ ∗−1 is a coll<strong>in</strong>eation of<br />

P which fixes each po<strong>in</strong>t <strong>and</strong> each l<strong>in</strong>e of A. S<strong>in</strong>ce each l<strong>in</strong>e of A <strong>and</strong> the<br />

hyperplane H are fixed, β also fixes each po<strong>in</strong>t at <strong>in</strong>f<strong>in</strong>ity. Hence β = id <strong>and</strong><br />

θ ∗ = θ + .<br />

The existence is more difficult. We start with the follow<strong>in</strong>g<br />

Claim: If g <strong>and</strong> h are parallel l<strong>in</strong>es, then θ(g) <strong>and</strong> θ(h) are parallel.<br />

Clearly we may assume that g = h. Then the images of g <strong>and</strong> h also<br />

have no po<strong>in</strong>t <strong>in</strong> common, but they could be skew! S<strong>in</strong>ce g <strong>and</strong> h are parallel<br />

they are conta<strong>in</strong>ed <strong>in</strong> some plane π. The immediate goal is to show that the<br />

images of g <strong>and</strong> h also lie <strong>in</strong> a common plane.<br />

S<strong>in</strong>ce the order of P is greater than 2 there is a po<strong>in</strong>t P <strong>in</strong> π that is<br />

neither on g nor on h. Let ℓ <strong>and</strong> m be two l<strong>in</strong>es <strong>in</strong> π through P that are not<br />

parallel to g. Then the l<strong>in</strong>es ℓ <strong>and</strong> m both <strong>in</strong>tersect both g <strong>and</strong> h. Then θ(ℓ)<br />

<strong>and</strong> θ(m) <strong>in</strong>tersect each other <strong>and</strong> also both <strong>in</strong>tersect both θ(g) <strong>and</strong> θ(h)..<br />

Thus θ(g) <strong>and</strong> θ(h) lie <strong>in</strong> the plane 〈θ(ℓ), θ(m)〉 <strong>and</strong> are therefore parallel,<br />

prov<strong>in</strong>g the Claim.<br />

Now def<strong>in</strong>e an extension θ ∗ of θ as follows. For P ∈ A = P \ H put<br />

θ ∗ (P ) = θ(P ). For P ∈ H let g be a l<strong>in</strong>e through P that is not <strong>in</strong> H. Put<br />

θ ∗ (P ) = θ(g) ∩ H. S<strong>in</strong>ce g is an aff<strong>in</strong>e l<strong>in</strong>e, θ(g) is well-def<strong>in</strong>ed.<br />

We have to show that θ ∗ is well-def<strong>in</strong>ed. So if g <strong>and</strong> h are two l<strong>in</strong>es<br />

through P that are not <strong>in</strong> H, then they are parallel as l<strong>in</strong>es of A. By the<br />

Claim, θ(g) <strong>and</strong> θ(h) are also parallel, hence they <strong>in</strong>tersect each other <strong>in</strong> a<br />

po<strong>in</strong>t of H, namely <strong>in</strong> θ ∗ (P ). Thus θ ∗ is well-def<strong>in</strong>ed.<br />

The map θ ∗ is bijective on the po<strong>in</strong>ts of H s<strong>in</strong>ce it is bijective on the l<strong>in</strong>e<br />

set of A.<br />

In order to show that θ ∗ is a coll<strong>in</strong>eation it is sufficient to show that θ ∗<br />

maps coll<strong>in</strong>ear po<strong>in</strong>ts to coll<strong>in</strong>ear po<strong>in</strong>ts. This is clear for po<strong>in</strong>ts of A, <strong>and</strong>


3.2. THE GROUP OF TRANSLATIONS 129<br />

also if only one of the po<strong>in</strong>ts lies <strong>in</strong> H. Let P1, P2, P3 be three coll<strong>in</strong>ear<br />

po<strong>in</strong>ts of H <strong>and</strong> let X be any po<strong>in</strong>t of A. Then π = 〈X, P1, P2, P3〉 is a plane.<br />

By def<strong>in</strong>ition of θ ∗ , θ ∗ (π) is a plane that <strong>in</strong>tersects H <strong>in</strong> a l<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g the<br />

po<strong>in</strong>ts θ ∗ (P1), θ ∗ (P2) <strong>and</strong> θ ∗ (P3). Hence these po<strong>in</strong>ts are coll<strong>in</strong>ear.<br />

The case where the order of P is 2 is truly an exceptional case. The<br />

existence part of the result does not rema<strong>in</strong> true. The problem comes <strong>in</strong><br />

because any permutation of the po<strong>in</strong>ts of A preserves coll<strong>in</strong>earity of po<strong>in</strong>ts<br />

<strong>and</strong> might not preserve planes. However, if a coll<strong>in</strong>eation θ preserves the<br />

planes of A it can be shown that θ can be extended to a colli<strong>in</strong>eation of P.<br />

Note 3.2.2. For the rema<strong>in</strong>der of this chapter we suppose that P is Desarguesian.<br />

Furthermore, we fix a hyperplane H. Then the theorem of Desargues<br />

also holds <strong>in</strong> the aff<strong>in</strong>e space A = P \ H.<br />

We denote the set of all elations with axis H <strong>and</strong> center on H by T (H).<br />

(In the aff<strong>in</strong>e space A = P \ H the elements of T (H) are called translations<br />

of A.)<br />

Theorem 3.2.3. For each hyperplane H of P, T (H) is an abelian group<br />

act<strong>in</strong>g regularly on the po<strong>in</strong>ts of A = P \ H.<br />

Proof. Let P <strong>and</strong> Q be any po<strong>in</strong>ts of A. WOLG we may assume P = Q. If<br />

P is mapped by a translation onto Q, then the center of this translation is<br />

C = P Q∩H. By the Theorem of Baer there is exactly one central coll<strong>in</strong>eation<br />

with axis H <strong>and</strong> center C mapp<strong>in</strong>g P onto Q, the set T (H) acts even sharply<br />

transitively on the po<strong>in</strong>ts of A.<br />

Now we show that T (H) is a group. S<strong>in</strong>ce the set of all coll<strong>in</strong>eations of<br />

P is a group with respect to composition of maps, we need only show that<br />

T (H) is a subgroup of this group. S<strong>in</strong>ce T (H) is nonempty, we need only<br />

show that for θ, φ ∈ T (H) both θ −1 <strong>and</strong> θφ are <strong>in</strong> T (H). So let θ, φ be<br />

arbitrary element of T (H). Then each po<strong>in</strong>t of H is fixed by θ −1 <strong>and</strong> by θφ.<br />

So by Lemma 3.1.9 θ −1 <strong>and</strong> θφ are central coll<strong>in</strong>eations. WOLG we may<br />

suppose that θ = id. Then θ fixes no po<strong>in</strong>t of A, imply<strong>in</strong>g that θ −1 fixes no<br />

po<strong>in</strong>t of A. In particular the center of θ −1 is <strong>in</strong> H, so θ −1 ∈ T (H). Now<br />

we may suppose that θφ = id <strong>and</strong> we must show that the center of θφ is on<br />

H. Assume that some po<strong>in</strong>t P ∈ H is fixed by θφ. Then φ(P ) = θ −1 (P ).<br />

By Corollary 3.1.4 (b) we have θ −1 = φ, so θφ must be the identity. This<br />

completes a proof that T (H) is a group.


130 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

F<strong>in</strong>ally, we must show that T (H) is abelian. Let θ1 <strong>and</strong> θ2 be arbitrary<br />

elements of T (H). It suffices to show that for even one po<strong>in</strong>t X ∈ H we have<br />

θ1θ2(X) = θ2θ1(X). Suppose that θi has center Ci (<strong>and</strong> neither elation is the<br />

identity) i = 1, 2.<br />

Case 1. C1 = C2.<br />

Let X be an arbitrary po<strong>in</strong>t of A. Consider the po<strong>in</strong>ts X, θ1(X), θ2(X)<br />

<strong>and</strong> θ2(θ1(X)). S<strong>in</strong>ce the po<strong>in</strong>t θ2(θ1(X)) is the image of θ1(X) under θ2, the<br />

po<strong>in</strong>t θ2(θ1(X)) lies on the l<strong>in</strong>e C2θ1(X). Moreover, we have<br />

C1 = θ2(C1) is on θ2(Xθ1(X)) = θ2(X)θ2(θ1(X)).<br />

Thus the po<strong>in</strong>t θ2(θ1(X)) is also <strong>in</strong>cident with C1θ2(X). Similarly, we have<br />

that the po<strong>in</strong>t θ(θ2(X)) is <strong>in</strong>cident with C2θ1(X) as well as with C1θ2(X).<br />

Therefore θ1θ2(X) = θ2θ1(X). Hence θ1θ2 = θ2θ1.<br />

Case 2. C1 = C2. Consider a po<strong>in</strong>t C3 = C1 <strong>and</strong> a θνT (H), θ3 = id,<br />

with center C3. S<strong>in</strong>ce the translations with center C1 form a group, θ1θ3 also<br />

has a center different form C1. By Case 1 we get<br />

θ2θ3 = θ3θ2 <strong>and</strong> θ2(θ1θ3) = (θ1θ3)θ2.<br />

From these results together it follows that<br />

(θ1θ2)θ3 = θ1(θ2θ3) = θ1(θ3θ2) = (θ1θ3)θ2 = θ2(θ1θ3) = (θ2θ1)θ3,<br />

hence θ1θ2 = θ2θ1.<br />

Now dist<strong>in</strong>guish an arbitrary (but fixed) po<strong>in</strong>t O of A. S<strong>in</strong>ce T (H) acts<br />

regularly on the po<strong>in</strong>ts of A, each po<strong>in</strong>t P ∈ A may be identified with the<br />

unique translation τP ∈ T (H) that maps O to P . In particular, τO = id <strong>and</strong><br />

τP (O) = P . This identification allows us to def<strong>in</strong>e an addition ‘+ ′ on the<br />

po<strong>in</strong>ts of H.<br />

Def<strong>in</strong>e:<br />

P + Q := τP (Q) = τP (τQ(O)) = τQ(τP (O)).<br />

Theorem 3.2.4. Let P ∗ denote the set of po<strong>in</strong>ts of A. Then (P ∗ , +) is a<br />

group isomorphic to (T (H), ◦).


3.2. THE GROUP OF TRANSLATIONS 131<br />

Proof. Def<strong>in</strong>e a map<br />

f : P ∗ → T (H) : P ↦→ τP .<br />

Clearly f is a bijection, so what we must show is that f(P + Q) =<br />

f(P ) ◦ f(Q) for all po<strong>in</strong>ts P, Q ∈ P ∗ . By the def<strong>in</strong>ition of “ + ” we have<br />

f(P + Q) = θP +Q = ττP (Q).<br />

So f(P + Q) is the translation that maps O onto the po<strong>in</strong>t τP (Q). Now<br />

consider the image of O under f(P ) ◦ f(Q) = τP τQ. Here τQ maps O onto Q,<br />

<strong>and</strong> then this po<strong>in</strong>t is mapped onto τP (Q). Thus the translatons f(P + Q)<br />

<strong>and</strong> f(P ) ◦ f(Q) map O onto the same po<strong>in</strong>t. Hence these translations are<br />

equal.<br />

In particular we have<br />

τP +Q = τP ◦ τQ. (3.2)<br />

Given a po<strong>in</strong>t P ∈ A different from O we note that its “negative” −P<br />

is the po<strong>in</strong>t τ −1<br />

P<br />

(O). S<strong>in</strong>ce τ −1<br />

P must also be a translation with center P ∗ =<br />

OP ∩ H, the po<strong>in</strong>t −P lies on the l<strong>in</strong>e OP ∗ = OP . Clearly −O = O.<br />

It is sometimes useful to see how to obta<strong>in</strong> the sum of two po<strong>in</strong>ts <strong>in</strong> a<br />

geometric way. First, suppose that O = P ∈ P ∗ with P ∗ = P O ∩H as above.<br />

Then if P , Q <strong>and</strong> O are noncoll<strong>in</strong>ear, we claim<br />

P + Q = P ∗ Q ∩ P Q ∗ . (3.3)<br />

To see this, note that P ∗ is the center of τP , hence P + Q = τP (Q) l ies<br />

on the l<strong>in</strong>e QP ∗ . On the other h<strong>and</strong>, τP maps the l<strong>in</strong>e OQ ∗ onto P Q ∗ , s<strong>in</strong>ce<br />

Q ∗ is fixed by τP . Hence τP (Q) is also <strong>in</strong>cident with P Q ∗ .<br />

From an aff<strong>in</strong>e po<strong>in</strong>t of view, the l<strong>in</strong>es OP <strong>and</strong> Q(P + Q), as well as the<br />

l<strong>in</strong>es OQ <strong>and</strong> P (P + Q) are parallel. Thus the po<strong>in</strong>ts O, P, Q, P + Q determ<strong>in</strong>e<br />

a parallelogram. So we can express the above geometric observation as:<br />

P + Q is the fourth po<strong>in</strong>t that completes O, P, Q to the four corner po<strong>in</strong>ts<br />

of a parallelogram <strong>in</strong> A.<br />

Keep the above po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es <strong>in</strong> m<strong>in</strong>d <strong>and</strong> suppose that the order of<br />

P is greater than 2. Then let P ′ be any po<strong>in</strong>t of the l<strong>in</strong>e OP different from<br />

O, P <strong>and</strong> P ∗ . To see where P + P ′ is, note that the l<strong>in</strong>e P ′ Q meets H <strong>in</strong> a<br />

po<strong>in</strong>t R ∗ . S<strong>in</strong>ce τP : Q ↦→ P + Q <strong>and</strong> τP fixes R ∗ , it maps the l<strong>in</strong>e P ′ Q to<br />

the l<strong>in</strong>e 〈P + Q, R ∗ . So<br />

P + P ′ = τP (P ′ ) = 〈P + Q, R ∗ 〉 ∩ OP.


132 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

Of course this must be <strong>in</strong>dependent of the po<strong>in</strong>t Q, essentially because the<br />

theorem of Desargues is assume to hold.<br />

Def<strong>in</strong>ition 3.2.5. For a po<strong>in</strong>t P ∈ H let T (P, H) be the set of all central<br />

coll<strong>in</strong>eations with axis H <strong>and</strong> center P .<br />

Clearly for each P ∈ H the set T (P, H) is an (abelian) subgroup of T (H).<br />

Moreover, we may identify the elements of T (P, H) with the po<strong>in</strong>ts of A on<br />

the l<strong>in</strong>e OP . So the l<strong>in</strong>es through O are <strong>in</strong> a one-to-one correspondence with<br />

the subgroups T (P, H) of T (H). With the help of T (H) we already have a<br />

fairly nice description of the aff<strong>in</strong>e space A. However, we want T (H) not<br />

merely to be an abelian group, we want it to be a vector space <strong>in</strong> order to<br />

obta<strong>in</strong> the usual description of an aff<strong>in</strong>e space. The follow<strong>in</strong>g theorem is a<br />

step <strong>in</strong> this direction.<br />

Theorem 3.2.6. The po<strong>in</strong>ts of A form an abelian group, which we denote<br />

by T . The l<strong>in</strong>es through O are certa<strong>in</strong> (necessarily normal) subgroups of T .<br />

The other l<strong>in</strong>es are the cosets with respect to these subgroups on O.<br />

Proof. The first statement was established <strong>in</strong> the previous theorem. For the<br />

rema<strong>in</strong>der we <strong>in</strong>troduce some helpful notation. Let g be a l<strong>in</strong>e of A <strong>and</strong><br />

def<strong>in</strong>e<br />

T (g) = {τP : P ∈ g}.<br />

We need to show the follow<strong>in</strong>g:<br />

(a) If g is a l<strong>in</strong>e through O then T (g) = T (C, H), where C is the po<strong>in</strong>t<br />

at <strong>in</strong>f<strong>in</strong>ity of g. Conversely, for any subgroup of T (H) of the form T (C, H)<br />

there is a l<strong>in</strong>e g through O such that T (g) = T (C, H). (This is clear s<strong>in</strong>ce<br />

the translations that fix g are exactly the translations with center C.)<br />

(b) If g is a l<strong>in</strong>e not through O, then<br />

T (g) = τP ◦ T (C, H),<br />

where P is an arbitrary po<strong>in</strong>t of A on g <strong>and</strong> C is the po<strong>in</strong>t at <strong>in</strong>f<strong>in</strong>ity of g.<br />

Conversely, for each po<strong>in</strong>t P <strong>and</strong> each po<strong>in</strong>t C at <strong>in</strong>f<strong>in</strong>ity there is a l<strong>in</strong>e g<br />

such that<br />

T (g) = τP ◦ T (C, H).<br />

The proof of (b) is a little more <strong>in</strong>volved. Let g be a l<strong>in</strong>e not through O,<br />

let P be a po<strong>in</strong>t of A on g, <strong>and</strong> let C = g ∩ H.<br />

Claim: g = {P + X : X is an aff<strong>in</strong>e po<strong>in</strong>t of OC} =: P + OC.


3.3. THE DIVISION RING 133<br />

To see this, th<strong>in</strong>k of C as X ∗ = OX ∩ H for X ∈ OC <strong>and</strong> P ∗ = OP ∩ H<br />

(as <strong>in</strong> the previous notation), so that<br />

P + X = P ∗ X ∩ P X ∗ = P ∗ X ∩ P C = P ∗ X ∩ g ∈ g.<br />

On the other h<strong>and</strong> let Q be a po<strong>in</strong>t of A on g. Then the po<strong>in</strong>t X :=<br />

OC ∩ P ∗ Q is a preimage of Q under τP . This establishes the claim, <strong>and</strong> by<br />

(a) we have:<br />

T (g) = {τP +X : X ∈ OC} = {τP ◦ τX : X ∈ OC} = τP ◦ T (C, H).<br />

Conversely, suppose that P is a po<strong>in</strong>t of A <strong>and</strong> C a po<strong>in</strong>t at <strong>in</strong>f<strong>in</strong>ity, then<br />

for g = P C we have T (g) = τP ◦ T (C, H).<br />

If g is a l<strong>in</strong>e of A meet<strong>in</strong>g H at the po<strong>in</strong>t C, we often will write g = P +OC.<br />

3.3 The Division R<strong>in</strong>g<br />

As before O is a po<strong>in</strong>t of P not <strong>in</strong> the hyperplane H. Let DO denote the set of<br />

all central coll<strong>in</strong>eations of P with center O <strong>and</strong> axis H. The elements of DO<br />

are also called dilatations with center O <strong>and</strong> axis H. It follows directly from<br />

the theorem of Baer (Theorem 3.1.10) that D0 is a group which acts sharply<br />

transitively on the aff<strong>in</strong>e po<strong>in</strong>ts different from O on each l<strong>in</strong>e of A = P \ H<br />

through O. Also, consider the image of a l<strong>in</strong>e P + OC of A under σ ∈ DO.<br />

S<strong>in</strong>ce O <strong>and</strong> C are fixed by σ <strong>and</strong> the image must conta<strong>in</strong> σ(P ), we obta<strong>in</strong><br />

Lemma 3.3.1. Let<br />

σ(g) = σ(P ) + OC.<br />

µ : P ∗ → P ∗ : X → −X.<br />

This means that µ maps an arbitrary aff<strong>in</strong>e po<strong>in</strong>t X to the po<strong>in</strong>t −X =<br />

(τX) −1 (O). Then µ (actually it projective extension) is an element of DO.<br />

Proof. Clearly µ is a bijective map fix<strong>in</strong>g the po<strong>in</strong>t O. A rout<strong>in</strong>e computation<br />

shows that µ maps the l<strong>in</strong>e g = P + OC to the l<strong>in</strong>e −P + OC. This is<br />

because for each po<strong>in</strong>t X on OC the po<strong>in</strong>t −X is also on OX = OC, forc<strong>in</strong>g<br />

µ(P + X) = −(P + X) = −P + (−X) is a po<strong>in</strong>t of −P + OC. Hence µ is<br />

a coll<strong>in</strong>eation of A. So µ has a projective extension (which we also denote


134 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

by µ). (If the order of P is 2, then µ is the identity.) S<strong>in</strong>ce along with the<br />

po<strong>in</strong>t P , the po<strong>in</strong>t −P is also on OC, µ maps any l<strong>in</strong>e throught O onto itself.<br />

S<strong>in</strong>ce any central coll<strong>in</strong>eation must also be axial, µ is a central coll<strong>in</strong>eation<br />

with center O <strong>and</strong> some hyperplane as axis. S<strong>in</strong>ce µ has no aff<strong>in</strong>e fixed po<strong>in</strong>t<br />

except for O”, its axis must be H. This says µ ∈ DO.<br />

Note: S<strong>in</strong>ce X + −X = τX(−X) = τX(τ −1<br />

X (O)) = 0, we see that every<br />

po<strong>in</strong>t X satisfies<br />

X + −X = O.<br />

The elements of DO act on the po<strong>in</strong>ts of P ∗ , so they also act on the<br />

elements of the group P ∗ , +). We need to see how they act on this group.<br />

Lemma 3.3.2. Each element of DO is an automorphism of (P ∗ , +). Moreover,<br />

σ ◦ µ = µ ◦ σ, i.e., σ(−X) = −σ(X) for all σ ∈ DO <strong>and</strong> for all po<strong>in</strong>ts<br />

X.<br />

Proof. Let σ be an arbitrary element of DO. S<strong>in</strong>ce it is clear that σ acts<br />

bijectively on P ∗ , it suffices to show that for arbitrary po<strong>in</strong>ts X <strong>and</strong> Y we<br />

have<br />

σ(X + Y ) = σ(X) + σ(Y ).<br />

(FIGURE P. 112) For this we may assume that X, Y = O. First suppose that<br />

X, Y <strong>and</strong> O are not coll<strong>in</strong>ear. S<strong>in</strong>ce X +Y = XY ∗ ∩X ∗ Y <strong>and</strong> σ(X)+σ(Y ) =<br />

σ(X)σ(Y ) ∗ ∩ σ(X) ∗ σ(Y ), we must show that<br />

σ(XY ∗ ∩ X ∗ Y ) = σ(X)σ(Y ) ∗ ∩ σ(X) ∗ σ(Y ).<br />

S<strong>in</strong>ce σ is a coll<strong>in</strong>eation, this just means<br />

σ(X)σ(Y ∗ ) ∩ σ(X ∗ )σ(Y ) = σ(X)σ(Y ) ∗ ∩ σ(X) ∗ σ(Y ).<br />

We know that σ(X ∗ ) = X ∗ s<strong>in</strong>ce X ∗ is a po<strong>in</strong>t of H. Similarly we get<br />

that σ(Y ∗ ) = Y ∗ . Morever, σ(X) ∗ = X ∗ , s<strong>in</strong>ce σ moves the po<strong>in</strong>t X on<br />

the l<strong>in</strong>e OX ∗ . Hence OX <strong>and</strong> Oσ(X) have the same po<strong>in</strong>t at <strong>in</strong>f<strong>in</strong>ity, i.e.,<br />

X ∗ = σ(X) ∗ . S<strong>in</strong>ce Y ∗ = σ(Y ) ∗ follows similarly, the assertion holds <strong>in</strong> the<br />

case that X, Y, <strong>and</strong> O are not coll<strong>in</strong>ear.<br />

Next we show that σ(−X) = −σ(X) for each po<strong>in</strong>t X = O. For this, let<br />

P be a po<strong>in</strong>t not on the l<strong>in</strong>e OX. S<strong>in</strong>ce O, X <strong>and</strong> −X are coll<strong>in</strong>ear, P + X


3.3. THE DIVISION RING 135<br />

is also not on the l<strong>in</strong>e O(−X). Us<strong>in</strong>g what we have already proved we have<br />

σ(P ) = σ(P + X + (−X))<br />

= σ(P + X) + σ(−X)<br />

= σ(P ) + σ(X) + σ(−X)<br />

=⇒<br />

0 = σ(X) + σ(−X),<br />

forc<strong>in</strong>g σ(−X) = −σ(X). F<strong>in</strong>ally we are abler to show that σ(X + Y ) =<br />

σ(X) + σ(Y ) holds for po<strong>in</strong>ts X, Y with O ∈ XY . If Y = −X then this<br />

is the statement just proved. So assume that Y = −X. Consider a po<strong>in</strong>t<br />

P ∈ XY , so also −P ∈ XY . Moreover, s<strong>in</strong>ce Y = X we have that O, X + P<br />

<strong>and</strong> (Y − P are not coll<strong>in</strong>ear. (EXERCISE: prove this.) Us<strong>in</strong>g the first two<br />

parts of the proof it now follows that<br />

σ(X + Y ) = σ(X + P − P + Y )<br />

= σ(X + P ) + σ(Y − P )<br />

= σ(X) + σ(P ) + σ(Y ) + σ(−P )<br />

= σ(X) + σ(P ) + σ(Y ) − σ(P )<br />

= σ(X) + σ(Y ).<br />

The next step is to def<strong>in</strong>e addition <strong>in</strong> DO. The ma<strong>in</strong> work consists <strong>in</strong><br />

show<strong>in</strong>g that this operation is closed <strong>and</strong> is conta<strong>in</strong>ed <strong>in</strong> the next Lemma.<br />

Lemma 3.3.3. Let σ1, σ2 ∈ DO. Def<strong>in</strong>e the map<br />

σ1 + σ2 : P ∗ → P ∗ : X ↦→ σ1(X) + σ2(X).<br />

If σ1 + σ2 is not the zero map (send<strong>in</strong>g each po<strong>in</strong>t of A to O), then the<br />

projective extension of σ1 + σ2 is an element of DO.<br />

Proof. Def<strong>in</strong>e σ := σ1 + σ2.<br />

Step 1. We have σ(O) = O <strong>and</strong> σ(X + Y ) = σ(X) + σ(Y ) for all<br />

X, Y ∈ P ∗ . To see this,


136 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

σ(O) = (σ1 + σ2)(O) = σ1(O) + σ2(O) = O + O = O. By the preced<strong>in</strong>g<br />

lemma we see that σi(X + Y ) = σi(X) + σi(Y ) for i = 1, 2; hence<br />

σ(X + Y ) = (σ1 + σ2)(X + Y ) = σ1(S + Y ) + σ2(X + Y )<br />

= σ1(X) + σ1(Y ) + σ2(X) + σ2(Y )<br />

= (σ1 + σ2)(X) + (σ1 + σ2)(Y )<br />

= σ(X) + σ(Y ).<br />

Step 2. If g = P + OC denotes a l<strong>in</strong>e with C a po<strong>in</strong>t on H, then<br />

σ(g) ⊆ σ(P ) + OC.<br />

To see this, first suppose that P ∈ OC. Hence each po<strong>in</strong>t of OC is mapped<br />

onto a po<strong>in</strong>t of OC. Now let g = P + OC be an arbitrary l<strong>in</strong>e where P is<br />

not on OC. Then by Step 1,<br />

σ(g) = {σ(P + X) : X ∈ OC}<br />

= {σ(P ) + σ(X) : X ∈ OC}<br />

⊆ {(σ(P ) + Y : Y ∈ OC}.<br />

Step 3. If σ is not <strong>in</strong>jective, then σ is the zero map. Suppose there are<br />

dist<strong>in</strong>ct po<strong>in</strong>ts X <strong>and</strong> Y for which σ(X) = σ(Y ). This means that<br />

so<br />

(σ1 + σ2)(X) = (σ1 + σ2)(Y ),<br />

σ1(X) + σ2(X) = σ1(Y ) + σ2(Y ).<br />

S<strong>in</strong>ce µ ∈ DO <strong>and</strong> s<strong>in</strong>ce all elements of DO are automorphisms of (P ∗ , +) it<br />

follows that<br />

σ1(X − Y ) = σ1(X) − σ1(Y ) = σ2(Y ) − σ2(X) = σ2(Y − X)<br />

= σ2 ◦ µ(X − Y ) = µ ◦ σ2(X − Y ),<br />

s<strong>in</strong>ce by Lemma 3.3.2 the automorphism µ commutes with σ2. S<strong>in</strong>ce X −U =<br />

O, this implies σ1 = µ ◦ σ2, hence<br />

where 0 denotes the zero map.<br />

σ1 + σ2 = µ ◦ σ2 + σ2 = 0,


3.3. THE DIVISION RING 137<br />

Step 4. If σ is <strong>in</strong>jective then σ ∈ DO. S<strong>in</strong>ce σ is <strong>in</strong>jective we have<br />

σ(X) = σ(O) for each po<strong>in</strong>t X = O. Consider an arbitrary po<strong>in</strong>t X0 with<br />

X0 = O. S<strong>in</strong>ce σ(X0) = O, Step 2 implies that σ(X0) ∈ OX0. Hence by the<br />

theorem of Baer there is a σ ′ ∈ DO such that σ ′ (X0) = σ(X0). The goal is to<br />

prove that σ = σ ′ so that σ ∈ DO. To this end consider an arbitrary po<strong>in</strong>t<br />

Y ∈ P ∗ , where we first suppose that Y ∈ OX0. Then<br />

Y = OY ∩ [X0 + (Y − X0)O],<br />

s<strong>in</strong>ce Y − X0 ∈ (Y − X0)O. Therefore we have that<br />

σ(Y ) ∈ σ(OY ) ∩ σ(X0 + (Y − X0)O) ⊆ OY ∩ [σ(X0) + (Y − X0)O].<br />

On the other h<strong>and</strong>, s<strong>in</strong>ce σ ′ (X0) = σ(X0), it follows that<br />

σ ′ (Y ) = OY ∩ [σ ′ (X0) + (Y − X0)O] = OY ∩ [σ(X0) + (Y − X0)O],<br />

forc<strong>in</strong>g σ(Y ) = σ ′ (Y ).<br />

From this we also obta<strong>in</strong> the assertion for po<strong>in</strong>ts on OX0, by lett<strong>in</strong>g a<br />

po<strong>in</strong>t Y0 outside OX) play the role of X0. This completes a proof of the<br />

lemma.<br />

Theorem 3.3.4. Let 0 be the zero map on P ∗ . On the set F = DO ∪ {0} we<br />

def<strong>in</strong>e (as above) an addition by<br />

(σ1 + σ2)(X) = σ1(X) + σ2(X)<br />

<strong>and</strong> a multiplication as follows:<br />

<br />

σ1 ◦ σ2, if σ1, σ2 ∈ DO,<br />

σ1 · σ2 :=<br />

0, if σ1 = 0 or σ2 = 0.<br />

Then (F, +, ·) is a division r<strong>in</strong>g.<br />

Proof. The fact that F is closed under addition follows from Lemma 3.3.3.<br />

The associativity <strong>and</strong> commutativity of (F, +) can be reduced to the associativity<br />

<strong>and</strong> commutativity of (P ∗ , +). The neutral element (or zero) is 0,<br />

<strong>and</strong> µ ◦ σ is the additive <strong>in</strong>verse (or negative) of σ. We shall usually just<br />

write −σ <strong>in</strong>stead of µ ◦ σ. This takes care of addition.<br />

For the multiplication, s<strong>in</strong>ce (Do, ◦) is a group, (F \{0}, ·) is also a group.<br />

So it rema<strong>in</strong>s only to show that the distributive laws hold. Let σ1, σ2, σ3 ∈ F .<br />

Then for each X ∈ P ∗ we have


138 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

<strong>and</strong><br />

σ1(σ2 + σ3)(X) = σ1((σ2 + σ3)(X)) = σ1(σ2(X) + σ3(X))<br />

= σ1σ2(X) + σ1σ3(X) = (σ1σ2 + σ1σ3)(X),<br />

(σ1 + σ2)(σ3(X) = (σ1 + σ2)(σ3(X)) − σ1(σ3(X)) + σ2(σ3(X))<br />

= σ1σ3(x) + σ2σ3(X) = (σ1σ3 + σ2σ3)(X).<br />

Corollary 3.3.5. Def<strong>in</strong>e a “scalar multiplication” on P ∗ by<br />

σ · X := σ(X) for σ ∈ F, X ∈ P ∗ .<br />

Then P ∗ is a vector space over the division r<strong>in</strong>g F .<br />

Proof. We already know that (P ∗ , +) is a commutative group. Moreover, F<br />

is a division r<strong>in</strong>g, <strong>and</strong> σ(O) = O; σ(X + Y ) = σ(X) + σ(Y ) for all σ ∈ DO<br />

<strong>and</strong> all X, Y ∈ P ∗ . The equation (σ1 +σ2)(X) = σ1(X)+σ2(X) follows from<br />

the def<strong>in</strong>ition of addition <strong>in</strong> DO. F<strong>in</strong>ally, if σ is the identity map, i.e., the<br />

multiplicative identity, then σ · X = σ(X) = X.<br />

At this po<strong>in</strong>t we have made a great deal of progress <strong>in</strong> our push to describe<br />

each Desarguesian spaces as a P (V ) for some vector space over a division r<strong>in</strong>g.<br />

We know that the set DO of all dilatations with center O, together with the<br />

zero map, is a division r<strong>in</strong>g F , <strong>and</strong> the set P ∗ of po<strong>in</strong>ts of A is a vector space<br />

over F .<br />

3.4 The Representation Theorems<br />

We start with a representation theorem for aff<strong>in</strong>e spaces. This will quickly<br />

lead to a representation theorem for projective spaces.<br />

Theorem 3.4.1. Let A = P \ H be an aff<strong>in</strong>e space <strong>in</strong> which the theorem of<br />

Desargues is valid. Then there are a division r<strong>in</strong>g F <strong>and</strong> a vector space V ∗<br />

over F such that


3.4. THE REPRESENTATION THEOREMS 139<br />

• the elements of V ∗ are the po<strong>in</strong>ts of A;<br />

• the cosets of the 1-dimensional subspaces of V ∗ are the l<strong>in</strong>es of A.<br />

Proof. Obviously we let F be as <strong>in</strong> Theorem 3.3.4 <strong>and</strong> put V ∗ := P ∗ .<br />

Each l<strong>in</strong>e g through O is of the form OP . S<strong>in</strong>ce, by the theorem of Baer,<br />

DO acts transitively on the po<strong>in</strong>ts of g that are different from O <strong>and</strong> g ∩ H,<br />

the multiplicative group DO of the division r<strong>in</strong>g F acts sharply transitively<br />

on the set of po<strong>in</strong>ts of g different from O (<strong>and</strong> also different from γ ∩ H).<br />

Hence g is the 1-dimensional subspace of V ∗ spanned by P .<br />

Each l<strong>in</strong>e g not through O is of the form g = P + OX. S<strong>in</strong>ce OX is the<br />

1-dimensional subspace 〈X〉, the l<strong>in</strong>e g is the coset P + OX.<br />

Conversely, let 〈X〉 be a 1-dimensional subspace of V ∗ . Then we have<br />

〈X〉 = {σ(X) : σ ∈ F } = OX. So the coset P + 〈X〉 is the l<strong>in</strong>e P + OX.<br />

We are now ready for our major representation of projective spaces.<br />

Theorem 3.4.2. Let P be a projective space of dimension at least 2. If P<br />

is Desarguesian, then there is a vector space V over a division r<strong>in</strong>g F such<br />

that P = P(V ).<br />

This theorem says that geometries of the form P(V ) are precisely those<br />

that are Desarguesian.<br />

Proof. Fix an arbitrary hyperplane H of P. Let F <strong>and</strong> V ∗ be as <strong>in</strong> Theorem<br />

3.4.1. Def<strong>in</strong>e<br />

V := F × V ∗ .<br />

Then V is a vector space over F with elements (a, v) ∈ F × V ∗ . We now<br />

def<strong>in</strong>e a map α that assigns to each po<strong>in</strong>t X of P a 1-dimensional subspace<br />

of V :<br />

• If X is a po<strong>in</strong>t of P \ H, then by Theorem 3.4.1 X is a vector of V ∗ .<br />

In this case we def<strong>in</strong>e<br />

α(X) = 〈(1, X)〉.<br />

• If X is a po<strong>in</strong>t of H, consider the l<strong>in</strong>e OX of P \ H. By Theorem 3.4.1<br />

this l<strong>in</strong>e is a 1-dimensional subspace 〈v〉 of V ∗ . In this case def<strong>in</strong>e<br />

α(X) = 〈(0, v)〉.


140 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

Claim 1: α is bijective. Clearly α is <strong>in</strong>jective. Consider an arbitrary<br />

1-dimensional subspace 〈(a, v)〉 of V . If a = 0, the vector v/a of V ∗ (or the<br />

correspond<strong>in</strong>g po<strong>in</strong>t of P \ H) is the preimage of 〈(a, v)〉. If a = 0, then the<br />

po<strong>in</strong>t of H on the l<strong>in</strong>e 〈v〉 of P \ H is a preimage of 〈(a, v)〉.<br />

Claim 2: The map α sends l<strong>in</strong>es of P onto l<strong>in</strong>es of P(V ). For, if g is a<br />

l<strong>in</strong>e of P \ H, then g = u + 〈v〉 with u, v ∈ V ∗ , <strong>and</strong> it follows that<br />

α(g) = 〈(1, u), (0, v)〉.<br />

On the other h<strong>and</strong> suppose that g is a l<strong>in</strong>e of H. Let C1, C2 be two po<strong>in</strong>ts<br />

on g. Let v1, v2 be the two vectors of V ∗ for which<br />

OC1 = 〈v1〉; OC2 = 〈v2〉.<br />

Then 〈(0, v1), (0, v2)〉 is the l<strong>in</strong>e α(g). One must now show that α is bijective<br />

on l<strong>in</strong>es, but this is fairly routi<strong>in</strong>e, so the proof is essentially complete.<br />

S<strong>in</strong>ce every projective space with dimension at least 3 is Desarguesian,<br />

we have the follow<strong>in</strong>g importnt corollary.<br />

Corollary 3.4.3. If dim(P) ≥ 3, then P = P(V ).<br />

3.5 The Fundamental Theorem<br />

In this section we shall determ<strong>in</strong>e all coll<strong>in</strong>eations of Desarguesian aff<strong>in</strong>e<br />

<strong>and</strong> projective spaces. The coll<strong>in</strong>eations will be described <strong>in</strong> terms of the<br />

underly<strong>in</strong>g vector spaces, <strong>and</strong> as <strong>in</strong> the preced<strong>in</strong>g section we beg<strong>in</strong> with aff<strong>in</strong>e<br />

spaces.<br />

Let A = P \H be an aff<strong>in</strong>e space <strong>in</strong> which the theorem of Desargues holds.<br />

Fix a po<strong>in</strong>t O of A. By T = T (H) we denote the group of all translations of<br />

A, <strong>and</strong> by Γ the group of all coll<strong>in</strong>eations of A. These are the coll<strong>in</strong>eations<br />

of P that fix the hyperplane H as a set. Put<br />

ΓO = {θ ∈ Γ : θ(O) = O}.<br />

The group ΓO is the subgroup of Γ fix<strong>in</strong>g O <strong>and</strong> will conta<strong>in</strong> more than<br />

merely the elements of DO.<br />

As we saw <strong>in</strong> the previous section, there are a division r<strong>in</strong>g F <strong>and</strong> a vector<br />

space V ∗ such that the po<strong>in</strong>ts of A are the elements of V ∗ , <strong>and</strong> the l<strong>in</strong>es of<br />

A are the cosets of the 1-dimensional subspaces of V ∗ .


3.5. THE FUNDAMENTAL THEOREM 141<br />

Lemma 3.5.1. Us<strong>in</strong>g the above notation we have:<br />

(a) Γ is a group (with respect to composition of maps).<br />

(b) ΓO is a subgroup of Γ.<br />

(c) T is a normal subgroup of Γ.<br />

(d) Each θ ∈ Γ can be uniquely written as<br />

θ = τσ with τ ∈ T, σ ∈ ΓO.<br />

Proof. Parts (a) <strong>and</strong> (b) are more or less obvious, so we beg<strong>in</strong> with part (c).<br />

Let τ ∈ T <strong>and</strong> θ ∈ Γ be arbitrary elements. We have to show that θτθ −1 ∈ T .<br />

S<strong>in</strong>ce τ fixes all po<strong>in</strong>ts of H, for each po<strong>in</strong>t P of H we have<br />

so<br />

τθ −1 (P ) = θ −1 (P ),<br />

θτθ −1 (P ) = θθ −1 (P ) = P.<br />

Thus the coll<strong>in</strong>eation θτθ −1 has axis H. If θτθ −1 fixes a po<strong>in</strong>t Q ∈ H, then<br />

θτθ −1 (Q) = Q <strong>and</strong> apply<strong>in</strong>g θ −1 gives τθ −1 (Q) = Q,<br />

so τ (<strong>and</strong> hence θτθ −1 ) is the the identity <strong>and</strong> trivially conta<strong>in</strong>ed <strong>in</strong> T . If<br />

θτθ −1 fixes no po<strong>in</strong>t outside H, then its center is <strong>in</strong> H <strong>and</strong> it belongs to T .<br />

For part (d), given a θ put τ = τθ(O) be the translation mov<strong>in</strong>g O to θ(O).<br />

Put σ = τ −1 θ. Then θ = τσ where τ ∈ T <strong>and</strong> σ(O) = τ −1 (θ(O) = O, so<br />

that σ ∈ ΓO. Suppose also that θ = τ ′ σ ′ where τ ′ ∈ T <strong>and</strong> σ ′ ∈ GO. Then<br />

Hence τ = τ ′ <strong>and</strong> σ = σ ′ .<br />

τ ′ τ −1 = σ ′ σ −1 ∈ T ∩ GO = {id}.<br />

This result means that the problem of describ<strong>in</strong>g all coll<strong>in</strong>eations of A is<br />

reduced to describ<strong>in</strong>g all elements of T <strong>and</strong> all elements of GO.<br />

Lemma 3.5.2. Let τ ∈ T be an arbitrary translation. Choose an arbitrary<br />

po<strong>in</strong>t P of A <strong>and</strong> put P ′ = τ(P ). Consider the po<strong>in</strong>ts P <strong>and</strong> P ′ as vectors<br />

of V ∗ . Then we may describe τ as<br />

τ(X) = X + P ′ − P for all po<strong>in</strong>ts X of A.


142 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

Proof. In view of Theorem 3.2.3 we know that the map τ ′ def<strong>in</strong>ed by<br />

τ ′ (X) := X + P ′ − P<br />

is a translatiion. Thus τ <strong>and</strong> τ ′ are translations which both map the po<strong>in</strong>t<br />

P onto P ′ . This implies that τ ′ = τ. This implies that τ ′ = τ, prov<strong>in</strong>g the<br />

Lemma.<br />

We now show that the elements of ΓO are ‘semil<strong>in</strong>ear’ maps of the vector<br />

space V ∗ .<br />

Def<strong>in</strong>ition 3.5.3. Let V be a vector space over the division r<strong>in</strong>g F , <strong>and</strong> let<br />

α be an automorphism of F . A map θ of V <strong>in</strong>to V is called a semil<strong>in</strong>ear map<br />

with associated field automorphism α if for all v, w ∈ V <strong>and</strong> all a ∈ F we<br />

have<br />

θ(v + w) = θ(v) + θ(w),<br />

<strong>and</strong><br />

θ(a · v) = α(a)θ(v).<br />

It is clear that those semil<strong>in</strong>ear maps whose associated field automorphism<br />

is the identity are precisely the l<strong>in</strong>ear maps. Let {v1, . . . , vs} be a basis for<br />

V <strong>and</strong> let α be an automorphism of F . Def<strong>in</strong>e a map θα : V → V by<br />

θα :<br />

d<br />

i=1<br />

aivi ↦→<br />

d<br />

α(ai) · (vi).<br />

It is almost immediately clear that θα is a semil<strong>in</strong>ear transformation of<br />

A with associated field automorphism be<strong>in</strong>g α.<br />

We now wish to provide a description of the elements of Γ0. S<strong>in</strong>ce the<br />

elements of V ∗ are the po<strong>in</strong>ts of A, the coll<strong>in</strong>eations of A also act on V ∗ .<br />

For the rema<strong>in</strong>der of this section we will assume that the order of V ∗ is<br />

at least 3.<br />

Lemma 3.5.4. For σ ∈ ΓO <strong>and</strong> u, v ∈ V ∗ we have that<br />

i=1<br />

σ(v + w) = σ(v) + σ(w).<br />

Proof. Without loss of generality we may assume that v, w = 0


3.5. THE FUNDAMENTAL THEOREM 143<br />

Case 1: 〈v〉 = 〈w〉. Recall from earlier that v + w = vw ∗ + v ∗ w. S<strong>in</strong>ce σ<br />

may be extended to a coll<strong>in</strong>eation of the projective space P we have<br />

Similarly,<br />

σ(v + w) = σ(v)σ(w ∗ ) ∩ σ(v ∗ )σ(w).<br />

σ(v) + σ(w) = σ(v)σ(w) ∗ ∩ σ(v) ∗ σ(w).<br />

S<strong>in</strong>ce σ is a coll<strong>in</strong>eation that fixes O <strong>and</strong> H we conclude that<br />

<strong>and</strong> similarly<br />

σ(v) ∗ = Oσ(v) ∩ H = σ(Ov ∩ H) = σ(Ov) ∩ σ(H) = σ(v ∗ ),<br />

Putt<strong>in</strong>g these together we get<br />

S<strong>in</strong>ce 〈v − w〉 = 〈w〉 we also get<br />

<strong>and</strong> hence<br />

On the other h<strong>and</strong> we also have<br />

σ(x) ∗ = σ(w ∗ ).<br />

σ(v + w) = σ(v)σ(w ∗ ) ∩ σ(v ∗ )σ(w)<br />

= σ(v)σ(w) ∗ ∩ σ(v) ∗ σ(w)<br />

= σ(v) + σ(w).<br />

σ(v) = σ(v − w + w) = σ(v − w) + σ(w),<br />

σ(v − w) = σ(v) − σ(w).<br />

σ(v − w) = σ(v) + σ(−w),<br />

so <strong>in</strong> particular σ(−w) = −σ(w). This is true for each vector w ∈ V ∗ s<strong>in</strong>ce<br />

there is always a vector v ∈ V ∗ with 〈v〉 = 〈w〉.<br />

Case 2: 〈v〉 = 〈w〉.<br />

If v + w = 0, then<br />

σ(v + w) = σ(0) = 0 = σ(v) − σ(v) + σ(v) + σ(−v) = σ(v) + σ(w).<br />

Thus we may assume that v + w = 0. S<strong>in</strong>ce dim(P) ≥ 2 there is a u ∈ V ∗<br />

such that 〈u〉 = 〈v〉. By the first case we now get


144 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

σ(v + w) = σ((v + w + u) − u)<br />

= σ(v + w + u) − σ(u) (s<strong>in</strong>ce 〈u〉 = 〈v + w + u〉)<br />

= σ(v) + σ(w + u) − σ(u) (s<strong>in</strong>ce 〈v〉 = 〈w + u〉)<br />

= σ(v) + σ(w) + σ(u) − σ(u) (s<strong>in</strong>ce 〈w〉 = 〈u〉)<br />

= σ(v) + σ(w).<br />

The proof of the next theorem is the ma<strong>in</strong> challenge of this section.<br />

Theorem 3.5.5. Each coll<strong>in</strong>eation σ ∈ ΓO is a semil<strong>in</strong>ear map of the vector<br />

space V ∗ .<br />

Proof. We have just shown that each element of ΓO is additive. What rema<strong>in</strong>s<br />

to be shown is that for each σ ∈ ΓO there is a field automorphism α such<br />

that for all a ∈ F <strong>and</strong> all X ∈ V ∗ it is true that<br />

σ(a · X) = α(a) · σ(X).<br />

So let σ ∈ ΓO. For a ∈ ˜ F = F \ {0} <strong>and</strong> a po<strong>in</strong>t X = O <strong>in</strong> P \ H = A, the<br />

po<strong>in</strong>ts O, X <strong>and</strong> a · X are coll<strong>in</strong>ear. S<strong>in</strong>ce is a coll<strong>in</strong>eation with σ(O) = O,<br />

the po<strong>in</strong>ts O, σ(X) <strong>and</strong> σ(a · X) are also coll<strong>in</strong>ear. So σ(a · X) is a scalar<br />

multiple of σ(X). Let αX(a) be the correspond<strong>in</strong>g element of F . This means<br />

that<br />

σ(a · X) = αX(a) · σ(X) ∀a ∈ ˜ F , X = O.<br />

Claim 1. For all a ∈ ˜ F <strong>and</strong> all X, Y = O we have<br />

αX(a) = αY (a).<br />

The proof is fairly long <strong>and</strong> we have two cases.<br />

Case 1. The po<strong>in</strong>ts O, X <strong>and</strong> Y are not coll<strong>in</strong>ear.<br />

By the def<strong>in</strong>ition of α, we have on the one h<strong>and</strong><br />

σ(a · (X + Y )) = αX+Y (a) · σ(X + Y ) = αX+Y (a) · (σ(X) + σ(Y ))<br />

On the other h<strong>and</strong>, we have<br />

= αX+Y (a) · σ(X) + αX+Y (a) · σ(Y ).<br />

σ(a · (X + Y )) = σ(a · X + a · Y ) = σ(a · X) + σ(a · Y )<br />

= αX(a) · σ(X) + αY (a) · σ(Y ).


3.5. THE FUNDAMENTAL THEOREM 145<br />

S<strong>in</strong>ce σ is a coll<strong>in</strong>eation, the po<strong>in</strong>ts O = σ(O), σ(X) <strong>and</strong> σ(Y ) are also<br />

noncoll<strong>in</strong>ear. Hence σ(X) <strong>and</strong> σ(Y ) are - considered as vectors - l<strong>in</strong>early<br />

<strong>in</strong>dependent. Thus we have<br />

αX(a) = αX+Y (a) = αY (a).<br />

Case 2. The po<strong>in</strong>ts O, X <strong>and</strong> Y are coll<strong>in</strong>ear.<br />

Let Z be a po<strong>in</strong>t of A not on OX. Then by Case 1 we have that<br />

This completes a proof of Claim 1.<br />

αX(a) = αZ(a) = αY (a).<br />

Def<strong>in</strong>e αO(a) := 0. Then for each X = O we have a map α from F <strong>in</strong>to<br />

itself def<strong>in</strong>ed by<br />

α(a) := αX(a)<br />

which satisfies<br />

σ(a) · (X) = α(a) · σ(X) ∀α ∈ F <strong>and</strong> all po<strong>in</strong>ts X ∈ A.<br />

Obviously α is our c<strong>and</strong>idate for the associated field automorphism.<br />

Claim 2. The map α is an automorphism of F .<br />

First we show that α preserves addition <strong>and</strong> multiplication. For a, b ∈ F<br />

<strong>and</strong> X ∈ A we have<br />

α(a + b+) · σ(X) = σ((a + b) · X) = σ(a · X + b · X)<br />

which implies<br />

Also we have<br />

= σ(a · X) + σ(b · X) = α(a) · (X) + α(b) · σ(X)<br />

= (α(a) + α(b)) · σ(X),<br />

α(a + b) = α(a) + α(b).<br />

α(ab) · σ(X) = α(ab · X) = α(a) · σ(b · X) = α(a)α(b) · σ(X),<br />

which implies that<br />

α(ab) = α(a)α(b).


146 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

To show that α is one-to-one, suppose that α(a) = α(b). Recall that σ<br />

acts bijectively on V ∗ , so<br />

σ(a · X) = α(a) · σ(X) = α(b) · σ(X) = σ(b · X), so a · X = b · X,<br />

which implies that a = b <strong>and</strong> α is <strong>in</strong>jective.<br />

In truth we are mostly <strong>in</strong>terested <strong>in</strong> the case that F is f<strong>in</strong>ite, so F is a<br />

field <strong>and</strong> an <strong>in</strong>jection α is automatically surjective. But we have gone so far<br />

with a proof <strong>in</strong> the general case of F be<strong>in</strong>g a division r<strong>in</strong>g that we <strong>in</strong>clude a<br />

proof that α is surjective.<br />

Suppose a ∈ F <strong>and</strong> X = O is a po<strong>in</strong>t of A. S<strong>in</strong>ce a · σ(X) is a po<strong>in</strong>t of<br />

the l<strong>in</strong>e through O <strong>and</strong> σ(X), the preimage Y of a · σ(X) must be a po<strong>in</strong>t of<br />

the l<strong>in</strong>e through O <strong>and</strong> X. Thus there is a b such that Y = b · X. Therefore<br />

This implies<br />

σ(b · X) = σ(Y ) = a · σ(X).<br />

a · σ(X) = σ(b · X) = α(b) · σ(X), <strong>and</strong> hence α(b) = a.<br />

This shows that α is an automorphism.<br />

Theorem 3.5.6. Let A = P \H be a Desarguesian aff<strong>in</strong>e space of dimension<br />

d ≥ 2 that is represented by a vector space V ∗ over the division r<strong>in</strong>g F . Then<br />

the follow<strong>in</strong>g assertions are true:<br />

(a) If σ is an <strong>in</strong>vertible semil<strong>in</strong>ear map of V ∗ , then σ is a coll<strong>in</strong>eation of<br />

A.<br />

(b) If τ is a translation of A <strong>and</strong> σ is a semil<strong>in</strong>ear map of V ∗ , then τ ◦ σ<br />

is a coll<strong>in</strong>eation of A.<br />

(c) Each coll<strong>in</strong>eation θ of A can be represented uniquely <strong>in</strong> the form<br />

θ = τ ◦ σ,<br />

where τ is a translation of A <strong>and</strong> σ is a semil<strong>in</strong>ear map on V ∗ .<br />

Proof. Once part (a) is established, parts (b) <strong>and</strong> (c) follow immediately from<br />

what has been established before. We leave part (a) as an easy exercise.<br />

It is now time to consider the projective version.<br />

Theorem 3.5.7. Let V be a vector space over the division r<strong>in</strong>g F . If θ is a<br />

bijective semil<strong>in</strong>ear map of V then θ <strong>in</strong>duces a coll<strong>in</strong>eation of P(V ).


3.5. THE FUNDAMENTAL THEOREM 147<br />

Proof. Let α be the field automorphism associated with θ. We def<strong>in</strong>e<br />

Then φ is well-def<strong>in</strong>ed s<strong>in</strong>ce<br />

φ(〈v〉) := 〈θ(v)〉.<br />

φ(〈a · v〉) = 〈θ(a · v)〉 = 〈α(a) · θ(v)〉<br />

for a = 0. Moreover, φ maps l<strong>in</strong>es onto l<strong>in</strong>es:<br />

φ(〈v, w〉) = φ({〈a · v + b · w〉 : a, b ∈ F })<br />

= {〈θ(a · v + b · w)〉 : a, b ∈ F }<br />

= {〈α(a) · θ(v) + α(b) · θ(w)〉 : a, b ∈ F }<br />

= 〈θ(v), θ(w)〉.<br />

S<strong>in</strong>ce θ is bijective, φ is als bijective, <strong>and</strong> the proof is complete.<br />

The next theorem essentially completes the fundamental theorem of projective<br />

geometry.<br />

Theorem 3.5.8. Let P be a Desarguesian projective space of dimension<br />

d ≥ 2, <strong>and</strong> let V be a vector space such that P = P(V ). Then for each<br />

coll<strong>in</strong>eation θ of P there is a bijective semil<strong>in</strong>ear map φ of V that <strong>in</strong>duces θ.<br />

Proof. Let H, O, V ∗ <strong>and</strong> V be as <strong>in</strong> the proof of Theorem 3.4.2. Then the<br />

po<strong>in</strong>t O is represented by the subspace 〈(1, 0)〉 of V . Let B ∗ = {v1, . . . , vd}<br />

be a basis of V ∗ . Then<br />

is a basis of V <strong>and</strong><br />

BV = {ui := (0, vi) : 1 ≤ i ≤ d} ∪ {u0 := (1, 0)}<br />

B = {〈(0, vi)〉 : 1 ≤ i ≤ d} ∪ {〈(1, 0)〉}<br />

is a basis of P. Hence B \ {O} = (B \ {(1, 0)〉}) is a set of d <strong>in</strong>dependent<br />

po<strong>in</strong>ts of H. S<strong>in</strong>ce θ is a coll<strong>in</strong>eation, θ(B) is also a basis of P.<br />

Let w0, w1, . . . , wd be vectors of V such that<br />

<strong>and</strong><br />

〈wi〉 := θ(〈(0, vi)〉), (1 ≤ i ≤ d),<br />

〈w0〉 := θ(〈(1, 0)〉).


148 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

Then {w0, w1, . . . , wd} is a basis of V . We def<strong>in</strong>e the map φ : V → V so that<br />

φ maps vectors as follows:<br />

φ : x =<br />

d<br />

i=0<br />

kiui ↦→<br />

d<br />

kiwi.<br />

Then φ is a bijective l<strong>in</strong>ear map of V onto itself, so φ <strong>in</strong>duces a coll<strong>in</strong>eation<br />

ϕ of P. It follows that<br />

σ := ϕ −1 θ<br />

is a coll<strong>in</strong>eation of P which fixes all po<strong>in</strong>ts of B. In particular, σ fixes the<br />

pont O <strong>and</strong> a basis of H, hence it also fixes H as a set. Thus we may also<br />

consider σ as a coll<strong>in</strong>eation of A = P \ H. Therefore, the ‘aff<strong>in</strong>e part’ of<br />

σ, i.e., the restriction of σ to A, is a semil<strong>in</strong>ear map of V ∗ <strong>in</strong>to itself with<br />

associated field automorphism α.<br />

Hence the map ρ of V <strong>in</strong>to itself that is def<strong>in</strong>ed by<br />

i=0<br />

ρ(a, v) := (α(a), σ(v)) (a ∈ F, v ∈ V ∗ )<br />

is a semil<strong>in</strong>ear map of V <strong>in</strong>to itself with associated automorphism α.<br />

S<strong>in</strong>ce σ conicides with the coll<strong>in</strong>eation of P \ H <strong>in</strong>duced by ρ, <strong>and</strong> s<strong>in</strong>ce<br />

the extensions of these coll<strong>in</strong>eations to P are unique, ρ is the coll<strong>in</strong>eation<br />

<strong>in</strong>duced by σ on P.<br />

Thus θ ′ := θρ is the desired semil<strong>in</strong>ear map.<br />

3.6 Projective Coll<strong>in</strong>eations<br />

Def<strong>in</strong>ition 3.6.1. A coll<strong>in</strong>eation of a projective space P(V ) is called projective<br />

if it is <strong>in</strong>duced by a l<strong>in</strong>ear map of V .<br />

Clearly the set of projective coll<strong>in</strong>eations of P(V ) forms a group. We<br />

want to see how big this group is <strong>and</strong> f<strong>in</strong>d a way to describe the elements of<br />

this group <strong>in</strong> a useful way.<br />

Theorem 3.6.2. Each central coll<strong>in</strong>eation of P(V ) is a projective coll<strong>in</strong>eation.<br />

Proof. It is sufficient to prove that if H is an arbitrary hyperplane of P =<br />

P(V ), then any central coll<strong>in</strong>eation with axis H is projective.


3.6. PROJECTIVE COLLINEATIONS 149<br />

Let P be coord<strong>in</strong>atized <strong>in</strong> such a way that O <strong>and</strong> V have the same mean<strong>in</strong>g<br />

as <strong>in</strong> the proof of the last theorem of the preced<strong>in</strong>g section. It is sufficient to<br />

show that all translations with axis H <strong>and</strong> all elements of DO are projective,<br />

s<strong>in</strong>ce each central coll<strong>in</strong>eation with axis H is a product of a translation with<br />

axis H <strong>and</strong> an element of DO.<br />

First we show that each element of DO is projective. So let g be the l<strong>in</strong>e<br />

through the po<strong>in</strong>t O = 〈(1, O)〉 <strong>and</strong> a po<strong>in</strong>t C = 〈(0, u1)〉 on H. Then the<br />

po<strong>in</strong>ts different form O <strong>and</strong> C on g have the form 〈(a, u1)〉 with a = 0. Let<br />

P = 〈(a, u1)〉 <strong>and</strong> Q = 〈(b, u1)〉 be two dist<strong>in</strong>ct po<strong>in</strong>ts of g different from O<br />

<strong>and</strong> C. The idea is to show that there is a projective coll<strong>in</strong>eation θ <strong>in</strong> DO<br />

mvo<strong>in</strong>g P to Q. So then we know that θ is THE element <strong>in</strong> DO mov<strong>in</strong>g P<br />

to Q. It follows that all members of DO are projective.<br />

To this end we extend 〈(0, u1)〉 to a basis<br />

{〈(0, u1)〉, 〈(0, u2)〉, . . . , 〈(0, ud)〉}<br />

of H. Then the l<strong>in</strong>ear map φ that is def<strong>in</strong>ed by<br />

φ(1, O) := (b/a, O) <strong>and</strong> φ(0, ui) = (0, ui), 1 ≤ i ≤ d<br />

<strong>in</strong>duces a coll<strong>in</strong>eation θ. S<strong>in</strong>ce φ fixes each (0, ui), it fixes each vector <strong>in</strong> the<br />

span of these vectors. So φ fixes each po<strong>in</strong>t of H. So clearly φ has axis H<br />

<strong>and</strong> center O. F<strong>in</strong>ally, s<strong>in</strong>ce P = 〈a · (1, O) + (0, u1)〉 is mapped by φ to the<br />

po<strong>in</strong>t 〈b · (1, O) + (0, u1)〉 = Q, θ is the projective coll<strong>in</strong>eation of DO mapp<strong>in</strong>g<br />

P to Q.<br />

Now let τ be a translation with axis H mapp<strong>in</strong>g the po<strong>in</strong>t O to a po<strong>in</strong>t P =<br />

O. In the language of P(V ) this means the follow<strong>in</strong>g: Let {〈(0, u1)〉, . . . , 〈(0, ud)〉}<br />

be a basis of H. Then τ maps each of the po<strong>in</strong>ts 〈(0, ui)〉 to itself <strong>and</strong> each<br />

po<strong>in</strong>t of the form 〈(1, X)〉 to 〈(1, X + P )〉. Then the l<strong>in</strong>ear map φ that is<br />

def<strong>in</strong>ed by<br />

φ : (0, ui) ↦→ (0, ui) <strong>and</strong> φ : (1, O) ↦→ (1, P )<br />

<strong>in</strong>duces the translation τ. (The coll<strong>in</strong>eation <strong>in</strong>duced by φ has H as axis <strong>and</strong><br />

moves O to P = O.)<br />

Def<strong>in</strong>ition 3.6.3. A set of d + 2 po<strong>in</strong>ts <strong>in</strong> general position is called a frame.<br />

In other words, a frame is a set R of d + 2 po<strong>in</strong>ts of P such that for each<br />

po<strong>in</strong>t P of R, the set R \ {P } is a basis of P. An ordered frame is a list<br />

(P0, P1, . . . , Pd+1) of d + 2 po<strong>in</strong>ts of P such that the set {P0, P1, . . . , Pd+1} is<br />

a frame.


150 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

In a projective plane, a frame is a set of four po<strong>in</strong>ts no three of which are<br />

coll<strong>in</strong>ear. A frame <strong>in</strong> a 3-dimensional space is a set of five po<strong>in</strong>ts, no four<br />

of which are conta<strong>in</strong>ed <strong>in</strong> a plane. Let {〈v0〉, 〈v1〉, . . . , 〈vd+1〉} be a frame of<br />

P = P(V ). Then without loss of generality we may assume that<br />

vd1 = v0 + v1 + · · · + vd<br />

by replac<strong>in</strong>g each vi with some scalar multiple of itself, 0 ≤ i ≤ d.<br />

We can use frames to put a bound on the number of projective coll<strong>in</strong>eations.<br />

Theorem 3.6.4. If a projective coll<strong>in</strong>eation of P = P(V ) fixes each po<strong>in</strong>t of<br />

a frame of P, then it must be the identity.<br />

Proof. Let θ be a projective coll<strong>in</strong>eation that fixes each po<strong>in</strong>t of the frame<br />

R = {〈v0〉, . . . , 〈vd+1〉}.<br />

S<strong>in</strong>ce θ is projective, there is a l<strong>in</strong>ear map φ of V that <strong>in</strong>duces θ. S<strong>in</strong>ce each<br />

po<strong>in</strong>t of R is fixed, it follows that<br />

<strong>and</strong><br />

φ(vi) = ai · vi, (ai ∈ ˜ F )<br />

φ(v0 + · · · vd) = a · (v0 + · · · + vd) (a ∈ ˜ F ).<br />

S<strong>in</strong>ce φ is l<strong>in</strong>ear <strong>and</strong> the vi are l<strong>in</strong>early <strong>in</strong>dependent, it follows easily that<br />

a = a0 = · · · ad. Hence φ maps each vector <strong>in</strong> V to a · v, so it acts as the<br />

identity on the set of subspaces of V . This says it is the identity on P.<br />

Corollary 3.6.5. The group of projective coll<strong>in</strong>eations of P(V ) acts sharply<br />

transitively on the the set of ordered frames of P(V ).<br />

Proof. Let R = {P0, . . . , Pd+1} be a frame of P(V ) with Pi = 〈vi〉, 0 ≤<br />

i ≤ d <strong>and</strong> vd+1 = v0 + · · · + vd. Suppose R ′ = {P ′ 0, . . . , P ′ d+1 is a second<br />

frame with the appropriate notation. Let φ be the l<strong>in</strong>ear map def<strong>in</strong>ed by<br />

φ(vi) = v ′ i . Then φ <strong>in</strong>duces a projective coll<strong>in</strong>eation that maps Pi to P ′<br />

i ,<br />

0 ≤ i ≤ d + 1. The uniqueness of this coll<strong>in</strong>eation follows immediately from<br />

Theorem 3.6.4.<br />

An important theorem <strong>in</strong> projective geometry says that the projective<br />

coll<strong>in</strong>eations are precisely the products of central coll<strong>in</strong>eations. Our major<br />

goal for the rema<strong>in</strong>der of tis section is to develop a proof of this fact.


3.6. PROJECTIVE COLLINEATIONS 151<br />

Lemma 3.6.6. Let {P0, P1, . . . , Pd} <strong>and</strong> {Q0, Q1, . . . , Qd} be bases of P.<br />

Then there is a product φ of at most d + 1 central coll<strong>in</strong>eations such that<br />

φ(Pi) = Qi for 0 ≤ i ≤ d.<br />

Proof. We start by show<strong>in</strong>g that for each s ∈ {0, 1, . . . , d} there is a product<br />

φs of at most s + 1 central coll<strong>in</strong>eations such that<br />

φs(Pi) = Qi for 0 ≤ i ≤ s.<br />

For s = 0, put φ0 equal to any central coll<strong>in</strong>eation mapp<strong>in</strong>g P0 to Q0. As an<br />

<strong>in</strong>duction hypothesis, now suppose that φs−1 is a central coll<strong>in</strong>eation that is<br />

the product of at most s central coll<strong>in</strong>eations <strong>and</strong> maps Pi to Qi for 1 ≤ i ≤<br />

s − 1, <strong>and</strong> put φs−1(Ps) = P ′ s.<br />

We now need to construct a central coll<strong>in</strong>eation θs that fixes Q0, . . . , Qs−1<br />

<strong>and</strong> maps P ′ s to Qs. S<strong>in</strong>ce s − 1 ≤ d − 1, we have that dim〈Q0, . . . , Qs−1i〉 =<br />

s − 1 ≤ d − 1. S<strong>in</strong>ce {Q0, . . . Qs−1, Qs} <strong>and</strong><br />

{Q0, . . . , Qs−1, P ′ s } = {φs−1(P0), φs−1(P1), . . . , φs−1(Ps−1), φs−1(Ps)}<br />

are <strong>in</strong>dependent sets, neither Qs nor P ′ s is a po<strong>in</strong>t of 〈Q0, Q1, . . . Qs−1〉.<br />

If we can show that there is a hyperplane H through 〈Q0, . . . , Qs−1〉 that<br />

conta<strong>in</strong>s neither Qs nor P ′ s, then there is a central coll<strong>in</strong>eation θs with axis<br />

H that maps P ′ s onto Qs. It follows that φs = θs ◦ φs−1 maps Ps to Qs <strong>and</strong><br />

is a product of at most s + 1 central coll<strong>in</strong>eations.<br />

So what rema<strong>in</strong>s is to prove that the hyperplane H with the desired<br />

properties exists.<br />

Claim: There is a hyperplane through 〈Q0, Q1, . . . , Qs−1〉 conta<strong>in</strong><strong>in</strong>g neither<br />

Qs nor P ′ s .<br />

If Qs = P ′ s, then<br />

〈Q0, . . . , Qs−1, Qs+1, . . . , Qd〉<br />

is the desired hyperplane.<br />

So we may assume that Qs = P ′ s . Let P be an arbitrary po<strong>in</strong>t on the<br />

l<strong>in</strong>e QsP ′ s that is different from Qs <strong>and</strong> P ′ s. Then there is a subset B of<br />

{Q0, Q1, . . . , Qd} such that P ∈ 〈B〉, but there is no proper subset B ′ of B<br />

such that P ∈ 〈B ′ 〉. By the construction (choice?) of P there is an element<br />

Qi = Qs <strong>in</strong> B. In view of the exchange lemma, [{Q0, . . . , Qd} \ {Qi}] ∪ {P }<br />

is a basis of P. Hence [〈{Q0, . . . , Qd} \ {Qi, Qs}] ∪ {P }〉 is a hyperplane that<br />

conta<strong>in</strong>s P but not Qs. <strong>and</strong> hence it also does not conta<strong>in</strong> P ′ s .


152 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

Lemma 3.6.7. Let {P0, P1, . . . , Pd, P } <strong>and</strong> {P0, P1, . . . , Pd, Q} be frames of<br />

P. Then there is a product φ of at most d central coll<strong>in</strong>eations such that<br />

<strong>and</strong><br />

φ(Pi) = Pi for 0 ≤ i ≤ d<br />

φ(P ) = Q.<br />

Proof. In fact, us<strong>in</strong>g <strong>in</strong>duction on d we prove the follow<strong>in</strong>g slightly stronger<br />

statement: Let Pj be an arbitrary element of {P0, P1, . . . , Pd}. Then there is<br />

a product φ of at most d central coll<strong>in</strong>eations with φ(Pi) = Pi for 0 ≤ i ≤ d<br />

<strong>and</strong> φ(P ) = Q, where Pj is conta<strong>in</strong>ed <strong>in</strong> the axis of each of these cental<br />

coll<strong>in</strong>eations.<br />

WOLG we may suppose that Pj = P0. First suppose that d = 2. There<br />

is a central coll<strong>in</strong>eation θ2 with center P2 <strong>and</strong> axis P0P1 that maps the po<strong>in</strong>t<br />

P to the po<strong>in</strong>t P ′ = P P2 ∩ P1Q. Then there is a central coll<strong>in</strong>eation θ1 with<br />

center P1 <strong>and</strong> axis P0P2 that maps P ′ onto Q. S<strong>in</strong>ce θ1 <strong>and</strong> θ2 fix the po<strong>in</strong>ts<br />

P0, P1 <strong>and</strong> P2, the same th<strong>in</strong>g holds for φ = θ1θ2 <strong>and</strong> φ maps P ′ to Q.<br />

Suppose now that d > 2 <strong>and</strong> assume that the ma<strong>in</strong> claim is true for d − 1.<br />

Consider the hyperplane H = 〈P1, . . . Pd−1, P 〉. We first construct two frames<br />

for H to which we may apply the <strong>in</strong>duction hypothesis. Put P ′′ = P0Pd ∩ H<br />

<strong>and</strong> P ′ = QPd ∩ H.<br />

Claim 1: {P1, . . . , Pd−1, P ′′ , P } is a frame of H.<br />

S<strong>in</strong>ce these po<strong>in</strong>ts are all <strong>in</strong> H, what we have to show is that any d<br />

of them form an <strong>in</strong>dependent set. S<strong>in</strong>ce {P1, . . . , Pd−1, P } is a subset of a<br />

frame, it certa<strong>in</strong>ly is an <strong>in</strong>dependent set. Assume that P ′′ is dependent on<br />

a set B of d − 1 po<strong>in</strong>ts of {P1, . . . , Pd−1, P }. Then P ′′ ∈ 〈B〉 <strong>and</strong> therefore<br />

P0 ∈ P ′′ Pd ⊆ 〈B, Pd〉, which is a contradiction s<strong>in</strong>ce {P0, . . . , Pd, P } is a<br />

frame.<br />

Claim 2: {P1, . . . , Pd−1, P ′′ , P ′ } is a frame of H.<br />

By the first claim, {P1, . . . , Pd−1, P ′′ } is an <strong>in</strong>dependent set. Assume that<br />

P ′ is is dependent on {P1, . . . , Pd−1}. Then Q ∈ P ′ P d ⊆ {P1, . . . , Pd}, a<br />

contradiction s<strong>in</strong>ce {P0, P1, . . . , Pd, Q} is a frame. Assume that P ′ is dependent<br />

on {P1, . . . , Pd−1, P ′′ } \ {Pi} (1 ≤ i ≤ d − 1). WLOG i = 1. It follows<br />

that Q ∈ P ′ Pd ⊆ 〈P2, . . . , Pd, P ′′ 〉 = 〈P2, . . . , Pd, P0〉, a contradiction s<strong>in</strong>ce<br />

{P0, . . . , Pd, Q} is a frame.<br />

So we have now established that both


3.6. PROJECTIVE COLLINEATIONS 153<br />

{P1, . . . , Pd−1, P ′′ , P } <strong>and</strong> {P1, . . . , Pd−1, P ′′ , P ′ } are frames of H.<br />

By the <strong>in</strong>duction hypothesis there is a product φ∗ d−1 of d − 1 (at most) d − 1<br />

central coll<strong>in</strong>eations φ1∗, . . . , φ∗ d−1 of H such that<br />

φ ∗ d−1(Pi) = Pi for 1 ≤ i ≤ d − 1,<br />

φ ∗ d−1 (P ) = P ′ ,<br />

<strong>and</strong> with the property that P ′′ is conta<strong>in</strong>ed <strong>in</strong> the axis of φ∗ i (1 ≤ i ≤ d − 1).<br />

By Theorem 3.1.11 each central coll<strong>in</strong>eation φ∗ i of H is <strong>in</strong>duced by a central<br />

coll<strong>in</strong>eation φi of P whose axis passes through P0. Hence the l<strong>in</strong>e P ′′ P0, <strong>and</strong><br />

therefore also the po<strong>in</strong>t Pd ∈ P ′′ P0, is conta<strong>in</strong>ed <strong>in</strong> the axis of φi (1 ≤ i ≤<br />

d − 1). In particular, for θd−1 = Φ1 ◦ φ2 ◦ · · · ◦ φd−1 that<br />

φd−1(Pd) = Pd.<br />

We now have to f<strong>in</strong>d a central coll<strong>in</strong>eation φd that fixes all the po<strong>in</strong>ts<br />

P0, . . . , Pd, has P0 <strong>in</strong> its axis, <strong>and</strong> maps P ′ to Q.<br />

Def<strong>in</strong>e φd to be the central coll<strong>in</strong>eation with axis 〈P0, P1, . . . , Pd−1〉 <strong>and</strong><br />

center Pd that maps P ′ to Q. This is possible if P ′ <strong>and</strong> Q are not <strong>in</strong> the axis of<br />

φd. Clearly Q is not <strong>in</strong> the axis s<strong>in</strong>ce {P0, . . . , Pd, Q} is a frame. Suppose that<br />

P ′ is conta<strong>in</strong>ed <strong>in</strong> the axis of φd. Recall that P ′ = QPd ∩ 〈P1, . . . , Pd−1, P 〉.<br />

Then<br />

P ′ ∈ 〈P0, . . . , Pd−1〉 ∩ 〈P1, . . . , Pd−1, P 〉 = 〈P1, . . . , Pd−1〉,<br />

<strong>and</strong> therefore<br />

Q ∈ P ′ Pd ⊆ 〈P1, . . . , Pd−1, Pd〉.<br />

But this is impossible s<strong>in</strong>ce {P0, . . . , Pd, Q} is a frame.<br />

Thus the coll<strong>in</strong>eation<br />

has the follow<strong>in</strong>g properties:<br />

θd = φd ◦ φd−1 ◦ · · · ◦ φ1<br />

θd(Pi) = Pi for 0 ≤ i ≤ d,<br />

θd(P ) = φd ◦ θd−1(P ) = · · · = φd(Q ′ ) = Q.<br />

Hence P0 is conta<strong>in</strong>ed <strong>in</strong> the axis of φi (1 ≤ i ≤ d), complet<strong>in</strong>g the proof.


154 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)<br />

An easy corollary of the two preced<strong>in</strong>g results is that at most 2d + 1<br />

central coll<strong>in</strong>eations are needed to map one ordered frame to another. This<br />

is not too good a result, however, s<strong>in</strong>ce it is known that at most d + 2 central<br />

coll<strong>in</strong>eations are needed.<br />

We are now <strong>in</strong> a good position to see the follow<strong>in</strong>g:<br />

Theorem 3.6.8. The projective coll<strong>in</strong>eations of P(V ) are precisely the products<br />

of central coll<strong>in</strong>eations.<br />

Proof. S<strong>in</strong>ce each central coll<strong>in</strong>eation is projective, <strong>and</strong> the product of projective<br />

coll<strong>in</strong>eations is projective, one direction easily follows. For the other<br />

direction, let φ be an arbitrary projective coll<strong>in</strong>eation. Then φ maps a frame<br />

R = {P0, . . . , Pd+1} to another frame R ′ = {Q0, . . . , Qd+1}. But the previous<br />

Lemma says that there is product θ of central coll<strong>in</strong>eations such that<br />

θ(Pi) = Qi, 0 ≤ i ≤ d + 1. Then θ(Pi) = φ(Pi) for 0 ≤ i ≤ d + 1, hence we<br />

have θ = φ. This means φ is a product a central coll<strong>in</strong>eations.<br />

Corollary 3.6.9. Let Σ be the set of coll<strong>in</strong>eations of P(V ) that fix each<br />

po<strong>in</strong>t of a frame. Then Σ is a group which is isomorphic to the group of<br />

automorphisms of F .<br />

Proof. Let<br />

R = {〈v0〉, 〈v1〉, . . . , 〈vd〉, 〈v0 + . . . vd〉}<br />

be a frame that is fixed po<strong>in</strong>twise by each element of Σ. Let σ ∈ Σ <strong>and</strong> let θ<br />

be the semil<strong>in</strong>ear map of V with associated automorphism α that <strong>in</strong>duces σ.<br />

As before, σ maps each vi onto avi. WOLG we assume that a = 1. Therefore<br />

we have<br />

θ : (a0v0 + · · · + advd) ↦→ α(a0)v0 + · · · + α)ad)vd.<br />

We denote this map more accurately by θα, <strong>and</strong> note that the l<strong>in</strong>ear part<br />

of θ is just the identity map. Consider the map Σ → Aut(F ) : σ ↦→ α. It<br />

is rout<strong>in</strong>e to check that this map is a group homomorphism. If α = α ′ , the<br />

coll<strong>in</strong>eations θα <strong>and</strong> θα ′ are dist<strong>in</strong>ct. So the proof is essentially complete.<br />

3.7 A Collection of Coll<strong>in</strong>eations<br />

Let π = P G(2, q) <strong>and</strong> consider the projective coll<strong>in</strong>eations θA : (x, y, z) ↦→<br />

(x, y, z)A for a nons<strong>in</strong>gular matrix A over Fq. Recall that such coll<strong>in</strong>eations<br />

are called homographies.


3.7. A COLLECTION OF COLLINEATIONS 155<br />

Obs. 3.7.1. θA is an elation with axis [1, 0, 0] T <strong>and</strong> center (0, b, c) if <strong>and</strong><br />

only if A has the form ⎛<br />

1 bx<br />

⎞<br />

cx<br />

A = ⎝ 0 1 0 ⎠<br />

0 0 1<br />

with b, c, x ∈ Fq, (b, c) = (0, 0).<br />

Obs. 3.7.2. The group of all homographies θ of P G(3, q) which are<br />

(a) elations with axis [0, 0, 1, 0] <strong>and</strong> center (a, b, 0, d) consists of those<br />

homographies with matrix<br />

⎛<br />

1<br />

⎜<br />

A = ⎜ 0<br />

⎝ ax<br />

0<br />

1<br />

bx<br />

0<br />

0<br />

1<br />

⎞<br />

0<br />

0 ⎟<br />

dx ⎠ , x ∈ Fq.<br />

0 0 0 1<br />

(b) homologies with axis [0, 0, 1, 0] <strong>and</strong> center (0, 0, 1, 0) consist of those<br />

homographies with matrix<br />

⎛<br />

1<br />

⎜<br />

A = ⎜ 0<br />

⎝ 0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

z<br />

⎞<br />

0<br />

0 ⎟<br />

0 ⎠ , 0 = z ∈ Fq.<br />

0 0 0 1<br />

Obs. 3.7.3. In P G(3, q) there are q4−1 q−1 · q4−q q−1 · q4−a2 q−1 · q4−q3 ordered 4-tuples<br />

q−1<br />

of po<strong>in</strong>ts <strong>in</strong> general position. Us<strong>in</strong>g the pr<strong>in</strong>ciple of <strong>in</strong>clusion-exclusion we<br />

can determ<strong>in</strong>e that the number of 5th po<strong>in</strong>ts complet<strong>in</strong>g an ordered frame is<br />

(q − 1) 3 . Hence<br />

There are (q 4 − 1)(q 4 − q)(q 4 − q 2 )q 3 ordered frames <strong>in</strong> P G(3, q).<br />

This with Corollary 3.6.5 shows that the order of the projective group P GL(3, q)<br />

of homographies is (q 4 − 1)(q 4 − q)(q 4 − q 2 )q 3 .


156 CHAPTER 3. THE FUNDAMENTAL THEOREM FOR P G(N, Q)


Chapter 4<br />

The Ubiquitous Oval<br />

4.1 Arcs <strong>and</strong> <strong>Ovals</strong><br />

Let π be a projective plane of order n. (Of course, our ma<strong>in</strong> <strong>in</strong>terest is <strong>in</strong><br />

the case π ∼ = P G(2, q).) A k-arc <strong>in</strong> π is a set K of k po<strong>in</strong>ts of π with no<br />

three coll<strong>in</strong>ear. It follows that for any l<strong>in</strong>e l of π, either l is an exterior l<strong>in</strong>e<br />

(meet<strong>in</strong>g K <strong>in</strong> 0 po<strong>in</strong>ts), a tangent l<strong>in</strong>e (meet<strong>in</strong>g K <strong>in</strong> a unique po<strong>in</strong>t), or a<br />

secant l<strong>in</strong>e (meet<strong>in</strong>g K <strong>in</strong> 2 po<strong>in</strong>ts).<br />

Lemma 4.1.1. If K is a k-arc <strong>in</strong> a plane π of order n, then k ≤ n + 2.<br />

Proof. If K = {P1, P2, . . . , Pk}, then the l<strong>in</strong>es P1P2, P1P3, . . . , P1Pk are k −1<br />

dist<strong>in</strong>ct l<strong>in</strong>es through P1, imply<strong>in</strong>g that k − 1 ≤ n + 1.<br />

Def. A (0,2)-set <strong>in</strong> π is a set Ω of po<strong>in</strong>ts of π such that each l<strong>in</strong>e of π<br />

meets Ω <strong>in</strong> 0 or 2 po<strong>in</strong>ts.<br />

Lemma 4.1.2. A nonempty set Ω of po<strong>in</strong>ts of π is a (0, 2)-set iff Ω is a<br />

k-arc with k = n + 2.<br />

Proof. Let Ω be a (0,2)-set with k po<strong>in</strong>ts, k ≥ 1, <strong>and</strong> suppose that P ∈ Ω.<br />

The n + 1 l<strong>in</strong>es through P each conta<strong>in</strong> a unique second po<strong>in</strong>t of Ω, so<br />

k ≥ n + 2. But as Ω is a k-arc, by Lemma 4.1.1 we have k ≤ n + 2, i.e.,<br />

k = n + 2. Conversely, it is easy to see that if Ω is an (n + 2)-arc, it is also<br />

a (0,2)-set.<br />

Lemma 4.1.3. If n is odd, any k-arc of π has k ≤ n + 1.<br />

157


158 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Proof. Suppose π actually has an (n + 2)-arc Ω. Then Ω must be a (0,2)-set.<br />

So if P ∈ π \ Ω, the po<strong>in</strong>ts of Ω lie <strong>in</strong> pairs on those l<strong>in</strong>es through P meet<strong>in</strong>g<br />

Ω <strong>in</strong> at least one po<strong>in</strong>t. Hence n + 2 is even.<br />

Def. An oval of π is a k-arc Ω with k = n + 1. Note that through each<br />

po<strong>in</strong>t of an oval there is a unique tangent l<strong>in</strong>e.<br />

Let Ω be an oval of π. For 0 ≤ i ≤ n + 1, let ei be the number of po<strong>in</strong>ts<br />

of π \ Ω on exactly i tangent l<strong>in</strong>es.<br />

n+1<br />

ei = n 2 = |π \ Ω|. (4.1)<br />

i=0<br />

n+1<br />

iei = n(n + 1) = (4.2)<br />

i=0<br />

= |{(P, l) : P ∈ π \ Ω; l is tangent to Ω, <strong>and</strong> P is <strong>in</strong>cident with l}|.<br />

n+1<br />

i(i − 1)ei = n(n + 1) = (4.3)<br />

i=0<br />

= the number of ordered pairs of <strong>in</strong>tersect<strong>in</strong>g tangent l<strong>in</strong>es.<br />

Lemma 4.1.4. Let n be odd. Each po<strong>in</strong>t of π \ Ω is on 0 or 2 tangents,<br />

i.e., is an <strong>in</strong>terior po<strong>in</strong>t or an exterior po<strong>in</strong>t of Ω. There are n(n−1)<br />

<strong>in</strong>terior<br />

2<br />

po<strong>in</strong>ts <strong>and</strong> n(n+1)<br />

exterior po<strong>in</strong>ts.<br />

2<br />

Proof. Fix a po<strong>in</strong>t X ∈ π \ Ω. The secants through X pick off po<strong>in</strong>ts of Ω <strong>in</strong><br />

pairs, leav<strong>in</strong>g an even number of tangents through X. So ej = 0 if j is odd.<br />

Hence we may rewrite equations Eq. 4.1, 4.2, 4.3 as follows:<br />

(4.1)’<br />

(4.2)’<br />

(4.3)’<br />

n+1<br />

2<br />

j=0 e2j = n 2 ;<br />

n+1<br />

2<br />

j=0 2je2j = n(n + 1);<br />

n+1<br />

2<br />

j=0 2j(2j − 1)e2j = n(n + 1).


4.1. ARCS AND OVALS 159<br />

n+1<br />

2<br />

j=0 2j(2j−2)e2j = 0 =<br />

n+1<br />

2<br />

j=0 4j(j−<br />

Subtract the second from the third:<br />

1)e2j. S<strong>in</strong>ce e2j ≥ 0, <strong>and</strong> 4j(j − 1) > 0 for j > 1, it must be that e2j = 0<br />

for j ≥ 2. Hence e0 <strong>and</strong> e2 are the only ej’s that might be nonzero. From<br />

the middle equation we see e2 = n(n+1)<br />

is the number of exterior po<strong>in</strong>ts.<br />

2<br />

Then from the first equation, e0 = n2 − e2 = n(n−1)<br />

is the number of <strong>in</strong>terior<br />

2<br />

po<strong>in</strong>ts.<br />

Lemma 4.1.5. Let n be even. There is a unique po<strong>in</strong>t N of π \ Ω that is<br />

on q + 1 tangents to Ω. (N is called the nucleus or knot of Ω.) Each other<br />

po<strong>in</strong>t of π \ Ω is on a unique tangent.<br />

Proof. S<strong>in</strong>ce n + 1 is odd <strong>and</strong> the secants through a po<strong>in</strong>t X ∈ π \ Ω pick off<br />

the po<strong>in</strong>ts of Ω <strong>in</strong> pairs, X must lie on an odd number of tangents. So we<br />

may rewrite Eqs. 4.1, 4.2, 4.3 as follows:<br />

(4.1)<br />

(4.2)<br />

(4.3)<br />

n<br />

′′ 2<br />

j=0 e2j+1 = n2 ;<br />

n<br />

′′ 2<br />

j=0 (2j + 1)e2j+1 = n(n + 1);<br />

n<br />

′′ 2<br />

j=0 (2j + 1)2je2j+1 = n(n + 1).<br />

Now compute (n + 1)(3.2) ′′ − (n + 1)(3.1) ′′ − (3.3) ′′ :<br />

n/2<br />

j=0 [(n + 1)(2j + 1) − (n + 1) − (2j + 1)2j]e2j+1 = (n + 1)n(n + 1) −<br />

(n + 1)n 2 − n(n + 1) simplifies to: n/2<br />

j=0 2j(n − 2j)e2j+1 = 0. So the only<br />

e2j+1 that could be nonzero are for j = 0 <strong>and</strong> j = n<br />

2 , i.e., e1 <strong>and</strong> en+1. Us<strong>in</strong>g<br />

(4.3) ′′ , we see en+1 = 1. Then from (4.1) ′′ , e1 = n 2 − 1.<br />

This result shows that when n is even <strong>and</strong> Ω is an oval of the projective<br />

plane π of order n, if N is the nucleus of Ω, then Ω + = Ω ∪ {N} is an<br />

(n + 2)-arc (i.e., a (0,2)-set).<br />

Def. An (n+2)-arc <strong>in</strong> a projective plane π of order n is called a hyperoval.<br />

Note that if X is any po<strong>in</strong>t of a hyperoval Ω + , Ω + \ {X} is an oval with<br />

nucleus X.


160 CHAPTER 4. THE UBIQUITOUS OVAL<br />

4.2 Conics: The Classical Examples<br />

Put<br />

C = {(x0, x1, x2) ∈ P G(2, q) : x 2 1 = x0x2} =<br />

= {(1, t, t 2 ) : t ∈ Fq} ∪ {(0, 0, 1)}.<br />

It is easy to check that each three po<strong>in</strong>ts of C are l<strong>in</strong>early <strong>in</strong>dependent,<br />

i.e., noncoll<strong>in</strong>ear <strong>in</strong> P G(2, q). Hence C is an example of an oval <strong>in</strong> P G(2, q),<br />

<strong>and</strong> when q = 2 e , the nucleus of C is N = (0, 1, 0).<br />

A quadric Q <strong>in</strong> π = P G(2, q) is the set of po<strong>in</strong>ts (x, y, z) of π satisfy<strong>in</strong>g<br />

a0x 2 + a1xy + a2y 2 + a3xz + a4yz + a5z 2 = 0, (4.4)<br />

for some scalars a0, . . . , a5, not all zero.<br />

Given five po<strong>in</strong>ts Pi = (xi, yi, zi) on Q, we see that five l<strong>in</strong>ear equations<br />

<strong>in</strong> the six unknowns a0, . . . , a5 arise, so a nontrivial solution exists. Hence<br />

any five po<strong>in</strong>ts lie on at least one quadric. We have seen that the quadric<br />

given by C : x 2 1 = x0x2 is a (q + 1)-arc, i.e., an oval. In this case C is called a<br />

conic, <strong>and</strong> the quadric is nons<strong>in</strong>gular (irreducible, nondegenerate). The other<br />

possible po<strong>in</strong>t-sets consist<strong>in</strong>g of a quadric <strong>in</strong> P G(2, q) are:<br />

• a l<strong>in</strong>e counted twice – e.g., x 2 0 ;<br />

• a pair of dist<strong>in</strong>ct l<strong>in</strong>es – e.g., x0x1;<br />

• a po<strong>in</strong>t, i.e., a pair of conjugate l<strong>in</strong>es <strong>in</strong> P G(2, q 2 ) with just their <strong>in</strong>tersection<br />

<strong>in</strong> P G(2, q)) – e.g., x 2 0 + ax0x1 + bx 2 1 irreducible).<br />

In these cases the quadric is s<strong>in</strong>gular. See [Hi98] for a much more thorough<br />

analysis of the situation. For our purposes it suffices to prove the follow<strong>in</strong>g<br />

result.<br />

Lemma 4.2.1. Let Q be⎛a nondegenerate ⎞ quadric <strong>in</strong> P G(2, q). If the quadric<br />

x<br />

is Q(x, y, z) = (x, y, z)A ⎝ y ⎠ with<br />

z<br />

⎛<br />

a b c<br />

⎞<br />

A = ⎝ 0 d e ⎠ ,<br />

0 0 f


4.2. CONICS: THE CLASSICAL EXAMPLES 161<br />

put B = A + A T . Then the tangent l<strong>in</strong>e at the po<strong>in</strong>t P of the quadric Q is<br />

BP T . Moreover,<br />

(a) A 5-arc <strong>in</strong> P G(2, q) lies on a unique conic which is an oval.<br />

(b) A 4-arc <strong>in</strong> P G(2, q) with a specified tangent l<strong>in</strong>e at one of them lie <strong>in</strong><br />

a unique conic which is an oval.<br />

(c) A 3-arc <strong>in</strong> P G(2, q) with tangent l<strong>in</strong>es specified at two of them lie <strong>in</strong><br />

a unique conic.<br />

Proof. Suppose that P is a po<strong>in</strong>t of Q, i.e., P AP T = 0, so <strong>in</strong> particular,<br />

P BP T = 0. Let L = BP T . Clearly P is on L. Suppose R is a po<strong>in</strong>t on<br />

L ∩ Q. It is easy to check that each po<strong>in</strong>t of the l<strong>in</strong>e 〈P, R〉 is on Q. But a<br />

nondegenerate quadric <strong>in</strong> P G(2, q) must conta<strong>in</strong> no l<strong>in</strong>e. Hence BP T must<br />

be tangent to Q at P . If we first just fix a 3-arc <strong>in</strong> Q, s<strong>in</strong>ce P GL(3, q)<br />

is (sharply) transitive on ordered 4-arcs, <strong>in</strong> particular we may assume that<br />

P1(1, 0, 0), P2(0, 1, 0), <strong>and</strong> P3(0, 0, 1) are three po<strong>in</strong>ts of Q. Putt<strong>in</strong>g these<br />

<strong>in</strong>to ⎛ the equation ⎞ for Q (as <strong>in</strong> Eq. 4.4) yields a = d = f = 0. Then B =<br />

0 b c<br />

⎝ b 0 e ⎠. Us<strong>in</strong>g the fact that P GL(3, q) is transitive on 4-arcs we may<br />

c e 0<br />

assume without loss <strong>in</strong> gvenerality ⎛ ⎞ that ⎡ the ⎤ tangent L to Q at P (1, 0, 0) is the<br />

1 0<br />

l<strong>in</strong>e L = [0, 1, 1] = λ·B ⎝ 0 ⎠ = λ ⎣ b ⎦ (for some nonzero λ), which forces<br />

0 c<br />

b = c. The tangent M to Q at P2(0, 1, 0) must have the form M = [1, 0, m] T<br />

for some nonzero m ∈ Fq. Also, M = BP T 2 = [b, 0, e]T , i.e., e = bm with<br />

b = 0. Hence we may assume without loss of generality that b = 1, so<br />

⎛<br />

A = ⎝<br />

0 1 1<br />

0 0 m<br />

0 0 0<br />

This proves part (c) of the theorem. Now suppose Q conta<strong>in</strong>s the 4-arc<br />

P1(1, 0, 0), P2(0, 1, 0), P3(0, 0, 1), P4(1, 1, 1) <strong>and</strong> the tangent [0, 1, m] T at P1,<br />

m = 0, 1. It follows that b = 0 so we may assume that b ⎛=<br />

1. Then c = m <strong>and</strong> ⎞<br />

0 1 m<br />

from P4 be<strong>in</strong>g on Q we have e = −(1+m). Hence A = ⎝ 0 0 −(1 + m) ⎠.<br />

0<br />

Hence part (b) follows.<br />

0 0<br />

⎞<br />

⎠ .


162 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Let K be a 5-arc <strong>in</strong> P G(2, q). As above, we may assume that K conta<strong>in</strong>s<br />

the po<strong>in</strong>ts (1, 0, 0), (0, 1, 0, (0, 0, 1) <strong>and</strong> (1, 1, 1). Putt<strong>in</strong>g these four po<strong>in</strong>ts<br />

<strong>in</strong>to Eq. 4.4 reduces the quadratic form to<br />

a1xy + a3xz − (a1 + a3)yz = 0. (4.5)<br />

The six l<strong>in</strong>es jo<strong>in</strong><strong>in</strong>g the four po<strong>in</strong>ts <strong>in</strong> pairs are<br />

l1 : y = 0; l2 : y = 0; l3 : z = 0;<br />

l4 : x = y; l5 : y = z; l6 : x = z.<br />

So the fifth po<strong>in</strong>t of K is of the form P = (1, y0, z0) with y0z0(y0−z0)(y0−<br />

1)(z0 − 1) = 0. Putt<strong>in</strong>g this po<strong>in</strong>t <strong>in</strong> Eq. 4.5 yields<br />

a1 = −a3z0(1 − y0)<br />

.<br />

y0(1 − z0)<br />

This determ<strong>in</strong>es the quadratic form up to a scalar multiple, i.e., as a set of<br />

po<strong>in</strong>ts it is uniquely determ<strong>in</strong>ed <strong>and</strong> is equivalent to a form<br />

axy + bxz − (a + b)yz = 0,<br />

ay<br />

with ab = 0, <strong>and</strong> hav<strong>in</strong>g po<strong>in</strong>ts (1, y, (a+b)y−b ), b<br />

a+b = y ∈ Fq, together with<br />

(0, 1, 0) <strong>and</strong> (0, 0, 1). It is now a rout<strong>in</strong>e exercise to show that C is an oval.<br />

Our goal for the rema<strong>in</strong>der of this section is to show that<br />

Theorem 4.2.2. Every homogeneous quadratic equation <strong>in</strong> three variables<br />

over Fq has a nontrivial solution.<br />

where<br />

To start with we recall that every such quadratic equation has the form<br />

ax 2 + bxy + cxz + dy 2 + eyz + fz 2 ⎛ ⎞<br />

x<br />

= (x, y, z)A ⎝ y ⎠ = 0,<br />

z<br />

⎛<br />

A = ⎝<br />

a b c<br />

0 d e<br />

0 0 f<br />

⎞<br />

⎠ .


4.2. CONICS: THE CLASSICAL EXAMPLES 163<br />

It is clear that if adf = 0 there is a non-trivial solution. Hence we may<br />

assume that adf = 0.<br />

First take care of the case that q = 2e . Then if c = 0, put y = 0 <strong>and</strong><br />

the equation becomes ax2 + fz 2 = 0. Put z = √ a, x = √ f to obta<strong>in</strong> a nontrivial<br />

solution. So suppose c = 0 <strong>and</strong> put x = e<br />

y. The equation becomes<br />

c<br />

a ′ y2 + fz 2 = 0 for some element a ′ ∈ Fq, which clearly has a non-trivial<br />

solution. This takes care of the case where q is a power of 2. So now assume<br />

that q is odd.<br />

The proof of the theorem depends on the follow<strong>in</strong>g lemmas.<br />

Lemma 4.2.3. If 0 = γ ∈ Fq, then γ = x 2 + y 2 has a solution <strong>in</strong> Fq.<br />

Proof. If γ is a square, there is noth<strong>in</strong>g to prove. Hence we may suppose that<br />

q is odd <strong>and</strong> γ is a non-square <strong>in</strong> Fq. Then let β1, . . . , β q−1 be the non-zero<br />

2<br />

squares of Fq <strong>and</strong> put<br />

S = {γ − βi : 1 ≤ i ≤<br />

q − 1<br />

2 }.<br />

If S conta<strong>in</strong>ed no squares, S would conta<strong>in</strong> precisely all non-squares. But<br />

γ ∈ S implies that S must conta<strong>in</strong> some square, say γ − βi = x 2 , βi = y 2 ,<br />

x, y ∈ Fq. Hence γ = x 2 + y 2 .<br />

Lemma 4.2.4. The equation ax2 0 + dx21 + fx22 nontrivial solution.<br />

= 0 with adf = 0 has a<br />

Proof. At least one of a/d, d/f, f/a is a square, s<strong>in</strong>ce their product is a<br />

square. S<strong>in</strong>ce the problem is symmetric <strong>in</strong> the three variables, we may suppose<br />

that a/d = g 2 with g ∈ Fq. Divide the equation by d <strong>and</strong> put x2 = 1.<br />

The equation then becomes<br />

which has a solution by Lemma 4.2.3.<br />

(gx0) 2 + x 2 1 = − f<br />

d ,<br />

S<strong>in</strong>ce q is odd, we may replace A with A ′ = 1<br />

2 (A + AT ), i.e., we may<br />

assume that A is symmetric. Then put B(x, z) = q(x + z) − q(x) − q(z) =<br />

x(A + AT )zT = 2q(x + z). The set x⊥ = {z ∈ F 3 q : B(x, z) = 0} is a subspace<br />

of dimension 2 or 3.


164 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Lemma 4.2.5. When q is odd, the vector space F 3 q has a basis {x0, x1, x3}<br />

such that B(xi, xj) = 0 if i = j.<br />

Proof. S<strong>in</strong>ce q is odd, q(x) = 0 iff B(x, x) = 0. Hence if q(x) = 0 for all<br />

x ∈ F 3 q there is noth<strong>in</strong>g to prove. So suppose q(x) = 0, so x ∈ x⊥ . Put<br />

x = x0. Then F 3 q = 〈x〉 ⊕ x⊥ . If q(y) = 0 for all y ∈ x⊥ , let x1, x2 be any<br />

basis of x⊥ . Otherwise, let x1 be an element of x⊥ for which q(x1) = 0. Then<br />

x⊥ 1 ∩x⊥0 is a 1-dimensional space of x⊥ with a basis x2. Then B = {x0, x1, x2}<br />

is a basis of F 3 q of the type desired.<br />

The quadratic form q(x) = xAx T , when expressed <strong>in</strong> terms of the basis<br />

B has a diagonal matrix, i.e., if [x] is the coord<strong>in</strong>ate matrix of the vector x<br />

with respect to the basis B, then q(x) = [x]A ′ [x] T , where A ′ is a diagonal<br />

matrix. By Lemma 4.2.4 such a quadratic form has a nontrivial solution.<br />

This completes a proof of Theorem 4.2.2.<br />

Exercise 4.2.5.1. Let P1, P2, P3, P4 be four po<strong>in</strong>ts of P G(2, q) with no three<br />

on a l<strong>in</strong>e. Show that there are three degenerate conics conta<strong>in</strong><strong>in</strong>g these four<br />

po<strong>in</strong>ts, each consist<strong>in</strong>g of two l<strong>in</strong>es so that each of the po<strong>in</strong>ts Pi is on just<br />

one of the two l<strong>in</strong>es. There are q − 2 irreducible conics partition<strong>in</strong>g the<br />

(q − 2)(q − 3) ⎛po<strong>in</strong>ts<br />

not on any ⎞ of these six l<strong>in</strong>es.<br />

0 a b<br />

Let A = ⎝ 0 0 −a − b ⎠. Then q(x) = xAx<br />

0 0 0<br />

T is degenerate if <strong>and</strong><br />

only if ab(a + b) = 0. Suppose a = 1, b ∈ {0, −1}. Then if q = 2e , the po<strong>in</strong>t<br />

(1 + b, b, 1) is the nucleus. Such a po<strong>in</strong>t lies on the l<strong>in</strong>e [1, 1, 1]. The quadric<br />

Q : q(x) = 0 conta<strong>in</strong>s the fundamental quadrangle.<br />

Exercise 4.2.5.2. Show that <strong>in</strong> P G(2, q) there are<br />

(i) q 4 − q 2 conics on a fixed po<strong>in</strong>t P ;<br />

(ii) q 5 − q 2 conics;<br />

(iii) q 5 − q 4 conics not on a fixed po<strong>in</strong>t P .<br />

Now suppose that q = 2 e <strong>and</strong> let N be a fixed po<strong>in</strong>t of P G(2, q). Show<br />

that there are<br />

(iv) q 3 − q 2 conics with nucleus N.<br />

(v) q 2 (q − 1)(q 2 − 1) conics not on a fixed po<strong>in</strong>t P <strong>and</strong> hav<strong>in</strong>g nucleus<br />

different from P .<br />

(vi) q(q − 1) 2 conics with nucleus N <strong>and</strong> not conta<strong>in</strong><strong>in</strong>g a fixed po<strong>in</strong>t P<br />

different from N.


4.3. THE GROUP OF THE CONIC 165<br />

4.3 The Group of the Conic<br />

Let<br />

C = {(x0, x1, x2) ∈ P G(2, q) : x 2 1 = x0x2}<br />

= {(1, t, t 2 ) : t ∈ Fq} ∪ {(0, 0, 1)}.<br />

The subgroup of P ΓL(3, q) leav<strong>in</strong>g C <strong>in</strong>variant is denoted P Γ0(3, q). Note<br />

that the field automorphisms <strong>in</strong>duce coll<strong>in</strong>eations of P G(2, q) that leave C<br />

<strong>in</strong>variant, so we need only to determ<strong>in</strong>e the group P GO(3, q) of homographies<br />

leav<strong>in</strong>g C <strong>in</strong>variant. This is given by the follow<strong>in</strong>g theorem.<br />

Theorem 4.3.1. The group P GO(3, q) of homographies leav<strong>in</strong>g C <strong>in</strong>variant<br />

consist of those homographies θ with matrices of the form<br />

⎛<br />

d<br />

[θ] = ⎝<br />

2 −bd b2 −2cd ad + bc −2ab<br />

c2 −ac a2 ⎞<br />

⎠ , ∆ = ad − bc = 0.<br />

The determ<strong>in</strong>ant of this [θ] is ∆3 , hence we may multiply the matrix by ∆−1 to obta<strong>in</strong> a matrix with determ<strong>in</strong>ant 1. The <strong>in</strong>verse matrix (which acts on<br />

the planes of P G(2, q)) is then given by<br />

[θ] −1 = ∆ −1<br />

⎛<br />

⎝<br />

a 2 ab b 2<br />

2ac ad + bc 2bd<br />

c 2 cd d 2<br />

Further, when q is odd we have the follow<strong>in</strong>g:<br />

(i) P GO(3, q) is sharply triply transitive on the po<strong>in</strong>ts of C; |P GO(3, q)| =<br />

q 3 − q;<br />

(ii) P GO(3, q) is transitive on the <strong>in</strong>terior po<strong>in</strong>ts of C;<br />

(iii) P GO(3, q) is transitive on the exterior po<strong>in</strong>ts of C;<br />

(iv) P GO(3, q) is transitive on the tangent l<strong>in</strong>es to C;<br />

(v) P GO(3, q) is transitive on the secant l<strong>in</strong>es to C;<br />

(vi) P GO(3, q) is transitive on the po<strong>in</strong>t-l<strong>in</strong>e pairs (P, ℓ), where P is an<br />

exterior po<strong>in</strong>t on the exterior l<strong>in</strong>e ℓ. The subgroup fix<strong>in</strong>g such a pair has<br />

order 4.<br />

Proof. It is an easy exercise to show that the homographies given above really<br />

preserve C <strong>and</strong> act sharply triply transitively on the po<strong>in</strong>ts of C.<br />

⎞<br />

⎠ .


166 CHAPTER 4. THE UBIQUITOUS OVAL<br />

The matrix of C is<br />

⎛<br />

0 0<br />

⎞<br />

1<br />

AC = ⎝ 0<br />

0<br />

−1<br />

0<br />

0 ⎠ ;<br />

0<br />

BC = AC + A T ⎛<br />

C = ⎝<br />

0 0 1<br />

0 −2 0<br />

1 0 0<br />

The tangent to C at (0, 0, 1) is the l<strong>in</strong>e [1, 0, 0], whose exterior po<strong>in</strong>ts are<br />

those of the form (0, 1, m), m ∈ Fq. Put d = 1, b = c = 0 <strong>in</strong> [θ] to map<br />

(0, 1, m) to (0, 1, ma), a ∈ Fq. So the exterior po<strong>in</strong>ts (0, 1, m) are all <strong>in</strong> the<br />

same orbit of P GO(3, q). Each po<strong>in</strong>t not on the tangent [1, 0, 0] is of the<br />

form (1, t, t 2 + k), t, k ∈ Fq. The tangent at (1, s, s 2 ) is [s 2 , −2s, 1]. Then<br />

(1, t, t 2 + k) is on some tangent [s 2 , −2s, 1] if <strong>and</strong> only if ((s − t) 2 = −k.<br />

Hence<br />

Interior po<strong>in</strong>ts of C are (1, t, t 2 + k), t ∈ Fq, −k = ❆ ∈ Fq;<br />

Exterior po<strong>in</strong>ts of C are (1, t, t 2 + k), 0 = −k = ∈ Fq; (0, 1, m); m ∈ Fq<br />

For arbitrary t ∈ Fq, <strong>in</strong> [θ] put b = at, 0 = a, d = −1, c = 0 to map<br />

(1, t, t2 + k) to<br />

(1, t, t 2 ⎛<br />

1 at a<br />

+ k) ⎝<br />

2t2 0 −a −2a2t 0 0 a2 ⎞<br />

⎠ = (1, 0, a 2 k).<br />

From this it is clear that P GO(3, q) is transitive on the <strong>in</strong>terior po<strong>in</strong>ts of<br />

C, <strong>and</strong> it is transitive on the exterior po<strong>in</strong>ts of the form (1, t, t 2 +k), −k = .<br />

S<strong>in</strong>ce k = −1 gives −k = 1 = , (1, 1, 0) is one of these exterior po<strong>in</strong>ts. Then<br />

suppose that −k = s 2 = 0. In [θ] put a = 0, c = d = 1, b = s to get the<br />

follow<strong>in</strong>g:<br />

⎛<br />

θ : (1, 1, 0) ↦→ (1, 1, 0) ⎝<br />

1 −s −k<br />

−2 s 0<br />

1 0 0<br />

⎞<br />

⎞<br />

⎠ .<br />

⎠ = (−1, 0, −k) ≡ (1, 0, k).<br />

Hence P GO(3, q) is transitive on the set of all exterior po<strong>in</strong>ts.<br />

We notice that there are q(q−1)<br />

<strong>in</strong>terior po<strong>in</strong>ts <strong>and</strong> 2<br />

q(q+1)<br />

exterior po<strong>in</strong>ts.<br />

2<br />

So the order of the stabilizer of an <strong>in</strong>terior (resp., exterior) po<strong>in</strong>t is much


4.3. THE GROUP OF THE CONIC 167<br />

smaller than the size of the set of the other <strong>in</strong>terior (resp., exterior) po<strong>in</strong>ts.<br />

Hence P GO(3, q) is far from doubly transitive on the set of <strong>in</strong>terior (resp.,<br />

exterior) po<strong>in</strong>ts.<br />

The only part of the theorem still await<strong>in</strong>g proof is part (vi). For this it<br />

suffices to consider the set of l<strong>in</strong>es pass<strong>in</strong>g through an exterior po<strong>in</strong>t of our<br />

choice. So consider the l<strong>in</strong>es through P = (1, 1, 0). The two tangent l<strong>in</strong>es are<br />

[0, 0, 1] <strong>and</strong> [1, −1, 1/4]. There are q−1<br />

exterior (resp., secant) l<strong>in</strong>es through<br />

2<br />

P . The l<strong>in</strong>e [1, −1, w] with 0 = w = 1/4 may be secant or exterior, <strong>and</strong> will<br />

be an exterior l<strong>in</strong>e if <strong>and</strong> only if 1 − 4w = ❆ . First compute the stabilizer of<br />

(1, 1, 0).<br />

The subgroup G of P GO(3, q) that fixes the po<strong>in</strong>t (1, 1, 0) consists of the<br />

2(q − 1) homographies with matrices of the follow<strong>in</strong>g types:<br />

1<br />

(1 − 2g)<br />

⎛<br />

⎝<br />

1 0 0<br />

−2g 1 − 2g 0<br />

g2 −g(1 − 2g) (1 − 2g) 2<br />

⎛<br />

⎝<br />

1 2 4<br />

2g 2g − 1 −4<br />

g 2 −g 1<br />

⎞<br />

⎠ , g = 1<br />

⎞<br />

;<br />

2<br />

(4.6)<br />

⎠ , g = − 1<br />

.<br />

2<br />

(4.7)<br />

The homographies of the first type form a subgroup G0 of order q − 1.<br />

The <strong>in</strong>verse of such a matrix is<br />

⎛<br />

(1 − 2g)<br />

1<br />

⎝<br />

(1 − 2g)<br />

2 2g(1 − 2g)<br />

g<br />

0<br />

1 − 2g<br />

0<br />

0<br />

2 g<br />

⎞<br />

⎠ .<br />

1<br />

Let G1 denote the other coset of G0 <strong>in</strong> G. Each member of G1 is an<br />

<strong>in</strong>volution.<br />

With this we can see that an element of G0 maps [1, −1, w] to ℓg =<br />

[1, −1, w+g2−g (1−2g) 2 ]. So [1, −1, w] is fixed if <strong>and</strong> only if (g2 − g)(1 − 4w) = 0. The<br />

two tangents [0, 0, 1] <strong>and</strong> [4, −4, 1] through (1, 1, 0) are fixed by each element<br />

of G0, <strong>and</strong> <strong>in</strong>terchanged by each element of G1. The coll<strong>in</strong>eation with g = 1 is<br />

an homology with center (1, 1, 0) <strong>and</strong> axis [0, −2, 1], the perp of (1, 1, 0) with<br />

respect to the conic, so it fixes all l<strong>in</strong>es through (1, 1, 0). But for g = 0, 1,<br />

the two tangents are the only l<strong>in</strong>es through (1, 1, 0) that are fixed.<br />

Now consider the other coset G1. Given a l<strong>in</strong>e [1, −1, w], it is stabilized<br />

by the two homographies <strong>in</strong> G1 with g = −2w or g = 2w − 1. But these two<br />

homographies, with matrices


168 CHAPTER 4. THE UBIQUITOUS OVAL<br />

⎛<br />

⎝<br />

1 2 4<br />

−4w −4w − 1 −4<br />

4w 2 2w 1<br />

⎞<br />

⎠ , <strong>and</strong><br />

⎛<br />

⎝<br />

1 2 4<br />

2(2w − 1) 4w − 3 −4<br />

(2w − 1) 2 1 − 2w 1<br />

⎞<br />

⎠ , respectively,<br />

also fix exactly one other l<strong>in</strong>e [1, −1, (1 − 2w)/2]. Now 1 − 4 <br />

1−2w = −1 +<br />

2<br />

4w = −(1 − 4w). If q ≡ 1 (mod 4), the two l<strong>in</strong>es [1, −1, w] <strong>and</strong> [1, −1, (1 −<br />

2w)/2] are of the same type, but when q ≡ −1 (mod 4) they are of opposite<br />

types. In any case we see that each element of G1 fixes two l<strong>in</strong>es through<br />

(1, 1, 0). By the orbit count<strong>in</strong>g lemma we have that the number of orbits of<br />

G on the set of q − 1 non-tangent l<strong>in</strong>es through (1, 1, 0) is equal to<br />

1<br />

[(q − 1) + (q − 1) + (q − 1)2] = 2,<br />

2(q − 1)<br />

i.e., the two orbits are the secants <strong>and</strong> the exterior l<strong>in</strong>es through (1, 1, 0).<br />

Now consider the case where (1, 0, k) is an <strong>in</strong>ternal po<strong>in</strong>t, i.e., −k = ❆ .<br />

This po<strong>in</strong>t is fixed by the group of homographies of order 2(q+1) with matrics<br />

of the follow<strong>in</strong>g types:<br />

⎛<br />

⎝<br />

1 0 0<br />

0 ±1 0<br />

0 0 1<br />

⎞<br />

⎠ , <strong>and</strong><br />

⎛<br />

a<br />

⎝<br />

2 a 1<br />

± 2a<br />

k ± 1<br />

k − a2 ∓2a<br />

a2 ⎞<br />

⎠ . (4.8)<br />

1<br />

k 2<br />

The nonidentity homography of the first type is an homology with center<br />

(0, 1, 0) <strong>and</strong> axis [0, 1, 0]. Here [0, 1, 0] is a secant through (1, 0, k) (on (1, 0, 0)<br />

<strong>and</strong> (0, 0, 1)). The other fixed l<strong>in</strong>e through (1, 0, k) is [−k, 0, 1], which is a<br />

secant if <strong>and</strong> only if q ≡ 3 (mod 4).<br />

The other type of homography fix<strong>in</strong>g (1, 0, k) has <strong>in</strong>verse (up to a scalar<br />

multiple) equal to ⎛<br />

a<br />

⎝<br />

2 ±a 1<br />

2a ± ⎞<br />

1<br />

k<br />

1<br />

k 2<br />

∓ a<br />

k<br />

−a<br />

k<br />

k − a2 −2a<br />

a2 ⎠ .<br />

The fixed l<strong>in</strong>es through (1, 0, k) when we use the top sign (of ±) <strong>and</strong> have<br />

a = 0 are the two l<strong>in</strong>es [−k, v, 1] with v = 2ak or v = −2.<br />

With the bottom<br />

a<br />

sign <strong>and</strong> a = 0 there is no solution. When a = 0 we f<strong>in</strong>d no solution with the<br />

top sign. With the bottom sign the coll<strong>in</strong>eation is the homology with center<br />

(1, 0, k) <strong>and</strong> axis [k, 0, 1], the perp of (1, 0, k) with respect to the conic, so


4.3. THE GROUP OF THE CONIC 169<br />

there are q + 1 l<strong>in</strong>es through (1, 0, k) fixed. By the orbit count<strong>in</strong>g lemma we<br />

see that the number of orbits on the l<strong>in</strong>es through (1, 0, k) of the group fix<strong>in</strong>g<br />

(1, 0, k) is<br />

1<br />

[(q + 1) + 2 + 2(q − 1) + 0(q − 1) + 2 + (q + 1)] = 2.<br />

2(q + 1)<br />

Hence the subgroup of P GO(3, q) fix<strong>in</strong>g (1, 0, k) acts transitively on the secants<br />

through (1, 0, k) <strong>and</strong> transitively on the exterior l<strong>in</strong>es through (1, 0, k).<br />

In the case of us<strong>in</strong>g the top sign with a = 0, the fixed l<strong>in</strong>e [−k, 2ak, 1] is<br />

secant if <strong>and</strong> only if (a2k + 1)k = , while the other fixed l<strong>in</strong>e [−k, −2,<br />

1] is a<br />

a secant if <strong>and</strong> only if (a2k + 1) = . So the two l<strong>in</strong>es through (1, 0, k) fixed<br />

by such a coll<strong>in</strong>eation are of the same type if <strong>and</strong> only if q ≡ 3 (mod 4).<br />

In any case, the group fix<strong>in</strong>g (1, 0, k) has order 2(q + 1); the subgroup<br />

fix<strong>in</strong>g a l<strong>in</strong>e has order 4.<br />

Recap: P GO(3, q) is transitive on the po<strong>in</strong>t-l<strong>in</strong>e pairs (P, ℓ) where P is<br />

an exterior po<strong>in</strong>t <strong>and</strong> ℓ is an exterior (resp., secant ) l<strong>in</strong>e through P . The<br />

subgroup G fix<strong>in</strong>g the conic <strong>and</strong> the exterior po<strong>in</strong>t P has order 2(q − 1). It is<br />

transitive on the (q − 1)/2 exterior (resp., secant) l<strong>in</strong>es through P , <strong>and</strong> the<br />

subgroup of G fix<strong>in</strong>g a given exterior (resp. secant) l<strong>in</strong>e through P has order<br />

4. The identity <strong>and</strong> one nonidentity <strong>in</strong>volution (an homology with center P<br />

<strong>and</strong> axis P ⊥ ) fix all the l<strong>in</strong>es through P (<strong>and</strong> obviously permute the q − 1<br />

po<strong>in</strong>ts of C not on the two tangents through P <strong>in</strong> pairs). The other two<br />

<strong>in</strong>volutions that fix a given exterior l<strong>in</strong>e ℓ through P also fix the same second<br />

l<strong>in</strong>e ℓ ′ . When q ≡ 1 (mod 4), ℓ ′ is also an exterior l<strong>in</strong>e. When q ≡ 3 (mod 4),<br />

ℓ ′ is a secant l<strong>in</strong>e.<br />

P GO(3, q) is transitive on the po<strong>in</strong>t-l<strong>in</strong>e pairs (P, ℓ) where P is an <strong>in</strong>ternal<br />

po<strong>in</strong>t <strong>and</strong> ℓ is an exterior (resp., secant) l<strong>in</strong>e through P . The subgroup G<br />

fix<strong>in</strong>g the conic <strong>and</strong> the po<strong>in</strong>t P has order 2(q +1), has a subgroup of order 4<br />

fix<strong>in</strong>g each l<strong>in</strong>e through P <strong>and</strong> acts transitively on the secant (resp., exterior)<br />

l<strong>in</strong>es through P . Aga<strong>in</strong> there is a unique homology <strong>in</strong> G with center P <strong>and</strong><br />

axis P ⊥ . In those cases <strong>in</strong> which the given element of G fixes exactly two l<strong>in</strong>es<br />

through P , the two l<strong>in</strong>es are of the same type if <strong>and</strong> only if q ≡ 3 (mod 4).<br />

We now consider certa<strong>in</strong> collections of conics <strong>in</strong> P G(2, q).


170 CHAPTER 4. THE UBIQUITOUS OVAL<br />

The conics C ′ of π = P G(2, q) that have ℓ = [1, 0, 0] as tangent l<strong>in</strong>e at<br />

∞ = (0, 1, 0) ∈ C ′ are those<br />

with upper triangular matrix<br />

C ′ = {(1, as 2 + bs + c, s) : s ∈ Fq} ∪ {(0, 1, 0)}<br />

AC ′ =<br />

⎛<br />

⎝<br />

c −1 b<br />

0 0 0<br />

0 0 a<br />

⎞<br />

⎠ . (4.9)<br />

Our favorite conic is C with matrix<br />

⎛<br />

0 −1<br />

⎞<br />

0<br />

AC = ⎝ 0 0 0 ⎠ . (4.10)<br />

0 0 1<br />

The homography φ with matrix<br />

⎛<br />

[φ] = ⎝<br />

1 b c<br />

0 1 0<br />

0 0 1<br />

is the elation with center (0, b, c) <strong>and</strong> axis [1, 0, 0].<br />

⎛<br />

⎝<br />

1 λe 0<br />

0 1 0<br />

0 e 1<br />

⎛<br />

⎝<br />

⎞<br />

1 a 0<br />

0 1 0<br />

0 b 1<br />

⎛<br />

⎝<br />

⎞<br />

⎠ (4.11)<br />

⎠ : e ∈ Fq gives all elations with center (0, 1, 0) <strong>and</strong> axis [λ, 0, 1].<br />

⎞<br />

1 c 0<br />

0 a 0<br />

0 b 1<br />

(4.12)<br />

⎠ : a, b ∈ Fq gives all elations with center (0, 1, 0). (4.13)<br />

⎞<br />

homographies with center (0, 1, 0).<br />

⎠ : a, b, c ∈ Fq gives all q 2 (q − 1) central (4.14)


4.3. THE GROUP OF THE CONIC 171<br />

The general homography with center (0, 1, 0) (as given <strong>in</strong> Eq. 4.14) maps<br />

C to<br />

C ′ = {(1, as 2 + bs + c, s) : s ∈ Fq} ∪ {(0, 1, 0)} (4.15)<br />

which is the general conic <strong>in</strong> P G(2, q) with [1, 0, 0] as tangent at (0, 1, 0).<br />

Hence the conics of P G(2, q) with [1, 0, 0] as tangent at (0, 1, 0) which are images<br />

of C under elations with center (0, 1, 0) are precisely those C ′ <strong>in</strong> Eq. 4.15<br />

with a = 1.<br />

For f(s) a quadratic polynomial <strong>in</strong> s, let C(f) denote the conic whose<br />

general po<strong>in</strong>t appears as (1, f(s), s), s ∈ Fq, together with ∞. Then we want<br />

to <strong>in</strong>vestigate the <strong>in</strong>tersection of the conics, keep<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d that they always<br />

share the po<strong>in</strong>t ∞ = (0, 1, 0).<br />

C (s 2 ) ∩ C (as 2 +bs+c) conta<strong>in</strong>s (1, t 2 , t) iff (a − 1)t 2 + bt + c = 0. (4.16)<br />

There are precisely the follow<strong>in</strong>g possibilities:<br />

(i) Suppose a = 1, so C (as 2 +bs+c) is not the image of C (s 2 ) under an elation<br />

with center (0, 1, 0). Then there is a po<strong>in</strong>t (1, t 2 , t) ∈ C (s 2 ) ∩ C (as 2 +bs+c) if <strong>and</strong><br />

only if<br />

(a) q is odd <strong>and</strong> b2 − 4(a − 1)c = ∈ Fq;<br />

<br />

(a−1)c<br />

(b) q is even <strong>and</strong> tr = 0.<br />

b 2<br />

(ii) Suppose a = 1, so C(s 2 +bs+c) is the image of C(s 2 ) under an elation with<br />

center (0, 1, 0).<br />

In this case C (s 2 ) <strong>and</strong> C (s 2 +bs+c) have the po<strong>in</strong>t (b 2 , c 2 , −bc) <strong>in</strong> common. If<br />

b = 0, this is a po<strong>in</strong>t <strong>in</strong> addition to ∞. If b = 0, (so c = 0 if the two conics<br />

are really dist<strong>in</strong>ct), then the two conics have only the po<strong>in</strong>t ∞ <strong>in</strong> common.<br />

We have the follow<strong>in</strong>g conclusion:<br />

Lemma 4.3.2. C (s 2 ) ∩ C (as 2 +bs+c) = {(0, 1, 0)} if <strong>and</strong> only if either<br />

(i) a = 1 (<strong>and</strong> b = 0), <strong>and</strong><br />

(a) q is odd <strong>and</strong> b2 − 4(a − 1)c = ❆ ∈ Fq, or<br />

<br />

(a−1)c<br />

(b) q is even <strong>and</strong> tr = 1;<br />

b 2


172 CHAPTER 4. THE UBIQUITOUS OVAL<br />

(In this case C (as 2 +bs+c) is not the image of C (s 2 ) under an elation of<br />

P G(2, q) with center ∞.)<br />

or<br />

(ii) a = 1 <strong>and</strong> b = 0. (In this case C (as 2 +bs+c) is the image of C (s 2 ) under<br />

an elation of P G(2, q) with center ∞.)<br />

Then<br />

Let φ be the homography of P G(2, q) with matrix<br />

⎛<br />

[φ] = ⎝<br />

[φ] −1 AC[φ] −T =<br />

⎛<br />

= ⎝<br />

⎛<br />

⎝<br />

1 c 0<br />

0 a 0<br />

0 b 1<br />

⎞<br />

1 −c/a 0<br />

0 1/a 0<br />

0 −b/a 1<br />

c/a −1/a b/a<br />

0 0 0<br />

0 0 1<br />

⎛<br />

⎠ , <strong>and</strong> [φ] −1 = ⎝<br />

⎞ ⎛<br />

⎠ ⎝<br />

⎞<br />

0 −1 0<br />

0 0 0<br />

0 0 1<br />

⎛<br />

⎠ ≡ ⎝<br />

1 −c/a 0<br />

0 1/a 0<br />

0 −b/a 1<br />

⎞ ⎛<br />

⎠ ⎝<br />

c −1 b<br />

0 0 0<br />

0 0 a<br />

⎞<br />

⎠ .<br />

1 0 0<br />

−c/a 1/a −b/a<br />

0 0 1<br />

⎞<br />

⎠ = AC ′.<br />

Now we want to embed P G(2, q) <strong>in</strong>to π = [0, 0, 0, 1] ⊂ P G(3, q) by<br />

(x, y, z) ↦→ (x, y, z, 0), <strong>and</strong> then lift φ to a homography Φ of P G(3, q) that<br />

acts like φ on π <strong>and</strong> fixes the po<strong>in</strong>t (1, u, v, 1). A simple computation shows<br />

that for each 0 = w ∈ Fq the follow<strong>in</strong>g homography Φ will do this:<br />

[Φ] =<br />

⎛<br />

⎜<br />

⎝<br />

1 c 0 0<br />

0 a 0 0<br />

0 b 1 0<br />

w − 1 (w − a)u − bv − c v(w − 1) w<br />

⎞<br />

⎟<br />

⎠ .<br />

The conics C ′ of π = P G(2, q) that have ℓ = [1, 0, 0] as tangent l<strong>in</strong>e at<br />

∞ = (0, 1, 0) ∈ C ′ are those<br />

with upper triangular matrix<br />

C ′ = {(1, as 2 + bs + c, s) : s ∈ Fq} ∪ {(0, 1, 0)}<br />

⎞<br />


4.3. THE GROUP OF THE CONIC 173<br />

AC ′ =<br />

⎛<br />

⎝<br />

c −1 b<br />

0 0 0<br />

0 0 a<br />

⎞<br />

⎠ . (4.17)<br />

Our favorite conic is C with matrix<br />

⎛<br />

0 −1<br />

⎞<br />

0<br />

AC = ⎝ 0 0 0 ⎠ . (4.18)<br />

0 0 1<br />

The homography φ with matrix<br />

⎛<br />

[φ] = ⎝<br />

1 b c<br />

0 1 0<br />

0 0 1<br />

is the elation with center (0, b, c) <strong>and</strong> axis [1, 0, 0].<br />

⎛<br />

⎝<br />

1 λe 0<br />

0 1 0<br />

0 e 1<br />

⎛<br />

⎝<br />

⎞<br />

1 a 0<br />

0 1 0<br />

0 b 1<br />

⎛<br />

⎝<br />

⎞<br />

⎠ (4.19)<br />

⎠ : e ∈ Fq gives all elations with center (0, 1, 0) <strong>and</strong> axis [λ, 0, 1].<br />

⎞<br />

1 c 0<br />

0 a 0<br />

0 b 1<br />

(4.20)<br />

⎠ : a, b ∈ Fq gives all elations with center (0, 1, 0). (4.21)<br />

⎞<br />

⎠ : a, b, c ∈ Fq gives all q 2 (q − 1) central (4.22)<br />

homographies with center (0, 1, 0).<br />

The general homography with center (0, 1, 0) (as given <strong>in</strong> Eq. 4.22) maps<br />

C to<br />

C ′ = {(1, as 2 + bs + c, s) : s ∈ Fq} ∪ {(0, 1, 0)} (4.23)<br />

which is the general conic <strong>in</strong> P G(2, q) with [1, 0, 0] as tangent at (0, 1, 0).<br />

Hence the conics of P G(2, q) with [1, 0, 0] as tangent at (0, 1, 0) which are images<br />

of C under elations with center (0, 1, 0) are precisely those C ′ <strong>in</strong> Eq. 4.23<br />

with a = 1.


174 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Then<br />

Let φ be the homography of P G(2, q) with matrix<br />

⎛<br />

1 c<br />

⎞<br />

0<br />

[φ] = ⎝ 0 a 0 ⎠ , <strong>and</strong> [φ]<br />

0 b 1<br />

−1 ⎛<br />

1 −c/a 0<br />

= ⎝ 0 1/a 0<br />

0 −b/a 1<br />

[φ] −1 AC[φ] −T =<br />

⎛<br />

= ⎝<br />

⎛<br />

⎝<br />

1 −c/a 0<br />

0 1/a 0<br />

0 −b/a 1<br />

c/a −1/a b/a<br />

0 0 0<br />

0 0 1<br />

⎞ ⎛<br />

⎠ ⎝<br />

⎞<br />

0 −1 0<br />

0 0 0<br />

0 0 1<br />

⎛<br />

⎠ ≡ ⎝<br />

⎞ ⎛<br />

⎠ ⎝<br />

c −1 b<br />

0 0 0<br />

0 0 a<br />

⎞<br />

⎠ .<br />

1 0 0<br />

−c/a 1/a −b/a<br />

0 0 1<br />

⎞<br />

⎠ = AC ′.<br />

Now we want to embed P G(2, q) <strong>in</strong>to π = [0, 0, 0, 1] ⊂ P G(3, q) by<br />

(x, y, z) ↦→ (x, y, z, 0), <strong>and</strong> then lift φ to a homography Φ of P G(3, q) that<br />

acts like φ on π <strong>and</strong> fixes the po<strong>in</strong>t (1, u, v, 1). A simple computation shows<br />

that for each 0 = w ∈ Fq the follow<strong>in</strong>g homography Φ will do this:<br />

[Φ] =<br />

⎛<br />

⎜<br />

⎝<br />

1 c 0 0<br />

0 a 0 0<br />

0 b 1 0<br />

w − 1 (w − a)u − bv − c v(w − 1) w<br />

Recap: ∞ = (0, 1, 0, 0); π∞ = [1, 0, 0, 0]; π = [0, 0, 0, 1].<br />

C = {(1, s 2 , s, 0) : s ∈ Fq} ∪ {∞} is our favorite conic <strong>in</strong> π.<br />

C ′ = {(1, as 2 + bs + c, s, 0) : s ∈ Fq} ∪ {∞} gives all conics <strong>in</strong> π with<br />

[1, 0, 0, 0]∩[0, 0, 0, 1] as the l<strong>in</strong>e tangent at the po<strong>in</strong>t ∞. Here a, b, c ∈ Fq with<br />

a = 0. These are also all the conics that are images of C under homographies<br />

of π with center ∞. These are homologies if a = 1 <strong>and</strong> are elations if a = 1.<br />

4.4 Segre’s Theorem for q Odd<br />

In this section we prove the celebrated theorem of B. Segre [Se55] which says<br />

that each oval <strong>in</strong> P G(2, q) with q odd must be a conic.<br />

Let Ω be an oval of P G(2, q), q odd. If a triangle has its vertices on Ω,<br />

then we say it is an <strong>in</strong>scribed triangle of Ω; if its sides are tangents to Ω<br />

⎞<br />

⎟<br />

⎠ .<br />

⎞<br />


4.4. SEGRE’S THEOREM FOR Q ODD 175<br />

we say it is circumscribed. Each three po<strong>in</strong>ts (respectively, tangents) of Ω<br />

determ<strong>in</strong>e a unique pair of triangles, one <strong>in</strong>scribed <strong>and</strong> one circumscribed.<br />

We call these two triangles mates.<br />

Theorem 4.4.1. (Lemma of tangents) Every <strong>in</strong>scribed triangle of Ω <strong>and</strong> its<br />

mate are <strong>in</strong> perspective.<br />

Proof. The coll<strong>in</strong>eation group of P G(2, q) is transitive on 3-arcs. Hence<br />

without loss of generality we may assume that the <strong>in</strong>scribed triangle has as<br />

its po<strong>in</strong>ts the follow<strong>in</strong>g basic po<strong>in</strong>ts:<br />

A1 = (1, 0, 0); A2 = (0, 1, 0); A3 = (0, 0, 1).<br />

If a1, a2, a3 are the tangents to Ω at A1, A2, A3, respectively, then the<br />

equations of a1, a2, a3 are of the form:<br />

a1 : x2 = k1x3; a2 : x3 = k2x1; a3 : x1 = k3x2,<br />

where k1, k2, k3 are nonzero elements of Fq. If B = (b1, b2, b3) is any one of<br />

the q − 2 po<strong>in</strong>ts of Ω dist<strong>in</strong>ct from A1, A2, A3, then b1b2b3 = 0 <strong>and</strong> the l<strong>in</strong>es<br />

A1B, A2B, A3B have respective equations x2 = h1x3, x3 = h2x1, x1 = h3x2,<br />

where h1 = b2b −1<br />

3 ,h2 = b3b −1<br />

1 , h3 = b1b −1<br />

2 . Clearly the hi satisfy<br />

h1h2h3 = 1. (4.24)<br />

Conversely, if h1 is any of the q − 2 elements of Fq dist<strong>in</strong>ct from zero<br />

<strong>and</strong> from k1, the l<strong>in</strong>e x2 = h1x3 meets Ω at A1 <strong>and</strong> at a second po<strong>in</strong>t, B<br />

say, dist<strong>in</strong>ct from A1, A2, A3. Hence the coefficients h2, h3 <strong>in</strong> the equations<br />

x3 = h2x1, x1 = h3x2 of the l<strong>in</strong>es A2B, A3B are functions of h1, connected<br />

by Eq. 4.24, which take once each of the nonzero values of Fq dist<strong>in</strong>ct from<br />

k2, k3, respectively. On multiply<strong>in</strong>g together the q − 2 equations for h1h2h3<br />

thus obta<strong>in</strong>ed, we have<br />

T 3 = k1k2k3,<br />

where T denotes the product of the q−1 nonzero elements of Fq. But T = −1<br />

(easy exercise), so k1k2k3 = −1.<br />

The po<strong>in</strong>ts a2a3 = (k3, 1, k2k3), a3a1 = (k3k1, k1, 1), a1a2 = (1, k1k2, k2)<br />

are jo<strong>in</strong>ed to A1, A2, A3, respectively, by the l<strong>in</strong>es:<br />

x3 = k2k3x2, x1 = k3k1x3, x2 = k1k2x1.


176 CHAPTER 4. THE UBIQUITOUS OVAL<br />

But these l<strong>in</strong>es are concurrent at K = (1, k1k2, −k2), <strong>and</strong> this proves the<br />

lemma.<br />

(1, k1k2, k2)<br />

a2 : x3 = k2x1<br />

A2(0, 1, 0) (k3, 1, k2k3)<br />

❧▲ ☞<br />

▲<br />

❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧<br />

x2 = k1k2x1<br />

x3 = k2k3x2 ☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

a1 : x2 = k1x3 ▲<br />

☞ a3 : x1 = k3x2<br />

▲<br />

☞<br />

▲<br />

K = (1, k1k2, ☞−k2)<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲ ☞ ☞<br />

A1(1, 0, 0) ▲☞<br />

☞ A3(0, 0, 1)<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲ x1 = k3k1x3 ☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲ ☞<br />

▲ ☞<br />

▲ ☞<br />

▲ ☞<br />

▲ ☞<br />

▲ ☞<br />

▲☞<br />

(k3k1, k1, 1)<br />

☞☞☞☞☞☞<br />

☞ ☞☞☞☞☞☞☞☞☞☞▲ . ✱<br />

▲ ✱<br />

✱<br />

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

Figure 4.1: Figure for the Lemma of Tangents


4.4. SEGRE’S THEOREM FOR Q ODD 177<br />

In order to prove the theorem of Segre, we need to observe that the<br />

group of l<strong>in</strong>ear transformations (which <strong>in</strong>duce homograqphies of the plane<br />

π = P G(2, q)) which fix each of the po<strong>in</strong>ts A1, A2, A3 is transitive on the set<br />

of po<strong>in</strong>ts of K for which the four fundamental po<strong>in</strong>ts mentioned earlier form a<br />

quadrangle. But this group is the set of <strong>in</strong>vertible diagonal matrices, <strong>and</strong> it is<br />

transitive on the set of po<strong>in</strong>ts (a, b, c) with abc = 0. Hence <strong>in</strong> the proof of the<br />

previous theorem we may assume that K = (1, 1, 1), i.e., k1 = k2 = k3 = −1<br />

Theorem 4.4.2. (B. Segre [Se55]) Every oval <strong>in</strong> P G(2, q), q odd, is a conic.<br />

Proof. We cont<strong>in</strong>ue to use the notation of the preced<strong>in</strong>g proof. If B =<br />

(c1, c2, c3) is any of the q − 2 po<strong>in</strong>ts of Ω dist<strong>in</strong>ct from A1, A2, A3, we denote<br />

by b : x1b1 + x2b2 + x3b3 = 0 the tangent to Ω at B. S<strong>in</strong>ce B is on b we have<br />

3<br />

i=1 cibi = 0. None of A1, A2, A3 is on b, so each bi is nonzero. And s<strong>in</strong>ce<br />

no po<strong>in</strong>t is on as many as three tangents, each of the po<strong>in</strong>ts aiaj is not on b.<br />

If subscripts are taken modulo three, ai−1ai+1 has −1 <strong>in</strong> positions i − 1 <strong>and</strong><br />

i + 1 <strong>and</strong> +1 <strong>in</strong> position i. So if we put d1 = b1 − b2 − b3, d2 = −b1 + b2 − b3,<br />

d3 = −b1 − b2 + b3, then each di is nonzero.<br />

By the lemma of tangents, the triangles BA2A3 <strong>and</strong> ba2a3 are <strong>in</strong> perspective.<br />

By straightforward calculations this implies b2(c1 + c2) = b3(c1 + c3). A<br />

similar consideration for the triangles BA3A1, BA1A2 <strong>and</strong> their mates gives<br />

b3(c2 + c3) = b1(c2 + c1) <strong>and</strong> b1(c3 + c1) = b2(c + 3 + c2). But these last three<br />

equations imply b1 : b2 : b3 = (c2 + c3) : (c3 + c1) : (c1 + c2). Substitution for<br />

b1, b2, b3 <strong>in</strong> 3<br />

i=1 cibi = 0 gives<br />

which, s<strong>in</strong>ce q is odd, gives<br />

c1(c2 + c3) + c2(c3 + c1) + c3(c1 + c2) = 0,<br />

c1c2 + c2c3 + c3c1 = 0.<br />

In fact this last equation shows that each of the q − 2 po<strong>in</strong>ts of Ω dist<strong>in</strong>ct<br />

from A1, A2, AQ3 lies on the conic with equation<br />

x2x3 + x3x1 + x1x2 = 0.<br />

This conic clearly also conta<strong>in</strong>s A1, A2, A3. Thus s<strong>in</strong>ce the conic also<br />

has exactly q + 1 po<strong>in</strong>ts, the po<strong>in</strong>ts of Ω are the po<strong>in</strong>ts of the conic with the<br />

equation displayed above.


178 CHAPTER 4. THE UBIQUITOUS OVAL<br />

(b2, b3 − b1, −b2) a2 : x3 = −x1<br />

A2(0, 1, 0) (−1, 1, 1)<br />

▲❧<br />

☞<br />

▲<br />

❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧<br />

☞<br />

⎡ ⎤<br />

⎡ ⎤<br />

▲<br />

☞<br />

b1 − b3<br />

c2 − c3<br />

▲<br />

☞<br />

▲ ⎣ b2 ⎦<br />

⎣ −c1 − c3 ⎦ ☞<br />

▲ 0<br />

c1 +<br />

☞<br />

c2<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

xibi = 0 ▲<br />

☞ a3 : x1 = −x2<br />

▲<br />

☞<br />

=⇒<br />

▲<br />

P<br />

☞<br />

cibi = 0 ▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲ ☞<br />

B(c1, c2, c3) ▲☞<br />

A3(0, 0, 1)<br />

▲ ⎡ ⎤<br />

☞☞☞☞☞☞☞☞☞☞☞☞☞☞☞☞☞▲ . ✱<br />

▲ ✱<br />

▲▲▲▲▲▲▲▲▲▲<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

▲<br />

✱<br />

▲▲▲▲▲<br />

✱<br />

✱<br />

✱<br />

✱<br />

✱<br />

☞<br />

☞<br />

☞<br />

☞<br />

☞<br />

☞<br />

▲<br />

b1 − b2<br />

▲<br />

▲ ⎣ 0 ⎦<br />

▲<br />

b3<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲<br />

☞<br />

▲ ☞<br />

▲ ☞<br />

▲ ☞<br />

▲ ☞<br />

▲ ☞<br />

▲ ☞<br />

▲☞<br />

(b3, −b3, b2 − b1)<br />

P = (b2b3, b3(b3 − b1, b2(b2 − b1)<br />

Figure 4.2: Figure for Segre’s Theorem


4.5. O- POLYNOMIALS & THE CRITERION OF GLYNN 179<br />

4.5 o- Polynomials & the Criterion of Glynn<br />

In this section q = 2 e , so each oval Ω of P G(2, q) is conta<strong>in</strong>ed <strong>in</strong> a unique<br />

hyperoval, i.e., (0, 2)-set. An oval is called regular if it is a conic. A hyperoval<br />

is regular provided it is a conic plus its nucleus. And a regular hyperoval<br />

m<strong>in</strong>us a po<strong>in</strong>t different from its natural nucleus is called a po<strong>in</strong>ted conic.<br />

Theorem 4.5.1. If q = 2, then every hyperoval is regular.<br />

Proof. In P G(2, 2) a hyperoval consists of four po<strong>in</strong>ts, any three of which<br />

form a conic.<br />

By the transitivity of the coll<strong>in</strong>eation group P ΓL(3, q) of P G(2, q) on<br />

quadrangles, every hyperoval can be mapped by an element of P ΓL(3, q)<br />

(even by an element of P GL(3, q)) to one conta<strong>in</strong><strong>in</strong>g the fundamental quadrangle<br />

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1). A hyperoval which is the image<br />

under an element of P ΓL(3, q) of a hyperoval H is equivalent to H.<br />

From now on we restrict our attention to P G(2, q) with q > 2 <strong>and</strong> for<br />

the most part consider only hyperovals which conta<strong>in</strong> at least three po<strong>in</strong>ts of<br />

the fundamental quadrangle. (Sometimes we do not require that (1, 1, 1) be<br />

on the hyperoval.) We now show that these hyperovals are related to certa<strong>in</strong><br />

permutation polynomials.<br />

Theorem 4.5.2. Let H be a hyperoval conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>ts (0, 1, 0) <strong>and</strong><br />

(0, 0, 1). Then H = D(f), where<br />

D(f) = {(1, t, f(t)) : t ∈ Fq} ∪ {(0, 1, 0), (0, 0, 1)},<br />

where f is a permutation polynomial of degree at most q − 2. Further, for<br />

each s ∈ Fq, the polynomial fs(x) is a permutation polynomial, where<br />

fs(x) =<br />

f(x + s) + f(s)<br />

, fs(0) = 0.<br />

x<br />

Moreover, without loss of generality we may assume that H conta<strong>in</strong>s the<br />

po<strong>in</strong>t (1, 0, 0) so that f(0) = 0. Also, we may assume that H conta<strong>in</strong>s the<br />

po<strong>in</strong>t (1, 1, 1), <strong>in</strong> which case f(1) = 1.<br />

Conversely, if f is a permutation polynomial satisfy<strong>in</strong>g the above condition<br />

on fs(x), then D(f) is a hyperoval.


180 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Proof. Start with the assumption that H is an oval conta<strong>in</strong><strong>in</strong>g the two po<strong>in</strong>ts<br />

(0, 1, 0) <strong>and</strong> (0, 0, 1). The l<strong>in</strong>e [1, 0, 0] conta<strong>in</strong>s the po<strong>in</strong>ts (0, y, z) ∈ P G(2, q),<br />

of which (0, 1, 0) <strong>and</strong> (0, 0, 1) are the only po<strong>in</strong>ts of H. So each other po<strong>in</strong>t<br />

of H is of the form (1, y, z).<br />

For each t ∈ Fq, the l<strong>in</strong>e [t, 1, 0] through (0, 0, 1) conta<strong>in</strong>s a unique po<strong>in</strong>t<br />

of the form (1, t, z), so we write z = f(t) for some function f. For 0 = b ∈<br />

Fq, the l<strong>in</strong>e [1, 0, b −1 ] through (0, 1, 0) must conta<strong>in</strong> a unique po<strong>in</strong>t of the<br />

form (1, y, b) on H, so y = f −1 (b) <strong>and</strong> f must be a permutation. So by<br />

Theorem 20.3.2, f must be given by a permutation polynomial of degree at<br />

most q − 2.<br />

Clearly (1, 0, 0) is on H∩[0, 1, 0] if <strong>and</strong> only if f(0) = 0. Similarly, (1, 1, 1)<br />

is on H ∩ [1, 1, 0] if <strong>and</strong> only if f(1) = 1.<br />

At this po<strong>in</strong>t we know that f(x) is a permutation polynomial of degree<br />

at most q − 2, <strong>and</strong> H = D(f). S<strong>in</strong>ce no three po<strong>in</strong>ts of H are coll<strong>in</strong>ear, if s,<br />

t, u are dist<strong>in</strong>ct elements of Fq, it must be that<br />

if <strong>and</strong> only if<br />

<br />

<br />

<br />

0 = <br />

<br />

<br />

1 s f(s)<br />

1 t f(t)<br />

1 u f(u)<br />

<br />

<br />

<br />

<br />

<br />

=<br />

<br />

<br />

<br />

<br />

<br />

<br />

1 s f(s)<br />

0 t − s f(t) − f(s)<br />

0 u − s f(u) − f(s)<br />

= (t − s)f(u) − f(s)) − (u − s)(f(t) − f(s))<br />

f(t) − f(s)<br />

t − s<br />

f(s + a) + f(s)<br />

a<br />

=<br />

=<br />

f(u) − f(s)<br />

.<br />

u − s<br />

f(s + b) + f(s)<br />

.<br />

b<br />

<br />

<br />

<br />

<br />

<br />

=<br />

Hence a ↦→ fs(a) = f(s+a)+f(s)<br />

permutes the nonzero elements. As fs(x)<br />

a<br />

has degree at most q − 3 < q − 2, by Lemma 20.3.3 fs(x) is a permutation<br />

polynomial with fs(0) = 0. The converse is now easy.<br />

Def. Permutation polynomials f(x) satisfy<strong>in</strong>g all the conditions of Theorem<br />

4.5.2 are called o-polynomials. If f(x) satisfies all the conditions except<br />

for f(1) = 1, f is called an o-permutation. If f(x) = x k is an o-polynomial,<br />

it is a monomial o-polynomial.


4.5. O- POLYNOMIALS & THE CRITERION OF GLYNN 181<br />

The homography<br />

⎛<br />

(x, y, z) ↦→ (x, y, z) ⎝<br />

1 0 0<br />

0 1 a<br />

0 0 1<br />

⎞<br />

⎠ = (x, y, ay + z)<br />

is an <strong>in</strong>volution that <strong>in</strong>terchanges N = (0, 1, 0) <strong>and</strong> (0, 1, a), maps Q =<br />

(0, 0, 1) to itself, <strong>and</strong> maps the general po<strong>in</strong>t (1, x, f(x)) of Of to the po<strong>in</strong>t<br />

(1, x, ax + f(x)). It is now an easy exercise to prove the follow<strong>in</strong>g Lemma.<br />

Lemma 4.5.3. Those ovals that conta<strong>in</strong> the po<strong>in</strong>t Q = (0, 0, 1) <strong>and</strong> have a<br />

nucleus on the l<strong>in</strong>e L are precisely those of the form {(1, x, ax + f(x)) : x ∈<br />

Fq}∪{Q} for some o-permutation f(x), <strong>and</strong> the nucleus is the po<strong>in</strong>t (0, 1, a).<br />

If we start with an oval {(1, x, ax + f(x)) : x ∈ Fq} ∪ {Q} hav<strong>in</strong>g nucleus<br />

(0, 1, a), consider the homography<br />

⎛<br />

1 0<br />

⎞<br />

f(0)/A<br />

(x, y, z) ↦→ (x, y, z) ⎝ 0 1 a/A ⎠ ,<br />

0 0 1/A<br />

where A = f(0) + f(1). Then the image oval is {(1, x, f(0)+f(x)<br />

) : x ∈<br />

A<br />

Fq} ∪ {Q}, <strong>and</strong> the o-permutation x ↦→ f(0)+f(x)<br />

A<br />

gives an oval that together<br />

with its nucleus is a hyperoval that conta<strong>in</strong>s the fundamental quadrangle<br />

P1(1, 0, 0), P2(0, 2, 0), P3(0, 0, 1), P4(1, 1, 1).<br />

Theorem 4.5.4. Let D(f) be a hyperoval conta<strong>in</strong><strong>in</strong>g (1, 0, 0), (0, 1, 0), (0, 0, 1)<br />

<strong>and</strong> with associated polynomial (i.e., o-permutation) f. S<strong>in</strong>ce f is a bijection,<br />

f(x) = q−1<br />

i=0 aix i with aq−1 = 0 by Lemma 20.3.2. S<strong>in</strong>ce 0 = f(0), also<br />

a0 = 0. Then s<strong>in</strong>ce q > 2, ai = 0 if i is odd, i.e.,<br />

f(x) = a2x 2 + a4x 4 + · · · + aq−2x q−2 .<br />

Proof. S<strong>in</strong>ce f is a permutation polynomial of degree at most q − 2 with<br />

f(0) = 0, b ↦→ f(a)−f(b)<br />

is a bijection from Fq \ {a} to F a−b<br />

∗ q . Put b = T + a.<br />

f(a)−f(T +a)<br />

Then T ↦→ g(T ) = is a bijection of F −T<br />

∗ q . Us<strong>in</strong>g a Taylor expansion<br />

for f(T +a) we have f(T +a) = f(a)+f ′ (a)T +o(T 2 ). So g(T ) = f ′ (a)+o(T ).<br />

But s<strong>in</strong>ce g is a bijection of F ∗ q <strong>and</strong> is a polynomial function of degree at most<br />

q − 2 (actually ≤ q − 3) it must be that g(0) = 0 by Lemma 20.3.3 Hence<br />

f ′ (a) = 0. But this holds for all a ∈ Fq. Hence f ′ has no nonzero terms.<br />

This means all nonzero terms of f must have even degree, as claimed.


182 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Corollary 4.5.5. Each oval <strong>in</strong> P G(2, 4) is a conic.<br />

Proof. Let Ω be an oval of P G(2, 4). Without loss of generality we may<br />

assume that Ω is given by an o-polynomial f(t) as <strong>in</strong> Theorem 4.5.2 with<br />

f(t) clearly not the identity permutation. S<strong>in</strong>ce F4 = {0, 1, w, w 2 } where<br />

w = 1 = w 3 , <strong>and</strong> we may assume that f(0) = 0 <strong>and</strong> f(1) = 1, it must be<br />

that f(w) = w 2 <strong>and</strong> f(w 2 ) = w, i.e., f(t) = t 2 .<br />

Theorem 4.5.6. Let f(t) be a polynomial over Fq with q = 2 e > 4 <strong>and</strong> with<br />

f(0) = 0, f(1) = 1.<br />

(i) If deg f = 2, then D(f) is a hyperoval iff D(f) = D(2).<br />

(ii) If deg f = 4, then D(f) is a hyperoval iff e is odd <strong>and</strong> D(f) = D(4).<br />

(iii) If deg f = 6, then D(f) is a hyperoval iff e is odd <strong>and</strong><br />

f(t) = (t 6 + at 4 + a 2 t 2 )/(1 + a + a 2 ) for some a ∈ Fq.<br />

In this case D(f) ∼ D(6).<br />

Proof. (i) Us<strong>in</strong>g the preced<strong>in</strong>g results with f(t) = 1 we have immediately<br />

that f(t) = t 2 .<br />

(ii) Here f(t) = at 2 + bt 4 with b = 0. S<strong>in</strong>ce f(t) = 0 implies t = 0, clearly<br />

a = 0. Then f(1) = 1 implies f(t) = t 4 . As 4 = 2 2 with (2, e) = 1 iff D(f) is<br />

a hyperoval, we see this holds iff e is odd.<br />

(iii) Here D(f) is a hyperoval iff we may take f(t) = at 2 + bt 4 + ct 6 with<br />

c = 0. The homography (x0, x1, x2) ↦→ (x0, x1, c −1 x0) maps D(f) to D(f/c),<br />

so without loss of generality we may assume c = 1. Now just consider when<br />

this polynomial is a permutation polynomial. S<strong>in</strong>ce t ↦→ √ t is a permutation,<br />

we see t ↦→ f(t) is a permutation iff t ↦→ at + bt 2 + t 3 is a permutation.<br />

Similarly, s<strong>in</strong>ce t ↦→ t + b is a permutation, t ↦→ at + bt 2 + t 3 is a permutation<br />

iff t ↦→ a(t + b) + b(t 2 + b 2 ) + t 3 + t 2 b + tb 2 + b 3 = ab + t(a + b 2 ) + t 3 is a<br />

permutation iff t ↦→ (a + b 2 )t + t 3 is a permutation, If this latter really is a<br />

permutation, then a = b 2 , so that it becomes t ↦→ t 3 , which is a permutation<br />

if <strong>and</strong> only if e is odd. So if we divide f(t) by f(1) to get a polynomial whose<br />

value at 1 is 1, we see that we may assume that e is odd <strong>and</strong><br />

If the projectivity<br />

f(t) = (b 2 t 2 + bt 4 + t 6 )/(b 2 + b + 1).<br />

(x0, x1, x2) ↦→ (x0, x1 + √ bx0, (1 + b + b 2 )x2 + b 3 x0)


4.5. O- POLYNOMIALS & THE CRITERION OF GLYNN 183<br />

is applied, then<br />

D(f) = {(1, t, t6 + bt4 + b2t2 1 + b + b2 ) : t ∈ Fq} ∪ {(0, 0, 1), (0, 1, 0)}<br />

∼ {(1, t + √ b, (t + √ b) 6 ) : t ∈ Fq} ∪ {(0, 0, 1), (0, 1, 0)}<br />

= {(1, t, t 6 ) : t ∈ Fq} ∪ {(0, 0, 1), (0, 1, 0)} (4.25)<br />

= D(6).<br />

We have shown above that for D(6) to be a hyperoval e must be odd.<br />

That it is a hyperoval when e is odd we have separated <strong>in</strong>to its own theorem<br />

that follows the next result.<br />

Let k be any positive <strong>in</strong>teger. The map a ↦→ a k for a ∈ Fq is a bijection<br />

if <strong>and</strong> only if (k, q − 1) = 1. Put<br />

D(k) = {(1, t, t k ) : t ∈ Fq} ∪ {(0, 0, 1), (0, 1, 0)}.<br />

Theorem 4.5.7. D(k) is a hyperoval if <strong>and</strong> only if<br />

b ↦→ fk(b) = (1 + b)k + 1<br />

b<br />

is a permutation, <strong>and</strong><br />

(k, q − 1) = (k − 1, q − 1) = 1. By Theorem 4.5.4 k must be even.<br />

Proof. We use the proof of Theorem 4.5.3 to check that D(k) is an oval if<br />

<strong>and</strong> only if (k, q − 1) = 1 <strong>and</strong> b ↦→ ak−bk is a permutation for each a ∈ Fq. If<br />

a−b<br />

a = 0, b ↦→ ak−bk a−b = bk−1 will be a permutation if <strong>and</strong> only if (k −1, q −1) = 1.<br />

For a = 0, <strong>and</strong> for b = a = c, ak−bk a−b = ak−ck b<br />

1−(<br />

iff a)<br />

a−c k<br />

1− b =<br />

a<br />

1−( c<br />

a) k<br />

1− c .<br />

a<br />

So w ↦→ ak −w k<br />

a−w<br />

1, q − 1) = 1 <strong>and</strong> w ↦→ 1−wk<br />

1−w<br />

w = v+1 ↦→ 1+(v+1)k<br />

v<br />

for w = a, is an <strong>in</strong>jection for all a if <strong>and</strong> only if (k −<br />

is a permutation. This latter is equivalent to<br />

be<strong>in</strong>g a permutation. So we have the desired result.<br />

Theorem 4.5.8. (B. Segre [Se62] <strong>and</strong> B. Segre <strong>and</strong> U. Bartocci [SB71]) If<br />

q = 2 e with e odd, then D(6) is a hyperoval. (If q ≥ 32 it is irregular <strong>and</strong><br />

not equivalent to one of the translation hyperovals to be <strong>in</strong>troduced later.).


184 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Proof. By Theorem 4.5.7, to show that D(6) is a hyperoval it suffices to show<br />

that the map x ↦→ 1+(1+x)6<br />

= x + x x<br />

3 + x5 permutes the elements of F ∗ q . So<br />

suppose that for x = y we have<br />

0 = (x + x 3 + x 5 ) + (y + y 3 + y 5 ) = (4.26)<br />

= (x + y)((x 2 + y 2 + 1) 2 + (x 2 + y 2 + 1)(xy + 1) + (xy + 1) 2 ).<br />

S<strong>in</strong>ce e is odd, z 2 + zw + w 2 = 0 has no non-trivial solution over Fq, from<br />

which it follows rather easily that Eq. 4.26 has no solution.<br />

Lemma 4.5.9. Let f(x) be a polynomial of degree at most q − 2 over Fq.<br />

Put<br />

D(f) = {(1, t, f(t) : t ∈ Fq} ∪ {(0, 1, 0), (0, 0, 1)}.<br />

Then D(f) is a hyperoval if <strong>and</strong> only if the q 2 −q l<strong>in</strong>es of P G(2, q) pass<strong>in</strong>g<br />

neither through (0, 1, 0) nor through (0, 0, 1) always <strong>in</strong>tersect D(f) <strong>in</strong> an even<br />

number of po<strong>in</strong>ts.<br />

Proof. If D(f) is a hyperoval, then all l<strong>in</strong>es of P G(2, q) <strong>in</strong>tersect D(f) <strong>in</strong> 0<br />

or 2 po<strong>in</strong>ts. So assume the converse. Clearly (1, t, f(t), (0, 1, 0) <strong>and</strong> (0, 0, 1)<br />

can never be coll<strong>in</strong>ear. Let P be one of the q po<strong>in</strong>ts of D(f) different from<br />

(0, 1, 0) <strong>and</strong> (0, 0, 1). The q − 1 l<strong>in</strong>es which pass through P but not through<br />

(0, 1, 0) or (0, 0, 1) all conta<strong>in</strong> at least one further po<strong>in</strong>t of D(f). S<strong>in</strong>ce there<br />

are only q − 1 further po<strong>in</strong>ts of D(f), these q − 1 l<strong>in</strong>es each conta<strong>in</strong> exactly<br />

two po<strong>in</strong>ts of H(f). And the two l<strong>in</strong>es through P conta<strong>in</strong><strong>in</strong>g (0, 1, 0) <strong>and</strong><br />

(0, 0, 1), respectively, each conta<strong>in</strong> exactly two po<strong>in</strong>ts of D(f). As P ranges<br />

over all q − 1 po<strong>in</strong>ts of D(f) different from (0, 1, 0) <strong>and</strong> (0, 0, 1), we see that<br />

D(f) must be a hyperoval.<br />

Lemma 4.5.10. Let g(t) be a polynomial over Fq. Then g(t) = u has an<br />

even number of solutions t ∈ Fq for all u ∈ Fq if <strong>and</strong> only if the follow<strong>in</strong>g<br />

holds:<br />

<br />

g(a) r = 0 for all r = 1, 2, . . . , q − 1.<br />

a∈Fq<br />

Proof. The non-trivial part is to show that the above algebraic condition<br />

implies that g(t) = u always has an even number of solutions. Let A =<br />

{u : g(t) = u has an odd number of solutions}. Then the sum given <strong>in</strong> the


4.5. O- POLYNOMIALS & THE CRITERION OF GLYNN 185<br />

above condition can be reduced to summ<strong>in</strong>g over a ∈ A. But V<strong>and</strong>ermonde’s<br />

determ<strong>in</strong>ant formula (20.24) implies that the vectors (1, u, u 2 , . . . , u q−1 ) with<br />

u vary<strong>in</strong>g over all elements of Fq are l<strong>in</strong>early <strong>in</strong>dependent. However, the<br />

above condition implies that the sum of the vectors with u ∈ A is zero. Thus<br />

A = ∅.<br />

Lemma 4.5.11. Each of the q 2 − q l<strong>in</strong>es of P G(2, q) pass<strong>in</strong>g neither through<br />

(0, 1, 0) nor through (0, 0, 1) always <strong>in</strong>tersects D(f) <strong>in</strong> an even number of<br />

po<strong>in</strong>ts if <strong>and</strong> only if the follow<strong>in</strong>g condition holds:<br />

<br />

(f(a) + ax) r = 0 for 1 ≤ r ≤ q − 1 <strong>and</strong> for all nonzero x ∈ Fq. (4.27)<br />

a∈Fq<br />

Proof. A l<strong>in</strong>e not pass<strong>in</strong>g through (0, 1, 0) or (0, 0, 1) has coord<strong>in</strong>ates [u, x, 1],<br />

x = 0. The condition that this l<strong>in</strong>e conta<strong>in</strong> a po<strong>in</strong>t (1, t, f(t)) of D(f) is<br />

f(t) + tx = u. Hence, for all x ∈ Fq \ {0},<br />

<br />

(f(a) + ax) r = 0 for 1 ≤ r ≤ q − 1<br />

a∈Fq<br />

if <strong>and</strong> only if for all u ∈ Fq each l<strong>in</strong>e [u, x, 1] <strong>in</strong>tersects D(f) <strong>in</strong> an even<br />

number of po<strong>in</strong>ts.<br />

Remark It follows that if f is a polynomial with degree at most q − 2,<br />

then D(f) is a hyperoval if <strong>and</strong> only if<br />

<br />

(f(a) + ax) r = 0 for 1 ≤ r ≤ q − 1, 0 = x ∈ Fq.<br />

a∈Fq<br />

When x is zero <strong>and</strong> f(t) has degree at most q −2, by the Hermite-Dickson<br />

criterion f(t) is a permutation polynomial if <strong>and</strong> only if f(a) = 0 has a unique<br />

solution a ∈ Fq <strong>and</strong> the coefficient on t q−1 <strong>in</strong> [f(t)] r (modulo t q −t) is zero for<br />

all 1 ≤ r ≤ q − 2 <strong>and</strong> r odd. And this is the case if D(f) is an oval, because<br />

the l<strong>in</strong>es [a, 0, 1] (different from [1, 0, 0] through (0, 1, 0) <strong>and</strong> (0, 0, 1)) pass<strong>in</strong>g<br />

through (0, 1, 0) each <strong>in</strong>tersect D(f) <strong>in</strong> a unique additional po<strong>in</strong>t (1, t, f(t))<br />

with a = f(t). By Theorem 20.3.1 the coefficient on t q−1 <strong>in</strong> [f(t)] r (modulo<br />

t q − t) equals − <br />

a∈Fq [f(a)]r . Hence if D(f) is an oval, it is also true that


186 CHAPTER 4. THE UBIQUITOUS OVAL<br />

the equation of Lemma 4.5.11 holds when x = 0 as long as 1 ≤ r < q − 1<br />

<strong>and</strong> r is odd. But if r = k2i with k odd <strong>and</strong> 1 ≤ k2i ≤ q − 2, then<br />

<br />

a∈Fq [f(a)]r = a∈Fq [f(a)]k<br />

2i = 0. Hence the equation of Lemma 4.5.11<br />

holds when x = 0 as long as 1 ≤ r < q − 1.<br />

Def. The partial order<strong>in</strong>g ≪ (with companion dual ≫) on the set Nq =<br />

{n : 0 ≤ n ≤ q − 1} is def<strong>in</strong>ed as follows: For a, b ∈ Nq, write a = e−1 i<br />

i=0 ai2<br />

<strong>and</strong> b = e−1 i=0 bi2i , with ai, bi ∈ {0, 1} for all i. Then a ≪ b iff ai ≤ bi for all<br />

i.<br />

Lemma 4.5.12. If k is a positive <strong>in</strong>teger, then the expansion of (1+t) k (mod tq− t) over Fq may be calculated as follows.<br />

For k ∈ Z, (1 + t) k ≡ <br />

t c (mod t q − t). (4.28)<br />

c≪k<br />

c∈Nq<br />

Proof. First, if k = 0, then (1 + t) k = 1. If k = 0, then first reduce k modulo<br />

q − 1 so that 1 ≤ k ≤ q − 1. Write k = e−1<br />

i=o ki2 i , with ki ∈ {0, 1}. Then<br />

(1 + t) k = (1 + t) P ki2i e−1<br />

= (1 + t 2i<br />

) ki<br />

<br />

= t c .<br />

i=0<br />

c≪k<br />

c∈Nq<br />

For example, (1 + t) 2i = 1 + t2i for 1 ≤ i ∈ Z. S<strong>in</strong>ce q − 1 = e−1 i=0 2i ,<br />

(1+t) q−1 = <br />

c∈Nq tc . And for 0 < i ∈ Z, (1+t) (q−1)i = (1+t) (q−1)(i−1)+q−1 =<br />

(1 + t) q(i−1)+q−i ≡ (1 + tq ) i−1 (1 + t) q−i ≡ (1 + t) q−1 = <br />

c∈Nq tc .<br />

Of course this is immediately generalized to<br />

Lemma 4.5.13. If k is a positive <strong>in</strong>teger, then the expansion of (a+bt) k (mod tq− t) over Fq may be calculated as follows:<br />

For k ∈ Z, (a + bt) k ≡ <br />

a k−c b c t c (mod t q − t). (4.29)<br />

.<br />

Hence<br />

c≪k<br />

c∈Nq<br />

<br />

(f(λ) + λx) r = <br />

λ∈Fq<br />

0≤s≪r<br />

⎛<br />

⎝ <br />

f(λ) r−s λ s<br />

⎞<br />

⎠ x s . (4.30)<br />

λ∈Fq


4.5. O- POLYNOMIALS & THE CRITERION OF GLYNN 187<br />

As a corollary we have<br />

Corollary 4.5.14. For k ≤ q − 1, we have<br />

fk(t) = (1 + t)k + 1<br />

t<br />

= <br />

0


188 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Note: Glynn also shows that d ≪ kd for all d with 1 ≤ d ≤ q − 2 implies<br />

that (k, q − 1) = (k − 1, q − 1) = 1. Hence the last theorem does not need<br />

this as part of its hypothesis.<br />

In [Gl89] the preced<strong>in</strong>g theorem was generalized to the follow<strong>in</strong>g:<br />

Theorem 4.5.16. Let f ∈ Fq[t] be a polynomial with degree ≤ q − 2 <strong>and</strong><br />

f(a) = 0 if <strong>and</strong> only if a = 0. D(f) is a hyperoval if <strong>and</strong> only if the follow<strong>in</strong>g<br />

condition holds: The coefficient of t a <strong>in</strong> [f(t)] b (mod t q − t) is zero, for all<br />

pairs of <strong>in</strong>tegers (a, b) with 1 ≤ b ≪ a ≤ q − 1, b = q − 1.<br />

Before beg<strong>in</strong>n<strong>in</strong>g the proof of this theorem we need a lemma.<br />

Lemma 4.5.17. For 0 ≤ i ≤ r ≤ q − 1 we have i ≪ r if <strong>and</strong> only if<br />

r − i ≪ q − 1 − i.<br />

Proof. Note that the b<strong>in</strong>ary representation of i is the bitwise complement of<br />

the b<strong>in</strong>ary representation of q −1−i, i.e., there is a 1 <strong>in</strong> the b<strong>in</strong>ary expansion<br />

of i <strong>in</strong> position k if <strong>and</strong> only if there is a 0 there <strong>in</strong> the expansion of q − 1 − i.<br />

First assume that i ≪ r. Then the complement of i <strong>in</strong> r is conta<strong>in</strong>ed <strong>in</strong> the<br />

complement of i <strong>in</strong> q − 1, so r − i ≪ q − 1 − i. For the converse, suppose that<br />

0 ≤ i ≤ r ≤ q − 1 <strong>and</strong> suppose that i ≪ r, so <strong>in</strong> fact i < r. First suppose<br />

that r − i <strong>and</strong> i have no common 1’s. So where i has a 1, r − i has a 0 <strong>and</strong><br />

hence q − 1 − (r − i) has a 1, so i ≪ q − 1 − (r − i) = q − 1 − r + i. Hence<br />

(q − 1 − r + i) − i = q − 1 − r has no common 1’s with i. Where i has a 1,<br />

q − 1 − r has a 0, so r has a 1. This says i ≪ r, a contradiction. Hence i ≪ r<br />

implies that r − i <strong>and</strong> i have a common 1. This says that q − 1 − i has a 0<br />

<strong>in</strong> some spot where r − i has a 1, imply<strong>in</strong>g r − i ≪ q − 1 − i, complet<strong>in</strong>g a<br />

proof of the lemma.<br />

We now start the proof of the theorem.<br />

Proof. First note that when b = 0, if a > 0, then automatically the coefficient<br />

of t a <strong>in</strong> [f(t)] b is zero. So the condition of the theorem may be restated as<br />

1. The coefficient of t a <strong>in</strong> [f(t)] b (mod t q − t) is zero for all 0 ≤ b ≪ a ≤<br />

q − 1 with (b, a) not equal to (q − 1, q − 1) or to (0, 0).<br />

Put b = r − i <strong>and</strong> a = q − 1 − i. Then rewrite 1. as:<br />

2. The coefficient of t q−1−i ≡ t −i <strong>in</strong> [f(t)] r−i is 0 for all 0 ≤ r − i ≪<br />

q − 1 − i ≤ q − 1 with (r − i, q − 1 − i) not equal to (q − 1, q − 1) or (0, 0).<br />

Us<strong>in</strong>g the lemma we can restate this as


4.5. O- POLYNOMIALS & THE CRITERION OF GLYNN 189<br />

3. The coefficient of t −i <strong>in</strong> [f(t)] r−i is 0 for all 0 ≤ i ≪ r ≤ q − 1 with<br />

(i, r) not equal to (0, q − 1) or (q − 1, q − 1).<br />

4. Let h(t) = f(t) r−i . If 0 < q − 1 − i < q − 1 (i.e., 0 < i < q − 1) <strong>and</strong><br />

i ≪ r, then the coefficient aq−1−i on tq−1−i = t−i <strong>in</strong> h(t) = f(t) r−i reduced<br />

modulo tq − q is<br />

aq−1−i = <br />

f(λ) r−i λ i .<br />

λ∈Fq<br />

Also, with i = 0 <strong>and</strong> 1 ≤ r ≤ q − 2, so i ≪ r, the coefficient of t−i <strong>in</strong> f(t) r−i<br />

is equal to<br />

aq−1 = <br />

f(λ) r .<br />

λ∈Fq<br />

We are now ready to put these conditions together. First suppose that<br />

f(t) is a polynomial of degree at most q−2, f(0) = 0 <strong>and</strong> D)f) is a hyperoval.<br />

So f is a permutation polynomial <strong>and</strong> by the Remark after Lemma 4.5.11<br />

we know<br />

<br />

(f(a) + ax) r = 0 for 1 ≤ r ≤ q − 1 <strong>and</strong> x ∈ Fq, (4.33)<br />

a∈Fq<br />

except for (x, r) = (0, q − 1).<br />

The idea is to use the condition appear<strong>in</strong>g <strong>in</strong> Lemma 4.5.11 with r < q−1,<br />

th<strong>in</strong>k<strong>in</strong>g of (f(λ) + λx) r as a polynomial <strong>in</strong> x. This condition becomes<br />

<br />

<br />

f(λ) r−s λ s x s<br />

<br />

= 0 for all r = 1, 2, . . . , q − 2.<br />

λ∈Fq<br />

0≤s≪r<br />

S<strong>in</strong>ce this polynomial <strong>in</strong> x has degree at most q − 2 <strong>and</strong> this equality holds<br />

for all x ∈ Fq, the coefficient of x i is zero for all 0 ≤ i ≤ q − 2. Thus<br />

f(λ) r−i λ i = 0 for all 0 ≤ i ≪ r ≤ q − 2.<br />

By the first part of 4., this says the coefficient of t−i <strong>in</strong> f(t) r−i is 0 for<br />

0 ≤ i ≪ r ≤ q − 2. Now suppose r = q − 1 <strong>and</strong> 1 ≤ i ≤ q − 2, so of course<br />

i ≪ r. By Eq. 4.33<br />

<br />

(f(λ) + λx) q−1 = 0 for 0 = x ∈ Fq.<br />

λ∈Fq


190 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Hence <br />

λ∈Fq (f(λ) + λx)q−1 is the polynomial<br />

g(x) = g(0)(x q−1 − 1) = <br />

<br />

<br />

λ∈Fq<br />

0≤s≪q−1<br />

f(λ) q−1−s λ s x s<br />

The coefficient on xq−1 is <br />

λ∈Fq f(λ)0λq−1 = 1, which implies that g(x) =<br />

xq−1 − 1. Hence the coefficient on xi <br />

is 0 for 1 ≤ i ≤ q − 2, i.e.,<br />

λ∈Fq f(λ)q−1−iλ i = 0. This means that we now know that the condition<br />

<strong>in</strong> 3. is satisfied, so that the condition <strong>in</strong> 1. is satisfied. This shows that if<br />

D(f) is a hyperoval, Glynn’s condition is satisfied.<br />

Now we consider the converse. Suppose that Glynn’s condition is satisfied<br />

for a polynomial f(t) with degree ≤ q − 2 <strong>and</strong> f(0) = 0. What we need to<br />

show is that<br />

If 1 ≤ r ≤ q − 1 <strong>and</strong> 0 = x ∈ Fq, then (4.34)<br />

⎛<br />

<br />

⎝ <br />

f(λ) r−s λ s<br />

⎞<br />

⎠ x s = 0.<br />

0≤s≪r<br />

λ∈Fq<br />

What we do know by 4. is that Glynn’s condition implies that<br />

aq−1−i = <br />

f(λ) r−i λ i = 0 for 0 < i < q − 1 <strong>and</strong> i ≪ r ≤ q − 1. (4.35)<br />

λ∈Fq<br />

Also, with i = 0 <strong>and</strong> 1 ≤ r ≤ q − 2, so 0 = i ≪ r ≤ q − 2, the coefficient of<br />

tq−1 is<br />

aq−1 = <br />

f(λ) r = 0. (4.36)<br />

λ∈Fq<br />

At this stage we know the follow<strong>in</strong>g:<br />

<br />

f(λ) r−i λ i = 0 for 0 ≤ i ≤ q − 1 <strong>and</strong> i ≪ r ≤ q − 1,<br />

λ∈Fq<br />

except for (i, r) = (0, 0) or (q − 1, q − 1), where when i = 0, t −i is to be<br />

<strong>in</strong>terpreted as t q−1 . Hence the needed condition <strong>in</strong> Eq. 4.34 simplifies to<br />

<br />

f(λ) q−1 + <br />

λ q−1 x q−1 = 0 if x = 0. (4.37)<br />

λ∈Fq<br />

λ∈Fq<br />

<br />

.


4.6. ARCS IN OVALS 191<br />

This is just the condition that<br />

<br />

λ∈Fq<br />

f(λ) q−1 = 1,<br />

which would be true if f(t) were a permutation, which <strong>in</strong> turn is true by the<br />

Hermite-Dickson Criterion s<strong>in</strong>ce f(a) = 0 only when a = 0.<br />

Historical Note: Frequently <strong>in</strong> the statement of Glynn’s Theorem (our<br />

Theorem 4.5.16) that part of the hypothesis that says “f(a) = 0 if <strong>and</strong> only<br />

if a = 0” is replaced with someth<strong>in</strong>g weaker, such as merely “f(0) = 0.” But<br />

the constant function f(a) = 0 for all a ∈ Fq then is a trivial counterexample.<br />

So some additional hypothesis is needed. On the other h<strong>and</strong>, when Glynn’s<br />

Criterion is used to check whether or not some function f is an o-permutation,<br />

the function f is usually already known to be a permutation mapp<strong>in</strong>g 0 to 0,<br />

so the theorem is not likely to have been applied <strong>in</strong>correctly.<br />

4.6 Arcs <strong>in</strong> <strong>Ovals</strong><br />

When q = 2 the results we want to develop are easily given <strong>and</strong> often this<br />

case provides exceptions to some general rule. So throughout this section we<br />

assume that q = 2 e > 2. Also, we use the follow<strong>in</strong>g notation:<br />

P0 = (1, 0, 0); P1 = (0, 1, 0); P2 = (0, 0, 1).<br />

The follow<strong>in</strong>g lemma has an easy proof that we leave to the reader.<br />

Lemma 4.6.1. Let li be a l<strong>in</strong>e through Pi but not through Pj for j ∈ {0, 1, 2}\<br />

{i}. Then<br />

l0 = [0, 1, e] T<br />

for some nonzero e ∈ Fq.<br />

l1 = [f, 0, 1] T for some nonzero f ∈ Fq. (4.38)<br />

l2 = [1, g, 0] T for some nonzero g ∈ Fq.<br />

Moreover, the three l<strong>in</strong>es l0, l1, l2 are concurrent if <strong>and</strong> only if efg = 1.<br />

Lemma 4.6.2. Let P = (d0, d1, d2) ∈ K \ {P0, P1, P2}. S<strong>in</strong>ce K is an arc,<br />

d0d1d2 = 0. The secants to K through P <strong>and</strong> Pi, 0 ≤ i ≤ 2, respectively, are:


192 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Here clearly efg = 1.<br />

(i) [0, 1, d1/d2] T = [0, 1, e] T ; e = 0.<br />

(ii) [d2/d0, 01] T = [f, 0, 1] T ; f = 0. (4.39)<br />

(iii)[1, d0/d1, 0] T = [1, g, 0] T ; g = 0.<br />

Lemma 4.6.3. Let m0, m1, m2 be any three tangents to K at P0, P1, P2,<br />

respectively. Here<br />

(i) m0 = [0, 1, b0] T<br />

(ii) m1 = [b1, 0, 1] T<br />

(iii) m2 = [1, b2, 0] T<br />

for some b0 = 0;<br />

for some b1 = 0; (4.40)<br />

for some b2 = 0.<br />

Then m0, m1, m2 are concurrent at a po<strong>in</strong>t Q (not on K) iff b0b1b2 = 1.<br />

Now suppose that K = {P0, P1, P2, P3, . . . , Pk−1}. For each i, 0 ≤ i ≤ 2,<br />

there are k − 3 secants through Pi but not through Pj with j ∈ {0, 1, 2} \ {i},<br />

<strong>and</strong> there are t = q − k + 2 tangents to K at Pi.<br />

Lemma 4.6.4. Choose labels so that<br />

(i) The secant through P0 <strong>and</strong> Pj is [0, 1, ej] T , 3 ≤ j ≤ k − 1.<br />

(ii) The secant through P1 <strong>and</strong> Pj is [fj, 0, 1] T , 3 ≤ j ≤ k − 1.<br />

(iii) The secant through P2 <strong>and</strong> Pj is [1, gj, 0] T , 3 ≤ j ≤ k − 1.<br />

Then by Lemma 4.6.2 ejfjgj = 1 for 3 ≤ j ≤ k − 1.<br />

Choose labels on the t tangents at Pi, 0 ≤ i ≤ 2, so that<br />

(i) The tangents to K at P0 are [0, 1, ai] T , 1 ≤ i ≤ t, ai = 0.<br />

(ii) The tangents to K at P1 are [bi, 0, 1] T , 1 ≤ i ≤ t, bi = 0.<br />

(iii) The tangents to K at P2 are [1, ci, 0] T , 1 ≤ i ≤ t, ci = 0.<br />

Then<br />

1 = <br />

a∈F ∗ q<br />

a = aiej = bifj = cigj,<br />

where the product <strong>in</strong> each case is over all i <strong>and</strong> j with 3 ≤ j ≤ k − 1 <strong>and</strong><br />

1 ≤ i ≤ t. This implies that<br />

This proves<br />

1 = (aibici) (ejfjgj) = aibici.


4.6. ARCS IN OVALS 193<br />

Lemma 4.6.5. (Lemma of Tangents)<br />

t<br />

aibici = 1.<br />

i=1<br />

Lemma 4.6.6. If hyperovals K <strong>and</strong> K ′ have 1<br />

(q + 2) + n po<strong>in</strong>ts <strong>in</strong> common,<br />

2<br />

with n > 0, then K = K ′ .<br />

Proof. If K = K ′ , fix P ′ ∈ K ′ \ K. Then for each P ∈ K ∩ K ′ , the l<strong>in</strong>e P P ′<br />

meets K aga<strong>in</strong> <strong>in</strong> a po<strong>in</strong>t Q of K \ K ′ . So for every po<strong>in</strong>t of K ∩ K ′ there is<br />

a po<strong>in</strong>t of K \ K ′ . Hence K has 1<br />

2 (q + 2) + n = q + 2 + 2n po<strong>in</strong>ts, forc<strong>in</strong>g<br />

n = 0, i.e., K = K ′ .<br />

Now let K be a q-arc. Each po<strong>in</strong>t of K is on q − 1 secants <strong>and</strong> <strong>and</strong> on<br />

two tangents.<br />

Lemma 4.6.7. Let P be any po<strong>in</strong>t of K <strong>and</strong> l a tangent to K at P . Then<br />

there is a po<strong>in</strong>t Q on l \ {P } for which Q is on at least three tangents to K.<br />

Proof. The 2(q − 1) tangents at po<strong>in</strong>ts of K \ {P } meet l at po<strong>in</strong>ts different<br />

from P . If they all meet l at dist<strong>in</strong>ct po<strong>in</strong>ts, then q ≥ 2(q − 1), forc<strong>in</strong>g q ≤ 2,<br />

contradict<strong>in</strong>g our basic hypothesis. This shows that some po<strong>in</strong>t Q of l \ {P }<br />

is on at least three tangents to K.<br />

The next theorem is due to G. Tall<strong>in</strong>i [Ta57], but the proof we give is due<br />

to J. A. Thas.<br />

Theorem 4.6.8. In P G(2, q), q = 2 e > 2, a q-arc K is conta<strong>in</strong>ed <strong>in</strong> a unique<br />

oval.<br />

Proof. Let K be a q-arc <strong>and</strong> let Q be a po<strong>in</strong>t off K through which 3 tangents<br />

l0, l1, l2 pass. Choose a coord<strong>in</strong>ate system so that Li ∩ K = Pi, 0 ≤ i ≤ 2.<br />

Here we may put<br />

l0 = [0, 1, a0] T ; l1 = [a1, 0, 1] T ; l2 = [1, a2, 0] T , with a0a1a2 = 1.<br />

Now let m0, m1, m2 be the other tangents to K at P0, P1, P2, respectively.<br />

Here<br />

m0 = [0, 1, b0] T ; m1 = [b1, 0, 1] T ; m2 = [1, b2, 0] T , with b0b1b2 = 0.


194 CHAPTER 4. THE UBIQUITOUS OVAL<br />

By the Lemma of Tangents 2<br />

i=0 aibi = 1. Hence 2<br />

i=0 bi = 1, imply<strong>in</strong>g<br />

that m0, m1, <strong>and</strong> m2 are concurrent at a po<strong>in</strong>t Q ′ not on K.<br />

CLAIM: K ′ = K ∪ {Q, Q ′ } is a hyperoval.<br />

To establish this claim, let P be an arbitrary po<strong>in</strong>t of K \ {P0, P1, P2}.<br />

Let l, m be the two tangents to K at P . We claim that {l, m} = {P Q, P Q ′ }.<br />

If this is true for all P ∈ K \ {P0, P1, P2}, then P Q <strong>and</strong> P Q ′ are tangents<br />

to K, imply<strong>in</strong>g that K ′ is a hyperoval. Without loss of generality we may<br />

assume that coord<strong>in</strong>ates are chosen so that P = (1, 1, 1). Then we have the<br />

follow<strong>in</strong>g:<br />

l = [1, c, 1+c] T ; m = [1, d, 1+d] T ; P Q = [1, c ′ , 1+c ′ ] T ; P Q ′ = [1, d ′ , 1+d ′ ] T .<br />

We now want to apply the Lemma of Tangents to the triangles △(P0P1P )<br />

<strong>and</strong> △(P0, P2P ). To do this, first apply the homography T : (x0, x1, x2) ↦→<br />

(x0 + x2, x1 + x2, x2). The map T fixes P0 <strong>and</strong> P1 <strong>and</strong> <strong>in</strong>terchanges P2 ⎛ ⎞<br />

<strong>and</strong><br />

1 0 0<br />

P = (1, 1, 1). If A = [T ], then A = ⎝ 0 1 0 ⎠. Clearly A = A<br />

1 1 1<br />

−1 . So T<br />

maps the plane [a, b, c] T to the plane [a, b, a + b + c] T . Then


4.6. ARCS IN OVALS 195<br />

⎡<br />

l0 = ⎣<br />

⎡<br />

l1 = ⎣<br />

⎡<br />

l = ⎣<br />

⎡<br />

P Q = ⎣<br />

0<br />

1<br />

a0<br />

a1<br />

0<br />

1<br />

1<br />

c<br />

1 + c<br />

1<br />

c ′<br />

1 + c ′<br />

⎡<br />

m0 = ⎣<br />

m1 = ⎣<br />

⎡<br />

m = ⎣<br />

⎡<br />

P Q ′ = ⎣<br />

⎡<br />

0<br />

1<br />

b0<br />

b1<br />

0<br />

1<br />

1<br />

d<br />

d + 1<br />

1<br />

d ′<br />

d ′ + 1<br />

⎤<br />

⎦ T<br />

↦→<br />

⎤<br />

⎦ T<br />

↦→<br />

⎤<br />

⎦ T<br />

↦→<br />

⎤<br />

⎦ T<br />

↦→<br />

⎤<br />

⎦ T<br />

↦→<br />

⎤<br />

⎦ T<br />

↦→<br />

⎤<br />

⎦ T<br />

↦→<br />

⎤<br />

⎦ T<br />

↦→<br />

⎡<br />

⎣<br />

⎡<br />

⎣<br />

⎡<br />

⎣<br />

⎡<br />

⎣<br />

⎡<br />

⎣<br />

⎡<br />

⎣<br />

⎡<br />

⎣<br />

0<br />

1<br />

a0 + 1<br />

a1<br />

0<br />

a1 + 1<br />

1<br />

c<br />

0<br />

1<br />

c ′<br />

0<br />

⎤<br />

⎦<br />

⎤<br />

⎤<br />

⎡<br />

⎦ = ⎣<br />

⎤<br />

⎡<br />

⎦ = ⎣<br />

0<br />

1<br />

t0<br />

t1<br />

0<br />

1<br />

⎤<br />

⎦ ;<br />

⎤<br />

⎦ ;<br />

⎦ . (4.41)<br />

0<br />

1<br />

1 + b0<br />

b1<br />

0<br />

b1 + 1<br />

1<br />

d<br />

0<br />

⎤<br />

⎦ .<br />

⎤<br />

⎡<br />

⎦ = ⎣<br />

⎤<br />

⎡<br />

⎦ = ⎣<br />

If we apply the Lemma of Tangents to the triangle △(P0P1P ), we see<br />

that t0t1c · t ′ 0 t′ 1 d = 1. As l0, l1, P Q are concurrent at Q <strong>and</strong> m0, m1, P Q ′<br />

are concurrent at Q ′ , so their images are also concurrent at some po<strong>in</strong>ts,<br />

⎡<br />

⎣<br />

1<br />

d ′<br />

0<br />

⎤<br />

⎦ .<br />

imply<strong>in</strong>g t0t1c ′ = 1 <strong>and</strong> t ′ 0t ′ 1d ′ = 1. Hence t0t1 = 1<br />

c<br />

c ′ · d<br />

d ′ = 1, i.e.,<br />

0<br />

1<br />

t ′ 0<br />

t ′ 1<br />

0<br />

1<br />

⎤<br />

⎦ .<br />

⎤<br />

⎦ .<br />

c ′ <strong>and</strong> t ′ 0t ′ 1 = 1<br />

d ′ , imply<strong>in</strong>g<br />

cd = c ′ d ′ . (4.42)<br />

For triangle △(P0P2P ) use (x0, x1, x2) S<br />

↦→ (x0 + x1, x1, x1 + x2). Here S<br />

fixes P0 <strong>and</strong> P2 <strong>and</strong> <strong>in</strong>terchanges P1 <strong>and</strong> P , <strong>and</strong> S = S −1 , so [a, b, c] T ↦→<br />

[a, a + b + c, c] T .


196 CHAPTER 4. THE UBIQUITOUS OVAL<br />

First consider the tangents at vertices of △(P0P2P ) meet<strong>in</strong>g at Q, then<br />

the l<strong>in</strong>e P Q, then the correspond<strong>in</strong>g l<strong>in</strong>es through Q ′ :<br />

⎡<br />

l0 = ⎣<br />

⎡<br />

l2 = ⎣<br />

⎡<br />

l = ⎣<br />

⎡<br />

P Q = ⎣<br />

0<br />

1<br />

a0<br />

1<br />

a2<br />

0<br />

1<br />

c<br />

1 + c<br />

1<br />

c ′<br />

1 + c ′<br />

⎡<br />

m0 = ⎣<br />

m2 = ⎣<br />

⎡<br />

m = ⎣<br />

⎡<br />

P Q ′ = ⎣<br />

⎡<br />

0<br />

1<br />

b0<br />

1<br />

b2<br />

0<br />

1<br />

d<br />

1 + d<br />

1<br />

d ′<br />

1 + d ′<br />

⎤<br />

⎦ S<br />

↦→<br />

⎤<br />

⎦ S<br />

↦→<br />

⎤<br />

⎦ S<br />

↦→<br />

⎤<br />

⎦ S<br />

↦→<br />

⎤<br />

⎦ S<br />

↦→<br />

⎤<br />

⎦ S<br />

↦→<br />

⎤<br />

⎦ S<br />

↦→<br />

⎤<br />

⎦ S<br />

↦→<br />

⎡<br />

0<br />

⎤ ⎡<br />

⎣ 1 + a0 ⎦ = ⎣<br />

⎡<br />

⎣<br />

⎡<br />

⎣<br />

⎡<br />

⎣<br />

⎡<br />

⎣<br />

a0<br />

1<br />

1 + a2<br />

0<br />

1<br />

0<br />

1 + c<br />

1<br />

0<br />

1 + c ′<br />

0<br />

1 + b0<br />

b0<br />

⎤<br />

⎡<br />

⎦ = ⎣<br />

⎤<br />

⎡<br />

⎦ = ⎣<br />

⎤<br />

⎡<br />

⎦ = ⎣<br />

⎤<br />

⎡<br />

⎦ = ⎣<br />

0<br />

1<br />

x0<br />

1<br />

x2<br />

0<br />

1<br />

1+c<br />

0<br />

1<br />

1<br />

1+c ′<br />

0<br />

1<br />

0<br />

1<br />

x ′ 0<br />

1<br />

x ′ 2<br />

0<br />

⎡<br />

1<br />

⎤ ⎡<br />

⎣ 1 + b2 ⎦ = ⎣<br />

⎡<br />

⎣<br />

0<br />

1<br />

0<br />

⎤ ⎡<br />

⎦ = ⎣<br />

1<br />

1+d<br />

0<br />

1 + d<br />

⎡<br />

1<br />

⎣ 0<br />

1<br />

1 + d ′<br />

⎤ ⎡<br />

⎦ = ⎣<br />

1<br />

1+d ′<br />

0<br />

1<br />

⎤<br />

⎦ ;<br />

⎤<br />

⎦ ;<br />

⎤<br />

⎦ ;<br />

⎤<br />

⎤<br />

⎦ ; (4.43)<br />

So from the Lemma of Tangents applied to the image under S of △(P0P2P )<br />

we have<br />

1<br />

x0x2<br />

1 + c x′ 0x′ 1<br />

2 = 1. (4.44)<br />

1 + d<br />

S<strong>in</strong>ce l0, l2, <strong>and</strong> P Q meet at Q, their images under S meet at a po<strong>in</strong>t,<br />

<strong>and</strong> the same for the images of m0, m2 <strong>and</strong> P Q ′ :<br />

1<br />

x0x2<br />

1 + c ′ = 1 = x′ 0x′ 2<br />

1<br />

1 + d ′<br />

⎦ ;<br />

⎤<br />

⎦ ;<br />

⎤<br />

⎦ ;<br />

⎤<br />

⎦ .<br />

(4.45)


4.7. WHAT IS A TRANSLATION OVAL? 197<br />

Now us<strong>in</strong>g cd = c ′ d ′ from above, we quickly see<br />

c + d = c ′ + d ′ . (4.46)<br />

Elim<strong>in</strong>at<strong>in</strong>g c from the two equations Eq. 4.42 <strong>and</strong> Eq. 4.46, we f<strong>in</strong>d (c ′ +<br />

d)(d ′ + d) = 0. But this implies either d = d ′ (<strong>and</strong> c = c ′ ) or d = c ′ (<strong>and</strong><br />

c = d ′ ). Hence {l, m} = {P Q, P Q ′ }, complet<strong>in</strong>g the proof.<br />

4.7 What is a translation oval?<br />

If an oval O of P G(2, q) has a tangent l<strong>in</strong>e which is the axis of each element<br />

of a group of order q of elations that stabilize the oval, then O is called a<br />

translation oval, <strong>and</strong> the tangent l<strong>in</strong>e is called an axis of the oval. We may<br />

choose coord<strong>in</strong>ates so that the tangent l<strong>in</strong>e, i.e., the axis is the l<strong>in</strong>e [1, 0, 0],<br />

conta<strong>in</strong><strong>in</strong>g the oval po<strong>in</strong>t (0, 0, 1) <strong>and</strong> the nucleus (0, 1, 0).<br />

Lemma 4.7.1. Let α be an o-polynomial, i.e.,<br />

Ω(α) = {(1, t, t α ) : t ∈ Fq} ∪ {(0, 0, 1)} is an oval with nucleus (0, 1, 0).<br />

In particular we know that α is a permutation of the elements of Fq fix<strong>in</strong>g 0<br />

<strong>and</strong> 1. Suppose that there is a group of order q of elations that stabilize the<br />

oval <strong>and</strong> have [1, 0, 0] as axis. Then α is an additive map for which x ↦→ x α /x<br />

is a permutation of the nonzero elements of Fq.<br />

Proof. The elations with axis [1, 0, 0] are of the form (x, y, z) ↦→ (x, y, z)A,<br />

where<br />

⎛<br />

1 b<br />

⎞<br />

c<br />

A = ⎝ 0 1 0 ⎠ .<br />

0 0 1<br />

Such an elation maps the po<strong>in</strong>t (1, t, tα ) to the po<strong>in</strong>t (1, t + b, tα + c),<br />

which must be of the form (1, x, xα ). Hence (t + b) α = tα + c for all t ∈ Fq.<br />

With t = 0 we f<strong>in</strong>d c = bα . Then it is clear that α must be additive. S<strong>in</strong>ce<br />

xα +yα = x+y xα +zα for dist<strong>in</strong>ct x, y, z, <strong>and</strong> α is additive, it follows immediately<br />

x+z<br />

that x ↦→ xα−1 must permute the nonzero elements of Fq.<br />

In 1957 B. Segre proved the follow<strong>in</strong>g.


198 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Theorem 4.7.2. Let α be a generator of Gal(Fq), q even. Then<br />

is a hyperoval.<br />

D(α) = {(1, t, t α )} ∪ {(0, 1, 0), (0, 0, 1)}<br />

Proof. If α : x ↦→ x2i for some i with 1 ≤ i ≤ e − 1, D(α) is a hyperoval<br />

if <strong>and</strong> only if for each fixed t ∈ Fq the map ft : x ↦→ tα−xα t−x = (t + x)α−1 is<br />

a bijection from the elements of Fq \ {t} to the set of nonzero elements of<br />

Fq. This holds if <strong>and</strong> only if gcd(2i − 1, 2e − 1) = 1, which is if <strong>and</strong> only if<br />

gcd(i, e) = 1. This proves that D(α) is a hyperoval if <strong>and</strong> only if α generates<br />

Gal(Fq).<br />

In 1971 S. E. Payne proved that each translation oval is projectively<br />

equivalent to one of those given by Segre. Before we can prove this we need<br />

to study l<strong>in</strong>earized polynomials.<br />

4.8 L<strong>in</strong>ear Maps<br />

Until further notice F = GF (q n ) <strong>and</strong> K = GF (q), where q = p e is any power<br />

of a prime <strong>and</strong> n is any positive <strong>in</strong>teger. We may view F as a vector space<br />

over K with dimension n. Recall that if V <strong>and</strong> W are vector spaces over<br />

a field K with dimensions m, n, respectively, then HomK(V, W ) is a vector<br />

space over K with dimension mn. Moreover, if K is a field with q elements<br />

<strong>and</strong> V is a vector space over K with dimension n, then |V | = q n . Then<br />

V = HomK(F, F ), the vector space of all K-l<strong>in</strong>ear maps from F to F , is a<br />

vector space over K with dimension n2 , so that |HomK(F, F )| = qn2. On the<br />

other h<strong>and</strong>, we can construct elements of V = HomK(F, F ) <strong>in</strong> the follow<strong>in</strong>g<br />

way. Let σ : x ↦→ xq , for x ∈ F . So σ generates the Galois group Gal(F/K),<br />

i.e., σi : x ↦→ xqi, i = 0, 1, 2, . . . , n − 1, gives the dist<strong>in</strong>ct automorphisms of<br />

F that are the identity on K. For each choice of ai ∈ F , 0 ≤ i ≤ n − 1,<br />

consider the map f : x ↦→ f(x) = n−1 i=0 aiσi (x) = n−1 qi<br />

i=0 aix . Clearly<br />

f ∈ HomK(F, F ). Because each such polynomial f(x) has degree at most<br />

qn−1 , no two of them can represent the same function. Hence there are (qn ) n<br />

such functions, show<strong>in</strong>g that each K-l<strong>in</strong>ear function from F to F must be of<br />

this form.<br />

This proves the follow<strong>in</strong>g theorem:


4.8. LINEAR MAPS 199<br />

Theorem 4.8.1. Each f ∈ HomK(F, F ) is given by a l<strong>in</strong>earized q-polynomial,<br />

i.e.,a polynomial of the form<br />

n−1<br />

f(x) =<br />

i=0<br />

aix qi<br />

, ai ∈ F. (4.47)<br />

Consequently, if f(x) ∈ F [x] has degree at most q n − 1 <strong>and</strong> has the property<br />

that f(a + b) = f(a) + f(b) for all a, b ∈ F , <strong>and</strong> f(ca) = cf(a) for all c ∈ K<br />

<strong>and</strong> all a ∈ F , then f(x) is a l<strong>in</strong>earized q-polynomial.<br />

For ai ∈ F , 0 ≤ i ≤ n − 1, write<br />

¯α = (a0, a1, . . . , an−1), <strong>and</strong> [¯α] =<br />

<br />

a qi<br />

<br />

[j−i] . (4.48)<br />

(0≤i,j≤n−1)<br />

Here we are us<strong>in</strong>g the follow<strong>in</strong>g convention. The symbol [k −j] as a subscript<br />

means that k − j is to be reduced modulo n to one of 0, 1, . . . , n − 1. Hence<br />

the top row of [¯α] is just the vector ¯α. Then each row is obta<strong>in</strong>ed by cycl<strong>in</strong>g<br />

the row above one place to the right <strong>and</strong> replac<strong>in</strong>g each element by its image<br />

under the automorphism x ↦→ x q .<br />

For x ∈ F , put<br />

[x] = (x, x q , x q2<br />

, . . . , x qn−1<br />

) T .<br />

Then ¯α uniquely determ<strong>in</strong>es an element α of HomK(F, F ) by<br />

It is easy to check that for each j,<br />

It follows that<br />

α : x ↦→ x α n−1<br />

= aix qi<br />

= ¯α · [x].<br />

(x α ) qj<br />

n−1<br />

=<br />

i=0<br />

i=0<br />

a qj<br />

i xqi+j<br />

n−1<br />

=<br />

k=0<br />

a qj<br />

[k−j] xqk.<br />

[x α ] = [¯α · [x]] = [¯α][x]. (4.49)<br />

Lemma 4.8.2. Let x1, x2, . . . , xr be elements of F . Then {x1, . . . , xr} is l<strong>in</strong>early<br />

<strong>in</strong>dependent over K if <strong>and</strong> only if {[x1], . . . , [xr]} is l<strong>in</strong>early <strong>in</strong>dependent<br />

over F .


200 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Proof.<br />

<br />

First suppose that {x1, . . . , xr} is l<strong>in</strong>early dependent over K, say<br />

r<br />

i=1 cixi = 0, with ci ∈ K <strong>and</strong> at least one of the ci not zero, 1 ≤ i ≤ r. Then<br />

0 = r i = r qj<br />

cixi , from which it follows that (0, 0, . . . , 0)T =<br />

r<br />

i=1 cqj i xqj<br />

i=1<br />

i=1 ci[xi], so that {[x1], . . . , [xr]} is l<strong>in</strong>early dependent over K, <strong>and</strong> hence<br />

over F .<br />

Now suppose that {[x1], . . . , [x]r} is l<strong>in</strong>early dependent over F , say<br />

(0, 0, . . . , 0) T = r<br />

i=1 ci[xi] with ci ∈ F <strong>and</strong> some ci = 0. The goal is to show<br />

that each ci ∈ K, so that the top row of the equation of the hypothesis says<br />

that 0 = r<br />

i=1 cixi with ci ∈ K. The proof proceeds by <strong>in</strong>duction on r. First<br />

note that for r = 1 the result is clear, <strong>and</strong> suppose that r = 2. Here we may<br />

assume that [x1] = c[x2] with c ∈ F . Then the first row says that x1 = cx2<br />

<strong>and</strong> its image under x ↦→ x q says that x1 q = c q x2 q . The second row says that<br />

x1 q = cx2 q . Hence c = x1/x2 = x1 q /x2 q = c q , which forces c to be <strong>in</strong> K,<br />

i.e., {x1, x2} is l<strong>in</strong>early dependent over K. This shows that the desired result<br />

holds when r = 2.<br />

Suppose that for 1 ≤ r − 1 whenever {x1, . . . , xr−1} is l<strong>in</strong>early <strong>in</strong>dependent<br />

over K, then {[x1], [x2], . . . , [xr−1]} is l<strong>in</strong>early <strong>in</strong>dependent over F , <strong>and</strong><br />

suppose that {x1, . . . , xr−1, xr} is l<strong>in</strong>early <strong>in</strong>dependent over K. In particular<br />

we know that {[x1], [x2], . . . , [xr−1]} is l<strong>in</strong>early <strong>in</strong>dependent over F , so that if<br />

some vector <strong>in</strong> F n is an F -l<strong>in</strong>ear comb<strong>in</strong>ation of the [xi], 1 ≤ i ≤ r − 1, the<br />

coefficients <strong>in</strong> the l<strong>in</strong>ear comb<strong>in</strong>ation are unique.<br />

Suppose r i=1 ci[xi] = [0]. If cr = 0, then all the ci’s equal zero. Without<br />

loss of generality we may assume that cr = 1, <strong>and</strong> that [xr] = r−1 i=1 di[xi],<br />

di ∈ F . Look<strong>in</strong>g at row j of this equality we see xr qj = r−1 qj<br />

i=1<br />

dixi . But<br />

tak<strong>in</strong>g the q-th power of row j we f<strong>in</strong>d xr qj+1 = r−1 i=1 di q xi qj+1.<br />

By lett<strong>in</strong>g j<br />

vary, this says<br />

r−1<br />

r−1<br />

[xr] = di[xi] =<br />

i=1<br />

i=1<br />

d q<br />

i [xi].<br />

S<strong>in</strong>ce the coefficients are unique when writ<strong>in</strong>g a vector <strong>in</strong> F n as an F -<br />

l<strong>in</strong>ear comb<strong>in</strong>ation of {[x1], . . . , [xr−1]}, it must be that di = di q , i.e., di ∈ K,<br />

for 1 ≤ i ≤ r − 1. Hence the first row says that x1, . . . , xr are l<strong>in</strong>early<br />

dependent over K.<br />

Theorem 4.8.3. Let ¯α = (a0, . . . , an−1) ∈ F n be given. The kernel


4.8. LINEAR MAPS 201<br />

<br />

U = x ∈ F = GF (q n ) : x α n−1<br />

= aix qi<br />

<br />

= 0; ai ∈ F<br />

is a subspace over K = GF (q). If U has dimension r (i.e., is a projective<br />

(r − 1)-dimensional subspace of F ), then the F -rank of the matrix [¯α] =<br />

(a qi<br />

[j−i] ) is equal to n − r.<br />

Proof. It is easy to see that the set U of zeros of n−1 i=0<br />

<strong>and</strong> any element of U is also a zero of<br />

n−1<br />

j=0<br />

a qi<br />

j xqi+j<br />

n−1<br />

=<br />

j=0<br />

i=0<br />

a qi<br />

[j−i] xqi,<br />

qi aix forms a subspace<br />

where the <strong>in</strong>dices are taken modulo n. For all x ∈ U, the vector [x] <strong>in</strong><br />

V (n, q n ) is <strong>in</strong> the right null space of [¯α]. There are r elements of U l<strong>in</strong>early<br />

<strong>in</strong>dependent over K, <strong>and</strong> therefore by Lemma 4.7.2 there are r vectors of the<br />

form [x] l<strong>in</strong>early <strong>in</strong>dependent over F <strong>and</strong> <strong>in</strong> the right null space of [¯α]. Hence<br />

the nullspace of [¯α] is a subspace over F of dimension at least r, imply<strong>in</strong>g<br />

that the F -rank of [¯α] is at most n − r.<br />

As before, r is the K-dimension of the kernel of α, so there are n − r<br />

elements x1 α , . . . , xn−r α <strong>in</strong> the image of α that are K-<strong>in</strong>dependent, so that<br />

by Lemma 4.8.2<br />

[x1 α ] = [¯α][x1], . . . , [xn−r α ] = [¯α][xn−r]<br />

are F -l<strong>in</strong>early <strong>in</strong>dependent. This says the F -rank of [¯α] is at least n − r.<br />

Hence the F -rank of [¯α] must be exactly n − r.<br />

Corollary 4.8.4. The additive map α is one-to-one <strong>and</strong> onto if <strong>and</strong> only if<br />

[¯α] is nons<strong>in</strong>gular, <strong>and</strong> <strong>in</strong> general det[¯α] ∈ K.<br />

Proof. The first part of the Corollary is conta<strong>in</strong>ed <strong>in</strong> the preced<strong>in</strong>g theorem.<br />

Now put ∆ = det[¯α]. Then x ↦→ x q is an automorphism of F fix<strong>in</strong>g K<br />

po<strong>in</strong>twise, so ∆ q = det([¯α] q ) = det(B), where B is obta<strong>in</strong>ed from [¯α] by<br />

shift<strong>in</strong>g rows one place up <strong>and</strong> columns one place left. Hence detB = det[¯α],<br />

i.e., ∆ = ∆ q , imply<strong>in</strong>g that ∆ ∈ K. This completes the proof.<br />

Note:<br />

[α ◦ µ][x] = [x α◦µ ] = [(x α ) µ ] = [¯µ · [x α ]] = [¯µ · [¯α][x]] = [¯µ][¯α][x].


202 CHAPTER 4. THE UBIQUITOUS OVAL<br />

This says ([α ◦ µ] − [¯µ][¯α])[x] = 0 for all x ∈ Fq. Let ¯ρ = (r0, . . . , re−1)<br />

be the ith row of [α ◦ µ] − [¯µ][¯α]. So e−1 pi<br />

i=0 rix = 0 for all x, i.e., the map<br />

ρ : x ↦→ ¯ρ[x] is trivial. This implies ¯ρ = ¯0. Hence it follows that<br />

4.9 Additive Maps on Fq<br />

[α ◦ µ] = [¯µ][¯α]. (4.50)<br />

Theorem 4.9.1. Let α <strong>and</strong> β be permutations of Fq such that 0 α = 0 = 0 β<br />

<strong>and</strong> such that x ↦→ x α /x β permutes the nonzero elements of Fq. Then p = 2.<br />

Proof. Let ζ be a generator of the multiplicative group F ∗ q , i.e., a primitive<br />

i α<br />

root for Fq. Then α <strong>and</strong> β are given by ζ ↦→ ζ i′ i β<br />

, ζ ↦→ ζ i′′ , where i ↦→ i ′ <strong>and</strong><br />

i ↦→ i ′′ are permutations of the <strong>in</strong>tegers 1, 2, . . . , pe − 1. If pe − 1 = |F ∗ q | = 2k,<br />

then 1 + 2 + · · ·+ 2k = k(2k + 1) ≡ k (mod 2k). Thus 0 = <br />

1≤i≤2k (i′ − i ′′ <br />

) ≡<br />

i ≡ k (mod 2k), an impossibility.<br />

1≤i≤2k<br />

Corollary 4.9.2. Let α <strong>and</strong> β be additive permutations of the elements of<br />

Fq for which x ↦→ x α /x β permutes the nonzero elements of Fq. Then p = 2.<br />

For the rema<strong>in</strong>der of this section Fq = GF (2 e ).<br />

Theorem 4.9.3. Let α <strong>and</strong> β be additive permutations of the elements of<br />

Fq = GF (2 e ) that fix 1 <strong>and</strong> for which x ↦→ x α /x β permutes the nonzero<br />

elements of Fq. Then α −1 β is an automorphism of Fq of maximal order e.<br />

Proof. Let α <strong>and</strong> β satisfy the hypotheses of the theorem. Then there are<br />

scalars ai, bi <strong>in</strong> Fq, 0 ≤ i ≤ e − 1, for which<br />

e−1<br />

α : x ↦→<br />

i=0<br />

aix 2i<br />

; β : x ↦→<br />

e−1<br />

i=0<br />

bix 2i<br />

.<br />

Let A = [¯α] = (aij), so aij = a 2i−1<br />

[j−i] , <strong>and</strong> B = [ ¯ β] = (bij), so bij = b 2i−1<br />

[j−i] ,<br />

1 ≤ i, j ≤ e.<br />

It is convenient to make the follow<strong>in</strong>g observations. Let P be the permutation<br />

matrix with a 1 <strong>in</strong> the (i, j) position if <strong>and</strong> only if j ≡ i + 1 (mod e).<br />

So (d1, . . . , de)P = (de, d1, . . . , de−1). If D (2) denotes the matrix obta<strong>in</strong>ed<br />

from the matrix D by each element dij by its square (dij) 2 , then


4.9. ADDITIVE MAPS ON FQ 203<br />

(P −1 A (2) P )ij = <br />

1≤r,k≤e<br />

(P T )ir(A (2) )rkPkj<br />

= (A (2) )i−1,j−1 = Aij, imply<strong>in</strong>g P −1 A (2) P = A.<br />

Then cont<strong>in</strong>u<strong>in</strong>g with the proof, s<strong>in</strong>ce α <strong>and</strong> β are permutations, by<br />

Cor. 4.8.4 both A <strong>and</strong> B are nons<strong>in</strong>gular. S<strong>in</strong>ce x ↦→ xα /xβ is a permutation<br />

of the elements of F ∗ q , for each c ∈ F ∗ q there must a be a (unique) nonzero<br />

solution x to xα−cx β = 0. Hence e−1 2i<br />

i=0 (ai−λbi)x = 0 has a unique nonzero<br />

solution x for each λ ∈ F ∗ q . By Cor. 4.8.4, the matrix<br />

Cλ = ((a[j−i] − λb[j−i]) 2i−1<br />

), 1 ≤ i, j ≤ e,<br />

has zero determ<strong>in</strong>ant for each λ ∈ F ∗ q . And 0 = detA · detB, so detA =<br />

detB = 1. So det Cλ is a polynomial <strong>in</strong> λ of degree 2e − 1 with constant term<br />

1, lead<strong>in</strong>g term 1, <strong>and</strong> hav<strong>in</strong>g each nonzero element of Fq as a simple root.<br />

This implies<br />

det(Cλ) = λ 2e −1 + 1. (4.51)<br />

For 1 ≤ t ≤ 2e − 2, we now calculate the coefficient of λt <strong>in</strong> det(Cλ) <strong>and</strong><br />

set it equal to 0.<br />

Let ti1, ti2, . . . , tir be the nonzero coefficients <strong>in</strong> the b<strong>in</strong>ary expansion of<br />

t = e−1 i=0 ti2i . Then the coefficient of λt <strong>in</strong> det(Cλ) is easily seen to be the<br />

determ<strong>in</strong>ant of the matrix obta<strong>in</strong>ed by replac<strong>in</strong>g rows i1, . . . , ir of A with rows<br />

i1, . . . , ir of B Hence we know the follow<strong>in</strong>g: the rows of A are <strong>in</strong>dependent,<br />

the rows of B are <strong>in</strong>dependent, <strong>and</strong> any set of rows formed by tak<strong>in</strong>g some<br />

r rows of B <strong>and</strong> the complementary e − r rows of A is a l<strong>in</strong>early dependent<br />

set, 1 ≤ r ≤ e − 1. In particular, the ith row of B is a l<strong>in</strong>ear comb<strong>in</strong>ation<br />

of rows 1, . . . , i − 1, i + 1, . . . , e of A. Let βi be the ith row of B, 1 ≤ i ≤ e.<br />

Then<br />

βi = (b 2i−1<br />

[1−i] , . . . , b2i−1 [e−i] ).<br />

Then there are scalars d1, . . . , di−1, di+1, . . . , de such that<br />

βi = (d1, . . . , di−1, 0, di+1, . . . , de)A. (4.52)<br />

Apply the automorphism x ↦→ x 2 to Eq. 4.52


204 CHAPTER 4. THE UBIQUITOUS OVAL<br />

(b 2i<br />

[1−i] , . . . , b2i [e−i] ) = (d21 , . . . , d2i−1 , 0, d2 i+1 , . . . d2e )<br />

<br />

a 2k<br />

<br />

[j−k] . (4.53)<br />

1≤k,j≤e<br />

In Eq. ?? first permute the columns cyclically, mov<strong>in</strong>g column j (on the<br />

left-h<strong>and</strong> side) to position j + 1 (mod e), then effect the same permutation<br />

of columns on the right. The result is an equation that says:<br />

that is,<br />

βi+1 = β (2)<br />

i P = (d2 1, . . . , d 2 i−1, 0, d 2 i+1, . . . d 2 e)P · P −1 A (2) P,<br />

βi+1 = (d 2 e , d21 , . . . , d2i−1 , 0, d2i+1 , . . . , d2 e−1 )A. (4.54)<br />

Repeat<strong>in</strong>g this k times we obta<strong>in</strong><br />

βi+k = (d 2k<br />

[1−k] , d2k [2−k] , . . . , d2k [e−k] )A, (4.55)<br />

where the d ′ js are unique <strong>and</strong> di = 0. By permut<strong>in</strong>g rows cyclically we may<br />

adopt a new notation:<br />

β1 = (d1, . . . , de)A with d1 = 0, so β1+i = (d 2i<br />

1−i, . . . , d 2i<br />

e−i)A. (4.56)<br />

Let αi denote the i th row of A, 1 ≤ i ≤ e. For some λ1, λ2 <strong>in</strong> Fq, not<br />

both zero, we have<br />

λ1β1 + λ2β2 =<br />

e<br />

fjαj = (λ2d 2 e, λ1d2, λ1d3 + λ2d 2 2, . . . , λ1dj + λ2d 2 j−1, . . .)A.<br />

j=3<br />

(4.57)<br />

Hence as the rows of A are <strong>in</strong>dependent, λ2d 2 e = 0 = λ1d2. If λ1 = 0, then<br />

d2 = 0. If λ2 = 0, then de = 0. S<strong>in</strong>ce d1 = 0, we have either both de <strong>and</strong> d1<br />

are zero, or both d1 <strong>and</strong> d2 are zero, i.e., there is a str<strong>in</strong>g of length two of<br />

consecutive d ′ is (<strong>in</strong>clud<strong>in</strong>g d1) equal to zero. By chang<strong>in</strong>g notation we may<br />

suppose d1 = d2 = 0 <strong>and</strong> complete the proof by a f<strong>in</strong>ite <strong>in</strong>duction.<br />

Suppose there is a str<strong>in</strong>g of t zeros, say d1 = · · · = dt = 0, 1 ≤ t ≤ e − 2.<br />

We then wish to show that there is a str<strong>in</strong>g of t + 1 zeros. This yields the<br />

follow<strong>in</strong>g.


4.9. ADDITIVE MAPS ON FQ 205<br />

β1 = (0, . . . , 0, dt+1, . . . , de)A;<br />

β2 = (d 2 e , 0, . . . , 0, . . . , d2 e−1 )A;<br />

.<br />

βt = (d2t−1 e+2−t , . . . , d2t−1 e<br />

, 0, . . . , 0, d 2t−1<br />

↑<br />

t<br />

↑<br />

2t − 1<br />

t+1<br />

βt+1 = (d 2t<br />

e+1−t, . . . , d 2t<br />

e , 0, . . . , 0, . . . , d 2t<br />

↑<br />

t + 1<br />

↑<br />

2t<br />

, . . . , d2t−1<br />

e+1−t )A;<br />

e−t)A.<br />

(4.58)<br />

Moreover, there are scalars λ1, . . . , λt+1, not all zero, for which t+1 i=1 λiβi<br />

is some l<strong>in</strong>ear comb<strong>in</strong>ation of αt+2, . . . , αe, s<strong>in</strong>ce 1 < t+1 < e. Use Eq. 4.52 to<br />

calculate the coefficients on α1, . . . , αt+1 (which must be zero) <strong>in</strong> t+1 i=1 λiβi,<br />

start<strong>in</strong>g with column t + 1 of Eq. 4.52 <strong>and</strong> work<strong>in</strong>g backwards to column 1.<br />

0 = λ1dt+1<br />

0 = λt+1d 2t<br />

e<br />

0 = λtd 2t−1<br />

e<br />

0 = λt−1d 2t−2<br />

e<br />

2t + λt+1d<br />

e−1<br />

+ λtd 2t−1<br />

e−1 + λt+1d 2t<br />

e−2<br />

.<br />

0 = λ2d 2 e + λ3d 22<br />

e−1 + · · · + λt+1d 2t<br />

e−(t−1)<br />

(4.59)<br />

If λt+1 = 0, then de = 0, giv<strong>in</strong>g a str<strong>in</strong>g of zeros of length t + 1.<br />

If λt+1 = 0, λt = 0, then aga<strong>in</strong> de = 0.<br />

If λt+1 = λt = 0, λt−1 = 0, then aga<strong>in</strong> de = 0.<br />

Cont<strong>in</strong>ue <strong>in</strong> this fashion. . . .<br />

If λt+1 = λt = · · · = λ3 = 0, λ2 = 0, then aga<strong>in</strong> de = 0.<br />

If λt+1 = · · · = λ2 = 0, λ1 = 0, then dt+1 = 0, giv<strong>in</strong>g a str<strong>in</strong>g of zeros of<br />

length t + 1.<br />

It follows that only one di can be nonzero, say d = dt = 0, t = 1. This<br />

says:<br />

b[j] = da 2t−1<br />

[j−(t−1)] , 0 ≤ j ≤ e − 1. (4.60)<br />

Our assumption that 1 = 1 α = 1 β implies that d = 1. Put u = t − 1, so<br />

Eq. 4.60 becomes:<br />

b[j] = a 2u<br />

[j−u] . (4.61)


206 CHAPTER 4. THE UBIQUITOUS OVAL<br />

If x ↦→ x2u is an automorphism of F of order n < e, it is rout<strong>in</strong>e to f<strong>in</strong>d<br />

n rows of B which together with the complementary e − n rows of A form<br />

a l<strong>in</strong>early <strong>in</strong>dependent set. Hence it must be that gcd(u, e) = 1. Moreover,<br />

from Eq. 4.55 we obta<strong>in</strong><br />

x β e−1<br />

= bjx 2j<br />

e−1<br />

=<br />

j=0<br />

j=0<br />

Hence Eq. 4.55 is equivalent to<br />

S<strong>in</strong>ce x α /x β = x α /x α◦2u<br />

(u, e) = 1, we are done.<br />

a 2u<br />

j−u x2j<br />

x β = (x α ) 2u<br />

=<br />

= (x α−β ) 1−2u<br />

<br />

e−1<br />

aj−ux 2j−u<br />

2u j=0<br />

= (x α ) 2u<br />

.<br />

⇒ β = α · 2 u . (4.62)<br />

is a permutation if <strong>and</strong> only if<br />

Corollary 4.9.4. Let β be an additive permutation of the elements of Fq for<br />

which x ↦→ x/xβ permutes the nonzero elements of Fq. Then β has the form<br />

xβ = dx2u for fixed d ∈ F ∗ q , (u, e) = 1.<br />

4.10 A Characterization of Translation <strong>Ovals</strong><br />

Theorem 4.10.1. Let O be an oval of P G(2, q), q = 2 e , <strong>and</strong> let ℓ be a<br />

tangent l<strong>in</strong>e to O. Then the follow<strong>in</strong>g are equivalent.<br />

(1) The oval O is a translation oval with axis ℓ.<br />

(2) There is a coll<strong>in</strong>eation of P G(2, q) which maps O to Oα = {(1, t, t α ) :<br />

t ∈ Fq}∪{(0, 0, 1)} with nucleus (0, 1, 0) <strong>and</strong> which maps ℓ to the l<strong>in</strong>e [1, 0, 0],<br />

for some generator α of Aut(Fq).<br />

(3) There is a coll<strong>in</strong>eation of P G(2, q) <strong>in</strong>duced by a matrix <strong>in</strong> GL(3, q)<br />

which maps O to Oα <strong>and</strong> ℓ to [1, 0, 0] for some generator α of Aut(Fq).<br />

(4) If P1, P2, P3, P4 are four po<strong>in</strong>ts of O not on ℓ, <strong>and</strong> if P1P2 ∩ P3P4 ∈ ℓ,<br />

then P1P3 ∩ P2P4 ∈ ℓ.<br />

Proof. Basically we have already seen that (1), (2) <strong>and</strong> (3) are equivalent.<br />

We now show that (1) <strong>and</strong> (4) are equivalent.<br />

So suppose that (1) holds. Let P1, P2, P3, P4 be four po<strong>in</strong>ts of O not on<br />

ℓ, <strong>and</strong> suppose that P1P2 ∩ P3P4 ∈ ℓ. By (1) there must be an elation θ with<br />

axis ℓ mapp<strong>in</strong>g P1 to P2 <strong>and</strong> leav<strong>in</strong>g the oval O <strong>in</strong>variant. If P1P2 ∩ ℓ = R,<br />

then R must be the center of the elation, so the l<strong>in</strong>e P3P4 meets ℓ <strong>in</strong> the po<strong>in</strong>t


4.11. STABILIZERS OF ARCS 207<br />

R <strong>and</strong> must be fixed by θ. Let Q = P1P3 ∩ ℓ. The elation θ maps QP1P3 to<br />

QP2P ′ 3, where P ′ 3 must be a po<strong>in</strong>t of O on the l<strong>in</strong>e QP2. But P ′ 3 must also<br />

be on the fixed l<strong>in</strong>e P3R, which conta<strong>in</strong>s only the additional po<strong>in</strong>t P4 of O.<br />

Hence P ′ 3 = P4, <strong>and</strong> P1P3 ∩ P2P4 = Q ∈ ℓ, show<strong>in</strong>g that (4) holds.<br />

Now suppose that (4) holds. Let θ be the elation of P G(2, q) with axis ℓ<br />

<strong>and</strong> mov<strong>in</strong>g P1 to P2 <strong>and</strong> hav<strong>in</strong>g center R = P1P2 ∩ ℓ. We want to show that<br />

θ preserves the oval O. So let P3 be any po<strong>in</strong>t of O different from P1, P2,<br />

<strong>and</strong> not on ℓ. Let Q be the po<strong>in</strong>t Q = P1P3 ∩ ℓ. The l<strong>in</strong>e QP2 must be a<br />

secant to O, hence must conta<strong>in</strong> an additional po<strong>in</strong>t P4. S<strong>in</strong>ce P1P3 meets<br />

P2P4 at a po<strong>in</strong>t Q of ℓ, it must be by (4) that P1P2 meets P3P4 at a po<strong>in</strong>t<br />

of ℓ, <strong>in</strong> fact at the center R of θ. It follows that θ maps P3 = QP1 ∩ P3R to<br />

P4 = QP2 ∩ P3R, which is a po<strong>in</strong>t of O.<br />

It seems likely that Part (4) of the theorem is of <strong>in</strong>terest only <strong>in</strong> that it<br />

provides a synthetic def<strong>in</strong>ition of a translation oval. On the other h<strong>and</strong> the<br />

automorphism α is extremely important. It is uniquely determ<strong>in</strong>ed by O <strong>and</strong><br />

is calle the automorphism associated with O.<br />

4.11 Stabilizers of Arcs<br />

In this section we recall without proof a few well-known results from the theory<br />

of coll<strong>in</strong>eation groups of P G(2, q). First, each coll<strong>in</strong>eation θ of P G(2, q)<br />

is of the form<br />

θ : (x, y, z) ↦→ (x σ , y σ , z σ )A, (4.63)<br />

where A is an <strong>in</strong>vertible matrix unique only up to a scalar multiple <strong>and</strong> σ is<br />

an automorphism of Fq.<br />

All <strong>in</strong>vertible matrices A <strong>and</strong> automorphisms σ comb<strong>in</strong>e this way to give<br />

such a coll<strong>in</strong>eation. If σ = id, the map θ is called an homography. Let θ be<br />

a coll<strong>in</strong>eation. Then θ fixes all the po<strong>in</strong>ts on some l<strong>in</strong>e (called the axis of θ)<br />

if <strong>and</strong> only if θ fixes all the l<strong>in</strong>es through some po<strong>in</strong>t (called the center of θ).<br />

In this case θ is called a central coll<strong>in</strong>eation. If θ is a nonidentity central<br />

coll<strong>in</strong>eation with center P <strong>and</strong> axis ℓ, then θ is called an elation provided P<br />

is <strong>in</strong>cident with ℓ, <strong>and</strong> an homology otherwise.<br />

The follow<strong>in</strong>g lemma has a rout<strong>in</strong>e proof:


208 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Lemma 4.11.1. The homographies that are central coll<strong>in</strong>eations with axis<br />

[1, 0, 0] T are those with matrix<br />

⎛<br />

A = ⎝<br />

a b c<br />

0 1 0<br />

0 0 1<br />

If a = 1, the po<strong>in</strong>t (a − 1, b, c) is the center <strong>and</strong> clearly not <strong>in</strong>cident with the<br />

axis. So the elations with [1, 0, 0] T as axis are those with<br />

⎛<br />

A = ⎝<br />

1 b c<br />

0 1 0<br />

0 0 1<br />

Moreover, it is clear that each elation is an <strong>in</strong>volution (s<strong>in</strong>ce q = 2 e ), <strong>and</strong><br />

the set of elations with common axis [1, 0, 0] T is a group with order q 2 .<br />

Let x ↦→ x α be a function such that<br />

D(α) = {(1, t, t α ) : t ∈ Fq} ∪ {(0, 0, 1), (0, 1, 0)} is a hyperoval.<br />

Put Ω(α) = D(α) \ {(0, 1, 0)}, so Ω(α) is an oval with nucleus (0, 1, 0). Put<br />

Ω− (α) = Ω(α) \ {(0, 0, 1)}, <strong>and</strong> Ω0(α) = {(1, t, tα ) : 0 = t ∈ Fq}. In this<br />

section we consider some stabilizers of large arcs conta<strong>in</strong>ed <strong>in</strong> an oval.<br />

If an oval O of P G(2, q) has a tangent l<strong>in</strong>e which is the axis of each<br />

element of a group of order q of elations that stabilize the oval, then O is<br />

called a translation oval, <strong>and</strong> the tangent l<strong>in</strong>e is called an axis of the oval.<br />

All translation ovals were determ<strong>in</strong>ed <strong>in</strong> the previous section.<br />

At this po<strong>in</strong>t we know that if α = 2i with (i, e) = 1, then D(α) is a<br />

hyperoval with [1, 0, 0] T as an axis. Moreover, we also know that for each<br />

σ ∈ Aut(Fq) <strong>and</strong> for a, b ∈ Fq with b = 0, the map<br />

(x, y, z) ↦→ (x σ , y σ , z σ ) ⎝<br />

is a coll<strong>in</strong>eation of P G(2, q) stabiliz<strong>in</strong>g D(α).<br />

⎛<br />

⎞<br />

⎠ .<br />

⎞<br />

⎠ .<br />

1 a a α<br />

0 b 0<br />

0 0 b α<br />

⎞<br />

⎠ (4.64)<br />

Theorem 4.11.2. If α is additive <strong>and</strong> Ω(α) has two axes with q = 2 e ≥ 8,<br />

then α = 2 <strong>and</strong> the oval has q + 1 axes.


4.11. STABILIZERS OF ARCS 209<br />

Proof. We may assume that α = 2i with (i, e) = 1. S<strong>in</strong>ce Ω(α) admits a group<br />

of elations transitive on the po<strong>in</strong>ts (1, t, tα ), t ∈ Fq, we may assume that the<br />

second axis is the l<strong>in</strong>e [0, 0, 1] T through (0, 1, 0) <strong>and</strong> (1, ⎛0,<br />

0). The ⎞elations<br />

1 0 0<br />

with this l<strong>in</strong>e as axis are of the form (x, y, z) ↦→ (x, y, z) ⎝ 0 1 0 ⎠. The<br />

c b 1<br />

po<strong>in</strong>t (0, 0, 1) maps to (c, b, 1), which is on the oval iff c = b = 0 or b = 0 <strong>and</strong><br />

c = bα∗ = b α<br />

α−1 . Then (1, t, tα ) maps to (1 + tαbα∗, t + btα , tα ). Express<strong>in</strong>g the<br />

fact that this po<strong>in</strong>t is on the oval (yα = xα−1z) leads to bαtα2 = bα∗t2α for all<br />

t ∈ Fq. This quickly forces α = 2. In this case each tangent is an axis.<br />

Corollary 4.11.3. If α is additive with D(α) an irregular hyperoval , then<br />

the group of coll<strong>in</strong>eations stabiliz<strong>in</strong>g the oval Ω(α) fixes the po<strong>in</strong>t (0, 0, 1) <strong>and</strong><br />

acts transitively on the po<strong>in</strong>ts of the form (1, t, t α ), t ∈ Fq.<br />

Note that D( 1<br />

) has q + 1 axes all pass<strong>in</strong>g through the po<strong>in</strong>t (0, 0, 1), but<br />

2<br />

Ω( 1<br />

2 ) has only one axis [1, 0, 0]T .<br />

At this po<strong>in</strong>t we can complete the determ<strong>in</strong>ation of the coll<strong>in</strong>eation stabilizer<br />

of D(2). Let G be the full coll<strong>in</strong>eation stabilizer fix<strong>in</strong>g the po<strong>in</strong>t (0, 1, 0).<br />

It is clear that for each σ ∈ Aut(Fq) the map (x, y, z) ↦→ (xσ , yσ , zσ ) is <strong>in</strong><br />

G. Then the group of homographies preserv<strong>in</strong>g the hyperoval, <strong>and</strong> fix<strong>in</strong>g the<br />

nucleus (0, 1, 0), consists of the maps (x, y, z) ↦→ (x, y, z)A where<br />

⎛<br />

A = ⎝<br />

a √ ab b<br />

0 1 0<br />

c √ cd d<br />

⎞<br />

⎠ , where det(A) = 1. (4.65)<br />

Note that with a = d = 0 <strong>and</strong> b = c = 1 there is a coll<strong>in</strong>eation preserv<strong>in</strong>g<br />

the hyperoval <strong>and</strong> <strong>in</strong>terchang<strong>in</strong>g the po<strong>in</strong>ts (1, 0, 0) <strong>and</strong> (0, 0, 1). Hence the<br />

group is triply transitive on the q + 1 po<strong>in</strong>ts of the conic. If a projective<br />

coll<strong>in</strong>eation stabiliz<strong>in</strong>g the oval fixes three po<strong>in</strong>ts of the oval as well as the<br />

nucleus, clearly it must be the identity map. So the group is sharply triply<br />

transitive on the conic itself. This means that each tangent to the conic Ω(2)<br />

is the axis of a group of q elations with that tangent as axis.<br />

Suppose that a coll<strong>in</strong>eation (which may be assumed to be an homography)<br />

moves the po<strong>in</strong>t (0, 1, 0). Then the full homography coll<strong>in</strong>eation group<br />

is 4-ply transitive on the po<strong>in</strong>ts of the hyperoval, <strong>and</strong> the homography <strong>in</strong>terchang<strong>in</strong>g<br />

po<strong>in</strong>ts (0, 1, 0) <strong>and</strong> (0, 0, 1) <strong>and</strong> <strong>in</strong>terchang<strong>in</strong>g (1, 0, 0) <strong>and</strong> (1, 1, 1)<br />

must stabilize the hyperoval. This coll<strong>in</strong>eation has matrix


210 CHAPTER 4. THE UBIQUITOUS OVAL<br />

⎛<br />

A = ⎝<br />

1 1 1<br />

0 0 1<br />

0 1 0<br />

Clearly this homography maps (1, t, t 2 ) to the po<strong>in</strong>t (1, 1 + t 2 , 1 + t), which<br />

is on the hyperoval if <strong>and</strong> only if 1 + t = (1 + t 2 ) 2 = 1 + t 4 . This occurs if<br />

<strong>and</strong> only if q ≤ 4.<br />

So now consider a secant l<strong>in</strong>e [0, 1, 0] T through the po<strong>in</strong>ts (0, 0, 1) <strong>and</strong><br />

(1, 0, 0) of the conic. The group of elations with this l<strong>in</strong>e as axis are of the<br />

form (x, y, z) ↦→ (x + ay, y, z + cy). But now it is rout<strong>in</strong>e to verify that this<br />

map stabilizes the conic if <strong>and</strong> only if a = c = 0.<br />

This completes a proof of the follow<strong>in</strong>g theorem.<br />

Theorem 4.11.4. If q ≥ 8, the complete stabilizer of the regular hyperoval<br />

D(2) fixes the po<strong>in</strong>t (0, 1, 0). The homographies are sharply triply transitive<br />

on the po<strong>in</strong>ts of Ω(2) = D(2) \ {0, 1, 0)}. Each tangent to Ω(2) is the axis of<br />

a group of order q of elations stabiliz<strong>in</strong>g the conic. No other secant to D(2)<br />

is the axis of such a group of elations stabiliz<strong>in</strong>g the hyperoval.<br />

At this po<strong>in</strong>t we can also determ<strong>in</strong>e the hyperovals with a transitive<br />

coll<strong>in</strong>eation group. The proof given here is taken from a 1994 paper by<br />

O’Keefe <strong>and</strong> Penttila, but the result was orig<strong>in</strong>ally due to G. Korchmáros <strong>in</strong><br />

1978.<br />

Theorem 4.11.5. Let K be a hyperoval <strong>in</strong> P G(2, q) with a transitive coll<strong>in</strong>eation<br />

group G. Then q ∈ {2, 4, 16}. For q = 2 <strong>and</strong> q = 4 it is easy to check that the<br />

only hyperovals are regular with transitive coll<strong>in</strong>eation groups. For q = 16,<br />

the regular hyperoval D(2) does not have a transitive coll<strong>in</strong>eation group by<br />

the previous theorem. However, there is a second hyperoval that does.<br />

Proof. Let G be a group of coll<strong>in</strong>eations stabiliz<strong>in</strong>g K <strong>and</strong> act<strong>in</strong>g transitively<br />

on it. S<strong>in</strong>ce G has an orbit of length q + 2 on K, q + 2 must divide |G|,<br />

<strong>and</strong> hence must divide |P ΓL(3, q)| = (q 2 + q + 1)(q − 1) 2 q 3 (q + 1)e. But<br />

q ≡ −1 (mod q + 2), so |P ΓL(3, q)| ≡ 3 · 9 · 8(−1)e ≡ 0 (mod q + 2), which<br />

implies that 2(2 e−1 + 1) divides 3 3 · 2 3 e. This implies 2 e−1 + 1 divides 3 3 e<br />

if e > 1. It follows fairly easily that e = 1, 2, or 4. The cases for q = 2<br />

<strong>and</strong> 4 are easily checked. When q = 16, by Theorem 4.11.5 D(2) does not<br />

have a transitive coll<strong>in</strong>eation group, however the Lunelli-Sce hyperoval does.<br />

This was first established by M. Hall, Jr., <strong>in</strong> 1975 us<strong>in</strong>g a computer. We may<br />

return to this example later.<br />

⎞<br />

⎠ .


4.12. MONOMIAL HYPEROVALS 211<br />

Theorem 4.11.6. Let α be additive with D(α) an irregular hyperoval. Then<br />

the complete homography stabilizer of D(α) has order q(q − 1) <strong>and</strong> is given<br />

by Eq. 4.64 with σ = id.<br />

Proof. Let α be additive <strong>and</strong> let G be the complete homography stabilizer<br />

of D(α). We know that the po<strong>in</strong>ts of the form (1, t, t α ) for t ∈ Fq are <strong>in</strong> one<br />

orbit <strong>and</strong> we may assume that q > 16. Hence there is no orbit of length q +2.<br />

Suppose there is an orbit of length q + 1. Then the map (x, y, z) ↦→ (x, z, y)<br />

<strong>in</strong>terchanges (0, 1, 0) <strong>and</strong> (0, 0, 1), <strong>and</strong> <strong>in</strong>terchanges D(α) <strong>and</strong> D(α −1 ). As<br />

α −1 is also additive, we may assume that {(0, 1, 0)} is the orbit of length 1.<br />

By Theorem 4.11.2 we have a contradiction. Hence G must have an orbit<br />

of length q. If G stabilizes both (0, 1, 0) <strong>and</strong> (0, 0, 1), then it is easy to see<br />

that G consists of exactly the homographies given <strong>in</strong> Eq. 4.64. Otherwise,<br />

we may suppose that there is a coll<strong>in</strong>eation θ : (0, 1, 0) ↔ (0, 0, 1). S<strong>in</strong>ce the<br />

group fix<strong>in</strong>g each of (0, 1, 0) <strong>and</strong> (0, 0, 1) is transitive on the po<strong>in</strong>ts of the<br />

form (1, t, t α ), for t ∈ Fq, we may suppose that θ fixes (1, 0, 0). This means<br />

that we may write the matrix [θ] <strong>in</strong> the form<br />

⎛<br />

[θ] = ⎝<br />

1 0 0<br />

0 0 b<br />

0 c 0<br />

Then θ : (1, t, t α ) ↦→ (1, ct α , bt). Hence (ct α ) α = bt, from which it quickly<br />

follows that α 2 = id. This forces e = 1 or 2, complet<strong>in</strong>g the proof.<br />

4.12 Monomial Hyperovals<br />

Even though our ma<strong>in</strong> <strong>in</strong>terest will be <strong>in</strong> translation ovals, <strong>in</strong> general a hyperoval<br />

that conta<strong>in</strong>s a translation oval will also conta<strong>in</strong> other ovals that are<br />

not translation ovals but are still monomial ovals. Therefore it is reasonable<br />

for us to spend some time on this more general class of oval.<br />

Recall that a conic <strong>in</strong> P G(2, q) is an oval, <strong>and</strong> a conic plus its nucleus<br />

is a hyperoval called a regular hyperoval. Moreover, an oval which is a<br />

regular hyperoval m<strong>in</strong>us the natural nucleus is called a po<strong>in</strong>ted conic. We<br />

have already noted that all hyperovals of P G(2, q) are regular for q = 2 <strong>and</strong><br />

q = 4. For q > 4 we have also seen that a conic is not equivalent to a po<strong>in</strong>ted<br />

conic. At this po<strong>in</strong>t we have done most the work needed to give a complete<br />

determ<strong>in</strong>ation of all ovals of P G(2, 8).<br />

⎞<br />

⎠ .


212 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Theorem 4.12.1. In P G(2, 8) all hyperovals are regular. Each oval is either<br />

a conic or a po<strong>in</strong>ted conic.<br />

Proof. Us<strong>in</strong>g Theorems 4.5.4 <strong>and</strong> 4.5.6 we see that each hyperoval of P G(2, 8)<br />

is equivalent to one of D(2), D(4) or D(6), each of which must be a hyperoval<br />

s<strong>in</strong>ce q = 23 <strong>and</strong> 3 is odd. But modulo q − 1 = 7, 4 = 1<br />

, so we know D(4)<br />

2<br />

is regular. Note that 6 ≡ 1 − 2 (mod 7), <strong>and</strong> the homography (x, y, z) ↦→<br />

(y, x, z) <strong>in</strong>terchanges D(2) <strong>and</strong> D(6). Hence <strong>in</strong> P G(2, 8), D(6) is regular. At<br />

the same time we know that Ω(4) <strong>and</strong> Ω(6) are po<strong>in</strong>ted conics <strong>and</strong> are not<br />

equivalent to the conic Ω(2).<br />

At this po<strong>in</strong>t we have seen that for q ≤ 8 all ovals <strong>in</strong> P G(2, q) are monomial.<br />

In this section we want to consider further the general case of monomial<br />

ovals.<br />

For any <strong>in</strong>teger k for which D(k) is a hyperoval <strong>in</strong> P G(2, q), if σ is an<br />

automorphism of Fq, then (x k ) σ = (x σ ) k , so that<br />

(x, y, z) ↦→ (x σ , y σ , z σ ) (4.66)<br />

is a coll<strong>in</strong>eation of P G(2, q) that preserves the hyperoval <strong>and</strong> fixes the po<strong>in</strong>ts<br />

(1, 0, 0), (0, 1, 0), (0, 0, 1).<br />

Similarly, the map<br />

(x, y, z) ↦→ (x, ya, (za) k ) (4.67)<br />

preserves the hyperoval D(k), fixes the po<strong>in</strong>ts (1, 0, 0), (0, 1, 0) <strong>and</strong> (0, 0, 1),<br />

<strong>and</strong> maps (1, t, t k ) ↦→ (1, at, (at) k ) for t = 0.<br />

Let A = (0, 1, 0), B = (0, 0, 1), C = (1, 0, 0), D = (1, 1, 1). Let O<br />

denote the set of permutations (i.e., permutation polynomials) associated<br />

with hyperovals that conta<strong>in</strong> the four po<strong>in</strong>ts A, B, C, <strong>and</strong> D, i.e., O is the<br />

set of permutations α of Fq such that 0 α = 0, 1 α = 1, <strong>and</strong> aα −b α<br />

whenever a, b, c are dist<strong>in</strong>ct elements of Fq.<br />

Then for each α ∈ O<br />

a−b = aα −c α<br />

a−c ,<br />

D(α) = {A, B} ∪ {(1, t, t α ) : t ∈ Fq} is a hyperoval conta<strong>in</strong><strong>in</strong>g A, B, C, D.<br />

(4.68)<br />

Conversely, every hyperoval <strong>in</strong> P G(2, q) is projectively equivalent to one of<br />

these, <strong>and</strong><br />

Ω(α) = {(x, y, z) ∈ P G(2, q) : y α = x α−1 z} (4.69)<br />

is the oval conta<strong>in</strong>ed <strong>in</strong> D(α) that has A as nucleus.


4.12. MONOMIAL HYPEROVALS 213<br />

Now put<br />

M = {k : gcd(k − 1, q − 1) = 1 = gcd(k, q − 1)} (4.70)<br />

Here the symbol k denotes both an <strong>in</strong>teger (mod q − 1) <strong>and</strong> a map from<br />

Fq to itself. So we th<strong>in</strong>k of M as the set of c<strong>and</strong>idates for be<strong>in</strong>g monomial<br />

hyperovals. Now put<br />

Also put<br />

I = M ∩ O = the set of monomial hyperovals (4.71)<br />

A = {α ∈ O : x α + y α = (x + y) α ∀x, y ∈ Fq} (4.72)<br />

So α ∈ A is an additive map for which α − 1 is also a permutation. By<br />

Cor. 4.9.4 we know that<br />

Theorem 4.12.2. α ∈ A if <strong>and</strong> only if α : x ↦→ x2i gcd(i, e) = 1, 1 ≤ i ≤ e.<br />

for some i with<br />

Consider the projective coll<strong>in</strong>eation (x, y, z) ↦→ (x, z, y). For each k ∈ M,<br />

this maps D(k) to D(k −1 ). So we have the follow<strong>in</strong>g:<br />

Theorem 4.12.3. k ∈ I iff k −1 ∈ I, <strong>and</strong> D(k) <strong>and</strong> D(k −1 ) are projectively<br />

equivalent.<br />

The projective coll<strong>in</strong>eation (x, y, z) ↦→ (z, y, x) fixes the po<strong>in</strong>t A <strong>and</strong> for<br />

each k ∈ M maps D(k) to D(k ∗ ), where k ∗ = k/(k − 1). Hence it follows<br />

that also<br />

Theorem 4.12.4. k ∈ I iff k ∗ = k/(k − 1) ∈ I, <strong>and</strong> <strong>in</strong> this case Ω(k) is<br />

projectively equivalent to Ω(k ∗ ).<br />

For k ∈ M, put<br />

T (k) = {k, k ∗ = k<br />

k − 1 , (k∗ ) −1 k − 1<br />

=<br />

k ,<br />

(1 − k) −1 = 1<br />

1 − k ,<br />

k − 1<br />

k<br />

∗<br />

∗ 1<br />

= k<br />

1 − k<br />

−1 }.<br />

= 1 − k, (4.73)<br />

It follows that for k ∈ M, the six permutations of Fq conta<strong>in</strong>ed <strong>in</strong> T (k) are<br />

all <strong>in</strong> I or none are <strong>in</strong> I.


214 CHAPTER 4. THE UBIQUITOUS OVAL<br />

For k ∈ I <strong>and</strong> fixed d ∈ Fq, D(k) \ {(1, d, dk )} is projectively equivalent<br />

to Ω(kd), where<br />

kd : x ↦→ x[dk + (d + x−1 ) k ]<br />

dk + (1 + d) k<br />

. (4.74)<br />

In particular, k0 : x ↦→ x 1−k .<br />

Before determ<strong>in</strong><strong>in</strong>g isomorphisms between monomial ovals we give a general<br />

lemma that turns out to be useful.<br />

Lemma 4.12.5. Suppose a, b, c, d ∈ Fq with ac = 0, <strong>and</strong> recall<br />

M = {i : 1 ≤ i ≤ q − 1 with (i, q − 1) = (i − 1, q − 1) = 1}.<br />

F<strong>in</strong>ally, suppose i, j, k ∈ M <strong>and</strong> that (at i + b) j = ct k + d for all t ∈ Fq.<br />

Then, reduc<strong>in</strong>g all exponents modulo q − 1, we have j is additive (<strong>and</strong> hence<br />

an automorphism of maximal order e), ij ≡ k (mod q−1), b j = d <strong>and</strong> a j = c.<br />

Proof. First note that s<strong>in</strong>ce (i, q − 1) = 1, ir ≡ is (mod q − 1) iff r ≡<br />

s (mod q − 1). Then use the b<strong>in</strong>omial theorem to write<br />

(at i + b) j =<br />

j<br />

r=0<br />

<br />

j<br />

a<br />

r<br />

r t ir b j−r = ct k + d for all t ∈ Fq.<br />

S<strong>in</strong>ce the exponents are all reduced mod q−1 <strong>and</strong> no two of the exponents on<br />

the left side of the equation are the same (mod q −1), the various coefficients<br />

on both side of the equality must be the same. Clearly for r = 0 <strong>and</strong> r = j<br />

the correspond<strong>in</strong>g two coefficients on the left are nonzero, the exponents 0<br />

<strong>and</strong> ij on the left must be the same as the exponents k <strong>and</strong> 0 on the right.<br />

Also, for 0 < r < j, the coefficients on t ir on the left must be zero. This shows<br />

that j must be additive, <strong>and</strong> the rest of the lemma follows immediately.<br />

Now suppose that α ∈ A. It is clear that α−1 ∈ A also. But an easy<br />

check shows that α∗ ∈ A if <strong>and</strong> only if α = 2. Similarly, 1 − α ∈ A iff α = 1<br />

2 .<br />

It now follows immediately that if α ∈ A <strong>and</strong> if D(α) is irregular, then the<br />

two elements α <strong>and</strong> α−1 of T (α) are <strong>in</strong> A, <strong>and</strong> the rema<strong>in</strong><strong>in</strong>g elements of<br />

T (α) are not <strong>in</strong> A. We want to know when T (α) has six dist<strong>in</strong>ct elements.<br />

The follow<strong>in</strong>g Lemma has a straightforward proof.


4.12. MONOMIAL HYPEROVALS 215<br />

Lemma 4.12.6. (i) α = α∗ iff α = 2;<br />

(ii) α = (α∗ ) −1 iff α2 − α + 1 = 0;<br />

(iii) α = ((α∗ ) −1 ) ∗ = ((α−1 ) ∗ ) −1 = 1 − α iff α = 1<br />

2 ;<br />

(iv) α = (α−1 ) ∗ = 1<br />

1−α iff α2 − α + 1 = 0.<br />

(v) α = α−1 iff e = 1 or 2.<br />

When T (α) conta<strong>in</strong>s an element of A, i.e., D(α) is a translation hyperoval,<br />

we know what the complete coll<strong>in</strong>eation group of D(α) is. So now we<br />

suppose that α ∈ I but T (α) conta<strong>in</strong>s no element of A. S<strong>in</strong>ce each field automorphism<br />

clearly <strong>in</strong>duces a coll<strong>in</strong>eation of D(α), it suffices just to consider<br />

the homography stabilizer of D(α). So let G be the complete homography<br />

stabilizer of D(α). We may assume that G does not have an orbit of length<br />

q + 2 (s<strong>in</strong>ce there is only one possible case here with q = 16, <strong>and</strong> this case<br />

will be dealt with later). So suppose first that G has an orbit of length q + 1.<br />

Without loss of generality we may assume (by replac<strong>in</strong>g α with some other<br />

member of T (α) if necessary) that the s<strong>in</strong>gle po<strong>in</strong>t orbit is {(0, 1, 0)}.<br />

First suppose that every homography <strong>in</strong> G that moves (1, 0, 0) also moves<br />

(0, 0, 1), <strong>and</strong> vice versa. S<strong>in</strong>ce the homographies (x, y, z) ↦→ (x, ay, a α z) for<br />

0 = a ∈ Fq fix (1, 0, 0) <strong>and</strong> (0, 0, 1) <strong>and</strong> move the q − 1 other po<strong>in</strong>ts <strong>in</strong> a<br />

s<strong>in</strong>gle orbit, clearly each of the po<strong>in</strong>ts (1, 0, 0), (0, 0, 1) uniquely determ<strong>in</strong>es<br />

the other. Then the po<strong>in</strong>ts of Ω(α) must be divided <strong>in</strong>to pairs which are sets<br />

of imprimivity. This is impossible, s<strong>in</strong>ce q + 1 is odd. By <strong>in</strong>terchang<strong>in</strong>g α<br />

<strong>and</strong> α ∗ if necessary we may assume that there is a θ ∈ G that fixes (0, 1, 0)<br />

<strong>and</strong> (0, 0, 1) <strong>and</strong> moves (1, 0, 0) to (1, 1, 1). Hence the matrix represent<strong>in</strong>g θ<br />

is of the form<br />

⎛<br />

A = ⎝<br />

1 1 1<br />

0 b 0<br />

0 0 c<br />

⎞<br />

⎠ , 0 = b, c ∈ Fq.<br />

Hence θ : (1, t, t α ) ↦→ (1, 1 + bt, 1 + ct α ), forc<strong>in</strong>g (1 + bt) α = 1 + ct α . By<br />

Lemma 4.12.5 α must be additive <strong>and</strong> hence an automorphism. In this case<br />

we know the complete stabilizer of D(α), <strong>and</strong> it does not have an orbit of<br />

length q + 1 if it is not regular.<br />

Now suppose that G has an orbit of length q. By <strong>in</strong>terchang<strong>in</strong>g α with<br />

some member of T (α) if necessary, we suppose that the orbit of length q<br />

consists of the po<strong>in</strong>ts of the form (1, t, t α ), t ∈ Fq. If the po<strong>in</strong>ts (0, 1, 0) <strong>and</strong><br />

(0, 0, 1 each form s<strong>in</strong>gleton orbits, then the argument above shows that α<br />

must be additive. So suppose the θ ∈ G that moves (1, 0, 0) to (1, 1, 1) also


216 CHAPTER 4. THE UBIQUITOUS OVAL<br />

<strong>in</strong>terchanges (0, 1, 0) <strong>and</strong> (0, 0, 1). In this case the matrix of θ has the form<br />

⎛<br />

A = ⎝<br />

1 1 1<br />

0 0 b<br />

0 c 0<br />

⎞<br />

⎠ , 0 = b, c ∈ Fq.<br />

Hence θ : (1, t, t α ) ↦→ (1, 1 + ct α , 1 + bt), forc<strong>in</strong>g (1 + ct α ) α = 1 + bt. So aga<strong>in</strong><br />

α must be additive <strong>and</strong> this time e ≤ 2. We have now f<strong>in</strong>ished a proof of the<br />

follow<strong>in</strong>g:<br />

Theorem 4.12.7. If α ∈ I but no member of T (α) is <strong>in</strong> A, then the complete<br />

homography group G of D(α) has an orbit of length q−1 which we may assume<br />

to be {(1, t, t α ) : 0 = t ∈ Fq}.<br />

It now follows that G has one orbit of length q − 1 <strong>and</strong> the rema<strong>in</strong><strong>in</strong>g<br />

orbits are subsets of S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. If G has an orbit of<br />

length 2 <strong>in</strong> its action on S, it is easy to show that some member of T (α) is<br />

additive. If G has an orbit of length 3 on S, we may assume there is a θ ∈ G<br />

for which θ : (1, 0, 0) ↦→ (0, 0, 1) ↦→ (0, 1, 0) ↦→ (1, 0, 0). In this case it is easy<br />

to show that α2 ⎛ − α ⎞+<br />

1 = 0. In this case we see that the homography with<br />

0 0 1<br />

matrix ⎝ 1 0 0 ⎠ really is <strong>in</strong> G. This completes a proof of the follow<strong>in</strong>g:<br />

0 1 0<br />

Theorem 4.12.8. If α ∈ I but no element of T (α) is <strong>in</strong> A, then the complete<br />

homography stabilizer of D(α) has order q − 1 with one orbit of length q − 1<br />

<strong>and</strong> three orbits of length 1, unless α 2 −α+1 = 0, <strong>in</strong> which case |G| = 3(q−1)<br />

<strong>and</strong> there is also one orbit of length 3.<br />

Only two examples of monomial o-polynomials x α are known to exist with<br />

α 2 − α + 1 = 0. The first is α = 6 with q = 32, which we have already seen<br />

does give an oval. The other is α = 20 with q = 128. In this case, if we use<br />

the notation of Theorem 4.12.9, σ = 16 <strong>and</strong> γ = 4, so σ + γ = 20. It seems<br />

likely that there are no other examples.<br />

So far we we have given only one family of monomial hyperovals other<br />

than the translation hyperovals, i.e., those conta<strong>in</strong><strong>in</strong>g the Segre oval D(6)<br />

with q = 2 e . At this stage the rema<strong>in</strong><strong>in</strong>g known ovals given by monomial opolynomials<br />

are not so easy to establish. They were both given by D. Glynn<br />

<strong>in</strong> 1983 <strong>and</strong> are as follows.


4.12. MONOMIAL HYPEROVALS 217<br />

Theorem 4.12.9. (The Glynn Hyperovals) Let q = 22e+1 , so q is not a<br />

square <strong>and</strong> there are automorphisms σ <strong>and</strong> γ of Fq for which σ2 ≡ γ4 ≡<br />

2 (mod q − 1). Here σ : x ↦→ x2e+1, <strong>and</strong> γ : x ↦→ x2(e+1)/2 if e is odd<br />

<strong>and</strong> x ↦→ x2(3e+2)/2 when e is even. Then xσ+γ <strong>and</strong> x3σ+4 polynomials.<br />

are monomial o-<br />

Proof. After we have developed Cherowitzo’s theory of α-flocks we give a<br />

proof by Cherowitzo that these monomials of Glynn really give ovals.<br />

Us<strong>in</strong>g a computer, D. Glynn <strong>in</strong> 1989 showed that the only hyperovals<br />

with a monomial o-polynomial <strong>in</strong> the plane P G(2, 2 e ) with e ≤ 30 are those<br />

given by the constructions we have already seen.<br />

The follow<strong>in</strong>g conjectures are also due to Glynn <strong>and</strong> are still wide open.<br />

Conjecture 4.12.10. For P G(2, q), q = 2 2k , the only hyperovals with a<br />

monomial o-polynomial are the translation hyperovals.<br />

Conjecture 4.12.11. There are no more hyperovals with monomial o-polynomials.<br />

To complete this section we need to consider just when two monomial<br />

ovals are projectively equivalent.<br />

Theorem 4.12.12. So let α <strong>and</strong> β be two monomial maps <strong>in</strong> O <strong>and</strong> suppose<br />

that q = 2e ≥ 8 <strong>and</strong> that Ω(α) ∼ Ω(β).<br />

(i) If D(α) is regular, then so is D(β). In this case α = β ∈ {2, 1,<br />

−1}. 2<br />

(ii) If D(α) is an irregular translation hyperoval, then so is D(β). By<br />

replac<strong>in</strong>g α with some member of T (α) <strong>and</strong> similarly for β, we may assume<br />

that the unique axis <strong>in</strong> each case is the l<strong>in</strong>e [1, 0, 0] T with po<strong>in</strong>ts (0, 1, 0)<br />

<strong>and</strong> (0, 0, 1). Then by replac<strong>in</strong>g α with α−1 if necessary, <strong>and</strong> the same for<br />

β, we may assume that (0, 1, 0) <strong>in</strong> D(α) is mapped to (0, 1, 0) <strong>in</strong> D(β). It<br />

follows readily that α = β or α = β∗ . In general, us<strong>in</strong>g a knowledge of the<br />

coll<strong>in</strong>eation stabilizer it is easy to check that if Ω(α) is a translation oval <strong>and</strong><br />

β ∈ T (α) with Ω(α) ∼ Ω(β), then β ∈ {α, α∗ }. (iii) So let D(α) <strong>and</strong> D(β)<br />

conta<strong>in</strong> no translation oval. Clearly the orbit of length q−1 <strong>in</strong> D(α) is mapped<br />

to the orbit of length q − 1 <strong>in</strong> D(β) by any coll<strong>in</strong>eation tak<strong>in</strong>g the one oval to<br />

the other. Us<strong>in</strong>g our knowledge of the complete coll<strong>in</strong>eation stabilizer of these<br />

hyperovals <strong>and</strong> Lemma 4.12.6, it is now rout<strong>in</strong>e to check that β ∈ T (α), <strong>and</strong><br />

then Ω(α) ∼ Ω(β) if <strong>and</strong> only if β = α∗ , unles α2 − α + 1 = 0, <strong>in</strong> which case<br />

α = (α∗ ) −1 = (α−1 ) ∗ , <strong>and</strong> the other three members of T (α) are also equal to<br />

each other. Moreover, Ω(α) <strong>and</strong> Ω(α−1 ) are not projectively equivalent (s<strong>in</strong>ce<br />

q ≥ 8).


218 CHAPTER 4. THE UBIQUITOUS OVAL<br />

4.13 The Trace Map<br />

In this section we just beg<strong>in</strong> to collect important computational facts about<br />

the absolute trace function.<br />

For q = 2 e we def<strong>in</strong>e the (absolute) trace map from Fq to F2 by<br />

e−1<br />

tr(x) = x 2i<br />

=<br />

i=0<br />

<br />

σ∈Aut(Fq)<br />

x σ , ∀ x ∈ Fq.<br />

Theorem 4.13.1. These are the most basic results concern<strong>in</strong>g the trace function.<br />

1. The trace map is additive, i.e., tr(x+y) = tr(x)+tr(y) for all x, y ∈ Fq.<br />

2. The trace map is <strong>in</strong>variant under automorphisms of Fq, i.e., tr(x σ ) =<br />

tr(x) for all x ∈ Fq <strong>and</strong> for all σ ∈ Aut(Fq).<br />

3. The kernel K of the trace map is a subgroup of (Fq, +) of <strong>in</strong>dex 2, <strong>and</strong><br />

tr is onto F2.<br />

4. K σ = K for all σ ∈ Aut(Fq).<br />

5. There are q − 1 subgroups of (Fq, +) of <strong>in</strong>dex 2, namely, aK for each<br />

nonzero a ∈ Fq. In particular, if aK = bK, then a = b.<br />

6. The only subgroup of Fq of <strong>in</strong>dex 2 which is <strong>in</strong>variant under each automorphism<br />

of Fq is K.<br />

7. For α ∈ Aut(Fq), the set {x + x α : x ∈ Fq} ⊆ K, with equality if <strong>and</strong><br />

only if α generates Aut(Fq).<br />

8. For a, b ∈ Fq \ {0}, <strong>and</strong> α a generator of Aut(Fq), we have<br />

{at α + bt : t ∈ Fq} =<br />

b α<br />

α−1<br />

a 1<br />

α−1<br />

9. For a ∈ Fq, x 2 + x + a is irreducible over Fq if <strong>and</strong> only if tr(a) = 1.<br />

K.


4.13. THE TRACE MAP 219<br />

10 If α is a generator of Aut(Fq) <strong>and</strong> a, b, c are nonzero elements of Fq,<br />

then<br />

ax α + bx + c = 0 has zero or two solutions accord<strong>in</strong>g as<br />

tr<br />

<br />

a 1<br />

α−1 c<br />

b α<br />

<br />

= 1 or 0.<br />

α−1<br />

Proof. Set A = Aut(Fq). Then for x ∈ Fq, tr(x) = <br />

α∈A xα .<br />

(1) S<strong>in</strong>ce the trace is the sum of additive maps, the trace is itself additive.<br />

(2) S<strong>in</strong>ce for α ∈ A we have A α = A, so for all x ∈ Fq, we have<br />

tr(x α ) = <br />

x αβ = <br />

x β = tr(x).<br />

β∈A<br />

(3) S<strong>in</strong>ce tr(x), considered as an element of F2[x] has degree less than q,<br />

it follows that tr: Fq → F2 is not the zero map. Thus, as trace is additive,<br />

(3) follows.<br />

(4) If x ∈ K, then by (2), x α ∈ K for α ∈ A.<br />

(5) The subgroups of (Fq, +) of <strong>in</strong>dex 2 can be identified with the hyperplanes<br />

of the projective geometry P G(e − 1, 2), <strong>and</strong> the multiplicative group<br />

F ∗ q of Fq acts regularly on the po<strong>in</strong>ts <strong>and</strong> hence also on the hyperplanes of<br />

P G(e − 1, 2). Thus there are q − 1 such subgroups, each of which is of the<br />

form aK for some a ∈ F ∗ q , <strong>and</strong> if aK = bK, then a = b. More generally,<br />

β∈A<br />

aK + c = bK + d ⇐⇒ a = b <strong>and</strong> d − c ∈ K.<br />

(6) For α ∈ A <strong>and</strong> a ∈ F ∗ q , it follows that (aK)α = a α K α = a α K, so<br />

(aK) α = aK if <strong>and</strong> only if a α = a, by (5). Hence (6) follows.<br />

(7) For α ∈ A <strong>and</strong> x ∈ Fq it follows from (1) <strong>and</strong> (2) that tr(x +<br />

x α ) =tr(x)+tr(x α ) = 0, so that {x+x α : x ∈ Fq} ⊆ K. The map x ↦→ x+x α<br />

is additive with kernel equal to the fixed field of α, so the image of this map,<br />

{x + x α : x ∈ Fq},<br />

has size |K| = q/2 if <strong>and</strong> only if the fixed field of α is F2, that is, if <strong>and</strong> only<br />

if α generates A.


220 CHAPTER 4. THE UBIQUITOUS OVAL<br />

(8) Let α be a generator of A. Then we have<br />

{at α + bt : t ∈ Fq} = a{t α + (a −1 b)t : t ∈ Fq<br />

= a{((a −1 b) 1/(α−1) s) α + (a −1 b)(a −1 b) 1/(α−1) s : s ∈ Fq}<br />

= a −1/(α−1) b α/(α−1) {s α + s : s ∈ Fq}<br />

= a −1/(α−1) b α/(α−1) K by Part (7).<br />

(9) Note that if a = b = 1 <strong>in</strong> (8), or use (7), s<strong>in</strong>ce 2 is a generator of A, we<br />

have<br />

K = {t α + t : t ∈ Fq}.<br />

Then for a ∈ Fq, x 2 + x + a is irreducible over Fq if <strong>and</strong> only if x 2 + x + a = 0<br />

has no solutions <strong>in</strong> Fq if <strong>and</strong> only if a ∈ {x 2 + x : x ∈ Fq} = K if <strong>and</strong> only if<br />

tr(a) = 1.<br />

(10) ax α + bx + c = 0 ⇐⇒ x α + b c<br />

x + = 0<br />

<br />

a<br />

<br />

a<br />

α <br />

x<br />

⇐⇒<br />

+<br />

⇐⇒ tr<br />

(b/a) 1<br />

α−1<br />

<br />

a 1<br />

α−1 c<br />

b α<br />

α−1<br />

<br />

= 0.<br />

x<br />

(b/a) 1<br />

α−1<br />

<br />

+<br />

c<br />

a · b<br />

a<br />

α<br />

α−1<br />

Lemma 4.13.2. Suppose that tr( q−1<br />

i=1 aix i ) = 0 for all x ∈ Fq. Then for all<br />

i with 1 ≤ i ≤ q − 1, we have<br />

<br />

α∈A<br />

a α<br />

iα−1 = 0,<br />

where the subscripts are considered mod q −1 <strong>and</strong> automorphisms are written<br />

as powers of 2.<br />

Proof. Now<br />

tr<br />

q−1<br />

<br />

aix i<br />

<br />

i=1<br />

=<br />

≡<br />

q−1 <br />

tr(aix i q−1 <br />

) =<br />

i=1<br />

<br />

q−1 <br />

j=1<br />

α∈A<br />

a α<br />

jα −1<br />

i=1 α∈A<br />

<br />

a α i x iα<br />

x j (mod x q + x).<br />

= 0


4.13. THE TRACE MAP 221<br />

.<br />

So tr( q−1<br />

i=1 aix i ) = 0 for all x ∈ Fq if <strong>and</strong> only if<br />

for all j with 1 ≤ j ≤ q − 1.<br />

<br />

α∈A<br />

a α<br />

jα−1 = 0,<br />

Keep <strong>in</strong> m<strong>in</strong>d that each positive <strong>in</strong>teger less than q = 2e has a unique<br />

b<strong>in</strong>ary expansion <br />

0≤i


222 CHAPTER 4. THE UBIQUITOUS OVAL<br />

prov<strong>in</strong>g part (b). F<strong>in</strong>ally, to verify part (c), consider<br />

x α+1 y + xy α+1<br />

(x + y) α+2<br />

= xαy + xyα +<br />

(x + y) α+1<br />

x α/2 y + xy α/2<br />

(x + y) (α+2)/2<br />

By part (a), both terms on the right-h<strong>and</strong> side have trace 0.<br />

2<br />

.<br />

4.14 Translation <strong>Ovals</strong> <strong>and</strong> the External L<strong>in</strong>es<br />

Lemma<br />

Throughout this section α is a generator of Aut(Fq), q = 2 e . Let D(α) be<br />

the hyperoval<br />

D(α) = {(1, t, t α ) : t ∈ Fq} ∪ {(0, 0, 1), (0, 1, 0)}.<br />

Let G be the stabilizer of D(α) <strong>in</strong> P GL(3, q).<br />

subgroups<br />

We have seen that G has<br />

⎧⎛<br />

⎨ 1<br />

D = ⎝ 0<br />

⎩<br />

0<br />

0<br />

a<br />

0<br />

0<br />

0<br />

aα ⎞<br />

⎠ : a ∈ F ∗ ⎫ ⎧⎛<br />

⎬ ⎨ 1<br />

q , E = ⎝<br />

⎭ ⎩<br />

b bα 0<br />

0<br />

1<br />

0<br />

⎞ ⎫<br />

⎬<br />

0 ⎠ : b ∈ Fq<br />

⎭<br />

1<br />

.<br />

We saw that E is an elation group of order q with axis ℓ = [1, 0, 0]. The<br />

follow<strong>in</strong>g lemma has a rout<strong>in</strong>e proof that we leave as an exercise.<br />

Lemma 4.14.1. The orbits of the group 〈D, E〉 on the po<strong>in</strong>ts of P G(2, q)<br />

are the follow<strong>in</strong>g:<br />

(i) ∆1 = {(0, 1, 0)} (the nucleus of D(α));<br />

(ii) ∆2 = {(0, 0, 1)} (the po<strong>in</strong>t of D(α) on the axis ℓ);<br />

(iii) ∆3 = {(0, 1, t) : t ∈ F ∗ q<br />

(the other q − 1 po<strong>in</strong>ts of ℓ);<br />

(iv) ∆4 = {(1, t, t α ) : t ∈ Fq} (the other q po<strong>in</strong>ts of D(α));<br />

(v) ∆5 the rema<strong>in</strong><strong>in</strong>g q 2 − q po<strong>in</strong>ts.<br />

We now exam<strong>in</strong>e the images of translation ovals under coll<strong>in</strong>eations of<br />

P G(2, q).


4.14. TRANSLATION OVALS AND THE EXTERNAL LINES LEMMA223<br />

Theorem 4.14.2. Suppose that O is a translation oval of P G(2, q) (q = 2 e )<br />

with associated automorphism α <strong>and</strong> conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t (0, 0, 1). Let ℓ be<br />

the l<strong>in</strong>e ℓ = [1, 0, 0].<br />

(i) Suppose that O has nucleus (0, 1, 0). Then O = Of for some opolynomial<br />

f : Fq → Fq. If ℓ is an axis of O, then<br />

f(t) = a + bt α<br />

for some a, b ∈ Fq with b = 0; if ℓ is not an axis of O, then<br />

for some a, b, c ∈ Fq with b = 0.<br />

f(t) = a + b(t + c) α<br />

α−1<br />

(ii) Suppose that O has nucleus (0, 1, a) for some a ∈ F ∗ q , <strong>and</strong> that ℓ is an<br />

axis of O. Then O = Of where<br />

for some b, c ∈ Fq with b = 0.<br />

f(t) = c + at + bt α<br />

Proof. By Theorem 4.10.1 there is a matrix M ∈ GL(3, q) for which Oα·M =<br />

O. S<strong>in</strong>ce M maps the nucleus (0, 1, 0) of Oα to the nucleus of O, we have<br />

(0, 1, 0) · M = (0, e, 0) (the second row of M)<br />

for some nonzero e <strong>in</strong> Fq. First, suppose that ℓ = [1, 0, 0] is an axis of O. If<br />

O is a conic the stabilizer of O is transitive on tangent l<strong>in</strong>es to O, so we may<br />

assume that M fixes ℓ. On the other h<strong>and</strong>, if O is not a conic, then ℓ is the<br />

unique axis of both Oα <strong>and</strong> of O, <strong>and</strong> aga<strong>in</strong> M fixes ℓ. Thus M fixes ℓ, <strong>and</strong><br />

s<strong>in</strong>ce (0, 0, 1) is the p<strong>in</strong>t of <strong>in</strong>tersection of ℓ <strong>and</strong> Oα, <strong>and</strong> also of ℓ <strong>and</strong> O, it<br />

follows that<br />

(0, 0, 1)M = (0, 0, g), g = 0 (the third row of M).<br />

S<strong>in</strong>ce M is <strong>in</strong>vertible, the (1, 1) entry of M must be nonzero, so we may<br />

assume that it is 1. This shows that for some d, h ∈ Fq we must have<br />

⎛<br />

1 d<br />

⎞<br />

h<br />

M = ⎝ 0 e 0 ⎠ .<br />

0 0 g


224 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Then M maps the po<strong>in</strong>t (1, t, t α ) to the po<strong>in</strong>t (1, d+et, h+gt α ). Set s = d+et,<br />

so that t = e −1 (s + d) <strong>and</strong> h + gt α = h + g(e −1 d) α + ge −α s α . Then sett<strong>in</strong>g<br />

a = h + g(e −1 d) α <strong>and</strong> b = ge −α we obta<strong>in</strong><br />

Oα · M = {(1, s, a + bs α ) : P s ∈ Fq} ∪ {(0, 0, 1)}.<br />

Second, suppose that ℓ is not an axis of O.<br />

(1, t, t<br />

Then M maps the po<strong>in</strong>t<br />

α ) of Oα to (0, 0, 1) for some t ∈ Fq. Set<br />

⎛<br />

t<br />

L = ⎝<br />

α t<br />

⎞<br />

1<br />

0 1 0 ⎠ , so L<br />

1 0 0<br />

−1 ⎛<br />

0 0 1<br />

= ⎝ 0 1 0<br />

1 t tα ⎞<br />

⎠ .<br />

So L−1 · M fixes both po<strong>in</strong>ts (0,1,0) <strong>and</strong> (0,0,1). Hence, on multiply<strong>in</strong>g L by<br />

a scalar if necessary, we have<br />

L −1 ⎛<br />

1 c<br />

⎞<br />

a<br />

· M = ⎝ 0 e 0 ⎠ ,<br />

0 0 g<br />

for some a, c, e, g ∈ Fq with e <strong>and</strong> g nonzero.<br />

So<br />

Oα · M = OαL(L −1 M)<br />

= ({(s α + t α , s + t, 1) : s ∈ Fq} ∪ {(1, 0, 0)}) · L −1 M<br />

= ({(u α , u, 1) : u ∈ Fq} ∪ {(1, 0, 0)}) · L −1 M<br />

= ({(1, v, v α<br />

α−1 ) : v ∈ Fq} ∪ {(0, 0, 1)} (on sett<strong>in</strong>g v = u 1−α )<br />

= {(1, c + ev, a + gv α<br />

α−1 ) : v ∈ Fq} ∪ {(0, 0, 1)}<br />

= {(1, w, a + g((e −1 (w + c)) α<br />

α−1 )) : w ∈ Fq} ∪ {(0, 0, 1)}.<br />

Thus sett<strong>in</strong>g b = ge−α/(α−1) we have Oα · M = Of with<br />

f(w) = a + b(w + c) α<br />

α−1 . This completes the proof of part ⎛(i).<br />

1 0<br />

⎞<br />

0<br />

Part (ii) follows from part (i) on apply<strong>in</strong>g the matrix ⎝ 0 1 a ⎠.<br />

0 0 1<br />

⎛<br />

1 0<br />

⎞<br />

b<br />

We now review the results of Theorem 4.14.2. Put Ma,b = ⎝ 0 1 0 ⎠,<br />

0<br />

a = 0. Then<br />

0 a


4.14. TRANSLATION OVALS AND THE EXTERNAL LINES LEMMA225<br />

Ma,b : (1, t, t α ) ↦→ (1, t, at α + b);<br />

(0, 0, 1) ↦→ (0, 0, a) ≡ (0, 0, 1);<br />

(0, 1, 0) ↦→ (0, 1, 0).<br />

With a natural extension of the usual notation we see that Ma,b maps Oα<br />

to Oat α +b. This gives all translation ovals equivalent to Oα with axis [1, 0, 0]<br />

conta<strong>in</strong><strong>in</strong>g (0, 0, 1) <strong>and</strong> hav<strong>in</strong>g nucleus (0, 1, 0).<br />

Corollary 4.14.3. The l<strong>in</strong>e [c, v, 1] through (0, 1, v), v = 0, is a secant to<br />

Oatα +b if <strong>and</strong> only if c ∈ vα∗ 1<br />

· a ( α) ∗<br />

· K + b.<br />

Proof. To see this recall that <strong>in</strong> general atα + bt + c = 0 has a solution t if<br />

<strong>and</strong> only if tα + <br />

b c t + a a = 0 has a solution (now recall that α∗ = α/(α − 1)<br />

<strong>and</strong> divide by <br />

b α∗ 1<br />

) if <strong>and</strong> only if c ∈ a ( α) ∗<br />

· bα∗ · K. Then [c, v, 1] has a<br />

a<br />

po<strong>in</strong>t (1, t, atα + b) if <strong>and</strong> only if c + vt + atα + b = 0 has a solution, from<br />

which the desired result follows immediately.<br />

This immediately gives us the follow<strong>in</strong>g also.<br />

Corollary 4.14.4. By fix<strong>in</strong>g v <strong>and</strong> a, <strong>and</strong> vary<strong>in</strong>g b ∈ Fq we get a family of<br />

q hyperovals <strong>in</strong> two classes. In one class (of size q/2) all the ovals have the<br />

same secants through (0, 1, v). Each po<strong>in</strong>t of the l<strong>in</strong>e [c, v, 1] is on a unique<br />

oval <strong>in</strong> one of the classes, with each oval <strong>in</strong> that class meet<strong>in</strong>g [c, v, 1] <strong>in</strong> two<br />

po<strong>in</strong>ts. If O1 <strong>and</strong> O2 are <strong>in</strong> opposite classes, they are compatible at (0, 1, v).<br />

Of O1 <strong>and</strong> O2 are compatible at (0, 1, v) <strong>and</strong> O1 <strong>and</strong> O3 are compatible at<br />

(0, 1, v), then O2 <strong>and</strong> O3 have the same secants through (0, 1, v) <strong>and</strong> the same<br />

external l<strong>in</strong>es.<br />

Now for a, b, v ∈ Fq with a = 0 put<br />

⎛<br />

1 0 b<br />

T(a,b,v) = ⎝ 0 1 v<br />

0 0 a<br />

takes Of with nucleus (0, 1, 0) <strong>and</strong> conta<strong>in</strong><strong>in</strong>g (0, 0, 1) to an equivalent oval<br />

Oaf(t)+vt+b with nucleus (0, 1, v) <strong>and</strong> conta<strong>in</strong><strong>in</strong>g (0, 0, 1).<br />

Start with: [c, w, 1] on (0, 1, w), w = 0, is secant to Oα if <strong>and</strong> only if<br />

c ∈ wα∗ · K. Map by the homography with matrix T(a,b,v) to obta<strong>in</strong><br />

⎞<br />


226 CHAPTER 4. THE UBIQUITOUS OVAL<br />

[ac + b, aw + v, 1] on (0, 1, aw + v) is secant to Oatα +vt+b iff c ∈ w α∗<br />

· K.<br />

Put x = ac + b, y = aw + v. Then we have (for y = v) that<br />

[x, y, 1] on (0, 1, y) is secant to Oatα +vt+b iff x ∈ (y +v) α∗<br />

1<br />

a ( α) ∗<br />

K +b. (4.75)<br />

Here Oat α +vt+b (for a, v, b ∈ Fq with a = 0) gives all ovals equivalent to<br />

Oα conta<strong>in</strong><strong>in</strong>g (0, 0, 1), hav<strong>in</strong>g nucleus on [1, 0, 0] <strong>and</strong> hav<strong>in</strong>g [1, 0, 0] as axis.<br />

We generalize this one step further. For a = 0, v = w, put<br />

⎛<br />

1 b<br />

⎞<br />

bw<br />

M(a,b,v,w) = ⎝ 0 1 v ⎠ .<br />

0 a aw<br />

Then the homography with matrix M(a,b,v,w) maps po<strong>in</strong>ts as follows:<br />

M(a,b,v,w) : (1, t, t α ) ↦→ 1, at α + t + b, w(at α + b) + vt);<br />

(0, 1, 0) ↦→ (0, 1, v); (4.76)<br />

(0, 0, 1) ↦→ (0, 1, w).<br />

This gives all ovals equivalent to Oα with [1, 0, 0] as axis, nucleus (0, 1, v),<br />

<strong>and</strong> conta<strong>in</strong><strong>in</strong>g (0, 1, w).<br />

F<strong>in</strong>ally, for a, b, c ∈ Fq with a = 0 put<br />

⎛<br />

0<br />

M = ⎝ 0<br />

1<br />

0<br />

1<br />

b<br />

⎞<br />

a<br />

0 ⎠ ,<br />

c<br />

so M −1 = 1<br />

⎛<br />

⎝<br />

a<br />

c ab a<br />

0 a 0<br />

1 0 0<br />

Corollary 4.14.5. Then the homography with matrix M maps<br />

(1, t, t α ) ↦→ (t α , bt α + t, ct α + a).<br />

If t = 0, the image po<strong>in</strong>t is (1, s, a(s + b) α∗ + c). If t = 0 this says (1, 0, 0) ↦→<br />

(0, 0, 1). The l<strong>in</strong>e [1, 0, 0] maps to the new axis [c, 0, 1] <strong>and</strong> (0, 1, 0) to the same<br />

nucleus (0, 1, 0). This gives all ovals equivalent to Oα conta<strong>in</strong><strong>in</strong>g (0, 0, 1),<br />

hav<strong>in</strong>g nucleus (0, 1, 0) <strong>and</strong> hav<strong>in</strong>g [c.0, 1] as axis.<br />

⎞<br />

⎠ .


4.14. TRANSLATION OVALS AND THE EXTERNAL LINES LEMMA227<br />

We emphasize the follow<strong>in</strong>g:<br />

Theorem 4.14.6. [c, v, 1] on (0, 1, v) is secant to Otα +b if <strong>and</strong> only if<br />

c ∈ vα∗ · K + b. Also, Otα <strong>and</strong> Otα +b are compatible at (0, 1, v) if <strong>and</strong> only if<br />

b/vα∗ ∈ K if <strong>and</strong> only if tr b/vα∗ = 1. This implies there are q/2 po<strong>in</strong>ts of<br />

compatibility on [1, 0, 0] <strong>and</strong> where they are <strong>in</strong>compatible they share secants<br />

completely.<br />

Suppose we are given a po<strong>in</strong>t N of P G(2, q) with q even as usual, <strong>and</strong> a<br />

set S of q/2 l<strong>in</strong>es on N, <strong>and</strong> a po<strong>in</strong>t M dist<strong>in</strong>ct from N <strong>and</strong> not on any of<br />

the l<strong>in</strong>es of S. We would like to know which ovals have M as nucleus <strong>and</strong> S<br />

as their set of external l<strong>in</strong>es on N. As we shall see later, a good answer to<br />

this question would be helpful <strong>in</strong> determ<strong>in</strong><strong>in</strong>g all ovoids <strong>in</strong> P G(3, q). For the<br />

present we give a partial answer for translation ovals. This result is known<br />

as The External L<strong>in</strong>es Lemma <strong>and</strong> is a key to later results characteriz<strong>in</strong>g<br />

ovoids hav<strong>in</strong>g plane sections that are translation ovals.<br />

Theorem 4.14.7. (The External L<strong>in</strong>es Lemma of Penttila <strong>and</strong> Praeger) Let<br />

O be a translation oval of P G(2, q), q = 2 e , with nucleus N, <strong>and</strong> let ℓ be<br />

an axis of O. Let P be the po<strong>in</strong>t of O on ℓ <strong>and</strong> let Q be another po<strong>in</strong>t of ℓ<br />

dist<strong>in</strong>ct from P <strong>and</strong> N. Suppose that O ′ is a translation oval conta<strong>in</strong><strong>in</strong>g P<br />

such that its nucleus N ′ is a po<strong>in</strong>t on ℓ dist<strong>in</strong>ct from Q. If every l<strong>in</strong>e on Q<br />

external to O is also external to O ′ , then ℓ is an axis of O ′ .<br />

Proof. We may assume that O is Oα, that the nucleus N is (0, 1, 0), that ℓ<br />

is [1, 0, 0], <strong>and</strong> hence that P = (0, 0, 1). Similarly, there must be a matrix<br />

M tak<strong>in</strong>g O ′ to Oβ, where α <strong>and</strong> β are generators of the Galois group of Fq.<br />

Also, s<strong>in</strong>ce by Lemma 4.14.1 the q − 1 po<strong>in</strong>ts of ℓ dist<strong>in</strong>ct from P <strong>and</strong> N<br />

form one orbit of the stabilizer <strong>in</strong> GL(3, q) of Oα, we may assume that Q is<br />

(0, 1, 1). If the image QM of Q lies on ℓ, then as M maps N ′ (the nucleus<br />

of O ′ ) to N = (0, 1, 0) (the nucleus of Oβ), it follows that M maps the l<strong>in</strong>e<br />

ℓ = 〈N ′ , Q〉 to the l<strong>in</strong>e 〈N, QM〉 = ℓ, i.e., ℓM = ℓ. Thus if QM lies on ℓ,<br />

then as ℓ is an axis of Oβ, ℓ must be an axis of O ′ .<br />

Hence we may assume that QM is not on ℓ. S<strong>in</strong>ce by Lemma 4.14.1 the<br />

set of all po<strong>in</strong>ts not on ℓ or on Oβ is one orbit of the stabilizer of Oβ <strong>in</strong><br />

GL(3, q), we may assume that QM is (1, 1, 0).<br />

A l<strong>in</strong>e on Q = (0, 1, 1) different from [1, 0, 0] is of the form ℓa = [a, 1, 1].<br />

Note that ℓa conta<strong>in</strong>s a po<strong>in</strong>t (1, t, t α ) of Oα if <strong>and</strong> only if a = t + t α . So ℓa<br />

is an external l<strong>in</strong>e to Oα if <strong>and</strong> only if a ∈ K, where K is the kernel of the


228 CHAPTER 4. THE UBIQUITOUS OVAL<br />

trace map. Similarly, a l<strong>in</strong>e on QM = (1, 1, 0) is of the form mb = [1, 1, b].<br />

This l<strong>in</strong>e conta<strong>in</strong>s a po<strong>in</strong>t (1, t, t β of Oβ (where clearly t = 0) if <strong>and</strong> only if<br />

1 + t + bt β = 0, hence a l<strong>in</strong>e on QM is external to Oβ if <strong>and</strong> only if it is is of<br />

the form<br />

mb = [1, 1, b], with b ∈ X = {t −β + t 1−β : t ∈ Fq}.<br />

By hypothesis, the l<strong>in</strong>es on Q external to O are external to O ′ . Hence<br />

{ℓa : a ∈ K} · M = {mb : b ∈ X}.<br />

As N ′ is a po<strong>in</strong>t on ℓ dist<strong>in</strong>ct from P <strong>and</strong> Q, we have N ′ = (0, 1, c) for<br />

some c = 1. Moreover, M maps N ′ to N = (0, 1, 0), maps Q = (0, 1, 1) to<br />

QM = (1, 1, 0) <strong>and</strong> maps P = (0, 0, 1) = ℓ ∩ O ′ to ℓM ∩ Oβ = (1, 0, 0) (s<strong>in</strong>ce<br />

ℓM is the l<strong>in</strong>e on N = N ′ M <strong>and</strong> QM). S<strong>in</strong>ce m31 = 0 we may assume that<br />

m31 = 1. Then (0, 1, c)M = λ(0, 1, 0), <strong>and</strong> all of this forces M to look like<br />

⎛<br />

M = ⎝<br />

m11 m12 m13<br />

c m22 0<br />

1 0 0<br />

⎞<br />

⎠ , <strong>and</strong> M −1 ⎛<br />

⎜<br />

= ⎜<br />

⎝<br />

0 0 1<br />

0<br />

1<br />

m13<br />

1<br />

m22<br />

m12<br />

m13m22<br />

c<br />

m22<br />

m11m22+cm12<br />

m13m22<br />

for some mij ∈ Fq with m22 = c+1. If we replace m22 with c+1 <strong>and</strong> simplify<br />

we see that M maps ℓa to mb where b = a+m11+m12 . Set d = m13<br />

1 <strong>and</strong> <strong>and</strong><br />

m13<br />

e = (m11 + m12)/m13, not<strong>in</strong>g that m13 is nonzero s<strong>in</strong>ce M is nons<strong>in</strong>gular.<br />

Then M maps ℓa to mb where b = da + e. Hence X = dK + e. S<strong>in</strong>ce the<br />

l<strong>in</strong>e m0 conta<strong>in</strong>s P <strong>and</strong> is therefore not external, it must be that 0 ∈ X<br />

<strong>and</strong> d−1e ∈ K. Then X = dK + e says that X is a coset of an additive<br />

group, <strong>and</strong> s<strong>in</strong>ce X conta<strong>in</strong>s 0, it must be that X = dK. By def<strong>in</strong>ition<br />

X = {t−β + t1−β : t ∈ Fq} = {sβ∗ + s : s ∈ Fq}, which is clearly <strong>in</strong>variant<br />

under Aut(Fq), <strong>and</strong> hence by Theorem 4.13.1 we have X = K. We now<br />

want to use Lemma 4.13.2 to see that β/(β − 1) is an automorphism, so<br />

that from Lemma 4.13.3 it must be that β = 2. Thus O ′ is a conic <strong>and</strong><br />

all tangent l<strong>in</strong>es are axes. In particular ℓ is an axis of O ′ . So suppose that<br />

tr(xk + x) = 0 for all s ∈ Fq. S<strong>in</strong>ce xk + x = q−1 i=1 aixi with ai = 1 for i = k<br />

<strong>and</strong> i = 1. By Lemma 4.13.2 <br />

jα−1 = <br />

α 1jα = 0. Put j = 1 to<br />

α∈Aut(Fq) 1α<br />

get <br />

α 1α = 0, forc<strong>in</strong>g k to be an automorphism. By Lemma 4.13.3 β∗ = k<br />

is an automorphism if <strong>and</strong> only if β = 2.<br />

⎞<br />

⎟<br />

⎠ ,


4.15. OVAL DERIVATION 229<br />

4.15 Oval Derivation<br />

The ma<strong>in</strong> idea of this section is to start with one Desarguesian aff<strong>in</strong>e plane of<br />

order q <strong>and</strong> to replace most of its l<strong>in</strong>es (as sets of po<strong>in</strong>ts) with certa<strong>in</strong> q-arcs<br />

to obta<strong>in</strong> what appears to be a new aff<strong>in</strong>e plane but which is isomorphic to<br />

the orig<strong>in</strong>al.<br />

Let α : Fq → Fq be an arbitrary permutation of the elements of Fq with<br />

0α = 0. Let P = {(1, y, z) : y, z ∈ Fq}, so P is a set of q2 elements that<br />

are go<strong>in</strong>g to play the role of po<strong>in</strong>ts <strong>in</strong> the planes we are about to construct.<br />

Given the permutation α, def<strong>in</strong>e a po<strong>in</strong>t-l<strong>in</strong>e geometry Aα as follows. The<br />

po<strong>in</strong>ts of Aα are just the elements of P. The l<strong>in</strong>es are to be described as sets<br />

of q po<strong>in</strong>ts each. They are of two classes:<br />

(a) For arbitrary c, m ∈ Fq let [c, m, 1]α be the set of po<strong>in</strong>ts (1, y, z) for<br />

which<br />

⎡<br />

(1, y α , z) ⎣<br />

c<br />

m<br />

1<br />

⎤<br />

⎦ = c + my α + z = 0.<br />

So [c, m, 1]α conta<strong>in</strong>s the po<strong>in</strong>ts (1, y, c + my α ), for all y ∈ Fq.<br />

(b) For arbitrary c ∈ Fq, let [c, 1, 0]α be the set of po<strong>in</strong>ts (1, y, z) for which<br />

(1, y α ⎡ ⎤<br />

c<br />

, z) ⎣ 1 ⎦ = c + y<br />

0<br />

α = 0.<br />

The l<strong>in</strong>e [c, 1, 0]α conta<strong>in</strong>s the po<strong>in</strong>ts (1, cα−1, z), or <strong>in</strong> other words, [cα , 1, 0]α<br />

conta<strong>in</strong>s the po<strong>in</strong>ts (1, c, z) for all z ∈ Fq. It is now a straight forward exercise<br />

to show that with these po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es Aα is an aff<strong>in</strong>e plane of order q. For<br />

fixed m ∈ Fq, the l<strong>in</strong>es of the form [c, m, 1]α constitute a parallel class, <strong>and</strong><br />

the l<strong>in</strong>es of the form [cα , 1, 0]α form a parallel class. Now let α <strong>and</strong> β both be<br />

arbitrary permutations of the elements of Fq with 0α = 0β = 0, so we have<br />

two planes Aα <strong>and</strong> Aβ.<br />

Def<strong>in</strong>e a map φα,β on the po<strong>in</strong>ts of P by<br />

φα,β : (1, y, z) ↦→ (1, y α◦β−1<br />

, z) for all y, z ∈ Fq. (4.77)<br />

It is clear that φα,β is a permutation of the po<strong>in</strong>ts of Aα, <strong>and</strong> the typical<br />

po<strong>in</strong>t (1, y, c + myα ) of [c, m, 1]α is mapped to the po<strong>in</strong>t (1, yα◦β−1, c + myα )<br />

of [c, m, 1]β. Similarly, the typical po<strong>in</strong>t (1, cα−1, z) of [c, 1, 0]α is mapped to


230 CHAPTER 4. THE UBIQUITOUS OVAL<br />

the po<strong>in</strong>t (1, cβ−1, z) of [c, 1, 0]β. It follows that φα,β is a permutation of the<br />

po<strong>in</strong>ts of P mapp<strong>in</strong>g the l<strong>in</strong>es of Aα to the l<strong>in</strong>es of Aβ. This means it is an<br />

isomorphism from Aα to Aβ. If α = 1 is the identity mapp<strong>in</strong>g on Fq, then A1<br />

is just the usual coord<strong>in</strong>atization of the classical Desarguesian aff<strong>in</strong>e plane<br />

AG(2, q) whose projective completion to the projective plane P G(2, q) has<br />

the usual l<strong>in</strong>e [1, 0, 0] as l<strong>in</strong>e at <strong>in</strong>f<strong>in</strong>ity. This means that all the planes just<br />

constructed are isomorphic to the usual Desarguesian plane AG(2, q).<br />

We now consider what the l<strong>in</strong>es of Aβ look like as sets of po<strong>in</strong>ts <strong>in</strong> Aα for<br />

dist<strong>in</strong>ct permutations α <strong>and</strong> β with 0α = 0β = 0.<br />

First, for fixed c ∈ Fq, the po<strong>in</strong>ts (1, c, z), z ∈ Fq, constitute the po<strong>in</strong>ts of<br />

the l<strong>in</strong>e [c α , 1, 0]α of the plane Aα (which may be considered to pass through<br />

the <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t (0, 0, 1) of the projective completion of Aα). But they also<br />

constitute the po<strong>in</strong>ts of the l<strong>in</strong>e [c β , 1, 0]β of Aβ (through the po<strong>in</strong>t (0, 0, 1)<br />

of the projective completion of Aβ). Similarly, if m = 0 <strong>and</strong> c ∈ Fq is fixed,<br />

the po<strong>in</strong>ts (1, y, c), y ∈ Fq, of the l<strong>in</strong>e [c, 0, 1]α are also the po<strong>in</strong>ts of the l<strong>in</strong>e<br />

[c, 0, 1]β, all of which may be considered to pass through the <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t<br />

(0, 1, 0). So the two parallel classes of l<strong>in</strong>es just considered are both parallel<br />

classes of l<strong>in</strong>es <strong>in</strong> each of the aff<strong>in</strong>e planes Aα <strong>and</strong> Aβ. Moreover, we have<br />

the follow<strong>in</strong>g for arbitrary c, c1, m ∈ Fq with m = 0:<br />

[c α 1 , 1, 0]α ∩ [c, m, 1]β = {(1, c1, c + mc β<br />

1 )}; (4.78)<br />

[c1, 0, 1]α ∩ [c, m, 1]β = {(1,<br />

β−1 c + c1<br />

, c1)}. (4.79)<br />

m<br />

This shows that the β-l<strong>in</strong>es [c, m, 1]β with m = 0 meet the α-l<strong>in</strong>es through<br />

the <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>ts (0, 1, 0) <strong>and</strong> (0, 0, 1) <strong>in</strong> exactly one po<strong>in</strong>t. We now want<br />

to determ<strong>in</strong>e under what conditions the β-l<strong>in</strong>es [c2, m2, 1]β meet the α-l<strong>in</strong>es<br />

[c1, m1, 1]α <strong>in</strong> at most two po<strong>in</strong>ts. So suppose that y1, y2 <strong>and</strong> y3 are dist<strong>in</strong>ct<br />

elements of Fq <strong>and</strong> that m1 <strong>and</strong> m2 are nonzero elements of Fq. Then<br />

(1, yi, zi) ∈ [c1, m1, 1]α ∩ [c2, m2, 1]β holds if <strong>and</strong> only if<br />

zi = c1 + m1y α i = c2 + m2y β<br />

i<br />

for i = 1, 2, 3.<br />

A little rearrang<strong>in</strong>g shows that this holds if <strong>and</strong> only if<br />

m2<br />

m1<br />

= yα 1 + yα 2<br />

y β<br />

1 + y β =<br />

2<br />

yα 1 + yα 3<br />

y β<br />

1 + y β<br />

3<br />

.


4.15. OVAL DERIVATION 231<br />

From this it is clear that each β-l<strong>in</strong>e [c2, m2, 1]β is a q-arc <strong>in</strong> Aα, <strong>and</strong> dually,<br />

each α-l<strong>in</strong>e [c1, m1, 1]α is a q-arc <strong>in</strong> Aβ if <strong>and</strong> only if<br />

β −1 ◦ α is an o-permutation if <strong>and</strong> only if α −1 ◦ β is an o-permutation.<br />

Moreover, we see that the aff<strong>in</strong>e plane Aβ is derived from the plane Aα<br />

by the follow<strong>in</strong>g procedure. The l<strong>in</strong>es [c, 1, 0]α through the <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t<br />

(0, 0, 1) (as sets of po<strong>in</strong>ts) rema<strong>in</strong> as l<strong>in</strong>es but are re-coord<strong>in</strong>atized as [c, 1, 0]β.<br />

Similarly, the l<strong>in</strong>es [c, 0, 1]α through the <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t (0, 1, 0) (as sets of<br />

po<strong>in</strong>ts) rema<strong>in</strong> as l<strong>in</strong>es but are re-coord<strong>in</strong>atized as [c, 0, 1]β. F<strong>in</strong>ally, for<br />

m = 0, the l<strong>in</strong>e [c, m, 1]α is replaced (as a po<strong>in</strong>t set) by the q-arc [c, m, 1]β.<br />

Moreover, the q-arc [c, m, 1]β together with the <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>t (0, 0, 1) is an<br />

oval <strong>in</strong> the projective completion of Aα hav<strong>in</strong>g nucleus (0, 1, 0). The function<br />

φα,β maps the l<strong>in</strong>e [c, m, 1]α to the oval [c, m, 1]β (as a po<strong>in</strong>t set) which is a<br />

β-l<strong>in</strong>e. It is clear that the roles of α <strong>and</strong> β may be <strong>in</strong>terchanged.<br />

In the plane Aα we now give the po<strong>in</strong>t (1, y, z) coord<strong>in</strong>ates P (1, y α , z).<br />

Then P (1, y α , z) is on the q-arc [c, m, 1]β if <strong>and</strong> only if (1, y, z) ∈ [c, m, 1]β<br />

if <strong>and</strong> only if z = c + my β = c + m(y α ) α−1 ◦β , so <strong>in</strong> the usual coord<strong>in</strong>ates<br />

the q-arc [c, m, 1]β is the q-arc {(1, t, c + mt α−1 ◦β ) : t ∈ Fq}, which completes<br />

to a unique hyperoval which may be viewed as conta<strong>in</strong><strong>in</strong>g the <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>ts<br />

(0, 0, 1) <strong>and</strong> (0, 1, 0).<br />

This last observation is worth stat<strong>in</strong>g as a theorem.<br />

Theorem 4.15.1. Let α <strong>and</strong> β be permutations of the elements of Fq with<br />

0 α = 0 β = 0. Suppose that α −1 ◦ β (<strong>and</strong> hence also β −1 ◦ α) is an opermutation<br />

of Fq. Then the q-arc [c, m, 1]β of Aα completes to an oval<br />

projectively equivalent to O α −1 ◦β <strong>in</strong> the projective completion of Aα. Similarly,<br />

the q-arc [c, m, 1]α of Aβ completes to an oval projectively equivalent<br />

to Oβ −1 ◦α <strong>in</strong> the projective completion of Aβ. In particular, if α = 1, so Aα<br />

is just the usual representation of the Desarguesian plane A(2, q), the q-arc<br />

[c, m, 1]β of A(2, q) completes to an oval projectively equivalent to Oβ, <strong>and</strong><br />

the q-arc [c, m, 1]1 of Aβ completes to an oval isomorphic to O β −1.<br />

We now review, from a slightly different po<strong>in</strong>t of view, the process used<br />

to replace the plane Aα with the plane Aβ. View Aα as the classical aff<strong>in</strong>e<br />

plane A(2, q) by giv<strong>in</strong>g the po<strong>in</strong>t (1, y, z) coord<strong>in</strong>ates P (1, y α , z) so that it<br />

is naturally completed to the projective plane P G(2, q). We start with the<br />

o-permutation γ = α −1 ◦ β <strong>and</strong> the oval {(1, t, t γ ) : t ∈ Fq} ∪ {(0, 0, 1)} with


232 CHAPTER 4. THE UBIQUITOUS OVAL<br />

nucleus N = (0, 1, 0). This is the oval Oγ : {(x, y, z) : y γ = x γ−1 z. For each<br />

pair (c, m) ∈ Fq × Fq with m = 0 the homography<br />

⎛<br />

(x, y, z) ↦→ (x, y, z) ⎝<br />

1 0 c<br />

0 1 0<br />

0 0 m<br />

maps the oval Oγ : yγ = xγ−1z of P G(2, q) to the oval Oγ(c, m) : yγ =<br />

xγ−1 ( 1 c z + m mx). These ovals are all isomorphic to Oγ, all conta<strong>in</strong> the po<strong>in</strong>t<br />

Q = (0, 0, 1) <strong>and</strong> all have nucleus N = (0, 1, 0). Let the l<strong>in</strong>e L = 〈Q, N〉 be<br />

the l<strong>in</strong>e at <strong>in</strong>f<strong>in</strong>ity to obta<strong>in</strong> the aff<strong>in</strong>e plane A(2, q). If we delete the po<strong>in</strong>t<br />

Q from each of these ovals, we obta<strong>in</strong> po<strong>in</strong>t sets which are q(q − 1) l<strong>in</strong>es of<br />

Aβ, with the other two parallel classes of l<strong>in</strong>es be<strong>in</strong>g the l<strong>in</strong>es different from<br />

L through the two po<strong>in</strong>ts Q <strong>and</strong> N. The construction of the plane Aβ from<br />

Aα is called α −1 ◦ β-derivation with respect to (Q, N). The l<strong>in</strong>es of Aβ form<br />

the α −1 ◦ β-derivation net of Aα with respect to (Q, N). S<strong>in</strong>ce the parallel<br />

class of l<strong>in</strong>es of Aα with po<strong>in</strong>t at <strong>in</strong>f<strong>in</strong>ity Q is also a parallel class of l<strong>in</strong>es<br />

of Aβ with po<strong>in</strong>t at <strong>in</strong>f<strong>in</strong>ity Q, the notation Q will be used to denote both<br />

parallel classes. Similarly, the parallel classes with po<strong>in</strong>t at <strong>in</strong>f<strong>in</strong>ity N will<br />

both be denoted N .<br />

It is clear that if we start with the plane Aβ <strong>and</strong> perform β −1 ◦α-derivation<br />

we obta<strong>in</strong> the plane Aα back aga<strong>in</strong>. Note that if α = 1, Aα is just the usual<br />

classical aff<strong>in</strong>e plane A(2, q).<br />

It is important for us to review the preced<strong>in</strong>g material under the assumption<br />

that β = 1. In this case the aff<strong>in</strong>e plane Aβ = A1 is just the usual<br />

classical aff<strong>in</strong>e plane A(2, q). The map<br />

φα,β = φα : (1, y, z) ↦→ (1, y α , z) for all y, z, ∈ Fq<br />

maps the typical po<strong>in</strong>t (1, y, c + my α ) of [c, m, 1]α (which completes to an<br />

oval equivalent to Oα) to the po<strong>in</strong>t (1, y α , c + my α ) of the (ord<strong>in</strong>ary l<strong>in</strong>e)<br />

[c, m, 1]1. Similarly the typical po<strong>in</strong>t (1, cα−1, z) of [c, 1, 0]α is mapped to the<br />

po<strong>in</strong>t (1, c, z) of the l<strong>in</strong>e [c, 1, 0]1. So φα maps the l<strong>in</strong>es of Aα (ovals of A(2, q))<br />

to l<strong>in</strong>es of A(2, q).<br />

The q-arc [c, m, 1]α of A(2, q) completes to the oval Oα <strong>in</strong> the projective<br />

completion of A(2, q). The construction of the aff<strong>in</strong>e plane A(2, q) from<br />

Aα is α−1-derivation <strong>and</strong> the construction of Aα from A(2, q) us<strong>in</strong>g ovals<br />

isomorphic to Oα is α-derivation.<br />

⎞<br />


4.16. TRANSLATION OVALS AGAIN 233<br />

4.16 Translation <strong>Ovals</strong> Aga<strong>in</strong><br />

As usual <strong>in</strong> these notes, q = 2e , Fq is the Galois field with q elements <strong>and</strong> α<br />

is a generator of the Galois group of Fq. Say α : a ↦→ a2i for a fixed <strong>in</strong>teger i<br />

with 0 ≤ i ≤ e − 1 <strong>and</strong> (i, e) = 1. Let Oα be the translation oval def<strong>in</strong>ed by<br />

Oα = {(1, t, t α ) ∈ P G(2, q) : t ∈ Fq} ∪ {(0, 0, 1) (4.80)<br />

= {(x0, x1, x2) ∈ P G(2, q) : x1 α = x0 α−1 x2}.<br />

This oval has nucleus N = (0, 1, 0), <strong>and</strong> we let Dα denote the correspond<strong>in</strong>g<br />

hyperoval<br />

Dα = Oα ∪ {(0, 1, 0)}.<br />

If α ∈ {2, 2 −1 }, then the complete oval stabilizer <strong>in</strong> this case is given by<br />

T = {T(σ,a,b) : σ ∈ Aut(Fq); a, b ∈ Fq, b = 0}, where<br />

⎛<br />

T(σ,a,b) : (x, y, z) ↦→ (x σ , y σ , z σ ) ⎝<br />

1 a a α<br />

0 b 0<br />

0 0 b α<br />

⎞<br />

⎠ . (4.81)<br />

When b = 1 we get a subgroup of T consist<strong>in</strong>g of elations of P G(2, q) fix<strong>in</strong>g<br />

the oval <strong>and</strong> hav<strong>in</strong>g axis [1, 0, 0] <strong>and</strong> center (0, a1−α , 1) (when a = 0) on the<br />

l<strong>in</strong>es [c, aα−1 , 1]. The homography with matrix<br />

⎛<br />

⎝<br />

m 1<br />

α−1 0 cm 1<br />

α−1<br />

0 1 0<br />

0 0 1<br />

maps the oval Oα to the oval<br />

⎞<br />

⎠ with <strong>in</strong>verse<br />

⎛<br />

⎝<br />

m 1<br />

1−α 0 c<br />

0 1 0<br />

0 0 1<br />

[c, m, 1]α = {(1, t, c + mt α ) : t ∈ Fq} ∪ {(0, 0, 1)} (4.82)<br />

with nucleus N = (0, 1, 0). This oval is also a translation oval with axis<br />

[1, 0, 0] <strong>and</strong> with homography stabilizer (complete when α ∈ {2, 2 −1 }) given<br />

by the coll<strong>in</strong>eations with matrices<br />

⎛<br />

⎝<br />

1 am 1<br />

1−α c + cb α + m 1<br />

1−α a α<br />

0 b 0<br />

0 0 b α<br />

⎞<br />

⎞<br />

⎠<br />

⎠ , with a, b ∈ Fq, b = 0. (4.83)


234 CHAPTER 4. THE UBIQUITOUS OVAL<br />

Aga<strong>in</strong> putt<strong>in</strong>g b = 1 gives the elations with [1, 0, 0] as axis. Note that if<br />

α = 2 the translation axis is unique. Also, us<strong>in</strong>g the new notation for these<br />

translation ovals, we have<br />

Oα = [0, 1, 1]α.<br />

The coll<strong>in</strong>eations given above still exist when α = 2, but <strong>in</strong> this case there<br />

are additional coll<strong>in</strong>eations stabiliz<strong>in</strong>g the oval Oα.<br />

Def<strong>in</strong>e the map φα on the po<strong>in</strong>ts of the aff<strong>in</strong>e plane AG(2, q) consist<strong>in</strong>g<br />

of the po<strong>in</strong>ts (1, y, z) not on the l<strong>in</strong>e [1, 0, 0] by<br />

φα : (1, y, z) ↦→ (1, y α , z). (4.84)<br />

It is clear that φα is a bijection mapp<strong>in</strong>g the po<strong>in</strong>t (1, y, c + my α ) of<br />

[c, m, 1]α, (m = 0), to the po<strong>in</strong>t (1, y α , c + my α ) of the l<strong>in</strong>e [c, m, 1]. It<br />

also maps the po<strong>in</strong>ts (1, c, z) of [c, 1, 0] to the po<strong>in</strong>ts (1, c α , z) of [c α , 1, 0] =<br />

[c α , 1, 0]α <strong>and</strong> the po<strong>in</strong>ts (1, y, c) of [c, 0, 1] to the po<strong>in</strong>ts (1, y α , c)] also on<br />

[c, 0, 1].<br />

Theorem 4.16.1. Let A = A(2, q) be the aff<strong>in</strong>e plane whose projective completion<br />

is P G(2, q) with L as l<strong>in</strong>e at <strong>in</strong>f<strong>in</strong>ity. Def<strong>in</strong>e another geometry as<br />

follows. Let α be a generator of the Galois group Aut(Fq). Let (Q, N) be an<br />

ordered pair of dist<strong>in</strong>ct po<strong>in</strong>ts of L. Def<strong>in</strong>e Aα to be the po<strong>in</strong>t-l<strong>in</strong>e <strong>in</strong>cidence<br />

structure whose po<strong>in</strong>ts are just the po<strong>in</strong>ts of A, <strong>and</strong> whose l<strong>in</strong>es are of the<br />

follow<strong>in</strong>g three types:<br />

(a) translation ovals isomorphic to Oα conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t Q, with nucleus<br />

N, <strong>and</strong> with the l<strong>in</strong>e 〈Q, N〉 as translation axis;<br />

(b) the l<strong>in</strong>es of A with po<strong>in</strong>t at <strong>in</strong>f<strong>in</strong>ity Q;<br />

(c) the l<strong>in</strong>es of A with po<strong>in</strong>t at <strong>in</strong>f<strong>in</strong>ity N.<br />

Incidence is def<strong>in</strong>ed to be just that <strong>in</strong>duced by <strong>in</strong>cidence <strong>in</strong> A. Then Aα<br />

is isomorphic to A, i.e., it is an aff<strong>in</strong>e plane isomorphic to A(2, q).<br />

Proof. Without loss of generality we may choose coord<strong>in</strong>ates so that the l<strong>in</strong>e<br />

at <strong>in</strong>f<strong>in</strong>ity is L = [1, 0, 0]. As the group of homographies of P G(2, q) is<br />

doubly transitive on the po<strong>in</strong>ts of L, we may asume that Q = (0, 0, 1) <strong>and</strong><br />

N = (0, 1, 0). Then clearly the map φα def<strong>in</strong>ed above is an isomorphism from<br />

Aα to A.


4.16. TRANSLATION OVALS AGAIN 235<br />

The construction of the plane Aα from AG(2, q) is called α-derivation<br />

with respect to (Q, N). The l<strong>in</strong>es of Aα form the α-derivation net of A with<br />

respect to (Q, N). S<strong>in</strong>ce the parallel class of l<strong>in</strong>es of A with po<strong>in</strong>t at <strong>in</strong>f<strong>in</strong>ity<br />

Q is also a parallel class of l<strong>in</strong>es of Aα with po<strong>in</strong>t at <strong>in</strong>f<strong>in</strong>ity Q, the notation<br />

Q will be used to denote both parallel classes. Similarly, the parallel classes<br />

with po<strong>in</strong>t at <strong>in</strong>f<strong>in</strong>ity N will both be denoted N .<br />

We note <strong>in</strong> pass<strong>in</strong>g that if we start with the plane Aα as a canonical<br />

plane isomorphic to AG(2, q) <strong>and</strong> perform α −1 -derivation we obta<strong>in</strong> the plane<br />

AG(2, q) back aga<strong>in</strong>. All this is clearly just a special case of the general<br />

treatment <strong>in</strong> the preced<strong>in</strong>g section.


236 CHAPTER 4. THE UBIQUITOUS OVAL


Chapter 5<br />

Quadratic Forms<br />

This chapter is devoted to the study of quadratic forms <strong>and</strong> their associated<br />

symmetric bil<strong>in</strong>ear polar forms. In an appendix (Chapter 21) the more general<br />

theory of sesquil<strong>in</strong>ear forms is reviewed, <strong>and</strong> several of the results given<br />

here on quadratic forms are <strong>in</strong>cluded there with<strong>in</strong> the general sett<strong>in</strong>g. However,<br />

many results on quadratic forms <strong>in</strong> this chapter have no counterpart<br />

<strong>in</strong> the appendix. For much of this book the reader familiar with the present<br />

chapter will rarely need to consult the appendix, but it is available.<br />

5.1 Basic Def<strong>in</strong>itions <strong>and</strong> Results<br />

Let K be a field <strong>and</strong> let Vn+1 be the (n + 1)-dimensional vector space of<br />

(n + 1)-tuples (row vectors), whose elements will be represented either as<br />

x = (x0, x1, . . . , xn) or as x = (xi), xi ∈ K. Two nonzero vectors (xi),<br />

(yi) are said to be equivalent provided there is a nonzero λ <strong>in</strong> K such that<br />

λyi = xi, i = 0, . . . , n. The projective n-space Pn(K) = P G(n, K) consists<br />

of the equivalence classes conta<strong>in</strong><strong>in</strong>g the nonzero vectors of Vn+1. Usually,<br />

it is clear from the context whether (xi) is represent<strong>in</strong>g a vector <strong>in</strong> Vn+1 or<br />

a po<strong>in</strong>t <strong>in</strong> P G(n, K), so we use the same notation for both. For that rare<br />

occasion on which we need separate symbols for the two concepts we will let<br />

the reader know what notation we are us<strong>in</strong>g when the time arrives.<br />

A t-dimensional subspace of Pn(K) is to consist of all the classes of po<strong>in</strong>ts<br />

conta<strong>in</strong><strong>in</strong>g vectors <strong>in</strong> some (t + 1)-dimensional subspace of Vn+1. In terms of<br />

the vector space structure of Vn+1, a po<strong>in</strong>t of Pn(K) can be identified with<br />

a 1-dimensional subspace of Vn+1. L<strong>in</strong>es correspond to 2-dimensional vector<br />

237


238 CHAPTER 5. QUADRATIC FORMS<br />

subspaces, <strong>and</strong> hyperplanes of Pn(K) correspond to n-dimensional subspaces<br />

of Vn+1. An m-dimensional subspace of Pn(K) is a subspace isomorphic to<br />

P G(m, q). Such a subspace is the set of po<strong>in</strong>ts x = (xi) satisfy<strong>in</strong>g Ax T = 0,<br />

where x T is the transpose of x <strong>and</strong> A is an (n − m) × (n + 1) matrix over<br />

K of rank n − m. In particular, a hyperplane is the locus of po<strong>in</strong>ts whose<br />

coord<strong>in</strong>ates satisfy an equation of the form<br />

a0x0 + a1x1 + · · · anxn = 0,<br />

where at least one ai is not zero.<br />

An algebraic hypersurface <strong>in</strong> Pn(K) is the locus <strong>in</strong> Pn(K) of a homogeneous<br />

polynomial equation f(x0, . . . , xn) = 0 with coefficients <strong>in</strong> K. It seems<br />

consistent with this def<strong>in</strong>ition that (0, 0, . . . , 0) not be considered a po<strong>in</strong>t of<br />

Pn(K): such a po<strong>in</strong>t would be on all hypersurfaces. Concern<strong>in</strong>g the homogeneity<br />

of the equation, we note that the coord<strong>in</strong>ates of a po<strong>in</strong>t <strong>in</strong> Pn(K)<br />

are determ<strong>in</strong>ed only up to a proportionality factor, <strong>and</strong> it would be desirable<br />

for all coord<strong>in</strong>ates of a given po<strong>in</strong>t on the surface to satisfy the equation.<br />

This actually forces the homogeneity of the equation provided that the field<br />

is large enough.<br />

A quadric (or hyperquadric) <strong>in</strong> Pn(K) is def<strong>in</strong>ed <strong>in</strong> various ways. S<strong>in</strong>ce<br />

our ma<strong>in</strong> <strong>in</strong>terest <strong>in</strong> projective spaces will be the comb<strong>in</strong>atorial properties of<br />

sets of po<strong>in</strong>ts def<strong>in</strong>ed <strong>in</strong> terms of quadric surfaces, we beg<strong>in</strong> with a study of<br />

the equivalence of three alternative def<strong>in</strong>itions. It should cause no confusion<br />

if we let x = (xi) denote a vector or a po<strong>in</strong>t as is convenient.<br />

Defn. 1 A quadric (or quadric surface) <strong>in</strong> Pn(K) is an algebraic hypersurface<br />

given by an homogeneous polynomial equation of degree 2.<br />

Defn. 2 A quadric (or quadric surface) <strong>in</strong> Pn(K) is the locus of po<strong>in</strong>ts<br />

x satisfy<strong>in</strong>g xAx T = 0, where A is a square upper triangular matrix over K<br />

with n + 1 rows.<br />

Defn. 3 Let q be a mapp<strong>in</strong>g from Vn+1 <strong>in</strong>to K with the properties that:<br />

(i) q(ax) = a 2 q(x), a ∈ K, x ∈ Vn+1;<br />

(ii) The mapp<strong>in</strong>g (x, y) ↦→ B(x, y) = q(x+y)−q(x)−q(y) is a (symmetric)<br />

bil<strong>in</strong>ear form B on Vn+1 × Vn+1.<br />

Then q is called a quadratic form on Vn+1, <strong>and</strong> the set of po<strong>in</strong>ts x <strong>in</strong><br />

Pn(K) such that q(x) = 0 is called a quadric Qn (or Qn(K)) or hyperquadric.<br />

And the bil<strong>in</strong>ear form B is the associated polar form of q or Qn. Sometimes<br />

we write fq for the polar form of the quadratic form q.<br />

Theorem 5.1.1. The three def<strong>in</strong>itions of quadric surface are equivalent.


5.1. BASIC DEFINITIONS AND RESULTS 239<br />

Proof. Let Qn be a quadric accord<strong>in</strong>g to Defn.1 given by the polynomial<br />

equation<br />

f(x0, . . . xn) = <br />

aijxixj = 0.<br />

0≤i,j≤n<br />

i≤j<br />

Then let A be the upper triangular matrix A = (aij), where aij is as given<br />

<strong>in</strong> f(xo, . . . , xn) = xAx T , <strong>and</strong> the equivalence of the first two def<strong>in</strong>itions is<br />

easily established.<br />

If A is an upper triangular matrix, then def<strong>in</strong><strong>in</strong>g q(x) = xAx T yields a<br />

quadratic form with<br />

B(x, y) = q(x + y) − q(x) − q(y) = x(A + A T )y T<br />

serv<strong>in</strong>g as the associated bil<strong>in</strong>ear form. This is easy to check. For the converse,<br />

let q be a quadratic form as <strong>in</strong> Defn.3, with B(x, y) as def<strong>in</strong>ed there.<br />

For any vectors α1, . . . , αr, we have<br />

q(α1 + · · · + αr) = q(α1 + · · · + αr−1) + q(αr) + B(α1 + · · · αr−1, αr)<br />

r−1<br />

= q(α1 + · · · + αr−1) + q(αr) + B(αi, αr).<br />

By a suitable <strong>in</strong>duction step this becomes<br />

q(<br />

r<br />

αi) =<br />

i=1<br />

r<br />

q(αi) + <br />

i=1<br />

1≤i


240 CHAPTER 5. QUADRATIC FORMS<br />

So suppose that A is an upper triangular matrix correspond<strong>in</strong>g to the<br />

quadratic form q <strong>and</strong> the quadric surface Q. Also B will denote either the<br />

symmetric bil<strong>in</strong>ear form associated with q or the symmetric matrix B =<br />

A + A T , s<strong>in</strong>ce B(x, y) = xBy T for vectors x, y. If K has characteristic<br />

2, then B(x, x) = xAx T + xA T x T = 2xAx T = 0 for each x. If K has<br />

characteristic different from 2, then xBx T = 0 if <strong>and</strong> only if 2xAx T = 0, i.e.,<br />

iff q(x) = 0 iff B(x, x) = 0. In this case xBx T = 0 could have been taken as<br />

the def<strong>in</strong><strong>in</strong>g equation of a quadric surface Q, <strong>and</strong> ˜q(x) = B(x, x) = xBx T as<br />

the quadratic form associated with the symmetric matrix B. This is probably<br />

the customary procedure when K is not allowed to have characteristic 2.<br />

However, we will consistently use the def<strong>in</strong>itions given earlier.<br />

In algebraic geometry a po<strong>in</strong>t x is said to be a s<strong>in</strong>gular po<strong>in</strong>t of Q provided<br />

Bx T = 0 <strong>and</strong> x is on Q. If K has characteristic different from 2, then Bx T = 0<br />

implies xAx T = 0 <strong>and</strong> x is on Q automatically. If x is a po<strong>in</strong>t of Q such that<br />

Bx T = 0, then x is called a simple po<strong>in</strong>t of Q. We reta<strong>in</strong> this mean<strong>in</strong>g for<br />

simple <strong>and</strong> s<strong>in</strong>gular po<strong>in</strong>t, but also any po<strong>in</strong>t x of Q such that Bx T = 0 will<br />

be called a nonsimple po<strong>in</strong>t of Q. On the other h<strong>and</strong>, a source of confusion<br />

is the fact that a vector v with q(v) = 0 is called a s<strong>in</strong>gular vector.<br />

Po<strong>in</strong>ts x <strong>and</strong> y are said to be conjugate with respect to Q (or q or B)<br />

provided xBy T = 0. So if K has characteristic different from 2, Q is just<br />

the set of self-conjugate po<strong>in</strong>ts. However, if K has characteristic 2, all po<strong>in</strong>ts<br />

are self-conjugate. The polar (conjugate, or orthogonal) space τ(x) of a po<strong>in</strong>t<br />

x is the set of all po<strong>in</strong>ts conjugate to x. So the polar of x is the subspace<br />

determ<strong>in</strong>ed by the equation x(A+A T )y T = 0. More generally, the polar space<br />

τ(Σp) of a p-dimensional subspace Σp is the set of all po<strong>in</strong>ts that are conjugate<br />

to each po<strong>in</strong>t of Σp. Two subspaces are said to be mutually conjugate provided<br />

each po<strong>in</strong>t of one is conjugate to each po<strong>in</strong>t of the other. If x is a po<strong>in</strong>t of Q,<br />

the polar space τ(x) of x is called the tangent space of Q at the po<strong>in</strong>t x. The<br />

dimension of the tangent space depends on the rank of (the matrix) B <strong>and</strong> on<br />

the po<strong>in</strong>t x, <strong>in</strong> particular on whether or not Bx T = 0. If B is a nons<strong>in</strong>gular<br />

matrix, the tangent space of Q at any po<strong>in</strong>t of Q is a hyperplane. If B is<br />

s<strong>in</strong>gular, the tangent space of Q at a po<strong>in</strong>t x of Q is a hyperplane if x is a<br />

simple po<strong>in</strong>t of Q, <strong>and</strong> is the whole space otherwise.<br />

Q is said to be degenerate if it has a nonsimple (i.e., s<strong>in</strong>gular) po<strong>in</strong>t.<br />

Otherwise it is nondegenerate. Thus if K has characteristic not equal to 2,<br />

Q is nondegenerate iff B is a nons<strong>in</strong>gular matrix.


5.1. BASIC DEFINITIONS AND RESULTS 241<br />

Exercise 5.1.1.1. Show that if K has characteristic equal to 2, then Q can<br />

be nondegenerate even if B is a s<strong>in</strong>gular matrix.<br />

Suppose that Q is given by f(x0, . . . , xn) = ¯xAx T = 0 where<br />

f(x0, . . . , xn) = <br />

i≤j<br />

aijxixj.<br />

Lemma 5.1.2. (i) Po<strong>in</strong>ts y <strong>and</strong> z are conjugate (w.r.t. Q) iff<br />

n<br />

<br />

∂f<br />

yi = 0.<br />

∂xi<br />

i=0<br />

(ii) z is a nonsimple po<strong>in</strong>t of Q iff<br />

z<br />

∂f<br />

∂xi<br />

<br />

z<br />

= 0 for each i (<strong>and</strong> z ∈ Q if<br />

K has characteristic 2).<br />

(iii) If g is a homogeneous polynomial of degree m <strong>in</strong> t variables x1, . . . , xt,<br />

then mg = t i=1<br />

Proof.<br />

∂g<br />

∂xi xi.<br />

∂f<br />

∂xi<br />

= 2aiixi + <br />

aijxj + <br />

ij<br />

ajixj.<br />

n<br />

<br />

∂f<br />

yi = 0.<br />

∂xi<br />

Clearly the set of po<strong>in</strong>ts conjugate to z forms a hyperplane iff<br />

for some i. This proves (i) <strong>and</strong> (ii). To prove (iii), note that s<strong>in</strong>ce the partial<br />

derivative operator is additive, it suffices to establish the result <strong>in</strong> the special<br />

case that g is a monomial of the form ax ei 1<br />

1 xei 2<br />

2 · · · x ei t<br />

t for some scalar a <strong>and</strong><br />

nonnegative <strong>in</strong>teger exponents ei that sum to m. This is straightforward.<br />

A set of po<strong>in</strong>ts <strong>in</strong> Pn(K) will be called <strong>in</strong>dependent (respectively, dependent)<br />

provided it corresponds to some set of l<strong>in</strong>early <strong>in</strong>dependent (respectively,<br />

dependent) vectors <strong>in</strong> Vn+1. Def<strong>in</strong>e analogously the subspace spanned<br />

(or determ<strong>in</strong>ed) by a set of po<strong>in</strong>ts of Pn(K).<br />

z<br />

∂f<br />

∂xi<br />

<br />

z<br />

= 0


242 CHAPTER 5. QUADRATIC FORMS<br />

Lemma 5.1.3. (i) If a po<strong>in</strong>t x is conjugate to each po<strong>in</strong>t <strong>in</strong> some set of<br />

po<strong>in</strong>ts of Pn(K), then x is <strong>in</strong> the polar space of the subspace spanned by<br />

those po<strong>in</strong>ts.<br />

(ii) The polar space of a p-dimensional subspace Σp is the <strong>in</strong>tersection of<br />

the polar spaces of each po<strong>in</strong>t <strong>in</strong> a set of p + 1 <strong>in</strong>dependent po<strong>in</strong>ts of Σp.<br />

(iii) Let α0, . . . , αp be <strong>in</strong>dependent po<strong>in</strong>ts on a quadric Q. Then the pdimensional<br />

subspace Σp determ<strong>in</strong>ed by these po<strong>in</strong>ts is conta<strong>in</strong>ed <strong>in</strong> Q iff<br />

these po<strong>in</strong>ts are pairwise conjugate.<br />

(iv) If three dist<strong>in</strong>ct po<strong>in</strong>ts of Q lie on a l<strong>in</strong>e, then each po<strong>in</strong>t of the l<strong>in</strong>e<br />

lies on Q <strong>and</strong> any two po<strong>in</strong>ts of the l<strong>in</strong>e are conjugate.<br />

(v) Let x be any nonsimple po<strong>in</strong>t of Q <strong>and</strong> y any other po<strong>in</strong>t of Q. Then<br />

the l<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> y lies <strong>in</strong> Q.<br />

(vi) If x ∈ Q, y ∈ Q, L = 〈x, y〉 ⊆ y ⊥ , then L ∩ Q = {x}.<br />

Proof. A rout<strong>in</strong>e exercise, but the reader should do all the parts.<br />

A quadric Q <strong>in</strong> Pn(K) with a unique nonsimple po<strong>in</strong>t x is called a cone<br />

. For example, if K has characteristic not 2, it is easy to see that Q is a<br />

cone iff B has rank n. By part (v) of the preced<strong>in</strong>g lemma this term<strong>in</strong>ology<br />

should seem reasonable.<br />

Let V1, V2 be vector spaces over the field K equipped with quadratic<br />

forms q1, q2, respectively. Let T : V1 → V2 be an <strong>in</strong>vertible semil<strong>in</strong>ear map<br />

with companion automorphism σ. Then T is a semisimilarity from (V1, q1)<br />

to (V2, q2) provided there is a nonzero c ∈ K such that<br />

q2(T (v)) = c · (q1(v)) σ ∀ v ∈ V1.<br />

T is a similarity iff σ = 1;<br />

T is an isometry iff σ = 1 <strong>and</strong> c = 1. .<br />

NOTE: If g : V1 → V2 is a semisimilarity/similarity/isometry then g<br />

<strong>in</strong>duces a map ¯g : P V1 → P V2 which is called a projective semisimilarity/similarity/isometry.<br />

Let S = (V, q) be an orthogonal space with q a quadratic form (with polar<br />

form fq).<br />

ΓS = group of semisimilarities of V ;<br />

GS = group of similarities of V ;<br />

S = group of isometries of V.


5.2. STRUCTURE OF QUADRICS 243<br />

P ΓS, P GS, P S are the correspond<strong>in</strong>g projective groups.<br />

Let Z(S) be the group of form-preserv<strong>in</strong>g scalar maps. Then<br />

P ΓS ∼ = Γ/Z(S);<br />

P GS ∼ = GS/Z(S);<br />

P S ∼ = S/Z(S).<br />

Let f be a symmetric bil<strong>in</strong>ear form on V (for example, the polar form of<br />

a quadratic form).<br />

v ∈ V is isotropic iff f(v, v) = 0.<br />

W ≤ V is totally isotropic iff f(v, w) = 0 ∀ (v, w) ∈ W × W.<br />

5.2 Structure of Quadrics<br />

Throughout most of this book we have used q to denote the order of a f<strong>in</strong>ite<br />

field. This leads to confusion <strong>in</strong> this chapter s<strong>in</strong>ce we so often want q to<br />

denote a quadratic form. Hence throughout this chapter we use t to<br />

denote the size of the f<strong>in</strong>ite field (i.e., t = p e for some prime p), <strong>and</strong><br />

q will denote a quadratic form.<br />

Lemma 5.2.1. Let E be a l<strong>in</strong>e spanned by vectors x <strong>and</strong> y, where x is on<br />

a nondegenerate quadric surface Q <strong>in</strong> E. Then there is a vector z on E ∩ Q<br />

such that B(x, z) = 1.<br />

Proof. S<strong>in</strong>ce q(x) = 0, B(x, x) = 0, <strong>and</strong> the polar τ(x) is spanned by x. Thus<br />

B(x, y) = 0, <strong>and</strong> we may solve 0 = q(ax + y) = q(y) + aB(x, y) for a. Then<br />

solve B(x, b(ax + y)) = bB(x, y) = 1 for b <strong>and</strong> put z = b(ax + y).<br />

Such a l<strong>in</strong>e is called a hyperbolic l<strong>in</strong>e (w.r.t q or Q or B). Thus there<br />

is no ambiguity <strong>in</strong> def<strong>in</strong><strong>in</strong>g a hyperbolic space to be the orthogonal direct<br />

sum of hyperbolic l<strong>in</strong>es, where this means the hyperbolic l<strong>in</strong>es are mutually<br />

conjugate with respect to a quadratic form on the entire space which when<br />

restricted to the <strong>in</strong>dividual l<strong>in</strong>es gives their quadratic forms.<br />

Note: This Lemma implies that if E is a l<strong>in</strong>e with a nondegenerate<br />

quadratic form q def<strong>in</strong><strong>in</strong>g a quadratic surface Q, <strong>and</strong> if E conta<strong>in</strong>s one po<strong>in</strong>t<br />

.


244 CHAPTER 5. QUADRATIC FORMS<br />

of Q, then it conta<strong>in</strong>s precisely two po<strong>in</strong>ts of Q. So suppose that E is<br />

anisotropic, i.e., no po<strong>in</strong>t of E is on Q. If the matrix A giv<strong>in</strong>g the quadratic<br />

a b<br />

form is A = , we are assum<strong>in</strong>g that ax<br />

0 c<br />

2 + bxy + cy2 = 0 has no<br />

solutions. If the characteristic p is odd, hav<strong>in</strong>g Q be nondegenerate is the<br />

same as hav<strong>in</strong>g B = A + A T be nons<strong>in</strong>gular. So suppose that t = 2 e . Then<br />

<br />

0 b<br />

B = . So B is nons<strong>in</strong>gular if <strong>and</strong> only if b = 0. And if b = 0, then<br />

b 0<br />

clearly E is not anisotropic. Hence if E is an anisotropic l<strong>in</strong>e, with t odd<br />

or even, for each po<strong>in</strong>t x on E we have x⊥ is a s<strong>in</strong>gle po<strong>in</strong>t of E. This is<br />

equivalent <strong>in</strong> this case to say<strong>in</strong>g E ∩ E⊥ = ∅.<br />

Lemma 5.2.2. Any two orthogonal hyperbolic l<strong>in</strong>es are isometric.<br />

Proof. Let (V, Q) be an orthogonal hyperbolic l<strong>in</strong>e. So V = 〈u, v〉, Q(u) =<br />

Q(v) = 0 <strong>and</strong> fQ(u, v) = fQ(v, u) = 1. Similarly, V ′ = 〈u ′ , v ′ 〉, Q ′ (u ′ ) = 0,<br />

. . . , etc. Def<strong>in</strong>e T : V → V ′ by T (u) = u ′ , T (v) = v ′ . Then<br />

Q(au + bv) = Q(au) + Q(bv) + fQ(au, bv)<br />

= a 2 Q(u) + b 2 Q(v) + ab · fQ(u, v)<br />

= 0 + 0 + ab.<br />

Similarly, Q ′ (T (au + bv)) = Q ′ (au ′ + bv ′ ) = ab = Q(au + bv), imply<strong>in</strong>g that<br />

T is an isometry.<br />

Lemma 5.2.1 is the first step <strong>in</strong> the proof of the follow<strong>in</strong>g theorem.<br />

Theorem 5.2.3. Let Q be a nondegenerate quadric <strong>in</strong> Vn+1. Let N be an<br />

r-dimensional subspace ly<strong>in</strong>g <strong>in</strong> Q, r ≥ 1. Then there is an r-dimensional<br />

subspace P of Q such that N <strong>and</strong> P are disjo<strong>in</strong>t <strong>and</strong> such that N ⊕ P is<br />

disjo<strong>in</strong>t from its polar space. If x1, . . . , xr form a basis for N <strong>and</strong> if P has the<br />

properties just described, there is a basis y 1, . . . , y r of P such that B(xi, y j) =<br />

δij, 1 ≤ i, j ≤ r. If N is a maximal subspace of Q, then q(x) = 0 for all<br />

nonzero x <strong>in</strong> the polar space of N ⊕ P .<br />

Proof. The proof proceeds by a f<strong>in</strong>ite <strong>in</strong>duction. We first construct y1, then<br />

y2, etc.<br />

S<strong>in</strong>ce Q is nondegenerate <strong>and</strong> (x1, . . . , xr) is a basis for N ⊂ Q, we know<br />

that (x1B, . . . , xrB) is l<strong>in</strong>early <strong>in</strong>dependent. Then N ′ = span(x2B, . . . , xrB)<br />

has dimension r−1, so its polar space has dimension (n+1)−(r−1) = n−r+2.


5.2. STRUCTURE OF QUADRICS 245<br />

The polar space of N has dimension n − r + 1. Hence there is a vector<br />

y ∈ τ(N ′ ) \ τ(N), i.e., B(xi, y) = 0 for 2 ≤ i ≤ r <strong>and</strong> B(x1, y) = 0. We may<br />

multiply y by a scalar so that without loss of generality we may assume that<br />

y has the properties<br />

(i) B(xi, y) = 0 for 2 ≤ i ≤ r, <strong>and</strong><br />

(ii) B(x1, y) = 1.<br />

At this stage we do not know whether or not y ∈ Q. If we apply Lemma 5.2.1<br />

to E = 〈x1, y〉 we can f<strong>in</strong>d y 1 ∈ E with y 1 ∈ Q <strong>and</strong> B(x1, y 1) = 1. (It is a<br />

simple exercise to check that the restriction of the quadratic form q to E is<br />

nons<strong>in</strong>gular.) Clearly B(xi, y 1) = 0 for 2 ≤ i ≤ r.<br />

If r = 1, we are done. So suppose 1 ≤ p < r <strong>and</strong> that we have obta<strong>in</strong>ed<br />

y 1, . . . , y p such that<br />

(i) B(xi, y j) = δij for 1 ≤ i ≤ r, 1 ≤ j ≤ p, <strong>and</strong><br />

(ii) (y 1, . . . , y p) is <strong>in</strong>dependent <strong>and</strong> spans a subspace of Q.<br />

As above we know that (x1B, . . . , xrB) is <strong>in</strong>dependent. Let<br />

N ′ = span(x1, . . . , xp, xp+2, . . . , xr),<br />

so the polar space τ(N ′ ) has dimension (n+1)−(r−1) = n−r+2 while τ(N)<br />

has dimension only n − r + 1. Thus there is a vector y such that B(y, xi) = 0<br />

for i = p + 1, B(y, xp+1) = 0, <strong>and</strong> we may assume that B(y, xp+1) = 1.<br />

Furthermore, s<strong>in</strong>ce N is conta<strong>in</strong>ed <strong>in</strong> its own polar space, if y ′ = y + x<br />

with x ∈ N, then B(xi, y ′ ) = B(xi, y + x) = 0 + 0 if i = p + 1. And<br />

B(xp+1, y ′ ) = B(xp+1, y) + B(xp+1, x) = 1 + 0 = 1.<br />

Put<br />

y ′ p<br />

= y − B(y, yi)xi. So y ′ has the properties just mentioned, <strong>and</strong> for 1 ≤ j ≤ p,<br />

B(y ′ p<br />

, yj) = B(y − B(y, yi)xi, yj) = B(y, yj) − B(y, yj) = 0.<br />

i=1<br />

i=1<br />

Now put y p+1 = y ′ − q(y ′ )xp+1. Then y p+1 has the properties just mentioned<br />

<strong>and</strong><br />

q(y p+1) = q(y ′ ) + [q(y ′ )] 2 q(xp+1) + B(y ′ , −q(y ′ )xp+1<br />

= q(y ′ ) + 0 − q(y ′ ) = 0.


246 CHAPTER 5. QUADRATIC FORMS<br />

S<strong>in</strong>ce B(xp+1, y p+1) = 1 <strong>and</strong> B(xp+1, y j) = 0 for 1 ≤ j ≤ p, it is easy to<br />

show that (y 1, . . . , y p+1) is <strong>in</strong>dependent. So we have vectors y 1, . . . , y p+1 that<br />

satisfy the follow<strong>in</strong>g:<br />

(i) B(xi, y j) = δij for 1 ≤ i ≤ r, 1 ≤ j ≤ p + 1, <strong>and</strong><br />

(ii) (y 1, . . . , y p+1) is <strong>in</strong>dependent <strong>and</strong> spans a subspace of Q.<br />

Proceed<strong>in</strong>g <strong>in</strong> this fashion we complete the selection of vectors y 1, . . . , y r<br />

satisfy<strong>in</strong>g<br />

(i) B(xi, y j) = δij for 1 ≤ i, j ≤ r, <strong>and</strong><br />

(ii) (y 1, . . . , y r) is <strong>in</strong>dependent <strong>and</strong> spans a subspace P of Q.<br />

Let R be the polar of N ⊕P . Then it is clear that R <strong>and</strong> N ⊕P are disjo<strong>in</strong>t,<br />

so by a dimension argument, Vn+1 = R ⊕ (N ⊕ P ). If z ∈ R, <strong>and</strong> if q(z) =<br />

0, z = 0, then B(z, x) = 0 for x ∈ N, so q(x +z) = q(x)+q(z)+B(x, z) = 0.<br />

Thus N ⊕ Kz is a subspace of Q properly conta<strong>in</strong><strong>in</strong>g N. Hence if N is a<br />

maximal subspace ly<strong>in</strong>g <strong>in</strong> Q there is no such po<strong>in</strong>t z, i.e., q(z) = 0 for all<br />

nonzero z ∈ R. This completes a proof of the theorem.<br />

If r is the maximum dimension of any subspace ly<strong>in</strong>g <strong>in</strong> a nondegenerate<br />

quadric Q <strong>in</strong> Vn+1, we say that Q has Witt <strong>in</strong>dex r. Also, a subspace is called<br />

anisotropic provided it conta<strong>in</strong>s no s<strong>in</strong>gular vector.<br />

If we were be<strong>in</strong>g strictly logical here the next Corollary would not appear<br />

until after we have proved Witt’s theorem which appears <strong>in</strong> the book as<br />

Theorem 5.6.2. However, it is convenient to have it here, <strong>and</strong> we are careful<br />

not to use this corollary <strong>in</strong> the proof of Witt’s theorem.<br />

Corollary 5.2.4. Any non-degenerate quadric of Witt <strong>in</strong>dex r is an orthogonal<br />

direct sum of r hyperbolic l<strong>in</strong>es <strong>and</strong> an anisotropic space A, where A is<br />

determ<strong>in</strong>ed up to isometry. A is called the germ of the space.<br />

Proof. Let Q be a nondegenerate quadric <strong>in</strong> Vn+1 with Witt <strong>in</strong>dex r. Let<br />

N <strong>and</strong> P be r-dimensional subspaces of Q as described <strong>in</strong> Theorem 5.2.3<br />

with bases x1, . . . , xr <strong>and</strong> y 1, . . . , y r satisfy<strong>in</strong>g B(xi, y j) = δij, 1 ≤ i, j ≤ r.<br />

Put A = τ(N ⊕ P ). Then A is anisotropic by Theorem 5.2.3. If we put<br />

Hi = 〈xi, yi〉, then Hi is a hyperbolic l<strong>in</strong>e, <strong>and</strong> Vn+1 is the orthogonal direct<br />

sum H1 ⊥ H2 ⊥ . . . ⊥ Hr ⊥ A.


5.2. STRUCTURE OF QUADRICS 247<br />

To show that A is determ<strong>in</strong>ed up to isometry, suppose V = H1 ⊥ . . . ⊥<br />

Hr ⊥ A = H ′ 1 ⊥ . . . ⊥ H ′ r ⊥ A ′ . By Lemma 5.2.2 any two hyperbolic l<strong>in</strong>es<br />

are isometric, so clearly U = H1 ⊥ . . . ⊥ Hr <strong>and</strong> W = H ′ 1 ⊥ . . . ⊥ H′ r are<br />

isometric. By Witt’s Theorem 5.6.2 there exists an isometry g of V with<br />

g(H1 ⊥ . . . ⊥ Hr) = H ′ 1 ⊥ . . . ⊥ H ′ r. But A = τ(H1 ⊥ . . . ⊥ Hr) <strong>and</strong><br />

A ′ = τ(H ′ 1 ⊥ . . . ⊥ H′ r ). Then<br />

g(A) = g({v ∈ V : B(u, v) = 0 ∀ u ∈ U})<br />

= {gv ∈ V : B(gu, gv) = 0 ∀ gu ∈ W }<br />

= τ(W ) = A ′ .<br />

Lemma 5.2.5. Let Q be a nondegenerate quadric <strong>in</strong> Vn+1. We want to know<br />

how large the germ of Q could be.<br />

(i) The (vector space) dimension of an anisotropic orthogonal space over<br />

Ft is at most 2.<br />

(ii) The 2-dimensional anisotropic orthogonal spaces over Ft are all isometric.<br />

(iii) When t is even, the 1-dimensional anisotropic orthogonal spaces over<br />

Ft are all isometric.<br />

(iv) When t is odd, the 1-dimensional anisotropic orthogonal spaces over<br />

Ft are all similar, <strong>and</strong> they fall <strong>in</strong>to two isometry classes.<br />

Proof. The proof of (i) follows from the fact that any quadratic polynomial<br />

<strong>in</strong> three (or more) variables has a nontrivial zero. This fact is actually proved<br />

with<strong>in</strong> the proof of Theorem 5.4.2, where the number of po<strong>in</strong>ts on each type<br />

of quadric is determ<strong>in</strong>ed. It also follows easily from Theorem 20.23.1.<br />

For the proof of (ii), let L be an anisotropic l<strong>in</strong>e, so L∩Q = {0} = L∩L ⊥ .<br />

For each x ∈ L, x ⊥ ∩ L is one po<strong>in</strong>t, say {y}. When t is odd, x = y. When<br />

t = 2 e , x = y. But <strong>in</strong> either case B(x, y) = 0.<br />

Let t be odd. Then q(ax + by) = a 2 q(x) + b 2 q(y) = 1 has a solution<br />

(a, b) ∈ Ft × Ft. So we may assume that L = 〈x, y〉 with q(x) = 1 <strong>and</strong><br />

B(x, y) = 0. Then B(x, y + λx) = λB(x, x) = 1 if <strong>and</strong> only if λ = B(x, x) −1 ,<br />

which is possible s<strong>in</strong>ce we know B(x, x) = 0. For this λ replace y with y +λx<br />

so that we have<br />

L = 〈x, y〉 with q(x) = 1, B(x, y) = 1.


248 CHAPTER 5. QUADRATIC FORMS<br />

Next let q = 2 e . So B(x, x) = 0 for all x ∈ L <strong>and</strong> x ⊥ = {x}. Say L = 〈x, y〉<br />

with q(x) = λ = u 2 = 0. Then q(x/u) = 1. So we may suppose q(x) = 1.<br />

Then B(x, λy) = λB(x, y) = 1 if <strong>and</strong> only if λ = B(x, y) −1 , which is welldef<strong>in</strong>ed<br />

s<strong>in</strong>ce we know B(x, y) = 0. So aga<strong>in</strong> we have<br />

L = 〈x, y〉 with q(x) = 1, B(x, y) = 1.<br />

Suppose that q(y) = a = 0 s<strong>in</strong>ce L is anisotropic. For the same reason<br />

0 = q(λx + y) = λ 2 + λ + a for each λ ∈ Ft.<br />

If t is odd this implies that 1 − 4a = ❆ ∈ Ft. If t = 2 e , then tr(a) = 1.<br />

Now let<br />

L ′ = 〈z, w〉, with q ′ (z) = 1, B ′ (z, w) = 1, q ′ (w) = b,<br />

where 0 = q(λx + y) = λ 2 + λ + b for each λ ∈ Ft.<br />

For t odd this implies that (1−4a)(1−4b) = ∈ Ft. For t = 2 e it implies<br />

that tr(a + b) = 0. It follows that for any characteristic we may choose an<br />

s ∈ Ft for which<br />

s 2 (1 − 4a) + s(1 − 4a) + b − a = 0, <strong>and</strong> then put t = 2s + 1.<br />

Note that: s 2 + s + b = a(4s 2 + 4s + 1) = at 2 .<br />

Def<strong>in</strong>e a l<strong>in</strong>ear map T by<br />

T : (L, q) → (L ′ , q ′ ) : λx + µy ↦→ (λ + s µ<br />

µ)z +<br />

t t w.<br />

Then q(λx + µy) = λ2 + λµ + µ 2a, <strong>and</strong><br />

q ′ (T (λx + µy)) = q ′<br />

<br />

(λ + s µ<br />

µ)z +<br />

t t w<br />

<br />

= (λ + s<br />

t µ)2 + (λ + s<br />

t µ)µ<br />

t + µ2b t2 = λ 2 + 2λµ s<br />

t + s2 µ 2 λµ<br />

+<br />

t2 t + µ2s t2 + µ2b t2 = λ 2 <br />

2s + 1<br />

+ λµ + µ<br />

t<br />

2<br />

2 s + s + b<br />

t2 <br />

= λ 2 + λµ + µ 2 a.


5.3. CHANGE OF BASIS 249<br />

It follows that q ′ (T (v)) = q(v) for each v ∈ L. This completes the proof<br />

of part (ii).<br />

For parts (iii) <strong>and</strong> (iv) let E = 〈x〉 with a given quadratic form q for<br />

which q(x) = a ∈ Ft. Then q is nondegenerate if <strong>and</strong> only if a = 0, <strong>in</strong> which<br />

case E is anisotropic. If T : E → E is the l<strong>in</strong>ear map T : x ↦→ bx with<br />

b = 0, then q(T (v)) = b 2 q(v) for each v ∈ E. If t = 2 e , we can put b = a −1/2<br />

to obta<strong>in</strong> q(T (x)) = 1, <strong>and</strong> all anisotropic po<strong>in</strong>ts are isometric. If t is odd,<br />

then all anisotropic po<strong>in</strong>ts are similar, but two of them, say q1(x) = a <strong>and</strong><br />

q2(x) = b, are isometric if <strong>and</strong> only if a/b = ∈ Ft.<br />

Corollary 5.2.6. Any non-degenerate orthogonal space of Witt <strong>in</strong>dex n over<br />

Ft is isometric to<br />

(i) The orthogonal direct sum of n hyperbolic l<strong>in</strong>es (sometimes denoted<br />

O + (2n, t) or by Q + (2n − 1, t)),<br />

or<br />

(ii) The orthogonal direct sum of n hyperbolic l<strong>in</strong>es <strong>and</strong> a 1-dimensional<br />

anisotropic space of discrim<strong>in</strong>ant a square/non-square (denoted O(2n + 1, t)<br />

or Q(2n, t)). These spaces fall <strong>in</strong>to two isometry classes <strong>and</strong> one similarity<br />

class for t odd, <strong>and</strong> one isometry class for t even),<br />

or<br />

(iii) The orthogonal direct sum of n hyperbolic l<strong>in</strong>es <strong>and</strong> a 2-dimensional<br />

anisotropic space (denoted O − (2n + 2, t) or Q − (2n + 1, t)).<br />

5.3 Change of Basis<br />

Let B1 = {v0, . . . , vn} be any ordered basis for Vn+1. If w ∈ Vn+1 satisfies<br />

w = n j=0 cjvj, cj ∈ K, we write [w]B1 = (c1, c2, . . . , cn) <strong>and</strong> call [w]B1 the<br />

coord<strong>in</strong>ate matrix of w with respect to the ordered basis B1. Moreover, we<br />

often write B1 as a column ‘vector’ B1 = [v0, . . . , vn] T <strong>and</strong> write<br />

w = [w]B · B. (5.1)<br />

If B2 = [u0, . . . , un] T is a second ordered basis for Vn+1 with ui = n j=1 pijvj,<br />

for 1 ≤ i ≤ n, we put P = (pij) <strong>and</strong> write B2 = P B1. If T : Vn+1 → Vn+1<br />

is a l<strong>in</strong>ear operator, let [T ]Bi<br />

denote the n × n matrix for which [T (w)]Bi =<br />

[w]Bi · [T ]Bi for all w ∈ Vn+1, i = 1, 2. Putt<strong>in</strong>g w equal to the kth member of<br />

the basis Bi, we see that the kth row of [T ]Bi is the coord<strong>in</strong>ate matrix of the


250 CHAPTER 5. QUADRATIC FORMS<br />

image under T of the kth member of Bi. Us<strong>in</strong>g this notation we immediately<br />

obta<strong>in</strong> the follow<strong>in</strong>g theorem.<br />

Theorem 5.3.1. The follow<strong>in</strong>g are equivalent:<br />

(i) B2 = P B1;<br />

(ii) [w]B2 = [w]B1 · P −1 ;<br />

(iii) [T ]B2 = P [T ]B1P −1 .<br />

Now let q be a quadratic form on Vn+1, <strong>and</strong> let B(x, y) = q(x+y)−q(x)−<br />

q(y) be its associated polar form. Given a basis B1 = {v0, . . . , vn} of Vn+1,<br />

def<strong>in</strong>e the Gram matrix B = (Bij) of the form B by Bij = B(vi, vj). For<br />

vectors x = [x]B1·B1 <strong>and</strong> y = [y]B1·B1, we have B(x, y) = B( civi, <br />

djvj) =<br />

i,j ciBijdj = [x]B1B[y] T B1 (where [x]B1 = (c0, . . . , cn) <strong>and</strong> [y]B1 = (d0, . . . , dn)).<br />

If B2 is a second ordered basis as above with B2 = P · B1, then B(x, y) =<br />

[x]B1 · B · [y] T B1 = [x]B1 · P −1 · P BP T · (P T ) −1 [y] T B1 = [x]B2 · P BP T · [y] T B2<br />

follows that P BP T is the matrix that is the Gram matrix of B with respect<br />

to the basis B2.<br />

Similarly, q(x) = [x]B1A[x] ′ B1 for the matrix A = (Aij) def<strong>in</strong>ed by<br />

⎧<br />

⎨<br />

aij =<br />

⎩<br />

B(vi, vj), i < j;<br />

q(vj), i = j;<br />

0, i > j.<br />

Here the matrix B is the sum B = A + AT .<br />

Now suppose that B2 is a second basis as above, so that [x]B1 = [x]B2 · P .<br />

Then q(x) = [x]B1A[x] T B1 = [x]B2 · P · A · P T [x] T B2 for all x ∈ Vn+1. Hence the<br />

upper triangular matrix A is replaced by P AP T when B1 is replaced by B2 =<br />

P · B1. However, the matrix P AP T may not be upper triangular. Suppose<br />

P AP T = A∗ <strong>and</strong> P BP T = B∗ where B = A + AT <strong>and</strong> B∗ = A ∗ +(A∗) T .<br />

However, B∗ is symmetric <strong>and</strong> B∗ii = (P AP T + P AT P T )ii = 2(P AP T )ii.<br />

So we can write B∗ = Ā + ĀT where Ā is upper triangular <strong>and</strong> has diagonal<br />

equal to that of P AP T . Now Āij = (P AP T )ij + (P A T P T )ij for i < j,<br />

Āii = (P AP T )ii, <strong>and</strong> Āij = 0 for i > j. If we use the st<strong>and</strong>ard basis so<br />

we can identify a row vector with its coord<strong>in</strong>ate matrix, it follows that for<br />

any row vector y, y ĀyT = yP AP T y T . Hence xAx T = 0 iff yP AP T y T = 0<br />

iff yP = x where xAx T = 0. The mapp<strong>in</strong>g x ↦→ xP −1 permutes the po<strong>in</strong>ts<br />

of Pn(K) <strong>in</strong> a one-to-one fashion preserv<strong>in</strong>g conta<strong>in</strong>ment relations among<br />

subspaces. Furthermore, we have just seen that it takes po<strong>in</strong>ts of the quadric<br />

Q given by xAx T = 0 to the po<strong>in</strong>t of the quadric ¯ Q given by y ĀyT = 0 where<br />

. It


5.3. CHANGE OF BASIS 251<br />

Ā is derived <strong>in</strong> the natural fashion from B∗ = P BP T . The po<strong>in</strong>ts x <strong>and</strong> y<br />

are conjugate w.r.t. Q iff xP −1 <strong>and</strong> yP −1 are conjugate w.r.t. ¯ Q. All of this<br />

can be expressed for a general basis.<br />

Exercise 5.3.1.1. Us<strong>in</strong>g the notation of the preced<strong>in</strong>g paragraph, show that<br />

x is a s<strong>in</strong>gular po<strong>in</strong>t of Q iff xP −1 is a s<strong>in</strong>gular po<strong>in</strong>t of ¯ Q. Hence Q is<br />

nondegenerate iff ¯ Q is.<br />

Two matrices A <strong>and</strong> B are congruent provided there is an <strong>in</strong>vertible matrix<br />

P for which B = P AP T . One consequence of the above discussion is that<br />

two symmetric matrices B1 <strong>and</strong> B2 (with zeros on the ma<strong>in</strong> diagonal <strong>in</strong> case<br />

K has characteristic 2) are congruent iff they represent the same quadratic<br />

forms w.r.t. some pair of bases. Hence given a quadratic form on Vn+1, we<br />

need to specify a basis of Vn+1 before the matrices B <strong>and</strong> A are determ<strong>in</strong>ed.<br />

Until now we just always used the st<strong>and</strong>ard basis.<br />

Theorem 5.3.2. If K has characteristic different from 2, then Vn+1 has a<br />

basis α0, . . . , αn such that B(αi, αj) = 0 for i = j.<br />

Proof. Use <strong>in</strong>duction on n. If n = 0, there is noth<strong>in</strong>g to prove. Assume the<br />

theorem is true for n = m − 1. If q(x) = 0 for all x there is noth<strong>in</strong>g to<br />

prove. So assume x is a vector such that q(x) = 0. Then the polar space<br />

of x has dimension n or n + 1. S<strong>in</strong>ce the characteristic of K is not 2 <strong>and</strong><br />

q(x) = 0, it must be that B(x, x) = 0, so x ∈ τ(x). Thus Vn+1 = Kx ⊕ τ(x),<br />

<strong>and</strong> n = dim (τ(x)). By the <strong>in</strong>duction hypothesis there is a suitable basis<br />

x0, . . . , xn−1 for τ(x). Putt<strong>in</strong>g x = xn gives the desired basis.<br />

As a consequence of this theorem we see that if K does not have characteristic<br />

2 there is a basis for which the matrix A associated with q is<br />

diag(a00, a11, . . . , ann), <strong>and</strong> the polynomial f(x) has the form f(x) = a00x 2 0 +<br />

a11x 2 1 + · · · + annx 2 n.<br />

We now give an alternative characterization of degeneracy. Let q be a<br />

quadratic form on Vn+1 with Q <strong>and</strong> B as usual. Let A be a matrix assoiated<br />

with Q by a basis B1.<br />

Theorem 5.3.3. The follow<strong>in</strong>g are equivalent:<br />

(i) q (or Q, or B) is degenerate, i.e., Q has a s<strong>in</strong>gular po<strong>in</strong>t.<br />

(ii) There is a basis B2 of Vn+1 such that if A ∗ is the upper triangular<br />

matrix of q with respect to B2, then the right-h<strong>and</strong> column of A ∗ conta<strong>in</strong>s<br />

only zeros.


252 CHAPTER 5. QUADRATIC FORMS<br />

(iii) The polynomial of q associated with A can be transformed by a nons<strong>in</strong>gular<br />

matrix D <strong>in</strong>to one with fewer variables.<br />

(iv) There is a nons<strong>in</strong>gular matrix D mapp<strong>in</strong>g the po<strong>in</strong>ts of Q <strong>in</strong>to those<br />

of a quadric ¯ Q which is degenerate by the orig<strong>in</strong>al def<strong>in</strong>ition.<br />

Proof. If we show that (ii) is equivalent to the orig<strong>in</strong>al def<strong>in</strong>ition, the equivalence<br />

of the other characterizations should be clear.<br />

If the bottom row <strong>and</strong> right h<strong>and</strong> column of B∗ = A∗ +A∗T conta<strong>in</strong>s only<br />

zeros, <strong>and</strong> if the characteristic of K is not 2, then the right h<strong>and</strong> column of<br />

A∗ conta<strong>in</strong>s only zeros. On the other h<strong>and</strong>, if K has characteristic 2, then<br />

all we can say is that the right h<strong>and</strong> column of A∗ conta<strong>in</strong>s only zeros off<br />

the ma<strong>in</strong> diagonal. Thus the characterization (ii) of degeneracy must be <strong>in</strong><br />

terms of A∗ , not just of A or of B∗ .<br />

Suppose that [x]B2 = (0, . . . , 0, 1) <strong>and</strong> that q is degenerate <strong>in</strong> the sense<br />

of (ii). Then q(x) = [x]B2A∗ [x] T B2 = 0, <strong>and</strong> [x]B2B ∗ = [x]B2(A∗ + (AT ) ∗ ) = 0.<br />

On the other h<strong>and</strong>, if C is the nons<strong>in</strong>gular matrix transform<strong>in</strong>g B2 <strong>in</strong>to the<br />

st<strong>and</strong>ard basis, then 0 = [x]B2B ∗ = xCT B∗ = xCT B∗C, where CT B∗C is the<br />

symmetric matrix of the bil<strong>in</strong>ear form of q w.r.t. the st<strong>and</strong>ard basis. Thus<br />

x is a nonsimple (i.e., s<strong>in</strong>gular) po<strong>in</strong>t of Q. Let B1 be the st<strong>and</strong>ard basis,<br />

so 0 = xB = x(A + AT ) <strong>and</strong> 0 = xAxT . (Note that 0 represents a zero<br />

matrix of whatever size is needed.) Let D be any nons<strong>in</strong>gular matrix with<br />

bottom row x = [x]B1. Let B∗ = DBDT , <strong>and</strong> let A∗ be the upper triangular<br />

matrix such that A∗ + (A∗ ) T = B∗ . for i = n, the (i, n) entry of A∗ is<br />

(DADT )<strong>in</strong> + (DAT DT )<strong>in</strong> = <br />

j,k (DijAjkD T kn + DijAT jkDT <br />

kn ) = jk (Dij(Ajk +<br />

AT jk )xk) = <br />

j Dij((A+A T )xT )jn = 0. The (n, n) entry of A∗ is (DADT )nn =<br />

xAxT = 0.<br />

Theorem 5.3.4. The <strong>in</strong>tersection ¯ Q of a nondegenerate quadric Q <strong>in</strong> Pn(K)<br />

with some hyperplane Pn−1(K) is either a cone or a nondegenerate quadric.<br />

Proof. It is more convenient to work <strong>in</strong> Vn+1. So let Q be a nondegenerate<br />

quadric <strong>in</strong> Vn+1, with B = {α0, . . . , αn} a basis of Vn+1 such that ¯ B =<br />

{α0, . . . , αn−1} is a basis of the space Vn correspond<strong>in</strong>g to Pn−1(K). Let A <strong>and</strong><br />

B = A + AT be the matrices for Q relative to B. F<strong>in</strong>ally, suppose that x <strong>and</strong><br />

y are l<strong>in</strong>early <strong>in</strong>dependent vectors represent<strong>in</strong>g s<strong>in</strong>gular po<strong>in</strong>ts of ¯ Q = Q∩Vn.<br />

If Ā is the matrix obta<strong>in</strong>ed by delet<strong>in</strong>g the bottom row <strong>and</strong> right h<strong>and</strong> column<br />

of A, <strong>and</strong> ¯ B = Ā + ĀT , then Ā <strong>and</strong> ¯ B are the matrices of ¯ Q associated with<br />

the basis ¯ B. Let [x]B = (x0, . . . , xn−1, 0) <strong>and</strong> [y]B = (y0, . . . , yn−1, 0). Then for


5.4. CANONICAL FORMS OVER FINITE FIELDS 253<br />

<br />

T Ā z<br />

d1 <strong>and</strong> d2 <strong>in</strong> K not both zero, 0 = d1x + d2y. In fact, if A =<br />

<strong>and</strong><br />

0 c<br />

if we write (abus<strong>in</strong>g the notation!) ¯x = (x0, . . . , xn−1), ¯y = (y0, . . . , yn−1),<br />

then<br />

(d1x + d2y) Ā(d1x + d2y) T = d 2 1¯x Ā¯xT + d 2 2¯y Ā¯yT +<br />

d1d2¯x Ā¯yT + d1d2¯y Ā¯xT = 0,<br />

so d1x+d2y ∈ Q∩Vn = ¯ Q. Furthermore, B(d1x+d2y) T <br />

¯B T z<br />

=<br />

z 2c<br />

<br />

(d1x+<br />

d2y) = (0, . . . , 0, d1z¯x T +d2z¯y T ) T by the hypothesis that x <strong>and</strong> y are s<strong>in</strong>gular<br />

po<strong>in</strong>ts of ¯ Q. Thus any choice of d1, d2 <strong>in</strong> K, not both zero, such that d1z¯x T +<br />

d2z¯y T = 0 determ<strong>in</strong>es a s<strong>in</strong>gular po<strong>in</strong>t of Q, contradict<strong>in</strong>g the hypothesis that<br />

Q is nondegenerate. S<strong>in</strong>ce ¯ Q does not have dist<strong>in</strong>ct s<strong>in</strong>gular po<strong>in</strong>ts (po<strong>in</strong>ts<br />

of ¯ Q conjugate to all po<strong>in</strong>ts of ¯ Q), it must be a cone or nondegenerate.<br />

Exercise 5.3.4.1. Show that both possibilities mentioned <strong>in</strong> the previous<br />

theorem actually occur:<br />

(i) If Q is a nondegenerate quadric <strong>in</strong> P G(n, t) <strong>and</strong> x ∈ Q, then Q ∩ x ⊥<br />

is a cone over a nondegenerate quadric <strong>in</strong> P G(n − 2, t) of the same type as<br />

Q.<br />

(ii) If Q is a nondegenerate quadric <strong>in</strong> P G(n, t) <strong>and</strong> x ∈ Q, then Q ∩ x ⊥<br />

is nondegenerate <strong>in</strong> P G(n − 1, t). (Show that all three possibilities do occur.)<br />

5.4 Canonical Forms over F<strong>in</strong>ite Fields<br />

From now on we assume that the field K has the property that any<br />

quadric surface <strong>in</strong> a vector space of dimension at least 3 over K<br />

has a nonzero vector. This property certa<strong>in</strong>ly holds for any algebraically<br />

closed field K, <strong>and</strong> later <strong>in</strong> this section we establish the fact that it holds for<br />

all f<strong>in</strong>ite fields.<br />

Theorem 5.4.1. Let Q be a nondegenerate quadric surface (as a set of vectors<br />

only) <strong>in</strong> Vn+1 with n ≥ 2. Then the matrix A determ<strong>in</strong><strong>in</strong>g Q with respect<br />

to some basis B is determ<strong>in</strong>ed up to a scalar factor, so that conjugacy with<br />

respect to Q is completely determ<strong>in</strong>ed.<br />

Proof. Let x0 ∈ Q. S<strong>in</strong>ce τ(x0) is some n-dimensional subspace of Vn+1 <strong>and</strong><br />

x0 is clearly a nons<strong>in</strong>ple vector of Q ∩ τ(x0), that <strong>in</strong>tersection is a cone with


254 CHAPTER 5. QUADRATIC FORMS<br />

vertex x0. In particular this says that if x0 <strong>and</strong> y0 are l<strong>in</strong>early <strong>in</strong>dependent<br />

vectors of Q then τ(x0) ∩ Q = τ(y0) ∩ Q. Furthermore, the po<strong>in</strong>ts of the<br />

quadric determ<strong>in</strong>e which l<strong>in</strong>es lie <strong>in</strong> the quadric <strong>and</strong> thus which po<strong>in</strong>ts <strong>in</strong><br />

the quadric are conjugate to each other. If A1 <strong>and</strong> A2 are any two upper<br />

triangular matrices determ<strong>in</strong><strong>in</strong>g Q relative to the same basis, we may assume<br />

that A1 <strong>and</strong> A2 have a specific form (by chang<strong>in</strong>g basis if necessary). For we<br />

know there are subspaces N <strong>and</strong> P of maximum possible dimension r <strong>in</strong> Q<br />

with bases {x1, . . . , xr} <strong>and</strong> {y1, . . . , yr}, respectively, such that xi <strong>and</strong> yj are<br />

conjugate iff i = j. We claim that the polar τ(N ⊕P ) is uniquely determ<strong>in</strong>ed.<br />

This would have to be the <strong>in</strong>tersection R of the polars τ(xi), τ(yi), 1 ≤ i ≤ r,<br />

if we knew that each of these polars was uniquely determ<strong>in</strong>ed. But this follows<br />

from the follow<strong>in</strong>g two easily checked results:<br />

1. If 0 = x ∈ Q, y ∈ Q, then the l<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> y has no po<strong>in</strong>ts<br />

different from x on Q if x <strong>and</strong> y are conjugate.<br />

2. If 0 = x ∈ Q, y ∈ Q, then the l<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> y has precisely<br />

one po<strong>in</strong>t different from x <strong>and</strong> ly<strong>in</strong>g on Q if x <strong>and</strong> y are not conjugate.<br />

S<strong>in</strong>ce each of xi, yi, 1 ≤ i ≤ r, lies on Q, by check<strong>in</strong>g the tangents <strong>and</strong><br />

secants to Q through each of these po<strong>in</strong>t their polars may be determ<strong>in</strong>ed.<br />

Basically, the core of the proof is divided <strong>in</strong>to three cases correspond<strong>in</strong>g<br />

to whether R = τ(N ⊕P ) has dimension 0, 1 or 2. For all three cases we have<br />

arranged it so that B1(xi, yj) = δijci, B1(xi, xj) = B1(yi, yj) = B2(xi, xj) =<br />

B2(yi, yj) = 0, B2(xi, yj) = δijdi, for some scalars ci, di = 0.<br />

Case (i) R = {0}. Then the two associated polynomials are<br />

f1(x) = <br />

cixiyi; f2(x) = <br />

dixiyi.<br />

i<br />

The assumption is that these two polynomials have the same zeros <strong>and</strong><br />

that r i=1 cidi = 0. Necessarily r ≥ 2 <strong>in</strong> this case, s<strong>in</strong>ce n + 1 ≥ 3. If we<br />

set xi = yi = 0 for i > 2, then the assumption that c1x1y1 + c2x2y2 = 0 <strong>and</strong><br />

d1x1y1 + d2x2y2 = 0 have the same zeros implies that c1 c2 = . By similar<br />

d1 d2<br />

computations with x1, y1 <strong>and</strong> xj, yj, for j = 3, . . . , r, we see that ci is a di<br />

constant for i = 1, . . . , r. Thus A1 is some nonzero multiple of A2.<br />

Case(ii) Let R be spanned by the s<strong>in</strong>gle nonzero vector z1. Here f1(x) =<br />

c1x1y1+· · ·+crxryr+cz 2 1 , f2(x) = d1x1y1+· · ·+drxryr+dz 2 1 <strong>and</strong> cd r 1 cidi =<br />

0.<br />

For each i, 1 ≤ i ≤ r, our basic assumption <strong>in</strong>plies that cixiyi + cz2 1 = 0<br />

= 0 have the same solutions. S<strong>in</strong>ce these are quadratic<br />

<strong>and</strong> dixiyi + dz 2 1<br />

i


5.4. CANONICAL FORMS OVER FINITE FIELDS 255<br />

forms on vector spaces of dimension 3, there will be nontrivial solutions by<br />

hypothesis. In fact z1 = 1, xi = 1 <strong>and</strong> yi = − c<br />

is a solution to the first.<br />

ci<br />

S<strong>in</strong>ce it must be a solution of the second, we have c d = ci di . Aga<strong>in</strong> A1 is some<br />

nonzero scalar multiple of A2.<br />

Case (III) Let R be spanned by the <strong>in</strong>dependent vectors z1, z2. S<strong>in</strong>ce no<br />

po<strong>in</strong>t of R is <strong>in</strong> Q,<br />

f1(x) =<br />

f2(x) =<br />

r<br />

1<br />

r<br />

1<br />

cixiyi + cr+1z 2 1 + cr+2z 2 2 + cz1z2;<br />

dixiyi + dr+1z 2 1 + dr+2z 2 2<br />

+ dz1z2;<br />

where cr+1, cr+2, dr+1, dr+2, at least, are nonzero. Consider<strong>in</strong>g <strong>in</strong> turn<br />

solutions with z1 = z2 = 0, then z1 = 0, then z2 = 0, we have from the<br />

preced<strong>in</strong>g cases that ci<br />

di is a constant for 1 ≤ i ≤ r + 2. Then put xi = yi = 0<br />

for 2 ≤ i ≤ r, <strong>and</strong> z1 = z2 = 1 = x1. Then y1 = −(cr+1+cr+2+c)<br />

gives a solution<br />

x1<br />

of the first equation, which be<strong>in</strong>g a solution of the second, implies d1c = c1d.<br />

So c = d = 0 or c1<br />

d1<br />

= c<br />

d .<br />

As observed earlier, any algebraically closed field K has the property that<br />

any quadric surface <strong>in</strong> a vector space of dimension at least 3 over K has a<br />

nonzero vector, <strong>and</strong> the next theorem establishes the property for f<strong>in</strong>ite fields.<br />

From now on suppose that K = GF (t), t = p e where p is a prime. S<strong>in</strong>ce<br />

any degenerate quadric has nonzero vectors by def<strong>in</strong>ition, we only consider<br />

nondegenerate ones.<br />

Theorem 5.4.2. A nondegenerate quadric surface Q <strong>in</strong> Pn(K) has exactly<br />

t + 1 po<strong>in</strong>ts if n = 2, <strong>and</strong> Q is nonempty if n > 2, <strong>in</strong> case K = GF (t), p<br />

prime <strong>and</strong> t = p e .<br />

Proof. Case (i) p > 2. By Theorem 5.3.2 there is a basis of Vn+1 for which<br />

the associated polynomial has the form<br />

f(x) = a00x 2 0 + · · · + annx 2 n.<br />

It is clear that any quadric which has a polynomial <strong>in</strong> this form will be<br />

nondegenerate if <strong>and</strong> only if n i=0 aii = 0 (odd characteristic or not). If<br />

n > 2, put xj = 0 for j > 2. Then we need to show that there are t + 1<br />

dist<strong>in</strong>ct po<strong>in</strong>ts [xi], 0 ≤ i ≤ 2, satisfy<strong>in</strong>g a00x2 0 + a11x2 1 + a22x2 2 = 0. At


256 CHAPTER 5. QUADRATIC FORMS<br />

least one of a00 a00 a11<br />

a11<br />

, , is a square <strong>in</strong> K. For example, suppose is a<br />

a22 a11 a22 a22<br />

square. Then the above equation may be replaced by an equation of the<br />

form ax2 0 + x21 + x22 = 0. And the existence of at least one po<strong>in</strong>t on Q follows<br />

from the fact that if 0 = γ ∈ K, then there are elements α <strong>and</strong> β of K such<br />

that α2 + β2 = γ. (For p = 2 this is trivial. Also, we may of course assume<br />

that γ = ❆ .)<br />

This comb<strong>in</strong>atorial lemma is actually a special case of Theorem 20.23.1.<br />

However, this special case has a cute comb<strong>in</strong>atorial proof which we give now.<br />

Def<strong>in</strong>e the multiplicative homomorphism h on the nonzero elements of K<br />

by h : a ↦→ a2 . S<strong>in</strong>ce the kernel of h is {+1, −1}, precisely half of the<br />

nonzero elements of K are squares, say β1, . . . , βr, r = t−1<br />

2<br />

are the squares.<br />

Let S = {γ − βi : 1 ≤ i ≤ r}. If S conta<strong>in</strong>ed no squares, then S would<br />

conta<strong>in</strong> precisely all the nonsquares of K, especially γ. But clearly γ ∈ S, so<br />

γ = βi + βj for some i <strong>and</strong> j. This completes the proof that Q is nonempty.<br />

Now suppose that x is a po<strong>in</strong>t of Q <strong>and</strong> n = 2. By Theorem 5.2.2 there<br />

is a y ∈ Q which is not conjugate to x. Thus x <strong>and</strong> y span a hyperbolic l<strong>in</strong>e<br />

H. If z is <strong>in</strong> the conjugate space R of H, then z ∈ Q. S<strong>in</strong>ce the conjugate<br />

space τ(x) has dimension 2, it is clear that τ(x) = Kx ⊕ τ(x). For a vector<br />

z <strong>in</strong> τ(H), q(x + z) = q(x) + q(z) + B(x, z) = q(z) = 0. Thus τ(x) has only<br />

t − 1 nonzero vectors α such that q(α) = 0: viz, the nonzero multiples of x.<br />

So we need to count the po<strong>in</strong>ts of Q not conjugate to x. There are t3−t2 = t2<br />

po<strong>in</strong>ts y not conjugate to the po<strong>in</strong>t x. For each such po<strong>in</strong>t y, xy is a l<strong>in</strong>e<br />

= t<br />

(which must be hyperbolic by Lemma 5.2.1. Each such l<strong>in</strong>e will give t2 −t<br />

t−1<br />

po<strong>in</strong>ts not conjugate to x. In this way there are t2<br />

t<br />

t−1<br />

= t dist<strong>in</strong>ct hyperbolic<br />

l<strong>in</strong>es determ<strong>in</strong>ed conta<strong>in</strong><strong>in</strong>g x. If H = xy, x, y ∈ Q is a hyperbolic l<strong>in</strong>e with<br />

B(x, y) = 0, it is clear that the only po<strong>in</strong>ts of Q <strong>in</strong> H are x <strong>and</strong> y. Thus<br />

there will be x <strong>in</strong> Q plus the t other po<strong>in</strong>ts on the hyperbolic l<strong>in</strong>es through<br />

x also on Q. So Q has exactly t + 1 po<strong>in</strong>ts.<br />

Case (ii) p = 2. In this case each element of K is a square. For n = 2<br />

f(x) has the form f(x) = a00x2 0 +a11x 2 1 +a22x 2 2 +a01x0x1 +a02x0x2 +a12x1x2.<br />

If a02 = 0, put x1 = 0 <strong>and</strong> solve a00<br />

a22 =<br />

2 <br />

x2<br />

a12<br />

. Otherwise, put x0 = x1,<br />

x0<br />

a02<br />

<br />

a00a<br />

so f(x) becomes f(x) =<br />

2 12<br />

a2 <br />

x<br />

02<br />

2 1 + a11x2 1 + a22x2 <br />

a01a12<br />

2 + x a02<br />

2 1 + a12x1x2 +<br />

a12x1x2 = cx 2 1 + a22x 2 2. From this it is easy to f<strong>in</strong>d at least one nontrivial<br />

solution to f(x) = 0, so Q has a least one po<strong>in</strong>t. That it has t + 1 po<strong>in</strong>ts<br />

follows from the argument given <strong>in</strong> case (i).


5.4. CANONICAL FORMS OVER FINITE FIELDS 257<br />

It follows from Theorems 5.2.2 <strong>and</strong> 5.4.2 that if n is even, any nondegenerate<br />

quadric <strong>in</strong> Pn(K) conta<strong>in</strong>s a subspace N of dimension n<br />

<strong>and</strong> no subspace<br />

2<br />

of higher dimension. If n is odd, there are two possibilities: a subspace of Q<br />

of maximum dimension has dimension 1<br />

1 (n + 1) or (n − 1). Furthermore, Q<br />

2 2<br />

will have a subspace of dimension 1<br />

2 (n + 1) iff Vn+1 is an orthogonal direct<br />

sum of hyperbolic l<strong>in</strong>es. The space Vn+1 (or Pn(K)) endowed with a particular<br />

nondegenerate quadric surface (or quadratic form, unique up to a scalar<br />

factor) will be called a hyperbolic or elliptic space, <strong>and</strong> the quadric surface Q<br />

will be called hyperbolic or elliptic accord<strong>in</strong>g as Q has subspaces of dimension<br />

1(n<br />

+ 1) or not.<br />

2<br />

When n is odd, any two hyperbolic quadric surfaces have the same matrix<br />

A but relative to dist<strong>in</strong>ct bases. Thus a l<strong>in</strong>ear transformation mapp<strong>in</strong>g one<br />

of these bases <strong>in</strong>to the other (<strong>in</strong> an appropriate manner) maps one of the<br />

quadrics <strong>in</strong>to the other. This implies that any two hyperbolic quadrics are<br />

essentially (i.e., projectively) equivalent.<br />

If n is even, any nondegenerate quadric has a polynomial of the form<br />

f(x) = r i=1 xiyi + cz2 for some 0 = c ∈ K <strong>and</strong> where r = n.<br />

Multiply<strong>in</strong>g<br />

2<br />

each xi by c gives the form c ( r i=1 xiyi + z2 ). So when n is even, any two<br />

nondegenerate quadric surfaces are essentially the same. In this case, the<br />

vector space endowed with a nondegenerate quadratic form will be called a<br />

parabolic space.<br />

If n is odd, any elliptic quadric has the form<br />

r<br />

i=1<br />

xiyi + c1z 2 1 + c2z 2 2 + cz1z2, where r =<br />

n − 1<br />

.<br />

2<br />

Replac<strong>in</strong>g each xi by c1xi <strong>and</strong> then divid<strong>in</strong>g the entire form by c1, we see<br />

that we may suppose the quadric has the form<br />

r<br />

i=1<br />

xiyi + z 2 1 + c2z 2 2 + cz1z2.<br />

Replac<strong>in</strong>g z1 by z ′ 1 = z1 + c<br />

2 z2 yields the form<br />

f(x) =<br />

r<br />

xiyi + z 2 1 + cz 2 2, where 0 = c.<br />

i=1<br />

Put ¯z1 = (0, . . . , 0, 1, 0) <strong>and</strong> ¯z2 = (0, . . . , 0, 1). The fact that no po<strong>in</strong>t of<br />

the l<strong>in</strong>e R spanned by ¯z1 <strong>and</strong> ¯z2 is on Q is equivalent to the assumption that


258 CHAPTER 5. QUADRATIC FORMS<br />

−c is not a square <strong>in</strong> K. Clearly, by adjust<strong>in</strong>g z2 by some factor, −c may be<br />

assumed to be any particular nonsquare. Thus K has essentially only one<br />

elliptic quadric if K has odd characteristic. If K has characteristic 2, the<br />

transformation x1 = x ′ c<br />

1− 2 x2 is undef<strong>in</strong>ed. But each element of K is a square.<br />

So replace zi by zi<br />

√ci , i = 1, 2, to get f of the form xiyi + z 2 1 + z 2 2 + cz1z2,<br />

where z 2 1 + z2 2 + cz1z2 = 0 has no solution <strong>in</strong> K. Replac<strong>in</strong>g z2 by c −1 z2 yields<br />

a polynomial of the form xiyi + z2 1 + z1z2 + δz2 2 where δ is an element of<br />

K = GF (2e ) such that 0 = z2 1 + z1z2 + δz2 2 has no solution <strong>in</strong> K (other than<br />

the trivial solution, of courwse). This is equivalent to z2 1 + z1 + δ = 0 hav<strong>in</strong>g<br />

no solution <strong>in</strong> K. If z ′ 0 = z0 + λz1, z ′ 1 = z1, then the former equality <strong>in</strong> two<br />

variables becomes 0 = z ′ 2 ′<br />

1 + z 1z ′ 2 + δ′ z ′ 2 ′ 2<br />

2 , where δ = δ + λ + λ . Clearly<br />

z 2 + z + δ = 0 has a root <strong>in</strong> K iff (z + λ) 2 + (z + λ) + δ = z 2 + z + δ ′ = 0 has<br />

a solution. We claim that <strong>in</strong> the f<strong>in</strong>ite case if δ ′ + z + z 2 = 0 has no solution,<br />

then there is some λ ∈ K = GF (2 e ) such that δ ′ = δ + λ + λ 2 . This would<br />

imply that any two elliptic quadrics <strong>in</strong> Pn(K) are equivalent. To prove this<br />

we need some additional <strong>in</strong>formation about the elements of GF (2 e ). (We<br />

<strong>in</strong>clude this material here for the reader who has not digested the material<br />

<strong>in</strong> Section 4.13.)<br />

First, suppose ζ 2 = δ + ζ for two elements δ <strong>and</strong> ζ of K. Then ζ 4 =<br />

δ 2 + ζ 2 = ζ + δ + δ 2 . By an <strong>in</strong>duction argument we f<strong>in</strong>d<br />

imply<strong>in</strong>g that<br />

ζ 2e<br />

= ζ + δ + δ 2 + δ 22<br />

+ δ 23<br />

+ · · · + ζ 2e<br />

,<br />

δ + δ 2 + δ 22<br />

+ δ 23<br />

+ · · · + δ 2e−1<br />

= 0.<br />

This shows that if δ is an element of K for which z 2 + z + δ = 0 has a<br />

solution z ∈ K, then the absolute trace of δ equals 0. We know that the<br />

absolute trace map<br />

tr : GF (2 e ) → GF (2) : δ ↦→ δ + δ 2 + δ 22<br />

+ δ 23<br />

+ · · · + δ 2e−1<br />

is an additive function which is onto GF (2), i.e., it has kernel of size 2 e−1 .<br />

Let θ be the map: θ : λ ↦→ λ + λ 2 . Then θ is an additive homomorphism<br />

of the additive group of K. θ(λ1) = θ(λ2) iff λ1 = λ2 or λ1 = 1+λ2. Thus the<br />

kernel of θ has card<strong>in</strong>ality 2, which implies that the range of θ has card<strong>in</strong>ality<br />

2 e−1 . Moreover, each element δ of the range C0 of θ clearly has the property<br />

that δ + z + z 2 has a solution z ∈ K. It follows that the range C0 of θ is


5.4. CANONICAL FORMS OVER FINITE FIELDS 259<br />

exactly the kernel C0 of the trace map tr, <strong>and</strong> that C0 is precisely the set of<br />

elements δ ∈ K for which δ + z + z 2 = 0 has a solution. If δ0 is any element<br />

of K for which δ0 + z + z 2 does not have a solution z ∈ K, the other coset<br />

C1 = C0 + δ0 of C0 is exactly the set of elements of K for which δ0 + z + z 2<br />

does not have a solution z ∈ K. It follows that δ1 <strong>and</strong> δ2 are two elements<br />

<strong>in</strong> the same coset of C0 iff there is some λ ∈ K for which δ1 = δ2 + λ + λ 2 ,<br />

which proves our claim.<br />

We record some of this for easy reference.<br />

Lemma 5.4.3. If K = GF (2 e ), <strong>and</strong> if tr : K → GF (2) is the absolute trace<br />

function, then for a given δ ∈ K,<br />

δ + z + z 2 = 0 has 2m solutions <strong>in</strong> K provided tr(δ) = m, m = 0 or 1.<br />

Now suppose that Vn+1 is an orthogonal direct sum Vn+1 = W1 ⊥ W2<br />

relative to some nondegenerate quadratic form. If n + 1 is odd, then one<br />

of W1, W2 has odd dimension, the other has even dimension. S<strong>in</strong>ce the<br />

odd dimensional (vector) spaces are essentially of one k<strong>in</strong>d, the type of the<br />

even dimensional subspace makes no difference on the type of the whole<br />

space. However, suppose that n + 1 is even. Clearly the orthogonal sum of<br />

two hyperbolic spaces is hyperbolic, <strong>and</strong> the orthogonal sum of a hyperbolic<br />

<strong>and</strong> an elliptic space must be elliptic (consider the form of the associated<br />

polynomials). So consider the orthogonal direct sum of two elliptic spaces.<br />

Case (i) Odd characteristic. Clearly we may suppose that the associated<br />

polynomial has the form<br />

f =<br />

r<br />

xiyi + z 2 1 + cz 2 2 + w 2 1 + cw 2 2, where − c is a nonsquare.<br />

i=1<br />

We know we can choose scalars α, β such that α 2 + β 2 = c −1 . Replac<strong>in</strong>g z2<br />

by z ′ 2 = αz2 − βw2 <strong>and</strong> w2 by w ′ 2 = βz2 + αw2 amounts to chang<strong>in</strong>g bases so<br />

that the polynomial becomes<br />

r<br />

i=1<br />

xiyi + z 2 1 + z2 2 + w2 1 + w2 2 .<br />

Thus the whole space will be hyperbolic if we show that a form 4<br />

i=1 x2 i<br />

is hyperbolic. Choose α, β ∈ K such that α 2 + β 2 = −1. Then the po<strong>in</strong>ts


260 CHAPTER 5. QUADRATIC FORMS<br />

(α, β, 1, 0) <strong>and</strong> (β, −α, 0, 1) generate a l<strong>in</strong>e <strong>in</strong> Q, show<strong>in</strong>g that the space is<br />

hyperbolic.<br />

Case (ii) Even characteristic. In this case we may assume that the associated<br />

polynomial has the form f = r i=1 xiyi+z 2 1 +z1z2+δz 2 2 +w2 1 +w1w2+δw 2 2 ,<br />

where δ is some element of K such that z2 + z + δ = 0 has no solution. So<br />

here the whole space will be hyperbolic if we show that z2 1 +z1z2 +δz 2 2 +w2 1 +<br />

w1w2 + δw2 2 = 0 is hyperbolic. But the po<strong>in</strong>ts (z1 = w1 = 1; z2 = w2 = 0)<br />

<strong>and</strong> (z1 = w1 = 0; z2 = w2 = 1) are l<strong>in</strong>early <strong>in</strong>dependent conjugate po<strong>in</strong>ts on<br />

the quadric.<br />

So what about the orthogonal direct sum of two parabolic spaces? Such a<br />

quadratic form would have a polynomial of the form f = r i=1 xiyi +w 2 +z 2 .<br />

If t = 2e , this is a cone over a parabolic quadric <strong>in</strong> a hyperplane (with vertex<br />

(0, 0, . . . , 0, 1, 1)). If t is odd, it is a hyperbolic space when −1 = ∈ Ft <strong>and</strong><br />

is an elliptic quadric when −1 = ❆ ∈ Ft.<br />

We summarize the results of the preced<strong>in</strong>g paragraphs <strong>in</strong> the follow<strong>in</strong>g<br />

theorem.<br />

Theorem 5.4.4. Let q be a nondegenerate quadratic form on a vector space<br />

Vn+1 over K = GF (t).<br />

(i) If n+1 is odd, there is essentially only one k<strong>in</strong>d of quadric <strong>in</strong> the sense<br />

that with respect to some basis its polynomial has the form f = r<br />

i=1 xiyi+z 2 .<br />

(ii) If n + 1 is even <strong>and</strong> q is hyperbolic, then with respect to some basis<br />

its polynomial has the form <br />

i xiyi.<br />

(iii) If n + 1 is even <strong>and</strong> q is not hyperbolic, then it must be elliptic.<br />

Furthermore, with respect to some basis its polynomial has the form:<br />

(a) Odd characteristic: f = r<br />

i=1 xiyi + z 2 1 + cz 2 2; −c any nonsquare.<br />

(b) Characteristic 2: f = r<br />

i=1 xiyi + z 2 1 + z1z2 + δz 2 2 ; with z2 + z + δ<br />

irreducible over K.<br />

Furthermore, any two elliptic quadrics on Vn+1 are equivalent.<br />

(iv) If Vn+1 is the orthogonal direct sum of two subspaces W1, W2, each<br />

of even dimension, then Vn+1 is hyperbolic or elliptic accord<strong>in</strong>g as W1 <strong>and</strong><br />

W2 are of the same k<strong>in</strong>d or of opposite k<strong>in</strong>ds.<br />

(v) The form 4<br />

i=1 x2 i<br />

is hyperbolic (actually for any characteristic not<br />

zero).<br />

(vi) The orthogonal sum of two parabolic spaces is a cone over a parabolic<br />

space <strong>in</strong> a hyperplane when t = 2 e . When t is odd, it is either elliptic or<br />

hyperbolic, depend<strong>in</strong>g on whether −1 is a nonsquare or a square.


5.4. CANONICAL FORMS OVER FINITE FIELDS 261<br />

Remark: The preced<strong>in</strong>g theorem really conta<strong>in</strong>s a great deal of <strong>in</strong>formation.<br />

We mention one type of application of part (iv) that is very useful.<br />

Suppose Vn+1 is hyperbolic <strong>and</strong> W is a subspace of even dimension on which<br />

the restriction of the nondegenerate quadratic form q is also nondegenerate.<br />

Then Vn+1 is the orthogonal direct sum of W <strong>and</strong> W ⊥ . This means that W<br />

<strong>and</strong> W ⊥ must be of the same type, i.e., either both elliptic or both hyperbolic.<br />

Theorem 5.4.5. Let Q be a nondegenerate quadric <strong>in</strong> Pn(K) with K =<br />

GF (t). Then the number of po<strong>in</strong>ts on Q is:<br />

, if n is even;<br />

(i) tn −1<br />

t−1<br />

(ii) ( (tk+1 +1)(t k −1)<br />

t−1<br />

(iii) (tk+1 −1)(t k +1)<br />

t−1<br />

, if Q is elliptic, n = 2k + 1 ≥ 3.<br />

, if Q is hyperbolic, n = 2k + 1 ≥ 3.<br />

Proof. Case (i) For n = 2 we have already established the result <strong>in</strong> Theorem<br />

5.4.2 The polar τ(x0) of any po<strong>in</strong>t x0 ∈ Q <strong>in</strong>tersects A <strong>in</strong> a cone Q ′ <strong>in</strong><br />

τ(x0) ∼ = Pn−1(K) whose equation may be expressed <strong>in</strong> terms of n − 1 variables.<br />

Hence the number of l<strong>in</strong>es through x0 ly<strong>in</strong>g <strong>in</strong> Q ′ is the same as the<br />

number of po<strong>in</strong>ts ly<strong>in</strong>g on a nondegenerate quadric <strong>in</strong> Pn−2(K), i.e., tn−2 −1<br />

t−1 by<br />

an <strong>in</strong>duction hypothesis. S<strong>in</strong>ce each po<strong>in</strong>t on Q ′ is on one of the l<strong>in</strong>es through<br />

x0, there are t(tn−2−1) t−1 + 1 = tn−1−1 t−1 po<strong>in</strong>ts on Q′ . There are tn+1−1 t−1 − tn−1 = tn<br />

t−1<br />

po<strong>in</strong>ts y not conjugate to x0. For each such y the l<strong>in</strong>e x0y is a hyperbolic l<strong>in</strong>e<br />

(a secant to Q) conta<strong>in</strong><strong>in</strong>g t po<strong>in</strong>ts different from x0. Thus there are tn−1 hyperbolic l<strong>in</strong>es conta<strong>in</strong><strong>in</strong>g x0, each conta<strong>in</strong><strong>in</strong>g one other po<strong>in</strong>t of Q not <strong>in</strong><br />

τ(x0). Hence there are tn−1−1 t−1 + tn−1 = tn−1 po<strong>in</strong>ts on Q, as claimed.<br />

t−1<br />

For (ii) <strong>and</strong> (iii), let n = 3 <strong>and</strong> x0 ∈ Q. By a now familiar calculation<br />

there are t2 l<strong>in</strong>es through x0 not ly<strong>in</strong>g <strong>in</strong> τ(x0), each conta<strong>in</strong><strong>in</strong>g precisely one<br />

po<strong>in</strong>t of Q different from x0. If Q is elliptic, no l<strong>in</strong>e lies <strong>in</strong> Q, so τ(x0) ∩ Q is<br />

just the po<strong>in</strong>t x0. Thus there are exactly 1+t2 po<strong>in</strong>ts on Q. If Q is hyperbolic,<br />

Q ∩ τ(x0) is a cone <strong>in</strong> P2(K) with 1 + tr po<strong>in</strong>ts, where r is the number of<br />

po<strong>in</strong>ts on a quadric <strong>in</strong> some P1(K) with po<strong>in</strong>ts. But a nondegenerate quadric<br />

<strong>in</strong> P1(K) with a po<strong>in</strong>t x must have a unique other po<strong>in</strong>t y, so r = 2. Thus<br />

Q has t2 + (1 + 2t) = (1 + t) 2 po<strong>in</strong>ts as claimed <strong>in</strong> the theorem.<br />

Proceed<strong>in</strong>g by <strong>in</strong>duction (on n), let Q be of either type, x0 ∈ Q, y ′ ∈<br />

τ(x0). Then there is a unique po<strong>in</strong>t y0 ∈ Q on the l<strong>in</strong>e x0y ′ such that<br />

y0 ∈ τ(x0). And x0y0 IS a hyperbolic l<strong>in</strong>e whose polar space τ(x0) ∩ τ(y0)<br />

is a Pn−2(K). But Q ∩ (τ(x0) ∩ τ(y0)) is a quadric of the same type as Q<br />

(Theorem 5.4.4, part (iv)). By <strong>in</strong>duction Q ∩ (τ(x0) ∩ τ(y0)) conta<strong>in</strong>s φn−2<br />

po<strong>in</strong>ts where φn−2 is the number of po<strong>in</strong>ts on a nondegenerate quadric <strong>in</strong>


262 CHAPTER 5. QUADRATIC FORMS<br />

Pn−2(K) of the appropriate type. Let y = cx0 + z ∈ Kx0 ⊥ (τ(x0) ∩ τ(y0)) =<br />

τ(x0), with z ∈ τ(x0) ∩ τ(y0). Clearly y ∈ Q iff z ∈ Q. Thus τ(x0) conta<strong>in</strong>s<br />

t · φn−2 po<strong>in</strong>ts of Q different from x0. Just as <strong>in</strong> the proof of part (i), there<br />

are t n−1 hyperbolic l<strong>in</strong>es through x0, each conta<strong>in</strong><strong>in</strong>g precisely one po<strong>in</strong>t of<br />

Q other than x0. Thus φn = 1 + t n−1 + t · φn−2. Our <strong>in</strong>duction hypothesis is<br />

that φn−2 =<br />

n−1<br />

(t 2 ±1)(t n−3<br />

2 ∓1)<br />

t−1<br />

recurrence leads easily to φn =<br />

show.<br />

. This together with the immediately preced<strong>in</strong>g<br />

n+1<br />

(t 2 ±1)(t n−1<br />

2 ∓1)<br />

t−1<br />

, which is what we wanted to<br />

5.5 The Discrim<strong>in</strong>ant <strong>in</strong> Odd Characteristic<br />

Now let K = GF (t), t = p e , p an odd prime. In this case the quadratic<br />

form q is nons<strong>in</strong>gular <strong>and</strong> its polar form B (with Gram matrix also denoted<br />

B) is nondegenerate provided |B| = det(B) = 0. If this is the case, then<br />

|P BP T | = |P | 2 · |B|, so that |B| <strong>and</strong> |P BP T | are either both squares <strong>in</strong> K<br />

or are both nonsquares <strong>in</strong> K. Hence if B is nondegenerate we may def<strong>in</strong>e the<br />

discrim<strong>in</strong>ant of q (or of B) to be disc(B) = |B| modulo the group of squares<br />

<strong>in</strong> K ∗ = K \ {0}.<br />

Let V <strong>and</strong> W be two n-dimensional vector spaces over K. Let q, q ′ be two<br />

nons<strong>in</strong>gular quadratic forms on V , W , respectively. A l<strong>in</strong>ear transformation<br />

T : V ↦→ W is an isometry from q to q ′ provided q(v) = q ′ (T (v)) for all v ∈ V ,<br />

<strong>in</strong> which case T is <strong>in</strong>vertible. Suppose this is the case <strong>and</strong> let B, B ′ be ordered<br />

bases of V , W , respectively. Let A be the matrix represent<strong>in</strong>g T with respect<br />

to the pair B, B ′ . This means that [T (v)]B ′ = [v]B · A for all v ∈ V . Let B,<br />

B ′ be the matrices represent<strong>in</strong>g the polar forms B, B ′ of q, q ′ , with respect<br />

to the bases B, B ′ , respectively. Then clearly B(v, w) = B ′ (T (v), T (w)) for<br />

all v, w ∈ V , so that<br />

[v]B · B · [w] T B = [v]B · A(A −1 BA −T )A T [w] T B<br />

= [T (v)]B ′(A−1 BA −T )[T (w)]B ′<br />

= [T (v)]B ′B′ [T (w)]B ′<br />

for all v, w ∈ V . Hence B ′ = A −1 BA −T , <strong>and</strong> disc(B ′ ) = disc(B).<br />

As above, let q : V ↦→ F be a nons<strong>in</strong>gular quadratic form on V with polar<br />

form B. S<strong>in</strong>ce q(v) = 0 if <strong>and</strong> only if q(cv) = c 2 q(v) = 0 for all c ∈ K ∗ , the


5.5. THE DISCRIMINANT IN ODD CHARACTERISTIC 263<br />

quadric Q(n − 1, t) = {v ∈ P (V ) : q(v) = 0} is a well def<strong>in</strong>ed set of po<strong>in</strong>ts of<br />

the projective space P (V ) associated with V . If W is a subspace of V , def<strong>in</strong>e<br />

W ⊥ = {v ∈ V : B(v, w) = 0 for all w ∈ W }. If W ∩ W ⊥ = {0}, it is possible<br />

to show that V = W ⊕ W ⊥ , <strong>and</strong> we write V = W ⊥ W ⊥ . If B1 is a basis of<br />

W <strong>and</strong> B2 is a basis of W ⊥ , then B1 ∪ B2 is a basis of V , <strong>and</strong> the matrix B<br />

that is the Gram matrix of q with respect to the basis B1 ∪ B2 is the direct<br />

sum of the matrices B1, B2 that are the Gram matrices of q restricted to W ,<br />

W ⊥ , respectively. Hence<br />

disc(q) = disc(q|W) · disc(q| W ⊥). (5.2)<br />

Now suppose W =< x, y > is a l<strong>in</strong>e, i.e., a 2-dimensional subspace of<br />

V . Put B(x, x) = a, B(x, y) = B(y, x) = b, B(y, y) = c. Then disc(q|W <br />

) =<br />

<br />

a b <br />

<br />

b c = ac − b2 . And q(dx + ey) = 0 if <strong>and</strong> only if 0 = B(dx + ey, dx +<br />

ey) = d2a + 2deb + e2c, which has no solutions (d, e) = (0, 0) if <strong>and</strong> only if<br />

4b2 − 4ac = −4(ac − b2 ) = −disc(q|W ) = ❆ ∈ K. This proves the follow<strong>in</strong>g<br />

theorem.<br />

Theorem 5.5.1. The l<strong>in</strong>e W is anisotropic (or elliptic), i.e., conta<strong>in</strong>s no<br />

nonzero vector v with q(v) = 0 if <strong>and</strong> only if −disc(q|W ) = ❆ .<br />

Given a non-degenerate even-dimensional orthogonal space over Ft with<br />

t odd, the discrim<strong>in</strong>ant of the quadratic form tells us whether the space is of<br />

type (i) or (iii) <strong>in</strong> Cor. 5.2.6. Hence the discrim<strong>in</strong>ant is a complete <strong>in</strong>variant.<br />

S<strong>in</strong>ce any O + (2n, t) space can be written as the orthogonal direct sum of<br />

n hyperbolic l<strong>in</strong>es, the matrix of the polar form (with respect to a basis<br />

of hyperbolic pairs from these l<strong>in</strong>es) has determ<strong>in</strong>ant (−1) n . Thus, a nondegenerate<br />

orthogonal space (V2n, Q ′ ) of even rank (vector space dimension)<br />

with t odd is an O + (2n, t) space if <strong>and</strong> only if det(B) = (−1) n modulo the<br />

group of squares, where B is the matrix of the polar form associated to Q ′ .<br />

The O + , O <strong>and</strong> O − spaces will be referred to as hyperbolic, parabolic <strong>and</strong><br />

elliptic spaces, respectively.<br />

The set of s<strong>in</strong>gular vectors of an O(3, t) space will be called a conic, <strong>and</strong><br />

the set of s<strong>in</strong>gular vectors of an O − (4, t) space is an elliptic quadric.<br />

We now give an application of this section that will turn out to be quite<br />

useful when we study generalized quadrangles constructed from BLT-sets.


264 CHAPTER 5. QUADRATIC FORMS<br />

Let t be odd, <strong>and</strong> let P1, P2, P3 be three pairwise non-orthogonal po<strong>in</strong>ts of<br />

Q(4, t). We may take V = F 5<br />

t with quadratic form Q(x) = x0x1 − x2 2 + x3x4<br />

<strong>and</strong> associated polar form B(x, y) = x0y1 + x1y0 − 2x2y2 + x3y4 + x4y3. So<br />

we are assum<strong>in</strong>g that B(Pi, Pj) = 0 if <strong>and</strong> only if i = j, 1 ≤ i, j ≤ 3. So<br />

W = 〈P1, P2, P3〉 is a plane with polar l<strong>in</strong>e W ⊥ . We showed above that W ⊥<br />

is anisotropic if <strong>and</strong> only if disc(Q| W ⊥) = −❆ . Suppose that B(P1, P2) = a,<br />

B(P2, P3) = b, B(P3, P1) = c. So the gram matrix for Q|W is<br />

⎛<br />

BW = ⎝<br />

0 a c<br />

a 0 b<br />

c b 0<br />

imply<strong>in</strong>g that disc(Q|W ) = 2abc. It is also easy to check that disc(Q)) = −2.<br />

S<strong>in</strong>ce disc(Q) = disc(Q|W ) · disc(Q| W ⊥), we have W ⊥ is anisotropic iff −2 ≡<br />

2abc · (−❆ ) (modulo the nonzero squares <strong>in</strong> F ∗<br />

t ). Hence we have proved the<br />

follow<strong>in</strong>g<br />

Lemma 5.5.2. Let t be odd. Then let Q be a nondegenerate (parabolic)<br />

quadratic form on V = F 5<br />

t with associated polar form B. Let P1, P2, P3 be<br />

three l<strong>in</strong>early <strong>in</strong>dependent vectors <strong>in</strong> V with B(Pi, Bj) = 0 if <strong>and</strong> only if<br />

i = j, 1 ≤ i ≤ j ≤ 3. Then W ⊥ is an anisotropic l<strong>in</strong>e (i.e., there is no<br />

nonzero R ∈ V with Q(R) = 0 <strong>and</strong> B(Pi, R) = 0 for 1 ≤ i ≤ 3) if <strong>and</strong> only<br />

if B(P1, P2) · B(P2, P3) · B(P3, P1) = ❆ .<br />

Corollary 5.5.3. With Q <strong>and</strong> B as <strong>in</strong> the preced<strong>in</strong>g lemma, let P0, P1, P2, P3<br />

be four po<strong>in</strong>ts of V such that any three of them form a l<strong>in</strong>early <strong>in</strong>dependent<br />

set with B(Pi, Pj) = 0 iff i = j, 0 ≤ i, j ≤ 3. Def<strong>in</strong>e Wk = 〈Pi, Pj, Pl〉,<br />

where {i, j, l, k} = {0, 1, 2, 3}. Suppose that all three l<strong>in</strong>es W ⊥ k , 1 ≤ k ≤ 3<br />

are anisotropic. Then W ⊥ 0 is also anisotropic.<br />

Proof. By the lemma we have<br />

⎞<br />

⎠ ,<br />

B(P0, P1)B(P1, P2)B(P0, P2) = ❆<br />

B(P0, P1)B(P1, P3)B(P0, P3) = ❆<br />

B(P0, P2)B(P2, P3)B(P0, P3) = ❆<br />

Take the product of these three l<strong>in</strong>es. S<strong>in</strong>ce the product of three nonsquares<br />

is a nonsquare, we see that B(P1, P2)B(P2, P3)B(P3, P1) = ❆ .


5.6. ACTION OF THE ORTHOGONAL GROUP 265<br />

5.6 Action of the Orthogonal Group<br />

Let M <strong>and</strong> N be f<strong>in</strong>ite dimensional vector spaces over the field K. A bil<strong>in</strong>ear<br />

form B on M × N is a mapp<strong>in</strong>g of M × N <strong>in</strong>to K with the property that for<br />

each x ∈ M <strong>and</strong> y ∈ N the functions λx : y ↦→ B(x, y) <strong>and</strong> µy : x ↦→ B(x, y)<br />

are l<strong>in</strong>ear on N <strong>and</strong> M, respectively. Let P <strong>and</strong> R be subspaces of M<br />

<strong>and</strong> N, respectively. Put P ′ = {y ∈ N : B(x, y) = 0 for all x ∈ P } <strong>and</strong><br />

R ′ = {x ∈ M : B(x, y) = 0 for all y ∈ R}. Then P ′ (resp., R ′ ) is a subspace<br />

of M (resp., N)called the right (resp., left) conjugate space of P (resp., R).<br />

The follow<strong>in</strong>g relations are simple consequences of the def<strong>in</strong>itions:<br />

(i) P ⊆ (P ′ ) ′ for any subspace P of M;<br />

(ii) R ⊆ (R ′ ) ′ for any subspace R of N;<br />

(iii) (P1 + P2) ′ = P ′ 1 ∩ P ′ 2 , if P ′ 1 , P ′ (iv) (R1 + R2)<br />

2 are sub spaces of M;<br />

′ = R ′ 1 ∩ R ′ 2, if R1, R2 are subspaces of N.<br />

(5.3)<br />

We say B is nondegenerate if both M ′ = 0 <strong>and</strong> N ′ = 0, i.e., iff both<br />

λ : x ↦→ λx <strong>and</strong> µ : y ↦→ µy are isomorphisms of M onto N ∗ <strong>and</strong> N onto M ∗ ,<br />

respectively. Here M ∗ represents the dual space of M; similarly for N ∗ .<br />

Theorem 5.6.1. Let B be a nondegenerate bil<strong>in</strong>ear form on the product of<br />

two m-dimjensional vector spaces M <strong>and</strong> N over K. If P is a p-dimensional<br />

subspace of M, then its conjugate P ′ is of dimension m − p, <strong>and</strong> (P ′ ) ′ = P .<br />

If Q is a q-dimensional subspace of N, then Q ′ is of dimension m − q <strong>and</strong><br />

(Q ′ ) ′ = Q.<br />

Proof. From elementary l<strong>in</strong>ear algebra.<br />

Until further notice M will denote an m-dimensional vector space over<br />

K, q a quadratic form on M, <strong>and</strong> B the bil<strong>in</strong>ear polar form on M × M associated<br />

with q. Furthermore, we assume B is nondegenerate. Here we mean<br />

someth<strong>in</strong>g slightly stronger than the concept of nondegeneracy employed <strong>in</strong><br />

the previous section, viz., even if K has characteristic 2 we assume that any<br />

associated matrix B is nons<strong>in</strong>gular.<br />

Exercise 5.6.1.1. Show that our assumptions imply either K has characteristic<br />

different from 2 or m is even.


266 CHAPTER 5. QUADRATIC FORMS<br />

A l<strong>in</strong>ear mapp<strong>in</strong>g s of M <strong>in</strong>to itself is called orthogonal (relative to q)<br />

provided q(s · x) = q(x) for all x ∈ M. Clearly if s is orthogonal, then<br />

B(s · x, s · y) = B(x, y) for all x, y ∈ M. In particular, if s · x = 0, then<br />

B(x, y) = 0 for all y ∈ M if s is orthogonal, imply<strong>in</strong>g x = 0. Hence any<br />

orthogonal map is <strong>in</strong>vertible. Under composition the orthogonal mapp<strong>in</strong>gs<br />

form a group called the orthogonal group G of q.<br />

A vector space isomorphism s of a subspace N of M onto a subspace P<br />

of M is called a q-isomorphism provided q(s · x) = q(x) for all x ∈ N. Then<br />

B(s · x, s · y) = B(x, y) for all x, y ∈ N. Note that if x ∈ M, we write Kx<br />

for the l<strong>in</strong>ear span of x.<br />

The follow<strong>in</strong>g result is a famous one known as Witt’s theorem.<br />

Theorem 5.6.2. The assumptions <strong>and</strong> notations be<strong>in</strong>g as above, any<br />

q-isomorphism s of a subspace N of M onto a subspace P may be extended<br />

to an element of G.<br />

Proof. We proceed by <strong>in</strong>duction on the dimension n of N, the theorem be<strong>in</strong>g<br />

obviously true if n = 0. So assume n > 0 <strong>and</strong> that the statement of the<br />

theorem is true for subspaces of dimension n − 1. Let U be an (n − 1)dimensional<br />

subspace of N. Then the <strong>in</strong>ductive hypothesis says that the<br />

restriction of s to U may be extended to an element s0 of G. Def<strong>in</strong>e s ′<br />

by s ′ (x) = s −1<br />

0 s(x) for all x ∈ N. Then s ′ is a q-isomorphism of N (onto<br />

some subspace of M) which leaves the elements of U fixed. If s ′ extends to an<br />

element s ′ 0 of G, then s0s ′ 0 is an element of G which extends s. Hence without<br />

loss of generality we may assume that the orig<strong>in</strong>al map s leaves elements of<br />

U fixed.<br />

Let M be the set of subspaces V of M with the property that s may be<br />

extended to a q-isomorphism of V +N leav<strong>in</strong>g the elements of V fixed. S<strong>in</strong>ce<br />

M has f<strong>in</strong>ite dimension, M has a maximal element V1 with a correspond<strong>in</strong>g qisomorphism<br />

s1 of N1 = V1 +N which extends s <strong>and</strong> leaves fixed the elements<br />

of V1. Let P1 = s1(N1), U1 = V1 +U. If U1 = N1, i.e., V1 +U = V1 +N = N1,<br />

then s1 is the identity on N1. But clearly the identity map on N1 can be<br />

extended to the identity map on all of M, imply<strong>in</strong>g that N1 = M. So suppose<br />

otherwise, i.e., U1 is a hyperplane of N1, <strong>and</strong> let x1 ∈ N1 \ U1, y1 = s1 · x1.<br />

Then N1 = U1 + Kx1, P1 = U1 + Ky1, <strong>and</strong> q(x1) = q(y1). Clearly we may<br />

also assume that s1 · x1 = y1 = x1.<br />

The rema<strong>in</strong>der of the proof is divided <strong>in</strong>to two parts. The first part<br />

consists of f<strong>in</strong>d<strong>in</strong>g elements z, z ′ ∈ M with special properties, <strong>and</strong> the second<br />

part consists of us<strong>in</strong>g z <strong>and</strong> z ′ to complete the proof.


5.6. ACTION OF THE ORTHOGONAL GROUP 267<br />

Claim: There are elements z, z ′ ∈ M with the follow<strong>in</strong>g properties:<br />

(i) z ∈ N1;<br />

(ii) z ′ ∈ P1;<br />

(iii) z ′ − z ∈ U ′ 1, where U ′ 1 is the conjugate of U1;<br />

(iv) B(z ′ , y1) = B(z, x1);<br />

(v) q(z) = q(z ′ ).<br />

Let H be the conjugate of the space K(x1 − y1). We claim H = N1 = P1.<br />

First suppose H conta<strong>in</strong>s an element z which is <strong>in</strong> neither N1 nor P1, <strong>and</strong><br />

extend s1 to an isomorphism s ′ of N1 + Kz onto P1 + Kz which maps z onto<br />

itself. Then we claim s ′ would be a q-isomorphism, for suppose u + cx1 ∈ N1,<br />

u ∈ U1. Then (note that z ∈ (K(x1 − y1)) ′ implies that B(z, x1) = B(z, y1))<br />

q(s ′ · (u + cx1 + dz)) = q(s ′ · u) + c 2 q(s ′ · x1) + d 2 q(z)<br />

+B(s ′ · u, s ′ · cx1) + B(s ′ · u, s ′ · dz) + B(s ′ · cx1, s ′ · dz)<br />

= q(s1 · u) + c 2 q(y1) + d 2 q(z) + B(s1 · u, cy1) + B(s1 · u, dz) + B(s1 · cx1, dz)<br />

= q(u) + c 2 q(x1) + d 2 q(z) + B(u, cx1) + B(u, dz) + B(cx1, dz)<br />

= q(u + cx1 + dz).<br />

But this says V1 + Kz is an element of M larger than V1, contradict<strong>in</strong>g<br />

the choice of V1. Hence each element of H is <strong>in</strong> either N1 or P1, so clearly<br />

H ⊆ N1 or H ⊆ P1. If N1 = M there is noth<strong>in</strong>g to prove. So suppose<br />

N1 = M. Then dim (H) = m − 1, dim (N1) = dim (P1) < dim (M) = m,<br />

<strong>and</strong> H ⊆ N1 or H ⊆ P1. So H = N1 or H = P1. But H is the conjugate<br />

space of K(x1 − y1), <strong>and</strong> x1 ∈ N1, y1 ∈ P1. So x1 − y1 is conjugate to one<br />

of x1, y1. But B(x1, x1) = B(y1, y1), so B(x1, x1 − y1) = B(y1 − x1, y1) = 0,<br />

imply<strong>in</strong>g both x1 <strong>and</strong> y1 are <strong>in</strong> H. From N1 = U1 + Kx1, P1 = U1 + Ky1, it<br />

follows that N1 = P1 = H. In particular, B(x1, x1 −y1) = B(y1, x1 −y1) = 0.<br />

Now let z ∈ M \H. Thus B(z, x1 −y1) = 0, <strong>and</strong> M = H +Kz = N1+Kz.<br />

For this z we can f<strong>in</strong>d a z ′ such that the pair z, z ′ have the desired properties.<br />

S<strong>in</strong>ce x1 ∈ N1 \ U1, clearly y1 ∈ U1. Thus U ′ 1 conta<strong>in</strong>s a vector not<br />

conjugate to y1, <strong>and</strong> <strong>in</strong>deed there is a vector u ∈ U ′ 1 such that B(u, y1) =<br />

B(z, x1 − y1) = 0. S<strong>in</strong>ce B(x1 − y1, y1) = 0, u ∈ K(x1 − y1), i.e., u ∈ H ′ .<br />

But u ∈ U ′ 1 <strong>and</strong> H = N1 = U1 + Kx1, so B(u, x1) = 0. B(z + u, x1 − y1) =<br />

B(z, x1 −y1)+B(u, x1)−B(u, y1) = B(u, x1) = 0. Thus z+u ∈ P1 = H. But<br />

note that x1 − y1 ∈ H ∩ H ′ , <strong>and</strong> U1 ⊆ H, so H ′ ⊆ U ′ 1 , imply<strong>in</strong>g x1 − y1 ∈ U ′ 1 .<br />

So for c ∈ K, we have z + u + c(x1 − y1) ∈ (z + U ′ 1 ) \ P1. S<strong>in</strong>ce q(x1 − y1) =


268 CHAPTER 5. QUADRATIC FORMS<br />

q(x1)+q(y1)−B(x1, y1) = 2q(x1)−B(x1, y1) = B(x1, x1)−B(x1, y1) = 0, we<br />

have q(z+u+c(x1−y1)) = q(z+u)+cB(z+u, x1−y1). S<strong>in</strong>ce B(z+u, x1−y1) =<br />

0, we can choose c such that q(z + u + c(x1 − y1)) = q(z). For this c, set<br />

z ′ = z + u + c(x1 − y1). Then z <strong>and</strong> z ′ do have the desired properties. In<br />

fact, we have already observed that all the properties hold except perhaps<br />

B(z ′ , y1) = B(z, x1). But B(z ′ , y1) = B(z+u+c(x1−y1), y1) = B(z+u, y1) =<br />

B(z, y1) + B(z, x1 − y1) = B(z, x1).<br />

Us<strong>in</strong>g z <strong>and</strong> z ′ we can now f<strong>in</strong>ish the proof. For we may extend s1 to an<br />

isomorphism s2 of N1 + Kz onto P1 + Kz ′ such that s2 · z = z ′ . It rema<strong>in</strong>s<br />

only to show that s2 is a q-isormphism, s<strong>in</strong>ce M = N1 + Kz = P1 + Kz ′ .<br />

If x ∈ N1, then x = u + ax1, with u ∈ U1, a ∈ K, <strong>and</strong> s1 · x = u + ay1.<br />

S<strong>in</strong>ce B(z ′ − z, u) = 0, <strong>and</strong> B(z, x1) = B(z ′ , y1), it follows that B(z, x) =<br />

B(z, u + ax1) = B(z ′ , u + ay1) = B(z ′ , s1 · x). Also, q(x) = q(s1 · x) s<strong>in</strong>ce s1 is<br />

assumed to be a q-isomorphism of N1. So for b ∈ K, q(bz+x) = b 2 q(z)+q(x)+<br />

bB(z, x) = b 2 q(z ′ ) + q(s1 · x) + bB(z ′ , s1 · x) = q(bz ′ + s1 · x) = q(s1 · (bz + x)),<br />

prov<strong>in</strong>g s2 is a q-isomorphism of M.<br />

Corollary 5.6.3. Let N be a subspace of M ly<strong>in</strong>g entirely <strong>in</strong> the quadric<br />

surface Q determ<strong>in</strong>ed by q. Then each automorphism (i.e., K-l<strong>in</strong>ear operator)<br />

on N may be extended to an element of G.<br />

Corollary 5.6.4. All maximal subspaces of Q have the same dimension <strong>and</strong><br />

are permuted transitively among themselves by the elements of G.<br />

Proof. If N <strong>and</strong> P are subspaces of Q hav<strong>in</strong>g the same dimension, any isomorphism<br />

between them must be a q-isomorphism, <strong>and</strong> thus must be extendable<br />

to an element s of G. If P ′ is a subspace of Q conta<strong>in</strong><strong>in</strong>g P , then s −1 (P ′ ) is<br />

a subspae of Q conta<strong>in</strong><strong>in</strong>g N. Thus if N is a subspace of Q not properly conta<strong>in</strong>ed<br />

<strong>in</strong> any subspace of Q, any other maximal subspace of Q is isomorphic<br />

to N, <strong>and</strong> by an element of G.<br />

Of course we knew some of this much earlier. The common dimension of<br />

all the maximal subspaces of Q is called the <strong>in</strong>dex of q (<strong>and</strong> of Q <strong>and</strong> of B).<br />

Let r be the <strong>in</strong>dex of q. By Theorem 5.4.4 we know 2r ≤ m.<br />

Theorem 5.6.5. Let s be an element of G <strong>and</strong> def<strong>in</strong>e the l<strong>in</strong>ear operator µ<br />

on M by µ : x ↦→ s · x − x. Then the image µ(M) of µ is the conjugate of<br />

the kernel L of µ.


5.6. ACTION OF THE ORTHOGONAL GROUP 269<br />

Proof. If x ∈ M, y ∈ L (so s·y = y), then B(y, s·x) = B(s·y, s·x) = B(y, x),<br />

so B(y, s · x − x) = 0, imply<strong>in</strong>g µ(M) ⊆ L ′ . But µ(M) <strong>and</strong> L ′ have the same<br />

dimension, so they are equal.<br />

Corollary 5.6.6. Suppose q has <strong>in</strong>dex r = m <strong>and</strong> let N be a maximal<br />

2<br />

subspace of Q. Let s be an element of G leav<strong>in</strong>g po<strong>in</strong>ts of N fixed. Then<br />

s · x − x ∈ N for all x ∈ M.<br />

Proof. By Theorem 5.6.5 s · x − x is <strong>in</strong> the conjugate N ′ of N, but of course<br />

N ′ = N.<br />

Before proceed<strong>in</strong>g with the next theorem we recall that if Γ is a bil<strong>in</strong>ear<br />

form on M × M with the property that Γ(x, x) = 0 for all x ∈ M, then Γ<br />

is called alternat<strong>in</strong>g. Furthermore, there is an <strong>in</strong>teger ρ such that M has a<br />

basis y1, . . . , ym for which<br />

⎧<br />

⎨ 1, i = 2k − 1, j = 2k, 1 ≤ k ≤ ρ;<br />

Γ(yi, yj) = −1 i = 2k, j = 2k − 1, 1 ≤ k ≤ ρ;<br />

⎩<br />

0, otherwise.<br />

The <strong>in</strong>teger 2ρ is called the rank of Γ.<br />

Theorem 5.6.7. Let Q have <strong>in</strong>dex r = m,<br />

m = the dimension of M. Let N<br />

2<br />

<strong>and</strong> P be maximal subspaces of Q such that M = N ⊕ P , <strong>and</strong> let H be the<br />

subgroup of G fix<strong>in</strong>g N po<strong>in</strong>twise. For each s ∈ H def<strong>in</strong>e a mapp<strong>in</strong>g Γs on<br />

P × P by Γs(y, y ′ ) = B(y, s · y ′ ). Then the follow<strong>in</strong>g are true:<br />

(i) Γs is an alternat<strong>in</strong>g bil<strong>in</strong>ear form on P × P <strong>and</strong> s → Γs is an isomorphism<br />

of H with the additive group of all alternat<strong>in</strong>g bil<strong>in</strong>ear forms on<br />

P × P .<br />

(ii) The rank of Γs is the dimension of µs(M) where µs : x ↦→ s · x − x<br />

for all x ∈ M.<br />

(iii) If s, s ′ ∈ H are such that Γs <strong>and</strong> Γs ′ have the same rank, then s <strong>and</strong><br />

s ′ are conjugate to each other <strong>in</strong> G.<br />

Proof. Clearly Γs is bil<strong>in</strong>ear. For y ∈ P , 0 = q(y) = q(s·y) = q(y+s·y−y) =<br />

q(y)+q(s·y−y)+B(y, s·y−y) = 0+0+B(y, s·y)−0 = B(y, s·y) = Γs(y, y),<br />

s<strong>in</strong>ce s · y − y ∈ N by Corollary 5.6.6 <strong>and</strong> B(y, −y) = −2q(y) = 0. Thus<br />

Γs is alternat<strong>in</strong>g. Furthermore, for s, s ′ ∈ H, s · (s ′ · y − y) = s ′ · y − y, so<br />

s · s ′ · y − y = s · (s ′ · y − y) + s · y − y = (s ′ · y − y) + (s · y − y). Thus<br />

Γs·s ′(y′ , y) = B(y ′ , ss ′ · y) = B(y ′ , ss ′ · y − y + y) = B(y ′ , s ′ · y) + B(y ′ , s ·


270 CHAPTER 5. QUADRATIC FORMS<br />

y) − B(y ′ , y) = Γs(y ′ , y) + Γs(y ′ , y). This shows that Γiss ′ = Γ ′ s + Γs, <strong>and</strong><br />

s ↦→ Γs is a group homomorphism. If Γs = 0, then for y ∈ P we know<br />

s · y − y ∈ N ∩ P ′ = N ∩ P = {0}. Thus s fixes all elements of N <strong>and</strong> of P ,<br />

so s is the identity of H, prov<strong>in</strong>g that s ↦→ Γs s one-to-one.<br />

To complete the proof of (i) we now show that s ↦→ Γs is onto. So let Γ<br />

be any alternat<strong>in</strong>g bil<strong>in</strong>ear form on P × P . For x ∈ N, let λx be the l<strong>in</strong>ear<br />

form y ↦→ B(x, y) on P . Then x ↦→ λx is a l<strong>in</strong>ear mapp<strong>in</strong>g of N <strong>in</strong>to the dual<br />

P ∗ of P which is actually an isomorphism onto s<strong>in</strong>ce B is nondegenerate.<br />

On the other h<strong>and</strong>, if y ′ ∈ P , the mapp<strong>in</strong>g y ↦→ Γ(y, y ′ ) is an element of<br />

P ∗ . So for each y ′ ∈ P there is a unique µ(y ′ ) ∈ N such that λµ(y ′ ) is the map<br />

y ↦→ Γ(y, y ′ ), i.e., B(y, µ(y ′ )) = Γ(y, y ′ ) for all y ∈ P . It is easy to see that<br />

µ : P → N is l<strong>in</strong>ear. Then def<strong>in</strong>e a map s on M by s(x + y) = x + y + µ(y)),<br />

x ∈ N, y ∈ P . Clearly s is l<strong>in</strong>ear with zero kernel, so s is an automorphism<br />

of M. Also, for x ∈ N, y ∈ P , q(x + y + µ(y)) = B(y, µ(y)) + B(x, y) =<br />

B(x, y) = q(x + y) s<strong>in</strong>ce 0 = Γ(y, y) = B(y, µ(y)). Then s ∈ G, <strong>and</strong> <strong>in</strong> fact<br />

s ∈ H with Γs = Γ. This shows that s ↦→ Γs is onto <strong>and</strong> completes the proof<br />

of i).<br />

Now suppose Γ = Γs is an alternat<strong>in</strong>g bil<strong>in</strong>ear form on P × P with rank<br />

2ρ. Then there is a basis y1, . . . , yr of P satisfy<strong>in</strong>g<br />

⎧<br />

⎨ 1, i = 2k − 1, j = 2k, 1 ≤ k ≤ ρ;<br />

Γ(yi, yj) = −1,<br />

⎩<br />

0,<br />

i = 2k, j = 2k − 1, 1 ≤ k ≤ ρ;<br />

otherwise.<br />

Us<strong>in</strong>g the same notation as above, put x2k−1 = µ(y2k), x2k = −µ(y2k−1),<br />

if 1 ≤ k ≤ ρ. Then B(xi, yj) = δij, if 1 ≤ i, j ≤ 2ρ. For example,<br />

B(x2k−1, yj) = B(yj, µ(y2k)) = Γ(yj, y2k) = δj,2k−1. Also, B(xi, yj) =<br />

B(µ(yi ′), yj) = Γ(yi ′, yj) = 0 if 1 ≤ i ≤ 2ρ, 2ρ < j ≤ r. S<strong>in</strong>ce x ↦→ λx is an<br />

isomorphism of N with P ∗ , there must be an xj ∈ N, 2ρ < j ≤ r, such that<br />

λxj (yi) = δij, i.e., B(xj, yi) = δij for 2ρ < j ≤ r, 1 ≤ i ≤ r. Then x1, . . . , xr<br />

form a basis for N s<strong>in</strong>ce λx1, . . . , λxr is the basis of P ∗ dual to y1, . . . , yr.<br />

Then<br />

s · y2k−1 = y2k−1 + µ(y2k−1) = y2k−1 − x2k<br />

s · y2k = y2k + µ(y2k) = y2k + x2k−1<br />

⎫<br />

⎬<br />

, for k ≤ ρ.<br />

⎭<br />

For i > 2ρ, Γ(y, yi) = 0 for all y ∈ P , so µ(yi) = 0 ∈ N because<br />

B(y, x) = 0 for all y ∈ P iff x = 0. Thus for i > 2ρ, s · yi = yi. For this s


5.6. ACTION OF THE ORTHOGONAL GROUP 271<br />

(such that Γ = Γs) we consider the effect of the mapp<strong>in</strong>g x ↦→ s · x − x on<br />

the basis {x1, . . . , xr, y1, . . . , yr} of M. (Recall that for s ∈ H, s · x = x, for<br />

all x ∈ N.)<br />

s · y2k−1 − y2k−1 = x2k, k ≤ ρ;<br />

s · y2k − y2k = x2k−1, k ≤ ρ;<br />

s · yi − yi = 0, i > 2ρ;<br />

s · xi − xi = 0, 1 ≤ i ≤ r.<br />

Thus a basis for the range of x ↦→ s · x − x is {x1, . . . , x2ρ}, imply<strong>in</strong>g that<br />

the rank of Γs is <strong>in</strong>deed the rank of the l<strong>in</strong>ear map x ↦→ s · x − x.<br />

F<strong>in</strong>ally, to prove (iii) let s be as above <strong>and</strong> suppose that s ′ ∈ H also<br />

has the property that the rank of Γs ′ is 2ρ. Suppose also that the basis<br />

{x ′ 1, . . . , x ′ r, y ′ 1, . . . , y ′ r} has been determ<strong>in</strong>ed from Γs ′ <strong>in</strong> the manner used for<br />

Γs. S<strong>in</strong>ce q(xi) = q(x ′ i ) = q(yi) = q(y ′ i ) = 0, <strong>and</strong> s<strong>in</strong>ce B(xi, yj) = B(x ′ i , y′ j ),<br />

the automorphism τ of M def<strong>in</strong>ed by τ · xi = x ′ i , τ · yi = y ′ i (for 1 ≤ i ≤ r) is<br />

<strong>in</strong> G, <strong>and</strong> τsτ −1 = s ′ .<br />

Exercise: Check this last statement on a basis.<br />

This completes a proof of the theorem.<br />

Suppose that H is a hyperplane of M whose conjugate conta<strong>in</strong>s a vector<br />

z such that q(z) = a = 0. For x ∈ M put s · x = x − a −1 · B(x, z)z. Then we<br />

have the follow<strong>in</strong>g:<br />

Theorem 5.6.8. The l<strong>in</strong>ear map s is the unique element of G different from<br />

the identity which leaves fixed the po<strong>in</strong>ts of H.<br />

Proof. Clearly s is l<strong>in</strong>ear, <strong>and</strong> q(s · x) = q(x − a −1 B(x, z)z) = q(x) +<br />

q(−a −1 B(x, z)z)+B(x, −a −1 B(x, z)z) = q(x)+a −2 B 2 (x, z)q(z)−a −1 B 2 (x, z) =<br />

q(x). So s ∈ G. And s is not affected if z is replaced by cz, 0 = c ∈ K.<br />

Thus s depends only on H <strong>and</strong> is called the symmetry with respect to H .<br />

Then s · x = x iff 0 = B(x, z), so H is the space of fixed po<strong>in</strong>ts of s. And<br />

s · z = z − a −1 2q(z)z = −z. Conversely, suppose s ′ ∈ G is not the identity on<br />

M but is on H. Then if x ∈ H, s ′ ·x−x is a nonzero element <strong>in</strong> the conjugate<br />

of H (by Theorem 5.6.5, whence s ′ · x = x + cz. S<strong>in</strong>ce q(s ′ · x) = q(x) by<br />

hypothesis, q(x) + c 2 q(x) + cB(x, z) = q(x), imply<strong>in</strong>g c · a + B(x, z) = 0, i.e.,<br />

c = −a −1 B(x, z). S<strong>in</strong>ce c cannot be zero, s ′ <strong>and</strong> s agree on H <strong>and</strong> <strong>and</strong> on<br />

Kx (s<strong>in</strong>ce s ′ · x = x − a −1 B(x, z)z = s · x). Hence s ′ = s.


272 CHAPTER 5. QUADRATIC FORMS<br />

Exercise: Show that if τ ∈ G, then τsτ −1 is the symmetry with respect<br />

to the hyperplane τ(H).<br />

5.7 The Cartan-Dieudonné Theorem<br />

This section is devoted to the proof of the so-called Cartan-Dieudonné Theorem,<br />

one of the more famous results deal<strong>in</strong>g with the orthogonal group. We<br />

beg<strong>in</strong> by stat<strong>in</strong>g the theorem itself, but the proof depends on a fairly long<br />

sequence of lemmas.<br />

Theorem 5.7.1. Except <strong>in</strong> the case where K has only two elements, M is<br />

of dimension 4, <strong>and</strong> Q is of <strong>in</strong>dex 2, every element of G belongs to the group<br />

G ′ generated by symmetries with respect to the hyperplanes whose conjugates<br />

conta<strong>in</strong> vectors not <strong>in</strong> Q.<br />

We use the follow<strong>in</strong>g notation:<br />

For s ∈ G, L(s) is the set of fixed po<strong>in</strong>ts of s;<br />

ν(s) is the dimension of L(s);<br />

µs is the l<strong>in</strong>ear transformation µs : x ↦→ s · x − x;<br />

µs(M) is the conjugate space of L(s).<br />

Lemma 5.7.2. Let s ∈ G, z ∈ µs(M) such that q(z) = 0, <strong>and</strong> let τ be the<br />

symmetry with respect to the conjugate hyperplane H of z. Then ν(τs) > ν(s)<br />

(i.e., dim µτs(M) < dim µs(M)). Furthermore, there is a τ ∈ G ′ such that<br />

ν(τs) is maximal, <strong>and</strong> <strong>in</strong> that case µτs(M) ⊆ Q.<br />

Proof. Let s ∈ G, z = s · y − y ∈ µs(M) such that q(z) = 0. Let τ be the<br />

symmetry with respect to the conjugate hyperplane H of z. Thus τ · z = −z<br />

<strong>and</strong> τ · h = h for all h ∈ H. And q(z) = q(s · y − y) = q(s · y) + q(−y) −<br />

B(s · y, y) = 2 · q(y) − B(s · y, y) = B(y, y) − B(s · y, y) = −B(z, y). From the<br />

orig<strong>in</strong>al def<strong>in</strong>ition of τ we have τ · y = y − q(z) −1 · B(y, z)z = y + z = s · y.<br />

Thus (τs) · y = τ · (z + y) = −z + s · y = y, imply<strong>in</strong>g y ∈ L(τs). On the<br />

other h<strong>and</strong>, s<strong>in</strong>ce µs(M) is the conjugate space of L(s) <strong>and</strong> z ∈ µx(M), the<br />

conjugate space H of z must conta<strong>in</strong> L(s). Thus any vector <strong>in</strong> L(s) is fixed<br />

under τ, so L(s) + Ky ⊂ L(τs). S<strong>in</strong>ce clearly y ∈ L(s), ν(τs) > ν(s). S<strong>in</strong>ce<br />

the dimension of M is f<strong>in</strong>ite, the rest of the lemma is clearly true.<br />

We require a def<strong>in</strong>ition for the next lemma.


5.7. THE CARTAN-DIEUDONNÉ THEOREM 273<br />

Defn. For s ∈ G, if µs(M) ⊂ Q, we say s is s<strong>in</strong>gular . If s is s<strong>in</strong>gular,<br />

the <strong>in</strong>dex of s is def<strong>in</strong>ed to be the dimension ρ(s) = m − ν(s) of µs(M).<br />

Lemma 5.7.3. Any two maximal subspaces of Q may be transformed <strong>in</strong>to<br />

each other by elements of G ′ .<br />

Proof. Let N <strong>and</strong> N ′ be maximal subspaces of Q. It is clearly sufficient to<br />

prove that if N ∩ N ′ has dimension l < dimN, then there is a hyperplane<br />

H whose conjugate conta<strong>in</strong>s a vector z ∈ Q such that the symmetry τ with<br />

respect to H transforms N ′ <strong>in</strong>to a space τ(N ′ ) such that dim(N ∩τ(N ′ )) > l.<br />

S<strong>in</strong>ce N + N ′ has dimension greater than dimN <strong>and</strong> N is a maximal<br />

subspace of Q, N + N ′ must conta<strong>in</strong> a vector z = x + x ′ such that q(z) = 0,<br />

x ∈ N, x ′ ∈ N ′ . Then q(z) = q(x) + q(x ′ ) + B(x, x ′ ) = B(x, x ′ ) = 0, so that<br />

x ∈ N ′ , x ′ ∈ N. Let H be the conjugate space of z <strong>and</strong> τ the associated<br />

symmetry. Then τ(x ′ ) = x ′ −q(z) −1 B(x ′ , z)z = x ′ −B(x, x ′ ) −1 B(x ′ , x+x ′ )z =<br />

x ′ −z = x. From τ(x ′ ) = x it follows that x ∈ N ∩τ(N ′ ). Also, if x ′′ ∈ N ∩N ′ ,<br />

then B(x, x ′′ ) = B(x ′ , x ′′ ) = 0, so B(z, x ′′ ) = 0. Whence x ′′ ∈ H, τ · x ′′ = x ′′ ,<br />

<strong>and</strong> x ′′ ∈ τ(N ′ ) ∩ N. Thus (N ∩ N ′ ) + Kx ⊆ N ∩ τ(N ′ ), which completes<br />

the proof of the lemma.<br />

We note that if s0 is any s<strong>in</strong>gular element of G, then µs0(M) is conta<strong>in</strong>ed<br />

<strong>in</strong> a maximal subspace N of Q. S<strong>in</strong>ce the conjugate of N is then conta<strong>in</strong>ed<br />

<strong>in</strong> the conjugate of µs0(M), it follows that the conjugate of N is conta<strong>in</strong>ed<br />

<strong>in</strong> L(s0). For a fixed N we def<strong>in</strong>e HN by<br />

HN = {s ∈ G : s fixes each vector <strong>in</strong> the conjugate of N.<br />

Let P be a maximal subspace of Q such that N ⊕ P is disjo<strong>in</strong>t from its<br />

conjugate R. So M = R ⊕ N ⊕ P . If r = dimN, then the conjugate of N,<br />

which has dimension m − r, conta<strong>in</strong>s N + R, also of dimension m − r. So<br />

N + R is the conjugate of N. Thus<br />

HN = {s ∈ G : s fixes each element of N + R}.<br />

Consider the subspace N ⊕ P with restricted Q ′ , B ′ , G 0 . S<strong>in</strong>ce any Qisomorphism<br />

of N ⊕ P (i.e., any Q ′ -isomorphism) of N ⊕ P can be extended<br />

to an element of G, G 0 is the full orthogonal group on N + P with respect<br />

to Q ′ . Note that N is its own conjugate <strong>in</strong> N + P <strong>and</strong> def<strong>in</strong>e H by<br />

H = {s ′ ∈ G 0 : s ′ · x = x for all x ∈ N}.


274 CHAPTER 5. QUADRATIC FORMS<br />

We are now ready to state the next lemma us<strong>in</strong>g this notation.<br />

Lemma 5.7.4. Any two elements of HN are s<strong>in</strong>gular <strong>and</strong> are conjugate <strong>in</strong><br />

G if they have the same f . HN is abelian <strong>and</strong> isomorphic to H, the subgroup<br />

of G fix<strong>in</strong>g N po<strong>in</strong>twise.<br />

Proof. If s ′ ∈ H, then N ⊆ L(s ′ ), so µs ′(N + P ) ⊆ N. Thus µs ′(N + P ) ⊆<br />

Q, <strong>and</strong> H conta<strong>in</strong>s only s<strong>in</strong>gular elements of G0 . By Theorem 5.6.7 H is<br />

isomorphic with the additive abelian group of all alternat<strong>in</strong>g bil<strong>in</strong>ear forms<br />

on P × P under an isomorphism s ′ ↦→ Γs ′ where the rank of Γs ′ is the <strong>in</strong>dex<br />

of s ′ , i.e., dimi µs ′(N + P ), <strong>and</strong> two elements of H are conjugate <strong>in</strong> G0 if<br />

they have the same <strong>in</strong>dex.<br />

Any Q-automorphism of N + P has a unique extension to a l<strong>in</strong>ear endomorphism<br />

of M which leaves R fixed po<strong>in</strong>twise <strong>and</strong> which is easily seen to<br />

be an element of G. Thus HN = {s ′ ∈ G : s ′ fixes N + R po<strong>in</strong>twise} may<br />

be identified with H = {s ′ ∈ G0 : s ′ fixes N po<strong>in</strong>twise} by identify<strong>in</strong>g each<br />

s ′ ∈ H with its unique extension s ∈ HN. The <strong>in</strong>dex of s ′ is dim µs ′(N + P ),<br />

<strong>and</strong> the <strong>in</strong>dex of s is dim µs(N +P +R) = dim µs(N +P ) = dim µx ′(N +P ),<br />

s<strong>in</strong>ce µs(R) = 0. Thus two elements of HN with the same <strong>in</strong>dex correspond<br />

to elements of H of the same <strong>in</strong>dex. Two elements s ′ , s ′′ of H are conjugate<br />

<strong>in</strong> G0 if they have the same <strong>in</strong>dex, say s ′ = τ −1s ′′ τ, τ ∈ G0 , s ′ , s ′′ ∈ H. By<br />

extend<strong>in</strong>g s ′ , s ′′ , τ to elements of G fix<strong>in</strong>g R po<strong>in</strong>twise, we obta<strong>in</strong> that the<br />

extensions of s ′ <strong>and</strong> s ′′ <strong>in</strong> HN are conjugate <strong>in</strong> G.<br />

Lemma 5.7.5. Each s<strong>in</strong>gular element of G may be transformed by some<br />

element of G ′ <strong>in</strong>to an element of HN.<br />

Proof. Let s be a s<strong>in</strong>gular element of G, N ′ a maximal subspace of Q conta<strong>in</strong><strong>in</strong>g<br />

µs(M), <strong>and</strong> let τ ∈ G ′ be such that τ(N ′ ) = N. Then µ(s s (M) ⊆ N ′ implies<br />

that the conjugate of N ′ is conta<strong>in</strong>ed <strong>in</strong> L(s), whence s fixes each po<strong>in</strong>t<br />

of the conugate of N ′ <strong>and</strong> τ takes the conjugate of N ′ <strong>in</strong>to the conjugate of N.<br />

Thus τsτ −1 fixes the conjugate of N po<strong>in</strong>twise, imply<strong>in</strong>g τsτ −1 ∈ HN.<br />

If s is an arbitrary element of G <strong>and</strong> τ is the symmetry with respect<br />

to some hyperplane H ′ , we noted earlier that sτs −1 is the symmetry with<br />

respect to the hyperplane s(H ′ ). Thus G ′ is normal <strong>in</strong> G.<br />

Lemma 5.7.6. G = HNG ′ , <strong>and</strong> G/G ′ is abelian.


5.7. THE CARTAN-DIEUDONNÉ THEOREM 275<br />

Proof. For s ∈ G, we know there is a τ ∈ G ′ such that τs is s<strong>in</strong>gular. Then<br />

there is a τ1 ∈ G ′ such that τ1τsτ −1<br />

1<br />

= h ∈ HN, <strong>and</strong> s = τ −1 τ −1<br />

1 hτ1 ∈<br />

G ′ HNG ′ = HNG ′ , s<strong>in</strong>ce G ′ ⊳ G. Thus G = HNG ′ . S<strong>in</strong>ce HN is abelian,<br />

<strong>and</strong> G/G ′ = HNG ′ /G ′ ∼ = HN/(HN ∩ G ′ ) is a homomorphic image of HN, it<br />

follows that G/G ′ is abelian.<br />

Lemma 5.7.7. If there are s<strong>in</strong>gular elements s, s ′ ∈ G such that s, s ′ , ss ′<br />

have the same <strong>in</strong>dex, then s, s ′ ∈ G ′ .<br />

Proof. Let s, s ′ ∈ G be s<strong>in</strong>gular with the same <strong>in</strong>dex. Then they are conjugate<br />

to h, h ′ ∈ HN. For any τ ∈ G, it is easily checked that L(τsτ −1 ) = τL(s),<br />

so dim L(s) = dim L(τsτ −1 ). Thus s <strong>and</strong> h (similarly, s ′ <strong>and</strong> h ′ ) have the<br />

same <strong>in</strong>dex. Whence h <strong>and</strong> h ′ have the same <strong>in</strong>dex <strong>and</strong> are conjugate <strong>in</strong> G,<br />

imply<strong>in</strong>g that s <strong>and</strong> s ′ are conjugate <strong>in</strong> G. Let τsτ −1 = s ′ for some τ ∈ G. So<br />

τsτ −1 G ′ = s ′ G ′ , imply<strong>in</strong>g s ′ G ′ = τG ′ sG ′ τ −1 G ′ = sG ′ , s<strong>in</strong>ce G/G ′ is abelian,<br />

i.e., s ′ G ′ = sG ′ . Thus s<strong>in</strong>gular elements of G with the same <strong>in</strong>dex belong to<br />

the same coset of G ′ .<br />

Now suppose that s, s ′ <strong>and</strong> ss ′ are all s<strong>in</strong>gular with <strong>in</strong>dex r. We have<br />

just seen that sG ′ = s ′ G ′ = ss ′ G ′ = sG ′ · s ′ G ′ , so sG ′ = s ′ G ′ = G ′ = the<br />

identity of G/G ′ . Thus s, s ′ ∈ G ′ .<br />

We are now f<strong>in</strong>ally ready for the proof of Theorem 5.7.1<br />

Proof. We know that G = HNG ′ , so the aim is to show that, with the<br />

exception stated <strong>in</strong> the theorem, HN ⊆ G ′ . In the proof of Lemma 5.7.4 it<br />

was noted that H ∼ = HN is isomorphic to the group of all alternat<strong>in</strong>g bil<strong>in</strong>ear<br />

forms on P × P under an isomorphism s ′ ↦→ Γs ′, where the rank of Γs ′ is the<br />

<strong>in</strong>dex of s ′ , which is dim µs ′(N + P + R) = dim µs ′(N + P ).<br />

Suppose that K has more than two elements. Let a ∈ K, 0 = a = −1,<br />

<strong>and</strong> let s ∈ HN. Clearly aΓs is an alternat<strong>in</strong>g bil<strong>in</strong>ear form on P × P with<br />

the same rank as that of Γs. Thus aΓs = Γs ′ for some s′ ∈ HN. Similarly<br />

(1 + a)Γs = Γss ′ has the same rank as does Γs. So s, s ′ , ss ′ are elements of<br />

HN (thus all s<strong>in</strong>gular) with the same rank, imply<strong>in</strong>g by the last lemma that<br />

s ∈ G ′ .<br />

Suppose f<strong>in</strong>ally, that K has exactly two elements, <strong>and</strong> let r be the <strong>in</strong>dex<br />

of Q. If r = 0 or r = 1, HN conta<strong>in</strong>s only the identity (the rank of any<br />

alternat<strong>in</strong>g bil<strong>in</strong>ear form be<strong>in</strong>g even). Then clearly HN ⊆ G ′ . Let r > 2, so<br />

m > 4. Every alternat<strong>in</strong>g form is representable as a sum of forms of rank 2.


276 CHAPTER 5. QUADRATIC FORMS<br />

Thus each s ∈ HN is a product of elements <strong>in</strong> HN of <strong>in</strong>dex 2. So it suffices<br />

to show that s ∈ G ′ whenever s ∈ HN has <strong>in</strong>dex 2. So let s ∈ HN have <strong>in</strong>dex<br />

2.<br />

Suppose that x1, x2 form a basis for µs(M) ⊆ Q. S<strong>in</strong>ce L(s) ⊇ N +R (by<br />

the def<strong>in</strong>ition of HN), tak<strong>in</strong>g conjugates we have µs(M) ⊆ N. So s1, x2 ∈ N.<br />

Let y1 <strong>and</strong> y2 be elements of P such that µs(y1) = −x2, µs(y2) = x1. Then<br />

the subspace X0 spanned by x1, x2, y1, y2 is disjo<strong>in</strong>t from its conjugate R0<br />

<strong>and</strong> has dimension 4. By hypothesis R0 has positive dimension (m > 4).<br />

S<strong>in</strong>ce µs(M) ⊆ X0, L(s) ⊇ R0, so s fixes the elements of R0. Furthermore<br />

R0 conta<strong>in</strong>s some vector z such that q(z) = 0. Let τ1, τ2, τ3, τ4 be the<br />

symmetries with respect to the conjugates of z, z + x1 + x2, z + x2, z + x1,<br />

<strong>and</strong> let τ = τ1τ2τ3τ4. Clearly the conjugates of z, z + x1 + x2, z + x2, z + x1<br />

all conta<strong>in</strong> {x1, x2}, so τi fixes x1 <strong>and</strong> x2. A straight forward calculation<br />

us<strong>in</strong>g the assumption that the characteristic of K is 2 shows that for y ∈ R0,<br />

τ2τ3τ4(y) = τ1(y). Thus τ(y) = τ1(τ1(y)) = y. So τ fixes R0 po<strong>in</strong>twise. Then<br />

s<strong>in</strong>ce M = {x1, x2} ⊕ {y1, y2} ⊕ R0, we will have τ = s if we can show that<br />

τ · yi = s · yi, i = 1, 2.<br />

Now τ(yi) = yi+B(yi, x2)x1+B(yi, x1)x2, after a few steps. S<strong>in</strong>ce {x1, x2}<br />

is not <strong>in</strong> the conjugate space of yi, <strong>and</strong> for i = i ′ B(yi, xi ′) = B(yi, s·yi−yi) =<br />

0 by the first part of the proof of Theorem 5.6.7, it must be that B(yi, xi) = 0.<br />

But K has only two elements, so B(yi, xj) = δij. Hence τ · yi = s · yi.<br />

The theorem has now been proved except <strong>in</strong> the case where K has 2<br />

elements, dim M = 4, <strong>and</strong> Q has <strong>in</strong>dex 2. In that case one can check that<br />

G ′ actually has <strong>in</strong>dex 2 <strong>in</strong> G.


Chapter 6<br />

Quadrics <strong>in</strong> P G(3, q)<br />

By Chapter 5 we know that there are two types of nons<strong>in</strong>gular quadrics <strong>in</strong><br />

P G(3, q), viz., hyperbolic <strong>and</strong> elliptic. These are of special <strong>in</strong>terest to us<br />

along with the degenerate quadratic cones. We start with a study of the<br />

hyperbolic quadrics.<br />

6.1 Hyperbolic quadrics <strong>in</strong> P G(3, q)<br />

Let H3 be a hyperbolic quadric <strong>in</strong> P G(3, q), q any prime power. It follows<br />

that H3 has l<strong>in</strong>es but no planes, <strong>and</strong> H3 def<strong>in</strong>es a polarity denoted by ”⊥”.<br />

If ℓ is a l<strong>in</strong>e disjo<strong>in</strong>t from ℓ ⊥ , then ℓ ∩ H3 <strong>and</strong> ℓ ⊥ ∩ H3 must be the same type<br />

s<strong>in</strong>ce H3 = ℓ ⊥ ℓ ⊥ is hyperbolic. Also, it follows easily from Theorem 5.4.4,<br />

part (ii), that with respect to some basis it has the homogeneous form<br />

f(x0, x1, x2, x3) = x0x1 + x2x3. (6.1)<br />

From Theorem 5.4.5 we see that H3 has (t + 1) 2 po<strong>in</strong>ts. In fact, it<br />

follows fairly easily that the l<strong>in</strong>es of H3 form a regulus together with its<br />

opposite regulus. Put ℓ∞ = 〈(1, 0, 0, 0), (0, 0, −1, 0)〉, <strong>and</strong> for b ∈ Fq put<br />

ℓb = 〈(b, 0, 0, 1), (0, 1, −b, 0)〉. Then put m∞ = 〈(1, 0, 0, 0), (0, 0, 0, 1)〉, <strong>and</strong><br />

for a ∈ Fq put ma = 〈(a, 0, −1, 0), (0, 1, 0, a)〉. Then L = {ℓb : b ∈ ˜ Fq} is<br />

a regulus with opposite regulus M = {ma : a ∈ ˜ Fq}, <strong>and</strong> their po<strong>in</strong>ts are<br />

precisely the po<strong>in</strong>ts of H3.<br />

Let G0 be the group of homographies determ<strong>in</strong>ed by the matrices<br />

277


278 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

⎧⎛<br />

⎪⎨ ⎜<br />

G0 = ⎜<br />

⎝<br />

⎪⎩<br />

⎞ ⎫<br />

1 0 b 0<br />

⎪⎬<br />

0 1 0 0 ⎟<br />

0 0 1 0 ⎠ , b ∈ Fq .<br />

⎪⎭<br />

0 −b 0 1<br />

Then G0 fixes each po<strong>in</strong>t of m0, is sharply transitive on the l<strong>in</strong>es ma : a ∈<br />

˜F \ {0}, <strong>and</strong> fixes each l<strong>in</strong>e ℓa of the opposite regulus.<br />

Let G∞ be the group of homographies determ<strong>in</strong>ed by the matrices<br />

⎧⎛<br />

⎪⎨ ⎜<br />

G∞ = ⎜<br />

⎝<br />

⎪⎩<br />

1 0 0 0<br />

0 1 0 −a<br />

a 0 1 0<br />

0 0 0 1<br />

⎞ ⎫<br />

⎪⎬<br />

⎟<br />

⎠ , a ∈ Fq.<br />

⎪⎭<br />

Then G∞ fixes each po<strong>in</strong>t of m∞, is sharply transitive on the l<strong>in</strong>es ma :<br />

a ∈ F , <strong>and</strong> fixes each l<strong>in</strong>e ℓa of the opposite regulus.<br />

So G∞ <strong>and</strong> G0 generate a group that is doubly transitive on the l<strong>in</strong>es<br />

ma : a ∈ ˜ F <strong>and</strong> fixes each l<strong>in</strong>e of the opposite regulus. If G0,∞ is the group<br />

with matrices<br />

⎧⎛<br />

⎪⎨ ⎜<br />

G0,∞ = ⎜<br />

⎝<br />

⎪⎩<br />

1 0 0 0<br />

0 c 0 0<br />

0 0 c 0<br />

0 0 0 1<br />

⎞<br />

⎟<br />

⎠<br />

: 0 = c ∈ Fq<br />

⎫<br />

⎪⎬<br />

,<br />

⎪⎭<br />

then G0,∞ is transitive on the l<strong>in</strong>es ma with 0 = a ∈ Fq <strong>and</strong> fixes m0, m∞,<br />

<strong>and</strong> all the l<strong>in</strong>es of the opposite regulus L.<br />

Now suppose that g is some homography with matrix [g] = (aij) that<br />

fixes each po<strong>in</strong>t of both m∞ <strong>and</strong> m0 <strong>and</strong> fixes (1,0,1,0). It is easy to check<br />

that this forces g to be the identity map.<br />

Hence the group 〈G0, G∞, G0,∞〉 acts sharply triply transitively on the<br />

l<strong>in</strong>es of the regulus M <strong>and</strong> fixes each l<strong>in</strong>e of the opposite regulus L. F<strong>in</strong>ally,<br />

let θ be the homography with matrix<br />

[θ] =<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0 0<br />

0 1 0 0<br />

0 0 0 1<br />

0 0 1 0<br />

⎞<br />

⎟<br />

⎠ .


6.1. HYPERBOLIC QUADRICS IN P G(3, Q) 279<br />

Then θ leaves <strong>in</strong>variant the hyperbolic quadric but <strong>in</strong>terchanges the two reguli<br />

M <strong>and</strong> L.<br />

This gives us a group of homographies of order at least 2(q 3 − q) 2 leav<strong>in</strong>g<br />

the hyperbolic quadric H3 <strong>in</strong>variant. In fact, this is the order of the complete<br />

homography stabilizer of H3, which is |P GL(3, q)| divided by the number of<br />

ruled quadrics <strong>in</strong> P G(3, q). So the result follows from Lemma 2.12.6 <strong>and</strong><br />

Obs. 3.7.3. We record this as<br />

Theorem 6.1.1. The group of homographies of P G(3, q) leav<strong>in</strong>g <strong>in</strong>variant<br />

a ruled quadric H3 has order 2(q 3 − q) 2 .<br />

Note: If H3 conta<strong>in</strong>s the l<strong>in</strong>es ℓ∞, ℓ0, m∞, m0 described above, it is easy<br />

to check that the quadratic form looks like<br />

fa(x0, x1, x2, x3) = x0x1 + ax2x3, a = 0.<br />

The q − 1 ruled quadrics given by fa, a = 0, are the only such quadrics<br />

conta<strong>in</strong><strong>in</strong>g the four l<strong>in</strong>es <strong>and</strong> pairwise <strong>in</strong>tersect <strong>in</strong> precisely those four l<strong>in</strong>es.<br />

THIS GIVES A SET OF q − 1 HYPERBOLIC QUADRICS MEETING<br />

PAIRWISE IN THE FOUR LINES OF AN ORDINARY QUADRANGLE<br />

NOT CONTAINED IN A PLANE.<br />

By Theorem 5.3.4 it must be that if π is any plane of P G(3, q), then<br />

π ∩ H3 is one of two possible types:<br />

(i) π ∩ H3 is an irreducible quadric <strong>in</strong> π, i.e., a conic;<br />

(ii) π ∩ H3 is a degenerate quadric, i.e., a pair of l<strong>in</strong>es. This occurs if π<br />

conta<strong>in</strong>s a po<strong>in</strong>t <strong>and</strong> the two l<strong>in</strong>es of H3 through that po<strong>in</strong>t. Note that if ℓ<br />

is a l<strong>in</strong>e of H3, then each plane through ℓ conta<strong>in</strong>s a unique l<strong>in</strong>e m of the<br />

opposite “rul<strong>in</strong>g” <strong>and</strong> is the tangent plane at the po<strong>in</strong>t ℓ ∩ m.<br />

The conics ly<strong>in</strong>g <strong>in</strong> H3 are called circles of H3. A flock of H3 is a set F<br />

of q + 1 mutually disjo<strong>in</strong>t circles of H3. If ℓ is a l<strong>in</strong>e of P G(3, q) which has<br />

no po<strong>in</strong>t <strong>in</strong> common with H3, then the circles π ∩ H3, where π is a plane<br />

conta<strong>in</strong><strong>in</strong>g ℓ, constitute a l<strong>in</strong>ear flock of H3.<br />

Theorem 6.1.2. (J. A. Thas [Th75]) Each flock of the non-s<strong>in</strong>gular ruled<br />

quadric H of P G(3, q), q even, is l<strong>in</strong>ear.


280 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

Proof. Suppose that F = {C1, C2, · · · , Cq+1} is a flock of H. The nucleus of<br />

the circle Ci is denoted by ni. We shall prove that ℓ = {n1, · · · , nq+1} is a<br />

l<strong>in</strong>e. By Lemma 2.7.2 it suffices to show that each plane of P G(3, q) has at<br />

least one po<strong>in</strong>t <strong>in</strong> common with ℓ.<br />

(a) Let π be the tangent plane to H at the po<strong>in</strong>t x ∈ H. Through x<br />

passes some circle Ci of the flock. The tangent l<strong>in</strong>e of Ci at x is conta<strong>in</strong>ed <strong>in</strong><br />

π, so ni ∈ π.<br />

(b) Let π be a plane for which π ∩ H is a conic Ci belong<strong>in</strong>g to the flock<br />

F. Then ni must belong to π.<br />

(c) F<strong>in</strong>ally, suppose that π is a plane for which C = π ∩ H is a circle of H<br />

but not belong<strong>in</strong>g to F. For each i, 1 ≤ i ≤ q+1, |Ci∩C| ∈ {0, 1, 2}. As q+1<br />

is odd, there must be at least one Cj for which |Cj ∩ C| = 1. Hence Cj <strong>and</strong><br />

C have a common tangent l<strong>in</strong>e T at their common po<strong>in</strong>t. So nj ∈ T ⊂ π, as<br />

claimed. Hence each plane of P G(3, q) conta<strong>in</strong>s a po<strong>in</strong>t of ℓ, so that ℓ must<br />

be a l<strong>in</strong>e of P G(3, q).<br />

Let ν be the symplectic polarity determ<strong>in</strong>ed by H (so derived from<br />

Eq. 6.1). The polar planes of n1, . . . , nq+1 with respect to ν are the planes<br />

of the circles C1, . . . , Cq+1. As ℓ is a l<strong>in</strong>e, these q + 1 planes all pass through<br />

the polar l<strong>in</strong>e of ℓ with respect to ν. Hence the flock F is l<strong>in</strong>ear.<br />

Note that the above proof shows that if ℓ is a l<strong>in</strong>e disjo<strong>in</strong>t from H, each<br />

of the q + 1 planes through ℓ meets H <strong>in</strong> a conic whose nucleus is a po<strong>in</strong>t of<br />

ℓ, <strong>and</strong> each po<strong>in</strong>t of ℓ is the nucleus of just one of the conics.<br />

The hypothesis that q be even really is necessary. Us<strong>in</strong>g ideas developed<br />

<strong>in</strong> the Ph.D. thesis of W. F. Orr [Or73] <strong>in</strong> the study of elliptic quadrics, J.<br />

A. Thas [Th75] gave examples of nonl<strong>in</strong>ear flocks of H <strong>in</strong> the case that q is<br />

odd. We have developed this material (adapt<strong>in</strong>g the approach given by J. C.<br />

Fisher <strong>and</strong> J. A. Thas [FT79]) <strong>in</strong> Section 6.7 of the present chapter. In that<br />

section there is a construction of a non-l<strong>in</strong>ear flock of H first given <strong>in</strong> [Th75].<br />

There is an <strong>in</strong>terest<strong>in</strong>g corollary due to A. A. Bruen <strong>and</strong> J. A. Thas [BT75]:<br />

Theorem 6.1.3. Let C be an irreducible conic of P G(2, q), q even. If F =<br />

{x1, . . . , xq+1} is a set of q + 1 po<strong>in</strong>ts such that any l<strong>in</strong>e xixj, i = j, is an<br />

exterior l<strong>in</strong>e of C, then F is an exterior l<strong>in</strong>e of C.<br />

Proof. Let C be embedded <strong>in</strong> a hyperbolic quadric H of P G(3, q), q even.<br />

S<strong>in</strong>ce ℓij = 〈xi, xj〉 is an exterior l<strong>in</strong>e to C, with respect to H it is elliptic, so<br />

ℓ ⊥ ij must also be elliptic, i.e., disjo<strong>in</strong>t from H. This says that (x⊥ i ∩H)∩(x⊥ j ∩


6.1. HYPERBOLIC QUADRICS IN P G(3, Q) 281<br />

H) = ∅. Hence the polar planes π1, . . . , πq+1 of x1, . . . , xq+1 with respect<br />

to H <strong>in</strong>tersect H <strong>in</strong> q + 1 mutually disjo<strong>in</strong>t circles (s<strong>in</strong>ce each l<strong>in</strong>e xixj is<br />

disjo<strong>in</strong>t from H). These circles constitute a flock F ∗ of H. As q is even, by<br />

Theorem 6.2.1 F ∗ is l<strong>in</strong>ear, so all the planes πi pass through one exterior l<strong>in</strong>e<br />

ℓ of H. Consequently their poles xi all lie on one exterior l<strong>in</strong>e of H. This<br />

implies that F is an exterior l<strong>in</strong>e of C.<br />

This result was first generalized by Segre <strong>and</strong> Korchmaros [SK77] to <strong>in</strong>clude<br />

the case q odd, then it was generalized even further by Blokhuis <strong>and</strong><br />

Wilbr<strong>in</strong>k [BW87] to Theorem 2.6.1.<br />

Theorem 6.1.4. (See Theorem 2.6.1) Let A <strong>and</strong> B be subsets of P G(2, q)<br />

such that<br />

(i) |A| = |B| = q + 1;<br />

(ii) A ∩ B = ∅;<br />

(iii) Every l<strong>in</strong>e meet<strong>in</strong>g A meets B.<br />

Then B is a l<strong>in</strong>e.<br />

Let P be a fixed po<strong>in</strong>t of H = H3, <strong>and</strong> let L0, L1, . . . , Lq be the l<strong>in</strong>es<br />

through P <strong>in</strong> the plane πP tangent to H at P , with L0 <strong>and</strong> L1 the two l<strong>in</strong>es<br />

of πP <strong>in</strong> H. Note that each plane that meets H <strong>in</strong> a circle through P meets<br />

πP <strong>in</strong> one of the l<strong>in</strong>es L2, . . . , Lq. Also note that there are exactly q(q − 1)<br />

circles through P . Fix a plane π through L2, π = πP <strong>and</strong> let C = π ∩H. The<br />

q − 1 planes through L2 different from π <strong>and</strong> πp meet H <strong>in</strong> circles tangent to<br />

C at P <strong>and</strong> even pairwise tangent at P . This leaves q(q − 1) − q = q(q − 2)<br />

other circles through P , each <strong>in</strong> a plane meet<strong>in</strong>g πP <strong>in</strong> one of the l<strong>in</strong>es Lj,<br />

3 ≤ j ≤ q. On the other h<strong>and</strong>, there are q po<strong>in</strong>ts <strong>in</strong> C \ {P }, each ly<strong>in</strong>g<br />

on q − 2 circles different from C but conta<strong>in</strong><strong>in</strong>g P . This accounts for all the<br />

circles through P <strong>and</strong> establishes the follow<strong>in</strong>g.<br />

Theorem 6.1.5. Let π <strong>and</strong> π ′ be two planes that meet the hyperbolic quadric<br />

H <strong>in</strong> the two circles C <strong>and</strong> C ′ that conta<strong>in</strong> a common po<strong>in</strong>t P . Then C <strong>and</strong><br />

C ′ are tangent at P if <strong>and</strong> only if their planes π <strong>and</strong> π ′ meet the tangent<br />

plane πP at P <strong>in</strong> the same l<strong>in</strong>e. Otherwise they meet <strong>in</strong> two po<strong>in</strong>ts. Hence<br />

tangency at P is an equivalence relation on the set of circles <strong>in</strong> H through<br />

P . It follows that there is an aff<strong>in</strong>e plane AP def<strong>in</strong>ed as follows. Let L0 <strong>and</strong><br />

L1 be the two l<strong>in</strong>es of H through P . The po<strong>in</strong>ts of AP are the q 2 po<strong>in</strong>ts of<br />

H \ (L0 ∪ L1). The l<strong>in</strong>es of AP are the circles of H through P <strong>and</strong> the l<strong>in</strong>es<br />

of H \ {L0, L1}.


282 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

We want to <strong>in</strong>vestigate the hyperbolic (i.e., ruled) quadrics <strong>in</strong> P G(3, q)<br />

that conta<strong>in</strong> a given conic. Let Q be the general upper triangular matrix<br />

giv<strong>in</strong>g a nondegenerate quadric which is denoted Q:<br />

Let C be the conic:<br />

Q =<br />

⎛<br />

⎜<br />

⎝<br />

a11 a12 a13 a14<br />

0 a22 a23 a24<br />

0 0 a33 a34<br />

0 0 0 a44<br />

⎞<br />

⎟<br />

⎠ .<br />

C = {(x0, x1, x2, x3) ∈ P G(3, q) : x2 = x3 <strong>and</strong> x0x1 + x 2 2 = 0}.<br />

It follows that<br />

C = {(−1, t 2 , t, t) : t ∈ Fq} ∪ {(0, 1, 0, 0)}.<br />

If we assume that (0, 1, 0, 0) ∈ Q, clearly a22 = 0.<br />

Next assume that (−1, t 2 , t, t) ∈ Q for all t ∈ Fq. This means that<br />

0 = (−1, t 2 , t, t)Q(−1, t 2 , t, t) T<br />

= (a23 + a24)t 3 + (−a12 + a33a34 + a44)t 2 + (−a13 − a14)t + a11 ∀t ∈ Fq.<br />

It then follows that: a11 = 0, a14 = −a13, a24 = −a23, a12 = a33 + a34 + a44.<br />

At this po<strong>in</strong>t we have proved the follow<strong>in</strong>g:<br />

Lemma 6.1.6. Q conta<strong>in</strong>s the conic C : x0x1 + x2 2 = 0; x2 = x3 if <strong>and</strong> only<br />

if Q has the form<br />

⎛<br />

⎞<br />

Q =<br />

⎜<br />

⎝<br />

0 a33 + a34 + a44 a13 −a13<br />

0 0 a23 −a23<br />

0 0 a33 a34<br />

0 0 0 a44<br />

⎟<br />

⎠ .<br />

Now we want to <strong>in</strong>vestigate the special case of the quadric (a33 = a44 =<br />

0; a13 = a; a23 = b; a34 = 1)<br />

Qa,b =<br />

⎛<br />

⎜<br />

⎝<br />

0 1 a −a<br />

0 0 b −b<br />

0 0 0 1<br />

0 0 0 0<br />

⎞<br />

⎟<br />

⎠ .


6.1. HYPERBOLIC QUADRICS IN P G(3, Q) 283<br />

So the quadratic form is<br />

Qa,b : x0x1 + x2x3 + ax0(x2 − x3) + bx1(x2 − x3)<br />

= x0x1 + x2x3 + (ax0 + bx1)(x2 − x3). (6.2)<br />

If we compute the determ<strong>in</strong>ant of Q + Q T we f<strong>in</strong>d that it is δ = 1 + 4ab.<br />

Hence Q is degenerate if <strong>and</strong> only if q is odd <strong>and</strong> δ = 1 + 4ab = 0. So from<br />

now on we assume that 1 + 4ab = 0, <strong>and</strong> we want to determ<strong>in</strong>e whether Q is<br />

hyperbolic or elliptic. In either case we know it conta<strong>in</strong>s the conic C.<br />

Clearly the po<strong>in</strong>t (0, 1, 0, 0) is on Q. The polar of (0, 1, 0, 0) is the plane<br />

[1, 0, b, −b] T . Q will be hyperbolic precisely when this plane conta<strong>in</strong>s two<br />

l<strong>in</strong>es of po<strong>in</strong>ts <strong>in</strong> Q. The general po<strong>in</strong>t (b(x3 − x2), x1, x2, x3) of [1, 0, b, −b] T<br />

is on Q if <strong>and</strong> only if<br />

0 = b(x3 − x2)x1 + x2x3 + ab(x3 − x2)(x2 − x3) + bx1(x2 − x3)<br />

= x2x3 − ab(x2 − x3) 2 .<br />

Note that if there are values for x2 <strong>and</strong> x3 (not both zero) that satisfy this<br />

equation, then any value of x1 will give a po<strong>in</strong>t on the <strong>in</strong>tersection of the<br />

polar <strong>and</strong> the quadric, i.e., the quadric is hyperbolic if <strong>and</strong> only if there is a<br />

(nontrivial) solution to<br />

if <strong>and</strong> only if there is a solution to<br />

abx 2 2 − (1 + 2ab)x2x3 + abx 2 3 = 0,<br />

abT 2 − (1 + 2ab)T + ab = 0. (6.3)<br />

From this it is easy to see that the follow<strong>in</strong>g holds:<br />

Lemma 6.1.7. Assume that 1 + 4ab = 0. Then Qa,b is nondegenerate.<br />

(i) If q is odd, Qa,b is hyperbolic if <strong>and</strong> only if 1 + 4ab is a (nonzero)<br />

square.<br />

(ii) If q is even, Qa,b is hyperbolic if <strong>and</strong> only if tr(ab) = 0.<br />

Now suppose that Qa,b <strong>and</strong> Qa ′ ,b ′ are hyperbolic quadrics with (a, b) =<br />

(a ′ , b ′ ), q odd or even. We want to consider the <strong>in</strong>tersection of the two<br />

quadrics. Let P = (x0, x1, x2, x3) be a po<strong>in</strong>t on both quadrics. Then the<br />

coord<strong>in</strong>ates of P must also satisfy<br />

((a − a ′ )x0 + (b − b ′ )x1)(x2 − x3) = 0.


284 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

From this we see that a po<strong>in</strong>t <strong>in</strong> both quadrics either lies <strong>in</strong> the plane x2 = x3,<br />

which meets both quadrics <strong>in</strong> the conic C, or it lies <strong>in</strong> the plane<br />

π : (a − a ′ )x0 + (b − b ′ )x1 = 0.<br />

At this po<strong>in</strong>t we know that either a−a ′ = 0 or b−b ′ = 0. By <strong>in</strong>terchang<strong>in</strong>g<br />

the roles of x0 <strong>and</strong> x1, without loss of generality we may assume that a−a ′ =<br />

0, so that a po<strong>in</strong>t <strong>in</strong> the plane has x0 = b ′ −b<br />

a−a ′<br />

<br />

x1 <strong>and</strong> then lies on the quadric<br />

Qa,b if <strong>and</strong> only if<br />

0 =<br />

b ′ − b<br />

a − a ′<br />

<br />

x 2 1 + x2x3 +<br />

′ ′ ab − a b<br />

a − a ′<br />

<br />

x1(x2 − x3).<br />

A correspond<strong>in</strong>g matrix for the quadric <strong>in</strong> the plane π is<br />

⎛<br />

b<br />

¯Q = ⎝<br />

′ − b ab ′ − a ′ b −(ab ′ − a ′ 0 0<br />

b)<br />

a − a ′<br />

⎞<br />

⎠ .<br />

0 0 0<br />

Put △ = ab ′ − a ′ b. The determ<strong>in</strong>ant of ( ¯ Q + ¯ Q T ) equals<br />

| ¯ Q + ¯ Q T | = −2(a − a ′ ) △ 2 − (a − a ′ )(b − b ′ ) .<br />

We consider some special cases. First consider Q1,0 ∩ Q0,1. So △ = 1,<br />

a − a ′ = 1, b − b ′ = −1, <strong>and</strong> △ 2 − (a − a ′ )(b − b ′ ) = 2.<br />

Q1 = Q1,0 : x0x1 + x2x3 + x0(x2 − x3);<br />

Q2 = Q0,1 : x0x1 + x2x3 + x1(x2 − x3).<br />

If (x0, x1, x2, x3) ∈ Q1 ∩ Q2, then (x0 − x1)(x2 − x3) = 0.<br />

In x2 = x3 both <strong>in</strong>tersections are x0x1 + x2 2 = 0, which we recognize as a<br />

conic. In the plane x0 = x1 both <strong>in</strong>tersections are x2 1 + x2x3 + x1(x2 − x3),<br />

which is also easily checked to be a conic when q is odd <strong>and</strong> is degenerate<br />

(x1 + x2)(x1 + x3) when q = 2e . So for q odd, Q1 ∩ Q2 is the union of 2<br />

conics, C <strong>and</strong> C ′ . Then C ∩ C ′ is the set of po<strong>in</strong>ts of the form (x, x, y, y) where<br />

x2 + y2 = 0. It follows that if q is odd <strong>and</strong> −1 is a square, there are two<br />

such po<strong>in</strong>ts. If −1 is not a square, the <strong>in</strong>tersection is empty. If q = 2e , the<br />

<strong>in</strong>tersection is a unique po<strong>in</strong>t (1, 1, 1) <strong>and</strong> the <strong>in</strong>tersection of Q1 <strong>and</strong> Q2 is a<br />

conic together with two l<strong>in</strong>es through some po<strong>in</strong>t of the conic.


6.1. HYPERBOLIC QUADRICS IN P G(3, Q) 285<br />

Second, suppose that q is odd <strong>and</strong> consider Q1,0 ∩ Q0,−1. In this case<br />

△ = −1, a − a ′ = 1, b − b ′ = 1, <strong>and</strong> △ 2 − (a − a ′ )(b − b ′ ) = 0. In this<br />

case Q1,0 ∩ Q0,−1 is a conic <strong>in</strong> the plane x2 = x3 union with a pair of l<strong>in</strong>es<br />

<strong>in</strong> π : x0 = −x1 meet<strong>in</strong>g at a po<strong>in</strong>t not on the l<strong>in</strong>e of <strong>in</strong>tersection of the two<br />

planes <strong>and</strong> meet<strong>in</strong>g x2 = x3 <strong>in</strong> the po<strong>in</strong>ts (1, −1, 1, 1) <strong>and</strong> (−1, 1, 1, 1) of the<br />

conic C.<br />

For b = b ′ , Q0,b ∩ Q0,b ′ is the conic C <strong>in</strong> x2 = x3 together with the two<br />

l<strong>in</strong>es 〈(1, 0, 0, 0), (0, 0, 1, 0)〉 <strong>and</strong> 〈(1, 0, 0, 0), (0, 0, 0, 1)〉 meet<strong>in</strong>g at the po<strong>in</strong>t<br />

(1, 0, 0, 0) of C.<br />

Suppose that the hyperbolic quadric Q conta<strong>in</strong>s the conic C <strong>and</strong> some<br />

additional po<strong>in</strong>t P not on the plane x2 = x3 of C. There must be two l<strong>in</strong>es of<br />

Q through P , each conta<strong>in</strong><strong>in</strong>g some po<strong>in</strong>t of C. The group of homographies<br />

of P G(2, q) leav<strong>in</strong>g a conic <strong>in</strong>variant is sharply triply transitive on the po<strong>in</strong>ts<br />

of that conic, so we may assume that P = (0, 0, 0, 1) <strong>and</strong> the l<strong>in</strong>es through<br />

P ly<strong>in</strong>g on Q are the l<strong>in</strong>es ℓ = 〈(1, 0, 0, 0), (0, 0, 0, 1) conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t<br />

(1, 0, 0, b) for each b ∈ Fq <strong>and</strong> m = 〈(−1, 1, 1, 1), (0, 0, 0, 1)〉 with po<strong>in</strong>ts<br />

(−1, 1, 1, b), b ∈ Fq. Start<strong>in</strong>g with Lemma 6.1.5 it is easy to see that Q is<br />

given by a matrix of the form<br />

Q =<br />

⎛<br />

⎜<br />

⎝<br />

0 a33 + a34 0 0<br />

0 0 a34 −a34<br />

0 0 a33 a34<br />

0 0 0 0<br />

Each po<strong>in</strong>t of ℓ lies on a second l<strong>in</strong>e of Q <strong>and</strong> it must go through a po<strong>in</strong>t<br />

of C, so for some b ∈ Fq, b = 0, the second l<strong>in</strong>e n of Q through (1, 0, 0, b)<br />

passes through the po<strong>in</strong>t (0, 1, 0, 0) of C. Hence (1, 1, 0, b) is on Q, forc<strong>in</strong>g<br />

Qb =<br />

⎛<br />

⎜<br />

⎝<br />

0 ba34 0 0<br />

0 0 a34 −a34<br />

0 0 (b − 1)a34 a34<br />

0 0 0 0<br />

⎞<br />

⎟<br />

⎠ =<br />

⎛<br />

⎜<br />

⎝<br />

⎞<br />

⎟<br />

⎠ .<br />

0 b 0 0<br />

0 0 1 −1<br />

0 0 (b − 1) 1<br />

0 0 0 0<br />

⎞<br />

⎟<br />

⎠ ,<br />

for each b ∈ Fq \ {0, 1}.<br />

S<strong>in</strong>ce |Qb + Q T b | = b2 = 0, Qb is nondegenerate, so it must be hyperbolic<br />

s<strong>in</strong>ce it conta<strong>in</strong>s l<strong>in</strong>es. Putt<strong>in</strong>g b = 1 we obta<strong>in</strong> the follow<strong>in</strong>g.


286 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

Lemma 6.1.8. The unique nondegenerate quadric conta<strong>in</strong><strong>in</strong>g the conic C :<br />

x0x1 + x 2 2 = 0; x2 = x3 <strong>and</strong> conta<strong>in</strong><strong>in</strong>g the l<strong>in</strong>es<br />

<strong>and</strong><br />

ℓ = 〈(1, 0, 0, 0), (0, 0, 0, 1)〉, m = 〈(0, 0, 0, 1), (−1, 1, 1, 1)〉,<br />

n = 〈(1, 0, 0, 1), (0, 1, 0, 0)〉,<br />

must have the matrix Q (putt<strong>in</strong>g a34 = 1) given by<br />

Q =<br />

⎛<br />

⎜<br />

⎝<br />

0 1 0 0<br />

0 0 1 −1<br />

0 0 0 1<br />

0 0 0 0<br />

⎞<br />

⎟<br />

⎠ .<br />

It is a rout<strong>in</strong>e exercise to show that the two quadrics given by b = 1<br />

<strong>and</strong> 0 = b = 1 meet <strong>in</strong> exactly the po<strong>in</strong>ts of C <strong>and</strong> the po<strong>in</strong>ts of the l<strong>in</strong>es<br />

ℓ <strong>and</strong> n. (Start with po<strong>in</strong>ts (0, 1, 0, s) <strong>and</strong> (−1, t 2 , t, s) on x0x1 + x 2 2 = 0,<br />

the “difference” of the two quadratic forms, <strong>and</strong> put them back <strong>in</strong> the two<br />

orig<strong>in</strong>al forms to obta<strong>in</strong> the result.)<br />

For the rema<strong>in</strong>der of this section we assume that q = 2 e .<br />

Us<strong>in</strong>g Theorem 4.3.1 (<strong>and</strong> <strong>in</strong>terchang<strong>in</strong>g coord<strong>in</strong>ates x1 <strong>and</strong> x2) we can<br />

establish the follow<strong>in</strong>g:<br />

Lemma 6.1.9. The homographies of P G(3, q) that leave <strong>in</strong>variant the conic<br />

x0x1 + x 2 2 = 0 <strong>in</strong> the plane x2 = x3 are given by matrices of the form:<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

a b √ ab √ ab<br />

c d √ cd √ cd<br />

0 0 e f<br />

0 0 e + 1 f + 1<br />

⎞<br />

⎟<br />

⎠ , ad + bc = 1; e = f.<br />

Recall that the order of the group of homographies fix<strong>in</strong>g a conic <strong>in</strong> a<br />

plane is q 3 − q. This is the number of ordered 4-tuples (a, b, c, d) such that<br />

ad + bc = 1. Then there are q(q − 1) ordered pairs (e, f) with e = f. This<br />

gives<br />

Corollary 6.1.10. The group of homographies of P G(3, q) leav<strong>in</strong>g <strong>in</strong>variant<br />

the plane x2 = x3 <strong>and</strong> the conic x0x1 = x 2 2 has order (q + 1)q 2 (q − 1) 2 .


6.1. HYPERBOLIC QUADRICS IN P G(3, Q) 287<br />

Lemma 6.1.11. If A is the matrix <strong>in</strong> Lemma 6.1.9, then<br />

A −1 ⎛<br />

d b d<br />

⎜<br />

= ⎜<br />

⎝<br />

√ ab + b √ cd d √ ab + b √ cd<br />

c a c √ ab + a √ cd c √ ab + a √ ⎞<br />

cd<br />

⎟<br />

f ⎟<br />

0 0<br />

⎠ .<br />

We know that Q =<br />

0 0<br />

f+1<br />

e+f<br />

e+1<br />

e+f<br />

⎛<br />

⎜<br />

⎝<br />

0 1 0 0<br />

0 0 0 0<br />

0 0 0 1<br />

0 0 0 0<br />

⎞<br />

e+f<br />

e<br />

e+f<br />

⎟<br />

⎠ is the matrix giv<strong>in</strong>g the hyperbolic<br />

quadric x0x1 + x2x3 = 0.<br />

The homography (x0, . . . , x3) ↦→ (x0, . . . , x3)A with A as <strong>in</strong> Lemma 6.1.9,<br />

replaces Q with A −1 QA −T , which is equivalent to the upper triangular matrix<br />

⎛<br />

0 1 d√ab+b √ cd<br />

e+f<br />

0 0 c√ab+a √ cd<br />

Q ′ ⎜<br />

= ⎜<br />

⎝ 0 0<br />

0 0 0<br />

e+f<br />

f(f+1)<br />

(e+f) 2<br />

d √ ab+b √ cd<br />

e+f<br />

c √ ab+a √ cd<br />

e+f<br />

1<br />

e+f<br />

(e+1)e<br />

(e+f) 2<br />

⎞<br />

⎟<br />

⎠ =<br />

⎛<br />

0<br />

⎜<br />

0<br />

⎜<br />

⎝ 0<br />

1<br />

0<br />

0<br />

√<br />

bd<br />

e+f √<br />

ac<br />

e+f<br />

f(f+1)<br />

(e+f) 2<br />

0 0 0<br />

√<br />

bd<br />

e+f √<br />

ac<br />

e+f<br />

1<br />

e+f<br />

(e+1)e<br />

(e+f) 2<br />

⎞<br />

⎟<br />

⎠ .<br />

So these are the hyperbolic quadrics that conta<strong>in</strong> the conic C : x0x1+x 2 2 =<br />

0 <strong>in</strong> the plane x2 = x3.<br />

We ask: How many of these quadrics are of the form<br />

A little work yields the follow<strong>in</strong>g:<br />

Hb : x0x1 + x2x3 + b(x 2 2 + x 2 3) = 0?<br />

Lemma 6.1.12. There are 2q(q − 1) homographies leav<strong>in</strong>g C <strong>in</strong>variant <strong>and</strong><br />

send<strong>in</strong>g H0 to a hyperbolic quadric of the form Hb. They have matrices of<br />

the form<br />

⎛<br />

⎜<br />

⎝<br />

a 0 0 0<br />

0 a −1 0 0<br />

0 0 e e + 1<br />

0 0 e + 1 e<br />

⎞<br />

⎟<br />

⎠ , a = 0, e ∈ Fq;


288 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

or ⎛<br />

⎜<br />

⎝<br />

0 b 0 0<br />

b −1 0 0 0<br />

0 0 e e + 1<br />

0 0 e + 1 e<br />

⎞<br />

⎟<br />

⎠ , b = 0, e ∈ Fq.<br />

The 4(q − 1) homographies fix<strong>in</strong>g H0 <strong>and</strong> C are those with e ∈ {0, 1} <strong>and</strong><br />

either a = 0, or b = 0, respectively.<br />

The hyperbolic quadric H with matrix Q determ<strong>in</strong>es a null polarity ν :<br />

x ↦→ (Q + Q T )x T . If x ∈ H, then x ν is the tangent plane to H at x which<br />

conta<strong>in</strong>s one l<strong>in</strong>e <strong>in</strong> each rul<strong>in</strong>g of H. If x ∈ H, then x is the nucleus of the<br />

conic x ν ∩ H. The nucleus of the conic C <strong>in</strong> Hb is (0, 0, 1, 1), <strong>and</strong> the ruled<br />

quadrics of the form Hb have an <strong>in</strong>terest<strong>in</strong>g property with respect to the l<strong>in</strong>es<br />

through N = (0, 0, 1, 1).<br />

Lemma 6.1.13. If a l<strong>in</strong>e through N not <strong>in</strong> the plane x2 = x3 has one po<strong>in</strong>t<br />

<strong>in</strong> common with some hyperbolic quadric of the form Hb, then it meets each<br />

of the q/2 quadrics Hb <strong>in</strong> exactly two po<strong>in</strong>ts. As each of the quadrics has<br />

q(q + 1) po<strong>in</strong>ts not <strong>in</strong> the plane x2 = x3, it takes q(q + 1)/2 l<strong>in</strong>es through<br />

N to partition the po<strong>in</strong>ts (not <strong>in</strong> the given plane) <strong>in</strong> the union of the hyperbolic<br />

quadrics, leav<strong>in</strong>g exactly q(q−1)<br />

l<strong>in</strong>es through N cover<strong>in</strong>g precisely all the<br />

2<br />

po<strong>in</strong>ts of P G(3, q) not on the plane x2 = x2 <strong>and</strong> not on any of the Hb. Each<br />

l<strong>in</strong>e conta<strong>in</strong>ed <strong>in</strong> one of the Hb meets the plane x2 = x3 <strong>in</strong> a unique po<strong>in</strong>t<br />

of the conic C. If we pick one rul<strong>in</strong>g of each of the Hb along with the l<strong>in</strong>es<br />

through N not meet<strong>in</strong>g any Hb we have a partition of the po<strong>in</strong>ts of P G(3, q)<br />

not <strong>in</strong> the plane x2 = x3.<br />

Proof. The matrix Q ′ on the previous page gives the quadratic form<br />

HB : x0x1 + B(x 2 2 + x2 3 )<br />

if <strong>and</strong> only if √ bd = √ ac = 0 <strong>and</strong> e + f = 1. It is then of the form<br />

⎛<br />

0<br />

⎜ 0<br />

⎝ 0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

e(e + 1)<br />

0<br />

0<br />

1<br />

⎞<br />

⎟<br />

⎠ , with B = e(e + 1).<br />

0 0 0 e(e + 1)<br />

As e ranges over the q elements of Fq, B assumes each field element with<br />

trace 0 exactly twice. Also, e = 0 <strong>and</strong> e = 1 give H0.


6.2. QUADRATIC CONES IN P G(3, Q) 289<br />

Suppose that x = (x0, x1, x2, x3) ∈ H0 \ (x2 = x3), so x0x1 + x2x3 = 0<br />

with x2 = x3. N = (0, 0, 1, 1) is the nucleus of C. So the l<strong>in</strong>e ℓ = 〈x, N〉<br />

conta<strong>in</strong>s x ∈ H0 \ (x2 = x3). The po<strong>in</strong>t P = x + λN (an arbitrary po<strong>in</strong>t of ℓ<br />

not <strong>in</strong> (x2 = x2)) is on HB (with B = e 2 + e) if <strong>and</strong> only if<br />

satisfies<br />

if <strong>and</strong> only if<br />

if <strong>and</strong> only if<br />

if <strong>and</strong> only if<br />

(x0, x1, x2, x3) + λ(0, 0, 1, 1) = (x0, x1, x2 + λ, x3 + λ)<br />

x0x1 + (x2 + λ)(x3 + λ) + B((x2 + λ) 2 (x3 + λ) 2 ) = 0<br />

λ 2 + λ(x2 + x3) + (e 2 + e)(x2 + x3) 2 = 0<br />

λ<br />

x2 + x3<br />

∈ {e, e + 1}<br />

λ ∈ {e(x2 + x3), (e + 1)(x2 + x3)}.<br />

Hence each po<strong>in</strong>t of ℓ different from N is <strong>in</strong> exactly one of the Hb. There<br />

are q(q +1) po<strong>in</strong>ts of H0 not on the plane x2 = x3. Hence q(q+1)<br />

l<strong>in</strong>es through<br />

2<br />

N exactly cover the po<strong>in</strong>ts of all the Hb not <strong>in</strong> the plane x2 = x3, so that<br />

there are q2 − q(q+1) q(q−1)<br />

= l<strong>in</strong>es through N not conta<strong>in</strong><strong>in</strong>g any po<strong>in</strong>t of<br />

2<br />

2<br />

any Hb <strong>and</strong> whose union m<strong>in</strong>us the po<strong>in</strong>t N exactly covers the po<strong>in</strong>ts of<br />

P G(3, q)not on an Hb <strong>and</strong> not <strong>in</strong> the plane x2 = x3.<br />

6.2 Quadratic cones <strong>in</strong> P G(3, q)<br />

Let π = P G(2, q) be the hyperplane [0, 0, 0, 1] <strong>in</strong> Σ = P G(3, q), q odd or<br />

even. Let O be an oval <strong>in</strong> π <strong>and</strong> let V be the po<strong>in</strong>t V = (0, 0, 0, 1) of Σ \ π.<br />

The cone K with base oval O <strong>and</strong> vertex V is the set of po<strong>in</strong>ts on the l<strong>in</strong>es<br />

(called generators) jo<strong>in</strong><strong>in</strong>g V to the po<strong>in</strong>ts of O. If O is a conic (for example,<br />

O = C = {(x, y, z, 0) ∈ π : y 2 = xz}, then K is called a quadratic cone, <strong>and</strong><br />

K = {(x, y, z, w) ∈ Σ : y 2 = xz}.<br />

When q = 2 e , O has a nucleus N, <strong>and</strong> the l<strong>in</strong>e 〈N, V 〉 is called the nuclear<br />

generator of the cone. Although quadratic cones play a central role <strong>in</strong> the<br />

theory of <strong>in</strong>terest to us, <strong>and</strong> <strong>in</strong>deed are the only cones we consider when q is


290 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

odd, <strong>in</strong> the case q = 2 e we also study cones over more general ovals, especially<br />

over monomial ovals. S<strong>in</strong>ce much of the general theory of quadratic cones<br />

generalizes to translation oval cones <strong>and</strong> some of it to monomial oval cones,<br />

we post pone some of our development of cones <strong>in</strong> characteristic 2 to the<br />

chapter on monomial oval cones.<br />

For the rema<strong>in</strong>der of this section we suppose that O is the conic C given<br />

above.<br />

Probably one of the first th<strong>in</strong>gs we should exam<strong>in</strong>e is the group of homographies<br />

of Σ = P G(3, q) leav<strong>in</strong>g the cone K <strong>in</strong>variant. First note that each<br />

field automorphism <strong>in</strong>duces a coll<strong>in</strong>eation of Σ that leaves the cone <strong>in</strong>variant,<br />

so we really only need to look at homographies. Each plane that does not<br />

conta<strong>in</strong> the vertex V meets each generator <strong>in</strong> a unique po<strong>in</strong>t. Let (1, 0, 0, r),<br />

(1, 1, 1, s) <strong>and</strong> (0, 0, 1, t) be three arbitrary po<strong>in</strong>ts on the respective generators<br />

conta<strong>in</strong><strong>in</strong>g them. They determ<strong>in</strong>e the plane π = [−r, r + t − s, −t, 1].<br />

Consider the homography θ which is the elation with center V <strong>and</strong> axis<br />

[−r, r + t − s, −t, 0]. The matrix of θ is<br />

[θ] = A =<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0 −r<br />

0 1 0 r + t − s<br />

0 0 1 −t<br />

0 0 0 1<br />

The map θ leaves K <strong>in</strong>variant <strong>and</strong> maps the plane π to the plane π3 =<br />

[0, 0, 0, 1]. Hence we now need only to determ<strong>in</strong>e the homographies that fix<br />

the plane π3 <strong>and</strong> leave the conic C <strong>in</strong>variant. At this po<strong>in</strong>t we recall that<br />

the complete group of homographies of π3 leav<strong>in</strong>g C <strong>in</strong>variant consists of all<br />

θ with matrices<br />

⎛<br />

[θ] = ⎝<br />

d 2 −bd b 2<br />

−2cd ad + bc −2ab<br />

c 2 −ac a 2<br />

⎞<br />

⎞<br />

⎟<br />

⎠ .<br />

⎠ , ∆ = ad − bc = 0. (6.4)<br />

The determ<strong>in</strong>ant of this matrix is ∆3 , so we assume the matrix has been<br />

replaced by [θ]/∆, so it has determ<strong>in</strong>ant 1. Then the <strong>in</strong>verse matrix (which<br />

acts on the planes of Σ) is<br />

⎛<br />

[θ] −1 = ⎝<br />

a 2 ab b 2<br />

2ac ad + bc 2bd<br />

c 2 cd d 2<br />

⎞<br />

⎠ .


6.2. QUADRATIC CONES IN P G(3, Q) 291<br />

We have essentially proved the follow<strong>in</strong>g.<br />

Theorem 6.2.1. The complete group of homographies of P G(3, q) that leave<br />

<strong>in</strong>variant the cone K = {(x, y, z, w) ∈ P G(3, q) : xz = y2 } consists of those<br />

θ given by all matrices of the form<br />

[θ] =<br />

⎛<br />

⎜<br />

⎝<br />

a 2 −bd b 2 x<br />

−2cd ad + bc −2ab y<br />

c 2 −ac a 2 z<br />

0 0 0 w<br />

⎞<br />

⎟<br />

⎠ , ∆ = ad − bc = 1; w = 0.<br />

A collection of q conics of the cone K that partition the po<strong>in</strong>ts of K \ {V }<br />

is called a flock of the quadratic cone K. . However, if C is one of the conics<br />

of a flock F, there is a unique plane π for which C = π ∩ K. It is often more<br />

convenient to consider a flock of a cone to be the set of these q planes whose<br />

<strong>in</strong>tersections with K give the actual flock, hence we shall often do this.<br />

Obs. 6.2.2. Let K be a quadratic cone <strong>in</strong> P G(3, q) with vertex V . Let<br />

P ∈ K \ {V }, ℓ = 〈P, V 〉 <strong>and</strong> let πℓ be the plane meet<strong>in</strong>g K <strong>in</strong> ℓ. Let π be any<br />

plane conta<strong>in</strong><strong>in</strong>g neither V nor P . Project the po<strong>in</strong>ts of K \ {V }from P onto<br />

π. Then there is a one-to-one correspondence between the po<strong>in</strong>ts of K \ ℓ <strong>and</strong><br />

the po<strong>in</strong>ts of π \(πℓ ∩π), while the po<strong>in</strong>ts of ℓ\{P, V } project onto P ′ = ℓ∩π.<br />

The q3 − q2 plane sections of K conta<strong>in</strong><strong>in</strong>g neither P nor V project onto the<br />

q3 − q2 conics of π conta<strong>in</strong><strong>in</strong>g P ′ <strong>and</strong> with tangent l<strong>in</strong>e π ∩ πℓ. If C1 <strong>and</strong> C2<br />

are two planar sectio<strong>in</strong>s of K both conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t Q ∈ ℓ \ {P, V }, then<br />

their respective projections C ′ 1 , C′ 2 <strong>in</strong> π have the property that C′ 2 is one of the<br />

q2 images of C ′ 1 under an elation of π with center P ′ . The q2 planar sections<br />

of K conta<strong>in</strong><strong>in</strong>g P project onto the q2 l<strong>in</strong>es of π not <strong>in</strong>cident with P ′ . Hence<br />

a flock {C1, . . . , Cq} of K projects to a set {C ′ 1 , . . . , C′ q−1 , m} where C′ 1 , . . . , C′ q−1<br />

are conics of π with common po<strong>in</strong>t P ′ , common tangent π ∩ πℓ, m is a l<strong>in</strong>e of<br />

π not <strong>in</strong>cident with P ′ , <strong>and</strong> C ′ 1 , . . . C′ q−1 , m partition the po<strong>in</strong>ts of π \ (π ∩ πℓ).<br />

Further, no C ′ i is the image of a C ′ j, i, j ∈ {1, . . . , q − 1}, i = j, under an<br />

elation of π with center P ′ . Conversely, any such set {C ′ 1 , . . . , C′ q−1 , m} with<br />

these properties corresponds to a flock of K.<br />

Proof. We make the above comments explicit, start<strong>in</strong>g with the cone K as<br />

given above. The homography φ with matrix<br />

⎛<br />

⎞<br />

1 0 0 −u<br />

⎜<br />

[φ] = ⎜ 0 1 0 −v ⎟<br />

⎝ 0 0 1 −w ⎠<br />

0 0 0 1


292 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

maps the plane [u, v, w, 1] to the plane [0, 0, 0, 1] without mov<strong>in</strong>g any generators<br />

of the cone. So we may assume that π = [0, 0, 0, 1]. Let ℓ be the<br />

generator through P = (0, 0, 1, 1) ∈ K <strong>and</strong> the vertex V = (0, 0, 0, 1), <strong>and</strong><br />

let π∞ = [1, 0, 0, 0] be the plane meet<strong>in</strong>g K <strong>in</strong> ℓ. ℓ meets π <strong>in</strong> the po<strong>in</strong>t<br />

P ′ = (0, 0, 1, 0). The homographies θ of P G(3, q) fix<strong>in</strong>g the vertex V <strong>and</strong><br />

<strong>in</strong>duc<strong>in</strong>g elations on π with center P ′ have matrices<br />

[θa,b] =<br />

⎛<br />

⎜<br />

⎝<br />

The conic C = K ∩ [0, 0, 0, 1] is<br />

The image of C under θa,b is<br />

1 0 a 0<br />

0 1 b 0<br />

0 0 1 0<br />

0 0 0 1<br />

⎞<br />

⎟<br />

⎠ , a, b ∈ Fq.<br />

C = {(1, x, x 2 , 0) : x ∈ Fq} ∪ {(0, 0, 1, 0)}.<br />

Ca,b = {(1, x, a + bx + x 2 , 0) : x ∈ Fq} ∪ {(0, 0, 1, 0)}.<br />

The planes through P not through V are those of the form [u, v, −1, 1].<br />

The conic which is the <strong>in</strong>tersection of such a plane with the cone K projects<br />

from P to the l<strong>in</strong>e {(1, x, vx + u, 0) : x ∈ Fq} ∪ {(0, 1, v, 0)}. Now let Q =<br />

(0, 0, 1, λ) with 1 = λ ∈ Fq. The general plane through Q but not V is the<br />

plane [a, b, −λ, 1]. It meets the cone <strong>in</strong> the conic<br />

Ca,b,λ = {(0, 0, 1, λ)} ∪ {(1, x, x 2 , λx 2 − bx − a) : x ∈ Fq} ∪ {(0, 0, 1, λ)}.<br />

Then Ca,b,λ projects to the conic<br />

C ′ a,b,λ = {(0, 0, 1, 0)} ∪ {(1, x, (1 − λ)x2 + bx + a, 0) : x ∈ Fq}, when λ = 1.<br />

It is now clear that for a fixed λ = 1, the conics C ′ a,b,λ<br />

form one orbit under<br />

the group of elations with center P ′ , as do the l<strong>in</strong>es of π not through the<br />

po<strong>in</strong>t P ′ .<br />

For the rema<strong>in</strong>der of this section we broaden our po<strong>in</strong>t of view. Let π be<br />

a plane of P G(3, q) <strong>and</strong> V a po<strong>in</strong>t of P G(3, q) \ {V }. Let O be an oval of<br />

π <strong>and</strong> let K be the cone with vertex V <strong>and</strong> generators the l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g V to<br />

the po<strong>in</strong>ts of O. Then each plane section of K by a plane not conta<strong>in</strong><strong>in</strong>g V<br />

is an oval projectively equivalent to O. When q is even let N be the nucleus


6.2. QUADRATIC CONES IN P G(3, Q) 293<br />

of O <strong>and</strong> let n be the l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g V with N. Each plane through n must be<br />

tangent to the cone. Clearly each oval O ′ that is the <strong>in</strong>tersection of K <strong>and</strong><br />

some plane π ′ has a nucleus N ′ on the l<strong>in</strong>e n. We def<strong>in</strong>e a flock of K to be a<br />

set F of q planes π1, . . . , πq cutt<strong>in</strong>g K <strong>in</strong> pairwise disjo<strong>in</strong>t ovals O1, . . . , Oq.<br />

Of course, if q is odd, each oval is a conic <strong>and</strong> there is no nuclear generator.<br />

Lemma 6.2.3. Let F = {π1, . . . , πq} be a flock the oval cone K meet<strong>in</strong>g<br />

K <strong>in</strong> the ovals O1, . . . , Oq, respectively. If Ni is the nucleus of Oi, then<br />

V, N1, . . . , Nq are the q + 1 dist<strong>in</strong>ct po<strong>in</strong>ts of the nuclear generator n.<br />

Proof. Suppose that Ni = Nj for some i = j. Then πi ∩ πj is a l<strong>in</strong>e through<br />

Ni = Nj tangent to Oi <strong>and</strong> to Oj. Hence πi ∩ πj must meet the hyperoval<br />

Oi ∪ {Ni} <strong>in</strong> a second po<strong>in</strong>t <strong>and</strong> also must meet the hyperoval Oj ∪ {Nj} <strong>in</strong><br />

a second po<strong>in</strong>t. These two po<strong>in</strong>ts must be the same po<strong>in</strong>t, forc<strong>in</strong>g Oi <strong>and</strong> Oj<br />

not to be disjo<strong>in</strong>t, contradict<strong>in</strong>g the assumption that F is a flock.<br />

Remark: It follows that F is a flock of the hyperoval cone obta<strong>in</strong>ed by<br />

adjo<strong>in</strong><strong>in</strong>g the nuclear generator n to the cone K.<br />

In the next theorem we show that a partial flock of deficiency 1, i.e., q −1<br />

planes cutt<strong>in</strong>g the cone <strong>in</strong> disjo<strong>in</strong>t ovals, uniquely extends to a complete flock.<br />

This result first appeared <strong>in</strong> [PT91] with separate proofs for q odd or even.<br />

The result can be strengthened considerably (see [ST95], but we give a proof<br />

only for partial flocks of deficiency 1. The first proof is the proof for q even<br />

from [PT91]. The second proof is a simple one discovered by Peter Sziklai<br />

that works for all conical cones.<br />

Theorem 6.2.4. ([PT91]) Let K be an oval cone <strong>in</strong> P G(3, q) with vertex V .<br />

For 2 ≤ i ≤ q, let πi be a plane not through V cutt<strong>in</strong>g the cone <strong>in</strong> an oval Oi<br />

so that Oi ∩ Oj = ∅ if i = j. So on each generator there is a unique po<strong>in</strong>t<br />

different from V <strong>and</strong> not belong<strong>in</strong>g to any of O2, . . . , Oq. Let these po<strong>in</strong>ts<br />

be Z0, . . . , Zq. Then there is a plane π meet<strong>in</strong>g K <strong>in</strong> exactly these po<strong>in</strong>ts<br />

Z0, . . . , Zq. In other words, a partial flock of deficiency 1 can be completed<br />

to a flock.<br />

Proof. Case 1. q even. In this case we let n be the nuclear generator of the<br />

oval cone K. For 1 ≤ i ≤ q − 1 let Ni be the nucleus of Oi on n. The same<br />

proof as for the preced<strong>in</strong>g lemma shows that V, N1, . . . , Nq−1 are dist<strong>in</strong>ct<br />

po<strong>in</strong>ts of n. Let Oq be the set of q + 1 po<strong>in</strong>ts (one on each generator of K)<br />

not ly<strong>in</strong>g on any Oi for 1 ≤ i ≤ q − 1, <strong>and</strong> let Nq be the rema<strong>in</strong><strong>in</strong>g po<strong>in</strong>t of<br />

n. F<strong>in</strong>ally, put O + q = Oq ∪ {Nq}.


294 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

First we show that each plane π of P G(3, q) must meet O + q <strong>in</strong> an even<br />

number of po<strong>in</strong>ts. If π is some πi, 1 ≤ i ≤ q − 1, then |O + q ∩ π| = 0. If π<br />

conta<strong>in</strong>s the vertex V , then π conta<strong>in</strong>s 0 or 2 generators of K <strong>and</strong> hence 0 or<br />

2 po<strong>in</strong>ts of O + q . If V ∈ π, |(K ∪n)∩π| = q +2 is even, <strong>and</strong> π meets each πi <strong>in</strong><br />

a l<strong>in</strong>e with 0 or 2 po<strong>in</strong>ts of K ∪ n, imply<strong>in</strong>g |π ∩ O + q | is even. Project from Nq<br />

onto a plane not conta<strong>in</strong><strong>in</strong>g Nq. Then Oq projects onto q + 1 dist<strong>in</strong>ct po<strong>in</strong>ts,<br />

s<strong>in</strong>ce the generators of K together with n form a set of q + 2 l<strong>in</strong>es with no<br />

three <strong>in</strong> a plane. All planes through Nq project onto all l<strong>in</strong>es of π, with each<br />

such plane meet<strong>in</strong>g Oq <strong>in</strong> an odd number of po<strong>in</strong>ts, so <strong>in</strong> at least one po<strong>in</strong>t.<br />

So each plane through Nq projects to a l<strong>in</strong>e that conta<strong>in</strong>s one of the po<strong>in</strong>ts to<br />

which Oq projects. Say the po<strong>in</strong>ts Z0, . . . , Zq of Oq project to W0, . . . , Wq of<br />

π. Put m = W0W1, <strong>and</strong> suppose that Z is a po<strong>in</strong>t of m not <strong>in</strong> the projection<br />

of Oq. The l<strong>in</strong>es ZW0 = ZW1 = m, ZW2, . . . , ZWq are at most q <strong>in</strong> number,<br />

leav<strong>in</strong>g at least one l<strong>in</strong>e ℓ through Z miss<strong>in</strong>g all of W0, . . . , Wq. Hence the<br />

plane 〈ℓ, Nq〉 must miss Oq. This contradiction forces m to conta<strong>in</strong> all of<br />

W0, . . . , Wq. Hence mNq is the desired plane πq for which πq ∩ K = Oq.<br />

Case 2. q odd or even <strong>in</strong> the quadratic cone case.<br />

Let F = {πi = [ai, bi, ci, 1] : 2 ≤ i ≤ q} be a partial flock of deficiency 1<br />

of the st<strong>and</strong>ard cone K : x0x2 = x 2 1. For fixed t ∈ Fq the map i ↦→ fi(t) =<br />

ai + bit + cit 2 , 2 ≤ i ≤ q, is an <strong>in</strong>jection <strong>in</strong>to Fq, <strong>and</strong> the po<strong>in</strong>t of πi on<br />

the generator through the po<strong>in</strong>t (1, t, t 2 , 0) is (1, t, t 2 , −fi(t)). Similarly, the<br />

po<strong>in</strong>t of πi on the generator through (0, 0, 1, 0) is (0, 0, 1, −ci). Also, when<br />

q > 2 the sum of the elements of Fq is equal to 0. Hence the miss<strong>in</strong>g po<strong>in</strong>t<br />

on the generator 〈(0, 0, 0, 1), (1, t, t 2 , 0) (not on any of the πi) is<br />

(1, t, t 2 ,<br />

q<br />

(ai + bit + cit 2 ).<br />

i=2<br />

Similarly, the miss<strong>in</strong>g po<strong>in</strong>t on the generator 〈(0, 0, 0, 1), (0, 0, 1, 0)〉 is<br />

(0, 0, 1,<br />

q<br />

ci).<br />

All these po<strong>in</strong>ts lie on the plane [− ai, − bi, − ci, 1]. Hence F extends<br />

to a flock.<br />

i=2


6.3. ELLIPTIC QUADRICS IN P G(3, Q) 295<br />

6.3 Elliptic quadrics <strong>in</strong> P G(3, q)<br />

Let Ω be an elliptic quadric <strong>in</strong> P G(3, q). By Theorem 5.4.5 Ω has 1 + q 2<br />

po<strong>in</strong>ts. S<strong>in</strong>ce Ω conta<strong>in</strong>s po<strong>in</strong>ts but no l<strong>in</strong>es, it must be that no l<strong>in</strong>e conta<strong>in</strong>s<br />

three po<strong>in</strong>ts of Ω, i.e., Ω is a k-cap of P G(3, q) with k = q 2 + 1. Hence by<br />

look<strong>in</strong>g ahead to Theorem 7.2.6 we see that Ω is an ovoid. In the chapter<br />

on ovoids we will show that each plane of P G(3, q) is either tangent to Ω or<br />

meets Ω <strong>in</strong> a conic. Recall that Ω def<strong>in</strong>es a polarity that here we denote by<br />

⊥.<br />

If ℓ is a l<strong>in</strong>e of P G(3, q) that has two po<strong>in</strong>ts of Ω, it is hyperbolic, so<br />

ℓ ⊥ must be elliptic (i.e., anisotropic). Hence the perp of a secant l<strong>in</strong>e is an<br />

exterior l<strong>in</strong>e, <strong>and</strong> vice versa, while the perp of a tangent l<strong>in</strong>e is a tangent<br />

l<strong>in</strong>e.<br />

A flock of Ω is a set F of mutually disjo<strong>in</strong>t conics of Ω such that, with<br />

the exception of precisely two po<strong>in</strong>ts x <strong>and</strong> y, each po<strong>in</strong>t of Ω is on a unique<br />

conic of F. The po<strong>in</strong>ts x <strong>and</strong> y are called the carriers of the flock.<br />

Let ℓ be a l<strong>in</strong>e of P G(3, q) which has no po<strong>in</strong>t <strong>in</strong> common with Ω. The<br />

conics π ∩ Ω, where π varies over the planes through ℓ with |π ∩ Ω| > 1, form<br />

a flock called a l<strong>in</strong>ear flock. When q = 2 e this is the only k<strong>in</strong>d of flock.<br />

Theorem 6.3.1. (J. A. Thas [Th73]) Let q = 2 e > 2 <strong>and</strong> let F = {C1, . . . , Cq−1}<br />

be a flock of the elliptic quadric Ω. The planes of the q − 1 circles Ci all pass<br />

through the same l<strong>in</strong>e ℓ. This l<strong>in</strong>e ℓ is the <strong>in</strong>tersection of the tangent planes<br />

to Ω at the carriers x, y of the flock.<br />

Proof. First note that Ω = C1 ∪ C2 ∪ · · · ∪ Cq−1 ∪ {x, y}. The nucleus of the<br />

circle Ci is denoted by ni. We now show that ℓ = {x, y, n1, n2, · · · , nq−1} is a<br />

l<strong>in</strong>e. For that purpose we show that each plane of P G(3, q) has at least one<br />

po<strong>in</strong>t <strong>in</strong> common with ℓ. Then by Lemma 2.7.2 it must be that ℓ is a l<strong>in</strong>e.<br />

(a) Every plane through x or y certa<strong>in</strong>ly has a po<strong>in</strong>t <strong>in</strong> common with ℓ.<br />

(b) Let π be a plane tangent to Ω at the po<strong>in</strong>t p ∈ Ω, x = p = y. Through<br />

p there passes a circle of the flock, say Ci. The tangent l<strong>in</strong>e of Ci at p is<br />

conta<strong>in</strong>ed <strong>in</strong> π, forc<strong>in</strong>g ni to be <strong>in</strong> π.<br />

(c) Let π be a plane for which π ∩ Ω ∈ {C1, C2, . . . , Cq−1}. If Ci = π ∩ Ω,<br />

then ni ∈ π.<br />

(d) F<strong>in</strong>ally, let π be a plane for which |π ∩ Ω| > 1 <strong>and</strong> x ∈ π, y ∈ π,<br />

π ∩ Ω ∈ {C1, . . . , Cq−1}. If π ∩ Ω = C, then |Ci ∩ C| ∈ {0, 1, 2}, <strong>and</strong><br />

π ∩ Ω = ∪{Ci : 1 ≤ i ≤ q − 1}. As q + 1 is odd there exists a Cj such that


296 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

|Cj ∩C| = 1. It follows that Cj <strong>and</strong> C have a common tangent l<strong>in</strong>e T at their<br />

common po<strong>in</strong>t. Hence nj ∈ T ⊂ π, complet<strong>in</strong>g the proof that ℓ is a l<strong>in</strong>e.<br />

Next we note that the polar planes of x, y, n1, . . . , nq−1, with respect to<br />

the symplectic polarity ν def<strong>in</strong>ed by Ω, are the tangent planes of Ω at x <strong>and</strong><br />

y, respectively, <strong>and</strong> the the planes of the conics Ci. As ℓ is a l<strong>in</strong>e, these q + 1<br />

planes all pass through the polar l<strong>in</strong>e of ℓ with respect to ν. So we conclude<br />

that the planes of the q − 1 circles Ci all pass through the <strong>in</strong>tersection of the<br />

tangent planes of Ω at the carriers x, y of the flock F.<br />

This theorem says that when q = 2 e each flock of an elliptic quadric <strong>in</strong><br />

P G(3, q) must be l<strong>in</strong>ear. That this theorem is also true for q odd was proved<br />

by W. F. Orr. The proof is a bit long for <strong>in</strong>clusion right here, but it does<br />

appear later as Theorem 6.7.10.<br />

Theorem 6.3.2. (W. F. Orr [Or73]) When q is odd, each flock of an elliptic<br />

quadric <strong>in</strong> P G(3, q) must be l<strong>in</strong>ear.<br />

There are two corollaries we mention here.<br />

Corollary 6.3.3. Let C be an oval of P G(2, q), q > 2, which can be embedded<br />

<strong>in</strong> an ovoid of P G(3, q) (for example, an irreducible conic). If F =<br />

{x1, x2, . . . , xq−1} is a set of q − 1 po<strong>in</strong>ts of P G(2, q) \ C, such that any l<strong>in</strong>e<br />

xixj, i = j, is a secant of C, then the po<strong>in</strong>ts of F all lie on one secant of C.<br />

Proof. Let C be embedded <strong>in</strong> an ovoid Ω of P G(3, q). S<strong>in</strong>ce each xi is exterior<br />

to Ω, its polar plane πi with respect to Ω meets Ω <strong>in</strong> an oval. S<strong>in</strong>ce 〈xi, xj〉<br />

is a secant l<strong>in</strong>e, its perp, which is πi ∩ πj, must be an exterior l<strong>in</strong>e. Hence<br />

the polar planes π1, π2, . . . , πq−1 of x1, . . . , xq−1 with respect to Ω, <strong>in</strong>tersect<br />

Ω <strong>in</strong> q − 1 mutually disjo<strong>in</strong>t circles. These circles constitute a flock F ∗ of<br />

Ω. As F ∗ must be l<strong>in</strong>ear by Theorems 6.3.1 <strong>and</strong> 6.3.2, the planes πi all pass<br />

through one exterior l<strong>in</strong>e ℓ of Ω. Consequently their poles xi all lie on one<br />

exterior l<strong>in</strong>e of Ω. We conclude that F is an exterior l<strong>in</strong>e of C.<br />

Corollary 6.3.4. Let Ω be an elliptic quadric of P G(3, q), q even. Let F be<br />

a set of q + 1 circles, any two of which have at least two po<strong>in</strong>ts <strong>in</strong> common,<br />

If the planes of these circles all meet <strong>in</strong> one po<strong>in</strong>t p ∈ Ω, then F is a bundle<br />

of circles (i.e., the q + 1 conics all meet <strong>in</strong> two fixed po<strong>in</strong>ts on a secant l<strong>in</strong>e<br />

to the quadric).


6.4. THE (ELLIPTIC) ORTHOGONAL GROUP 297<br />

Proof. The poles (with respect to Ω) of the q + 1 planes conta<strong>in</strong><strong>in</strong>g the<br />

elements of F, all lie <strong>in</strong> the polar plane π of p. The l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g any two<br />

of these poles is an exterior l<strong>in</strong>e of the irreducible conic π ∩ Ω. S<strong>in</strong>ce q is<br />

even, the set F ∗ of these poles is an exterior l<strong>in</strong>e of 〈π, Ω〉 by Theorem 6.1.2.<br />

Consequently the planes of the q + 1 conics of F all conta<strong>in</strong> one fixed secant<br />

of Ω. We conclude that F is a bundle of conics of the elliptic quadric Ω.<br />

6.4 The (Elliptic) Orthogonal Group<br />

In Chapter 5 we determ<strong>in</strong>ed a canonical form for elliptic quadrics <strong>in</strong> case q is<br />

even or odd. In this section we want to give explicit examples <strong>and</strong> determ<strong>in</strong>e<br />

the correspond<strong>in</strong>g orthogonal groups. First suppose that q is odd <strong>and</strong> let η<br />

be a non-square <strong>in</strong> Fq. Put<br />

Then<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

0 1 0 0<br />

1 0 0 0<br />

0 0 −2 0<br />

0 0 0 2η<br />

⎞<br />

⎟<br />

⎠ .<br />

O = {x = (x0, x1, x2, x3) : xAx T = 2x0x1 − 2x 2 2 + 2ηx23 = 0}<br />

is a typical elliptic quadric <strong>in</strong> P G(3, q). Alternatively,<br />

O = {(1, s 2 − ηt 2 , s, t) ∈ P G(3, q) : s, t ∈ Fq} ∪ {(0, 1, 0, 0)}.<br />

For any a, b ∈ Fq, def<strong>in</strong>e the homography τa,b by the matrix<br />

[τa,b] =<br />

⎛<br />

⎜<br />

⎝<br />

1 a 2 − ηb 2 a b<br />

0 1 0 0<br />

0 2a 1 0<br />

0 −2ηb 0 1<br />

⎞<br />

⎟<br />

⎠ .<br />

It is rout<strong>in</strong>e to check that τa,b preserves the elliptic quadric O, fixes the po<strong>in</strong>t<br />

(0, 1, 0, 0) <strong>and</strong> maps (1, 0, 0, 0) ↦→ (1, a 2 − ηb 2 , a, b), i.e., it is transitive on the<br />

q 2 po<strong>in</strong>ts of O different from (0, 1, 0, 0). Next, consider the homography φ


298 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

given by the matrix<br />

[φ] =<br />

⎛<br />

⎜<br />

⎝<br />

0 1 0 0<br />

1 0 0 0<br />

0 0 1 0<br />

0 0 0 1<br />

It is easy to check that φ leaves O <strong>in</strong>variant <strong>and</strong> <strong>in</strong>terchanges the po<strong>in</strong>ts<br />

(0, 1, 0, 0) <strong>and</strong> (1, 0, 0, 0). This shows that the orthogonal group G = P GO − (4, q)<br />

is transitive on the po<strong>in</strong>ts of O, <strong>and</strong> <strong>in</strong> fact is doubly transitive.<br />

Now let (0, 0, ) = (c, d) ∈ Fq × Fq <strong>and</strong> let ϕc,d be the homography given<br />

by the matrix<br />

[ϕc,d] =<br />

⎛<br />

⎜<br />

⎝<br />

⎞<br />

⎟<br />

⎠ .<br />

1 0 0 0<br />

0 −c 2 − ηd 2 0 0<br />

0 0 c d<br />

0 0 ηd c<br />

Aga<strong>in</strong> it is rout<strong>in</strong>e to check that ϕc,d ∈ G, it fixes (0, 1, 0, 0) <strong>and</strong> (1, 0, 0, 0) <strong>and</strong><br />

is transitive on the rema<strong>in</strong><strong>in</strong>g q2 − 1 po<strong>in</strong>ts of O, hence G is triply transitive<br />

on the po<strong>in</strong>ts of O. At this po<strong>in</strong>t it is easy to verify that the subgroup of<br />

G fix<strong>in</strong>g the three po<strong>in</strong>ts (1, 0, 0, 0), (0, 1, 0, 0), (1, 1, 1, 0) has order 2 with<br />

homographies given by the matrices<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0 0<br />

0 1 0 0<br />

0 0 1 0<br />

0 0 0 ±1<br />

⎞<br />

⎟<br />

⎠ .<br />

⎞<br />

⎟<br />

⎠ .<br />

Now let q = 2 e <strong>and</strong> let ρ ∈ Fq with tr(ρ) = 1. Then a typical elliptic<br />

quadric is given by<br />

O = {x = (x0, x1, x2, x3) ∈ P G(3, q) : xAx T = x0x1+x 2 2 +x2x3+ρx 2 3 = 0} where<br />

⎛<br />

0<br />

⎜<br />

A = ⎜ 0<br />

⎝ 0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

1<br />

⎞<br />

0<br />

0 ⎟<br />

1 ⎠<br />

0 0 0 ρ<br />

.<br />

Alternatively, if f(s, t) = s 2 + st + ρt 2 , then<br />

O = {(1, f(s, t), s, t) : s, t ∈ Fq} ∪ {(0, 1, 0, 0)}.


6.5. ELLIPTIC QUADRICS CONTAINING A CONIC 299<br />

For a, b ∈ Fq, let τa,b be the homography with matrix<br />

⎛<br />

1<br />

⎜<br />

[τa,b] = ⎜ 0<br />

⎝ 0<br />

f(a, b)<br />

1<br />

b<br />

a<br />

0<br />

1<br />

⎞<br />

b<br />

0 ⎟<br />

0 ⎠<br />

0 a 0 1<br />

.<br />

Then τa,b ∈ G = P GO−1 , fixes (0, 1, 0, 0) <strong>and</strong> maps (1, 0, 0, 0) to (1, f(a, b), a, b).<br />

The homography φ with matrix<br />

⎛<br />

0<br />

⎜<br />

[φ] = ⎜ 1<br />

⎝ 0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

1<br />

⎞<br />

0<br />

0 ⎟<br />

0 ⎠<br />

0 0 0 1<br />

preserves O <strong>and</strong> <strong>in</strong>terchanges the po<strong>in</strong>ts (1, 0, 0, 0) <strong>and</strong> (0, 1, 0, 0), show<strong>in</strong>g<br />

that G is transitive on the po<strong>in</strong>ts of O, <strong>and</strong> <strong>in</strong> fact doubly transitive. Now<br />

let (0, 0) = (c, d) ∈ Fq × Fq, put λ = f(c, d), which is not zero, <strong>and</strong> let ϕc,d<br />

be the homography with matrix<br />

[ϕc,d] =<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0 0<br />

0 λ 0 0<br />

0 0 c d<br />

0 0 ρd c + d<br />

Then ϕc,d is <strong>in</strong> G, fixes (1, 0, 0, 0) <strong>and</strong> (0, 1, 0, 0) <strong>and</strong> maps (1, 1, 1, 0) to<br />

(1, f(c, d), c, d). This shows that G is triply transitive on the po<strong>in</strong>ts of O.<br />

F<strong>in</strong>ally, we want to determ<strong>in</strong>e the elements of G that fix the three po<strong>in</strong>ts<br />

(1, 0, 0, 0), (0, 1, 0, 0) <strong>and</strong> (1, 1, 1, 0). A little work shows that this group is of<br />

order 2 <strong>and</strong> is generated by the homography with matrix<br />

P =<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0 0<br />

0 1 0 0<br />

0 0 1 0<br />

0 0 1 1<br />

⎞<br />

⎟<br />

⎠ .<br />

⎞<br />

⎟<br />

⎠ .<br />

6.5 Elliptic Quadrics Conta<strong>in</strong><strong>in</strong>g a Conic<br />

Let O be a quadric conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t ∞ = (0, 1, 0, 0) <strong>and</strong> hav<strong>in</strong>g the plane<br />

π∞ = [1, 0, 0, 0] as its tangent plane at ∞.


300 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

This is enough to force O to be given by an upper triangular matrix of<br />

the form<br />

[O] = A =<br />

⎛<br />

⎜<br />

⎝<br />

a 1 c d<br />

0 0 0 0<br />

0 0 h i<br />

0 0 0 j<br />

⎞<br />

⎟<br />

⎠ .<br />

We want O to be elliptic, so the plane π∞ should conta<strong>in</strong> no po<strong>in</strong>t of O<br />

other than ∞.<br />

Compute:<br />

π∞ ∩ O = {(0, y, z, w) : hz 2 + izw + jw 2 = 0}.<br />

If π∞ is tangent to O at ∞, it must be that the quadratic equation<br />

hz 2 + izw + jw 2 = 0<br />

has no nontrivial solutions (z, w). This is true if <strong>and</strong> only if<br />

If q is odd, then i 2 − 4hj = ❆ ; (6.5)<br />

<br />

hj<br />

If q is even, then tr<br />

i2 <br />

= 1. (6.6)<br />

In particular, both h <strong>and</strong> j are nonzero, <strong>and</strong> when q is even also i is<br />

nonzero.<br />

Later on we are go<strong>in</strong>g to want the follow<strong>in</strong>g.<br />

Let q be even <strong>and</strong> let O be an elliptic quadric <strong>in</strong> P G(3, q) with π∞ =<br />

[1, 0, 0, 0] as its tangent plane at the po<strong>in</strong>t ∞ = (0, 1, 0, 0). This means it has<br />

a matrix<br />

AO = [O] =<br />

⎛<br />

⎜<br />

⎝<br />

a 1 c d<br />

0 0 0 0<br />

0 0 h i<br />

0 0 0 j<br />

where hz 2 + izw + jw 2 = 0 has no nontrivial solution (z, w). In particular<br />

h, i, j are all nonzero. The bil<strong>in</strong>ear form is a polarity, so [1, 0, 0, 0] has<br />

⎞<br />

⎟<br />


6.5. ELLIPTIC QUADRICS CONTAINING A CONIC 301<br />

(0, 1, 0, 0) as its pole <strong>and</strong> (0, 1, 0, 0) is a po<strong>in</strong>t of [1, 0, 0, 0]. Here<br />

A + A T ⎛<br />

0<br />

⎜<br />

= ⎜ 1<br />

⎝ c<br />

1<br />

0<br />

0<br />

c<br />

0<br />

0<br />

⎞<br />

d<br />

0 ⎟<br />

i ⎠<br />

d 0 i 0<br />

<strong>and</strong><br />

(A + A T ) −1 =<br />

⎛<br />

⎜<br />

⎝<br />

0 1 c d<br />

1 0 d/i c/i<br />

0 d/i 0 1/i<br />

0 c/i 1/i 0<br />

Let O ′ be a second such elliptic quadric with parameters a ′ , c ′ , d ′ , h ′ , i ′ , j ′ .<br />

Then there is a plane π (not π∞) through the po<strong>in</strong>t ∞ hav<strong>in</strong>g the same<br />

pole N with respect to both symplectic polarities. In fact, there are planes<br />

shar<strong>in</strong>g a pole with the orig<strong>in</strong>al elliptic quadric, conta<strong>in</strong><strong>in</strong>g ∞, <strong>and</strong> cover<strong>in</strong>g<br />

all the po<strong>in</strong>ts not on π∞. We now determ<strong>in</strong>e just when [a, 0, b, e] is such a<br />

plane.<br />

(A + A T ) −1<br />

⎡<br />

⎢<br />

⎣<br />

a<br />

0<br />

b<br />

e<br />

⎤<br />

⎞<br />

⎟<br />

⎠<br />

⎥<br />

⎦ = [0, a + bd/i + ce/i, e/i, b/i]T .<br />

Replac<strong>in</strong>g A by A ′ , then comput<strong>in</strong>g the pole of [a, 0, b, e] T <strong>and</strong> sett<strong>in</strong>g it equal<br />

to λ times the plane displayed above, <strong>and</strong> us<strong>in</strong>g the fact that at least one of<br />

b, e must be nonzero, yields the system of equations<br />

a(i ′ − i) + b(d ′ − d) + e(c ′ − c) = 0.<br />

In addition to want<strong>in</strong>g the plane [a, 0, b, e] T to have the same pole with<br />

respect to both polarities, we want to f<strong>in</strong>d one conta<strong>in</strong><strong>in</strong>g an arbitrary po<strong>in</strong>t<br />

(1, x, y, z) of P G(3, q) \ π∞. So we are look<strong>in</strong>g for nontrivial solutions to the<br />

system<br />

i ′ − i d ′ − d c ′ − c<br />

1 y z<br />

⎡<br />

⎣<br />

a<br />

b<br />

e<br />

⎤<br />

⎡<br />

⎦ = ⎣<br />

This system has rank 1 or 2, forc<strong>in</strong>g at least a one-dimensional space of<br />

solutions, as desired. So we have proved the lemma:<br />

0<br />

0<br />

0<br />

⎤<br />

⎦ .


302 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

Lemma 6.5.1. Let q be even. Let O <strong>and</strong> O ′ be any two elliptic quadrics<br />

hav<strong>in</strong>g (∞, π∞) as pole-polar pair. Then each po<strong>in</strong>t off π∞ belongs to some<br />

plane π through ∞ for which π has the same pole N with respect to both<br />

polarities def<strong>in</strong>ed by O <strong>and</strong> O ′ .<br />

Let π = [0, 0, 0, 1], so π is a secant plane through ∞.<br />

π ∩ O = {(x, y, z, 0) : ax 2 + xy + cxz + hz 2 = 0}.<br />

If O = {(1, f(s, t), s, t) : s, t ∈ Fq} ∪ {(0, 1, 0, 0)}, then<br />

⎛<br />

a<br />

⎜<br />

(1, f(s, t), s, t) ⎜ 0<br />

⎝ 0<br />

1<br />

0<br />

0<br />

c<br />

0<br />

h<br />

⎞ ⎛ ⎞<br />

d 1<br />

0 ⎟ ⎜<br />

⎟ ⎜ f(s, t) ⎟<br />

i ⎠ ⎝ s ⎠<br />

0 0 0 j t<br />

implies<br />

= a + f(s, t) + cs + dt + hs 2 + ist + jt 2 = 0<br />

f(s, t) = −hs 2 − ist − jt 2 − cs − dt − a. (6.7)<br />

We can choose coord<strong>in</strong>ates <strong>in</strong> π so that<br />

C = π ∩ O = {(1, s 2 , s, 0) : s ∈ Fq} ∪ {∞}.<br />

This means that h = −1 <strong>and</strong> a = c = 0, so<br />

⎛<br />

0<br />

⎜<br />

A = ⎜ 0<br />

⎝ 0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

−1<br />

⎞<br />

k<br />

0 ⎟<br />

i ⎠<br />

0 0 0 j<br />

,<br />

where we have renamed d as k.<br />

This completes a proof of the follow<strong>in</strong>g theorem.<br />

Theorem 6.5.2. Let π∞ = [1, 0, 0, 0], π = [0, 0, 0, 1], so π∩π∞ = {(0, y, z, 0) ∈<br />

P G(3, q) : y, z ∈ Fq}. Let C be the conic <strong>in</strong> π given by<br />

C = {(1, s 2 , s, 0) : s ∈ Fq} ∪ {∞}.<br />

Then the elliptic quadric O conta<strong>in</strong>s C <strong>and</strong> has π∞ as tangent plane at ∞ if<br />

<strong>and</strong> only if O is given by an upper triangular matrix of the form


6.5. ELLIPTIC QUADRICS CONTAINING A CONIC 303<br />

where<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

0 1 0 k<br />

0 0 0 0<br />

0 0 −1 i<br />

0 0 0 j<br />

⎞<br />

⎟<br />

⎠ ,<br />

−z 2 + izw + jw 2 = 0 (6.8)<br />

has no nontrivial solution.<br />

This means that when q is odd, i2 + 4j = ❆ ∈ Fq, <strong>and</strong> when q is even,<br />

tr( j<br />

i2 ) = 1.<br />

So O = {(1, s2 −ist−jt 2 −kt, s, t) : s, t ∈ Fq}∪{(0, 1, 0, 0)}. By choos<strong>in</strong>g<br />

coord<strong>in</strong>ates appropriately we can even normalize O a bit more.<br />

1. If q is odd <strong>and</strong> η = ❆ ∈ Fq, i = k = 0, j = η, we have<br />

⎛<br />

0<br />

⎜<br />

A = ⎜ 0<br />

⎝ 0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

−1<br />

⎞<br />

0<br />

0 ⎟<br />

0 ⎠<br />

0 0 0 η<br />

,<br />

<strong>and</strong> O = {(1, s 2 − ηt 2 , s, t) : s, t ∈ Fq} ∪ {∞}.<br />

2. If q is even <strong>and</strong> tr(ρ) = 1, i = 1, j = ρ, k = 0, we have<br />

⎛<br />

0<br />

⎜<br />

A = ⎜ 0<br />

⎝ 0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

−1<br />

⎞<br />

0<br />

0 ⎟<br />

1 ⎠<br />

0 0 0 ρ<br />

,<br />

<strong>and</strong> O = {(1, s 2 + st + ρt 2 , s, t) : s, t ∈ Fq} ∪ {∞}.<br />

Now let O ′ be any other elliptic quadric conta<strong>in</strong><strong>in</strong>g C <strong>and</strong> hav<strong>in</strong>g π∞ as<br />

tangent plane at ∞. There must be an homography φ mapp<strong>in</strong>g O to O ′ . The<br />

group of homographies of Σ = P G(3, q) leav<strong>in</strong>g O <strong>in</strong>variant is triply transitive<br />

on the po<strong>in</strong>ts of O. Hnce we may assume φ fixes (0, 1, 0, 0), (1, 0, 0, 0), <strong>and</strong><br />

(1, 1, 1, 0). Of course φ must also leave π∞ <strong>in</strong>variant. It is a rout<strong>in</strong>e exercise<br />

to show that this is enough to force the matrix of φ to look like<br />

[φ] =<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0 0<br />

0 a 0 0<br />

0 1 − a 1 0<br />

0 b c d<br />

⎞<br />

⎟<br />

⎠ , a, d = 0.


304 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

It is also clear that φ must fix the conic C. S<strong>in</strong>ce φ : (1, s 2 , s, 0) ↦→<br />

((1, as 2 + s(1 − a), s, 0) ∈ C, it follows that a = 1, so<br />

[φ] =<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0 0<br />

0 1 0 0<br />

0 0 1 0<br />

0 b c d<br />

⎞<br />

⎟<br />

⎠ , d = 0.<br />

It follows that φ is a central coll<strong>in</strong>eation with axis the plane π <strong>and</strong> center<br />

the po<strong>in</strong>t (0, b, c, d − 1), which is <strong>in</strong> π if <strong>and</strong> only if d = 1.<br />

<strong>and</strong><br />

Start<strong>in</strong>g with<br />

[φ] =<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

⎛<br />

⎜<br />

⎝<br />

0 1 0 k<br />

0 0 0 0<br />

0 0 −1 i<br />

0 0 0 j<br />

1 0 0 0<br />

0 1 0 0<br />

0 0 1 0<br />

0 b c d<br />

⎞<br />

⎞<br />

⎟<br />

⎠ ,<br />

⎟<br />

⎠ , d = 0,<br />

φ transforms the quadratic form associated with A to that given by<br />

A ′ = [φ] −1 A[φ] ≡<br />

⎛<br />

⎜<br />

⎝<br />

0 1 0 k−b<br />

d<br />

0 0 0 0<br />

0 0 −1 i+2c<br />

d<br />

0 0 0<br />

j−ic−c 2<br />

d 2<br />

S<strong>in</strong>ce d = 0, it first appears that there are q 2 (q−1) matrices A ′ . However,<br />

with fixed i, j, k, it might be that as b, c, d vary the matrices A ′ are not<br />

all dist<strong>in</strong>ct. Suppose that i, j, k are fixed with −z 2 + izw + jw 2 = 0 hav<strong>in</strong>g<br />

no nontrivial solution (z, w), <strong>and</strong> that<br />

A ′ :=<br />

⎛<br />

⎜<br />

⎝<br />

0 1 0 k−b<br />

d<br />

0 0 0 0<br />

0 0 −1 i+2c<br />

d<br />

0 0 0<br />

j−ic−c 2<br />

d 2<br />

⎞<br />

⎛<br />

⎟<br />

⎠ = A′′ ⎜<br />

:= ⎜<br />

⎝<br />

⎞<br />

⎟<br />

⎠ .<br />

0 1 0 k−b ′<br />

d ′<br />

0 0 0 0<br />

0 0 −1 d ′<br />

0 0 0<br />

i+2c ′<br />

j−ic ′ −c ′2<br />

d ′2<br />

⎞<br />

⎟<br />

⎠ .


6.5. ELLIPTIC QUADRICS CONTAINING A CONIC 305<br />

First suppose that d = d ′ . Then b = b ′ . If q is odd, also c = c ′ , so no<br />

duplication occurs. Suppose that q = 2 e <strong>and</strong> d = d ′ . By Eq.4, when q is<br />

even i must be nonzero, so there are two choices for φ with A ′ = A ′′ ; viz.<br />

(b, c, d) = (b ′ , c ′ , c ′ ) = (b, c + i, d).<br />

Now suppose that d = d ′ <strong>and</strong> A ′ = A ′′ . From the third row of A ′ it follows<br />

that d = d ′ if q is even. Hence q is odd <strong>and</strong> it is easy to see that<br />

b ′ = k(d − d′ ) + bd ′<br />

d<br />

<strong>and</strong> c ′ = 2cd′ + i(d ′ − d)<br />

.<br />

2d<br />

Substitute this value for c ′ <strong>in</strong>to the equality j−ic−c2<br />

d2 plify. In a f<strong>in</strong>ite number of steps it appears that<br />

(4j + i 2 )(d ′2 − d 2 ) = 0.<br />

= j−ic′ −c ′2<br />

d ′2<br />

<strong>and</strong> sim-<br />

When q is odd we have seen that 4j + j 2 = ❆ ∈ Fq, so it must be that<br />

d ′2 = d 2 , i.e., d ′ = −d. This completes a proof of the follow<strong>in</strong>g theorem.<br />

Theorem 6.5.3. Let O be an elliptic quadric conta<strong>in</strong><strong>in</strong>g the conic C =<br />

{(1, s2 , s, 0) : s ∈ Fq} ∪ {∞} <strong>in</strong> the plane π = [0, 0, 0, 1] <strong>and</strong> hav<strong>in</strong>g π∞ =<br />

[1, 0, 0, 0] as its tangent plane at the po<strong>in</strong>t ∞ = (0, 1, 0, 0).<br />

We have seen that this means that the upper triangular matrix giv<strong>in</strong>g O<br />

has the form given <strong>in</strong> Theorem 1. If O is a fixed one of these quadrics, then<br />

any other one of them can be obta<strong>in</strong>ed from O by apply<strong>in</strong>g a coll<strong>in</strong>eation φ<br />

with matrix<br />

[φ] = [φb,c,d] =<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0 0<br />

0 1 0 0<br />

0 0 1 0<br />

0 b c d<br />

⎞<br />

⎟<br />

⎠ , d = 0,<br />

which transforms the quadratic form associated with A to that given by<br />

⎛<br />

⎞<br />

A ′ = [φ] −1 A[φ] −T ≡<br />

⎜<br />

⎝<br />

0 1 0 k−b<br />

d<br />

0 0 0 0<br />

0 0 −1 d<br />

0 0 0<br />

j−ic−c2 d2 1. Suppose that q is odd. Then φb,c,d transforms O to the same quadric<br />

as does φb ′ ,c ′ ,d ′ if <strong>and</strong> only if either (b′ , c ′ , d ′ ) = (b, c, d) or (b ′ , c ′ , d ′ ) = (2k −<br />

b, −i − c, −d). S<strong>in</strong>ce b <strong>and</strong> c can be any elements of Fq <strong>and</strong> d can be any<br />

i+2c<br />

⎟<br />

⎠ .


306 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

nonzero element of Fq, there must be q 2 (q − 1)/2 dist<strong>in</strong>ct elliptic quadrics<br />

conta<strong>in</strong><strong>in</strong>g C <strong>and</strong> hav<strong>in</strong>g π∞ = [1, 0, 0, 0] as tangent plane at the po<strong>in</strong>t ∞ =<br />

(0, 1, 0, 0).<br />

2. Suppose that q = 2 e . In this case we know that i = 0. Then<br />

φb,c,d transforms O to the same quadric as does φb ′ ,c ′ ,d ′ if <strong>and</strong> only if either<br />

(b ′ , c ′ , d ′ ) = (b, c, d) or (b ′ , c ′ , d ′ ) = (b, c + i, d). Aga<strong>in</strong>, there must be<br />

q2 (q − 1)/2 dist<strong>in</strong>ct quadrics conta<strong>in</strong><strong>in</strong>g C <strong>and</strong> hav<strong>in</strong>g π∞<br />

tangent plane at the po<strong>in</strong>t ∞ = (0, 1, 0, 0).<br />

= [1, 0, 0, 0] as<br />

Note: In both the q odd <strong>and</strong> the q even cases the two φ that send O to<br />

the same quadric have the same formula: (b ′ , c ′ , d ′ ) = (2k − b, −i − c, −d).<br />

Moreover, the unique nonidentity homography leav<strong>in</strong>g O <strong>and</strong> π∞ fixed is<br />

φ2k,−i,−1.<br />

Now we want to consider the <strong>in</strong>tersection of two elliptic quadrics that<br />

conta<strong>in</strong> C <strong>and</strong> have π∞ as the tangent plane at ∞.<br />

Suppose O is given by an upper triangular matrix with given parameters<br />

(i, j, k) <strong>and</strong> is mapped by φb,c,d to the elliptic quadric O ′ with parameters<br />

(i ′ , j ′ , k ′ ) = ( i+2d<br />

d<br />

, j−ic−c2<br />

d 2<br />

, k−b<br />

d ).<br />

The functions for O <strong>and</strong> O ′ , respectively, are<br />

f(s, t) = s 2 − ist − jt 2 − kt, s, t); (6.9)<br />

g(s, t) = s 2 2 i + 2c c + ic − j<br />

− st +<br />

d<br />

d2 <br />

t 2 b − k<br />

+ t. (6.10)<br />

d<br />

The two ovoids have po<strong>in</strong>ts <strong>in</strong> common for values of s <strong>and</strong> t for which<br />

f(s, t) = g(s, t). When t = 0 exactly the po<strong>in</strong>ts of C turn up. So we may<br />

assume that t = 0 <strong>and</strong> ask: When does f(s, t) = g(s, t)? This turns out to<br />

be if <strong>and</strong> only if<br />

s[i(d 2 − d) − 2cd] + t[c 2 + ic + (d 2 − 1)j] + k(d 2 − d) + bd = 0. (6.11)<br />

The Case q is odd<br />

Suppose q is odd <strong>and</strong> let η be an arbitrary nonsquare <strong>in</strong> Fq. Coord<strong>in</strong>ates<br />

may be chosen so that our special ovoid O is<br />

O = {(1, s 2 − ηt 2 , s, t) : s, t ∈ Fq}.


6.5. ELLIPTIC QUADRICS CONTAINING A CONIC 307<br />

Then Eq. 6.7 becomes<br />

It follows that<br />

s[−2cd] + t[c 2 + (d 2 − 1)j] + bd = 0. (6.12)<br />

(O ∩ O ′ ) \ π = (O ∩ [bd, 0, −2cd, c 2 + (d 2 − 1)η]) \ {∞}. (6.13)<br />

If we write πb,c,d = [bd, 0, −2cd, c2 + (d2 − 1)η], then ∞ ∈ πb,c,d, <strong>and</strong><br />

πb,c,d = π∞ if <strong>and</strong> only if c = 0 <strong>and</strong> d2 = 1. (<strong>in</strong> which case it must be that<br />

b = 0).<br />

Note: If c = 0, then πb,c,d is a secant plane to O through the po<strong>in</strong>t ∞, <strong>and</strong><br />

O ∩ O ′ is the union of two conics that share the po<strong>in</strong>ts ∞ <strong>and</strong> (1, b2<br />

4c2 , b , 0). 2c<br />

Lemma 6.5.4. Suppose that q is odd <strong>and</strong><br />

O = {(1, s 2 − ηt 2 , s, t) : s, t ∈ Fq} ∪ {∞},<br />

where η = ❆ ∈ Fq. Let φb,c,1 be a nontrivial elation with center (0, b, c, 0)<br />

<strong>and</strong> axis π = [0, 0, 0, 1], so φb,c,1 maps O to<br />

O ′ = {(1, s 2 − 2cst + (c 2 − η)t 2 + bt, s, t) : s, t ∈ Fq} ∪ {∞}.<br />

Then O ∩ O ′ = C if <strong>and</strong> only if c = 0. Moreover, if c = 0, then each of the<br />

q − 1 elliptic quadrics O ′ that together with O form an orbit of size q of the<br />

group of elations with center ∞ = (0, 1, 0, 0) <strong>and</strong> axis π∞meets O <strong>in</strong> precisely<br />

C, <strong>and</strong> each two of these quadrics meet pairwise <strong>in</strong> precisely C.<br />

Proof. From Eq. 6.10 we see that O ∩ O ′ has a po<strong>in</strong>t outside C if <strong>and</strong> only<br />

if there is a nonzero t <strong>and</strong> associated s for which −2cs + c 2 t + b = 0. When<br />

c = 0 there clearly is such a solution. If c = 0, <strong>and</strong> if b = 0, there is no such<br />

solution. If P is a po<strong>in</strong>t of O different from ∞, then φb,0,1 maps P to a po<strong>in</strong>t<br />

on the l<strong>in</strong>e through ∞ <strong>and</strong> P , which has no further po<strong>in</strong>t of O.<br />

S<strong>in</strong>ce φb,c,d maps O to the same quadric as does φ−b,−c,−d, if d 2 = 1 <strong>in</strong><br />

Eq. 6.10 we may assume that d = 1. So now suppose that d ∈ Fq \{0, 1, −1}.<br />

We want to determ<strong>in</strong>e which quadrics arise which meet O <strong>in</strong> exactly C. So<br />

basically the answer is that they are those aris<strong>in</strong>g from φb,c,d with Eq. 6.10<br />

hav<strong>in</strong>g no solution. Clearly if c = 0 there will be additional po<strong>in</strong>ts <strong>in</strong> the<br />

<strong>in</strong>tersection. So suppose that c = 0 <strong>in</strong> Eq. 6.10: t(d 2 − 1)η + bd = 0. But<br />

here if b = 0, there will always be a nonzero solution for t. Hence we must<br />

have b = 0. Then s<strong>in</strong>ce φ0,0,d = φ0,0,−d, we have the follow<strong>in</strong>g.


308 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

Lemma 6.5.5. The only elliptic quadrics conta<strong>in</strong><strong>in</strong>g C, hav<strong>in</strong>g π∞ as tangent<br />

plane at ∞, meet<strong>in</strong>g O <strong>in</strong> precisely C <strong>and</strong> NOT <strong>in</strong>cluded <strong>in</strong> the preced<strong>in</strong>g<br />

Lemma lie <strong>in</strong> the orbit conta<strong>in</strong><strong>in</strong>g O of size (q − 1)/2 under the group of<br />

homologies with axis π <strong>and</strong> center (0, 0, 0, 1). These quadrics pairwise meet<br />

<strong>in</strong> precisely C.<br />

Theorem 6.5.6. Let q be odd. The complete list of all elliptic quadrics that<br />

meet O <strong>in</strong> precisely C <strong>and</strong> have π∞ as tangent plane at ∞ is as follows:<br />

(i) The q − 1 images of O under the q − 1 nontrivial elations with axis<br />

π = [0, 0, 0, 1] <strong>and</strong> center ∞ = (0, 1, 0, 0). These pairwise <strong>in</strong>tersect <strong>in</strong> C <strong>and</strong><br />

have ovoidal functions<br />

g(s, t) = s 2 − ηt 2 + bt. (6.14)<br />

(ii) The (q −3)/2 images of O under the q −3 nontrivial homologies (with<br />

d = 0, 1, −1) hav<strong>in</strong>g axis π <strong>and</strong> center (0, 0, 0, 1). These pairwise <strong>in</strong>tersect<br />

precisely <strong>in</strong> C <strong>and</strong> have ovoidal functions of the form<br />

h(s, t) = s 2 − ηd 2 t 2 (where we have replaced d with its <strong>in</strong>verse). (6.15)<br />

(iii) Each elliptic quadric (not O) of the type <strong>in</strong> (i) meets each elliptic<br />

quadric (not O) of the type <strong>in</strong> (ii) <strong>in</strong> a at least one po<strong>in</strong>t not <strong>in</strong> C.<br />

(iv) Any set of more than (q − 1)/2 elliptic quadrics conta<strong>in</strong><strong>in</strong>g O <strong>and</strong><br />

whose elements meet pairwise <strong>in</strong> precisely the conic C must consist entirely<br />

of conics of type (i).<br />

Now we consider the case that q is even.<br />

We let q = 2 e <strong>and</strong> put f(s, t) = s 2 + st + ρt 2 where ρ is a fixed element<br />

of Fq with trace(ρ) = 1. It follows that the image of O under φb,c,d has ovoid<br />

function<br />

g(s, t) = s 2 2 1 c + c − ρ<br />

− st +<br />

d<br />

d2 <br />

Eq. 6.8 becomes<br />

t 2 + b<br />

t. (6.16)<br />

d<br />

s(d 2 − d) + t(c 2 + c + (d 2 − 1)j) + bd = 0. (6.17)<br />

If d = 1 there will be solutions of Eq. 6.17 for each t = 0. Hence if the<br />

<strong>in</strong>tersection with O is to be precisely C, we must have d = 1. Then the<br />

equation becomes<br />

t(c 2 + c) + b = 0.<br />

This will fail to have solutions with t = 0 if <strong>and</strong> only if c 2 + c = 0 but b = 0<br />

or c 2 + c = 0 but b = 0.


6.5. ELLIPTIC QUADRICS CONTAINING A CONIC 309<br />

Theorem 6.5.7. Let q = 2 e . The complete list of all elliptic quadrics that<br />

meet O <strong>in</strong> precisely C <strong>and</strong> have π∞ as tangent plane at ∞ is as follows:<br />

(i) The q − 1 images of O under the q − 1 nontrivial elations with axis<br />

π <strong>and</strong> center ∞. These pairwise <strong>in</strong>tersect <strong>in</strong> C <strong>and</strong> have ovoidal functions<br />

g(s, t) = s 2 + st + ρt 2 + bt, b = 0.<br />

(ii) The (q − 2)/2 images of O (different from O) under the group of<br />

elations with axis π <strong>and</strong> center (0, 0, 1, 0) . (Remember φ0,c,1 <strong>and</strong> φ0,c+1,1 give<br />

the same ovoid O ′ .) These pairwise meet <strong>in</strong> precisely C <strong>and</strong> have ovoidal<br />

functions h(s, t) = s 2 + st + (c 2 + c + ρ)t 2 .<br />

(iii) Each elliptic quadric (not O) of the type <strong>in</strong> (i) meets each elliptic<br />

quadric of type (ii) <strong>in</strong> po<strong>in</strong>t(s) not on C.<br />

(iv) Any set of more than q/2 elliptic quadrics conta<strong>in</strong><strong>in</strong>g O <strong>and</strong> whose<br />

elements meet pairwise <strong>in</strong> precisely the conic C must consist entirely of conics<br />

of type (i).<br />

Proof. It is rout<strong>in</strong>e to show that g(s, t) = h(s, t) has a solution s for each<br />

nonzero t.<br />

The follow<strong>in</strong>g theorem is an immediate consequence of the preced<strong>in</strong>g results.<br />

Theorem 6.5.8. For q odd or even let Ω be a collection of q elliptic quadrics<br />

meet<strong>in</strong>g pairwise precisely <strong>in</strong> the conic C of the plane π <strong>and</strong> hav<strong>in</strong>g tangent<br />

plane π∞ = π at the po<strong>in</strong>t ∞ ∈ C. Then Ω must be an orbit of the group of<br />

q elations with center ∞ <strong>and</strong> axis π.<br />

The group of homographies of Σ leav<strong>in</strong>g O <strong>in</strong>variant is transitive on the<br />

secant planes to O conta<strong>in</strong><strong>in</strong>g ∞. Hence if π is any such secant plane, <strong>and</strong> if<br />

C is the conic C = O ∩ π, any set of exactly q − 1 other ovoids of Σ meet<strong>in</strong>g<br />

O <strong>in</strong> precisely C must be those <strong>in</strong> the orbit conta<strong>in</strong><strong>in</strong>g O of the group of q<br />

elations with center ∞ <strong>and</strong> axis π. Moreover, we will show that the group<br />

G1 generated by these elations (as π varies over the secant planes conta<strong>in</strong><strong>in</strong>g<br />

(∞) is the group of order q3 conta<strong>in</strong><strong>in</strong>g all the elations of Σ with center ∞<br />

(<strong>in</strong>clud<strong>in</strong>g those with axis π∞).<br />

Let φa,b,c be the elation with<br />

[φa,b,c] =<br />

⎛<br />

⎜<br />

⎝<br />

1 a 0 0<br />

0 1 0 0<br />

0 b 1 0<br />

0 c 0 1<br />

⎞<br />

⎟<br />

⎠ , which has axis [a, 0, b, c].


310 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

Then G1 = {φa,b,c : a, b, c ∈ Fq} <strong>and</strong> it is easy to see that [φa,b,c]·[φa ′ ,b ′ ,c ′] =<br />

[φa+a ′ ,b+b ′ ,c+c ′]. So by putt<strong>in</strong>g a′ = 0, b ′ = −b <strong>and</strong> c ′ = −c where (b, c) =<br />

(0, 0), we get [φa,b,c] · [φ0,−b,−c] = [φa,0,0]. Hence the group of all elations with<br />

center ∞ <strong>and</strong> axis π∞ = [1, 0, 0, 0] is conta<strong>in</strong>ed <strong>in</strong> the group G1. Let Ω be<br />

the set of ovoids <strong>in</strong> the orbit of G1 conta<strong>in</strong><strong>in</strong>g O. These q3 ovoids come <strong>in</strong><br />

q2 + q sets of size q that conta<strong>in</strong> the ovoids meet<strong>in</strong>g pairwise exactly <strong>in</strong> some<br />

conic of O conta<strong>in</strong><strong>in</strong>g ∞ along with a set of q ovoids <strong>in</strong>clud<strong>in</strong>g O that are<br />

the orbit conta<strong>in</strong><strong>in</strong>g O of the group of elations with center ∞ <strong>and</strong> axis π∞.<br />

Moreover, the elations with center ∞ <strong>and</strong> axis π∞ map O <strong>in</strong> an orbit of size<br />

q consist<strong>in</strong>g of ovoids that form a rosette of ovoids with base po<strong>in</strong>t ∞ <strong>and</strong><br />

base plane π∞. (A rosette of ovoids is a set of q ovoids meet<strong>in</strong>g pairwise <strong>in</strong> a<br />

fixed po<strong>in</strong>t P (called the base po<strong>in</strong>t) <strong>and</strong> all hav<strong>in</strong>g the same tangent plane<br />

at P (called the base plane) This proves the follow<strong>in</strong>g theorem.<br />

Theorem 6.5.9. The G1-orbit Ω conta<strong>in</strong><strong>in</strong>g O consists of q 3 ovoids. There<br />

are q of these <strong>in</strong>clud<strong>in</strong>g O that form a rosette with base po<strong>in</strong>t ∞ <strong>and</strong> base<br />

plane π∞. The rema<strong>in</strong><strong>in</strong>g q 3 − q elliptic quadrics <strong>in</strong> Ω share a common conic<br />

with O. Hence two elliptic quadrics <strong>in</strong> Ω either <strong>in</strong>tersect <strong>in</strong> the po<strong>in</strong>t ∞ or<br />

<strong>in</strong> a conic conta<strong>in</strong><strong>in</strong>g ∞. We also note that the q 3 elliptic quadrics <strong>in</strong> Ω are<br />

partitioned <strong>in</strong>to q 2 disjo<strong>in</strong>t rosettes with base po<strong>in</strong>t ∞, each rosette be<strong>in</strong>g an<br />

orbit of the group of elations with center ∞ <strong>and</strong> axis π∞.<br />

With O = {(1, f(s, t), s, t) : s, t ∈ Fq} ∪ {∞}, we want to see what the<br />

elliptic quadrics <strong>in</strong> its G1-orbit look like.<br />

φa,b,c : O ↦→ {(1, f(s, t) + bs + ct + a, s, t) : s, t ∈ Fq} ∪ {∞}.<br />

Let G2 be the group of elations of P G(3, q) with axis π∞ = [1, 0, 0, 0]. If<br />

θa,b,c has matrix<br />

⎛<br />

1<br />

⎜<br />

[θa,b,c] = ⎜ 0<br />

⎝ 0<br />

a<br />

1<br />

0<br />

b<br />

0<br />

1<br />

⎞<br />

c<br />

0 ⎟<br />

0 ⎠<br />

0 0 0 1<br />

,<br />

then G2 = {θa,b,c : a, b, c ∈ Fq}. Moreover,<br />

θa,b,c : O ↦→ O ′ = {(1, f(s, t) + a, b + s, c + t) : s, t ∈ Fq} ∪ {∞}.


6.6. A CONDITION THAT DETERMINES A QUADRIC 311<br />

It is then easy to see that<br />

O ′ = {(1, f(s − b, t − c) + a, s, t) : s, t ∈ Fq} ∪ {∞}.<br />

When q is odd <strong>and</strong> f(s, t) = s 2 − ηt 2 ,<br />

a + f(s − b, t − c) = f(s, t) + −2bs + 2ηct + f(b, c) + a.<br />

When q is even <strong>and</strong> f(s, t) = s 2 + st + ρt 2 , then<br />

f(s − b, t − c) + a = f(s, t) + sc + bt + f(b, c) + a.<br />

This makes it clear that G2 leaves Ω <strong>in</strong>variant. Now put G = 〈G1, G2〉. S<strong>in</strong>ce<br />

φ −1<br />

a,b,c ◦ θd,e,f ◦ φa,b,c = θd+be+cf,e,f, G = G1 · G2. Clearly |G1 ∩ G2| = q, so<br />

|G| = q5 .<br />

Hence we have proved the follow<strong>in</strong>g:<br />

Lemma 6.5.10. The group G of order q 5 generated by the elations with<br />

center ∞ <strong>and</strong> the elations with axis π∞ leaves <strong>in</strong>variant the G1-orbit Ω conta<strong>in</strong><strong>in</strong>g<br />

O.<br />

6.6 A Condition that Determ<strong>in</strong>es a Quadric<br />

This section is devoted to a proof of the follow<strong>in</strong>g theorem:<br />

Theorem 6.6.1. Let ∞ <strong>and</strong> R be po<strong>in</strong>ts of P G(3, q) <strong>and</strong> let π, π∞, πR be<br />

planes of P G(3, q) such that ∞ ∈ π∞ ∩ π, R ∈ πR \ (π ∪ π∞) <strong>and</strong> the three<br />

planes π, π∞, πR meet <strong>in</strong> a po<strong>in</strong>t. If C is any conic of π such that ∞ ∈ C,<br />

π ∩ π∞ is the tangent to C at ∞ <strong>and</strong> π ∩ πR is external to C, then there exists<br />

a unique elliptic quadric O such that C ∪ {R} ⊂ O, π∞ is the tangent plane<br />

to O at ∞ <strong>and</strong> πR is the tangent plane to O at R.<br />

Further, suppose that C ′ is a second conic of π conta<strong>in</strong><strong>in</strong>g ∞, with tangent<br />

l<strong>in</strong>e π∩π∞ at ∞, external l<strong>in</strong>e π∩πR <strong>and</strong> that O ′ is the unique elliptic quadric<br />

conta<strong>in</strong><strong>in</strong>g C ′ ∪ {R} <strong>and</strong> such that π∞ is the tangent plane to O ′ at ∞ <strong>and</strong><br />

πR is the tangent plane to O ′ at R. Then O ∩ O ′ = {∞, R} if <strong>and</strong> only if<br />

C ∩ C ′ = {∞} <strong>and</strong> C ′ is not the image of C under an elation of π with center<br />

∞.


312 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

Proof. By choos<strong>in</strong>g coord<strong>in</strong>ates appropriately we may assume that ∞ =<br />

(0, 1, 0, 0), π∞ = [1, 0, 0, 0], π = [0, 0, 0, 1], <strong>and</strong> C = {(1, s 2 , s, 0) : s ∈ Fq} ∪<br />

{∞}.<br />

Let φ be the homography with matrix<br />

[φ] =<br />

⎛<br />

⎜<br />

⎝<br />

t 2 0 0 0<br />

0 1 0 0<br />

0 0 t 0<br />

0 0 0 1<br />

⎞<br />

⎟<br />

⎠ .<br />

Then φ fixes C, the po<strong>in</strong>t ∞, the plane π∞. It maps (0, λ, 1, 0) to (0, λ/t, 1, 0).<br />

The plane πR will meet the l<strong>in</strong>e π ∩ π∞ at a po<strong>in</strong>t of the form (0, λ, 1, 0), <strong>and</strong><br />

we have just seen that we may assume<br />

λ ∈ {0, 1}.<br />

Now suppose that the quadratic form is given by the matrix<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

a b c d<br />

0 e f g<br />

0 0 h i<br />

0 0 0 j<br />

⎞<br />

⎟<br />

⎠ ,<br />

<strong>and</strong> let Q denote the associated quadric. Use the fact that ∞ ∈ Q to see<br />

e = 0. Then (1, s 2 , s, 0) ∈ Q for all s ∈ Fq implies a = c = f = 0 <strong>and</strong> h = −b.<br />

If we compute ∞ ⊥ = [b, 0, 0, g], which must be [1, 0, 0, 0], we see that g = 0<br />

<strong>and</strong> we may put b = 1. At this po<strong>in</strong>t<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

0 1 0 d<br />

0 0 0 0<br />

0 0 −1 i<br />

0 0 0 j<br />

⎞<br />

⎟<br />

⎠ , so A + AT =<br />

⎛<br />

⎜<br />

⎝<br />

0 1 0 d<br />

1 0 0 0<br />

0 0 −2 i<br />

d 0 i 2j<br />

⎞<br />

⎟<br />

⎠ .<br />

It is now convenient to split the argument <strong>in</strong>to two cases: q odd or even.<br />

Case 1 q odd. We want R to be a po<strong>in</strong>t on the quadric but not <strong>in</strong> π or<br />

π∞. So we may write R = (1, u, v, w) with w = 0. πR is supposed to be a<br />

plane conta<strong>in</strong><strong>in</strong>g R for which R ⊥ = πR <strong>and</strong> πR is to conta<strong>in</strong> no other po<strong>in</strong>t of<br />

the quadric. πR must meet the l<strong>in</strong>e π ∩ π∞ <strong>in</strong> a po<strong>in</strong>t of the form (0, λ, 1, 0).


6.6. A CONDITION THAT DETERMINES A QUADRIC 313<br />

Let φ be the homography with matrix<br />

⎛<br />

1<br />

⎜<br />

[φ] = ⎜<br />

⎝<br />

a2 0<br />

0<br />

1<br />

2a<br />

a<br />

0<br />

1<br />

⎞<br />

0<br />

0 ⎟<br />

0 ⎠<br />

0 0 0 1<br />

.<br />

This φ leaves C <strong>in</strong>variant <strong>and</strong> fixes both ∞ <strong>and</strong> π∞. It maps (0, λ, 1, 0) to<br />

(0, λ + 2a, 1, 0), so by pick<strong>in</strong>g a appropriately we may assume that π ∩ πR ∩<br />

π∞ = (0, 0, 1, 0). Now apply the homography with matrix<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0 0<br />

0 1 0 0<br />

0 0 1 0<br />

0 0 0 r<br />

⎞<br />

⎟<br />

⎠ , r = 0.<br />

This homography leaves fixed each po<strong>in</strong>t of π <strong>and</strong> the plane π∞, while it<br />

moves R = (1, u, v, w) to (1, u, v, rw). Hence we may assume R = (1, u, v, 1)<br />

This tells us that<br />

πR = R ⊥ = [u + d, 1, −2v + i, d + iv + 2j].<br />

S<strong>in</strong>ce (0, 0, 1, 0) ∈ πR we know i = 2v. Then R = (1, u, v, 1) ∈ πR =<br />

[u+d, 1, 0, d+2v2 +2j] says u+d+u+0+d+2v 2 +2j = 0, so 2(u+d+v2 +j) = 0.<br />

This says that d = −u − j − v2 . Hence πR = [−(j + v2 ), 1, 0, j + v2 − u]. Now<br />

we have<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

0 1 0 −u − j − v 2<br />

0 0 0 0<br />

0 0 −1 2v<br />

0 0 0 j<br />

The assumption that (1, s2 , s, 0) is not <strong>in</strong> πR for all s ∈ Fq says that<br />

s2 = j + v2 has no solution s. Let η be a fixed non-square of Fq <strong>and</strong> put<br />

j = η − v2 . Then<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

0 1 0 −u − η<br />

0 0 0 0<br />

0 0 −1 2v<br />

0 0 0 η − v 2<br />

So πR = R ⊥ = [−η, 1, 0, η − u]. We claim that the result<strong>in</strong>g quadric is<br />

elliptic. This will be the case if πR has no po<strong>in</strong>t of the quadric other than<br />

⎞<br />

⎞<br />

⎟<br />

⎠ .<br />

⎟<br />

⎠ .


314 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

R. So suppose (x0, x1, x2, x3) ∈ πR. This implies x1 = ηx0 + (u − η)x3. If we<br />

suppose (x0, ηx0 + (u − η)x3, x2, x3) is <strong>in</strong> the quadric, we get η(x0 − x3) 2 =<br />

(x2 − vx3) 2 . S<strong>in</strong>ce η is a nonsquare, it must be that x0 = x3 <strong>and</strong> x2 = vx3,<br />

<strong>and</strong> x1 = ux3, from which we see that (x0, x1, x2, x3) = R.<br />

This concludes the case q odd, s<strong>in</strong>ce R = (1, u, v, 1) <strong>and</strong> πR = [−η, 1, 0, η−<br />

u] be<strong>in</strong>g fixed completely determ<strong>in</strong>es A.<br />

Case 2. q = 2e . If we now pick up where we were before assum<strong>in</strong>g that<br />

q is odd, we f<strong>in</strong>d <strong>in</strong> characteristic 2 that<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

0 1 0 d<br />

0 0 0 0<br />

0 0 1 i<br />

0 0 0 j<br />

In this case πR cannot meet π∩π∞ <strong>in</strong> the po<strong>in</strong>t (0, 0, 1, 0), s<strong>in</strong>ce this po<strong>in</strong>t<br />

is the nucleus of of the conic C, so any l<strong>in</strong>e <strong>in</strong> π through (0, 0, 1, 0) must have<br />

a po<strong>in</strong>t of C. So π ∩ π∞ ∩ πR must be a po<strong>in</strong>t of the form (0, λ, 1, 0) for λ = 0.<br />

But s<strong>in</strong>ce the homography with matrix diag(1, t2 , t, 1) maps (0, λ, 1, 0) to<br />

(0, tλ, 1, 0), we may suppose that (0, 1, 1, 0) is the <strong>in</strong>tersection of the three<br />

planes.<br />

Then with R = (1, u, v, 1), R⊥ = [u + d, 1, i, d + iv] <strong>and</strong> with (0, 1, 1, 0) ∈<br />

πR we have i = 1. Then R on the the quadric implies d = j + u + v + v2 . At<br />

this po<strong>in</strong>t<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

⎞<br />

⎟<br />

⎠ .<br />

0 1 0 j + u + v + v 2<br />

0 0 0 0<br />

0 0 1 1<br />

0 0 0 j<br />

So πR = R ⊥ = [j + v + v 2 , 1, 1, j + u + v 2 ]. This f<strong>in</strong>ishes the case q even,<br />

s<strong>in</strong>ce if R = (1, u, v, 1) is fixed <strong>and</strong> πR = [j + v + v 2 , 1, 1, j + u + v 2 ] is fixed,<br />

then clearly A is determ<strong>in</strong>ed.<br />

Moreover, πR fails to conta<strong>in</strong> a po<strong>in</strong>t of C \ {∞} if <strong>and</strong> only if (s + v) 2 +<br />

(s + v) + j = 0 has no solution, i.e., if <strong>and</strong> only if tr(j) = 1.<br />

This completes a proof of the first paragraph of the theorem.<br />

To beg<strong>in</strong> on a proof of the second paragraph of the theorem we start<br />

by recall<strong>in</strong>g certa<strong>in</strong> facts about conics, homographies, etc., <strong>in</strong> P G(2, q) that<br />

were developed <strong>in</strong> Section 4.3. For the convenience of the reader we mention<br />

only the follow<strong>in</strong>g:<br />

⎞<br />

⎟<br />

⎠ .


6.6. A CONDITION THAT DETERMINES A QUADRIC 315<br />

Recap: ∞ = (0, 1, 0, 0); π∞ = [1, 0, 0, 0]; π = [0, 0, 0, 1].<br />

C = {(1, s 2 , s, 0) : s ∈ Fq} ∪ {∞} is our favorite conic <strong>in</strong> π.<br />

C ′ = {(1, as2 + bs + c, s, 0) : s ∈ Fq} ∪ {∞} gives all conics <strong>in</strong> π with<br />

[1, 0, 0, 0]∩[0, 0, 0, 1] as the l<strong>in</strong>e tangent at the po<strong>in</strong>t ∞. Here a, b, c ∈ Fq with<br />

a = 0. These are also all the conics that are images of C under homographies<br />

of π with center ∞. These are homologies if a = 1 <strong>and</strong> are elations if a = 1.<br />

If O is an elliptic quadric of P G(3, q) hav<strong>in</strong>g π∞ as tangent plane at ∞,<br />

<strong>and</strong> meet<strong>in</strong>g π <strong>in</strong> the conic C, then the upper triangular matrix AO giv<strong>in</strong>g O<br />

is<br />

AO =<br />

⎛<br />

⎜<br />

⎝<br />

0 −1 0 k<br />

0 0 0 0<br />

0 0 1 i<br />

0 0 0 j<br />

⎞<br />

⎟<br />

⎠ .<br />

The po<strong>in</strong>t (0, y, z, w) of π∞ is on O if <strong>and</strong> only if z 2 + izw + jw 2 = 0.<br />

So O is elliptic if <strong>and</strong> only if z 2 + izw + jw 2 = 0 has no nontrivial solution<br />

(z, w).<br />

From this we can calculate that<br />

O = {(1, f(s, t), s, t) : s, t ∈ Fq} ∪ {∞}, where<br />

f(s, t) = s 2 + (u − v 2 − iv − j)t + ist + jt 2 . (6.18)<br />

If we take a po<strong>in</strong>t R not <strong>in</strong> π or π∞ we saw above that we could assume<br />

that it is R = (1, u, v, 1) for some u, v ∈ Fq.<br />

Assert<strong>in</strong>g that R be on O gives k = u − v 2 − iv − j. The general po<strong>in</strong>t<br />

(1, f(s, t), s, t) of O is on<br />

πR = R(A + A T ) = [−v 2 − iv − j, −1, 2v + i, u − v 2 + j]<br />

if <strong>and</strong> only if (after some rout<strong>in</strong>e computation)<br />

(s − v) 2 + i(s − v)(t − 1) + j(t − 1) 2 = 0. (6.19)<br />

When t = 1 equality holds if <strong>and</strong> only if s = v; when s = v equality holds<br />

if <strong>and</strong> only if t = 1. If t = 1 <strong>and</strong> s = v, then we want Eq. 6.19 to have no<br />

solution. This can be <strong>in</strong>terpreted as follows:<br />

Lemma 6.6.2. It holds that πR meets O <strong>in</strong> precisely {R, ∞} if <strong>and</strong> only if:<br />

(i) When q is odd, i 2 − 4j = ❆ ∈ Fq;


316 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

<strong>and</strong><br />

(ii) when q is even, tr j<br />

i2 <br />

= 1.<br />

Not surpris<strong>in</strong>gly, this is the same criterion for O to be elliptic discovered<br />

above.<br />

Now we redo the above calculations (as much as possible) with C replaced<br />

by an arbitrary conic that is the image of C under a central homography of<br />

π with center ∞:<br />

C ′ = {(1, as 2 + bs + c, s, 0) : s ∈ Fq} ∪ {∞}, a, b, c ∈ Fq, a = 0.<br />

Suppose that O ′ is an elliptic quadric <strong>in</strong> P G(3, q) that has the follow<strong>in</strong>g<br />

properties:<br />

(i) π∞ = [1, 0, 0, 0] is the tangent plane to O at ∞ = (0, 1, 0, 0).<br />

(ii) π ∩ O ′ = [0, 0, 0, 1] ∩ O ′ = C ′ .<br />

(iii) R = (1, u, v, 1) ∈ O ′ , <strong>and</strong><br />

(iv) the plane πR as above is tangent to O ′ at R.<br />

We leave a proof of the follow<strong>in</strong>g to the reader.<br />

Lemma 6.6.3. S<strong>in</strong>ce O ′ has π∞ as tangent plane at ∞ <strong>and</strong> has O ′ ∩ π = C ′<br />

(as above), the upper triangular matrix giv<strong>in</strong>g O ′ is<br />

⎛<br />

c<br />

⎜<br />

AO ′ = ⎜ 0<br />

⎝ 0<br />

−1<br />

0<br />

0<br />

b<br />

0<br />

a<br />

⎞<br />

a14<br />

0 ⎟<br />

a34 ⎠<br />

0 0 0 a44<br />

.<br />

If we <strong>in</strong>sist that (1, u, v, 1) be on O ′ , we get<br />

⎛<br />

c<br />

⎜<br />

AO ′ = ⎜<br />

⎝<br />

−1 b u − c − (b + a34)v − av2 0<br />

0<br />

0<br />

0<br />

0<br />

a<br />

− a44<br />

0<br />

a34<br />

0 0 0 a44<br />

⎞<br />

⎟<br />

⎠ .<br />

We want O ′ to be elliptic, so π∞ = [1, 0, 0, 0] should meet O ′ <strong>in</strong> precisely<br />

the po<strong>in</strong>t ∞. This is iff (0, y, z, w) ∈ O ′ iff<br />

az 2 + a34zw + a44w 2 = 0 has no nontrivial solution (z, w). (6.20)<br />

Lemma 6.6.4.<br />

πR = [(1, u, v, 1) AO ′ + ATO ′<br />

<br />

] =<br />

= [c − a34v − av 2 − a44, −1, b + 2av + a34, −c + u − bv − av 2 + a44].


6.6. A CONDITION THAT DETERMINES A QUADRIC 317<br />

If we now requuire that πR be be the same plane given above, we f<strong>in</strong>d<br />

a34 = 2v + i − b − 2av; a44 = c + (a − 1)v 2 + bv + j.<br />

This completely determ<strong>in</strong>es O ′ with<br />

⎛<br />

c<br />

⎜<br />

AO ′ = ⎜<br />

⎝<br />

−1 b u − 2c − v2 0<br />

0<br />

0<br />

0<br />

0<br />

a<br />

− iv − bv − j<br />

0<br />

(1 − a)2v + i − b<br />

0 0 0 c + (a − 1)v2 + bv + j<br />

⎞<br />

⎟<br />

⎠ . (6.21)<br />

This allows us to compute the function g(s, t) for which (1, g(s, t), s, t) is<br />

the general po<strong>in</strong>t of O ′ .<br />

g(s, t) =<br />

as 2 +bs+c+(u−2c−v 2 −iv−bv−j)t+((1−a)2v+i−b)st+(c+(a−1)v 2 +bv+j)t 2 .<br />

(6.22)<br />

At this po<strong>in</strong>t we break up the situation <strong>in</strong>to cases for q odd <strong>and</strong> q even.<br />

Case 1 q odd. Then as we saw above, i = −2v <strong>and</strong> j = v 2 − η, so<br />

f(s, t) = s 2 + (v 2 − η)t 2 + (u + η)t − 2vst where η is a fixed but arbitrary<br />

nonsquare of Fq<br />

AO =<br />

⎛<br />

⎜<br />

⎝<br />

0 −1 0 u + η<br />

0 0 0 0<br />

0 0 1 −2v<br />

0 0 0 v 2 − η<br />

⎞<br />

⎟<br />

⎠ .<br />

In this case πR = [η, −1, 0, u − η].<br />

Mak<strong>in</strong>g the appropriate substitutions for a34 <strong>and</strong> a44 <strong>in</strong> AO ′ we have<br />

⎛<br />

c<br />

⎜<br />

AO ′ = ⎜ 0<br />

⎝ 0<br />

−1<br />

0<br />

0<br />

b<br />

0<br />

a<br />

u − 2c − bv + η<br />

0<br />

−b − 2av<br />

0 0 0 av2 ⎞<br />

⎟<br />

⎠<br />

+ bv + c − η<br />

.<br />

This allows us to compute<br />

g(s, t) = as 2 + bs + c + (u − 2c − bv + η)t − (b + 2av)st + (av 2 + bv + c − η)t 2 .<br />

The po<strong>in</strong>t (1, g(s, t), s, t) is on O ′ ∩O if <strong>and</strong> only if f(s, t) = g(s, t). When<br />

t = 0 we get the two conics C <strong>and</strong> C ′ which meet <strong>in</strong> precisely ∞ if <strong>and</strong> only


318 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

if either b 2 − 4(a − 1)c = ❆ ∈ Fq, or a = 1 <strong>and</strong> b = 0 . But for t = 0 we get<br />

f(s, t) = g(s, t) if <strong>and</strong> only if (after some computation)<br />

(a − 1)(s − vt) 2 + b(1 − t)(s − vt) + c(1 − t) 2 = 0. (6.23)<br />

If a = 1 <strong>and</strong> b = 0, so c = 0 if the two elliptic quadrics are really different,<br />

then any value of s gives (1, f(s, t), s, t) = (1, g(s, t), s, t). In this case O <strong>and</strong><br />

O ′ also conta<strong>in</strong> the conic C ′′ = {((1, s 2 − 2vs + v 2 + u, s, 1) : s ∈ Fq} ∪ {∞}<br />

ly<strong>in</strong>g <strong>in</strong> the plane [1, 0, 0, −1]. Here C ∩ C ′′ = {∞}, so |O ∩ O ′ | = 1 + 2q. So<br />

now we suppose that it is not the case that a = 1 <strong>and</strong> b = 0.<br />

Of course t = 1 <strong>and</strong> s = vt = v gives a solution, so the po<strong>in</strong>t R =<br />

(1, u, v, 1) is on both elliptic quadrics. Suppose there is a solution with s = vt.<br />

Then c(1 − t) 2 = 0. If we want the two elliptic quadrics to meet <strong>in</strong> precisely<br />

{∞, R}, then b 2 − 4(a − 1)c = ❆ , so c = 0, forc<strong>in</strong>g t = 1. With s = vt <strong>and</strong><br />

t = 1 we just get the po<strong>in</strong>t R. So s = vt. Similarly, if there is a solution<br />

with t = 1, then 0 = (a − 1)(s − v) 2 . But a = 1 if b 2 − 4(a − 1)c = ❆ , so<br />

s = v <strong>and</strong> the po<strong>in</strong>t R is the only po<strong>in</strong>t (1, f(s, t), s, t) = (1, g(s, t), s, t). So<br />

we have the follow<strong>in</strong>g lemma.<br />

Lemma 6.6.5. When q is odd <strong>and</strong> the ovoid O is normalized as above,<br />

O ∩ O ′ = {∞, R} if <strong>and</strong> only if<br />

b 2 − 4(a − 1)c = ❆ ∈ Fq.<br />

Basically we have that O ∩ O ′ = {∞, R} if <strong>and</strong> only if C ∩ C ′ = {∞} <strong>and</strong><br />

a = 1, i.e., C ′ is not the image of C under an elation of π with center ∞.<br />

Case 2 q = 2e . By the computations <strong>in</strong> the first part of this section we<br />

see that we may assume that<br />

⎛<br />

0<br />

⎜<br />

AO = ⎜<br />

⎝<br />

1 0 v2 0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

⎞<br />

+ v + u + j<br />

0 ⎟<br />

1 ⎠ , where tr(j) = 0.<br />

0 0 0 j<br />

<strong>and</strong><br />

In the notation used above, i = 1 <strong>and</strong> we have<br />

f(s, t) = s 2 + (v 2 + v + u + j)t + st + jt 2 ,<br />

πR = [v 2 + v + j, 1, 1, v 2 + u + j].


6.6. A CONDITION THAT DETERMINES A QUADRIC 319<br />

We also have that (1, f(s, t), s, t) ∈ πR if <strong>and</strong> only if<br />

(s − v) 2 + (s − v)(t − 1) + j(t − 1) 2 = 0. (6.24)<br />

When equality holds, s = v if <strong>and</strong> only if t = 1, <strong>in</strong> which case the only<br />

po<strong>in</strong>t obta<strong>in</strong>ed is R = (1, u, v, 1). So suppose that (s − v)(t − 1) = 0. Then<br />

equality holds if <strong>and</strong> only if tr(j) = 1.<br />

From Eq. 6.20 we have<br />

Also<br />

AO ′ =<br />

⎛<br />

⎜<br />

⎝<br />

c 1 b v 2 + v + u + bv + j<br />

0 0 0 0<br />

0 0 a b + 1<br />

0 0 0 c + (a + 1)v 2 + bv + j<br />

g(s, t) =<br />

⎞<br />

⎟<br />

⎠ .<br />

as 2 + bs + c + (v 2 + v + u + bv + j)t + (c + (a + 1)v 2 + bv + j)t 2 + (b + 1)st.<br />

Recall that C ∩C ′ <br />

(a+1)c<br />

= {∞} if <strong>and</strong> only if either (i) a = 1 <strong>and</strong> tr b2 <br />

= 1,<br />

or (ii) a = 1 <strong>and</strong> b = 0. Note that c = 0 <strong>in</strong> both cases if the two elliptic<br />

quadrics are really different.<br />

Now check to see when (1, f(s, t), s, t) = (1, g(s, t), s, t). This turns out<br />

to be the case if <strong>and</strong> only if<br />

(a + 1)(s + vt) 2 + b(s + vt)(1 + t) + c(1 + t) 2 = 0.<br />

If s = vt, then equality holds if <strong>and</strong> only if c(1 + t) 2 = 0, i.e., t = 1. This<br />

gives the po<strong>in</strong>t R. Similarly, if t = 1, then (a + 1)(s + v) 2 = 0. Here if a = 1<br />

then clearly R is the only po<strong>in</strong>t of the form (1, f(s, t), s, t) obta<strong>in</strong>ed <strong>in</strong> O∩O ′ .<br />

But if a = 1 then O ∩O ′ conta<strong>in</strong>s the conic C ′′ = {(1, s 2 +s+v 2 +v +u, s, 1) :<br />

s ∈ Fq} ∪ {∞} <strong>in</strong> the plane [1, 0, 0, 1]. So we have the follow<strong>in</strong>g.<br />

Lemma 6.6.6. When q = 2e <strong>and</strong> the ovoid O is normalized as above, then<br />

O ∩ O ′ <br />

(a+1)c<br />

= {∞, R} if <strong>and</strong> only if tr = 1. This says that O ∩ O ′ =<br />

{∞, R} if <strong>and</strong> only if C ∩ C ′ = {∞} <strong>and</strong> a = 1, i.e., C ′ is not the image of C<br />

under an elation of π with center ∞.<br />

.<br />

This completes our proof of Theorem 6.6.1<br />

b 2


320 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

6.7 Nons<strong>in</strong>gular Quadrics <strong>in</strong> PG(3,q) with q<br />

odd<br />

Throughout this section q is odd, <strong>and</strong> let α be a nonsquare <strong>in</strong> Fq. Let Q be<br />

the quadric with equation<br />

x 2 − αy 2 + βz 2 − w 2 = 0.<br />

⎛<br />

1 0 0 0<br />

⎜<br />

The associated matrix is A = ⎜ 0 −α 0 0<br />

⎝ 0 0 β 0<br />

⎞<br />

⎟<br />

⎠<br />

(6.25)<br />

0 0 0 −1<br />

.<br />

S<strong>in</strong>ce α = ❆ , it follows that x2 − αy2 = 0 is an elliptic (anisotropic) l<strong>in</strong>e.<br />

Also, βz2 − w2 = 0 is elliptic if β = α <strong>and</strong> hyperbolic if β = 1. It follows<br />

that<br />

<br />

hyperbolic if β = α;<br />

Q is<br />

(6.26)<br />

elliptic if β = 1.<br />

Let P = (p0, p1, p2, p3) be a po<strong>in</strong>t of P G(3, q) with polar plane<br />

πP = P ⊥ = [p0, −αp1, bp2, −p3] T .<br />

If P ∈ Q, then CP = πP ∩ Q is a circle. For Y = (y0, y1, y2, y3) <strong>and</strong> Z =<br />

(z0, z1, z2, z3) ∈ P G(3, q), put<br />

Y · Z = Y AZ T = y0z0 − αy1z1 + βy2z2 − y3z3. (6.27)<br />

Y = Y · Y ; Y = 0 ⇐⇒ Y ∈ Q. (6.28)<br />

Y × Z = (Y · Z) 2 =<br />

− Y Z<br />

<br />

<br />

<br />

<br />

(6.29)<br />

y0<br />

<br />

2 2<br />

<br />

y3 y0 y1 <br />

<br />

z0 z3 + α <br />

z0 z1 − <br />

y1<br />

z1<br />

2<br />

y3 <br />

<br />

z3 <br />

<br />

2<br />

<br />

y0 y2 <br />

−β <br />

z0 z2<br />

− <br />

y2<br />

2<br />

y3 <br />

<br />

z2 z3<br />

<br />

<br />

<br />

<br />

+αβ <br />

y1<br />

2<br />

y2 <br />

<br />

.<br />

z1 z2


6.7. NONSINGULAR QUADRICS IN PG(3,Q) WITH Q ODD 321<br />

Consider two dist<strong>in</strong>ct circles, so <strong>in</strong> particular Y = 0 = Z. The<br />

common po<strong>in</strong>ts of the l<strong>in</strong>e ℓ = 〈Y, Z〉 <strong>and</strong> the quadric Q are of the form<br />

Y + hZ where<br />

(y0 + hz0) 2 − α(y1 + hz1) 2 + β(y2 + hz2) 2 − (y3 + hz3) 2 = 0.<br />

This easily works out to be equivalent to<br />

Zh 2 + 2(Y · Z)h + Y = 0. (6.30)<br />

The discrim<strong>in</strong>ant of this quadratic equation <strong>in</strong> h is △ = 4(Y ·Z) 2 −4ZY :=<br />

4 · (Y × Z). Put ℓ = 〈Y, Z〉 <strong>and</strong> note that ℓ ⊥ ∩ Q = CY ∩ CZ. Moreover, if Q<br />

is hyperbolic, then ℓ <strong>and</strong> ℓ ⊥ have the same type. If Q is elliptic, then ℓ <strong>and</strong><br />

ℓ ⊥ have opposite types (<strong>in</strong> the first <strong>and</strong> third cases).<br />

Q Y × Z |Y Z ∩ Q| |CY ∩ CZ|<br />

hyperbolic 2 2<br />

hyperbolic 0 1 1<br />

hyperbolic ❆ 0 0<br />

elliptic 2 0<br />

elliptic 0 1 1<br />

elliptic ❆ 0 2<br />

Write CY ∼ CZ if <strong>and</strong> only if circles CY <strong>and</strong> CZ have a common tangent<br />

circle. Otherwise write CY ∼ CZ.<br />

Lemma 6.7.1. The relation ∼ is an equivalence relation on circles. In fact,<br />

CY ∼ CZ ⇐⇒ Y Z = ∈ Fq. It follows that there are two classes of<br />

circles, with CP <strong>in</strong> one class if <strong>and</strong> only if P = (= 0), <strong>and</strong> <strong>in</strong> the other<br />

class iff P = ❆ .<br />

Proof. Clearly ∼ is reflexive <strong>and</strong> symmetric, so we just need to show that it<br />

is transitive. This will be clear from the follow<strong>in</strong>g computations.<br />

Suppose CY ∼ CZ <strong>and</strong> let CU be a common tangent circle. So Y × U =<br />

Z × U = 0, i.e., (Y · U) 2 = Y U <strong>and</strong> (Z · U) 2 = ZU. This implies<br />

Y ZU 2 = (Y · U) 2 (Z · U) 2 ,<br />

so that Y Z is a (nonzero) square <strong>in</strong> Fq.


322 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

Conversely, suppose that CY <strong>and</strong> CZ are circles with Y Z a (necessarily<br />

nonzero) square. If CY = CZ, they have a common tangent circle. So<br />

suppose CY = CZ. Let V = (v0, v1, v2, v2) ∈ CY \ CZ. Then V · Y = 0,<br />

V · Z = 0, V · V = 0. Let T ∈ 〈Y, V 〉 \ {Y, V }, i.e., T = Y + hV with h = 0.<br />

First note that T = h 2 V + 2h(Y · V ) + Y = Y . Then<br />

T × Y = (T · Y ) 2 − T Y <br />

= [(Y + hV ) · Y ] 2 − Y 2<br />

= Y 2 − Y 2 = 0.<br />

This says that |〈T, Y 〉 ∩ Q| = 1, which implies that |CT ∩ CY | = 1. It<br />

follows that for each nonzero h, CT ∩ CY = {V }. Also,<br />

T × Z = [(Y + hV ) · Z] 2 − Y Z<br />

= (V · Z) 2 h 2 + 2(Y · Z)(V · Z)h + (Y · Z) 2 − Y Z.<br />

So the equation T × Z = 0 is a quadratic <strong>in</strong> h with discrim<strong>in</strong>ant equal to<br />

4(V · Z) 2 Y Z = = 0.<br />

This says that there is at least one T for which T ×Z = 0, i.e., |CT ∩CZ| = 1,<br />

so that CY ∼ CZ. At this stage we have shown that<br />

CY ∼ CZ ⇐⇒ Y Z = ∈ Fq. (6.31)<br />

If Y Z = <strong>and</strong> ZW = , then Y W = , so ∼ is transitive<br />

<strong>and</strong> hence an equivalence relation.<br />

(We abuse notation by lett<strong>in</strong>g a po<strong>in</strong>t 〈C〉 denote the circle 〈C〉 ⊥ ∩ Q.)<br />

Now let 〈C〉 be a circle <strong>and</strong> let P be any po<strong>in</strong>t of 〈C〉. Put E = C + xP ,<br />

x ∈ Fq. This much tells us that<br />

C = 0;<br />

P = 0;<br />

(P · C) = 0;<br />

(C · E) = C · C + xC · P = C = 0;<br />

E = (C + xP ) · (C + xP ) = C = 0.


6.7. NONSINGULAR QUADRICS IN PG(3,Q) WITH Q ODD 323<br />

So E is any po<strong>in</strong>t of 〈C, P 〉 different from P , <strong>and</strong> 〈E〉 is a circle for each<br />

x ∈ Fq.<br />

C × E = (C · E) 2 − CE<br />

= C 2 − C 2 = 0,<br />

so 〈C〉 is tangent to the circle correspond<strong>in</strong>g to any po<strong>in</strong>t of 〈C, P 〉 different<br />

from 〈P 〉 <strong>and</strong> from 〈C〉 itself. S<strong>in</strong>ce P · E = P · C + xP · P = 0, 〈P 〉 is a<br />

po<strong>in</strong>t on each circle 〈E〉. It also follows easily that (C + xP ) × (C + yP ) = 0,<br />

so the circles {〈C + xP 〉 : x ∈ Fq} form a pencil.<br />

Now suppose that 〈D〉 is any circle dist<strong>in</strong>ct from 〈C〉, <strong>and</strong> suppose that<br />

〈P 〉 ∈ 〈C〉 \ 〈D〉. So P · D = 0.<br />

D × E = C × (C + xP )<br />

= (C · D + xP · D) 2 − C + xP D<br />

= x 2 (P · D) 2 + 2(C · D)(P · D)x + C × D.<br />

So D × E = 0 is a quadratic equation <strong>in</strong> x with discrim<strong>in</strong>ant equal to 4(P ·<br />

D) 2 CD.<br />

Lemma 6.7.2. If 〈C〉 <strong>and</strong> 〈D〉 are dist<strong>in</strong>ct circles tangent at a po<strong>in</strong>t P they<br />

have a pencil of common tangent circles at 〈P 〉 <strong>and</strong> one common tangent at<br />

each po<strong>in</strong>t of 〈C〉\〈D〉 (resp., 〈D〉\〈C〉). If 〈C〉 <strong>and</strong> 〈D〉 are not tangent but<br />

C ∼ D, they have two common tangents at each po<strong>in</strong>t of 〈C〉 \ 〈D〉 (resp.,<br />

〈D〉 \ 〈C〉).<br />

Proof. Case 1: C ∼ D (so CD = = 0) with 〈C〉 <strong>and</strong> 〈D〉 not<br />

tangent.<br />

In this case there are two solutions x to the quadratic equation D×E = 0,<br />

so there are two circles 〈E〉 = 〈C + xP 〉 that are tangent to both C (at 〈P 〉)<br />

<strong>and</strong> E. This says that if C <strong>and</strong> D are equivalent but not tangent (so meet <strong>in</strong><br />

0 or 2 po<strong>in</strong>ts), there are two circles tangent to 〈C〉 at each po<strong>in</strong>t of 〈C〉 \ 〈D〉<br />

which are also tangent to 〈D〉.<br />

Case 2: C ∼ D (so CD = = 0) with 〈C〉 <strong>and</strong> 〈D〉 tangent, so<br />

C × D = 0. In this case D × E = 0 reduces to<br />

x[x(P · D) + 2(C · D)] = 0.


324 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

One of the solutions is x = 0, giv<strong>in</strong>g E = C, so 〈C〉 <strong>and</strong> 〈D〉 have a<br />

pencil of common tangent circles through their po<strong>in</strong>t of tangency. The other<br />

is x = −2(C.D)<br />

, giv<strong>in</strong>g a second circle tangent to both. Hence 〈C〉 <strong>and</strong> 〈D〉<br />

P.D<br />

have a unique common tangent circle through each po<strong>in</strong>t of 〈C〉 \ 〈D〉 (resp.,<br />

〈D〉 \ 〈C〉).<br />

Lemma 6.7.3. Let CY <strong>and</strong> CZ be dist<strong>in</strong>ct circles, so Y Z = 0. For<br />

a, b, c, d ∈ Fq with (ad − bc) = 0, let E = aY + bZ <strong>and</strong> F = cY + dZ. So 〈E〉<br />

<strong>and</strong> 〈F 〉 are dist<strong>in</strong>ct po<strong>in</strong>ts on the l<strong>in</strong>e ℓ = 〈Y, Z〉. Then<br />

E × F = (aY + bZ) × (cY + dZ) = (ad − bc) 2 (Y × Z). (6.32)<br />

Proof. A straightorward computation.<br />

It follows that |CE ∩ CF | = |CY ∩ CZ| for any two circles CE <strong>and</strong> CF with<br />

〈E〉 <strong>and</strong> 〈F 〉 on ℓ.<br />

Lemma 6.7.4. If ℓ is a non-tangent l<strong>in</strong>e, then half the po<strong>in</strong>ts of ℓ not on Q<br />

lie <strong>in</strong> each of the two equivalence classes. Clearly all po<strong>in</strong>ts on a tangent l<strong>in</strong>e<br />

are <strong>in</strong> the same class.<br />

Proof. We start by recall<strong>in</strong>g Theorem 20.23.1 <strong>in</strong> the follow<strong>in</strong>g form:<br />

Theorem: Let a <strong>and</strong> k be nonzero elements of Fq.<br />

The number of solutions (A, B) to A 2 − aB 2 = k is<br />

q − 1, if a = ;<br />

q + 1, if a = ❆ .<br />

Let ℓ = 〈Y, Z〉 be a l<strong>in</strong>e meet<strong>in</strong>g Q <strong>in</strong> 0 or 2 po<strong>in</strong>ts, so Y ×Z = 0. Clearly<br />

we may assume that Z ∈ Q, so Z = 0. Put a = Z, b = 2Y · Z, c = Y ,<br />

<strong>and</strong> let E = Y + xZ, for x ∈ Fq. Then<br />

E · E = ax 2 + bx + c (= 0 s<strong>in</strong>ce b 2 − 4ac = 4(Y × Z) = 0). (6.33)<br />

Basically we need to know for how many x ∈ Fq we have ax 2 +bx+c = y 2


6.7. NONSINGULAR QUADRICS IN PG(3,Q) WITH Q ODD 325<br />

for some square y 2 = 0.<br />

ax 2 + bx + c = y 2<br />

4a 2 x 2 + 4abx + b 2 + 4ac − b 2<br />

(2ax + b) 2 − a(2y) 2<br />

A 2 − aB 2<br />

Here we put A = 2ax + b <strong>and</strong> B = 2y.<br />

⇐⇒<br />

= 4ay 2<br />

⇐⇒<br />

= b 2 − 4ac := k (= 0)<br />

⇐⇒<br />

= k.<br />

If a = (= 0), there are q − 1 solutions (A, B) to A2 − aB2 = k. If<br />

k = , two of these have B = 0 (i.e., y = 0, giv<strong>in</strong>g E ∈ Q). But q − 3 of the<br />

solutions (A, B) have B = 0. S<strong>in</strong>ce (A, B) <strong>and</strong> A, −B) give the same value<br />

of x, we have q−3<br />

2 values of x that have ax2 + bx + c = = 0. This gives q−3<br />

2<br />

po<strong>in</strong>ts E of 〈Y, Z〉 plus the po<strong>in</strong>t Z <strong>in</strong> one equivalence class. S<strong>in</strong>ce 〈Y, Z〉 \ Q<br />

has q − 1 po<strong>in</strong>ts <strong>in</strong> this case, half of them are <strong>in</strong> each class.<br />

If k = ❆ = Z (still with a = ), clearly B = 0 <strong>and</strong> 〈Y, Z〉 ∩ Q = ∅.<br />

There are are q−1<br />

solutions x to ax 2 2 + bx + c = . This gives q−1<br />

(plus Z, so<br />

po<strong>in</strong>ts E<br />

2 q+1<br />

) po<strong>in</strong>ts D on 〈Y, Z〉 with D = 2<br />

<strong>and</strong> that many <strong>in</strong> the other.<br />

, i.e., <strong>in</strong> one of the classes<br />

Now assume that a = ❆ = Z. There are q + 1 solutions (A, B) to<br />

A2 − aB2 = k. If k = , two solutions have B = 0, account<strong>in</strong>g for two<br />

values of x giv<strong>in</strong>g po<strong>in</strong>ts E on Q, <strong>and</strong> leav<strong>in</strong>g q − 1 solutions with B = 0. In<br />

this case there are q−1<br />

2 values of x with ax2 + bx + c = = 0, i.e., (q − 1)/w<br />

po<strong>in</strong>ts D on 〈Y, Z〉 \ Q <strong>in</strong> one class, leav<strong>in</strong>g that many <strong>in</strong> the other class.<br />

If k = ❆ , so 〈Y, Z〉 ∩ Q = ∅, B = 0, imply<strong>in</strong>g that there are q+1<br />

values of<br />

2<br />

x for which ax2 + bx + c = = 0, giv<strong>in</strong>g q+1<br />

po<strong>in</strong>ts of 〈Y, Z〉 <strong>in</strong> the ”square<br />

2<br />

class” <strong>and</strong> that many <strong>in</strong> the other one.<br />

Lemma 6.7.5. When Q is hyperbolic <strong>and</strong> q ≡ 1(mod 4), orthogonal circles<br />

<strong>in</strong>tersect if <strong>and</strong> only they are <strong>in</strong> the same class. When Q is hyperbolic <strong>and</strong><br />

q ≡ −1(mod 4), orthogonal circles <strong>in</strong>tersect if <strong>and</strong> only if they are <strong>in</strong> different<br />

classes. The conditions are reversed when Q is elliptic.<br />

Proof. The circles CY <strong>and</strong> CZ are orthogonal if <strong>and</strong> only if Y · Z = 0, <strong>in</strong><br />

which case Y ×Z = (Y ·Z) 2 −Y Z = −Y Z. The result follows from<br />

the fact that −1 = iff q ≡ 1 (mod 4).


326 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

Theorem 6.7.6. When Q is hyperbolic (<strong>and</strong> q is odd), there is a nonl<strong>in</strong>ear<br />

flock.<br />

Proof. Let Q be given by x2 − αy2 + αz2 − w2 = 0. We def<strong>in</strong>e two sets of<br />

planes (or of circles) as follows.<br />

First put Y = (1, 0, 0, 0) <strong>and</strong> Z = (0, 1, 0, 0), so Y · Z = 0 <strong>and</strong> Y × Z =<br />

−Y Z = α = ❆ . So the circles CV <strong>and</strong> CW for V, W ∈ ℓ1 = 〈Y, Z〉 are<br />

pairwise disjo<strong>in</strong>t. Put S1 = {P = (k0, k1, 0, 0) : P = k2 0 − αk2 1 = (= 0)}.<br />

So the po<strong>in</strong>ts P of S1 are the po<strong>in</strong>ts on the l<strong>in</strong>e ℓ1 : x2 = x3 = 0 <strong>in</strong> the<br />

”square” class <strong>and</strong> they determ<strong>in</strong>e circles that are pairwise disjo<strong>in</strong>t. Put<br />

X = (0, 0, 1, 0) <strong>and</strong> W = (0, 0, 0, 1) <strong>and</strong> ℓ2 = 〈X, W 〉. Then X · W = 0 <strong>and</strong><br />

X × W = −XW = α = ❆ . So CU <strong>and</strong> CV for U, V ∈ ℓ2 are pairwise<br />

disjo<strong>in</strong>t. If Q = (0, 0, k2, k3), so Q = αk2 2 −k2 3 , put S2 = {Q = (0, 0, k2, k3) :<br />

−Q = −αk2 2 + k2 3 = ❆ }. So if P ∈ S1 <strong>and</strong> Q ∈ S2, then P · Q = 0. When<br />

q ≡ 1 (mod 4), −1 = so Q = ❆ , imply<strong>in</strong>g that P ∈ S1 <strong>and</strong> Q ∈ S2 are<br />

<strong>in</strong> different classes, which is precisely when CP <strong>and</strong> CQ are disjo<strong>in</strong>t. When<br />

q ≡ −1 (mod 4), then −1 = ❆ , so Q = , imply<strong>in</strong>g P ∈ S1 <strong>and</strong> Q ∈ S2<br />

are <strong>in</strong> the same class, which is precisely when CP <strong>and</strong> CQ are disjo<strong>in</strong>t. It<br />

follows that F = {CR : R ∈ S1 ∪ S2} is a nonl<strong>in</strong>ear flock of Q.<br />

We now turn our attention to the elliptic case. Suppose that Q has<br />

quadratic form<br />

q(x0, x1, x2, x3) = x 2 0 − αx2 1 + x2 2 − x2 3 .<br />

Denote by L the set of q 2 + q circles through the ”North Pole” N =<br />

(0, 0, 1, 1). Let the po<strong>in</strong>t S = (0, 0, −1, 1) be called the ”South Pole” <strong>and</strong><br />

note that both N <strong>and</strong> S belong to Q. So of course N · S = −2 = 0. L<br />

has exactly q + 1 circles conta<strong>in</strong><strong>in</strong>g S. Let C1, C2, . . . , Cq 2 −1 be the circles<br />

<strong>in</strong> L not conta<strong>in</strong><strong>in</strong>g the South Pole. Let D = {p0, p1, . . . , pq} be a circle not<br />

conta<strong>in</strong><strong>in</strong>g N. Let Li be the l<strong>in</strong>e <strong>in</strong> the plane of D tangent to D at pi. Then<br />

if πi = 〈Li, N〉, πi ∩ Q is the unique circle tangent to D at pi <strong>and</strong> conta<strong>in</strong><strong>in</strong>g<br />

N.<br />

Lemma 6.7.7. Let F be a flock of Q with carriers N <strong>and</strong> S. So F is a set<br />

of q − 1 pairwise disjo<strong>in</strong>t circles whose union is Q \ {N, S}. Then a circle of<br />

L either passes through S <strong>and</strong> is tangent to no circles of F, or it is tangent<br />

to precisely one circle of F.


6.7. NONSINGULAR QUADRICS IN PG(3,Q) WITH Q ODD 327<br />

Proof. Say F = {D1, D2, . . . , Dq−1}. Let T = {(Ci, Dj) : 1 ≤ i ≤ q2 − 1, 1 ≤<br />

j ≤ q − 1}. By the comments just preced<strong>in</strong>g the statement of the Lemma<br />

we know that each Dj is tangent to a unique member of L at each of its<br />

q + 1 po<strong>in</strong>ts, but that member of L could conceivably conta<strong>in</strong> S. So at least<br />

we have |T | ≤ (q − 1)(q + 1). Each Ci has q po<strong>in</strong>ts different from N (<strong>and</strong><br />

S), each of which must be <strong>in</strong> some member of F, <strong>and</strong> each Ci meets each<br />

circle of F <strong>in</strong> 0, 1 or 2 po<strong>in</strong>ts. S<strong>in</strong>ce q is odd, Ci must be tangent to at least<br />

one Dj. Say Ci is tangent to θi circles of F, where we know θi ≥ 1. Then<br />

|T | = q2−1 i=1 θi ≥ q2 − 1. Hence |T | = q2 − 1. This means that each θi = 1<br />

<strong>and</strong> no circle through both N <strong>and</strong> S can be tangent to any member of F.<br />

Lemma 6.7.8. Let D1 ∈ F, a flock with carriers N <strong>and</strong> S. The circles of<br />

the pencil <strong>in</strong>tersect<strong>in</strong>g <strong>in</strong> N <strong>and</strong> S meet D1 <strong>in</strong> 0 or 2 po<strong>in</strong>ts by Lemma 6.7.7.<br />

Those that conta<strong>in</strong> a po<strong>in</strong>t of D1 are all <strong>in</strong> the same equivalence class.<br />

Proof. Reta<strong>in</strong> the notation used above: F = {D1, D2, . . . , Dq−1} <strong>and</strong> fix a<br />

po<strong>in</strong>t P <strong>in</strong> D1. Consider the q + 1 circles through P <strong>and</strong> N. One of them,<br />

denoted C∞, passes through the South Pole S <strong>and</strong> is tangent to no plane<br />

of F (so conta<strong>in</strong>s a po<strong>in</strong>t different from P <strong>in</strong> D1. Let C1, C2, . . . , Cq be<br />

the other circles through P <strong>and</strong> N, with C1 that circle through N which is<br />

tangent to D1 at P . Fix attention on a circle Dj, 2 ≤ j ≤ q − 1. The l<strong>in</strong>e<br />

〈N, P 〉 meets the plane πj of Dj <strong>in</strong> a po<strong>in</strong>t Yj which must not be a po<strong>in</strong>t of<br />

Q. So Yj is either an <strong>in</strong>terior or an exterior po<strong>in</strong>t of πj, <strong>and</strong> hence on either 0<br />

or 2 tangents to Dj. If a circle through P <strong>and</strong> N is tangent to Dj at a po<strong>in</strong>t<br />

Q, its plane must conta<strong>in</strong> the tangent l<strong>in</strong>e to Q <strong>in</strong> πj, which must conta<strong>in</strong> the<br />

po<strong>in</strong>t Yj. Of course, then Yj is an exterior po<strong>in</strong>t <strong>and</strong> is also on the tangent<br />

l<strong>in</strong>e to a second po<strong>in</strong>t Q ′ of Dj. So <strong>in</strong> this case the two circles through P <strong>and</strong><br />

N conta<strong>in</strong><strong>in</strong>g Q <strong>and</strong> Q ′ , respectively, are exactly the circles through P <strong>and</strong><br />

N tangent to Dj. If Yj is an <strong>in</strong>terior po<strong>in</strong>t of Dj, then no circle through P<br />

<strong>and</strong> N can be tangent to Dj. In this way we see that the circles C2, . . . , Cq<br />

come <strong>in</strong> pairs, with two <strong>in</strong> a given pair tangent to the same Dj. Recall that<br />

tangent circles belong to the same class. So the circles through N <strong>and</strong> P<br />

<strong>and</strong> not through S come <strong>in</strong> pairs belong<strong>in</strong>g to the same class, so an even<br />

number belong to each class. From Lemma 6.7.4 exactly half of the circles<br />

<strong>in</strong>tersect<strong>in</strong>g <strong>in</strong> N <strong>and</strong> P are <strong>in</strong> each class.<br />

So C2, . . . , Cq come <strong>in</strong> pairs tangent to q−1<br />

2 of the circles D2, . . . , Dq−1.<br />

For notational convenience suppose that C2i <strong>and</strong> C2i+1 are tangent to Di+1,<br />

for 1 ≤ i ≤ (q − 1)/2. So C2i <strong>and</strong> C2i+1 are <strong>in</strong> the same class. First suppose


328 CHAPTER 6. QUADRICS IN P G(3, Q)<br />

that q ≡ 3 (mod 4). In this case it must be that q−3<br />

2 of the pairs C2i, C2i+1<br />

are <strong>in</strong> one class <strong>and</strong> q−1<br />

2<br />

of them are <strong>in</strong> the other class. It then must be the<br />

case that C∞ <strong>and</strong> C1 are <strong>in</strong> the first class. S<strong>in</strong>ce C1 is <strong>in</strong> the class of D1,<br />

it must be that C∞ is <strong>in</strong> the class of D1. As P varies over the po<strong>in</strong>ts of<br />

D1 it follows that <strong>in</strong> each case the circle conta<strong>in</strong><strong>in</strong>g N, S, <strong>and</strong> P belong to<br />

the class of D1. Second, suppose that q ≡ 1 (mod 4). In this case q−1<br />

4 of<br />

the pairs C2i, C2i+1 fall <strong>in</strong> each of the two classes. This means that one of<br />

C∞, C1 falls <strong>in</strong> one class <strong>and</strong> the other <strong>in</strong> the other class. S<strong>in</strong>ce C1 is <strong>in</strong> the<br />

class of D1, it must be that C∞ <strong>in</strong> not <strong>in</strong> the class of D1. As P varies over<br />

the po<strong>in</strong>ts of D1, it follows that <strong>in</strong> each case the circle conta<strong>in</strong><strong>in</strong>g N, S, <strong>and</strong><br />

P belong to the other class than the class of D1. So <strong>in</strong> all cases the circles<br />

through N <strong>and</strong> S that conta<strong>in</strong> a po<strong>in</strong>t of D1 fall <strong>in</strong>to the same class, prov<strong>in</strong>g<br />

the lemma.<br />

Now let C be the l<strong>in</strong>ear flock with carriers N <strong>and</strong> S. So C is the l<strong>in</strong>ear<br />

flock given by planes through N ⊥ ∩ S ⊥ = 〈N, S〉 ⊥ .<br />

Lemma 6.7.9. If D is any circle of F for which all of the circles of the<br />

pencil <strong>in</strong>tersect<strong>in</strong>g <strong>in</strong> N <strong>and</strong> S that conta<strong>in</strong> a po<strong>in</strong>t of D are <strong>in</strong> the same<br />

class, then D ∈ C.<br />

Proof. Suppose that D1 ∈ C. All circles of C meet<strong>in</strong>g D1 are <strong>in</strong> the same<br />

class. But the circles of C cover all the po<strong>in</strong>ts of D1, at most 2 at a time. This<br />

requires at least q+1<br />

circles of C to be <strong>in</strong> the same class. By Lemma 6.7.4<br />

2<br />

only half of the circles on the planes through 〈N, S〉 ⊥ are <strong>in</strong> one class. This<br />

contradiction forces D1 ∈ C.<br />

As D1 is an arbitrary circle of F, it must be that F = C, <strong>and</strong> we have<br />

proved the follow<strong>in</strong>g theorem.<br />

Theorem 6.7.10. (Theorem of Orr; Proof by J. A. Thas) Any flock of an<br />

elliptic quadric <strong>in</strong> P G(3, q) with q odd must be l<strong>in</strong>ear.


Chapter 7<br />

<strong>Ovoids</strong> <strong>in</strong> 3-Dimensional Space<br />

7.1 L<strong>in</strong>es <strong>and</strong> Planes related to an Ovoid<br />

A set O of po<strong>in</strong>ts of P G(3, q) is called an ovoid provided it satisfies the<br />

follow<strong>in</strong>g:<br />

(i) Each l<strong>in</strong>e meets O <strong>in</strong> at most two po<strong>in</strong>ts.<br />

(ii) Each po<strong>in</strong>t of O lies on exactly q + 1 tangent l<strong>in</strong>es, all of which lie <strong>in</strong><br />

a plane.<br />

Suppose that O is a given ovoid <strong>in</strong> P G(3, q). L<strong>in</strong>es <strong>and</strong> planes are given<br />

labels that reflect their relationship to O.<br />

L<strong>in</strong>es A l<strong>in</strong>e l of P G(3, q) is a tangent l<strong>in</strong>e to O provided |l ∩ O| = 1. If<br />

l ∩ O = {p}, we say l is tangent to O at p. If |l ∩ O| = 2, l is called a secant<br />

l<strong>in</strong>e. If |l ∩ O| = 0, l is an exterior l<strong>in</strong>e.<br />

Planes A plane π of P G(3, q) is a tangent plane (TP) if |π ∩ O| = 1. π<br />

is called a secant plane (SP) or cutt<strong>in</strong>g plane provided |π ∩ O| > 1.<br />

Theorem 7.1.1. Each ovoid has q 2 + 1 po<strong>in</strong>ts.<br />

Proof. Let P be a po<strong>in</strong>t of O, so P is on q + 1 tangent l<strong>in</strong>es. Hence the rema<strong>in</strong><strong>in</strong>g<br />

q 2 l<strong>in</strong>es on P must each have a unique second po<strong>in</strong>t of O, account<strong>in</strong>g<br />

for all po<strong>in</strong>ts of O. So |O| = 1 + q 2 .<br />

We leave the rout<strong>in</strong>e proof of the follow<strong>in</strong>g theorem to the reader.<br />

Theorem 7.1.2. To each ovoid O there are:<br />

(i) (q2 + 1)(q + 1) tangent l<strong>in</strong>es;<br />

(ii) q2 +1 (q<br />

= 2<br />

2 +1)q2 secant l<strong>in</strong>es; <strong>and</strong><br />

2<br />

(iii) (1 + q2 )(1 + q + q2 ) − (q2 + 1)(q + 1) − (q2 +1)q2 329<br />

2<br />

= q2 +1<br />

exterior l<strong>in</strong>es.<br />

2


330 CHAPTER 7. OVOIDS IN 3-DIMENSIONAL SPACE<br />

Lemma 7.1.3. Each plane α with |α ∩ O| > 1 meets O <strong>in</strong> an oval.<br />

Proof. Let P ∈ O ∩ α with |O ∩ α| > 1. Clearly α is not a tangent plane,<br />

so it meets the tangent plane at P <strong>in</strong> a l<strong>in</strong>e, which must be tangent to O at<br />

P . Each other l<strong>in</strong>e of α through P (not be<strong>in</strong>g <strong>in</strong> the plane of tangent l<strong>in</strong>es)<br />

must be a secant to O, giv<strong>in</strong>g q other po<strong>in</strong>ts of α ∩ O. So |O ∩ α| = q + 1,<br />

<strong>and</strong> hence O ∩ α is an oval <strong>in</strong> α.<br />

Theorem 7.1.4. There are q 2 +1 tangent planes, <strong>and</strong> q(q 2 +1) secant planes,<br />

giv<strong>in</strong>g all planes of P G(3, q).<br />

Proof. Clearly there are q2 + 1 tangent planes, one at each po<strong>in</strong>t of O. And<br />

there are q2 +1 q+1 2 2 2 / = q(q + 1) secant planes. But (q + 1) + q(q + 1) =<br />

3 3<br />

(q + 1)(q2 + 1) is the total number of planes.<br />

Theorem 7.1.5. For a l<strong>in</strong>e l of a given type, we count the planes of each<br />

type through it.<br />

type of l<strong>in</strong>e TP SP<br />

tangent 1 q<br />

secant 0 q + 1<br />

exterior 2 q − 1<br />

Proof. For tangent <strong>and</strong> secant l<strong>in</strong>es the count is easy. So let l be an exterior<br />

l<strong>in</strong>e. There are q +1 planes through l, say a of them are tangent planes <strong>and</strong> b<br />

of them are secant planes. And each po<strong>in</strong>t of O is on a unique plane through<br />

l. So:<br />

a + b = q + 1 is the number of planes on l.<br />

a + b(q + 1) = q 2 + 1 is the number of po<strong>in</strong>ts on O.<br />

=⇒ bq = q 2 − q =⇒ b = q − 1 <strong>and</strong> a = 2, giv<strong>in</strong>g the third l<strong>in</strong>e of the<br />

table.<br />

7.2 <strong>Ovoids</strong> as Caps <strong>and</strong> with many Conics<br />

In P G(3, q) a set K of k po<strong>in</strong>ts, no three on a l<strong>in</strong>e, is a k-cap. A k-cap is<br />

complete if it is not conta<strong>in</strong>ed <strong>in</strong> a (k + 1)-cap.<br />

Lemma 7.2.1. If q is odd, a k-cap K <strong>in</strong> P G(3, q) satisfies k ≤ q 2 + 1.


7.2. OVOIDS AS CAPS AND WITH MANY CONICS 331<br />

Proof. If P1, P2 ∈ K, each plane through P1P2 meets K <strong>in</strong> a k ′ -arc, so<br />

k ′ ≤ q + 1. So k ≤ 2 + (q + 1)(q − 1) = q 2 + 1.<br />

Now let K be a k-cap <strong>in</strong> Π3 = P G(3, q), q = 2 e . For P ∈ K, let t be the<br />

number of tangents to K through P .<br />

Lemma 7.2.2. t + k = q 2 + q + 2, so k ≤ q 2 + q + 2.<br />

Proof. There are t tangents through P <strong>and</strong> k − 1 secants, account<strong>in</strong>g for all<br />

l<strong>in</strong>es through P . Hence t + k − 1 = q 2 + q + 1.<br />

Theorem 7.2.3. A k-cap K <strong>in</strong> Π3, q even, has no tangents if <strong>and</strong> only if<br />

q = 2, k = 8, <strong>and</strong> K is the complement of a plane.<br />

Proof. Suppose K is a k-cap with no tangents. So t = 0 <strong>and</strong> k = q2 + q + 2.<br />

So the number of secants is k 1 = 2 2 (q2 + q + 2)(q2 + q + 1), which is less than<br />

(q2 + 1)(q2 + q + 1), the total number of l<strong>in</strong>es. Hence there is an exterior<br />

l<strong>in</strong>e l. Suppose π is a plane through l hav<strong>in</strong>g a po<strong>in</strong>t P of K. Then π ∩ K<br />

is a set of po<strong>in</strong>ts of π such that each l<strong>in</strong>e of π meets π ∩ K <strong>in</strong> 0 or 2 po<strong>in</strong>ts,<br />

i.e., π ∩ K is a (0, 2)-set, so |π ∩ K| = q + 2. So each plane through l meets<br />

K <strong>in</strong> 0 or q + 2 po<strong>in</strong>ts. This implies (q + 2)|(q2 + q + 2), which implies<br />

q2 + q + 2 = (q − 1)(q + 2) + 4 ≡ 4 ≡ 0 (mod q + 2). then q + 2|4, imply<strong>in</strong>g<br />

q = 2, so k = 4 + 2 + 2 = 8.<br />

Now Π3 = P G(3, 2) has q3 + q2 + q + 1 = 15 po<strong>in</strong>ts. And Π3 \ K has 7<br />

po<strong>in</strong>ts. As each l<strong>in</strong>e meets K <strong>in</strong> 0 or 2 po<strong>in</strong>ts, each l<strong>in</strong>e meets Π3 \ K <strong>in</strong> 1 or<br />

3 po<strong>in</strong>ts. As each l<strong>in</strong>e meet<strong>in</strong>g Π3 \ K <strong>in</strong> 2 po<strong>in</strong>ts must lie <strong>in</strong> Π3 \ K, Π3 \ K<br />

is a subspace, i.e., a plane.<br />

For the converse, note that K = Π3\ (plane) is an 8-cap with no tangents.<br />

The follow<strong>in</strong>g lemma is often useful <strong>and</strong> holds for q odd or even.<br />

Lemma 7.2.4. Let K be a k-cap <strong>in</strong> Π3, q odd or even. Let l be a l<strong>in</strong>e<br />

tangent to K at P . Let π be any plane through l. Then π ∩ K is a k ′ -arc<br />

with k ′ ≤ q + 1.<br />

Proof. The q + 1 l<strong>in</strong>es of π through P meet K <strong>in</strong> at most one other po<strong>in</strong>t of<br />

K <strong>and</strong> l is one of these l<strong>in</strong>es.<br />

Lemma 7.2.5. If K is a complete k-cap <strong>in</strong> P G(3, q), q = 2 e , <strong>and</strong> q > 2,<br />

then k ≤ q 2 + 1.


332 CHAPTER 7. OVOIDS IN 3-DIMENSIONAL SPACE<br />

Proof. To obta<strong>in</strong> a contradiction we suppose q 2 + 1 < k. Theorem 7.2.3<br />

(with the help of Lemma 7.2.2) implies that k < q 2 + q + 2. Let l be a<br />

tangent to K at P . Then by Lemma 7.2.2 any plane through l meets K <strong>in</strong><br />

at most q + 1 po<strong>in</strong>ts. If all planes through l meet K <strong>in</strong> at most q po<strong>in</strong>ts,<br />

then k ≤ 1 + (q + 1)(q − 1) = q 2 . Hence there is some plane π through l<br />

for which π ∩ K is a (q + 1)-arc with a nucleus Q. If every l<strong>in</strong>e through Q<br />

were external or tangent to K, then K ∪ {Q} would be a (k + 1)-cap. So<br />

there must be a secant b of K through Q, <strong>and</strong> b cannot lie <strong>in</strong> π. Each plane<br />

through b meets π <strong>in</strong> a l<strong>in</strong>e through Q, a tangent <strong>in</strong> π through Q. So no<br />

plane through b meets K <strong>in</strong> a (q + 2)-arc by Lemma 7.2.4. Count the po<strong>in</strong>ts<br />

of K on planes through b: k ≤ 2 + (q + 1)(q − 1) = q 2 + 1.<br />

Let q be odd or even.<br />

Theorem 7.2.6. Let K be a (q2 + 1)-cap <strong>in</strong> P G(3, q).<br />

(i) At each po<strong>in</strong>t P of K there is a unique tangent plane πP , so πP ∩ K =<br />

{P }.<br />

(ii) If π is a plane but not one of the q2 + 1 tangent planes, then π meets<br />

K <strong>in</strong> a (q + 1)-arc.<br />

(iii) The l<strong>in</strong>es through P ∈ K consist of q2 bisecants <strong>and</strong> q + 1 tangents,<br />

the latter all ly<strong>in</strong>g <strong>in</strong> the tangent plane at P . (Hence K is an ovoid of<br />

P G(3, q).)<br />

(iv) Through a po<strong>in</strong>t R off K, there are 1<br />

1<br />

q(q − 1) secants, q(q + 1)<br />

2 2<br />

external l<strong>in</strong>es, <strong>and</strong> q + 1 tangents. When q is even, the q + 1 tangents are<br />

coplanar. When q is odd, no three of the tangents are coplanar. But <strong>in</strong> any<br />

case the q + 1 po<strong>in</strong>ts of K on tangents through R form an oval (for which R<br />

is the nucleus when q is even).<br />

Proof. First let q be odd. Any plane through 2 po<strong>in</strong>ts of K meets K <strong>in</strong> a<br />

(q + 1)-arc, s<strong>in</strong>ce q 2 + 1 = 2 + (q + 1)(q − 1). For a po<strong>in</strong>t P ∈ K, count the<br />

planes α through P meet<strong>in</strong>g K <strong>in</strong> a (q +1)-arc (which must be a conic). This<br />

number is: q 2 (q + 1)/q = q 2 + q, leav<strong>in</strong>g only one plane π tangent to K at P .<br />

The q + 1 l<strong>in</strong>es of π through P are tangents to K at P <strong>and</strong> are necessarily<br />

all the tangents through P .<br />

Let R be a po<strong>in</strong>t of Π3 \ K. If R lies on one tangent l to K at P , then<br />

each plane w through l other than the tangent plane meets K <strong>in</strong> a conic.<br />

So this plane w conta<strong>in</strong>s exactly one other tangent through R. Hence there<br />

are q + 1 tangents through R. No three of these tangents can lie <strong>in</strong> a plane,<br />

because if they did lie <strong>in</strong> a plane γ, then γ ∩ K would be an oval <strong>in</strong> γ <strong>and</strong> R


7.2. OVOIDS AS CAPS AND WITH MANY CONICS 333<br />

would be a po<strong>in</strong>t coll<strong>in</strong>ear with three po<strong>in</strong>ts of the oval. This cannot happen<br />

when q is odd. So each po<strong>in</strong>t R of Π3 \ K is on 0 or q + 1 tangent l<strong>in</strong>es. Say<br />

there are m po<strong>in</strong>ts off K on q + 1 tangents <strong>and</strong> count pairs (t, R), t a tangent<br />

through R. This number is (q 2 + 1)(q + 1)q = m(q + 1), imply<strong>in</strong>g m = q 3 + q.<br />

But |K| = q 2 + 1 <strong>and</strong> (q 3 + q) + (q 2 + 1) is the total number of po<strong>in</strong>ts of Π3.<br />

So each po<strong>in</strong>t off K must be on exactly q + 1 tangents, <strong>and</strong> no three of them<br />

are coplanar.<br />

What rema<strong>in</strong>s to be proved <strong>in</strong> the case q is odd is that if R is a po<strong>in</strong>t<br />

off K, then the q + 1 po<strong>in</strong>ts of K on the tangent l<strong>in</strong>es through R all lie <strong>in</strong> a<br />

plane. S<strong>in</strong>ce no three of the tangents through R lie <strong>in</strong> a plane, the po<strong>in</strong>ts of<br />

these l<strong>in</strong>es form a cone C1. Each plane not conta<strong>in</strong><strong>in</strong>g R must <strong>in</strong>tersect C1<br />

<strong>in</strong> an oval which must be a conic. Let P1, P2, P3 be the po<strong>in</strong>ts of K on three<br />

dist<strong>in</strong>ct tangents through R. Then these three po<strong>in</strong>ts determ<strong>in</strong>e a plane α<br />

which <strong>in</strong>tersects C1 <strong>in</strong> an oval O1, <strong>and</strong> <strong>in</strong>tersects the ovoid K <strong>in</strong> an oval O2<br />

(which might not conta<strong>in</strong> all the other po<strong>in</strong>ts of K on the rema<strong>in</strong><strong>in</strong>g tangents<br />

through R). But the oval O2 determ<strong>in</strong>es a second cone C2 with vertex R. In<br />

particular the plane α meets C1 <strong>in</strong> an oval O1 <strong>and</strong> meets C2 <strong>in</strong> an oval O2.<br />

These ovals have the po<strong>in</strong>ts P1, P2 <strong>and</strong> P3 <strong>in</strong> common. Let πi be the plane<br />

tangent to K at Pi, i = 1, 2, 3. So R ∈ πi. Then πi ∩ α must be the l<strong>in</strong>e<br />

of α tangent to both C1 <strong>and</strong> C2. So C1 <strong>and</strong> C2 share three po<strong>in</strong>ts <strong>and</strong> the<br />

tangents at them. Hence we may conclude that C1 = C2. This says that the<br />

po<strong>in</strong>ts of K ly<strong>in</strong>g on the tangents through R must all lie <strong>in</strong> the plane α.<br />

Now suppose q is even, K a (q 2 + 1)-cap. If P ∈ K, there are q 2 secant<br />

l<strong>in</strong>es through P leav<strong>in</strong>g q + 1 tangents through P . Let r be a tangent to K<br />

at P . By Lemma 7.2.4, no plane through r has q + 2 po<strong>in</strong>ts of K. If each<br />

of the q + 1 planes through r had at most q po<strong>in</strong>ts of K, this would account<br />

for only (q + 1)(q − 1) + 1 = q 2 po<strong>in</strong>ts of K. Hence there is some plane α on<br />

r that has q + 1 po<strong>in</strong>ts of K. So α ∩ K is an oval Γ with a nucleus Q. The<br />

l<strong>in</strong>es jo<strong>in</strong><strong>in</strong>g Q to po<strong>in</strong>ts of K cannot all be tangents, s<strong>in</strong>ce then K ∪ {Q}<br />

would be a (q 2 + 2)-cap. So let m be a l<strong>in</strong>e through Q meet<strong>in</strong>g K <strong>in</strong> two<br />

po<strong>in</strong>ts A <strong>and</strong> B. Clearly m does not lie <strong>in</strong> α. If π is any plane through m,<br />

then π ∩ α is a l<strong>in</strong>e of α through Q, i.e., a tangent to K. Hence π conta<strong>in</strong>s<br />

at most q + 1 po<strong>in</strong>ts of K by Lemma 7.2.4. So the q + 1 planes through m<br />

account for at most 2 + (q + 1)(q − 1) = q 2 + 1 po<strong>in</strong>ts of K, imply<strong>in</strong>g that<br />

each plane through m meets K <strong>in</strong> an oval.<br />

Now suppose l is any l<strong>in</strong>e through Q different from m <strong>and</strong> not ly<strong>in</strong>g <strong>in</strong><br />

α. The plane γ conta<strong>in</strong><strong>in</strong>g l <strong>and</strong> m meets α <strong>in</strong> a l<strong>in</strong>e s through Q. From<br />

the preced<strong>in</strong>g paragraph we know that γ meets K <strong>in</strong> an oval Γ ′ . The l<strong>in</strong>es


334 CHAPTER 7. OVOIDS IN 3-DIMENSIONAL SPACE<br />

l, m, s lie <strong>in</strong> γ <strong>and</strong> meet at Q. But m is a secant to Γ ′ . Hence Q is not the<br />

nucleus of Γ ′ , so l cannot be a tangent, i.e., the only l<strong>in</strong>es through Q that<br />

are tangents to K are the q + 1 l<strong>in</strong>es through Q <strong>in</strong> α.<br />

Let π be any plane different from α conta<strong>in</strong><strong>in</strong>g the tangent l<strong>in</strong>e r. S<strong>in</strong>ce<br />

r is a tangent to Γ, Q belongs to r, so Q ∈ π. If π has a second po<strong>in</strong>t P ′<br />

of K (P = P ′ ), then QP ′ must be a secant l<strong>in</strong>e. Hence by the preced<strong>in</strong>g<br />

paragraph the plane π through QP ′ must meet K <strong>in</strong> an oval. So q of the<br />

planes through r account for 1 + q2 po<strong>in</strong>ts of K, leav<strong>in</strong>g one tangent plane.<br />

The q + 1 l<strong>in</strong>es through P <strong>in</strong> this plane must then be all q + 1 tangent l<strong>in</strong>es<br />

through P . This proves that at each po<strong>in</strong>t P of K there is a unique tangent<br />

plane πP conta<strong>in</strong><strong>in</strong>g all the tangent l<strong>in</strong>es through P . Every nontangent plane<br />

through P meets πP <strong>in</strong> a tangent l<strong>in</strong>e r, <strong>and</strong> meets K <strong>in</strong> an oval Γ with a<br />

nucleus Q not <strong>in</strong> K. And all tangents through Q are tangent to Γ.<br />

There are q2 + 1 tangent planes, <strong>and</strong> every plane meet<strong>in</strong>g K <strong>in</strong> at least<br />

two po<strong>in</strong>ts meets K <strong>in</strong> an oval whose nucleus lies off K. This accounts for<br />

q+1<br />

/<br />

q 2 + 1 + q 2 +1<br />

3<br />

3<br />

= q 2 + 1 + q 3 + q planes, i.e., all planes. Also, the q 3 + q<br />

cutt<strong>in</strong>g planes account for q 3 +q po<strong>in</strong>ts off K, the nuclei of their <strong>in</strong>tersections<br />

with K. Hence each po<strong>in</strong>t off K is the nucleus of a unique oval. It lies on<br />

q +1 tangents <strong>and</strong> (q 2 −q)/2 secants, leav<strong>in</strong>g q 2 +q +1−(q +1)−(q 2 −q)/2 =<br />

(q 2 + q)/2 exterior l<strong>in</strong>es through it.<br />

Now let Q be any po<strong>in</strong>t off K <strong>and</strong> let α be the plane meet<strong>in</strong>g K <strong>in</strong> the<br />

oval Γ for which Q is the nucleus. If π is any plane through Q, π = α, then π<br />

meets α <strong>in</strong> a l<strong>in</strong>e l through Q hav<strong>in</strong>g a po<strong>in</strong>t P of Γ. The l<strong>in</strong>e l is a tangent<br />

through P , so lies <strong>in</strong> the unique tangent plane πP at P . If πP = π = α, then<br />

π is a cutt<strong>in</strong>g plane. Hence Q lies on q + 1 tangent planes, one through each<br />

l<strong>in</strong>e of α through Q.<br />

The classification of ovoids <strong>in</strong> P G(3, q) with q odd was obta<strong>in</strong>ed early<br />

<strong>in</strong> the study of ovoids. It depends on the classification by Segre of ovals<br />

<strong>in</strong> P G(2, q) <strong>and</strong> was foound <strong>in</strong>dependently <strong>in</strong> 1955 by Barlotti([Ba55]) <strong>and</strong><br />

Panella ([Pa55]). Barlotti showed that if all oval sections of an ovoid <strong>in</strong><br />

P G(3, q), q odd, are conics, then the ovoid is an elliptic quadric. He then<br />

noticed that this characterization was also valid for q even, result<strong>in</strong>g <strong>in</strong> the<br />

follow<strong>in</strong>g theorem.<br />

Theorem 7.2.7. Let Ω be an ovoid of P G(3, q) with q > 2. If every secant<br />

plane section of Ω is a conic, then Ω is an elliptic quadric.<br />

Proof. We consider separately the case where q = 3, so |Ω| = 10. Let ℓ be a


7.2. OVOIDS AS CAPS AND WITH MANY CONICS 335<br />

l<strong>in</strong>e of P G(3, 3) exterior to Ω. Then of the four planes on ℓ two π1 <strong>and</strong> π2<br />

meet Ω <strong>in</strong> a conic <strong>and</strong> two, π3 <strong>and</strong> π4 are tangent to Ω. Let πi ∩ Ω = Ci,<br />

i = 1, 2. Also, let πj be tangent at Pj, j = 3, 4. The n<strong>in</strong>e po<strong>in</strong>ts C1∪C2∪{P3}<br />

def<strong>in</strong>e an elliptic quadric E. We need to show that P4 ∈ E so that Ω = E.<br />

Suppose the Ω = E, so that P4 ∈ E <strong>and</strong> E \ Ω = {X} for some po<strong>in</strong>t X.<br />

S<strong>in</strong>ce E <strong>and</strong> Ω are maximal sized sets of po<strong>in</strong>ts no three coll<strong>in</strong>ear, it must be<br />

that the l<strong>in</strong>e 〈P4, X〉 conta<strong>in</strong>s a further po<strong>in</strong>t Y of E ∩ Ω, i.e., m is a secant<br />

to both Ω <strong>and</strong> E. Each plane on m meets both E <strong>and</strong> Ω <strong>in</strong> a conic, <strong>and</strong> for<br />

a given plane its <strong>in</strong>tersection with E <strong>and</strong> its <strong>in</strong>tersection with Ω have three<br />

(out of four) po<strong>in</strong>ts <strong>in</strong> common. So let π be a plane on m, with π ∩ E = C,<br />

π ∩ Ω = C ′ <strong>and</strong> C ∩ C ′ = {Y, A, B}. The l<strong>in</strong>e 〈A, B〉 cannot conta<strong>in</strong> P4, Y or<br />

X, so must meet m <strong>in</strong> the rema<strong>in</strong><strong>in</strong>g po<strong>in</strong>t of M, say Q. It follows that Q<br />

lies on no tangents of E or Ω, which is impossible. Hence Ω = E is an elliptic<br />

quadric.<br />

We now assume that q ≥ 4.<br />

Let π1 be a plane meet<strong>in</strong>g Ω <strong>in</strong> a conic C1 <strong>and</strong> let P1, . . . , P5 be five po<strong>in</strong>ts<br />

on the conic C1. Take another plane π2 through P1 <strong>and</strong> P2, <strong>and</strong> let Q1, Q2,<br />

Q3 be three other po<strong>in</strong>ts of the Conic C2 = π2 ∩ Ω. The tangent plane at Pi,<br />

i = 1, 2, to Ω meets π2 <strong>in</strong> a l<strong>in</strong>e which is tangent to C2. Take a third plane<br />

π3 through P1 <strong>and</strong> P2 conta<strong>in</strong><strong>in</strong>g a po<strong>in</strong>t R of Ω not <strong>in</strong> π1 or π2. Likewise π3<br />

meets the tangent plane at Pi, i = 1, 2, <strong>in</strong> a l<strong>in</strong>e tangent to C3 = π3 ∩ Ω.<br />

The quadric Q through the n<strong>in</strong>e po<strong>in</strong>ts P1, . . . , P5, Q1, Q2, Q3, <strong>and</strong> R conta<strong>in</strong>s<br />

five po<strong>in</strong>ts of each of the conics C1 <strong>and</strong> C2, so conta<strong>in</strong>s C1 <strong>and</strong> C2<br />

themselves. The tangent l<strong>in</strong>es to C1 <strong>and</strong> C2 at P1 are therefore tangents to<br />

Q at P1. Hence the tangent plane to Ω at P1 is also tangent to Q. Hence the<br />

conic section C = Q ∩ π3 will have as its tangent at P1 the tangent which<br />

is the <strong>in</strong>tersection of the tangent plane (to both Ω <strong>and</strong> Q) at P1 with π3.<br />

Similarly, the tangent to C at P2 is the <strong>in</strong>tersection of the tangent plane at<br />

P2 with π3. So C3 <strong>and</strong> C have three po<strong>in</strong>ts <strong>in</strong> common as well as tangents<br />

at two of them, <strong>and</strong> hence C3 = C. (See Lemma 4.2.1)<br />

Now take a po<strong>in</strong>t P , (P = P1, P2), P on Ω, <strong>and</strong> π a plane through P P1<br />

which conta<strong>in</strong>s neither P2 nor any of the tangents at P1 to C1, C2 or C3.<br />

This plane meets C1, C2, C3 <strong>in</strong> three dist<strong>in</strong>ct po<strong>in</strong>ts apart from P1. Hence<br />

π ∩ Q is a conic that conta<strong>in</strong>s these four po<strong>in</strong>ts. Moreover, the tangent plane<br />

to Ω at P1 meets π <strong>in</strong> a l<strong>in</strong>e tangent to π ∩ Q at P1. S<strong>in</strong>ce π ∩ Q <strong>and</strong> π ∩ Ω<br />

share four po<strong>in</strong>ts <strong>and</strong> a tangent at one of them, they must be the same conic,<br />

forc<strong>in</strong>g P ∈ Q. Hence Ω ⊆ Q. As Q is then a quadric conta<strong>in</strong><strong>in</strong>g q 2 + 1


336 CHAPTER 7. OVOIDS IN 3-DIMENSIONAL SPACE<br />

po<strong>in</strong>ts with no three coll<strong>in</strong>ear, Q can only be an elliptic quadric with q 2 + 1<br />

po<strong>in</strong>ts. Hence Ω = Q.<br />

7.3 Null polarities <strong>and</strong> skew-symmetric matrices<br />

In this section we deal only with P G(3, q), but there are natural generalizations<br />

for P G(n, q) with n odd. A polarity of P G(3, q) is a map ρ that is an<br />

isomorphism from P G(3, q) to its po<strong>in</strong>t-hyperplane dual P G(3, q) ˆ with the<br />

property that its square is the identity map. So for each po<strong>in</strong>t P , P ρ is a<br />

plane <strong>and</strong> for each plane π, π ρ is a po<strong>in</strong>t. Then for po<strong>in</strong>ts P <strong>and</strong> Q we have<br />

Q ∈ P ρ if <strong>and</strong> only if P ∈ Q ρ . The polarity ρ is a null polarity provided<br />

P ∈ P ρ for all po<strong>in</strong>ts P ∈ P G(3, q). Given any polarity, a po<strong>in</strong>t <strong>and</strong> its<br />

associated plane are respectively called pole <strong>and</strong> polar.<br />

Let A be an <strong>in</strong>vertible, 4 × 4 skew-symmetric matrix over Fq with zeros<br />

on the diagonal. Def<strong>in</strong>e ρA as follows:<br />

ρA : po<strong>in</strong>t (¯x) ↦→ plane A(¯x) T ; plane [ū] T ↦→ (ū)A −1 .<br />

Then ρA is a typical null polarity.<br />

Theorem 7.3.1. Let ρ be a null polarity of P G(3, q). Then there is a 4 × 4<br />

nons<strong>in</strong>gular, skew-symmetric matrix over Fq with zero diagonal such that<br />

ρ = ρA. Moreover, any two null polarities are projectively equivalent.<br />

Proof. Let ρ be a null polarity. S<strong>in</strong>ce ρ is a correlation, i.e., an isomorphism<br />

from P G(3, q) to its po<strong>in</strong>t-hyperplane dual, there must be a 4×4 nons<strong>in</strong>gular,<br />

skew-symmetric matrix over Fq <strong>and</strong> a field automorphism σ such that<br />

ρ : (¯x) ↦→ A[¯x σ ] T ; [ū] T ↦→ λ(ū σ )A −1 , (7.1)<br />

for some nonzero scalar λ.<br />

Writ<strong>in</strong>g out the fact that ρ 2 = id we f<strong>in</strong>d<br />

ρ 2 : (¯x) ↦→ λ · (¯x σ2<br />

)(A σ ) T A −1 = µ · (¯x),<br />

for all po<strong>in</strong>ts (¯x). By choos<strong>in</strong>g appropriate values for the po<strong>in</strong>t (¯x) we easily<br />

show first that A = c · (A σ ) T for some nonzero scalar c, <strong>and</strong> then that<br />

σ 2 = id. (7.2)


7.4. OVOIDS YIELD NULL POLARITIES IN CHARACTERISTIC 2 337<br />

Now use the fact that (¯x)A(¯x σ ) T = 0 for all po<strong>in</strong>ts (¯x). First put (¯x) =<br />

λ · (ēi), (the vector with a λ <strong>in</strong> position i <strong>and</strong> zeros elsewhere), <strong>and</strong> then<br />

(¯x) = (ēi) + (ēj), to show that<br />

A is skew-symmetric with zero diagonal. (7.3)<br />

Now use (¯x)A(¯x σ ) T = 0 for all (¯x) of the form (¯x) = λ · (ēi) + µ · (ēj) to<br />

discover that σ = id. At this po<strong>in</strong>t we know that<br />

It follows that<br />

ρ : (¯x) ↦→ A[¯x] T ; [ū] ↦→ (ū)A −1 .<br />

(ēi)A(ēj) T = Aij = −Aji = −(ēj)A(ēi) T ,<br />

<strong>and</strong> f((¯x), (¯y)) = (¯x)A(¯y) T is a nons<strong>in</strong>gular alternat<strong>in</strong>g form. Now let (ū)1 be<br />

any nonzero vector represent<strong>in</strong>g a po<strong>in</strong>t of P G(3, q), <strong>and</strong> choose a nonzero<br />

vector (¯v)1 such that (¯v)1 ∈ (ū) ρ<br />

1 . By multiply<strong>in</strong>g (¯v)1 by an appropriate<br />

scalar we may suppose that (ū)1A(¯v) T 1 = 1 <strong>and</strong> (¯v)1A(ū) T 1 = −1.<br />

Let ℓ be the l<strong>in</strong>e ℓ = 〈(ū)1, (¯v)1〉, so ℓρ = (ū) ρ<br />

1 ∩ (¯v) ρ<br />

1. Then ℓ = ℓρ , so<br />

(ℓρ ) ρ = ℓ = ℓρ , which implies ℓρ must have two po<strong>in</strong>ts with representative<br />

vectors (ū)2, (¯v)2 with (ū)2A(¯v)2 = −1. If we now let B be the ordered<br />

basis of the underly<strong>in</strong>g vector space B = {(ū)1, (¯v)1, (ū)2, (¯v)2} , then if the<br />

coord<strong>in</strong>ate matrices of (¯x) <strong>and</strong> (¯y) are (¯c) <strong>and</strong> ( ¯ d), respectively, we have<br />

f((¯x), (¯y)) = (¯c)C( ¯ d) T ⎛<br />

0<br />

⎜<br />

, where C = ⎜ −1<br />

⎝ 0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

⎞<br />

0<br />

0 ⎟<br />

1 ⎠<br />

0 0 −1 0<br />

.<br />

Replac<strong>in</strong>g the st<strong>and</strong>ard ordered basis with the ordered basis B amounts<br />

to replac<strong>in</strong>g the matrix A with the matrix C.<br />

7.4 <strong>Ovoids</strong> Yield Null Polarities <strong>in</strong> Characteristic<br />

2<br />

Theorem 7.4.1. Let Ω be an ovoid <strong>in</strong> P G(3, q), q even q > 4. Associate<br />

to each tangent plane its po<strong>in</strong>t of contact. Any other plane π meets Ω <strong>in</strong><br />

a (q + 1)-arc with nucleus Q. Associate π to Q. Then this po<strong>in</strong>t ⇐⇒<br />

hyperplane correspondence is a null polarity.


338 CHAPTER 7. OVOIDS IN 3-DIMENSIONAL SPACE<br />

Proof. Suppose the po<strong>in</strong>t P corresponds to the plane πP . It must be shown<br />

that the poles of the planes through P are all the po<strong>in</strong>ts of πP . Let P ρ = πP<br />

<strong>and</strong> π ρ = P where pi = πP . For ρ to be a polarity means Q ∈ P ρ iff P ∈ Q ρ .<br />

For the polarity ρ to be a null polarity means that P ∈ P ρ for every po<strong>in</strong>t P<br />

of P G(3, q).<br />

First suppose P ∈ Ω, <strong>and</strong> suppose Q ∈ P ρ = πP . Then Q is the nucleus<br />

of the plane Q ρ conta<strong>in</strong><strong>in</strong>g the tangents through Q, <strong>in</strong>clud<strong>in</strong>g the l<strong>in</strong>e QP .<br />

So P ∈ Q ρ . Conversely, if P belongs to the plane π = πP , then π is a cutt<strong>in</strong>g<br />

plane <strong>and</strong> π = Q ρ for a unique po<strong>in</strong>t Q off Ω. But QP is a tangent to π ∩ Ω,<br />

so QP lies <strong>in</strong> πP .<br />

Second, suppose P ∈ Ω. From the above, if Q ∈ Ω, then P ∈ Q ρ if <strong>and</strong><br />

only if Q ∈ P ρ . So suppose Q ∈ P ρ <strong>and</strong> Q ∈ Ω. S<strong>in</strong>ce Q ∈ P ρ , P is the<br />

nucleus of P ρ ∩Ω, so QP is tangent to P ρ ∩Ω. But the only tangents through<br />

Q lie <strong>in</strong> Q ρ , so P ∈ Q ρ .<br />

Corollary 7.4.2. (i) Let ℓ be a tangent to Ω at P . Then ℓ = ∩Q∈lQ ρ . (ℓ is<br />

its own polar.)<br />

(ii) Let ℓ be a secant to Ω at po<strong>in</strong>ts A, B. Then ∩Q∈ℓQ ρ = A ρ ∩B ρ , which<br />

is an exterior l<strong>in</strong>e.<br />

(iii) The polar of an exterior l<strong>in</strong>e m is the l<strong>in</strong>e AB where m = A ρ ∩ B ρ ,<br />

<strong>and</strong> A, B ∈ Ω. Hence secant l<strong>in</strong>es are <strong>in</strong>terchanged with exterior l<strong>in</strong>es.<br />

Proof. Let ℓ be tangent to Ω at P , so ℓ ⊆ P ρ . Let Q ∈ ℓ, Q = P . So Q ∈ P ρ<br />

implies P ∈ Q ρ . Then P, Q ∈ Q ρ , so ℓ ⊆ Q ρ , imply<strong>in</strong>g ℓ = ∩Q∈ℓQ ρ . This<br />

proves (i).<br />

(ii) Let ℓ ∩ Ω = {A, B}. Put ℓ ρ = A ρ ∩ B ρ . Clearly B ∈ A ρ <strong>and</strong> A ∈ B ρ ,<br />

s<strong>in</strong>ce each l<strong>in</strong>e through A <strong>in</strong> A ρ must be a tangent. Let Q ∈ ℓ, A = Q = B.<br />

We need to show that A ρ ∩ B ρ ⊆ Q ρ . So let R ∈ A ρ ∩ B ρ . R ∈ A ρ ∩ B ρ<br />

implies A, B ∈ R ρ , imply<strong>in</strong>g ℓ ⊆ R ρ . So Q ∈ ℓ implies Q ∈ R ρ , which implies<br />

R ∈ Q ρ . Hence A ρ ∩ B ρ ⊆ Q ρ , imply<strong>in</strong>g A ρ ∩ B ρ ⊆ ∩Q∈ℓQ ρ ⊆ A ρ ∩ B ρ .<br />

For (iii), let m be an exterior l<strong>in</strong>e <strong>and</strong> suppose it is on a tangent planes<br />

<strong>and</strong> on b cutt<strong>in</strong>g planes. Then a + b = q + 1 <strong>and</strong> 1 · a + (q + 1) · b = q 2 + 1,<br />

hence a = 2 <strong>and</strong> b = q −1. Hence the polar of an exterior l<strong>in</strong>e m is the secant<br />

l<strong>in</strong>e AB where m = A ρ ∩ B ρ , <strong>and</strong> A, B ∈ Ω.<br />

Corollary 7.4.3. For dist<strong>in</strong>ct po<strong>in</strong>ts P1 <strong>and</strong> P2 we have that P1 is <strong>in</strong>cident<br />

with P ρ<br />

2 if <strong>and</strong> only if the l<strong>in</strong>e P1P2 is tangent to O.<br />

Proof. If P2 lies on O, then P ρ<br />

2 is the tangent plane to O at P2, so it is clear<br />

that if P1 is on P ρ<br />

2 then P1P2 is a tangent l<strong>in</strong>e to O at P2. So suppose P2 is


7.5. SYMPLECTIC GEOMETRY AND NORMALIZED COORDINATES339<br />

not on O. Then P2 is the nucleus of the oval P ρ<br />

2<br />

∩ O. Thus every l<strong>in</strong>e on P2<br />

<strong>in</strong> the plane P ρ<br />

2 is tangent to P ρ<br />

2 ∩ O <strong>and</strong> hence a tangent to O. Conversely,<br />

if P1P2 is tangent to O, say at Q, then we have just shown that P2 is <strong>in</strong>cident<br />

with Qρ , imply<strong>in</strong>g Q is <strong>in</strong>cident with P ρ<br />

2 . Thus the l<strong>in</strong>e P1P2 = P2Q lies <strong>in</strong><br />

P ρ<br />

2 so P1 is <strong>in</strong>cident with P ρ<br />

2 .<br />

7.5 Symplectic <strong>Geometry</strong> <strong>and</strong> Normalized Coord<strong>in</strong>ates<br />

Let ρ be a null polarity of P G(3, q). We are go<strong>in</strong>g to construct a po<strong>in</strong>t-l<strong>in</strong>e<br />

geometry W (q). The po<strong>in</strong>ts of W (q) are all the absolute po<strong>in</strong>ts of ρ (i.e.,<br />

the po<strong>in</strong>ts (¯x) for which (¯x) is <strong>in</strong>cident with the plane (¯x) ρ ), which <strong>in</strong> fact<br />

<strong>in</strong>cludes all the po<strong>in</strong>ts of P G(3, q). The l<strong>in</strong>es of W (q) are the l<strong>in</strong>es of P G(3, q)<br />

which are absolute l<strong>in</strong>es of ρ, i.e., the l<strong>in</strong>es ℓ for which ℓ ρ = ℓ. Incidence is<br />

the one <strong>in</strong>herited from P G(3, q). It is an easy exercise to show that W (q) is<br />

a GQ of order q. (See Section 4 of the chapter on GQ.)<br />

Corollary 7.4.2 makes it clear that if q = 2 e <strong>and</strong> ρ is the null polarity<br />

aris<strong>in</strong>g from an ovoid Ω, then the absolute l<strong>in</strong>es of ρ are the l<strong>in</strong>es tangent to<br />

Ω.<br />

At this po<strong>in</strong>t we want to expla<strong>in</strong><br />

how to normalize the coord<strong>in</strong>ates for<br />

0 1<br />

P 0<br />

the ovoid Ω. Let P = <strong>and</strong> let C be the matrix C = , so<br />

1 0<br />

0 P<br />

C is skew-symmetric (with 0’s on the diagonal). For ¯x = (x0, x1, x2, x3) <strong>and</strong><br />

¯y = (y0, y1, y2, y3) <strong>in</strong> F 4 q , put<br />

¯x ∗ ¯y = ¯xC ¯y T .<br />

Then (¯x, ¯y) ↦→ ¯x ∗ ¯y is a nons<strong>in</strong>gular, bil<strong>in</strong>ear alternat<strong>in</strong>g form. If we put<br />

¯x ⊥ = {¯y : ¯x ∗ ¯y = 0}, then for nonzero ¯x, ¯x ⊥ is a plane conta<strong>in</strong><strong>in</strong>g ¯x, <strong>and</strong><br />

the map ν : ¯x ↦→ ¯x ⊥ is a symplectic polarity. Recall that any two symplectic<br />

polarities are equivalent. So if Ω ′ is an ovoid with a plane section be<strong>in</strong>g<br />

an oval projectively equivalent to some Of, then there is an homography of<br />

P G(3, q) mapp<strong>in</strong>g Ω ′ to an ovoid Ω whose symplectic polarity is exactly ν,<br />

<strong>and</strong> Ω will also conta<strong>in</strong> a plane section that is an oval O equivalent to Of.<br />

If W (q) is the symplectic geometry (i.e., generalized quadrangle) def<strong>in</strong>ed by<br />

Ω, then the group of homographies of P G(3, q) leav<strong>in</strong>g W (q) <strong>in</strong>variant is<br />

known as the symplectic group Sp(4, q) <strong>and</strong> is transitive on the po<strong>in</strong>ts of


340 CHAPTER 7. OVOIDS IN 3-DIMENSIONAL SPACE<br />

W (q). Hence there is an homography preserv<strong>in</strong>g Ω <strong>and</strong> mapp<strong>in</strong>g the nucleus<br />

of O to the po<strong>in</strong>t N = (0, 0, 1, 0). Then by our assumption that ν is the<br />

polarity def<strong>in</strong>ed by Ω, we know that the plane conta<strong>in</strong><strong>in</strong>g O is [0, 0, 0, 1],<br />

i.e., O = Ω ∩ [0, 0, 0, 1]. Furthermore, the subgroup of Sp(3, q) fix<strong>in</strong>g N is<br />

transitive on the po<strong>in</strong>ts coll<strong>in</strong>ear with N <strong>in</strong> W (q), <strong>and</strong> hence also transitive<br />

on the q + 1 l<strong>in</strong>es of W (q) through N. So if O were a translation oval, for<br />

example, we could without loss of generality assume that the l<strong>in</strong>e x0 = x3 = 0<br />

is a translation axis of O.<br />

Let N be the po<strong>in</strong>t of P G(3, q) given above, with ν : N ↔ N ⊥ . The<br />

subgroup of Sp(4, q) leav<strong>in</strong>g N ⊥ <strong>in</strong>variant <strong>in</strong>duces a group of coll<strong>in</strong>eations<br />

of N ⊥ conta<strong>in</strong><strong>in</strong>g the group of elations of N ⊥ with center N. (To see this,<br />

consider a l<strong>in</strong>e ℓ of N ⊥ <strong>and</strong> a po<strong>in</strong>t Q different from N on ℓ. The group<br />

of elations with center Q <strong>and</strong> axis Q ⊥ <strong>in</strong>duces <strong>in</strong> N ⊥ a group conta<strong>in</strong><strong>in</strong>g all<br />

elations of N ⊥ with center Q <strong>and</strong> axis ℓ. Lett<strong>in</strong>g Q range over all po<strong>in</strong>ts<br />

coll<strong>in</strong>ear <strong>in</strong> W (q) with N, the group generated conta<strong>in</strong>s all elations of N ⊥<br />

with center N.) For po<strong>in</strong>ts <strong>in</strong> N ⊥ = [0, 0, 0, 1] we may temporarily drop the<br />

f<strong>in</strong>al coord<strong>in</strong>ate, which is always 0. Then for the record, the homography<br />

with matrix<br />

⎛<br />

⎝<br />

1 0 c<br />

0 1 bc<br />

0 0 1<br />

for b, c ∈ Fq with c = 0, is an elation of [0, 0, 0, 1] with center N = (0, 0, 1)<br />

<strong>and</strong> axis [1, b, 0]. The homography with matrix<br />

⎛<br />

⎝<br />

1 0 0<br />

0 1 b<br />

0 0 1<br />

for b = 0, is an elation of [0, 0, 0, 1] with center N = (0, 0, 1) <strong>and</strong> axis [0, 1, 0].)<br />

Now the group of elations of N ⊥ with center N fixes each of the q + 1 l<strong>in</strong>es of<br />

W (q) through N <strong>and</strong> is transitive on the q po<strong>in</strong>ts different from N on each of<br />

the l<strong>in</strong>es. Hence we may assume that O conta<strong>in</strong>s the po<strong>in</strong>t Q∞ = (0, 1, 0, 0),<br />

that the po<strong>in</strong>t N is the nucleus (<strong>and</strong> when O is a translation oval that the<br />

l<strong>in</strong>e L∞ = 〈Q∞, N〉 is a translation axis of O). This means that there is an<br />

o-permutation f such that<br />

O = {(1, f(t), t, 0) : t ∈ Fq} ∪ {(0, 1, 0, 0)} <strong>and</strong> has nucleus N = (0, 0, 1, 0).<br />

⎞<br />

⎠ ,<br />

⎞<br />


7.5. SYMPLECTIC GEOMETRY AND NORMALIZED COORDINATES341<br />

Now consider the homography of P G(3, q) with matrix<br />

⎛<br />

⎞<br />

1 f(0)/A 0 0<br />

⎜<br />

H = ⎜ 0 1/A 0 0 ⎟<br />

⎝ 0 0 1 0 ⎠<br />

0 0 0 1/A<br />

where A = f(0) + f(1). It may be checked that HCH T = <br />

1 C, so that<br />

A<br />

the homography commutes with the symplectic polarity. The nucleus N is<br />

left <strong>in</strong>variant, so of course the plane N ⊥ = [0, 0, 0, 1] is left <strong>in</strong>variant. The<br />

oval po<strong>in</strong>t Q∞ is fixed <strong>and</strong> the general oval po<strong>in</strong>t (1, f(t), t, 0) is mapped to<br />

(1, f(0)+f(t)<br />

, t, 0). In particular, the po<strong>in</strong>ts (1, 0, 0, 0) <strong>and</strong> (1, 1, 1, 0) belong<br />

A<br />

to Ω. But if the oval is really a translation oval with translation axis L∞,<br />

then s<strong>in</strong>ce the function t ↦→ f(0)+f(t)<br />

maps 0 to 0 <strong>and</strong> 1 to 1, this must<br />

A<br />

be the oval Oα for α a generator of the automorphism group of Fq, where<br />

Oα = {(1, tα , t, 0) : t ∈ Fq} ∪ {(0, 1, 0, 0)} with nucleus N = (0, 0, 1, 0).<br />

We state this as a theorem.<br />

Theorem 7.5.1. Let Ω be an ovoid of P G(3, q) conta<strong>in</strong><strong>in</strong>g an oval section<br />

O equivalent to the oval Oα = {(1, t, t α ) : t ∈ Fq} ∪ {(0, 0, 1)} with nucleus<br />

(0, 1, 0), where α is a generator of Aut(Fq). Then coord<strong>in</strong>ates of P G(3, q)<br />

may be chosen so that the symplectic polarity of P G(3, q) def<strong>in</strong>ed by Ω has the<br />

alternat<strong>in</strong>g form x0y1+x1y0+x2y3+x3y2 <strong>and</strong> Ω conta<strong>in</strong>s the oval {(1, t α , t, 0) :<br />

t ∈ Fq} ∪ {(0, 1, 0, 0)} with nucleus (0, 0, 1, 0).<br />

7.5.2 Coord<strong>in</strong>ates for the known examples<br />

In this subsection we assume as usual that q = 2 e . The only known ovoids of<br />

P G(3, q) are the elliptic quadrics <strong>and</strong> the Tits ovoids. We study both these<br />

examples elsewhere, but here we recall st<strong>and</strong>ard coord<strong>in</strong>ates for them. But<br />

first we make a general observation about the shape of an ovoid Ω. We have<br />

seen above that we may assume that Q∞ = (0, 1, 0, 0) ∈ Ω along with hav<strong>in</strong>g<br />

the st<strong>and</strong>ard alternat<strong>in</strong>g bil<strong>in</strong>ear form associated with Ω. This means that<br />

the tangent plane to Ω at (0, 1, 0, 0) is [1, 0, 0, 0]. Hence all other po<strong>in</strong>ts of Ω<br />

are not on this plane <strong>and</strong> hence have coord<strong>in</strong>ates of the form (1, a, b, c). Also,<br />

if there were two po<strong>in</strong>ts of the form (1, a, b, c) <strong>and</strong> (1, a ′ , b, c) for a = a ′ , then<br />

the l<strong>in</strong>e through these two po<strong>in</strong>ts of Ω conta<strong>in</strong>s the third po<strong>in</strong>t (0, 1, 0, 0), an<br />

impossibility. Hence there must be a function f(s, t) of two variables such<br />

that


342 CHAPTER 7. OVOIDS IN 3-DIMENSIONAL SPACE<br />

Ω = {(1, f(s, t), s, t) : s, t ∈ Fq} ∪ {(0, 1, 0, 0)}.<br />

Then with this new function f of two variables, N ⊥ = [0, 0, 0, 1] ∩ Ω =<br />

{(1, f(s, 0), s, 0) : s ∈ Fq} ∪ {(0, 1, 0, 0)}.<br />

Writ<strong>in</strong>g the known ovoids <strong>in</strong> this form we have the follow<strong>in</strong>g:<br />

Elliptic Quadrics:<br />

O = {(1, s 2 + st + at 2 , s, t) : s, t ∈ Fq} ∪ {(0, 1, 0, 0)},<br />

where x 2 + x + a is irreducible over Fq.<br />

Tits <strong>Ovoids</strong> (σ ∈ Aut(Fq) with σ 2 = 2):<br />

O = {(1, s σ + st + t σ+2 , s, t)} ∪ {(0, 1, 0, 0)}.<br />

In fact, we can generalize this description of an ovoid <strong>and</strong> prove a major<br />

theorem of Penttila <strong>and</strong> Praeger.<br />

For α ∈ AutFq <strong>and</strong> a function d : Fq → Fq, let O(α, d) denote the set<br />

O(α, d) = {(1, t α + ts + d(s), t, s) : s, t ∈ Fq} ∪ {(0, 1, 0, 0)}.<br />

It is easy to see that with d(s) = as 2 for some a ∈ Fq with tr(a) = 1,<br />

then O(2, d) is an elliptic quadric. And if σ ∈ A with σ 2 = 2, O(σ, σ + 2) is<br />

the Tits Ovoid.<br />

Theorem 7.5.3. Suppose that Ω is an ovoid <strong>in</strong> P G(3, q), where q = 2 e > 2,<br />

<strong>and</strong> that π is a secant plane such that π ∩ Ω is a translation oval with associated<br />

automorphism α. Let ℓ be an axis of π ∩ Ω. Suppose that each secant<br />

plane to Ω on ℓ meets Ω <strong>in</strong> a translation oval. Then there is a coll<strong>in</strong>eation<br />

of P G(3, q mapp<strong>in</strong>g Ω to O(α, d) where d : Fq → Fq satisfies d(0) = 0 <strong>and</strong><br />

d(a) + d(b) ∈ (a + b) α/(α−1) K (7.4)<br />

for all a, b ∈ Fq with a = b, <strong>and</strong> where K is the kernel of the trace map.<br />

Conversely, if α is a generator of Aut(Fq) <strong>and</strong> d : Fq → Fq has d(0) = 0 <strong>and</strong><br />

satisfies Eq. 7.4 for all a = b, then O(α, d) is an ovoid.


7.5. SYMPLECTIC GEOMETRY AND NORMALIZED COORDINATES343<br />

Proof. By Theorem 7.5.1 we may assume that π = [0, 0, 0, 1], that ℓ =<br />

[1, 0, 0, 0]∩[0, 0, 0, 1], that the nucleus of π ∩Ω is N = (0, 0, 1, 0), that ℓ∩Ω is<br />

the po<strong>in</strong>t Q = (0, 1, 0, 0), <strong>and</strong> that the other po<strong>in</strong>ts of π ∩ Ω are those of the<br />

form (1, tα , t, 0), t ∈ Fq. For a ∈ Fq, let πa be the plane πa = [a, 0, 0, 1]. With<br />

this notation, π0 = π. The tangent plane to Ω at Q is (0, 1, 0, 0) ⊥ = [1, 0, 0, 0],<br />

so the q planes πa, a ∈ Fq, constitute all the secant planes to Ω through ℓ.<br />

By hypothesis each πa ∩ Ω is a translation oval with some associated field<br />

automorphism βa. The nucleus of πa is π⊥ a = (0, a, 1, 0).<br />

The next step is to use the External L<strong>in</strong>es Lemma (See Theorem 4.14.7) to<br />

show that ℓ is an axis of πa∩Ω for 0 = a ∈ Fq. For t ∈ Fq, set Pt = (1, t α , t, 0),<br />

a po<strong>in</strong>t on Ω ∩ π0 but not <strong>in</strong> πa. S<strong>in</strong>ce Pt ∈ Ω, P ⊥<br />

t ∩ Ω = {Pt}, so P ⊥<br />

t ∩ πa is<br />

a l<strong>in</strong>e on N = (0, 0, 1, 0) external to πa ∩ Ω. What is P ⊥<br />

t ∩ πa? It is<br />

[t α , 1, 0, t] ∩ [a, 0, 0, 1] = {(x0, (t α + at)x0, x2, ax0) ∈ P G(3, q) : x0, x2 ∈ Fq}<br />

= {(x0, dx0, x2, ax0) ∈ P G(3, q) : x0, x2 ∈ Fq}, where d ∈ a α/(α−1) K<br />

by part (8) of Theorem 4.12.1. S<strong>in</strong>ce K has size q/2 <strong>and</strong> there are q/2 l<strong>in</strong>es<br />

on N <strong>in</strong> πa external to πa ∩ Ω, it follows that all such l<strong>in</strong>es are of the form<br />

P ⊥<br />

t ∩ πa (where t automatically satisfies tα + at ∈ aα/(α−1) K).<br />

Now consider the follow<strong>in</strong>g oval <strong>in</strong> πa:<br />

O ′ = {(1, t α + at + c, t, a) : t ∈ Fq} ∪ {(0, 1, 0, 0)},<br />

where c ∈ aα/(α−1) K. This is a translation oval, as it is the image of Oα ∼ =<br />

π ∩ Ω under the homography with matrix<br />

⎛<br />

1<br />

⎜ 0<br />

⎝ 0<br />

c<br />

a<br />

1<br />

0<br />

1<br />

0<br />

⎞<br />

a<br />

0 ⎟<br />

0 ⎠<br />

0 0 0 1<br />

.<br />

(Or see Theorem 4.13.2.)<br />

Now O ′ has axis ℓ, nucleus (0, a, 1, 0) on ℓ, <strong>and</strong> ℓ meets both πa ∩ Ω <strong>and</strong><br />

O ′ <strong>in</strong> the po<strong>in</strong>t Q = (0, 1, 0, 0). (In Theorem 4.13.2 <strong>in</strong>terchange the second<br />

<strong>and</strong> third coord<strong>in</strong>ates.)<br />

Put σd = [d, 1, 0, 0], so that πa ∩ σd = {(x0, dx0, x2, ax0) ∈ P G(3, q) :<br />

x0, x2 ∈ Fq}. So πa ∩ σd is a l<strong>in</strong>e of πa through N = (0, 0, 1, 0) not through<br />

Q = (0, 1, 0, 0). The l<strong>in</strong>e πa ∩ σd conta<strong>in</strong>s a po<strong>in</strong>t (1, t α + at + c, t, a) of<br />

O ′ if <strong>and</strong> only if it is of the form (1, d, t, a) = (1, t α + at + c, t, a). S<strong>in</strong>ce


344 CHAPTER 7. OVOIDS IN 3-DIMENSIONAL SPACE<br />

{t α + at : t ∈ Fq} = a α/(α−1) K (of size q/2) <strong>and</strong> c ∈ a α/(α−1) K, so the<br />

q/2 l<strong>in</strong>es of πa through N external to O ′ are those of the form πa ∩ σd for<br />

d ∈ a α/(α−1) K, that is, the set of l<strong>in</strong>e on N <strong>in</strong> πa external to O ′ <strong>and</strong> the set<br />

external to πa ∩ O are the same. Hence by the External L<strong>in</strong>es Lemma, ℓ is<br />

an axis of O. It now follows from Theorem 4.13.2 that<br />

πa ∩ Ω = {(1, c(a)t βa + at + d(a), t, a) : t ∈ Fq},<br />

for some c(a), d(a) ∈ Fq with c(a) = 0. The po<strong>in</strong>ts (1, s α , s, 0) <strong>and</strong> (c(a)t βa +<br />

at+d(a), t, a) of Ω are not perpendicular with respect to the form determ<strong>in</strong>ed<br />

by Ω, so s α + c(a)t βa + at + d(a) + as = 0 for all s <strong>and</strong> t <strong>in</strong> Fq. Hence d(a)<br />

does not lie <strong>in</strong> the set<br />

X = {s α + c(a)t β a + a(s + t) : s, t ∈ Fa}.<br />

But X is a proper subset of Fq which is closed under addition, <strong>and</strong> X<br />

conta<strong>in</strong>s both<br />

{s α + as : s ∈ Fq} = a α/(α−1) K<br />

<strong>and</strong><br />

{c(a)t βa + at : t ∈ Fq} = c(a) −1/βa−1)(βa/(β−1)) K<br />

by Theorem 4.12.1, part (8). By part 5 of the same result it follows that<br />

which yields<br />

a α/(α−1) = c(a) −1/(βa−1) a βa/(βa−1)<br />

c(a) = a (α−βa)/(α−1)<br />

for all non-zero a <strong>in</strong> Fq. Aga<strong>in</strong>, the po<strong>in</strong>ts (1, c(a)s βa + as + d(a), s, a) <strong>and</strong><br />

(1, c(b)t βb + bt + d(b), t, b) are not perpendicular. Hence<br />

c(a)s βa + as + d(a) + c(b)t βb + bt + d(b) + at + bs = 0 ∀s, t ∈ Fq.<br />

This says that d(a) + d(b) does not lie <strong>in</strong> the set<br />

X = {c(a)s βa + (a + b)s + c(b)t βb + (a + b)t : s, t ∈ Fq}.<br />

So X is a proper subset of Fq closed under addition <strong>and</strong> conta<strong>in</strong><strong>in</strong>g both<br />

A <strong>and</strong> B where<br />

A = {c(a)s βa + (a + b)s : s ∈ Fq} <strong>and</strong> B = {c(b)t βb + (a + b)t : t ∈ Fq}.


7.5. SYMPLECTIC GEOMETRY AND NORMALIZED COORDINATES345<br />

<strong>and</strong><br />

Here<br />

A = c(a) −1<br />

β b −1 · (a + b) βa<br />

βa−1 K with c(a) = a α−βa<br />

1 ,<br />

B = c(b) −1<br />

]ba−1 · (a + b) β b<br />

β b −1 K with c(b) = b α−β b<br />

α−1 .<br />

It follows that A = B, so<br />

<br />

a α−βa<br />

βa−1<br />

After some simplification we f<strong>in</strong>d<br />

1<br />

1−α<br />

· b βb−α 1<br />

1−α<br />

βb−1 = (a + b) β b<br />

β b −1 .<br />

(a + b) (1−α)(βb−βa) = a (α−βa)(1−βb) · b (α−βb)(βa−1) . (7.5)<br />

If βa = βb, we f<strong>in</strong>d that 1 = (ab −1 ) α−βa , which forces ab −1 to be <strong>in</strong> the<br />

fixed field of βaα −1 .<br />

If βa = α, then (a + b) (1−α)(βb−α) = b (α−βb)(α−1) , from which we get<br />

1 = (a + b)b −1 βb−α ,<br />

imply<strong>in</strong>g that (a + b)b −1 is <strong>in</strong> the fixed field of βbα −1 , so that aga<strong>in</strong> ab −1 is<br />

<strong>in</strong> the fixed field of βbα −1 .<br />

Suppose there is some b for which βb = α. then the fixed field of βbα −1 can<br />

have at most √ q elements. S<strong>in</strong>ce there are only φ(e) generators of Aut(Fq),<br />

<strong>and</strong> βa can be any one of these for at most √ q values of a, it must be that<br />

φ(e) √ q ≥ q. In particular e ≥ √ q. With q = 2 e this is not possible. Hence<br />

βa must equal α for all nonzero a <strong>in</strong> Fq. This forces c(a) = 1 for all nonzero<br />

a. If we set d(0) = 0, then Ω = ∪{πa ∩ Ω : a ∈ Fq}, so<br />

where<br />

Ω = O(α, d) = {(1, t α + at + d(a), t, a) : a, t ∈ Fq} ∪ {(0, 1, 0, 0)},<br />

d(a) + d(b) ∈ {(s + t) α + (a + b)(s + t) : s, t ∈ Fq} = (a + b) α<br />

α−1 K. (7.6)<br />

Conversely, O(α, d) is an ovoid correspond<strong>in</strong>g to the alternat<strong>in</strong>g form<br />

x0y1 + x1y0 + x2y3 + x3y2 if d satisfies Eq. 7.6, s<strong>in</strong>ce this is just the condition<br />

that no two po<strong>in</strong>ts of the set O(α, d) are perpendicular with respect to the<br />

given form.


346 CHAPTER 7. OVOIDS IN 3-DIMENSIONAL SPACE<br />

Theorem 7.5.3 is a major step <strong>in</strong> the proof that if each secant plane <strong>in</strong> a<br />

pencil of an ovoid Ω meet Ω <strong>in</strong> a translation oval, then Ω is either an elliptic<br />

quadric or a Tits ovoid. However, at the present stage <strong>in</strong> our development<br />

the best we can do is to prove the follow<strong>in</strong>g.<br />

Theorem 7.5.4. Suppose that Ω is an ovoid <strong>in</strong> P G(3, q), q = 2 e > 2, <strong>and</strong><br />

that π is a secant plane such that π ∩ Ω is a translation oval. Let ℓ be an axis<br />

of π ∩ Ω. If each secant plane to Ω on ℓ meets Ω <strong>in</strong> <strong>in</strong> a translation oval,<br />

then there is a groupM of q homographies that fixes each plane πs, <strong>and</strong> <strong>in</strong><br />

πs <strong>in</strong>duces a group of elations all hav<strong>in</strong>g axis ℓ <strong>and</strong> act<strong>in</strong>g transitively on the<br />

po<strong>in</strong>ts of πs ∩ Ω different from (0, 1, 0, 0). (This will be enough later to show<br />

that O is either an elliptic quadric or a Tits ovoid. First we need some very<br />

technical results of D. Glynn [Gl84] that are given <strong>in</strong> Chapter 8.)<br />

Proof. By the preced<strong>in</strong>g theorem there is a generator α of Aut(Fq) <strong>and</strong> a<br />

function d such that Ω = O(α, d) <strong>and</strong> ℓ = [1, 0, 0, 0] ∩ [0, 0, 0, 1]. For u ∈ Fq<br />

let<br />

⎛<br />

1<br />

⎜<br />

Mu = ⎜<br />

⎝<br />

uα 0<br />

0<br />

1<br />

0<br />

u<br />

0<br />

1<br />

⎞<br />

0<br />

0 ⎟<br />

0 ⎠<br />

0 u 0 1<br />

.<br />

Then x ↦→ xMu is an homography (also denoted Mu) of P G(3, q) that maps<br />

the po<strong>in</strong>t (1, t α +st+d(s), t, s) to the po<strong>in</strong>t (1, (t+u) α +s(t+u)+d(s), t+u, s).<br />

So Mu leaves Ω fixed <strong>and</strong> <strong>in</strong>duces <strong>in</strong> each πs an elation with axis [1, 0, 0, 0] ∩<br />

[0, 0, 0, 1] with center (0, u α−1 + s, 1, 0). The group M = {Mu : u ∈ Fq} is<br />

transitive on the po<strong>in</strong>ts different from (0, 1, 0, 0) <strong>in</strong> πs ∩ Ω.<br />

7.6 The plane representation theorem<br />

We are now prepared to prove the “plane representation theorem” found<br />

<strong>in</strong>dependently by D. Glynn <strong>and</strong> T. Penttila.<br />

Let ℓ be a l<strong>in</strong>e of P G(3, q) tangent to the ovoid Ω at a po<strong>in</strong>t Q. So ℓ is<br />

on the unique plane tangent to Ω at Q <strong>and</strong> on q secant planes meet<strong>in</strong>g Ω<br />

<strong>in</strong> q different ovals whose nuclei are the q po<strong>in</strong>ts of ℓ different from Q. This<br />

set of q secant planes on a tangent l<strong>in</strong>e ℓ is called a pencil of Ω <strong>and</strong> ℓ is the<br />

carrier l<strong>in</strong>e of the pencil.<br />

Let O1 <strong>and</strong> O2 be two ovals of P G(2, q) (always q = 2 e ) hav<strong>in</strong>g a po<strong>in</strong>t<br />

Q <strong>in</strong> common <strong>and</strong> the same nucleus N. Let ℓ be the l<strong>in</strong>e ℓ = 〈Q, N〉 <strong>and</strong> let


7.6. THE PLANE REPRESENTATION THEOREM 347<br />

P be any po<strong>in</strong>t of ℓ different from Q <strong>and</strong> N. We say that O1 <strong>and</strong> O2 are<br />

compatible at P provided every secant l<strong>in</strong>e to O1 through P is external to<br />

O2, which is equivalent to hav<strong>in</strong>g each tangent l<strong>in</strong>e to O1 through P be a<br />

secant to O2.<br />

Let {Os : s ∈ Fq} be a set of ovals <strong>in</strong> P G(2, q) all hav<strong>in</strong>g nucleus N =<br />

(0, 1, 0) <strong>and</strong> satisfy<strong>in</strong>g Os ∩ Ot = {Q = (0, 0, 1)} for all s, t ∈ Fq with s = t<br />

<strong>and</strong> such that Os <strong>and</strong> Ot are compatible at (0, 1, s + t). Any image under a<br />

coll<strong>in</strong>eation of P G(2, q) of such a set of ovals is called a fan of ovals <strong>and</strong> the<br />

correspond<strong>in</strong>g image of the l<strong>in</strong>e [1, 0, 0] is called the common tangent of the<br />

fan. The Plane Equivalent Theorem (also known as the Plane Representation<br />

Theorem) establishes a correspondence between pencils of ovoids of P G(3, q)<br />

<strong>and</strong> fans of ovals of P G(2, q).<br />

Theorem 7.6.1. (Glynn <strong>and</strong> Penttila) There is a one-to-one correspondence<br />

between orbits of P ΓL(4, q) on (ovoid, tangent l<strong>in</strong>e)-pairs <strong>in</strong> P G(3, q) <strong>and</strong><br />

orbits of P ΓL(3, q) on fans of ovals of P G(2, q). Moreover, if the fan is<br />

{Os : s ∈ Fq},<br />

then for each plane π of the pencil there is a parameterization πs, s ∈ Fq of<br />

the planes of the pencil with π0 = π <strong>and</strong> such that there are homographies<br />

Ms tak<strong>in</strong>g πs to P G(2, q) with the image of the <strong>in</strong>tersection of the ovoid with<br />

πs under Ms be<strong>in</strong>g Os for each s ∈ Fq. Also, the image of the carrier l<strong>in</strong>e of<br />

the pencil under each Ms is the common tangent of the fan.<br />

Proof. Let Ω be an ovoid of P G(3, q) that def<strong>in</strong>es the symplectic polarity<br />

ν : (x0, x1, x2, x3) ↔ [x1, x0, x3, x2].<br />

For t ∈ Fq, put Nt = (0, 1, t, 0) <strong>and</strong> Q∞ = (0, 0, 1, 0). We may suppose<br />

that Q∞ ∈ Ω <strong>and</strong> that L∞ = 〈Q, N0〉 is a tangent l<strong>in</strong>e to Ω. Consider the<br />

pencil with carrier L∞. S<strong>in</strong>ce ν : Q∞ ↦→ π∞ = [0, 0, 0, 1], this plane is the<br />

tangent plane to Ω at Q∞. So the secant planes of the pencil with carrier<br />

L∞ are those of the form πa = [1, 0, 0, a], a ∈ Fq. Then ν : πa ↦→ Na. S<strong>in</strong>ce<br />

Oa = Ω ∩ πa conta<strong>in</strong>s the po<strong>in</strong>t Q∞ = (0, 0, 1, 0) <strong>and</strong> has nucleus Na, there<br />

must be an o-polynomial fa for which<br />

Oa = {(a, t, fa(t) + at, 1) : t ∈ Fq} ∪ {Q∞} with nucleus Na = (0, 1, a, 0).


348 CHAPTER 7. OVOIDS IN 3-DIMENSIONAL SPACE<br />

Let I be the 2 × 2 identity matrix <strong>and</strong> Ds the matrix Ds =<br />

Let µs be the homography with matrix<br />

<br />

I Ds<br />

[µs] = Ms =<br />

Ds I<br />

i.e., µs : (w, y, z, x) ↦→ (w, y, z, x) · Ms.<br />

<br />

,<br />

Each of the follow<strong>in</strong>g facts has a very simple proof.<br />

(i) MsMt = Ms+t <strong>and</strong> M0 = I4, so µs is an <strong>in</strong>volution.<br />

(ii) MsCM T s = C, so µs commutes with the polarity ν.<br />

(iii) µs : Nt ↦→ Ns+t, hence µs : πt ↦→ πs+t.<br />

(iv) µs : Q∞ ↦→ Q∞; µs : π∞ ↦→ π∞; µs : L∞ ↦→ L∞.<br />

0 0<br />

s 0<br />

S<strong>in</strong>ce µs : πs ↦→ π0, µs : Ns ↦→ N0, <strong>and</strong> µs : Q∞ ↦→ Q∞, clearly µs :<br />

Os ↦→ Ōs = {(0, t, fa(t), 1) ∈ π0 : t ∈ Fq} ∪ {Q∞} with nucleus N = N0. Put<br />

F = { Ōs : s ∈ Fq}. We will show that F is a fan of ovals <strong>in</strong> π0.<br />

Let Qs,a = (s, 0, a, 1) <strong>and</strong> recall Nt = (0, 1, t, 0). Put L = 〈Qs,a, Nt〉.<br />

As a varies over elements of Fq, L varies over the l<strong>in</strong>es of πs through the<br />

po<strong>in</strong>t Nt. Check that µs+t : Qs,a ↦→ Qt,a <strong>and</strong> µs+t : Nt ↦→ Ns. Check that<br />

〈Qt,a, Ns〉 ν = Q ν t,a ∩ N ν s = [0, t, 1, a] ∩ [1, 0, 0, s] = L. Hence 〈Qt,a, Ns〉 = L ν ,<br />

i.e., µs+t : L ↦→ L ν . Hence µs+t maps the l<strong>in</strong>es of πs through Nt to the l<strong>in</strong>es<br />

of πt through Ns <strong>in</strong> such a way that each such l<strong>in</strong>e gets mapped to its polar<br />

image. If L is a secant (respectively, external) l<strong>in</strong>e to Ω, its polar image is<br />

an external (respectively, secant) l<strong>in</strong>e. So µs+t maps the secant l<strong>in</strong>es to Os<br />

through Nt to the external l<strong>in</strong>es to Ot through Ns. But of course µs+t maps<br />

secant l<strong>in</strong>es to Os to secant l<strong>in</strong>es to (Os) µs+t through Ns. Hence (Os) µs+t is<br />

compatible with Ot at Ns, <strong>and</strong> it follows that<br />

(Os) µs+t◦µt = (Os) µs = Ōs is compatible with (Ot) µt = Ōt at N µt<br />

s<br />

= Ns+t.<br />

Thus { Ōs : s ∈ Fq} is a fan of ovals of π0 with common po<strong>in</strong>t Q∞ = (0, 0, 1, 0)<br />

<strong>and</strong> common nucleus N0 = (0, 1, 0, 0).<br />

Conversely, suppose we have a fan of ovals of P G(2, q). Take the image of<br />

the fan under a coll<strong>in</strong>eation so that the common nucleus is (1, 0, 0) <strong>and</strong> the<br />

<br />

.


7.6. THE PLANE REPRESENTATION THEOREM 349<br />

common po<strong>in</strong>t is (0, 1, 0), <strong>and</strong> let the result<strong>in</strong>g fan be denoted {Os : s ∈ Fq}.<br />

Each oval has the form {(t, fs(t), 1) : t ∈ Fq}∪{(0, 1, 0)} with nucleus (1, 0, 0).<br />

Embed P G(2, q) <strong>in</strong> P G(3, q) by ι : (y, z, x) ↦→ (0, y, z, x). Then {ι(Os) :=<br />

Ōs : s ∈ Fq} is a fan of ovals of π0 = [1, 0, 0, 0]. Put Ω = {( Ōs) µs : s ∈ Fq}.<br />

We claim that Ω is an ovoid of P G(3, q). The proof amounts to show<strong>in</strong>g that<br />

no two po<strong>in</strong>ts of Ω can be perpendicular with respect to the form def<strong>in</strong>ed by<br />

the polarity ν. Clearly (0, t, fs(t), 1) ∗ (0, r, fs(r), 1) = fs(t) + fs(r) = 0 for<br />

r = t, <strong>and</strong> (0, t, fs(t), 1) ∗ (0, 0, 1, 0) = 1 = 0. Hence no two po<strong>in</strong>ts of the<br />

same ( Ōs) µs are perpendicular.<br />

Suppose X <strong>and</strong> Y are two po<strong>in</strong>ts of Ω. Suppose that X ∗ Y = 0, <strong>and</strong> that<br />

X ∈ ( Ōs) µs <strong>and</strong> Y ∈ ( Ōr) µr . This says that<br />

Then<br />

X = (s, x, sx + fs(x), 1); Y = (r, y, ry + fr(y), 1), for some x, y ∈ Fq.<br />

X ∗ Y = sy + xr + sx + fs(x) + ry + fr(y) = fs(x) + fr(y) + (x + y)(r + s) = 0.<br />

Consider the l<strong>in</strong>e <strong>in</strong> π0 through (0, x, fs(x), 1) ∈ Ōs <strong>and</strong> Nr+s = (0, 1, r +<br />

s, 0). It is a secant to Ōs through the po<strong>in</strong>t Nr+s at which Ōs <strong>and</strong> Ōr<br />

are compatible. So Ōr should have no po<strong>in</strong>t of this l<strong>in</strong>e. But a po<strong>in</strong>t on<br />

the l<strong>in</strong>e is (0, x, fs(x), 1) + (y + x)(0, 1, r + s, 0) = (0, y, (y + x)(r + s) +<br />

fs(x), 1) = (0, y, fr(y), 1) ∈ Ōr, a contradiction. Hence no two po<strong>in</strong>ts of Ω<br />

are perpendicular with respect to the form def<strong>in</strong>ed by ν. Hence Ω is an ovoid<br />

of the GQ W (q) def<strong>in</strong>ed by this form. Then by a result of J. A. Thas, Ω must<br />

be an ovoid of P G(3, q). We <strong>in</strong>clude a proof of this as a separate lemma.<br />

Lemma 7.6.2. Let Ω be any ovoid of W (q). Then Ω is an ovoid of P G(3, q).<br />

Proof. Let Ω = {Q0, Q1, . . . , Q q 2}. A l<strong>in</strong>e of W (q) will be called a W -l<strong>in</strong>e,<br />

<strong>and</strong> a l<strong>in</strong>e of P G(3, 1) not <strong>in</strong> W (q) will be called a W ′ -l<strong>in</strong>e. Through Q0 (for<br />

example), there are q + 1 W-l<strong>in</strong>es <strong>and</strong> q 2 W ′ -l<strong>in</strong>es. Let Mj = 〈Q0, Qj〉, for<br />

1 ≤ j ≤ q 2 . If the l<strong>in</strong>es M1, . . . , Mj are not all dist<strong>in</strong>ct, i.e., if some three<br />

po<strong>in</strong>ts Q0, Qi, Qj of Ω are on a W ′ -l<strong>in</strong>e, then there must be a W ′ -l<strong>in</strong>e ℓ through<br />

Q0 that conta<strong>in</strong>s no other po<strong>in</strong>t of Ω. Suppose that ℓ = {Q0, P1, . . . , Pq}.<br />

Each of the W -l<strong>in</strong>es through each Pi must conta<strong>in</strong> a unique po<strong>in</strong>t of Ω (clearly<br />

not Q0). Hence some two of these po<strong>in</strong>ts of ℓ (say Pu, Pv) must be W -coll<strong>in</strong>ear<br />

with the same Qj. S<strong>in</strong>ce the two l<strong>in</strong>es 〈Pu, Qj〉 <strong>and</strong> 〈Pv, Qj〉 are both W -l<strong>in</strong>es,<br />

the plane they def<strong>in</strong>e must consist of the po<strong>in</strong>ts that are W -coll<strong>in</strong>ear with


350 CHAPTER 7. OVOIDS IN 3-DIMENSIONAL SPACE<br />

Qj. But this says that Q0 is W -coll<strong>in</strong>ear with Qj, a contradiction. Hence no<br />

l<strong>in</strong>e through Q0 can pass through two other po<strong>in</strong>ts of Ω. This says that Ω is<br />

an ovoid of P G(3, q).<br />

This can be immediately reworded to have a rather different appearance<br />

although it says the same th<strong>in</strong>g.<br />

Corollary 7.6.3. A set of q 2 + 1 po<strong>in</strong>ts of P G(3, q) with q = 2 e , q > 2,<br />

such that no two are perpendicular with respect to a fixed non-degenerate<br />

alternat<strong>in</strong>g form is an ovoid of P G(3, q).<br />

7.7 Semi-ovals <strong>and</strong> Semi-ovoids<br />

This section conta<strong>in</strong>s some results of J. A. Thas [Th74b]. Let K be a<br />

nonempty po<strong>in</strong>tset of P G(n, q), n ≥ 2. A tangent to K at a po<strong>in</strong>t P of<br />

K is a l<strong>in</strong>e ℓ such that ℓ ∩ K = {P }. Then K is called a semi-oval (resp.,<br />

semi-ovoid), provided n = 2 (resp., n > 2) <strong>and</strong> for each P ∈ K the union<br />

KP of all tangents to K at P is a hyperplane of P G(n, q). The semi-oval K<br />

(resp., semi-ovoid K) is an oval (resp., ovoid) of P G(n, q) if <strong>and</strong> only if each<br />

l<strong>in</strong>e not tangent to K <strong>in</strong>tersects K <strong>in</strong> just two po<strong>in</strong>ts or <strong>in</strong> none at all. Recall<br />

that each oval conta<strong>in</strong>s q+1 po<strong>in</strong>ts <strong>and</strong> each ovoid of P G(3, q) conta<strong>in</strong>s q 2 +1<br />

po<strong>in</strong>ts.<br />

If σ is a polarity of a f<strong>in</strong>ite projective plane Π of odd order, then the set<br />

of absolute po<strong>in</strong>ts of σ is a semi-oval. A nons<strong>in</strong>gular hermitian polarity of<br />

P G(2, q) with q odd has 1 + q √ q po<strong>in</strong>ts. If O is a semi oval of the plane Π<br />

<strong>and</strong> p ∈ O is a po<strong>in</strong>t such that all non-tangent l<strong>in</strong>es through p <strong>in</strong>tersect O<br />

<strong>in</strong> more than two po<strong>in</strong>ts, then O \ {p} is still a semi oval of P . A quadrangle<br />

<strong>in</strong> P G(2, 3) together with two of its diagonal po<strong>in</strong>ts gives a semi oval with<br />

6 po<strong>in</strong>ts. So for planes, the concept of semi oval is def<strong>in</strong>itely more general<br />

than that of oval. On the other h<strong>and</strong>, F. Buekenhout [Bu76] conjectured<br />

that every f<strong>in</strong>ite semi ovoid <strong>in</strong> dimension three is an ovoid <strong>and</strong> that there are<br />

no f<strong>in</strong>ite semi ovoids <strong>in</strong> dimension n > 3. The next theorem by J. A. Thas<br />

shows that the conjecture by Buekenhout is true.<br />

Theorem 7.7.1. (a) If O is a semi-oval of the f<strong>in</strong>ite projective plane π of<br />

order q, then q + 1 ≤ |O| ≤ q √ q + 1.<br />

(b) The only semi-ovoids of P G(3, q) are the ovoids.<br />

(c) In P G(n, q) with n > 3 there are no semi-ovoids.


7.7. SEMI-OVALS AND SEMI-OVOIDS 351<br />

Proof. Let O be a semi-oval of the f<strong>in</strong>ite projective plane π of order q. If<br />

P ∈ O <strong>and</strong> if ℓ is a l<strong>in</strong>e through P not tangent to O, then |O ∩ ℓ| > 1.<br />

Consequently<br />

|O| ≥ q + 1. (7.7)<br />

Next let O be a semi-ovoid <strong>in</strong> P G(n, q), n ≥ 3. Let ℓ be a l<strong>in</strong>e tangent to<br />

O at the po<strong>in</strong>t P of O. If π is a plane through ℓ different from the tangent<br />

hyperplane OP , (so π is not a tangent plane at any po<strong>in</strong>t of O) <strong>and</strong> if Q is<br />

any po<strong>in</strong>t of (π ∩ O), then the <strong>in</strong>tersection π ∩ O meets the tangent plane<br />

OQ <strong>in</strong> a unique l<strong>in</strong>e <strong>and</strong> it follows that π ∩ O is a semi-oval of π. S<strong>in</strong>ce there<br />

are q n−2 planes through ℓ not belong<strong>in</strong>g to the tangent hyperplane , we have<br />

|O| = 1 + <br />

(|π ∩ O| − 1) ≥ 1 + q · q n−2 = q n−1 + 1. (7.8)<br />

π<br />

Suppose that n ≥ 2. Let α be the number of po<strong>in</strong>ts on O <strong>and</strong> v the<br />

number of po<strong>in</strong>ts not on O, say {x1, . . . , xv} = P G(n, q) \ O <strong>and</strong> O =<br />

{P1, . . . , Pα}. Put ti equal to the number of tangent l<strong>in</strong>es on xi, 1 ≤ i ≤ v.<br />

Note that there are n−2 i=0 qi tangent l<strong>in</strong>es on each Pj ∈ O, <strong>and</strong> q po<strong>in</strong>ts xi<br />

on each such tangent l<strong>in</strong>e but not on O. Count <strong>in</strong> two ways the number of<br />

ordered pairs (xi, Pj) such that xiPj is a tangent l<strong>in</strong>e of O to obta<strong>in</strong>:<br />

v n−2<br />

ti = αq q i . (7.9)<br />

i=1<br />

Now count <strong>in</strong> two ways the number of ordered triples (xi, Pj, Pk) where<br />

xi ∈ P G(n, q) \ O, Pj, Pk ∈ O, Pj = Pk, <strong>and</strong> both xiPj <strong>and</strong> xiPk are tangent<br />

l<strong>in</strong>es.<br />

S<strong>in</strong>ce two tangent hyperplanes meet <strong>in</strong> a P G(n − 2, q) disjo<strong>in</strong>t from O,<br />

this number is<br />

i=0<br />

v<br />

n−2<br />

ti(ti − 1) = α(α − 1) q i . (7.10)<br />

i=1<br />

Now put Q ′ = n−2<br />

i=0 qi <strong>and</strong> add Eqs. 7.9 <strong>and</strong> 7.10 to obta<strong>in</strong><br />

t 2 i = α(α + q − 1)Q ′ . (7.11)<br />

Put t = 1 <br />

ti. Then<br />

v<br />

0 ≤ <br />

(ti − t) 2 = <br />

i<br />

i<br />

t 2 i<br />

i=0<br />

<br />

− 2t ti + v · t 2<br />

i


352 CHAPTER 7. OVOIDS IN 3-DIMENSIONAL SPACE<br />

= α(α + q − 1)Q ′ − 1<br />

2 <br />

ti .<br />

v<br />

i<br />

Put <strong>in</strong> the fact that v = n i=0 qi − α to get<br />

<br />

n<br />

0 ≤ q i <br />

− α α(α + q − 1)Q ′ − α 2 q 2 Q ′2 .<br />

i=0<br />

Divide through by αQ ′ :<br />

<br />

n<br />

0 ≤ q i <br />

− α (α + q − 1) − α<br />

i=0<br />

Now put Q = n<br />

i=0 qi , so we have<br />

n<br />

q i .<br />

i=2<br />

0 ≤ (Q − α)(α + q − 1) − α(Q − q − 1).<br />

After some simplification this becomes<br />

α 2 − 2α − (q − 1)Q ≤ 0, i.e., 1 − q n+1 ≤ α ≤ 1 + q n+1 . (7.12)<br />

It is now clear that part (a) of the theorem is proved, <strong>and</strong> from Eqs. 7.8<br />

<strong>and</strong> 7.12 we have the follow<strong>in</strong>g:<br />

If n ≥ 3, then 1 + q n−1 ≤ α ≤ 1 + q n+1 . But q n−1 ≤ q n+1 implies<br />

that n ≤ 3 <strong>and</strong> if n = 3 then α = 1 + q 2 .


Chapter 8<br />

Trace Equations<br />

The first characterization theorem for elliptic quadrics <strong>in</strong> P G(3, q) was the<br />

theorem of Barlotti [Ba55] <strong>and</strong> (<strong>in</strong>dependently) Panella [Pa55] that we gave<br />

<strong>in</strong> Chapter 7. This theorem says that an ovoid of P G(3, q) for which each<br />

plane section is a conic must be an elliptic quadric. D. Glynn [Gl84] improved<br />

this to say that an ovoid with a pencil of conics is an elliptic quadric. Glynn’s<br />

paper was not quite self-conta<strong>in</strong>ed. In several papers T. Penttila with various<br />

coauthors strengthened the trace equations of Glynn so that <strong>in</strong> this chapter<br />

we can give a self-conta<strong>in</strong>ed version due essentially to Penttila. In view of<br />

the fact that <strong>in</strong> Chapter 11 we give the result by M. Brown that characterizes<br />

elliptic quadrics as the ovoids with even one conic, <strong>and</strong> his proof really<br />

depends only on the Barlotti-Panella result, one may question the need for<br />

the present chapter. However, the full story is not <strong>in</strong> yet. In this chapter we<br />

give several results that were used by Penttila (<strong>and</strong> coauthors) to give more<br />

general characterizations. These results appear later <strong>in</strong> this book. It may be<br />

that this material will prove useful <strong>in</strong> yet further improvements.<br />

In this chapter we collect a variety of rather specialized results concern<strong>in</strong>g<br />

the trace function. These are all used to characterize ovoids with certa<strong>in</strong><br />

k<strong>in</strong>ds of plane sections <strong>and</strong> also flock generalized quadrangles to be <strong>in</strong>troduced<br />

later. This chapter is rather dry read<strong>in</strong>g <strong>and</strong> might better be referred<br />

to from time to time later as certa<strong>in</strong> of the results are needed.<br />

353


354 CHAPTER 8. TRACE EQUATIONS<br />

8.1 Cyclotomic Cosets<br />

In this section q = 2 e for some positive <strong>in</strong>teger e. For each <strong>in</strong>teger x put<br />

[x] = {2 i x (mod q − 1) : i ∈ Z}.<br />

This set [x] of <strong>in</strong>tegers modulo q−1 is called the cyclotomic coset of x modulo<br />

q − 1. For 2 i x, 2 j x <strong>in</strong> [x], def<strong>in</strong>e the product<br />

2 i x ◦ 2 j x ≡ 2 i+j x (mod q − 1).<br />

With this product it is easy to show that [x] is a cyclic group with identity<br />

2 0 x = x <strong>and</strong> generator 2x. S<strong>in</strong>ce 2 e x ≡ x (mod q − 1), the order of the group<br />

[x] must divide e. Let ℓx be the order of the group [x]. Here we may th<strong>in</strong>k<br />

of x as be<strong>in</strong>g a residue modulo q − 1 s<strong>in</strong>ce if x ≡ y (mod q − 1) then [x] <strong>and</strong><br />

[y] are identical. So another way to view ℓx is that it is the smallest positive<br />

<strong>in</strong>teger for which (2 ℓx − 1)x ≡ 0 (mod q − 1). This means that it is the order<br />

of 2 modulo (q − 1)/gcd(x, q − 1). In particular, ℓ0 = 1 for all q − 1, <strong>and</strong><br />

ℓ1 = e for q − 1 = 2 e − 1.<br />

Lemma 8.1.1. The residues modulo q − 1 = 2 e − 1 are partitioned <strong>in</strong>to<br />

cyclotomic cosets.<br />

Proof. We need to show that two cyclotomic cosets are disjo<strong>in</strong>t or identical.<br />

So suppose that x <strong>and</strong> y are <strong>in</strong>tegers that are dist<strong>in</strong>ct modulo q − 1. Suppose<br />

that there are <strong>in</strong>tegers i <strong>and</strong> j for which 2 i x ≡ 2 j y (mod q − 1). S<strong>in</strong>ce any<br />

power of 2 is relatively prime to q − 1, this implies y ≡ 2 i−j x (mod q − 1),<br />

i.e., y ∈ [x], which easily implies [y] ⊆ [x]. Similarly, [x] ⊆ [y]. So Zq−1 is<br />

partitioned <strong>in</strong>to dist<strong>in</strong>ct cyclotomic cosets.<br />

Def. A reduced representative set (RRS) (modulo q − 1) is a set of dist<strong>in</strong>ct<br />

representatives for the dist<strong>in</strong>ct cyclotomic cosets modulo q − 1. The<br />

def<strong>in</strong>itions <strong>and</strong> Lemma 8.1.1 make it clear that the follow<strong>in</strong>g corollary holds.<br />

Corollary 8.1.2. Let R be an RRS modulo q − 1. Then each residue (mod<br />

q − 1) is uniquely represented <strong>in</strong> the form 2 i d for some d ∈ R <strong>and</strong> 0 ≤ i ≤<br />

ℓd − 1.<br />

For 1 ≤ j ≤ q − 2 there is a unique nonzero dj ∈ R such that j ∈ [dj].<br />

Let ij be the smallest nonnegative <strong>in</strong>teger such that 2 ij · dj ≡ j (modq − 1).


8.2. MORE BASIC TRACE EQUATIONS 355<br />

Then j<br />

:= 2 dj<br />

ij 0 . For j = 0, we have 2 · 0 ≡ 0(modq − 1). Here ℓ0 = 1<br />

<strong>and</strong> d0 = 0. By convention we put 0 = 1. With this notation we have the<br />

d0<br />

follow<strong>in</strong>g lemma.<br />

Lemma 8.1.3. For 0 ≤ j ≤ q − 2, we have j ≡ dj · 2 ij (mod q − 1) with<br />

dj ∈ R uniquely determ<strong>in</strong>ed <strong>and</strong> ij the smallest nonnegative <strong>in</strong>teger for which<br />

the congruence holds. Then<br />

j ≡ d · 2 i (mod q − 1) with d ∈ R <strong>and</strong> 0 ≤ i ≤ e − 1 ⇐⇒<br />

d = dj ∈ R <strong>and</strong> i ≡ ij (mod ℓdj ).<br />

Lemma 8.1.4. Suppose that j ≡ dj ·2 ij with dj ∈ R as above. Then ℓj = ℓdj .<br />

Proof. ℓ ≡ 0 (mod ℓj) if <strong>and</strong> only if (2 ℓ −1)j ≡ (2 ℓ −1)dj ·2 ij ≡ 0 (mod q −1)<br />

if <strong>and</strong> only if (2 ℓ − 1)dj ≡ 0 (mod q − 1) (s<strong>in</strong>ce (2 ij , q − 1) = 1) if <strong>and</strong> only<br />

if ℓ ≡ 0 (mod ℓdj ). This shows that ℓj = ℓdj .<br />

8.2 More Basic Trace Equations<br />

Lemma 8.2.1. Let α be a generator of Aut(Fq) = A, q = 2 e . Then<br />

tr((x + 1) α/(α−1) + x α/(α−1) + 1) = 0 (8.1)<br />

for all x ∈ Fq if <strong>and</strong> only if α = 2 or α 2 = 2.<br />

Proof. Suppose that Eq. 8.1 holds for all x ∈ Fq. S<strong>in</strong>ce α generates Aut(Fq)<br />

there is a smallest positive <strong>in</strong>teger i such that α i = 2. Hence (α − 1)(1 +<br />

α + · · · + α i−1 ) = (α i − 1) = 2 − 1 = 1 <strong>and</strong> it follows that α/(α − 1) =<br />

α + α 2 + · · · + α i . Hence<br />

(x + 1) α/(α−1) + x α/(α−1) + 1<br />

= (x + 1) α+α2 +···+αi + x α+α2 +···+αi + 1<br />

= (x + 1) α (x + 1) α2<br />

· · · (x + 1) αi<br />

+ x α+α2 +α 3 +···+α i<br />

= (x α + 1)(x α2<br />

+ 1) · · · (x αi<br />

+ 1) + x α+α2 +···+αi + 1<br />

= x n ,<br />

+ 1


356 CHAPTER 8. TRACE EQUATIONS<br />

where the sum is over all n which are sums of a non-empy proper subset of<br />

{α, α2 , . . . , αi }. Suppose that i > 1. We claim that the only powers of 2<br />

(mod q − 1) occurr<strong>in</strong>g as exponents <strong>in</strong> this summation are α, α2 , . . . , αi .<br />

Before prov<strong>in</strong>g this claim we note a couple of th<strong>in</strong>gs. First, each of the terms<br />

α, α2 , . . . , αi does occur. Second, if the claim is true, then Lemma 4.12.2 is<br />

say<strong>in</strong>g that the number of terms of the form x αj<br />

that appear must be even,<br />

s<strong>in</strong>ce each would appear with a coefficient a α j = 1 <strong>and</strong> they must add up to<br />

0.<br />

Then, by hypothesis α = 2 a for some a with 1 ≤ a ≤ e − 1 <strong>and</strong> (a, e) = 1.<br />

Suppose that for some X = {k1, . . . , kd} ⊆ {1, 2, . . . , i} it is true that<br />

<br />

k∈X 2ak ≡ 2 j (mod q − 1) for some 0 ≤ j < e. There are dist<strong>in</strong>ct <strong>in</strong>tegers<br />

l1, . . . , ld such that, for each m, 1 ≤ m ≤ d, we have 0 < lm < e <strong>and</strong><br />

lm ≡ akm (mod e). Then 2 lm = 2 j . It follows that X = {k1} <strong>and</strong> 2 j =<br />

2 l1 ≡ 2 ak1 ≡ α k1 (mod q − 1). Thus there are exactly i powers of 2 occurr<strong>in</strong>g<br />

as exponents <strong>in</strong> the summation. By the previous lemma this number i must<br />

be even.<br />

Now suppose that i > 2. We claim that the only sums of two powers of<br />

2 of the form 2 j + 2 j+a , where 0 ≤ j < e <strong>and</strong> α = 2 a , occurr<strong>in</strong>g as exponents<br />

<strong>in</strong> the sumation are α + α 2 , α 2 + α 3 , . . . , α i−1 + α i . With the notation of<br />

the previous paragraph suppose that<br />

2 lm ≡ 2 akm ≡ 2 j + 2 j+a ≡ 2 j + 2 l (mod q − 1),<br />

where j + a ≡ l (mod e) for 0 ≤ l < e. Hence 2 ak1 + 2 ak2 = 2 j + 2 j+a ,<br />

<strong>and</strong> we deduce as above that X = {k1, k2 = k1 + 2} with 2 j = α k1 <strong>and</strong><br />

2 l ≡ α k2 = α k1+1 , prov<strong>in</strong>g our claim. By Lemma 4.12.2 the number i − 1 of<br />

terms of the form α j + α j+1 must be even. This is a contradiction. Hence<br />

i ≤ 2, that is α = 2 or α 2 = 2.<br />

Conversely, if α = 2 then α/(α − 1) = 2, so (x + 1) α/(α−1) + x α/(α−1) + 1 =<br />

(x + 1) 2 + x 2 + 1 = 0 <strong>and</strong> hence tr((x + 1) α/(α−1) + x α/(α−1) + 1) = 0 for all<br />

x ∈ Fq. Similarly if α 2 = 2 then α/(α − 1) = α + α 2 = α + 2, so<br />

(x + 1) α/(α−1) + x α/(α−1) + 1 =<br />

= (x + 1) α (x + 1) 2 + x α+2 + 1<br />

= (x α + 1)(x 2 + 1) + x α+2 + 1<br />

= x α + x 2 .<br />

For all x ∈ Fq we have tr(x α + x 2 ) = tr(x α )+tr(x 2 ) = 0.


8.2. MORE BASIC TRACE EQUATIONS 357<br />

Lemma 8.2.2. Let q = 2 e <strong>and</strong> let n be a positive <strong>in</strong>teger. If for some a ∈ F ∗ q<br />

either<br />

(1) tr(ax n ) = 0 for all x ∈ Fq, or<br />

(2) tr(ax n ) = 1 for all x ∈ F ∗ q ,<br />

then for some <strong>in</strong>teger i with 0 < i < e it follows that n(2 i −1) ≡ 0 (mod q−1).<br />

Proof. From Lemma 4.12.2 we see that there must be (at least one) α ∈ A,<br />

α = id, such that nα ≡ n (mod q − 1), say α = 2 i . This proves (1). For<br />

(2), if tr(b) = 1, then tr(ax n + bx q−1 ) = 0 for all x ∈ Fq. S<strong>in</strong>ce nα ≡<br />

q − 1 (mod q − 1), by Lemma 4.12.2 there must be some α ∈ A with α = id<br />

for which nα ≡ n (mod q − 1).<br />

Lemma 8.2.3. Let α <strong>and</strong> β be generators of A. Suppose that either<br />

(1) (α/(α − 1) − β/(β − 1))(2 i − 1) ≡ 0 (mod q − 1), or<br />

(2) (α/(α − 1) − β)(2 i − 1) ≡ 0 (mod q − 1)<br />

for some i with 0 < i < e. Then α = β, <strong>and</strong> <strong>in</strong> Case (2) α = 2.<br />

Proof. By hypothesis, α = 2 j with 0 < j < e <strong>and</strong> (j, e) = 1. So (α−1, q−1) =<br />

1. Similarly, both β −1 <strong>and</strong> (α−1)(β −1) are units <strong>in</strong> Zq−1. Suppose that (1)<br />

holds. Then multiply<strong>in</strong>g by (α − 1)(β − 1) we have (α(β − 1) − β(α − 1))(2 i −<br />

1) = (β −α)(2 i −1) ≡ 0 )mod q −1), imply<strong>in</strong>g β2 i +α ≡ α2 i +β (mod q −1).<br />

By the uniqueness of the b<strong>in</strong>ary expansion of a number, {β2 i , α} = {α2 i , β},<br />

(<strong>in</strong>terpret<strong>in</strong>g β2 i <strong>and</strong> α2 i as powers of 2 less than q). S<strong>in</strong>ce α = α2 i , it follows<br />

that α = β.<br />

Now suppose that (2) holds. Then multiply<strong>in</strong>g by α − 1 gives (α + β −<br />

αβ)(2 i −1) ≡ 0 (mod q−1). Hence α2 i +β2 i +αβ ≡ α+β+αβ2 i (mod q−1),<br />

<strong>and</strong> we <strong>in</strong>terpret each side of this congruence as a sum of three positive powers<br />

of 2, each less than q. If, on each side, the three terms were dist<strong>in</strong>ct powers<br />

of 2, then we would have {α2 i , β2 i , αβ} = {α, β, αβ2 i }, but this is not the<br />

case s<strong>in</strong>ce αβ does not lie <strong>in</strong> the second set. Thus on at least one side of<br />

the congruence two of the terms are equal. It follows that either α = β or<br />

one of α <strong>and</strong> β lies <strong>in</strong> {2 i , 2 e−i }. In the latter case, as α <strong>and</strong> β are both<br />

generators of A, the <strong>in</strong>teger i must be prime to e, so the hypothesis of (2)<br />

says (α/(α − 1) ≡ β (mod q − 1). By Lemma 4.12.5, α = β = 2. In the<br />

former case, the congruence becomes α2 i+1 + α 2 ≡ 2α + α 2 2 i (mod q − 1), so<br />

{α2 i+1 , α 2 } = {2α, α 2 2 i } <strong>and</strong> hence α = 2 (s<strong>in</strong>ce 2 i ≡ 1 (mod q − 1)).<br />

Lemma 8.2.4. Let α, γ be generators of A with α = 2. If<br />

trace((x α−1 + 1) 1/(γ−1) + x) = 1 ∀x ∈ Fq, (8.2)


358 CHAPTER 8. TRACE EQUATIONS<br />

then q is not a square <strong>and</strong> α = γ = σ, where σ ∈ A is such that σ 2 = 2.<br />

Proof. Putt<strong>in</strong>g x = 0 <strong>in</strong> Eq. 8.2 shows that trace(1) = 1, hence q is not a<br />

square <strong>and</strong><br />

trace((x α−1 + 1) 1/(γ−1) + x) = 1 ∀x ∈ Fq<br />

⇐⇒ trace((x α−1 + 1) 1/(γ−1) + x + 1) = 0 ∀x ∈ Fq<br />

⇐⇒ trace((y + 1) 1/(γ−1) + y 1/(α−1) + 1) = 0<br />

⎛<br />

∀y ∈ Fq (8.3)<br />

⎜<br />

<br />

⇐⇒ trace ⎝ y k + y 1/(α−1) ⎞<br />

⎟<br />

+ 1⎠<br />

= 0 ∀y ∈ Fq.<br />

k 1<br />

γ−1<br />

S<strong>in</strong>ce α <strong>and</strong> γ are generators of A there exist positive <strong>in</strong>tegers n, m such<br />

that α n = 2 <strong>and</strong> γ m = 2. It follows that 1/(α − 1) = 1 + α + · · · + α n−1 <strong>and</strong><br />

1/(γ − 1) = 1 + γ + · · · + γ m−1 . Hence we obta<strong>in</strong><br />

⎛<br />

trace ⎝<br />

<br />

k1+γ+···+γ m−1<br />

y k + y 1+α+···+αn−1<br />

⎞<br />

+ 1⎠<br />

= 0 ∀y ∈ Fq.<br />

Let bi be the coefficient of y i <strong>in</strong> the sum <strong>and</strong> let ai be the coefficient of y i<br />

<strong>in</strong> the whole expression. Put z = 1 + α + · · · + α n−1 . Then a0 = b0 + 1,<br />

az = bz + 1 <strong>and</strong> ai = bi for each i = 0, z. We shall apply Lemma 4.12.2 with<br />

i = 1 + γ + · · · + γ m−1 . For β ∈ A we have a iβ −1 = 0 if <strong>and</strong> only if either<br />

iβ −1 i <strong>and</strong> iβ −1 = z, or iβ −1 = z <strong>and</strong> z i.<br />

Suppose that iβ −1 = z for each β ∈ A. then a iβ −1 = 0 for β ∈ A if <strong>and</strong><br />

only if iβ −1 i, that is, if <strong>and</strong> only if β = 1. By Lemma 4.12.2 we have<br />

ai = 1 = 0, an impossibility. Hence there exists β ∈ A such that iβ −1 = z.<br />

This says<br />

(1 + γ + · · · + γ m−1 ) = β(1 + α + · · · + α n−1 ).<br />

It follows that α − 1 = β(γ − 1). Suppose that α = 2 r , β = 2 s , γ = 2 t ,<br />

where (r, e) = (t, e) = 1. Then a little manipulation gives α + β = βγ + 1, or<br />

2 r + 2 s ≡ 2 s+t + 1 (mod q − 1). It follows that 2 s = 1, i.e., s = 0 <strong>and</strong> r = t,<br />

i.e., α = γ. Now apply the automorphism α to the first l<strong>in</strong>e of Eq. 8.3 with<br />

α = γ <strong>and</strong> x = y 1<br />

α−1 , <strong>and</strong> use Lemma 8.2.1 to see that α2 = 2 as desired.


8.3. TRACE EQUATIONS BY GLYNN 359<br />

8.3 Trace Equations by Glynn<br />

The first result is Lemma 4.7 of Glynn [Gl84].<br />

Let q = 2e <strong>and</strong> let R be a reduced representative system mod q − 1, so<br />

R conta<strong>in</strong>s one element of each cyclotomic coset mod q − 1. For each d ∈ Z<br />

(but especially for each d ∈ R), ℓd is the smallest positive <strong>in</strong>teger for which<br />

(2ℓd q−1<br />

− 1)d ≡ 0 (mod q − 1), i.e., ℓd is the order of 2 modulo . Put<br />

gcd(d,q−1)<br />

σd = 2ℓd, so σk e<br />

d , 1 ≤ k ≤ ℓd , are the dist<strong>in</strong>ct powers of σd. If 0 ≤ j ≤ q − 2,<br />

write j ≡ dj · 2ij for a uniquely determ<strong>in</strong>ed dj ∈ R <strong>and</strong> a unique smallest<br />

nonnegative <strong>in</strong>teger ij. (Review Section 8.1 <strong>and</strong> recall that ℓj = ℓdj .)<br />

For each d ∈ R, let bd be an element of Fq. Put<br />

⎛ „ «<br />

q−2 e/ℓj j<br />

(σd ) dj j<br />

f(t) = ⎝ b<br />

k<br />

⎞<br />

⎠ t dj<br />

j ⎛<br />

q−2 e/ℓj <br />

= ⎝ b 2i ⎞<br />

j +kℓj⎠<br />

t dj<br />

j .<br />

j=0<br />

k=1<br />

Lemma 8.3.1. 1 = tr <br />

d∈R bdt d = e−1<br />

i=0<br />

j=0<br />

k=1<br />

<br />

d∈R bdt d 2 i<br />

<strong>and</strong> only if e/ℓd<br />

k=1 bσk d<br />

d = 0 for all d ∈ R \ {0}, <strong>and</strong> tr(b0) = 1.<br />

Proof. The key observation here is that<br />

<br />

e−1<br />

<br />

bdt d<br />

⎛<br />

2i q−2 e/ℓj <br />

= ⎝ b<br />

i=0<br />

d∈R<br />

j=0<br />

k=1<br />

„ «<br />

j<br />

(σd ) dj j k<br />

dj<br />

⎞<br />

⎠ t j = f(t).<br />

for all t ∈ F ∗ q if<br />

If this expression equals 1 for all t ∈ F ∗ q , s<strong>in</strong>ce deg(f(t)) ≤ q − 2 < q − 1,<br />

then if f(0) = ℓ, f(t) must be the unique polynomial of degree at most q − 1<br />

1, t = 0,<br />

with f(t) =<br />

l, t = 0, Hence f(t) = (1 − ℓ)tq−1 + ℓ. S<strong>in</strong>ce f(t) actually<br />

has degree at most q −2, it must be that ℓ = 1 <strong>and</strong> f(t) = 1. So the constant<br />

= tr(b0). Also, if 1 ≤ j ≤ q − 2, then<br />

term is 1 = f(0) = e/ℓ0<br />

k=1 b1·(2ℓ 0 ) k<br />

d0<br />

imply<strong>in</strong>g<br />

e/ℓj <br />

b<br />

k=1<br />

„ «<br />

j<br />

(2 dj ℓj ) k<br />

dj<br />

⎛<br />

e/ℓj <br />

= ⎝<br />

e/ℓj <br />

k=1<br />

b σk d j<br />

dj<br />

k=1<br />

b 2kℓ d j<br />

dj<br />

= 0.<br />

⎞<br />

⎠<br />

„ «<br />

j<br />

dj = 0,


360 CHAPTER 8. TRACE EQUATIONS<br />

This completes the proof.<br />

Our next result generalizes Lemma 4.8 of Glynn [Gl84].<br />

Let m be an <strong>in</strong>teger (mod q −1) such that (m, q −1) = 1. Let g : Fq → Fq<br />

be a function given by<br />

q−2 <br />

g(x) = aix i .<br />

We want to <strong>in</strong>vestigate just when g(x) can have the property that<br />

g(a) + g(b)<br />

(a + b) m<br />

It is clear that this holds if <strong>and</strong> only if<br />

Put<br />

g(s + t) + g(s)<br />

t m<br />

K(s, t) =<br />

i=0<br />

has trace 1 for all a, b ∈ Fa, a = b.<br />

has trace 1 for all s, t ∈ Fq, t = 0.<br />

g(s + t) + g(s)<br />

t m<br />

= t −m<br />

q−2 <br />

i=0<br />

ai((s + t) i + s i ).<br />

So we want to know when tr(K(s, t)) = 1 ∀ s, t ∈ Fq, t = 0.<br />

Let R be an RRS (mod q − 1). Recall that each residue mod q − 1<br />

is uniquely represented <strong>in</strong> the form p2 i mod q − 1 where p ∈ R <strong>and</strong> 0 ≤<br />

i ≤ lp − 1. So if m is a fixed residue mod q − 1, each i mod q − 1 has<br />

a unique representation of the form i ≡ p · 2 k + m (mod q − 1) for some<br />

p ∈ R <strong>and</strong> 0 ≤ k ≤ lp − 1. Let p · 2 k + m be the unique <strong>in</strong>teger such that<br />

0 ≤ p · 2 k + m ≤ q − 2 <strong>and</strong> p · 2 k + m ≡ p · 2 k + m (mod q − 1). Then it is<br />

clear that<br />

Hence<br />

{i : 0 ≤ i ≤ q − 2} = {p · 2 k + m : p ∈ R & 0 ≤ k ≤ lp − 1}.


8.3. TRACE EQUATIONS BY GLYNN 361<br />

=<br />

<br />

tr ap·2k (s + t) +m<br />

p∈R k=0<br />

p·2k +m p·2<br />

+ s k <br />

+m<br />

t −m<br />

<br />

lp−1 <br />

2−k <br />

tr ap·2k (s + t) +m<br />

p·2k +m p·2<br />

+ s k <br />

+m<br />

t −m<br />

2−k tr(K(s, t)) = lp−1 <br />

<br />

= tr<br />

p∈R k=0<br />

lp−1 <br />

p∈R<br />

Put αpk =<br />

<br />

k=0<br />

2−k ap·2k +m<br />

2−k ap·2k +m<br />

s<br />

p·2k +m<br />

+ 1 +<br />

t<br />

<br />

s<br />

<br />

p·2k +m<br />

2−k t<br />

<br />

t p<br />

<br />

.<br />

<strong>and</strong> z = s.<br />

Then tr(K(s, t)) = 1 for all s, t ∈ Fq<br />

t<br />

with t = 0 if <strong>and</strong> only if tr(K ′ (z, t) = 1 for all z, t ∈ Fq with t = 0, where<br />

tr{K ′ lp−1 <br />

(z, t)} = tr αpk((1 + z) p·2k +m p·2<br />

+ z k +m 2<br />

) −k<br />

<br />

· t p<br />

<br />

.<br />

p∈R<br />

k=0<br />

Consider K ′ (z, t) as a polynomial <strong>in</strong> t <strong>and</strong> apply Lemma 8.1 to get the<br />

follow<strong>in</strong>g result:<br />

Lemma 8.3.2.<br />

(i) e/lp<br />

j=1<br />

<br />

g(s) + g(t)<br />

tr<br />

(s + t) m<br />

<br />

= 1 ∀ s = t ∈ Fq ⇐⇒<br />

<br />

lp−1<br />

k=0 αpk<br />

<br />

(1 + z) p·2k +m p·2 + z k 2−k +m<br />

2jlp = 0 ∀ z ∈ Fq, p ∈<br />

R \ {0},<br />

<strong>and</strong><br />

(ii) (p = 0) 1 = tr {α00 [(1 + z) m + z m ]}, for all z ∈ Fq <strong>and</strong> α00 =<br />

am = am is the coefficient of x m <strong>in</strong> g(x). In particular tr(am) = 1.<br />

Note: We emphasize that if tr<br />

g(s)+g(t)<br />

(s+t) m<br />

<br />

= 1 ∀ s = t ∈ Fq, then if am is<br />

the coefficient of x m <strong>in</strong> g(x), it must be that 1 = tr {am [(1 + z) m + z m ]} for<br />

all z ∈ Fq. In particular, tr(am) = 1. Go<strong>in</strong>g back through the substitutions<br />

made above we see that this is equivalent to<br />

m m a(t + s )<br />

tr<br />

(t + s) m<br />

<br />

= 1 ∀ t, s ∈ Fq, s = t. (8.4)


362 CHAPTER 8. TRACE EQUATIONS<br />

Lemma 8.3.3. (Lemma 2.6 of [GOPP96]) Suppose that for some a ∈ Fq<br />

<strong>and</strong> some <strong>in</strong>teger r,<br />

Then<br />

tr {a[(x + 1) r + x r ]} = 1 ∀ x ∈ Fq.<br />

tr{(x + 1) r + x r + 1} = 0 ∀ x ∈ Fq.<br />

Proof. Put x = 0 to see that tr(a) = 1. Then put T = {(1+x) r +xr +1 : x ∈<br />

Fq}. S<strong>in</strong>ce tr{a(x + 1) r + axr + a} = 0, clearly aT ⊆ K. Also T α = T <strong>and</strong><br />

aαT = (aT ) α ⊆ Kα = K. Hence t ∈ T implies aαt ∈ T =⇒ <br />

α∈A aαt ∈<br />

K =⇒ tr(a)t ∈ K. S<strong>in</strong>ce tr(a) = 1, this implies that if t ∈ T , then t ∈ K,<br />

i.e., T ⊂ K.<br />

Recall the relation “ ” on the set {0, 1, . . . , q − 2} of <strong>in</strong>tegers mod q − 1,<br />

<strong>and</strong> write i ≺ n to mean that i n but i = n. For x, y ∈ Fq, we have<br />

(x + y) n = <br />

x i y n−i .<br />

0<strong>in</strong><br />

Lemma 8.3.4. (Lemma 2.7 of [GPPP96]) Suppose tr((x + 1) r + x r + 1) = 0<br />

for all x ∈ Fq <strong>and</strong> for some <strong>in</strong>teger r with (r, q −1) = 1 (so x ↦→ x r permutes<br />

the elements of Fq). Then r = α or r = α + β where α, β ∈ A are dist<strong>in</strong>ct.<br />

Conversely, if r = α or r = α+β with α, β ∈ A, then tr((x+1) r +x r +1) = 0<br />

for all x ∈ Fq.<br />

Proof. Clearly, if r = α or r = α + β, then s<strong>in</strong>ce xα <strong>and</strong> xβ have the same<br />

trace, tr((x + 1) r + xr + 1) = 0 for all x ∈ Fq. So assume this latter condition<br />

holds. WOLG we may assume that r ∈ A, so r is not a power of 2. Then<br />

tr{(x + 1) r + x r + 1} = tr{ <br />

x k } = <br />

x kη = <br />

x kη .<br />

0≺k≺r<br />

η∈A 0≺k≺r<br />

0≺k≺r η∈A<br />

This expression is 0 for all x ∈ Fq if <strong>and</strong> only if the coefficient on each term<br />

x i is zero. It turns out that it is sufficient to consider the coefficients on those<br />

x i with 0 ≺ i ≺ r. Note that kη = i iff k = iη −1 . So the coefficient on x i for<br />

0 ≺ i ≺ r <strong>in</strong> <br />

0≺k≺r<br />

<br />

η∈A xkη is |{γ ∈ A : iγ ≺ r}| (mod 2). So<br />

tr((x + 1) r + x r + 1) = 0 ∀ x ∈ Fq ⇐⇒ |{γ ∈ A : iγ ≺ r}| ≡ 0 (mod 2)<br />

whenever 0 ≺ i ≺ r.


8.3. TRACE EQUATIONS BY GLYNN 363<br />

If i = r, γ ≺ r would imply that rγ would have fewer summ<strong>and</strong>s than r,<br />

impossible.<br />

First consider i = 2j for fixed j with 2j r (of course r not a power of<br />

2 implies 2jγ = r for any γ ∈ A). Put c = |{γ ∈ A : 2jγ r}|, so c must be<br />

even. This says r is the sum of an even number c of dist<strong>in</strong>ct powers of 2.<br />

Next, put i = r − 2j r. Here |{γ ∈ A : (r − 2j )γ ≺ r}| must be even.<br />

As 1 is <strong>in</strong> this set, there must be some nonidentity element δ ∈ A for which<br />

(r − 2j )δ r. Put i = 1 + δ <strong>and</strong> note that |{γ ∈ A : (1 + d)γ ≺ r}| must be<br />

even. But (1 + δ)γ r implies γ + γδ r =⇒ γδ r (s<strong>in</strong>ce γ = γδ ∈ A).<br />

There are c elements γ ∈ A with γ r, s<strong>in</strong>ce r is a sum of c powers of 2.<br />

Suppose that c > 2. If γ ∈ A satisfies γ r <strong>and</strong> γ = 2j , then γ appears <strong>in</strong><br />

r − 2j so that γδ r. Hence (1 + δ)γ = γ + γδ r, but (1 + δ)γ = r s<strong>in</strong>ce<br />

(1 + δ)γ is the sum of only 2 powers of 2.<br />

On the other h<strong>and</strong>, if 2ℓ r, then (1 + δ)2ℓ = 2ℓ + 2ℓδ r implies there<br />

are exactly c − 1 automorphisms γ = 2j with (1 + δ)γ r (i.e., those γ ∈ A<br />

with γ r <strong>and</strong> γ = 2j ). S<strong>in</strong>ce c − 1 is odd, <strong>and</strong> there are an even number of<br />

γ with (1 + δ)γ r, we must also have γ = 2j satisfy (1 + δ)2j r, so that<br />

2jδ r.<br />

Hence γ ≤ r iff (1 + δ)γ r (<strong>and</strong> γδ r). It follows that<br />

<br />

<br />

rδ = γ δ = <br />

γδ r.<br />

γr<br />

S<strong>in</strong>ce r is a sum of c dist<strong>in</strong>ct powers of 2, so is rδ, imply<strong>in</strong>g rδ = r, so<br />

r(δ−1) ≡ 0 (mod q−1). But (r, q−1) = 1 implies that δ = 1, a contradiction.<br />

Hence c ≤ 2, complet<strong>in</strong>g the proof.<br />

Lemma 8.3.5. (Lemma 4.10 of Glynn generalized) For q = 2 e <strong>and</strong> a fixed<br />

<strong>in</strong>teger p with 1 ≤ p ≤ q − 2, we suppose that there are αpk ∈ Fq, 0 ≤ k ≤<br />

lp − 1, such that<br />

e/ℓp ℓp−1<br />

<br />

αpk[(1 + z) p+2r−k<br />

n=1<br />

k=0<br />

γr<br />

+ z p+2r−k<br />

]<br />

2 nℓp<br />

= 0 ∀ z ∈ Fq. (8.5)<br />

Then αpk = 0 for all k = 0, 1, . . . , ℓp − 1. (Keep <strong>in</strong> m<strong>in</strong>d that p = 0.)<br />

Proof. Put z = 1 to get e/ℓp<br />

n=1<br />

[(1 + z) p+2r−k<br />

ℓp−1<br />

k=0 αpk<br />

2 nℓp<br />

= 0. Note that<br />

+ z p+2r−k<br />

] = (1 + z) p + [(1 + z) p + z p ]z 2r−k<br />

.


364 CHAPTER 8. TRACE EQUATIONS<br />

Also, recall that (1 + z) p·2nℓp<br />

k <strong>and</strong> n, Eq. 8.7 becomes<br />

e/ℓp ℓp−1 <br />

αpk[(1 + z) p + z p ]z 2r−k<br />

n=1<br />

This is the same as<br />

<br />

k=0<br />

e/ℓp<br />

[(1 + z) p + z p ] 2nℓ + p<br />

n=1<br />

= (1 + z) p . S<strong>in</strong>ce (1 + z) p is <strong>in</strong>dependent of both<br />

ℓp−1<br />

<br />

k=0<br />

αpkz 2r−k<br />

2 nℓp<br />

2 nℓp<br />

By def<strong>in</strong>ition of ℓp, (2 ℓp − 1)p ≡ 0 (mod q − 1), so<br />

It follows that<br />

(1 + z) p·2nℓp<br />

+ z p·2nℓp<br />

[(1 + z) p z p e/ℓp<br />

] ·<br />

= 0 ∀ z ∈ Fq. (8.6)<br />

= 0 ∀ z ∈ Fq.<br />

= (1 + z) p + z p for n = 1, 2, . . . , e/ℓp.<br />

<br />

n=1<br />

ℓp−1<br />

<br />

k=0<br />

αpkz 2r−k<br />

2 nℓp<br />

for all z ∈ Fq.<br />

Suppose 0 ≤ k, k ′ ≤ ℓp − 1 <strong>and</strong> 1 ≤ n, n ′ ≤ e/ℓp. Then<br />

2 r−k+nℓp ≡ 2 r−k′ +n ′ ℓp (mod q − 1) iff<br />

−k + nℓp ≡ −k ′ + n ′ ℓp (mod e) iff<br />

k ′ − k ≡ (n ′ − n)ℓp (mod e).<br />

= 0 (8.7)<br />

This condition implies that k ′ − k ≡ 0 (mod ℓp), so k = k ′ , <strong>and</strong> then n ′ − n ≡<br />

0 (mod e/ℓp), forc<strong>in</strong>g n = n ′ . Thus [(1 + z) p + zp ] · e−1 2i<br />

i=0 γiz = 0 for all<br />

z ∈ Fq, where for each i with 0 ≤ i ≤ e − 1, γi is just some αpk raised to<br />

some power of 2.<br />

We now need a result from elementary number theory: each cyclotomic<br />

coset different from {0} must conta<strong>in</strong> some element between 1 <strong>and</strong> q/2 − 1,<br />

<strong>in</strong>clusive. So for the given p we are us<strong>in</strong>g, 1 ≤ p ≤ q − 2, choose an <strong>in</strong>teger<br />

j such that 2jp ≡ x (mod q − 1) where 1 ≤ x < q/2. Raise Eq. 8.6 to the<br />

power 2j to obta<strong>in</strong>:<br />

<br />

[(1 + z) x + z x e−1<br />

] · γi 2j<br />

i=0<br />

· z 2i+j<br />

= 0 ∀ z ∈ Fq.


8.3. TRACE EQUATIONS BY GLYNN 365<br />

Let z a be the largest nonzero term of (1+z) x +z x <strong>and</strong> let z b be the largest<br />

power of z with nonzero coefficient <strong>in</strong> e−1 2j<br />

i=0<br />

γi ·z2i+j (with exponents reduced<br />

so they lie between 20 <strong>and</strong> 2e−1 ).<br />

Then a+b < (2e−1−1)+2e−1 = q−1, so a+b ≤ q−2. Hence za+b is left over<br />

(with nonzero coefficient) after any cancellation of terms of the expression.<br />

Hence the coefficient on zb must have been zero after all, s<strong>in</strong>ce a polynomial<br />

of degree ≤ q − 2 with more than q − 2 roots must be the zero polynomial.<br />

It follows that γi = 0 for all i, so αpk = 0 for all 0 ≤ k ≤ ℓp − 1.<br />

Recapitulation: Suppose m is an <strong>in</strong>teger with 1 ≤ m ≤ q − 2 <strong>and</strong><br />

(m, q − 1) = 1. Then suppose g : Fq → Fq satisfies<br />

<br />

g(a) + g(b)<br />

tr<br />

(a + b) m<br />

<br />

= 1 ∀ a, b ∈ Fq, a = b. (8.8)<br />

It is clear that g must be a permutation, so we can write<br />

We saw that<br />

q−2 <br />

g(x) = aix i .<br />

i=0<br />

{i : 0 ≤ i ≤ q − 2} = {p · 2 k + m : p ∈ R <strong>and</strong> 0 ≤ k ≤ lp − 1},<br />

where R is an RRS mod q − 1. Put αpk =<br />

g(s) = lp−1 <br />

p∈R k=0<br />

For 0 = p ∈ R, Lemma 8.3.2 says that<br />

e/lp lp−1<br />

<br />

j=1<br />

<br />

k=0<br />

αpk<br />

2−k ap·2k . Then<br />

+m<br />

αpkx p·2k +m .<br />

<br />

(1 + z) p·2k +m p·2<br />

+ z k 2<br />

2−k +m<br />

jlp = 0 ∀ z ∈ Fq, p ∈ R \ {0}.<br />

Then Lemma 8.3.5 says that if m = α ∈ A, then αpk = 0 if 0 = p ∈ R,<br />

but this means a p·2 k +m = 0 if p = 0. But the only term with p = 0 is am, so<br />

that


366 CHAPTER 8. TRACE EQUATIONS<br />

g(x) = ax α with tr(a) = 1.<br />

Also, Lemma 8.3.2 says that tr{am[(1 + z) m + z m ]} = 1 for all z ∈ Fq.<br />

Then by Lemma 8.3.3 we have tr{(x + 1) m + x m + 1} = 0 for all x ∈ Fq, so<br />

that by Lemma 8.3.4 m = α or m = α + β for dist<strong>in</strong>ct α, β ∈ A. This means<br />

that Eq. 8.7 can be rewritten. First, write a <strong>in</strong> place of am, for some a with<br />

tr(a) = 1. If m = α ∈ A, then g(s) = as α with tr(a) = 1 satisfies Eq. 8.7.<br />

So suppose m = α + β for dist<strong>in</strong>ct α, β ∈ A. Then the equation appears as<br />

α+β α+β a(s + t )<br />

tr<br />

(s + t) α+β<br />

<br />

= 1 ∀ s, t ∈ Fq, s = t. (8.9)<br />

If we make the substitution t = s + z, Eq. 8.8 becomes<br />

α β β α α+β a(s z + s z + z )<br />

tr<br />

zα+β <br />

= 1 ∀s, z ∈ Fq, z = 0. (8.10)<br />

Now make the substitution y = s+z , i.e., s = z + yz, to obta<strong>in</strong><br />

z<br />

tr(a[y α + y β + 1]) = tr(a[(y + 1) α+β + y α+β ]) = 1 ∀y ∈ Fq, tr(a) = 1, (8.11)<br />

which is equivalent to (put η = α/β ∈ A):<br />

tr(a[(y + 1) η+1 + y η+1 ]) = tr(a[y η + y + 1]) = 1 ∀ y ∈ Fq,<br />

<strong>and</strong> hence, s<strong>in</strong>ce we also have tr(a) = 1, to<br />

tr(at η + at) = 0 ∀ t ∈ Fq (for some a ∈ Fq with tr(a) = 1. (8.12)<br />

Now apply Lemma 8.3.1 to get a + aη−1 = 0, i.e., a ∈ Fix(η). Conversely,<br />

if tr(a) = 1 <strong>and</strong> α, β ∈ A is such that aα/β = a, then Eq. 8.7 holds.<br />

S<strong>in</strong>ce tr(a) = 1, <strong>and</strong> a ∈ Fix(α/β) = Fq0, it must be that q = qh 0 where h<br />

is odd. This completes a proof of the follow<strong>in</strong>g.<br />

Theorem 8.3.6. Suppose that m is an <strong>in</strong>teger with 1 ≤ m ≤ q − 2 <strong>and</strong><br />

(m, q − 1) = 1. Then suppose that g : Fq → Fq satisfies<br />

<br />

g(a) + g(b)<br />

tr<br />

(a + b) m<br />

<br />

= 1 ∀ a, b ∈ Fq, a = b.


8.4. OVOIDS WITH A PENCIL OF CONICS 367<br />

Then either m = α ∈ A <strong>and</strong> g(s) = asα for some a ∈ Fq with tr(a) = 1,<br />

or there are dist<strong>in</strong>ct α, β ∈ A for which m = α + β <strong>and</strong> if a is the coefficient<br />

on sα+β <br />

a(sα+β +tα+β )<br />

<strong>in</strong> g(s), then tr (s+t) α+β<br />

<br />

= 1 whenever s = t, for some a ∈ Fq<br />

with tr(a) = 1 <strong>and</strong> a is <strong>in</strong> the subfield Fq0 fixed by the automorphism η = α/β,<br />

<strong>and</strong> q = qh 0 where h is odd. Moreover, the converse holds.<br />

Corollary 8.3.7. If g : Fq → Fq satisfies<br />

<br />

g(s) + g(t)<br />

tr<br />

(s + t) 2<br />

<br />

= 1 ∀ s, t ∈ Fq with s = t,<br />

then there is some constant a ∈ Fq with tr(a) = 1, <strong>and</strong> g(s) = as 2 .<br />

We are now <strong>in</strong> a position to give a proof of a theorem of D. Glynn .<br />

S<strong>in</strong>ce it is rather important we give it a separate section of its own. The<br />

proof as given, while based on the computations <strong>in</strong> Glynn [Gl84], is modified<br />

somewhat as suggested by the article of Penttila <strong>and</strong> Praeger [PP97].<br />

8.4 <strong>Ovoids</strong> with a pencil of conics<br />

If ℓ is a tangent l<strong>in</strong>e at a po<strong>in</strong>t P to an ovoid Ω of P G(3, q), the set of q + 1<br />

plane sections of Ω by the planes on ℓ is called a pencil of conics of Ω at the<br />

po<strong>in</strong>t P . The l<strong>in</strong>e ℓ is the carrier of the pencil.<br />

Theorem 8.4.1. If an ovoid Ω of P G(3, q) has a pencil of conics, then it is<br />

an elliptic quadric.<br />

Proof. By the theorem of Barlotti <strong>and</strong> Panella we may assume that q is<br />

even <strong>and</strong> even greater than 4. Moreover, we have seen that we may choose<br />

coord<strong>in</strong>ates of P G(3, q) so that the symplectic form determ<strong>in</strong>ed by Ω is:<br />

x ∗ y = x0y1 + x1y0 + x2y3 + x3y2,<br />

<strong>and</strong> the tangent l<strong>in</strong>e ℓ carry<strong>in</strong>g the pencil is: x0 = x3 = 0, i.e., [1, 0, 0, 0] ∩<br />

[0, 0, 0, 1]. Also, Q = ℓ ∩ Ω = (0, 1, 0, 0). The pencil is then {Os = πs ∩ Ω :<br />

s ∈ Fq}, where πs = [1, 0, 0, s], so the nucleus of Oa is π ⊥ s = Ns = (0, 1, s, 0).<br />

This means that the conic Os has the form<br />

Os = {(1, f(s)t 2 + ts + g(s), t, s) : t ∈ Fq} ∪ {(0, 1, 0, 0)}.


368 CHAPTER 8. TRACE EQUATIONS<br />

For fixed but dist<strong>in</strong>ct s1, s2, we have for all t1, t2 ∈ Fq,<br />

(1, f(s1)t 2 1 + t1s1 + g(s1), t1, s1) ∗ (1, f(s2)t 2 2 + t2s2 + g(s2), t2, s2) = 0.<br />

Writ<strong>in</strong>g out this condition leads to<br />

f(s1)t 2 1 + (s1 + s2)t1 + g(s1) = f(s2)t 2 2 + (s1 + s2)t2 + g(s2).<br />

S<strong>in</strong>ce {dt2 + et + f : t ∈ Fq} = e2 K + f (by Theorem 8.3), so we have<br />

d<br />

that<br />

(s1 + s2) 2<br />

f(s1) K + g(s1) is disjo<strong>in</strong>t from (s1 + s2) 2<br />

K + g(s2).<br />

f(s2)<br />

(s1+s2) 2<br />

Hence f(s1) = f(s2) = a, say, <strong>and</strong> g(s1) + g(s2) ∈ K, which means<br />

a<br />

<br />

a(g(s1) + g(s2))<br />

tr<br />

(s1 + s2) 2<br />

<br />

= 1 ∀ s1, s2 ∈ Fq, s1 = s2.<br />

Hence g(x) = bs 2 with tr(ab) = 1, so<br />

Ω = {(1, at 2 + st + bs 2 , t, s) : t, s ∈ Fq} ∪ {(0, 1, 0, 0)},<br />

which is an elliptic quadric s<strong>in</strong>ce ax 2 + x + b is irreducible.<br />

8.5 More Trace Equations<br />

The next result is from O’Keefe <strong>and</strong> Penttila (Characterizations of Flock<br />

GQ) <strong>and</strong> is a generalization of Lemma 4.11 of Glynn [Gl84].<br />

Lemma 8.5.1. Let q = 2 e , e odd <strong>and</strong> e ≥ 3. For a fixed p ∈ Z suppose<br />

1 ≤ p ≤ q − 2. Let γ <strong>and</strong> δ be elements of A such that γ/δ is a generator of<br />

A. F<strong>in</strong>ally, suppose that<br />

e/lp ℓp−1 <br />

αpk[(1 + z) p+(γ+δ)2−k<br />

n=1<br />

k=0<br />

+ z p+(γ+δ)2−k<br />

]<br />

2 nℓp<br />

for all z ∈ Fq. Then αpk = 0 for all k with 0 ≤ k < ℓp, or there is an r ∈ Z<br />

with 2 r p ≡ q − 2 (mod q − 1 (so WLOG p = q − 2, s<strong>in</strong>ce p <strong>and</strong> q − 2 would<br />

then be <strong>in</strong> the same cyclotomic coset), <strong>and</strong> αpk = 0 for (p, k) = (q − 2, r) <strong>and</strong><br />

(q − 2, s), with all other coefficients equal to zero.<br />

= 0


8.5. MORE TRACE EQUATIONS 369<br />

Proof. Recall that ℓp was def<strong>in</strong>ed to be the smallest positive <strong>in</strong>teger such that<br />

(2ℓp − 1)p ≡ 0 (mod q − 1). It follows by <strong>in</strong>duction on n that for any positive<br />

<strong>in</strong>teger n it is true that zp·2nℓp = zp for all z ∈ Fq. The expression <strong>in</strong> the<br />

Lemma is zero for all z ∈ Fq if <strong>and</strong> only if it reduces to zero modulo (zq − z)<br />

when written as a sum of powers of z. If we equate with zero the coefficient<br />

on each power of z we get a set of q equations <strong>in</strong> the ℓp variables αpk. To<br />

solve these equations we first put (αpk) 2nℓp<br />

= xn k , 0 ≤ k < ℓp, 1 ≤ n ≤ e/ℓp<br />

<strong>and</strong> solve the result<strong>in</strong>g system L of q l<strong>in</strong>ear equations<br />

e/ℓp <br />

ℓp−1 <br />

n=1 k=0<br />

x n k<br />

<br />

(1 + z) p+(γ+δ)2−k<br />

+ z p+(γ+δ)2−k 2 nℓp<br />

= 0, ∀ z ∈ Fq.<br />

Note that <strong>in</strong> this expression, x n k is not a power of xk but one of e variables.<br />

Now make two simplifications. Br<strong>in</strong>g <strong>in</strong> the power 2 nℓp <strong>and</strong> replace p · 2 nℓp<br />

with p. Second, relabel the variables x n k = ym = y nℓp−k so that c ≡ c (mod e)<br />

with 1 ≤ c ≤ e. Then notice that the system of l<strong>in</strong>ear equations <strong>in</strong> the ym,<br />

1 ≤ m ≤ e has coefficients <strong>in</strong> F2. So if we can solve the orig<strong>in</strong>al system of<br />

equations, we can now solve<br />

e<br />

ym((1 + z) p+(γ+δ)2m<br />

m=1<br />

+ z p+(γ+δ)2m<br />

) = 0, ∀z ∈ Fq, (8.13)<br />

with ym ∈ F2, 1 ≤ m ≤ e.<br />

Put H = {0, 1, . . . , e−1}. For x ∈ Z, def<strong>in</strong>e 〈x〉 by x ≡ <br />

i∈〈x〉 2i (mod q−<br />

1). Here, if x ≡ 0 (mod q − 1), put 〈x〉 = ∅ when x = 0 <strong>and</strong> 〈x〉 = H<br />

otherwise. Then the b<strong>in</strong>omial theorem (mod 2) says that<br />

(1 + z) a = z b , where the sum is over all b such that<br />

〈b〉 ⊆ 〈a〉, 0 ≤ b ≤ q − 1.<br />

Suppose that Eq. 8.13 has a non-trivial solution with ym ∈ {0, 1}, 1 ≤<br />

m ≤ e. Let Y = {〈p + (γ + δ)2m 〉 : ym = 1}. If zi appears with a coefficient<br />

of 1 <strong>in</strong> one of the expressions ((1 + z) p+(γ+δ)2m + zp+(γ+δ)2m ), then clearly<br />

〈i〉 must be a proper subset of the correspond<strong>in</strong>g 〈p + (γ + δ)2m 〉, <strong>and</strong> every<br />

subset of H must be strictly conta<strong>in</strong>ed <strong>in</strong> an even number of the sets <strong>in</strong> Y .<br />

The exponent 0 on z corresponds to the empty set of H. As it must appear<br />

<strong>in</strong> an even number of sets <strong>in</strong> Y <strong>and</strong> it appears <strong>in</strong> each set of Y , it must be<br />

that |Y | is even. S<strong>in</strong>ce our solution {ym} is nontrivial, Y = ∅, so |Y | ≥ 2.


370 CHAPTER 8. TRACE EQUATIONS<br />

Let M be the size of the largest set <strong>in</strong> Y , <strong>and</strong> let A be one such set of<br />

size M. Every subset of size M − 1 <strong>in</strong> A is strictly conta<strong>in</strong>ed <strong>in</strong> at least two<br />

sets of Y , so at least one set of Y other than A. Such a set necessarily has<br />

size M.<br />

Let A = 〈p + (γ + δ)2 a 〉. It has M subsets of size M − 1. Let Bi =<br />

〈p + (γ + δ)2 bi 〉, 1 ≤ i ≤ M, such that A ∩ B1, A ∩ B2, . . . , A ∩ BM are the<br />

dist<strong>in</strong>ct subsets of A of size M − 1.<br />

Suppose γ = 2 r = δ = 2 s , so our hypothesis <strong>in</strong>cludes the assumption that<br />

(r − s, e) = 1. Then (p + (γ + δ)2 a ) − (p + (γ + δ)2 bi ) ≡ (2 r + 2 s )(2 a − 2 bi ) ≡<br />

2 xi − 2 yi (mod q − 1) for some xi = yi ∈ H.<br />

We now consider this last congruence:<br />

2 r+a + 2 s+a + 2 yi ≡ x r+bi + 2 s+bi + 2 xi (mod q − 1). (8.14)<br />

We first consider the case where the three powers on the left are dist<strong>in</strong>ct,<br />

imply<strong>in</strong>g that the three powers on the right are also dist<strong>in</strong>ct. Hence, modulo<br />

e, we have that r ≡ s; a ≡ bi; xi ≡ yi, <strong>and</strong> {r+a, s+a, yi} = {r+bi, s+bi, xi}<br />

are sets of size 3 modulo e. One of the two possibilities is that yi ≡ r + bi,<br />

which forces s + a ≡ xi <strong>and</strong> hence r + a ≡ s + bi. From this it follows easily<br />

that<br />

a − bi ≡ s − r (mod e).<br />

The other possibility is that yi ≡ s + bi, which forces s + a ≡ r + bi <strong>and</strong><br />

r + a ≡ xi. From this it follows that<br />

Hence<br />

a − bi ≡ r − s(mod e).<br />

a − bi ≡ ±(r − s) (mod e) (8.15)<br />

S<strong>in</strong>ce there are at most two possible values for bi <strong>in</strong> this case, M ≤ 2.<br />

The next case to consider is where the three powers on the left <strong>in</strong> Eq. 8.15<br />

yield two dist<strong>in</strong>ct powers of 2 (<strong>and</strong> the same on the right). If 2 i + 2 j + 2 k<br />

simplifies to a sum of two dist<strong>in</strong>ct powers of 2, it must be that some two of<br />

the three exponents are the same, say i ≡ j, <strong>and</strong> that the third exponent<br />

k satisfies k ≡ i + 1 (mod e). In our situation we cannot have all three<br />

exponents the same, s<strong>in</strong>ce r ≡ s (mod e). So <strong>in</strong> the present case there are<br />

two possibilities:


8.5. MORE TRACE EQUATIONS 371<br />

The first is: yi ≡ r+a ≡ s+bi ≡ r+bi+1 <strong>and</strong> xi ≡ r+bi ≡ s+a ≡ r+a+1}.<br />

Here we see a−bi ≡ s−r ≡ r−s, so 2(r−s) ≡ 0 (mod e). But by hypothesis,<br />

gcd(r − s, e) = 1, imply<strong>in</strong>g that e ≤ 2, a possibility we do not allow.<br />

The second possibility is: yi ≡ s+a ≡ r +bi ≡ s+bi +1 <strong>and</strong> xi ≡ s+bi ≡<br />

r + a ≡ s + a + 1. Here we see a − bi ≡ r − s ≡ s − r, so aga<strong>in</strong> e ≤ 2, a<br />

possibility we do not allow. Hence this case does not arise.<br />

The third <strong>and</strong> f<strong>in</strong>al case to be considered is where the three powers on the<br />

left <strong>in</strong> Eq. 8.14 yield just one power of 2 (<strong>and</strong> the same on the right). Here<br />

there are two possibilities. The first is that yi ≡ r + a ≡ s + bi ≡ r + bi + 1<br />

<strong>and</strong> s + a ≡ r + a + 1 ≡ xi ≡ r + bi. It follows that a − bi ≡ s − r ≡ r − s,<br />

<strong>and</strong> s ≡ r + 1, imply<strong>in</strong>g that ±2 ≡ 0, or e ≤ 2. The other possibility is that<br />

yi ≡ s + a ≡ r + bi ≡ s + bi + 1 <strong>and</strong> xi ≡ s + bi ≡ r + a ≡ s + a + 1. Here<br />

a − bi ≡ r − s ≡ s − r <strong>and</strong> r ≡ s + 1. So aga<strong>in</strong> e ≤ 2. Hence this third case<br />

does not arise for q ≥ 8.<br />

We have seen that <strong>in</strong> each case there are at most two possible values for<br />

bi. So M ≤ 2. So first suppose that M = 2. Hence we have the follow<strong>in</strong>g<br />

three sets <strong>in</strong> Y :<br />

A : 〈p + 2 r+a + 2 s+a = 2 u + 2 v 〉<br />

B1 : 〈 p + 2 r+b1 + 2 s+b1 = 2 u + 2 w 〉<br />

B2 : 〈 p + 2 r+b2 + 2 s+b2 = 2 v + 2 t 〉<br />

By consider<strong>in</strong>g A − B1 <strong>and</strong> A − B2 we quickly f<strong>in</strong>d<br />

{r + a, s + a, w} = {r + b1, s + b1, v} must be three dist<strong>in</strong>ct residues mod e;<br />

{r + a, s + a, t} = {r + b2, s + b2, u} must be three dist<strong>in</strong>ct residues mod e.<br />

Here a, b1, b2 are dist<strong>in</strong>ct modulo e; u, v, w are dist<strong>in</strong>ct modulo e; <strong>and</strong><br />

u, v, t are dist<strong>in</strong>ct modulo e. At this po<strong>in</strong>t we see that v must be congruent<br />

to r + a or to s + a. The roles of r <strong>and</strong> s are <strong>in</strong>terchangeable. So WLOG we<br />

assume v ≡ r + a (mod e). It quickly follows that<br />

Consider B1 now:<br />

v ≡ r + a, s + a ≡ r + b1, s + b1 ≡ w,<br />

s + a ≡ u, r + a ≡ s + b2, t ≡ r + b2.


372 CHAPTER 8. TRACE EQUATIONS<br />

p + 2 r+b1 + 2 s+b1 = 2 u + 2 w = 2 s+a + 2 s+b1 = 2 r+b1 + 2 s+b1 ,<br />

which implies that p = 0. As this contradicts our hypothesis, we must<br />

conclude that M = 2, i.e., M = 1.<br />

So with M = 1 we have<br />

p + (2 r + 2 s )2 a = 2 x , <strong>and</strong><br />

p + (2 r + 2 s )2 b = 2 y ,<br />

where a ≡ b <strong>and</strong> x ≡ y, modulo e. Moreover, we saw above that we may<br />

assume that a ≡ b + s − r. Hence<br />

(2 r + 2 s )(2 a − 2 b ) ≡ (2 r + 2 s )(2 s−r − 1)2 b ≡ 2 2s−r+b − 2 r+b ≡ 2 x − 2 y .<br />

It follows that y ≡ r + b, x ≡ 2s − r + b, so that x ≡ y + 2(s − r). Then<br />

p = 2 x − (2 r + 2 s )2 a = 2 y+2(s−r) − (2 b+s + 2 b+2s−r ) ≡ −2 y−r+s .<br />

This implies that<br />

2 r−s−y p ≡ −1 ≡ q − 2 (mod q − 1).<br />

This means that p <strong>and</strong> −1 are <strong>in</strong> the same cyclotomic coset, <strong>and</strong> we could<br />

use −1 <strong>in</strong> place of p when choos<strong>in</strong>g an RRS. So suppose p ≡ −1 ≡ q−2. Then<br />

r−s−y ≡ 0, so y ≡ r−s; b ≡ y −r ≡ −s ≡ e−s; a ≡ b+s−r ≡ −r ≡ e−r.<br />

At this po<strong>in</strong>t we have established that |〈−1+(γ +δ)2 m 〉| = 1 implies that<br />

m ≡ e − r or m ≡ e − s. Solutions to the system L have p ≡ q − 2 ≡ −1 <strong>and</strong><br />

ye−r = 0 = ye−s, <strong>and</strong> ym = 0 otherwise. With p = −1, we have ℓp = e, s<strong>in</strong>ce<br />

p(2 ℓ − 1) ≡ − (mod q − 1) if <strong>and</strong> only if 2 ℓ − 1 ≡ 0. Then with p = −1 we<br />

have ye−r = ye·ℓp−r = x e r = αq−2,r. The same th<strong>in</strong>g holds with r replaced by<br />

s, <strong>and</strong> we have<br />

αq−2,r = 0 = αq−2,s; all other αp,k = 0 for p ∈ R \ {0}.<br />

Lemma 8.5.2. Let f : Fq → Fq be a function (which WLOG may be assumed<br />

to send 0 to 0) <strong>and</strong> let γ, δ ∈ A be such that γ/δ is a generator of A (so<br />

γ = δ). The equation <br />

f(x) + f(y)<br />

tr<br />

(x + y) γ+δ<br />

<br />

= 1<br />

holds for all x, y ∈ Fq with x = y if <strong>and</strong> only if f(x) = x γ+δ + b δ x γ + b γ x δ for<br />

some b ∈ Fq. Further, <strong>in</strong> this case q is not a square.


8.5. MORE TRACE EQUATIONS 373<br />

Proof. By Lemma 8.3.2 we have the follow<strong>in</strong>g:<br />

<br />

f(s) + f(t)<br />

tr<br />

(s + t) γ+δ<br />

<br />

= 1 ∀ s = t ∈ Fq ⇐⇒<br />

(i) e/ℓp<br />

j=1<br />

<br />

ℓp−1<br />

k=0 αpk<br />

<br />

(1 + z) p·2k +γ+δ p·2 + z k 2−k +γ+δ<br />

2jℓp = 0 ∀ z ∈ Fq, p ∈<br />

R \ {0},<br />

<strong>and</strong><br />

(ii) (p = 0) 1 = tr <br />

γ+δ γ+δ<br />

α00 (1 + z) + z , for all z ∈ Fq <strong>and</strong> α00 =<br />

aγ+δ = aγ+δ is the coefficient of xγ+δ <strong>in</strong> g(x). In particular tr(aγ+δ) = 1. It<br />

follows by Lemma 8.5.1 that f(x) = axγ+σ +bxγ +cxδ for some a with tr(a) =<br />

1 <strong>and</strong> b = 0 = c. Moreover, by Theorem 8.3.6 we have a ∈ F ix(γ/δ) = F2,<br />

so a = 1. Then tr(1) = 1 implies q is not a square.<br />

So at this po<strong>in</strong>t we have:<br />

γ+δ γ+δ (x + y )<br />

1 = tr<br />

(x + y) γ+δ<br />

γ δ<br />

b(x + y) + c(x + y)<br />

+ tr<br />

(x + y) γ+δ<br />

<br />

,<br />

where the first term has trace equal to 1, so that<br />

tr(b(t) −δ + ct −γ ) = 0 ∀ t ∈ Fq. (8.16)<br />

By Lemma 4.12.2, if we <strong>in</strong>dex b = a−δ <strong>and</strong> c = a−γ, then 0 = a−δ +a δ/γ<br />

−γ =<br />

b + c δ/γ , i.e., b γ = c δ . So put b = d δ <strong>and</strong> c = d γ for some nonzero d. Then<br />

f(x) appears as f(x) = x γ+δ + d δ x γ + d γ x δ , as desired.


374 CHAPTER 8. TRACE EQUATIONS


Chapter 9<br />

F<strong>in</strong>ite <strong>Generalized</strong> Quadrangles<br />

9.1 Introduction<br />

Dur<strong>in</strong>g the time s<strong>in</strong>ce generalized quadrangles (GQ) were first <strong>in</strong>troduced<br />

by J. Tits [Ti59] a rather large body of theory has grown up around them.<br />

In 1984 it was possible to <strong>in</strong>clude <strong>in</strong> [PT84] essentially all that was known<br />

about f<strong>in</strong>ite GQ. In the two decades follow<strong>in</strong>g the appearance of [PT84]<br />

(which we often denote by FGQ) the theory has developed at such a pace<br />

that it is no longer possible to <strong>in</strong>clude most of what is known <strong>in</strong> a s<strong>in</strong>gle<br />

book. There have been a few surveys that have attempted to br<strong>in</strong>g the<br />

reader up to date. We mention two <strong>in</strong> particular: Chapters 7 <strong>and</strong> 9 by<br />

J. A. Thas <strong>in</strong> the H<strong>and</strong>book of Incidence <strong>Geometry</strong> [Bu95], <strong>and</strong> the survey<br />

[JP97]. More recently there appeared two other books devoted to f<strong>in</strong>ite GQ,<br />

the volume [KT04] by K. Thas <strong>and</strong> the volume [TTVM06] by J. A. Thas,<br />

K. Thas <strong>and</strong> H. Van Maldeghem. But these works are not really <strong>in</strong>tended<br />

as first <strong>in</strong>troductions to GQ. In the present book our goal is to provide<br />

an essentially self-conta<strong>in</strong>ed <strong>in</strong>troduction to the theory of f<strong>in</strong>ite generalized<br />

quadrangles, with emphasis on those examples <strong>and</strong> theorems that are related<br />

to ovals <strong>and</strong> ovoids <strong>in</strong> P G(n, q), for n ≤ 5. It is not our <strong>in</strong>tention to replace<br />

[PT84], but rather to provide an alternative <strong>in</strong>troduction that treats those<br />

aspects of the theory most useful <strong>in</strong> the present sett<strong>in</strong>g.<br />

Before we give the def<strong>in</strong>ition of a GQ we present the smallest nontrivial<br />

example <strong>and</strong> a sequence of exercises deal<strong>in</strong>g with it. This section can be<br />

omitted on a first read<strong>in</strong>g, but it does offer a rather detailed look at the<br />

smallest member of an <strong>in</strong>f<strong>in</strong>ite family (the symplectic GQ denoted W (q))<br />

375


376 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

that will play a significant role <strong>in</strong> our studies.<br />

Start with the set N6 = {1, 2, 3, 4, 5, 6}. A duad is any one of the fifteen<br />

subsets of N6 of size 2. A syntheme is any one of the fifteen sets of three<br />

pairwise disjo<strong>in</strong>t duads. If we th<strong>in</strong>k of duads as po<strong>in</strong>ts <strong>and</strong> synthemes as l<strong>in</strong>es,<br />

with <strong>in</strong>cidence be<strong>in</strong>g conta<strong>in</strong>ment, the result<strong>in</strong>g po<strong>in</strong>t-l<strong>in</strong>e geometry has the<br />

follow<strong>in</strong>g properties. Two duads are conta<strong>in</strong>ed <strong>in</strong> a common syntheme if <strong>and</strong><br />

only if they are disjo<strong>in</strong>t, <strong>and</strong> then that syntheme is uniquely determ<strong>in</strong>ed.<br />

Hence it is easy to show that each po<strong>in</strong>t is <strong>in</strong>cident with the same number<br />

(three) of l<strong>in</strong>es, each l<strong>in</strong>e is <strong>in</strong>cident with the same number (three) of po<strong>in</strong>ts,<br />

no two l<strong>in</strong>es are <strong>in</strong>cident with the same two po<strong>in</strong>ts, <strong>and</strong> if x is a po<strong>in</strong>t not<br />

<strong>in</strong>cident with a l<strong>in</strong>e L, then there is a unique po<strong>in</strong>t y <strong>in</strong>cident with L for which<br />

x <strong>and</strong> y are <strong>in</strong>cident with a common l<strong>in</strong>e, i.e., are coll<strong>in</strong>ear. For example,<br />

consider the duad {1, 3} that is not <strong>in</strong> the syntheme {{1, 2}, {3, 4}, {5, 6}}.<br />

Here {5, 6} is the uniqe duad <strong>in</strong> the given syntheme “coll<strong>in</strong>ear with” (i.e.,<br />

disjo<strong>in</strong>t from) {1, 3} via the syntheme {{1, 3}, {5, 6}, {2, 4}}. This synthemeduad<br />

geometry is apparently due to J. J. Sylvester (1844). In general when<br />

this example is recalled later on, the duad {i, j} will be denoted simply as<br />

ij.<br />

Sylvester’s syntheme-duad geometry is the smallest nontrivial example of<br />

a generalized quadrangle. It can be embedded <strong>in</strong> a larger example as follows.<br />

Start with the syntheme-duad model just given <strong>and</strong> add twelve additional<br />

po<strong>in</strong>ts: 1, 2, 3, 4, 5, 6, ˆ1, ˆ2, ˆ3, ˆ4, ˆ5, ˆ6. Then <strong>in</strong> addition to the fiften synthemes,<br />

there are thirty new l<strong>in</strong>es of the form {i, ij, ˆj}, for 1 ≤ i, j ≤ 6; i = j. This<br />

gives a po<strong>in</strong>t-l<strong>in</strong>e geometry with 27 po<strong>in</strong>ts <strong>and</strong> 45 l<strong>in</strong>es. Here each l<strong>in</strong>e is<br />

<strong>in</strong>cident with three po<strong>in</strong>ts as before, but now each po<strong>in</strong>t is <strong>in</strong>cident with five<br />

l<strong>in</strong>es. Moreover, it is easy enough to check that there are no “triangles”. By<br />

count<strong>in</strong>g the number of l<strong>in</strong>es reachable from a given po<strong>in</strong>t by a path of length<br />

at most 3 it is easy to check that this example also has the property that if x<br />

is a po<strong>in</strong>t not <strong>in</strong>cident with a l<strong>in</strong>e L, then there is a unique po<strong>in</strong>t y <strong>in</strong>cident<br />

with L for which x <strong>and</strong> y are coll<strong>in</strong>ear.<br />

The follow<strong>in</strong>g exercises are all concerned with Sylvester’s syntheme-duad<br />

geometry, which will be denoted W (2) (for reasons to be dealt with later).<br />

Exercise 9.1.0.1. In W (2) show that if K is a set of k po<strong>in</strong>ts, no two of<br />

which are coll<strong>in</strong>ear, then k ≤ 5. Such a set K is called a k-arc.<br />

Exercise 9.1.0.2. For each <strong>in</strong>teger i, 1 ≤ i ≤ 6, the set Ki of five duads<br />

ij (j = i) is a 5-arc. Moreover, each l<strong>in</strong>e of W (2) is <strong>in</strong>cident with a unique<br />

po<strong>in</strong>t of Ki. (Such a k-arc is called an ovoid.)


9.2. AXIOMS AND PRELIMINARY DEFINITIONS 377<br />

Exercise 9.1.0.3. The 5-arcs Ki, 1 ≤ i ≤ 6 are the only ovoids of W (2)<br />

<strong>and</strong> any two have a unique po<strong>in</strong>t <strong>in</strong> common.<br />

Exercise 9.1.0.4. The symmetric group S6 acts naturally as a group of<br />

coll<strong>in</strong>eations (permutations of the po<strong>in</strong>ts that preserve l<strong>in</strong>es) of W (2), <strong>and</strong> is<br />

<strong>in</strong> fact the complete group of coll<strong>in</strong>eations of W (2).<br />

Exercise 9.1.0.5. There is a bijection from the po<strong>in</strong>ts to the l<strong>in</strong>es of W (2)<br />

that maps l<strong>in</strong>es to po<strong>in</strong>ts <strong>and</strong> preserves <strong>in</strong>cidence. We say W (2) is self-dual.<br />

9.2 Axioms <strong>and</strong> Prelim<strong>in</strong>ary Def<strong>in</strong>itions<br />

fgq2<br />

f<strong>in</strong>ite generalized quadrangle (GQ) A triple S = (P, B, I) <strong>in</strong> which P<br />

<strong>and</strong> B are disjo<strong>in</strong>t sets of objects called po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es, respectively,<br />

<strong>and</strong> for which I is a symmetric po<strong>in</strong>t-l<strong>in</strong>e <strong>in</strong>cidence relation (so “x is<br />

<strong>in</strong>cident with L” is denoted xIL or LIx), is called a f<strong>in</strong>ite generalized<br />

quadrangle provided it satisfies the follow<strong>in</strong>g four axioms:<br />

Axiom 1. No two po<strong>in</strong>ts of S are <strong>in</strong>cident with two l<strong>in</strong>es <strong>in</strong> common.<br />

Axiom 2. If x is a po<strong>in</strong>t not on a l<strong>in</strong>e L (xI|L), then there is a unique pair<br />

(y, M) ∈ (P × B) for which xIMIyIL.<br />

Given two po<strong>in</strong>ts x, y we write x ∼ y <strong>and</strong> say that x <strong>and</strong> y are coll<strong>in</strong>ear<br />

provided there is some l<strong>in</strong>e L ∈ B for which xILIy. Otherwise, x ∼ y<br />

denotes that x <strong>and</strong> y are not coll<strong>in</strong>ear. Dually, for l<strong>in</strong>es L <strong>and</strong> M, we write<br />

L ∼ M or L ∼ M accord<strong>in</strong>g as L <strong>and</strong> M are concurrent or not concurrent,<br />

respectively.<br />

Axiom 3. There are po<strong>in</strong>ts x, y ∈ P for which x ∼ y; there are l<strong>in</strong>es L, M ∈<br />

B for which L ∼ M.<br />

Axiom 4. P B is a f<strong>in</strong>ite set.<br />

It is immediate that there is a po<strong>in</strong>t-l<strong>in</strong>e duality with respect to which<br />

each of the axioms is self-dual. Hence the po<strong>in</strong>t-l<strong>in</strong>e dual of a GQ is a GQ.<br />

It follows that any def<strong>in</strong>ition or theorem has a po<strong>in</strong>t-l<strong>in</strong>e dual. Often we take<br />

for granted that such a po<strong>in</strong>t-l<strong>in</strong>e dual has been given even if it has not been<br />

mentioned explicitly. Moreover, elementary arguments yield the follow<strong>in</strong>g<br />

basic results which we leave as exercises.


378 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

Theorem 9.2.1. A GQ has some nondegeneracy.<br />

Let S = (P, B, I) be a GQ.<br />

1. There are four dist<strong>in</strong>ct po<strong>in</strong>ts xi <strong>and</strong> four dist<strong>in</strong>ct l<strong>in</strong>es Li with xiILi,<br />

i = 1, . . . , 4; xiILi+1, i = 1, 2, 3; <strong>and</strong> x4IL1.<br />

2. Each po<strong>in</strong>t is <strong>in</strong>cident with at least two l<strong>in</strong>es; each l<strong>in</strong>e is <strong>in</strong>cident with<br />

at least two po<strong>in</strong>ts.<br />

3. If two po<strong>in</strong>ts are not coll<strong>in</strong>ear, they are <strong>in</strong>cident with the same number<br />

of l<strong>in</strong>es; if two l<strong>in</strong>es are not concurrent they are <strong>in</strong>cident with the same<br />

number of po<strong>in</strong>ts.<br />

A proof of the follow<strong>in</strong>g theorem is left as an exercise.<br />

Theorem 9.2.2. A GQ is a grid, or a dual grid, or has parameters (s, t),<br />

s, t ≥ 1.<br />

In somewhat greater detail, let S = (P, B, I) be a GQ. Then at least one<br />

of the follow<strong>in</strong>g must occur:<br />

1. Each po<strong>in</strong>t is <strong>in</strong>cident with exactly two l<strong>in</strong>es; the set B of l<strong>in</strong>es is<br />

partitioned <strong>in</strong>to two nonempty disjo<strong>in</strong>t sets B1, B2 such that each l<strong>in</strong>e<br />

<strong>in</strong> B1 is concurrent with each l<strong>in</strong>e <strong>in</strong> B2 <strong>and</strong> such that any two l<strong>in</strong>es<br />

of Bi are not concurrent, i = 1, 2; each l<strong>in</strong>e <strong>in</strong> Bi is <strong>in</strong>cident with |Bj|<br />

po<strong>in</strong>ts, {i, j} = {1, 2}.<br />

2. Each l<strong>in</strong>e is <strong>in</strong>cident with exactly two po<strong>in</strong>ts; the set P of po<strong>in</strong>ts is<br />

partitioned <strong>in</strong>to two nonempty disjo<strong>in</strong>t sets P1, P2 such that each po<strong>in</strong>t<br />

<strong>in</strong> P1 is coll<strong>in</strong>ear with each po<strong>in</strong>t <strong>in</strong> P2 <strong>and</strong> such that any two dist<strong>in</strong>ct<br />

po<strong>in</strong>t of Pi are noncoll<strong>in</strong>ear, i = 1, 2; each po<strong>in</strong>t <strong>in</strong> Pi is <strong>in</strong>cident with<br />

|Pj| po<strong>in</strong>ts, where {i, j} = {1, 2}.<br />

3. There are positive <strong>in</strong>tegers s <strong>and</strong> t such that each l<strong>in</strong>e is <strong>in</strong>cident with<br />

1 + s po<strong>in</strong>ts <strong>and</strong> each po<strong>in</strong>t is <strong>in</strong>cident with 1 + t l<strong>in</strong>es.<br />

If case 1. of Theorem 9.2.2 holds, S is said to be a grid; if case 2. of<br />

Theorem 9.2.2 holds, S is a dual grid; <strong>and</strong> if case 3. of Theorem 9.2.2 holds<br />

S is said to have parameters (s, t) or that it has order (s, t). If s = t,<br />

we usually just say that S has order s. Note that grids <strong>and</strong> dual grids not<br />

hav<strong>in</strong>g an order were elim<strong>in</strong>ated by the axioms adopted <strong>in</strong> [PT84] <strong>and</strong> <strong>in</strong>


9.2. AXIOMS AND PRELIMINARY DEFINITIONS 379<br />

many articles deal<strong>in</strong>g with GQ. Also note that the po<strong>in</strong>t-l<strong>in</strong>e dual of a GQ<br />

of order (s, t) is a GQ of order (t, s).<br />

For the follow<strong>in</strong>g def<strong>in</strong>itions let S = (P, B, I) be a GQ.<br />

perp For x <strong>in</strong> P def<strong>in</strong>e x perp by x ⊥ = {y ∈ P : x ∼ y}. Note that x ∈ x ⊥ .<br />

The perp (or trace) of a pair {x, y} of dist<strong>in</strong>ct po<strong>in</strong>ts is def<strong>in</strong>ed to be<br />

the set x ⊥ y ⊥ <strong>and</strong> is denoted {x, y} ⊥ . More generally, if A ⊆ P , A<br />

perp is def<strong>in</strong>ed by A ⊥ = {x ⊥ : x ∈ A}.<br />

span For dist<strong>in</strong>ct po<strong>in</strong>ts x <strong>and</strong> y, the span (or perp perp) of the pair {x, y}<br />

is {x, y} ⊥⊥ = {u ∈ P : u ∈ z ⊥ ∀z ∈ {x, y} ⊥ }. If x ∼ y, then {x, y} ⊥⊥<br />

is also called the hyperbolic l<strong>in</strong>e def<strong>in</strong>ed by x <strong>and</strong> y.<br />

regular If S has order (s, t) <strong>and</strong> if x <strong>and</strong> y are noncoll<strong>in</strong>ear po<strong>in</strong>ts, then<br />

|{x, y} ⊥ | = t + 1 <strong>and</strong> |{x, y} ⊥⊥ | ≤ t + 1. If equality holds, the pair<br />

{x, y} is said to be regular. If x <strong>and</strong> y are dist<strong>in</strong>ct coll<strong>in</strong>ear po<strong>in</strong>ts we<br />

also say that the pair {x, y} is regular. If x is a po<strong>in</strong>t for which {x, y}<br />

is regular for all po<strong>in</strong>ts y different from x, then the po<strong>in</strong>t x is called<br />

regular.<br />

triad A triad (of po<strong>in</strong>ts) is an unordered triple of pairwise noncoll<strong>in</strong>ear<br />

po<strong>in</strong>ts. Given a triad T = {x, y, z}, a center of T is just a po<strong>in</strong>t of T ⊥ .<br />

We say T is acentric, centric, or unicentric accord<strong>in</strong>g as |T ⊥ | is zero,<br />

positive, or equal to 1.<br />

k-arc A k-arc (<strong>in</strong> a GQ) is a set of k po<strong>in</strong>ts, no two of which are coll<strong>in</strong>ear.<br />

Exercise 9.2.2.1. Prove Theorem 9.2.1<br />

Exercise 9.2.2.2. Prove Theorem 9.2.2<br />

Exercise 9.2.2.3. Let S = (P, B, I) be a GQ with order (s, t) <strong>and</strong> let (x, y)<br />

be a pair of noncoll<strong>in</strong>ear po<strong>in</strong>ts. Show that {x, y} is a regular pair if <strong>and</strong> only<br />

if each triad {x, y, z} with at least two centers actually has t + 1 centers.<br />

Exercise 9.2.2.4. With the same hypothesis as <strong>in</strong> Exercise 9.2.2.3 show that<br />

{x, y} is a regular pair if <strong>and</strong> only if some pair {z, w} of dist<strong>in</strong>ct po<strong>in</strong>ts <strong>in</strong><br />

{x, y} ⊥ is regular if <strong>and</strong> only if some pair {u, v} of dist<strong>in</strong>ct po<strong>in</strong>ts <strong>in</strong> {x, y} ⊥⊥<br />

is regular.


380 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

Exercise 9.2.2.5. Let S = (P, B, I) be a GQ with order 2. Show that up<br />

to isomorphism, S is unique. (H<strong>in</strong>t: First show that S must have 15 po<strong>in</strong>ts<br />

<strong>and</strong> 15 l<strong>in</strong>es. Then show that S conta<strong>in</strong>s an ordered pentagon with vertices<br />

labeled pi, 1 ≤ i ≤ 5, so that pi ⊥ pi+1, for 1 ≤ i ≤ 5, with subscripts reduced<br />

modulo 5 to one of 1, . . . , 5. Hence the side opposite a vertex pi has one po<strong>in</strong>t<br />

qi other than p±2, <strong>and</strong> it must be that pi ⊥ qi. Now show that the third l<strong>in</strong>e<br />

through qi must meet the two diagonals pi+1qi+1 <strong>and</strong> pi−1qi−1. It is possible<br />

to see that this figure can be completed to a GQ(2, 2) <strong>in</strong> at most one way.)<br />

The result<strong>in</strong>g figure is called a doily.<br />

Exercise 9.2.2.6. Show that W (2) is isomorphic to its po<strong>in</strong>t-l<strong>in</strong>e dual. In<br />

fact, W (2) is self-polar, i.e., there is a duality δ mapp<strong>in</strong>g po<strong>in</strong>ts to l<strong>in</strong>es<br />

<strong>and</strong> l<strong>in</strong>es to po<strong>in</strong>ts with the property that δ 2 is the identity mapp<strong>in</strong>g.<br />

Exercise 9.2.2.7. This exercise gives an ad hoc description of a GQ of order<br />

3 which turns out to be isomorphic to the FGQ with order 3 later denoted<br />

by W (3). Start with the set N5 = {1, 2, 3, 4, 5}. There are two types of<br />

po<strong>in</strong>ts: i) the twenty ordered pairs ij, i, j ∈ N5; i = j; ii) the twenty 3cycles<br />

(i, j, k) = ijk with i, j, k dist<strong>in</strong>ct elements of N5. So, for example,<br />

ijk = jki = ikj. Then there are three types of l<strong>in</strong>es: a) Li; Mi; i ∈ N5.<br />

b) Dij = Dji; i, j ∈ N5; i = j. c) Tij(= Tji); i, j ∈ N5; i = j. Incidence is<br />

described as follows. Li is <strong>in</strong>cident with the four po<strong>in</strong>ts ij, i = j ∈ N5. Mj is<br />

<strong>in</strong>cident with the four po<strong>in</strong>ts ij, j = i ∈ N5. Dij = Dji is <strong>in</strong>cident with the<br />

four po<strong>in</strong>ts ij, ji, klm, kml, where {i, j, k, l, m} = {1, 2, 3, 4, 5}. F<strong>in</strong>ally, Tij<br />

is <strong>in</strong>cident with the four po<strong>in</strong>ts ij, ijk, ijl, ijm, where aga<strong>in</strong> {i, j, k, l, m} =<br />

{1, 2, 3, 4, 5}.<br />

9.3 Basic Comb<strong>in</strong>atorics of GQ<br />

Let S = (P, B, I) be a GQ of order (s, t), <strong>and</strong> put |P | = v, |B| = b. Most<br />

the follow<strong>in</strong>g results are given for po<strong>in</strong>ts. The correspond<strong>in</strong>g results for l<strong>in</strong>es<br />

that arise from po<strong>in</strong>t-l<strong>in</strong>e duality will also be considered as given. Proofs of<br />

the first six results are simple <strong>and</strong> will be left as exercises.<br />

Theorem 9.3.1. S has (1 + s)(1 + st) po<strong>in</strong>ts, etc.<br />

1. v = (1 + s)(1 + st); b = (1 + t)(1 + st).


9.3. BASIC COMBINATORICS OF GQ 381<br />

2. For dist<strong>in</strong>ct x, y ∈ P , |{x, y} ⊥ | = s + 1 or t + 1 accord<strong>in</strong>g as x ∼ y or<br />

x ∼ y.<br />

3. For each po<strong>in</strong>t x, |x ⊥ | = 1 + s + st.<br />

4. For each x ∈ P , |P \ x ⊥ | = ts 2 .<br />

5. If x ∼ y = x, |P \ (x ⊥ y ⊥ )| = ts 2 − st.<br />

6. If x ∼ y, |P \ (x ⊥ y ⊥ )| = ts 2 − st − s + t.<br />

For the rema<strong>in</strong>der of this section we assume that both s > 1 <strong>and</strong> t > 1.<br />

Let x, y be fixed, noncoll<strong>in</strong>ear po<strong>in</strong>ts with perp given by:<br />

{x, y} ⊥ = {z0, . . . , zt}<br />

And let V = {w1, . . . , wd} be the set of po<strong>in</strong>ts w for which {x, y, w} is a triad.<br />

By Part 6 of the preced<strong>in</strong>g theorem we know that d = ts 2 − st − s + t. For<br />

1 ≤ i ≤ d let ti be the number of zj coll<strong>in</strong>ear with wi. And for 0 ≤ i ≤ t + 1<br />

let ni be the number of triads {x, y, w} with exactly i centers. Count<strong>in</strong>g the<br />

total number of triads, we have<br />

Lemma 9.3.2. t+1<br />

i=0 ni = ts 2 − st − s + t.<br />

Count <strong>in</strong> different ways the number of ordered pairs (w, z), with w ∈ V ,<br />

z ∈ {x, y} ⊥ , <strong>and</strong> w <strong>and</strong> z coll<strong>in</strong>ear, to obta<strong>in</strong>:<br />

Lemma 9.3.3. d<br />

i=1 ti = t+1<br />

i=1 <strong>in</strong>i = (t 2 − 1)s.<br />

Next count <strong>in</strong> different ways the number of ordered triples (w, z, z ′ ), where<br />

w is <strong>in</strong> V , where z, z ′ are dist<strong>in</strong>ct members of {x, y} ⊥ , <strong>and</strong> w is coll<strong>in</strong>ear<br />

with both z <strong>and</strong> z ′ , to obta<strong>in</strong>:<br />

Lemma 9.3.4. d<br />

i=1 ti(ti − 1) = t+1<br />

i=2 i(i − 1)ni = (t 2 − 1)t.<br />

Lemma 9.3.5. nt = 0.<br />

Proof. Suppose u is a po<strong>in</strong>t not coll<strong>in</strong>ear with x or y <strong>and</strong> u ∼ zi for 1 ≤ i ≤ t,<br />

but u ∼ z0. Let Li be the l<strong>in</strong>e <strong>in</strong>cident with z0 <strong>and</strong> concurrent with uzi,<br />

1 ≤ i ≤ t. Then L1, . . . , Lt, xz0, yz0 must be t + 2 dist<strong>in</strong>ct l<strong>in</strong>es <strong>in</strong>cident with<br />

z0, a contradiction.


382 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

Theorem 9.3.6. The <strong>in</strong>equality of D. G. Higman says s ≤ t 2 if t > 1.<br />

Dually, t ≤ s 2 if s > 1. Moreover, the follow<strong>in</strong>g are equivalent:<br />

1. t = s 2 .<br />

2. For some pair (x, y) of noncoll<strong>in</strong>ear po<strong>in</strong>ts, each triad (x, y, z) has a<br />

constant number of centers, <strong>in</strong> which case this constant is s + 1.<br />

3. Every triad of po<strong>in</strong>ts has a constant number of centers, <strong>in</strong> which case<br />

this constant is s + 1.<br />

Proof. From Lemmas 9.3.3 <strong>and</strong> 9.3.4 we have d i=1 t2i = (t2−1)(s+t). Def<strong>in</strong>e<br />

m by: dm = <br />

i ti. Then 0 ≤ (m − ti) 2 implies, after some simplification,<br />

that t(s − 1)(s2 − t) is nonnegative, with equality hold<strong>in</strong>g if <strong>and</strong> only if each<br />

ti = m.<br />

Corollary 9.3.7. (t + 1)n0 = (s − t)t(s − 1)(t + 1) + t i=2 (i − 1)(t + 1 − i)ni.<br />

Proof. Compute:−(t+1)A+(t+1)B−C, where A, B <strong>and</strong> C are the equalities<br />

from Lemmas 9.3.2, 9.3.3 <strong>and</strong> 9.3.4, respectively.<br />

Corollary 9.3.8. n1 = 1+t<br />

i=2 ((si2 − i(s + t))/t)ni.<br />

Proof. Divide B by s <strong>and</strong> C by t. Subtract one from the other <strong>and</strong> simplify.<br />

Corollary 9.3.9. n0 = 0 iff each triad {x, y, w} is centric iff<br />

t−1<br />

(t − s)t(s − 1)(t + 1) = (i − 1)(t + 1 − i)ni<br />

So n0 = 0 implies t ≥ s, with equality iff ni = 0 for 2 ≤ i ≤ t.<br />

Note: This corollary says that when s = t, the pair (x, y) of noncoll<strong>in</strong>ear<br />

po<strong>in</strong>ts is regular if <strong>and</strong> only if each triad (x, y, w) conta<strong>in</strong><strong>in</strong>g (x, y) is centric.<br />

Corollary 9.3.10. Comput<strong>in</strong>g C − B we see that n1 = 0 iff<br />

i=2<br />

(t − s)(t 2 t+1<br />

− 1) = i(i − 2)ni<br />

<strong>in</strong> which case t ≥ s. If t = s, then ni = 0 for i = 0, 2.<br />

i=3


9.3. BASIC COMBINATORICS OF GQ 383<br />

The next two results are now easy exercises.<br />

Corollary 9.3.11. If x <strong>and</strong> y are dist<strong>in</strong>ct coll<strong>in</strong>ear po<strong>in</strong>ts, then there are β<br />

ordered pairs (z, w) with no two of x, y, z, w be<strong>in</strong>g coll<strong>in</strong>ear except for x <strong>and</strong><br />

y, where β = (s − 1)st(ts 2 − 2st + 2t − s).<br />

Corollary 9.3.12. If x ∼ y, then there are α ordered pairs (z, w) with no<br />

two of x, y, z, w be<strong>in</strong>g coll<strong>in</strong>ear, where α = s 4 t 2 − 3s 3 t 2 − 3s 3 t + 6s 2 t 2 +<br />

5s 2 t − 6st 2 − 6st + 3t 2 + t + 2s 2 .<br />

Cont<strong>in</strong>u<strong>in</strong>g with the notation of this section, let Li, 1 ≤ i ≤ t − 1 be the<br />

l<strong>in</strong>es through z0 not through x or y, <strong>and</strong> let L∗ i be the set of po<strong>in</strong>ts of Li<br />

different from z0. Put W = {L∗ i }. So |W |= s(t − 1). If ai is the number of<br />

triads of the form {x, y, w}, for w ∈ W , hav<strong>in</strong>g exactly i centers from among<br />

z1, . . . zt, 0 ≤ i ≤ t, then ai = (t − 1)s. And count<strong>in</strong>g pairs (w, zj), with<br />

w ∈ W <strong>and</strong> w ∼ zj, 1 ≤ j ≤ t, we have iai = (t−1)t. Subtract the second<br />

equation from t/s times the first, <strong>and</strong> rearrange so all terms that appear are<br />

nonnegative: <br />

((t/s) − i)ai = <br />

(i − t/s)ai<br />

(9.1)<br />

it/s<br />

It is clear that ai = 0 for all i < t/s iff ai = 0 for all i > t/s iff s divides t<br />

<strong>and</strong> each triad {x, y, w} has 1 + t/s centers.<br />

We state this as a Corollary:<br />

Corollary 9.3.13. Every triad T = {x, y, w} with center z0 (see the notation<br />

above) has at most 1+t/s centers iff each such triad has at least 1+t/s centers<br />

iff each such triad has exactly 1 + t/s centers.<br />

Exercise 9.3.13.1. Prove Corollary 9.3.11.<br />

Exercise 9.3.13.2. Prove Corollary 9.3.12.<br />

Exercise 9.3.13.3. Let S = (P, B, I) be a GQ with parameters (2, t), where<br />

2 ≤ t. Show that t ∈ {2, 4}.<br />

(H<strong>in</strong>t: In view of Higman’s <strong>in</strong>equality, the problem is to show that<br />

there is no GQ with parameters (2, 3). Let S be such a GQ. Start<strong>in</strong>g with<br />

Lemma 9.3.5 it is possible to show that no triad of po<strong>in</strong>ts can have more<br />

than 2 centers. Then use Cor. 9.3.13. It is also possible to prove that any<br />

GQ with three po<strong>in</strong>ts on each l<strong>in</strong>e must be f<strong>in</strong>ite.)


384 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

9.4 The Symplectic GQ W (q)<br />

Before cont<strong>in</strong>u<strong>in</strong>g with the abstract theory we want to <strong>in</strong>troduce a classical<br />

family of GQ <strong>and</strong> try out some of our def<strong>in</strong>itions.<br />

Let F = GF (q) (although for most of this section F could be any<br />

field). Let V = F 4 ,<br />

the 4-dimensional vector space<br />

of 4-tuples over F .<br />

0 1<br />

Put P =<br />

, C = P ˙+P<br />

P 0<br />

=<br />

. So C is 4 × 4 over F<br />

−1 0<br />

0 P<br />

<strong>and</strong> is skew-symmetric <strong>and</strong> nons<strong>in</strong>gular (with zeros on its ma<strong>in</strong> diagonal).<br />

For ¯x = (x0, x1, x2, x3), ¯y = (y0, y1, y2, y3) ∈ V , def<strong>in</strong>e ¯x ◦ ¯y = ¯xC ¯y T =<br />

x0y1 − x1y0 + x2y3 − x3y2. Def<strong>in</strong>e ¯x ⊥ ¯y if <strong>and</strong> only if ¯x ◦ ¯y = 0. Here<br />

(¯x, ¯y) ↦→ ¯x ◦ ¯y is a nons<strong>in</strong>gular, bil<strong>in</strong>ear alternat<strong>in</strong>g form. We collect the<br />

ma<strong>in</strong> consequences of this <strong>in</strong> a sequence of observations that the reader unfamiliar<br />

with this material should consider to be a series of exercises.<br />

Obs. 9.4.1. ¯x ⊥ ¯x for all ¯x ∈ V , <strong>and</strong> ¯x ⊥ ¯y if <strong>and</strong> only if ¯y ⊥ ¯x.<br />

Obs. 9.4.2. ¯x ⊥ ¯y if <strong>and</strong> only if ¯z ⊥ ¯w for all ¯z, ¯w ∈< ¯x, ¯y >.<br />

Obs. 9.4.3. If D is any 4 × 4 matrix over F , then ¯xC ¯y T = 0 if <strong>and</strong> only if<br />

¯xD¯y T = 0 for all ¯x, ¯y ∈ V provided D = λC for some λ ∈ F ∗ = F \ {0}.<br />

Obs. 9.4.4. Def<strong>in</strong>e ¯x ⊥ := {¯y ∈ V : ¯x ⊥ ¯y} for all ¯x ∈ V . Then for nonzero<br />

¯x <strong>and</strong> ¯y, ¯x ⊥ = ¯y ⊥ if <strong>and</strong> only if ¯x = λ¯y for some λ ∈ F ∗ .<br />

Obs. 9.4.5. Associated with V is the 3-dimensional projective space P G(3, q).<br />

A nonzero vector ¯x ∈ V corresponds to the po<strong>in</strong>t [¯x] = {λ¯x : λ ∈ F ∗ }. However,<br />

for a nonzero vector ¯x, we usually just write ¯x <strong>in</strong> place of [¯x] to denote<br />

a po<strong>in</strong>t of P G(3, q) <strong>and</strong> let the context <strong>in</strong>form the reader whether ¯x is a vector<br />

<strong>in</strong> V or a po<strong>in</strong>t <strong>in</strong> P G(3, q). Other notations are naturally carried over from<br />

V to P G(3, q). For example, for ¯x ∈ P G(3, q), ¯x ⊥ = {¯y ∈ P G(3, q) : ¯x ⊥ ¯y}.<br />

Then the correspondence ρ : ¯x ↔ ¯x ⊥ between po<strong>in</strong>ts <strong>and</strong> planes of P G(3, q)<br />

is called a null polarity. It is a polarity because it maps po<strong>in</strong>ts to planes,<br />

planes to po<strong>in</strong>ts, preserves <strong>in</strong>cidence, <strong>and</strong> as a duality of P G(3, q) (i.e., an<br />

isomorphism from P G(3, q) to its po<strong>in</strong>t-hyperplane dual) it has order 2. It<br />

is specifically a null polarity because each po<strong>in</strong>t or plane ¯x is <strong>in</strong>cident with<br />

its image under ρ. Here ρ : L =< ¯x, ¯y >↦→ L ρ = ¯x ⊥ ∩ ¯y ⊥ for each l<strong>in</strong>e<br />

L =< ¯x, ¯y >, <strong>and</strong> L = L ⊥ if <strong>and</strong> only if ¯x ⊥ ¯y.


9.4. THE SYMPLECTIC GQ W (Q) 385<br />

The po<strong>in</strong>t-l<strong>in</strong>e <strong>in</strong>cidence geometry W (q) = (P, B, I) is def<strong>in</strong>ed as follows.<br />

P = {¯x ∈ P G(3, q)}; B = {L : L is a l<strong>in</strong>e of P G(3, q) with L = L ⊥ }; I is<br />

the <strong>in</strong>cidence <strong>in</strong>herited from P G(3, q). Given two po<strong>in</strong>ts ¯x, ¯y ∈ P G(3, q),<br />

¯x ⊥ ¯y if <strong>and</strong> only if ¯y ⊥ ¯x if <strong>and</strong> only if ¯y ∈ ¯x ⊥ if <strong>and</strong> only if ¯x ∈ ¯y ⊥ . Clearly<br />

the l<strong>in</strong>es of B through ¯x are exactly the q + 1 l<strong>in</strong>es through ¯x ly<strong>in</strong>g <strong>in</strong> the<br />

plane ¯x ⊥ . But also, if ¯x, ¯y, ¯z are three dist<strong>in</strong>ct po<strong>in</strong>ts of ¯x ⊥ , then ¯y ⊥ ¯z if<br />

<strong>and</strong> only if ¯x, ¯y <strong>and</strong> ¯z lie on a l<strong>in</strong>e. To see this,first suppose that ¯x, ¯y <strong>and</strong> ¯z<br />

do not lie on a l<strong>in</strong>e. Observe that if ¯y ⊥ ¯x ⊥ ¯z ⊥ ¯y, then ¯y ∈< ¯x, ¯y, ¯z > ⊥ , so<br />

¯y ⊥ =< ¯x, ¯y, ¯z >= ¯x ⊥ , which readily implies that ¯x = ¯y as po<strong>in</strong>ts of P G(3, q).<br />

On the other h<strong>and</strong>, if ¯x, ¯y <strong>and</strong> ¯z lie on a l<strong>in</strong>e, then ¯y ⊥ ¯w for each po<strong>in</strong>t on<br />

〈¯x, ¯y〉, so <strong>in</strong> particular ¯y ⊥ ¯z. It follows that W (q) is a generalized quadrangle<br />

with parameters (q, q). Moreover, we can say a bit more.<br />

Theorem 9.4.6. A GQ of order s (s > 1) is isomorphic to W (q) if <strong>and</strong> only<br />

if all its po<strong>in</strong>ts are regular.<br />

Historically, this was surely the earliest comb<strong>in</strong>atorial characterization of<br />

a class of generalized quadrangles <strong>and</strong> no doubt was discovered several times.<br />

See [PT84] for some references.<br />

Proof. W (q) is a GQ with order q. If ¯x <strong>and</strong> ¯y are two dist<strong>in</strong>ct po<strong>in</strong>ts of<br />

W (q), then either ¯x ⊥ ¯y <strong>and</strong> {¯x, ¯y} ⊥ = {¯x, ¯y} ⊥⊥ is the l<strong>in</strong>e of W (q) through<br />

¯x <strong>and</strong> ¯y, or {¯x, ¯y} ⊥ = L is a l<strong>in</strong>e of P G(3, q) <strong>and</strong> its po<strong>in</strong>ts <strong>in</strong> P G(3, q) are<br />

the po<strong>in</strong>ts of {¯x, ¯y} ⊥ <strong>in</strong> W (q) considered as a GQ. Then L ρ = L ⊥ = {¯x, ¯y} ⊥⊥<br />

is the span of {¯x, ¯y}, which shows that each pair of po<strong>in</strong>ts of the GQ W (q)<br />

is regular.<br />

Conversely, suppose that S = (P, B, I) is a GQ of order s with all po<strong>in</strong>ts<br />

regular, s > 1. Now <strong>in</strong>troduce a new po<strong>in</strong>t-l<strong>in</strong>e <strong>in</strong>cidence structure S ′ =<br />

(P ′ , B ′ , I ′ ), with P ′ = P <strong>and</strong> B ′ equal to the set of all spans {x, y} ⊥⊥ of pairs<br />

(x, y) of dist<strong>in</strong>ct po<strong>in</strong>ts of S. Incidence I ′ is the natural <strong>in</strong>cidence <strong>in</strong>duced<br />

by conta<strong>in</strong>ment. So S is (isomorphic to) the substructure of S ′ consist<strong>in</strong>g of<br />

all po<strong>in</strong>ts <strong>and</strong> all spans of pairs of dist<strong>in</strong>ct po<strong>in</strong>ts coll<strong>in</strong>ear <strong>in</strong> S. If x is any<br />

po<strong>in</strong>t of P = P ′ , the po<strong>in</strong>ts of x ⊥ (with respect to I) <strong>and</strong> all the l<strong>in</strong>es of S ′<br />

conta<strong>in</strong><strong>in</strong>g at least two po<strong>in</strong>ts of x ⊥ form a projective plane. If {x, y, z} are<br />

three po<strong>in</strong>ts not on a l<strong>in</strong>e of S ′ , then because all po<strong>in</strong>ts are regular, whether<br />

{x, y, z} is a triad or not, by Cor. 9.3.9 there will always be some po<strong>in</strong>t<br />

w ∈ {x, y, z} ⊥ , so that {x, y, z} will generate a projective plane <strong>in</strong> S ′ . The<br />

number of po<strong>in</strong>ts <strong>in</strong> S ′ is the same as that <strong>in</strong> P G(3, q) <strong>and</strong> it follows easily<br />

that S ′ is isomorphic to P G(3, q).


386 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

S<strong>in</strong>ce each l<strong>in</strong>e of P G(3, q) is either a l<strong>in</strong>e of W (q) or the span of two<br />

po<strong>in</strong>ts of W (q), <strong>and</strong> each plane conta<strong>in</strong>s exactly the set of po<strong>in</strong>ts coll<strong>in</strong>ear<br />

<strong>in</strong> W (q) with a unique po<strong>in</strong>t of W (q), it is clear that any coll<strong>in</strong>eation of<br />

W (q) determ<strong>in</strong>es <strong>and</strong> is determ<strong>in</strong>ed uniquely by a coll<strong>in</strong>eation of P G(3, q)<br />

that preserves the set of l<strong>in</strong>es of W (q).<br />

First, note that if σ is any automorphism of F , then σ <strong>in</strong>duces a unique<br />

coll<strong>in</strong>eation of W (q) by: σ : ¯x = (x0, . . . , x3) ↦→ ¯x σ = (x σ 0, . . . , x σ 3). This<br />

holds s<strong>in</strong>ce ¯x ◦ ¯y = 0 if <strong>and</strong> only if (¯x ◦ ¯y) σ = ¯x σ ◦ ¯y σ = 0.<br />

Second, note that for any A ∈ GL(4, q), ¯x ↦→ ¯xA yields a coll<strong>in</strong>eation<br />

of P G(3, q) which is a coll<strong>in</strong>eation of W (q) if <strong>and</strong> only if it preserves “⊥”,<br />

which is if <strong>and</strong> only if ACA T = λC for some λ ∈ F ∗ . The symplectic group<br />

Sp(4, q) is def<strong>in</strong>ed by<br />

Sp(4, q) = {A ∈ GL(4, q) : ACA T = λC for some λ ∈ F ∗ }<br />

The quotient group Sp(4, q) modulo its center, the group of nonzero<br />

scalars times the identity matrix, is the projective symplectic group P Sp(4, q)<br />

which acts faithfully as a group of (l<strong>in</strong>ear) coll<strong>in</strong>eations of W (q). Along with<br />

the group of coll<strong>in</strong>eations of W (q) <strong>in</strong>duced by the field automorphisms we<br />

now have the complete group of coll<strong>in</strong>eations of W (q).<br />

Write A ∈ GL(4, q) <strong>in</strong> block form<br />

<br />

A1 A2<br />

A =<br />

.<br />

A3 A4<br />

Us<strong>in</strong>g Ex. 9.4.9.5 it is easy to show that<br />

ACA T <br />

(det(A1) + det(A2))P A1P A<br />

=<br />

T 3 + A2P AT 4<br />

(det(A3) + det(A4))P<br />

A3P A T 1 + A4P A T 2<br />

Us<strong>in</strong>g this equation it is clear that for A ∈ GL(4, q) we have<br />

if <strong>and</strong> only if<br />

(i) 0 = det(A1) + det(A2) = det(A3) + det(A4),<br />

(ii) A1P A T 3 + A2P A T 4 = 0.<br />

<br />

. (9.2)<br />

A ∈ Sp(4, q) (9.3)<br />

Let ¯p be the po<strong>in</strong>t ¯p = (1, 0, 0, 0), so that the po<strong>in</strong>t ¯y = (y0, y1, y2, y3) is<br />

coll<strong>in</strong>ear with ¯p if <strong>and</strong> only if y1 = 0.


9.4. THE SYMPLECTIC GQ W (Q) 387<br />

Obs. 9.4.7. The stabilizer P Sp(4, q)¯p of ¯p is transitive on the set of po<strong>in</strong>ts<br />

not coll<strong>in</strong>ear with ¯p.<br />

Proof. The po<strong>in</strong>ts of W (q) not coll<strong>in</strong>ear with ¯p are those with coord<strong>in</strong>ates of<br />

the form (x, 1, z, w). If we put<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0 0<br />

x 1 z w<br />

−w 0 1 0<br />

z 0 0 1<br />

⎞<br />

⎟<br />

⎠ ,<br />

then clearly A ∈ GL(4, q), <strong>and</strong> with the block notation from above, det(A1) =<br />

det(A4) = 1, det(A2) = det(A3) = 0. It is now straightforward to calculate<br />

that both conditions of Eq. 9.3 are satisfied, so that A ∈ Sp(4, q). Also<br />

¯p = ¯pA, so the projective coll<strong>in</strong>eation <strong>in</strong>duced by multiplication by A is <strong>in</strong><br />

P Sp(4, q)¯p. Now (0, 1, 0, 0) ↦→ (0, 1, 0, 0)A = (x, 1, z, w).<br />

Obs. 9.4.8. P Sp(4, q) is transitive on the po<strong>in</strong>ts of W (q).<br />

<br />

P 0<br />

Proof. Put ¯q = (0, 1, 0, 0) <strong>and</strong> A =<br />

∈ Sp(4, q). Then multiplica-<br />

0 P<br />

tion by A <strong>in</strong>terchanges ¯p <strong>and</strong> ¯q. Hence ¯p <strong>and</strong> all the po<strong>in</strong>ts not coll<strong>in</strong>ear with<br />

¯p are <strong>in</strong> th same orbit under P Sp(4, q), <strong>and</strong> thus all po<strong>in</strong>ts not coll<strong>in</strong>ear with<br />

some po<strong>in</strong>t not coll<strong>in</strong>ear with ¯p are <strong>in</strong> the same orbit. It follows immediately<br />

that P Sp(4, q) is transitive on the po<strong>in</strong>ts of W (q).<br />

Our next step is to determ<strong>in</strong>e the subgroup of of P Sp(4, q) fix<strong>in</strong>g both ¯p<br />

<strong>and</strong> ¯q.<br />

¯pA = ((1, 0)A1, (1, 0)A2) = (λ, 0, 0, 0) implies that (A1)12 = 0 = (A2)11 =<br />

(A2)12. Without loss of generality we may assume (A1)11 = A11 = 1.<br />

Similarly, ¯qA = ((0, 1)A1, (0, 1)A2) = (0, µ, 0, 0) implies that (A1)21 = 0 = <br />

0 0<br />

1 0<br />

(A2)21 = (A2)22, which now implies that A2 = <strong>and</strong> A1 =<br />

0 0<br />

0 b<br />

for some nonzero b ∈ F .<br />

At this stage we know that<br />

λC = ACA T ⎛<br />

= ⎝ bP<br />

<br />

1 0<br />

P A<br />

0 b<br />

T ⎞<br />

3 + 0<br />

⎠ .<br />

(det(A4) + det(A3))P<br />

A3P A T 1


388 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

S<strong>in</strong>ce<br />

1 0<br />

0 b<br />

<br />

P is <strong>in</strong>vertible, AT 3 = 0, so<br />

ACA T <br />

bP 0<br />

=<br />

0 det(A4)P<br />

<br />

.<br />

So we must have λ = b = det(A4). This proves the follow<strong>in</strong>g.<br />

Obs. 9.4.9. P Sp(4, q)¯p,¯q is the group of coll<strong>in</strong>eations <strong>in</strong>duced by multiplication<br />

by matrices of the form<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

for arbitrary A4 ∈ GL(2, q).<br />

1 0<br />

0 det(A4)<br />

0 0<br />

0 0<br />

0 0<br />

0 0<br />

A4<br />

⎞<br />

⎟<br />

⎠ ,<br />

We leave as an exercise the determ<strong>in</strong>ation of the stabilizer of the po<strong>in</strong>t ¯p.<br />

The po<strong>in</strong>ts of {¯p, ¯q} ⊥ are those with coord<strong>in</strong>ates of the form (0, 0, z, w).<br />

It is also now an easy exercise to show that P Sp(4, q)¯p,¯q is triply transitive<br />

on {¯p, ¯q} ⊥ .<br />

Exercise 9.4.9.1. Let ¯x, ¯y, ¯z be three po<strong>in</strong>ts of W (q), no two of which are<br />

on a l<strong>in</strong>e of W (q). Show that there is a unique po<strong>in</strong>t ¯w of W (q) coll<strong>in</strong>ear<br />

with each of ¯x, ¯y, ¯z, or that there are 1 + q such po<strong>in</strong>ts.<br />

Exercise 9.4.9.2. The stabilizer P Sp(4, q)¯p of the po<strong>in</strong>t ¯p is the set of<br />

coll<strong>in</strong>eations <strong>in</strong>duced by multiplication by matrices of the form<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

|A4| −1 A4<br />

1 0<br />

a<br />

<br />

|A4|<br />

−d<br />

<br />

0<br />

c 0<br />

0 0<br />

c d<br />

A4<br />

⎞<br />

⎟<br />

⎠ : a, c, d ∈ F, A4 ∈ GL(2, q).<br />

Exercise 9.4.9.3. The stabilizer P Sp(4, q)¯p,¯q is triply transitive on {¯p, ¯q} ⊥ .<br />

Moreover, any θ ∈ P Sp(4, q)¯p,¯q that fixes three l<strong>in</strong>es of W (q) through ¯p must<br />

fix all l<strong>in</strong>es through ¯p <strong>and</strong> must be given by multiplication by a matrix of the<br />

form


9.4. THE SYMPLECTIC GQ W (Q) 389<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0 0<br />

0 d 2 0 0<br />

0 0 d 0<br />

0 0 0 d<br />

⎞<br />

⎟<br />

⎠ , 0 = d ∈ F.<br />

It is now easy to see that this last set of matrices gives a group of coll<strong>in</strong>eations<br />

isomorphic to the multiplicative group of the field F .<br />

Exercise 9.4.9.4. Determ<strong>in</strong>e whether or not the l<strong>in</strong>es of W (q) are regular.<br />

(Answer: when q is even, all l<strong>in</strong>es are regular. When q is odd, there is not<br />

even any 3 × 3 grid.)<br />

Exercise 9.4.9.5. If A is 2 × 2 over F , then AP A T = det(A) · P .<br />

At this po<strong>in</strong>t we want to study to orbits of P Sp(4, q) on conics conta<strong>in</strong>ed<br />

<strong>in</strong> planes of P G(3, q). First, s<strong>in</strong>ce P Sp(4, q) is transitive on po<strong>in</strong>ts of W (q)<br />

(i.e., po<strong>in</strong>ts of P G(3, q)), it must be transitive on planes of P G(3, q). So if<br />

C were a conic of some plane, we could use P Sp(4, q) to map it to a conic <strong>in</strong><br />

the plane p ⊥ = [0, 1, 0, 0] where p = (1, 0, 0, 0). So what are the orbits of the<br />

stabilizer P Sp(4, q)p of p on the po<strong>in</strong>ts of [0, 1, 0, 0]? Put A4 =<br />

where △ = a1a4 + a2a3 = 0, <strong>and</strong> then for arbitrary a, c, d ∈ Fq put<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0 0<br />

a △ c d<br />

a1d+a2c<br />

△ 0 a1 a2<br />

a3d+ca2<br />

△ 0 a3 a4<br />

⎞<br />

⎟<br />

⎠ .<br />

a1 a2<br />

a3 a4<br />

The homography given by this matrix belongs to P Sp(4, q)p <strong>and</strong> maps r =<br />

(0, 0, 0, 1) to the po<strong>in</strong>t (a3d + a4c, 0, a3△, a4△). By vary<strong>in</strong>g c, d, a3 <strong>and</strong> a4<br />

(<strong>and</strong> choos<strong>in</strong>g a1 <strong>and</strong> a2 so that △ = 0 we can map r to every po<strong>in</strong>t of<br />

[0, 1, 0, 0] different from p. An homography <strong>in</strong> P Sp(4, q) that fixes both p<br />

<strong>and</strong> r has a matrix of the form<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0 0<br />

a a1a4 0 d<br />

d/a4 0 a1 a2<br />

0 0 0 a4<br />

⎞<br />

⎟<br />

⎠ .<br />

These homographies have 〈p, r〉 \ {p, r} as one orbit of size q − 1 <strong>and</strong> the<br />

q 2 po<strong>in</strong>ts of the form (x, 0, 1, w) as an orbit of size q 2 . One of the po<strong>in</strong>ts <strong>in</strong><br />

<br />

,


390 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

this latter orbit is s = (0, 0, 1, 0). So consider the stabilizer P Sp(4, q)p,r,s. An<br />

homography <strong>in</strong> this group has matrix of the form<br />

⎛<br />

1<br />

⎜<br />

A = ⎜ a<br />

⎝ 0<br />

0<br />

a1a4<br />

0<br />

0<br />

0<br />

a1<br />

0<br />

0<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

0 0 0 a4<br />

.<br />

This group has an orbit of size q −1 on the l<strong>in</strong>e 〈r, s〉 <strong>and</strong> an orbit of size (q −<br />

1) 2 consist<strong>in</strong>g of the po<strong>in</strong>ts not on the sides of the triangle with vertices p, r, s.<br />

Let t = (1, 0, 1, 1) be such a po<strong>in</strong>t. We have just shown that P Sp(4, q)p is<br />

transitive on the triples of po<strong>in</strong>ts on dist<strong>in</strong>ct l<strong>in</strong>es through p <strong>in</strong> p ⊥ , <strong>and</strong><br />

(r, s, t) is such a triple.<br />

Now let C be a conic <strong>in</strong> the plane p ⊥ . We have the follow<strong>in</strong>g three cases.<br />

Case 1. p is the nucleus of C. Us<strong>in</strong>g P Sp(4, q) we may assume that r, s<br />

<strong>and</strong> t all belong to C. This completely determ<strong>in</strong>es C.<br />

C = {(t, 0, t 2 , 1) : t ∈ Fq} ∪ {(0, 0, 1, 0)} with nucleus p = (1, 0, 0, 0).<br />

Note that <strong>in</strong> this case no two po<strong>in</strong>ts of C are coll<strong>in</strong>ear <strong>in</strong> W (q) (s<strong>in</strong>ce the<br />

l<strong>in</strong>es of W (q) <strong>in</strong> p ⊥ are precisely the l<strong>in</strong>es through p).<br />

Case 2. p ∈ C. In this case we may assume that r is the nucleus of C<br />

<strong>and</strong> that s <strong>and</strong> t belong to C. Aga<strong>in</strong> us<strong>in</strong>g P Sp(4, q)p we may assume that<br />

C is any such C, say<br />

C = {((1, 0, t 2 , t) : t ∈ Fq} ∪ {(0, 0, 1, 0)} with nucleus r = (0, 0, 0, 1).<br />

In this case the only coll<strong>in</strong>earities (<strong>in</strong> W (q))between po<strong>in</strong>ts of C are those<br />

between p <strong>and</strong> the other po<strong>in</strong>ts.<br />

Case 3. p ∈ C <strong>and</strong> p is not the nucleus of C. In this case we may assume<br />

that the nucleus is r = (0, 0, 0, 1) <strong>and</strong> that both s <strong>and</strong> t belong to C. In this<br />

case one can show that for each choice of a ∈ Fq \ {0, 1} there is a conic C<br />

not conta<strong>in</strong><strong>in</strong>g p <strong>and</strong> given by<br />

C = {(1, 0, t 2 (a 2 +1)+1, t) : t ∈ Fq}∪{(0, 0, 1, 0)} with nucleus r = (0, 0, 0, 1).<br />

We collect part of the above discussion <strong>in</strong> the follow<strong>in</strong>g theorem.


9.4. THE SYMPLECTIC GQ W (Q) 391<br />

Theorem 9.4.10. P Sp(4, q) has three orbits <strong>in</strong> its action on conics of P G(3, q).<br />

Orbit 1 A conic C of P G(3, q) is <strong>in</strong> Orbit 1 if <strong>and</strong> only if it lies <strong>in</strong> the<br />

plane p ⊥ where p is the nucleus of C, which is if <strong>and</strong> only if it has no two<br />

po<strong>in</strong>ts coll<strong>in</strong>ear <strong>in</strong> W (q). Orbit 1 conta<strong>in</strong>s (1 + q)(1 + q 2 )(q 3 − q 2 ) conics.<br />

(See Exercise 4.2.5.2.)<br />

Orbit 2 A conic C of P G(3, q) is <strong>in</strong> Orbit 2 if <strong>and</strong> only if the pole p of the<br />

plane conta<strong>in</strong><strong>in</strong>g C is conta<strong>in</strong>ed <strong>in</strong> C. Orbit 2 conta<strong>in</strong>s (1+q)(1+q 2 )(q 4 −q 2 )<br />

conics. In the hyperoval conta<strong>in</strong><strong>in</strong>g C the only coll<strong>in</strong>earities <strong>in</strong> W (q) are<br />

between p <strong>and</strong> the other po<strong>in</strong>ts of the hyperoval.<br />

Orbit 3 A conic C is <strong>in</strong> Orbit 3 if <strong>and</strong> only if the pole p of the plane<br />

conta<strong>in</strong><strong>in</strong>g C is not conta<strong>in</strong>ed <strong>in</strong> the hyperoval conta<strong>in</strong><strong>in</strong>g C. There are<br />

(1 + q)(1 + q 2 )q 2 (q − 1)(q 2 − 1) conics <strong>in</strong> Orbit 3. If C + is the hyperoval<br />

conta<strong>in</strong><strong>in</strong>g C, then the po<strong>in</strong>ts of C + come <strong>in</strong> coll<strong>in</strong>ear pairs (by l<strong>in</strong>es of<br />

W (q)).<br />

Exercise 9.4.10.1. Let R = {L0, L1, . . . , Lq} be a regulus consist<strong>in</strong>g of l<strong>in</strong>es<br />

of W (q) (as given above). So R has 1 + q transversals. Show that if q = 2 e<br />

either 1 or q + 1 of the transversals belong to W (q).<br />

Solution: By Exercise 9.4.9.4 we know that all l<strong>in</strong>es of W (q) are regular,<br />

so that each triad of l<strong>in</strong>es of W (q) (three l<strong>in</strong>es of W (q) that are pairwise<br />

skew) has 0, 1 or q + 1 transversals of l<strong>in</strong>es of W (q). Us<strong>in</strong>g this it follows<br />

readily that a regulus of l<strong>in</strong>es of W (q) has 0, 1 or q + 1 transversals that are<br />

l<strong>in</strong>es of W (q). So we just need to show that every such regulus has at least<br />

one transversal that is a l<strong>in</strong>e of W (q).<br />

So suppose that R = {L0, . . . , Lq} is a regulus of l<strong>in</strong>es of W (q) with<br />

transversals R opp = {M0, . . . , Mq}. We may suppose that M0 <strong>and</strong> M1 do<br />

not belong to W (q). This means that there are vectors p1, p2, p3, p4 not<br />

on a plane satisfy<strong>in</strong>g the follow<strong>in</strong>g: First, L0 = 〈p1, p2〉; L1 = 〈p3, p4〉; M0 =<br />

〈p1, p3〉; M1 = 〈p2, p4〉. And<br />

If 1 ≤ i ≤ j ≤ 4, then pi ◦ pj = 0 if <strong>and</strong> only if<br />

i = j, or i = j <strong>and</strong> {i, j} = {1, 2} or {3, 4}.


392 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

If pi ◦ pj = aij = 0, then<br />

replace p3 with a −1<br />

13 p3, so p1 ◦ p3 = 1<br />

replace p4 with a −1<br />

14 p4, so p1 ◦ p4 = 1<br />

replace p2 with a −1<br />

23 p2, so p2 ◦ p3 = 1<br />

Of course, immediately after each replacement, the aij is relabeled. This<br />

means that we can arrange th<strong>in</strong>gs so that :<br />

p1 ◦ p2 = 0; p1 ◦ p3 = 1; p1 ◦ p4 = 1; p2 ◦ p3 = 1; p2 ◦ p4 = k = 0.<br />

We also know that k = 1. For suppose that k = 1 <strong>and</strong> put q = p1+p2+p3+p4.<br />

Then Then pi ◦ q = 0 for all i = 1, 2, 3, 4. If the four orig<strong>in</strong>al vectors were<br />

really l<strong>in</strong>early <strong>in</strong>dependent, then q = 0. But this would mean that the four<br />

po<strong>in</strong>ts would lie <strong>in</strong> a plane, an impossibility. Hence k = 0, 1.<br />

The rema<strong>in</strong><strong>in</strong>g po<strong>in</strong>ts of M0 are of the form p3 + cp1, <strong>and</strong> the unique<br />

po<strong>in</strong>t of M1 coll<strong>in</strong>ear <strong>in</strong> W (q) with p3 + cp1 is p4 + cp2. Choos<strong>in</strong>g c = 0<br />

<strong>and</strong> c = 1 we now have three ”horizontal” l<strong>in</strong>es of R <strong>in</strong> W (q). These three<br />

determ<strong>in</strong>e all the transversals M0 <strong>and</strong> 〈p2 +ap1, p4 +ap3〉. In general we have<br />

〈p3 + cp1, p4 + cp2〉 meet<strong>in</strong>g 〈p2 + ap1, p4 + ap3〉 at the po<strong>in</strong>t<br />

adp1 + cp2 + ap3 + p4.<br />

The question is now whether or not some transversal is <strong>in</strong> W (q). To see<br />

this we compute: (p2 + ap1) ◦ (p4 + ap3) = k + a + a + a 2 = 0 if <strong>and</strong> only<br />

k = a 2 . So for a = √ k we obta<strong>in</strong> the unique transversal of R that lies <strong>in</strong><br />

W (q).<br />

p2 + ap1 is p4 + ap3.<br />

9.5 Some GQ derived from Quadratic Forms<br />

Let Q(¯x) = Q(x0, . . . , x4) = x0x1 + x2x3 + x 2 4 = ¯xA¯x T , where<br />

⎛<br />

⎜<br />

A = ⎜<br />

⎝<br />

0 1 0 0 0<br />

0 0 0 0 0<br />

0 0 0 1 0<br />

0 0 0 0 0<br />

0 0 0 0 1<br />

⎞<br />

⎟<br />

⎠ .


9.5. SOME GQ DERIVED FROM QUADRATIC FORMS 393<br />

Then<br />

⎛<br />

B = A + A T ⎜<br />

= ⎜<br />

⎝<br />

0 1 0 0 0<br />

1 0 0 0 0<br />

0 0 0 1 0<br />

0 0 1 0 0<br />

0 0 0 0 2<br />

⎞<br />

⎟<br />

⎠ .<br />

When q is odd, clearly B is nons<strong>in</strong>gular, so the quadratic form Q is<br />

nondegenerate. When q is a power of 2, then it is easy to check that the<br />

s<strong>in</strong>gular radical is still {0}, so Q is nondegenerate. This implies that there<br />

is no totally s<strong>in</strong>gular plane, which means that if x is a s<strong>in</strong>gular po<strong>in</strong>t not on<br />

a totally s<strong>in</strong>gular l<strong>in</strong>e L, then x cannot be orthogonal to each po<strong>in</strong>t of L, so<br />

that the polar plane of x meets the l<strong>in</strong>e L <strong>in</strong> a unique po<strong>in</strong>t. If fQ(¯x, ¯y) = 0<br />

for two s<strong>in</strong>gular po<strong>in</strong>ts ¯x <strong>and</strong> ¯y, then the l<strong>in</strong>e through ¯x <strong>and</strong> ¯y is totally<br />

s<strong>in</strong>gular.<br />

Let Q(4, q) denote the geometry consist<strong>in</strong>g of all s<strong>in</strong>gular po<strong>in</strong>ts of Q<br />

together with the totally s<strong>in</strong>gular l<strong>in</strong>es. It is now a simple task to show that<br />

Q(4, q) is a GQ(q,q). We want to <strong>in</strong>vestigate its coll<strong>in</strong>eation group. Recall<br />

that<br />

O(5, q) = {D ∈ GL(5, q) : DBD T = λB for some nonzero λ ∈ F }.<br />

And P GO(5, q) is the group of l<strong>in</strong>ear projective coll<strong>in</strong>eations of Q(4, q).<br />

We consider the action of P GO(5, q) on Q(4, q). Label three particular po<strong>in</strong>ts<br />

of Q(4, q) as follows.<br />

Note that<br />

Also,<br />

p = (1, 0, 0, 0, 0), q = (0, 1, 0, 0, 0), e = (0, 0, 1, 0, 0). (9.4)<br />

{y ∈ Q(4, q) : p ∼ y} = {(−(t 2 + dr), 1, d, t) : r, d, t ∈ F }. (9.5)<br />

L∞ =< (0, 0, 1, 0, 0), (1, 0, 0, 0, 0) >; Lc =< (0, 0, −c 2 , 1, c), (1, 0, 0, 0, 0)},<br />

(9.6)<br />

for c ∈ F , are the l<strong>in</strong>es of Q(4, q) through p.


394 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

For arbitrary r, d, t ∈ F put<br />

⎛<br />

⎜<br />

D(r, d, t) = ⎜<br />

⎝<br />

1 0 0 0 0<br />

−(t 2 + dr) 1 r d t<br />

−d 0 1 0 0<br />

−r 0 0 1 0<br />

−2t 0 0 0 1<br />

⎞<br />

⎟<br />

⎠<br />

(9.7)<br />

Lemma 9.5.1. (i) T = {D(r, d, t) : r, d, t ∈ F } is a group of translations<br />

about the po<strong>in</strong>t p = (1, 0, 0, 0, 0), i.e., T acts regularly on the q 3 po<strong>in</strong>ts not<br />

coll<strong>in</strong>ear with p <strong>and</strong> fixes each l<strong>in</strong>e through p.<br />

(ii) A(∞) = {D(r, 0, 0) : r ∈ F } is the full group of symmetries about<br />

the l<strong>in</strong>e L∞, i.e., A(∞) fixes each l<strong>in</strong>e that meets L∞.<br />

(iii) For each c ∈ F , A(c) = {D(−dc 2 , d, dc) : d ∈ F } is the full group<br />

of symmetries about the l<strong>in</strong>e Lc.<br />

(iv) A ∗ (∞) = {D(r, 0, t) : r, t ∈ F } is the stabilizer <strong>in</strong> T of the po<strong>in</strong>t e<br />

on L∞.<br />

(v) For c ∈ F , A ∗ (c) = {D(dc 2 − 2ct, d, t) : d, t ∈ F } is the stabilizer <strong>in</strong><br />

T of the po<strong>in</strong>t (0, 0, −c 2 , 1, c) on Lc.<br />

We leave the proof of this lemma as a rout<strong>in</strong>e exercise.<br />

Note: D(r, d, t) · A · DT (r, d, t) = A ′ ⎛<br />

0 1 0 0<br />

⎜ 0 0 0 r<br />

= ⎜ 0 0 0 1<br />

⎝ 0 −r 0 0<br />

⎞<br />

0<br />

t ⎟<br />

0 ⎟ = A, but A<br />

0 ⎠<br />

0 −t 0 0 1<br />

<strong>and</strong> A ′ clearly determ<strong>in</strong>e the same quadratic form.<br />

⎛<br />

⎜<br />

Lemma 9.5.2. D = ⎜<br />

⎝<br />

0 1<br />

1 0<br />

From this it is easy to show that<br />

1<br />

1<br />

1<br />

⎞<br />

⎟ ∈ O(5, q), <strong>and</strong> D : p ↔ q.<br />

⎠<br />

Lemma 9.5.3. P GO(5, q) is transitive on the po<strong>in</strong>ts of Q(4, q).


9.5. SOME GQ DERIVED FROM QUADRATIC FORMS 395<br />

The next step is to determ<strong>in</strong>e the stabilizer of p <strong>and</strong> q <strong>in</strong> P GO(5, q). The<br />

stabilizer of p <strong>and</strong> q must act on the set {p, q} ⊥ = {e} ∪ {(0, 0, −c 2 , 1, c) :<br />

c ∈ F }. First note that<br />

⎛<br />

⎜<br />

D = ⎜<br />

⎝<br />

1 0 0 0 0<br />

0 1 0 0 0<br />

0 0 −c 2 1 c<br />

0 0 1 0 0<br />

0 0 −2c 0 1<br />

⎞<br />

⎟ ∈ P GO(5, q), (9.8)<br />

⎠<br />

<strong>and</strong> x ↦→ xD fixes both p <strong>and</strong> q <strong>and</strong> maps e to (0, 0, −c 2 , 1, c), show<strong>in</strong>g that<br />

the stabilizer of p <strong>and</strong> q is transitive on {p, q} ⊥ . So we now ask what is the<br />

stabilizer of p, q <strong>and</strong> e?<br />

Matrices of the form<br />

⎛<br />

1 0 0 0 0<br />

⎜<br />

0<br />

D = ⎜<br />

⎝<br />

d2 0<br />

0<br />

0<br />

0<br />

0<br />

u<br />

−u<br />

0<br />

1<br />

0<br />

c<br />

<br />

h 2<br />

d<br />

d2 u h<br />

0 0 −2u ⎞<br />

<br />

h<br />

d 0<br />

⎟<br />

⎠<br />

d<br />

(9.9)<br />

belong to P GO(5, q), <strong>and</strong> x ↦→ xD fixes p, q <strong>and</strong> e <strong>and</strong> maps f := (0, 0, 0, 1, 0)<br />

to (0, 0, −u <br />

h 2 d , d<br />

2<br />

u , h) ≡ (0, 0, −u2h2 d4 , 1, uh<br />

d2 ). This is for d, u, h ∈ F with<br />

du = 0. This shows that the stabilizer of p <strong>and</strong> q is doubly transitive on the<br />

po<strong>in</strong>ts of {p, q} ⊥ . (This is most clearly seen by putt<strong>in</strong>g u = d = 1 <strong>in</strong> the<br />

above matrix.)<br />

Matrices of the form<br />

⎛<br />

⎜<br />

D = ⎜<br />

⎝<br />

1 0 0 0 0<br />

0 d2 0 0 0<br />

0 0 u 0 0<br />

0 0 0 d2<br />

0 0 0<br />

u<br />

0<br />

0<br />

d<br />

⎞<br />

⎟<br />

⎠<br />

(9.10)<br />

belong to P GO(5, q), <strong>and</strong> x ↦→ xD fixes p, q <strong>and</strong> e <strong>and</strong> f, <strong>and</strong> maps<br />

(0, 0, −1, 1, 1) to (0, 0, −u, d2<br />

−u2<br />

, d) ≡ (0, 0, u d2 , 1, u).<br />

It fixes (0, 0, −1, 1, 1) if<br />

d<br />

<strong>and</strong> only if u = d if <strong>and</strong> only if


396 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

⎛<br />

⎜<br />

D = ⎜<br />

⎝<br />

1 0 0 0 0<br />

0 d 2 0 0 0<br />

0 0 d 0 0<br />

0 0 0 d 0<br />

0 0 0 0 d<br />

<strong>in</strong> which case x ↦→ xD fixes all l<strong>in</strong>es through p.<br />

We have now established the follow<strong>in</strong>g result.<br />

Theorem 9.5.4. The action of P GO(5, q) on Q(4, q):<br />

(i) P GO(5, q) is transitive on the po<strong>in</strong>ts of Q(4, q)<br />

⎞<br />

⎟ , (9.11)<br />

⎠<br />

(ii) The stabilizer P GO(5, q)p is transitive on the q 3 po<strong>in</strong>ts of Q(4, q) not<br />

coll<strong>in</strong>ear with p.<br />

(iii) The stabilizer P GO(5, q)p,q of the noncoll<strong>in</strong>ear po<strong>in</strong>ts p <strong>and</strong> q is triply<br />

transitive on the po<strong>in</strong>ts of {p, q} ⊥ .<br />

(iv) Any coll<strong>in</strong>eation of P GO(5, q)p,q that fixes three l<strong>in</strong>es through p fixes<br />

all l<strong>in</strong>es through p <strong>and</strong> has the form given <strong>in</strong> Eq. 9.11<br />

(v) |P GO(5, q)| = [(1 + q)(1 + q 2 )]q 3 [(q + 1)q(q − 1)](q − 1)<br />

= (q 4 − 1)(q 2 − 1)q 4 . (9.12)<br />

Exercise 9.5.4.1. Show that each l<strong>in</strong>e of Q(4, q) is regular.<br />

Exercise 9.5.4.2. Show that each po<strong>in</strong>t of Q(4, q) is regular if q is even,<br />

<strong>and</strong> is antiregular if q is odd. (The def<strong>in</strong>ition of antiregular formally appears<br />

later. Here it just means that each triad of po<strong>in</strong>ts has either 0 or 2 centers.)<br />

After we have <strong>in</strong>troduced Plücker coord<strong>in</strong>ates <strong>and</strong> the Kle<strong>in</strong> correspondence<br />

we will show that W (q) <strong>and</strong> Q(4, q) are po<strong>in</strong>t-l<strong>in</strong>e duals of each other.<br />

9.6 Triads with Restricted Perp Size<br />

We cont<strong>in</strong>ue temporarily with the notation of Section 9.5 still with the assumption<br />

that both s > 1 <strong>and</strong> t > 1.<br />

Suppose there are three dist<strong>in</strong>ct <strong>in</strong>tegers α, β, γ, 0 ≤ α, β, γ ≤ t + 1,<br />

for which i ∈ {α, β, γ} implies that ni = 0. Note that we allow ni = 0 for


9.6. TRIADS WITH RESTRICTED PERP SIZE 397<br />

i ∈ {α, β, γ}. Then the equations <strong>in</strong> Lemmas 9.3.2, 9.3.3, <strong>and</strong> 9.3.4 may be<br />

written <strong>in</strong> matrix form as<br />

⎛<br />

1 1<br />

⎝ α β<br />

1<br />

γ<br />

⎞⎛<br />

⎞ ⎛<br />

nα ts<br />

⎠⎝<br />

nβ ⎠ = ⎝<br />

α(α − 1) β(β − 1) γ(γ − 1)<br />

2 − st − s + t<br />

st2 − s<br />

t3 ⎞<br />

⎠(9.13)<br />

− t<br />

The determ<strong>in</strong>ant of this l<strong>in</strong>ear system is ∆ = (α − β)(β − γ)(γ − α), <strong>and</strong><br />

we may use Cramer’s rule to solve for nα, nβ, nγ. As α, β, γ were given <strong>in</strong><br />

no particular order, it suffices to solve for just one:<br />

nα = (ts2 − st − s + t)βγ − (t 2 − 1)s(β + γ) + (t 2 − 1)(s + t)<br />

(α − β)(α − γ)<br />

The equations 9.13 <strong>and</strong> 9.14 have the follow<strong>in</strong>g easy corollaries.<br />

nγ<br />

(9.14)<br />

Corollary 9.6.1. Suppose that nβ = nγ = 0, i.e., there is at most one <strong>in</strong>dex<br />

α for which nα = 0. Then (t − 1)(s − 1)(s 2 − 1) = 0, <strong>and</strong> if s 2 = t = 1, then<br />

α = s + 1 <strong>and</strong><br />

Of course, this was conta<strong>in</strong>ed <strong>in</strong> Lemma 9.3.4<br />

nα = s(s − 1)(s 2 + 1) (9.15)<br />

Corollary 9.6.2. Suppose that nγ = 0. By the formula for nγ we have<br />

(ts 2 − st − s + t)αβ − (t 2 − 1)s(α + β) + (t 2 − 1)(s + t) = 0.<br />

If α = 0 <strong>and</strong> t > 1, then β = (s + t)/s. If α = 1, then β = (t 2 − 1)/(st −<br />

s 2 + s + 1), which also forces s ≤ t if t = 1.<br />

Corollary 9.6.3. If s > t > 1, then by Corollaries 9.3.7 <strong>and</strong> 9.3.8 it follows<br />

that both n0 > 0 <strong>and</strong> n1 > 0.<br />

Corollary 9.6.4. Suppose α = 0, β = 1, with s, t, γ > 1. Then<br />

If γ = 2, then we have<br />

nγ = t(t 2 − 1)/γ(γ − 1)<br />

n0 = s 2 t − st 2 − st + (t + t 3 )/2<br />

n1 = (t 2 − 1)(s − t)<br />

n2 = (t 2 − 1)t/2.


398 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

If γ = t + 1, then we have<br />

n0 = (s − t)t(s − 1)<br />

n1 = (t 2 − 1)(s − 1)<br />

nt+1 = t − 1.<br />

If γ = (s + t)/s, then n1 = 0, <strong>and</strong> we are back <strong>in</strong> the situation considered <strong>in</strong><br />

Corollary 9.6.2<br />

Corollary 9.6.5. Suppose 1 = α < β < γ = 1 + t. Then<br />

n1 = (1 + t)(s − 1)(1 − t + β(s − 1))/(β − 1)<br />

nβ = t(s − 1)(t + 1)(t − s)/(β − 1)(t + 1 − β)<br />

nt+1 = (t 2 − 1 − β(st − s 2 + s − 1))/(t + 1 − β)<br />

Now let x be a fixed po<strong>in</strong>t of S.<br />

Theorem 9.6.6. If the triads conta<strong>in</strong>ed <strong>in</strong> x ⊥ have a constant number α of<br />

centers, then α = 1 + t/s, etc.<br />

1. The triads {y1, y2, y3} conta<strong>in</strong>ed <strong>in</strong> x ⊥ have a constant number of centers<br />

iff the triads {x, u1, u2} conta<strong>in</strong><strong>in</strong>g x have exactly 0 or α (α a<br />

constant) centers. If one of these equivalent situations occurs, then<br />

(s + t) | s(t − 1) <strong>and</strong> the constants both equal 1 + t/s.<br />

2. Let y ∈ P \ x ⊥ . Then no triad conta<strong>in</strong><strong>in</strong>g {x, y} has more than 1 + t/s<br />

centers iff each such triad has exactly 0 or 1 + t/s centers iff no such<br />

triad has α centers with 0 < α < 1 + t/s. In such a case there are<br />

t(s − 1)(s 2 − t)/(s + t) acentric triads conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> y, <strong>and</strong> (t 2 −<br />

1)s 2 /(s + t) triads conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> y with exactly 1 + t/s centers.<br />

3. If s = q n <strong>and</strong> t = q m with q a prime power, <strong>and</strong> if each triad <strong>in</strong> x ⊥ has<br />

1 + t/s centers, then there is an odd <strong>in</strong>teger a for which n(a + 1) = ma.<br />

Proof. For Part 1, suppose there is a constant α such that each triad {x, u1, u2}<br />

conta<strong>in</strong><strong>in</strong>g x has 0 or α centers. By Corollary 9.3.13 we have α = 1 + t/s.<br />

There are d = (t2−1)s3t/6 triads T1, . . . , Td conta<strong>in</strong>ed <strong>in</strong> s⊥ . Let 1+ri be the<br />

number of centers of Ti, so that ri = s2t(t+1)t(t−1)/6. Count the ordered<br />

triples (Ti, u1, u2), where Ti is a triad <strong>in</strong> x⊥ <strong>and</strong> (x, u1, u2) is an ordered triad<br />

<strong>in</strong> T ⊥<br />

i , to obta<strong>in</strong> ri(ri−1) = s2tnα(1+t/s)(t/s)((t/s)−1)/6. Here nα is the


9.6. TRIADS WITH RESTRICTED PERP SIZE 399<br />

number of triads conta<strong>in</strong><strong>in</strong>g (x, u1), x ∼ u1, <strong>and</strong> hav<strong>in</strong>g exactly α = 1 + t/s<br />

centers. From Lemma 9.3.3 it follows that nα = (t 2 − 1)s 2 /(s + t). Hence<br />

d( r 2 i ) − ( ri) 2 = 0, imply<strong>in</strong>g that ri is the constant ( ri)/d = t/s.<br />

Conversely, assume that the number ri + 1 of centers of Ti is a constant.<br />

Then ri = s 2 t(t+1)t(t−1)/(t 2 −1)s 3 t = t/s. Fix y1 <strong>in</strong> x ⊥ \{x}. The number<br />

of triads V1, . . . , Vd ′ conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> hav<strong>in</strong>g y1 as center is d ′ = t(t − 1)s 2 /2.<br />

If 1 + ti denotes the number of centers of Vi, 1 ≤ i ≤ d ′ , it is easy to<br />

check that ti = stt(t − 1)/2 <strong>and</strong> ti(ti − 1) = sts(t − 1)(t/s)(t/s − 1)/2.<br />

Hence d ′ ( t 2 i ) = ( ti) 2 , <strong>and</strong> ti is the constant ( ti)/d ′ = t/s. It follows<br />

immediately that each centric triad (x, u1, u2) has exactly 1 + t/s centers.<br />

Suppose that these equivalent situations occur. Fix u1, u1 ∼ x, <strong>and</strong> let L<br />

be a l<strong>in</strong>e which is <strong>in</strong>cident with no po<strong>in</strong>t of {x, u1} ⊥ (s<strong>in</strong>ce s = 1 such a l<strong>in</strong>e<br />

exists). Then the number of po<strong>in</strong>ts u2, u2 | L, for whch (x, u1, u2) is a centric<br />

triad equals (t − 1)/(1 + t/s). Hence (s + t) | s(t − 1), <strong>and</strong> Part 1 is proved.<br />

For Part 2, recall Corollary 9.3.8. The coefficient of nα <strong>in</strong> that equation is<br />

nonnegative iff α ≥ 1+t/s, <strong>and</strong> equals 0 iff α = 1+t/s. Assume that nα = 0<br />

for α > 1 + t/s. S<strong>in</strong>ce n1 ≥ 0, we must have nα = 0 for 1 ≤ α ≤ t/s.Hence<br />

each triad conta<strong>in</strong><strong>in</strong>g (x, y) has exactly 0 or 1 + t/s centers. Conversely,<br />

assume nα = 0 for 0 < α < 1 + t/s. S<strong>in</strong>ce n1 = 0, we necessarily have nα = 0<br />

for α > 1 + t/s. Hence each triad conta<strong>in</strong><strong>in</strong>g (x, y) has exactly 0 or 1 + t/s<br />

centers. F<strong>in</strong>ally, if this last condition holds, it is easy to use Lemmas 9.3.2<br />

<strong>and</strong> 9.3.3 to solve for n0 <strong>and</strong> n1+t/s, complet<strong>in</strong>g the proof of Part 2.<br />

Given the hypotheses of Part 3, from Part 1 we have t ≥ s <strong>and</strong> (s + t) |<br />

s(t − 1), from which it follows that (1 + q m−n ) | (q m − 1). S<strong>in</strong>ce q m − 1 =<br />

(q m−n + 1)q n − q n − 1, there results (1 + q m−n ) | (1 + q n ). This forces n to be<br />

an odd multiple of m − n, so n(a + 1) = ma with a odd.<br />

For the rema<strong>in</strong>der of this Section we suppose that each triad conta<strong>in</strong>ed <strong>in</strong><br />

x ⊥ has exactly 1+t/s centers, so that each triad conta<strong>in</strong><strong>in</strong>g x has 0 or 1+t/s<br />

centers. Let T = {x, u1, u2} be a fixed triad with T ⊥ = {y0, y1, . . . , yt/s}.<br />

Each triad <strong>in</strong> T ⊥ also has 1 + t/s centers. For 0 ≤ i ≤ 1 + t/s let mi be the<br />

number of po<strong>in</strong>ts w such that w is coll<strong>in</strong>ear with exactly i po<strong>in</strong>ts of T ⊥ but<br />

not with any of x, u1, u2.<br />

Theorem 9.6.7. Suppose that each triad conta<strong>in</strong>ed <strong>in</strong> x ⊥ has exactly 1+t/s


400 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

centers.<br />

mi = s 2 t − 2st − 2s + 3t − t/s (9.16)<br />

imi = (s + t)(t − 2) (9.17)<br />

i(i − 1)mi = (s + t)t(t − 2)/s 2<br />

i(i − 1)(i − 2)mi = (s + t)t(t − s)(t − 2s)/s 4<br />

(9.18)<br />

(9.19)<br />

Proof. The first sum just counts all po<strong>in</strong>ts not coll<strong>in</strong>ear with any of x, u1, u2.<br />

The second sum counts the number of ordered pairs (w, yi) with w ∼ yi but<br />

w not coll<strong>in</strong>ear with any of x, u1, u2. The third sum counts the number of<br />

ordered triples (w, yi, yj) with yi ∼ w ∼ yj, yi = yj, <strong>and</strong> s not coll<strong>in</strong>ear with<br />

any of x, u1, u2. F<strong>in</strong>ally, the fourth sum counts the number of ordered 4tuples<br />

(w, yi, yj, yk) with w a center of the triad {yi, yj, yk} but not coll<strong>in</strong>ear<br />

with any of x, u1, u2.<br />

We end this section with a result on GQ of order (s, s 2 ), <strong>in</strong> which we have<br />

seen that each triad of po<strong>in</strong>ts must have exactly 1 + t/s = 1 + s centers. In<br />

fact, when s = 3 this result is a corollary of the preced<strong>in</strong>g theorem, but for<br />

s > 3 it seems to require a special proof.<br />

Theorem 9.6.8. In a GQ S = (P, B, I) of order (s, s 2 ), with s > 2, a triad<br />

which nearly has a span of size 1 + s, <strong>in</strong> fact does have a span of size 1 + s.<br />

Let S = (P, B, I) be a GQ of order (s, s 2 ), s > 2, with a triad T =<br />

{x0, x1, x2} for which T ⊥ = {y0, . . . , ys}, <strong>and</strong> for which {x0, . . . , xs−1} ⊆<br />

{x0, x1, x2} ⊥⊥ . Suppose that there is a po<strong>in</strong>t xs for which xi = xs ∼ yi for<br />

0 ≤ i ≤ s − 1. Then xs ∼ ys.<br />

Proof. The number of po<strong>in</strong>ts coll<strong>in</strong>ear with ys <strong>and</strong> also with at least two<br />

po<strong>in</strong>ts of {y0, . . . , ys−1} is at most s(s − 1)/2 + s, <strong>and</strong> the number of po<strong>in</strong>ts<br />

coll<strong>in</strong>ear with ys <strong>and</strong> <strong>in</strong>cident with some l<strong>in</strong>e xsyi, 0 ≤ i ≤ s − 1, is at most<br />

s. S<strong>in</strong>ce s > 2, we have s(s − 1)/2 + 2s < s 2 + 1 = t + 1. Hence there<br />

is a l<strong>in</strong>e L <strong>in</strong>cident with ys, but not concurrent with xsyi, 0 ≤ i ≤ s − 1,<br />

<strong>and</strong> not <strong>in</strong>cident with an element of {yi, yj} ⊥ , i M = j, 0 ≤ i, j ≤ s − 1.The<br />

po<strong>in</strong>t <strong>in</strong>cident with L <strong>and</strong> coll<strong>in</strong>ear with yi is denoted by zi, 0 ≤ i ≤ s − 1.<br />

Clearly all s po<strong>in</strong>ts zi are dist<strong>in</strong>ct. S<strong>in</strong>ce S has no triangles, the po<strong>in</strong>t xs is<br />

not coll<strong>in</strong>ear with any zi, forc<strong>in</strong>g xs ∼ ys.<br />

Exercise 9.6.8.1. Show that |T ⊥⊥ | = 4 for any triad <strong>in</strong> a GQ of order (3, 9).


9.7. THE INCIDENCE MATRIX 401<br />

9.7 The Incidence Matrix<br />

Let S = (P, B, I) be a GQ of order (s, t), <strong>and</strong> put | P |= v, | B |= b. So we<br />

know<br />

v = (1 + s)(1 + st); b = (1 + t)(1 + st) (9.20)<br />

Suppose that the po<strong>in</strong>tset <strong>and</strong> the l<strong>in</strong>eset are ordered:<br />

P = {x1, . . . , xv}; B = {L1, . . . , Lb}.<br />

Let A be the l<strong>in</strong>e-po<strong>in</strong>t <strong>in</strong>cidence matrix of S, i.e., A = (aij), where<br />

aij = 1 if xjILi <strong>and</strong> aij = 0 otherwise. A is b × v <strong>and</strong><br />

(A T A)ij =<br />

⎧<br />

⎨<br />

⎩<br />

1 + t, if i = j;<br />

1, if xi ∼ xj, i = j;<br />

0, if xi ∼ xj.<br />

The number of paths from xi to Lj with length 3 is<br />

It follows that<br />

(A T AA T )ij =<br />

(Here J is the v × b matrix of 1’s.)<br />

There are other easy results:<br />

s + t + 1, xiILj;<br />

1, otherwise.<br />

(9.21)<br />

(9.22)<br />

A T AA T − (s + t)A T = Jv×b. (9.23)<br />

tr(A T A) = (1 + s)(1 + t)(1 + st). (9.24)<br />

Jb×vA T A = (1 + s)(1 + t)Jb×v. (9.25)<br />

(A T A) 2 − (s + t)A T A = Jv×bA = (1 + t)Jv×v<br />

(9.26)<br />

Jv×v(A T A − (1 + s)(1 + t)I) = 0 (9.27)<br />

A T A(A T A − (s + t)I)(A T A − (1 + s)(1 + t)I) = 0 (9.28)


402 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

Let A T A have eigenvalue θi with multiplicity di <strong>and</strong> eigenspace Wi, i =<br />

0, 1, 2, with θ0 = (1+s)(1+t); θ1 = 0; θ2 = s+t. From Eq. 9.26, (θi) 2 −(s+t)θi<br />

is an eigenvalue of (1 + t)Jv, i.e., it must be one of (1 + t)(1 + s)(1 + st), 0.<br />

So θ0 = (1 + s)(1 + t) corresponds to (1 + t)(1 + s)(1 + st) <strong>and</strong> d0 = 1.<br />

Let e be the column vector with as many entries as make sense, all equal<br />

to 1.<br />

W0 = 〈e〉 = {x : A T Ax = (1 + s)(1 + t)x} ⊆ col.sp.(A T ) (9.29)<br />

In the next equation y is an arbitrary column vector with b rational<br />

entries.<br />

e T A T y = 0 iff (1 + s)e T y = 0 iff e T y = 0 (9.30)<br />

Now def<strong>in</strong>e the follow<strong>in</strong>g subspace U of column vectors with v rational<br />

entries:<br />

U = {A T y : y ∈ 〈e〉 ⊥ }<br />

There is an immediate consequence:<br />

U = e ⊥ ∩ col.sp.(A T ). (9.31)<br />

Proof. As x ∈ U implies that x = A T y ∈ col.sp.(A T ) for some y with y T e = 0,<br />

by equation 9.30 we have e T A T y = 0, so e T x = 0 <strong>and</strong> x ∈ e ⊥ ∩ col.sp.(A T ).<br />

Conversely, let x ∈ col.sp.(A T ), say x = A T y. If e T x = 0, then by equation<br />

9.30 e T y = 0, so x ∈ U by def<strong>in</strong>ition.<br />

We have v = 1 + d1 + d2, <strong>and</strong> tr(A T A) = (1 + s)(1 + t)(1 + st) =<br />

1 · (1 + s)(1 + t) + 0 · d1 + (s + t) · d2. Hence:<br />

d1 = (1 + st)s 2 /(s + t) <strong>and</strong> d2 = (1 + s)(1 + t)st/(s + t) (9.32)<br />

This gives an important restriction on the parameters s <strong>and</strong> t:<br />

Theorem 9.7.1. (1 + s)(1 + t)st/(s + t) must be an <strong>in</strong>teger.<br />

Corollary 9.7.2. If s > 1, t > 1, s = t 2 <strong>and</strong> t = s 2 , then t ≤ s 2 − s <strong>and</strong>,<br />

dually, s ≤ t 2 − t. In fact, t = s 2 − x with x = s, x = 1 + s or x ≥ 2s. Also,<br />

t = 1 + s.


9.7. THE INCIDENCE MATRIX 403<br />

Proof. Suppose s = 1 <strong>and</strong> t = s 2 . By Higman’s <strong>in</strong>equality we have t = s 2 − x<br />

with x > 0. By Theorem 9.7.1 (s + s 2 − x)|s(s 2 − x)(s + 1)(s 2 − x + 1). Hence<br />

modulo s+s 2 −x we have 0 ≡ x(−s)(−s+1) ≡ x(x−2s). If 0 < x < 2s, then<br />

s+s 2 −x ≤ x(2s−x) forces x 2 −x(2s+1)+s(1+s) = (x−s)(x−(1+s)) ≤ 0,<br />

from which we see x = s or x = 1 + s. Consequently, x = s, x = 1 + s, or<br />

x ≥ 2s. F<strong>in</strong>ally, if t = s + 1, then 2s + 1|(1 + s)(2 + s)s(s + 1), which can be<br />

seen to force s = 1, a contradiction.<br />

In the rema<strong>in</strong>der of this section we use the <strong>in</strong>cidence matrix <strong>and</strong> beg<strong>in</strong><br />

to apply the theory of <strong>in</strong>terlac<strong>in</strong>g of eigenvalues (see the Appendix which is<br />

Chapter 22) to generalized quadrangles.<br />

Let S = (P, B, I) be a GQ with parameters (s, t). Let P = {x1, . . . , xv},<br />

with v = (1 + s)(1 + st) be particular order<strong>in</strong>g of the po<strong>in</strong>ts of S, <strong>and</strong><br />

B = {L1, . . . , Lb}, with b = (1 + t)(1 + st), a particular order<strong>in</strong>g of the l<strong>in</strong>es<br />

of S. Let A be the b × v (0,1)-matrix whose rows are <strong>in</strong>dexed by the l<strong>in</strong>es<br />

of S <strong>and</strong> whose po<strong>in</strong>ts are <strong>in</strong>dexed by the po<strong>in</strong>ts of S. Then A has a 1 <strong>in</strong><br />

the (i, j) position if <strong>and</strong> only if xj is <strong>in</strong>cident with the l<strong>in</strong>e Li. We showed<br />

that the real symmetric matrix AT A has eigenvalues θ0 = (1 + s)(1 + t),<br />

θ1 = 0, θ2 = s + t, with multiplicities given by d0 = 1, d1 = s2 (1+st)<br />

, <strong>and</strong><br />

s+t<br />

d2 = (1+s)(1+t)st<br />

, respectively.<br />

s+t<br />

Put B = tI + J − AT A, so B is a symmetric v × v (0,1)-matrix with a<br />

1 <strong>in</strong> the (i,j) position if <strong>and</strong> only if i = j <strong>and</strong> xi <strong>and</strong> xj are NOT coll<strong>in</strong>ear.<br />

The eigenvalues θ ′ i <strong>and</strong> their multiplicities d′ i = di are easily seen to be<br />

θ ′ 0 = t + (1 + x)(1 + st) − (1 + s)(1 + t) = s 2 t; d ′ 0 = 1; (9.33)<br />

θ ′ 1 = t + 0 − 0 = t; d′ 1 = s2 (1 + st)<br />

;<br />

s + t<br />

θ ′ 2 = t + 0 − (s + t) = −s; d′ (1 + s)(1 + t)st<br />

2 = .<br />

s + t<br />

We are go<strong>in</strong>g to apply Theorem 22.1.3 with B = BΓ , i.e., Γ is the identity<br />

partion (i.e., each part has size 1). Let D = ∆1 + ∆2 be any partion of<br />

{1, . . . , v} hav<strong>in</strong>g two parts. So δ1 = |∆1|, δ2 = |∆2| = (1 + s)(1 + st) − δ1.<br />

Here δ11 is the number of ordered pairs (i, j) for which i, j ∈ ∆1 <strong>and</strong> xi <strong>and</strong><br />

xj are not coll<strong>in</strong>ear <strong>in</strong> S. Also, δ12 is the number of ordered pairs (i, j) for<br />

which i, j ∈ ∆1 × ∆2 <strong>and</strong> xi <strong>and</strong> xj are not coll<strong>in</strong>ear <strong>in</strong> S. Hence if e = δ11<br />

δ1 ,<br />

then δ12 = s2t − e <strong>and</strong> it follows readily that


404 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

B ∆ =<br />

<br />

e s2 δ2<br />

t − e<br />

s2t − δ1(s2 <br />

t−e)<br />

δ2<br />

. (9.34)<br />

δ1(s 2 t−e)<br />

One eigenvalue of B∆ is clearly s2t, so the other is tr(B∆ ) − s2t = e −<br />

δ1(s2t−e) . S<strong>in</strong>ce the eigenvalues of B δ2<br />

∆ lie between the smallest <strong>and</strong> largest<br />

roots of B, <strong>in</strong> particular<br />

which simplifies to<br />

−s ≤ e − δ1(s2t − e)<br />

,<br />

s<br />

(δ1 − (1 + s)) ≤ e (9.35)<br />

1 + s<br />

S<strong>in</strong>ce e is the average number of po<strong>in</strong>ts of ∆1 not coll<strong>in</strong>ear <strong>in</strong> S with a<br />

fixed po<strong>in</strong>t of ∆1, it must be that δ1 − e is the average number of po<strong>in</strong>ts<br />

of ∆1 coll<strong>in</strong>ear <strong>in</strong> S with a fixed po<strong>in</strong>t of ∆1 (<strong>in</strong>clud<strong>in</strong>g that po<strong>in</strong>t itself).<br />

Equation 9.35 may be rewritten to say that<br />

δ1 − e ≤ s + δ1<br />

1 + s<br />

This proves the first part of the follow<strong>in</strong>g theorem.<br />

δ2<br />

(9.36)<br />

Theorem 9.7.3. Let ∆1 be any nonempty, proper subset of po<strong>in</strong>ts of the GQ<br />

S of order (s, t). Then the average number of po<strong>in</strong>ts coll<strong>in</strong>ear <strong>in</strong> ∆1 with a<br />

given po<strong>in</strong>t of ∆1 is less than or equal to s + δ1 . If equality holds, then each<br />

1+x<br />

po<strong>in</strong>t of ∆1 is coll<strong>in</strong>ear with exactly s + δ1<br />

1+x po<strong>in</strong>ts of ∆1. Moreover, this<br />

holds if <strong>and</strong> only if each po<strong>in</strong>t of ∆2 is coll<strong>in</strong>ear with exactly δ1 po<strong>in</strong>ts of<br />

1+s<br />

∆1.<br />

Proof. The <strong>in</strong>equality of the theorem has been established. If equality holds,<br />

i.e., −s = e − δ1(s2t−e) , then (δ1 − v, δ1) δ2<br />

T is an eigenvector of B∆ associated<br />

with the eigenvalue −s. Hence it must be that x = (δ1 − v, . . . , δ1 −<br />

v, δ1, . . . , δ1) T is an eigenvector of B associated with eigenvalue −s, where<br />

the first coord<strong>in</strong>ate value is repeated δ1 times <strong>and</strong> the second δ2 = v − δ1<br />

times.<br />

Fix i ∈ ∆1 <strong>and</strong> let a be the number of po<strong>in</strong>ts xj with j ∈ ∆1 for which xi<br />

<strong>and</strong> xj are not coll<strong>in</strong>ear. Now consider the ith row of Bx = −sx. This says<br />

δ1 j=1 Bij(δ1 − v) + δ2 j=1 Bi,δ1+jδ1 = a(δ1 − v) + (s2t − a)δ1 = −s(δ1 − v),


9.7. THE INCIDENCE MATRIX 405<br />

which simplifies to a = δ1s<br />

− s, which says that a = e is <strong>in</strong>dependent of<br />

1+s<br />

i ∈ ∆1. This implies that each po<strong>in</strong>t xi for i ∈ ∆1 is coll<strong>in</strong>ear with exactly<br />

δ1 − e = s + δ1<br />

1+s po<strong>in</strong>ts xj for of j ∈ ∆1. Now let i ∈ ∆2 <strong>and</strong> let b be the<br />

number of po<strong>in</strong>ts xj for j ∈ ∆1 for which xi <strong>and</strong> xj are not coll<strong>in</strong>ear. Then<br />

the ith row of Bx = −sx says that b(δ1 − v) + (s2t − b)δ1 = −sδ1, which<br />

becomes b = δ1s<br />

1+s for all i ∈ ∆2. This says that each po<strong>in</strong>t of ∆2 is coll<strong>in</strong>ear<br />

with exactly δ1 − b = δ1 po<strong>in</strong>ts of ∆1.<br />

1+s<br />

NOTE: There is a theory of “tight” sets for which the case of equality <strong>in</strong><br />

this theorem holds.<br />

The preced<strong>in</strong>g theorem deals with the simplest possible application of the<br />

“<strong>in</strong>terlac<strong>in</strong>g of eigenvalues” techniques, but it has <strong>in</strong>terest<strong>in</strong>g applications.<br />

The follow<strong>in</strong>g result on GQ has the Higman <strong>in</strong>equality as a corollary.<br />

Theorem 9.7.4. Let X = {x1, . . . , xm} <strong>and</strong> Y = {y1, . . . , yn} each be sets<br />

of pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts of S, m ≥ 2, n ≥ 2. Assume that X ∩ Y = ∅<br />

<strong>and</strong> that yi is coll<strong>in</strong>ear with ki of the xj’s, 1 ≤ i ≤ n, 0 ≤ ki ≤ m. Then:<br />

(1 + s)<br />

n<br />

ki ≤ mn + m2n2 + (s2 − 1)(m + n)mn + (s2 − 1) 2mn. (9.37)<br />

i=1<br />

Proof. As before, let Γ be the identity partition, so B = B Γ . Let Z =<br />

P \ (X ∪ Y ) = {z1, . . . , zr}, r = v − (m + n). Let ∆ = ∆1 + ∆2 + ∆3 be the<br />

partition of {1, . . . , v} determ<strong>in</strong>ed by X, Y <strong>and</strong> Z, respectively. As δi = |∆i|,<br />

we have δ1 = m, δ2 = n, δ3 = v − (m + n), δ11 = m(m − 1), δ22 = n(n − 1),<br />

δ12 = δ21 = n i=1 (m − ki) = mn − Σ, where Σ = n i=1 ki. S<strong>in</strong>ce 3 δij<br />

j=1 δi =<br />

s2t, we also have δ13 = δ1s2t − δ12 − δ11 = s2tm − (mn − Σ) − m(m − 1).<br />

Similarly, δ23 = s2tn − (mn − Σ) − n(n − 1). Us<strong>in</strong>g these results it is now<br />

rout<strong>in</strong>e to complete the calculation of B∆ .<br />

⎛<br />

B ∆ = ⎝<br />

m − 1 n − Σ s m<br />

2t + 1 − m − n + Σ<br />

m<br />

m − σ n − 1 s n 2t + 1 − m − n + Σ<br />

n<br />

n[s2t+1−m−n]+Σ s v−m−n<br />

2t − (m+n)[s2t+1−m−n]+2Σ v−m−n<br />

m[s 2 t+1−m−n]+Σ<br />

v−m−n<br />

Let (x − s 2 t)(x − r1)(x − r2) be the characteristic polynomial of B ∆ with<br />

the roots ordered so that r1 ≤ r2 ≤ s 2 t. The proof of the theorem amounts<br />

⎞<br />

⎠ .


406 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

to calculat<strong>in</strong>g r1 <strong>and</strong> us<strong>in</strong>g the <strong>in</strong>equality −s ≤ r1. Put (x − r1)(x − r2) =<br />

x 2 − bx + c, so that 2r1 = b − √ b 2 − 4c. Hence −s ≤ r1 simplifies to<br />

0 ≤ s 2 + bs + c; b = r1 + r2 = tr(B ∆ ) − s 2 t; c = det(B ∆ )/s 2 t. (9.38)<br />

It is straightforward to calculate tr(B δ ) <strong>and</strong> then to write b as follows:<br />

b =<br />

(m + n)(s + st + 2) − 2v − 2Σ<br />

. (9.39)<br />

v − m − n<br />

To calculate det(B ∆ ), add the first <strong>and</strong> second columns of B ∆ to the<br />

third column <strong>and</strong> then subtract the first row from the second. At this po<strong>in</strong>t<br />

det(B ∆ ) appears as follows.<br />

det(B ∆ ) = s 2 t<br />

<br />

<br />

<br />

<br />

<br />

<br />

m − 1 n − 0 Σ 1<br />

m<br />

1 − Σ<br />

<br />

<br />

Σ<br />

<br />

− 1 0 <br />

n<br />

m . (9.40)<br />

1 <br />

m[s 2 t+1−m−n]+Σ<br />

v−m−n<br />

n[s 2 t+1−m−n]+Σ<br />

v−m−n<br />

Exp<strong>and</strong><strong>in</strong>g by the third column <strong>and</strong> simplify<strong>in</strong>g, one may calculate c to<br />

be as folows:<br />

c = det(B ∆ )/s 2 t = (1 + s + st)(2Σ − m − n) + v − Σ2v/mn . (9.41)<br />

v − m − n<br />

Us<strong>in</strong>g the values for b <strong>and</strong> c obta<strong>in</strong>ed above, we can now write Eq. 9.38<br />

as the follow<strong>in</strong>g:<br />

0 ≤ (s − 1)(m + n + s 2 − 1)mn + 2mnΣ − (1 + s)Σ 2 . (9.42)<br />

Equality <strong>in</strong> Eq. 9.42 gives two roots Σ1 <strong>and</strong> Σ2 for which Eq. 9.42 says<br />

Σ1 ≤ Σ ≤ Σ2, if Σ1 ≤ Σ2. But Σ2 is easiy evaluated.<br />

Σ2 = mn + m2n2 + (s2 − 1)(m + n)mn + (s2 − 1) 2mn . (9.43)<br />

1 + s<br />

Clearly Σ ≤ Σ2 is just the <strong>in</strong>equality of the theorem.


9.7. THE INCIDENCE MATRIX 407<br />

We now use Theorem 9.7.3 to <strong>in</strong>vestigate the case of equality <strong>in</strong> Theorem<br />

9.7.4 <strong>in</strong> the special case that each ki = m, i.e., each xi is coll<strong>in</strong>ear with<br />

each yj. Here Σ = mn, <strong>and</strong> Eq. 9.43 along with Σ ≤ Σ2 reduces to<br />

(m − 1)(n − 1) ≤ s 2 . (9.44)<br />

Suppose, moreover, that (m − 1)(n − 1) = s 2 , so −s is an eigenvalue of<br />

A ∆ . Hence a nonzero eigenvector of A ∆ belong<strong>in</strong>g to −s must span the null<br />

space of A ∆ + sI.<br />

⎛<br />

A ∆ + sI = ⎝<br />

m − 1 + s 0 s 2 t + 1 − m<br />

0 n − 1 + s s 2 t + 1 − n<br />

∗ ∗ ∗<br />

where we need not bother to calculate the third row, s<strong>in</strong>ce the rank must<br />

equal 2. Clearly y = (y1, y2, 1) T spans the null space of A ∆ + sI, where<br />

y1 =<br />

⎞<br />

⎠ ,<br />

m − 1 − st<br />

s + m − 1 ; y2 = n − 1 − s2t . (9.45)<br />

s + n − 1<br />

Let us assume that the pont of P are ordered (for the construction of A)<br />

so that the first m po<strong>in</strong>ts are those of X, the next n po<strong>in</strong>ts are those of Y ,<br />

<strong>and</strong> the last v − m − n ponts are those of Z. Then by Theorem 22.1.3 x must<br />

be an eigenvector of A belong<strong>in</strong>g to λ1 = −s, where x is as follows:<br />

x = (y1, . . . , y1, y2, . . . , y2, 1, . . . , 1) T , (9.46)<br />

where y1 appears m times, y2 appears n times, <strong>and</strong> 1 appears v − m − n<br />

times.<br />

For the first m + n rows of A this yields no new <strong>in</strong>formation. But let<br />

z ∈ Z be the i th pont, i > m + n. Suppose z is not coll<strong>in</strong>ear with k1 po<strong>in</strong>ts<br />

of X, is not coll<strong>in</strong>ear with k2 po<strong>in</strong>ts of Y , <strong>and</strong> hence is not coll<strong>in</strong>ear with<br />

s 2 t − k1 − k2 po<strong>in</strong>ts of Z. Then the product of the i th row of A with x, which<br />

must equal −s, is actually<br />

k1y1 + k2y2 + s 2 t − k1 − k2 = −s.<br />

After a little simplification this becomes:<br />

k1<br />

s + m − 1 +<br />

k2<br />

= 1. (9.47)<br />

s + n − 1


408 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

If z lies on a l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g a po<strong>in</strong>t of X with a po<strong>in</strong>t of Y , then k1 = m − 1<br />

<strong>and</strong> k2 = n−1, i.e., s<strong>in</strong>ce S has no triangles z is coll<strong>in</strong>ear with a unique po<strong>in</strong>t<br />

of X <strong>and</strong> with a unique po<strong>in</strong>t of Y . On the other h<strong>and</strong>, if z is not on such<br />

a l<strong>in</strong>e, either k1 = m or k2 = n. Suppose k1 = m, so z is coll<strong>in</strong>ear with no<br />

po<strong>in</strong>t of X. Us<strong>in</strong>g Eq. 9.47 we f<strong>in</strong>d that the number of po<strong>in</strong>ts of Y coll<strong>in</strong>ear<br />

with z is<br />

n − 1<br />

n − k2 = 1 + . (9.48)<br />

s<br />

Similarly, any po<strong>in</strong>t of P coll<strong>in</strong>ear with no po<strong>in</strong>t of Y must be coll<strong>in</strong>ear<br />

with 1 + m−1 po<strong>in</strong>ts of X. If m = n = s + 1, this says each po<strong>in</strong>t not on a<br />

s<br />

l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g a po<strong>in</strong>t of X with a po<strong>in</strong>t of Y must be coll<strong>in</strong>ear with two po<strong>in</strong>ts<br />

of X <strong>and</strong> none of Y or must be coll<strong>in</strong>ear with two po<strong>in</strong>ts of Y <strong>and</strong> none of<br />

X. If 1 < m < s + 1, so 1 + m−1 is not an <strong>in</strong>teger, then each po<strong>in</strong>t of P is<br />

s<br />

coll<strong>in</strong>ear with some po<strong>in</strong>t of Y . This implies that each po<strong>in</strong>t of P is either<br />

on a l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g po<strong>in</strong>ts of X <strong>and</strong> Y or is coll<strong>in</strong>ear with 1 + n−1<br />

s<br />

≥ 3 po<strong>in</strong>ts of<br />

Y . Clearly n ≤ 1 + t. Suppose n < 1 + t <strong>and</strong> let x1 ∈ X. Then there is some<br />

l<strong>in</strong>e L through x1 not <strong>in</strong>cident with any po<strong>in</strong>t of Y . But then any po<strong>in</strong>t z on<br />

L, z = x1, cannot be coll<strong>in</strong>ear with any po<strong>in</strong>t of Y , a contradiction. Hence<br />

it must be that n = 1 + t, from which it follows that m = 1 + s2<br />

t .<br />

This completes a proof of the follow<strong>in</strong>g for a GQ S = (P, B, I) of order<br />

(s, t).<br />

Theorem 9.7.5. Let X = {x1, . . . , xm} <strong>and</strong> Y = {y1, . . . , yn} each be sets<br />

of pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts with each po<strong>in</strong>t of X coll<strong>in</strong>ear with each po<strong>in</strong>t<br />

of Y , m ≥ 2, n ≥ 2. Then (m − 1)(n − 1) ≤ s2 . If equality holds, then one<br />

of the follow<strong>in</strong>g must occur:<br />

(i) m = n = 1 + s, <strong>and</strong> each po<strong>in</strong>t of Z = P \ (X ∪ Y ) is coll<strong>in</strong>ear with<br />

precisely two po<strong>in</strong>ts of X ∪ Y .<br />

(ii) m = n. If m < n, then s divides t, s < t, n = 1 + t, m = 1 + s2 , each t<br />

po<strong>in</strong>t of S is coll<strong>in</strong>ear with either 1 or 1 + t<br />

po<strong>in</strong>ts of Y accord<strong>in</strong>g as it is or<br />

s<br />

is not coll<strong>in</strong>ear with some po<strong>in</strong>t of X.<br />

Note: (m − 1) divides s.<br />

9.8 Regularity: Variations on a Theme<br />

Let S = (P, B, I) be a GQ of order (s, t), with 1 ≤ s <strong>and</strong> 1 ≤ t. As before,<br />

|P |= v, |B |= b. Let x, y be dist<strong>in</strong>ct po<strong>in</strong>ts. There are several variations on


9.8. REGULARITY: VARIATIONS ON A THEME 409<br />

the basic notion of regularity that was <strong>in</strong>troduced earlier. The known GQ<br />

have many po<strong>in</strong>ts or po<strong>in</strong>t pairs that have some or all of the basic regularity<br />

properties, so we want to consider the relationships between these various<br />

notions, the restrictions forced on the parameters s, t by them, <strong>and</strong> the<br />

associated structures that can often be constructed as a result of assum<strong>in</strong>g<br />

that one or more these conditions hold. For the convenience of the reader we<br />

start by recall<strong>in</strong>g the most basic notion, that of regularity.<br />

regular The pair {x, y} of dist<strong>in</strong>ct po<strong>in</strong>ts is said to be regular provided either<br />

x ∼ y or x ∼ y <strong>and</strong> |{x, y} ⊥⊥ |= t + 1. The po<strong>in</strong>t x is regular provided<br />

{x, z} is regular for all po<strong>in</strong>ts z, z = x.The po<strong>in</strong>t x is coregular provided<br />

each l<strong>in</strong>e <strong>in</strong>cident with x is regular.<br />

antiregular The pair {x, y} is antiregular provided x ⊥ y <strong>and</strong> |z ⊥ ∩{x, y} ⊥ |≤<br />

2 for all z ∈ P \ {x, y}. The po<strong>in</strong>t x is antiregular provided (x, z) is<br />

antiregular for all z ∈ P \ x ⊥ . The def<strong>in</strong>ition of “antiregular” was<br />

designed to capture the property of fail<strong>in</strong>g to be regular as strongly as<br />

possible. When s = t, this notion has turned out to be quite useful.<br />

When s = t, however, it seems less useful.<br />

net A (f<strong>in</strong>ite) net of order k (k ≥ 2) <strong>and</strong> degree r (r ≥ 2) is a po<strong>in</strong>t-l<strong>in</strong>e<br />

<strong>in</strong>cidence structure N = (P, B, I) satisfy<strong>in</strong>g the follow<strong>in</strong>g properties:<br />

1. Each po<strong>in</strong>t is <strong>in</strong>cident with r l<strong>in</strong>es, <strong>and</strong> two dist<strong>in</strong>ct po<strong>in</strong>ts are<br />

<strong>in</strong>cident with at most one l<strong>in</strong>e.<br />

2. Each l<strong>in</strong>e is <strong>in</strong>cident with k po<strong>in</strong>ts <strong>and</strong> two dist<strong>in</strong>ct l<strong>in</strong>es are <strong>in</strong>cident<br />

with at most one po<strong>in</strong>t.<br />

3. If p is a po<strong>in</strong>t <strong>and</strong> L is a l<strong>in</strong>e not <strong>in</strong>cident with p, then there is a<br />

unique l<strong>in</strong>e M <strong>in</strong>cident with p <strong>and</strong> not concurrent with L.<br />

A net of order k <strong>and</strong> degree r has k 2 po<strong>in</strong>ts <strong>and</strong> kr l<strong>in</strong>es.<br />

Let x, y be a pair of noncoll<strong>in</strong>ear po<strong>in</strong>ts, <strong>and</strong> recall the notation of Section<br />

9.3. It is almost trivial to see that {x, y} is regular iff some pair {z, w}<br />

of dist<strong>in</strong>ct po<strong>in</strong>ts of {x, y} ⊥ is regular iff every pair {z, w} of dist<strong>in</strong>ct po<strong>in</strong>ts<br />

of {x, y} ⊥ is regular. It follows immediately that if x is regular then each<br />

pair {u, v} of noncoll<strong>in</strong>ear po<strong>in</strong>ts of x ⊥ is regular. (We shall see later that<br />

there is an analogous result for antiregularity, but it requires a substantial<br />

proof!)


410 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

Theorem 9.8.1. 1. The pair {x, y} is regular iff each triad {x, y, z} has<br />

exactly 0, 1 or t + 1 centers. When s = t this is iff each triad {x, y, z}<br />

is centric.<br />

2. If the pair {x, y} is regular, then s = 1 or t ≤ s.<br />

3. If s = t <strong>and</strong> each po<strong>in</strong>t <strong>in</strong> x ⊥ \ {x} is regular, then every po<strong>in</strong>t of S is<br />

regular.<br />

4. If s > 1, t > 1 <strong>and</strong> S has a regular po<strong>in</strong>t x <strong>and</strong> a regular pair {L0, L1}<br />

of nonconcurrent l<strong>in</strong>es for which x is <strong>in</strong>cident with no l<strong>in</strong>e of {L0, L1} ⊥ ,<br />

then s = t is even.<br />

Proof. The first statement <strong>in</strong> Part 1 is just the def<strong>in</strong>ition of regular. The<br />

second statemtnt of Part 1 <strong>and</strong> also all of Part 2 follow immediately from<br />

Corollary 9.3.7. We remark that for s = 1 any pair of po<strong>in</strong>ts is regular, <strong>and</strong><br />

that for t = 1 any pair of po<strong>in</strong>ts is regular <strong>and</strong> any noncoll<strong>in</strong>ear pair of po<strong>in</strong>ts<br />

is antiregular.<br />

Now let s = t <strong>and</strong> assume that each po<strong>in</strong>t <strong>in</strong> x ⊥ \ {x} is regular. Let<br />

y ⊥ x <strong>and</strong> z1, z2 ∈ {x, y} ⊥ , z1 = z2. S<strong>in</strong>ce {z1, z2} is regular, clearly {x, y}is<br />

regular. Hence x is regular. To complete the proof that each po<strong>in</strong>t is regular,<br />

it suffices to show that if {x, u, u ′ } is a triad, then {u, u ′ } is regular. But<br />

s<strong>in</strong>ce x is regular, by Part 2 there is some po<strong>in</strong>t z ∈ {x, u, u ′ } ⊥ . By the<br />

regularity of z, for any po<strong>in</strong>t z ′ ∈ {u, u ′ } ⊥ \ {z}, the pair (z, z ′ ) is regular,<br />

forc<strong>in</strong>g (u, u ′ ) to be regular. This completes the proof of Part 3.<br />

Next suppose that x <strong>and</strong> {L0, L1} satisfy the hypotheses of Part 4, so<br />

that by Part 2 of this Theorem we have s = t. If {L0, L1} ⊥⊥ = {L0, . . . , Ls},<br />

then let yi be def<strong>in</strong>ed by x ⊥ yi | Li, i = 0, . . . , s. By Part 4 the elements<br />

x, y0, y1, . . . , ys are s+2 po<strong>in</strong>ts of the projective plane πx of order s def<strong>in</strong>ed by<br />

x. It is easy to see that each l<strong>in</strong>e of πx through x conta<strong>in</strong>s exactly one po<strong>in</strong>t<br />

of the set {y0, . . . , ys}. Suppose that the po<strong>in</strong>ts yi, yj, yk, with i, j, k dist<strong>in</strong>ct,<br />

are coll<strong>in</strong>ear <strong>in</strong> the plane πx. Then the triad {yi, yj, yk} has s+1 centers. Let<br />

uj (resp., uk) be the po<strong>in</strong>t <strong>in</strong>cident with Lj (resp., Lk) <strong>and</strong> coll<strong>in</strong>ear with yi.<br />

Then uk ∈ {yi, yk} ⊥ , hence uk ⊥ yj, giv<strong>in</strong>g a triangle with vertices yj, uk, uj.<br />

Consequently {y0, . . . , ys} is an oval of the plane πx. S<strong>in</strong>ce the s + 1 tangents<br />

of that oval concur at x, the order s of πx is even.<br />

Theorem 9.8.2. If the po<strong>in</strong>t x is coregular, then the number of centers of<br />

any triad {x, y, z} has the same parity as does 1 + t.


9.8. REGULARITY: VARIATIONS ON A THEME 411<br />

Proof. Assume that x is coregular. Let u1, . . . , um be all the centers of a<br />

triad (x, y, z) with {x, y} ⊥ = {u1, . . . , um, um+1, . . . , ut+1}. We may suppose<br />

m < t + 1. For i > m, let Li be the l<strong>in</strong>e through x <strong>and</strong> ui <strong>and</strong> Mi the<br />

l<strong>in</strong>e through y <strong>and</strong> ui. Let K be the l<strong>in</strong>e through z meet<strong>in</strong>g Li <strong>and</strong> N the<br />

l<strong>in</strong>e through z meet<strong>in</strong>g Mi. Let M be the l<strong>in</strong>e through y meet<strong>in</strong>g K, <strong>and</strong><br />

L the l<strong>in</strong>e through x meet<strong>in</strong>g N. S<strong>in</strong>ce the l<strong>in</strong>e Li through x is regular,<br />

the pair (Li, N) must be regular, <strong>and</strong> it follows that M must meet L <strong>in</strong><br />

some po<strong>in</strong>t ui ′ ∈ {x, y}⊥ , m + 1 ≤ i ′ ≤ t + 1, i ′ = i. In this way with each<br />

po<strong>in</strong>t ui ∈ {um+1, . . . , ut+1} there corresponds a po<strong>in</strong>t ui ′ ∈ {um+1, . . . , ut+1},<br />

i = i ′ , <strong>and</strong> clearly this correspondence is <strong>in</strong>volutory. Hence the number of<br />

po<strong>in</strong>ts of {x, y} ⊥ that are not centers of (x, y, z) is even.<br />

Theorem 9.8.3. Coregularity plus regularity with s = t implies s is even.<br />

1. If x is coregular <strong>and</strong> s = t, then x is regular iff s is even.<br />

2. If each po<strong>in</strong>t of S is regular, then (t + 1) | (s 2 − 1)s 2 .<br />

3. If S has a regular po<strong>in</strong>t x <strong>and</strong> a regular l<strong>in</strong>e L (with x |L), then s = t<br />

is even.<br />

4. If s = t is odd <strong>and</strong> if S conta<strong>in</strong>s two regular po<strong>in</strong>ts, then S is not<br />

self-dual.<br />

Proof. Clearly Part 1 follows immediately from Theorem 9.8.2 <strong>and</strong> from<br />

Corollary 9.3.9.<br />

Now suppose that each po<strong>in</strong>t of S is regular. The number of hyperbolic<br />

l<strong>in</strong>es of S equals (1 + s)(1 + st)s 2 t/(t + 1)t. Hence (t + 1) | (1 + s)(1 + st)s 2 .<br />

S<strong>in</strong>ce (1 + s)(1 + st)s 2 = (1 + s)(1 + s(t + 1) − s)s 2 , this divisibility condition<br />

is equavilent to (t + 1) | (1 + s)(1 − s)s 2 , prov<strong>in</strong>g Part 2.<br />

Suppose S has a regular po<strong>in</strong>t x <strong>and</strong> a regular l<strong>in</strong>e L not <strong>in</strong>cident with<br />

x. It is easy to construct a l<strong>in</strong>e Z, Z ∼ L, such that x is <strong>in</strong>cident with no<br />

l<strong>in</strong>e of {L, Z} ⊥ . Then from Part 4 of Theorem 9.8.1 it follows that s = t is<br />

even, prov<strong>in</strong>g Part 3.<br />

So suppose that s = t is odd <strong>and</strong> that S conta<strong>in</strong>s two regular po<strong>in</strong>ts x<br />

<strong>and</strong> y. If S admits an anti-automorphism θ, then x θ <strong>and</strong> y θ are regular l<strong>in</strong>es.<br />

S<strong>in</strong>ce at least one of these l<strong>in</strong>es is not <strong>in</strong>cident with at least one of x <strong>and</strong> y,<br />

an application of Part 3 f<strong>in</strong>ishes the proof of Part 4.


412 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

Theorem 9.8.4. Antiregularity is equivalent to no unicentered triad, when<br />

s = t.<br />

1. If t ≤ s, then n1 = 0 iff either t = 1 or s = t <strong>and</strong> {x, y} is antiregular.<br />

Hence for s = t the pair {x, y} is antiregular iff each triad {x, y, z} has<br />

0 or 2 centers iff no triad {x, y, z} has a unique center iff (by part 1 of<br />

Theorem 9.6.6) each triad conta<strong>in</strong>ed <strong>in</strong> x ⊥ has exactly two centers.<br />

2. If (x, y) is antiregular with s = t, then s is odd.<br />

3. If x is coregular <strong>and</strong> s = t, then x is antiregular iff s is odd.<br />

4. If x is coregular <strong>and</strong> t is odd, then | {x, y} ⊥⊥ |= 2 for all y ∈ x ⊥ .<br />

Proof. Part 1 follows from Corollaries 9.3.8 <strong>and</strong> 9.3.12. Let (x, y) be antiregular<br />

with s = t > 1 <strong>and</strong> {x, y} ⊥ = {u0, . . . , us}. For i = 0, 1, let xILiIuiIMiIy,<br />

<strong>and</strong> let K ∈ {L0, M1} ⊥ , L1 = K = M0. The po<strong>in</strong>ts of K not coll<strong>in</strong>ear<br />

with x or y are denoted v2, . . . , vs. Let ui ∼ vj for some i, 2 ≤ i. Then<br />

{x, y, vj} is a triad with center ui, <strong>and</strong> hence, by Part 1, with exactly one<br />

other center ui ′. It follows that u2, . . . , us occur <strong>in</strong> pairs as centers of triads<br />

of the form {x, y, vj}, each pair be<strong>in</strong>g uniquely determ<strong>in</strong>ed by either of its<br />

members. Hence s − 1 is even, <strong>and</strong> Part 2 is proved.<br />

For Part 3 first note that if s = t <strong>and</strong> x is antiregular, then s is odd by<br />

Part 2 of Theorem 9.8.4.<br />

For Part 4, suppose that x is coregular, <strong>and</strong> y is an arbitrary po<strong>in</strong>t not<br />

coll<strong>in</strong>ear with x. If z ∈ {x, y} ⊥⊥ \ {x, y}, <strong>and</strong> if z ′ Izu, z ′ ∈ {z, u}, for some<br />

u ∈ {x, y} ⊥ , then u is the unique center of (x, y, z ′ ). Hence t is even by<br />

Theorem 9.8.2.<br />

Theorem 9.8.5. Nets (resp., projective planes) arise from regular (resp.,<br />

antiregular) po<strong>in</strong>ts.<br />

1. Let x be a regular po<strong>in</strong>t of S. Then the <strong>in</strong>cidence structure with po<strong>in</strong>tset<br />

x ⊥ \ {x}, with l<strong>in</strong>eset the set of spans {y, z} ⊥⊥ , where y, z ∈ x ⊥ \ {x},<br />

y not coll<strong>in</strong>ear with z, <strong>and</strong> with the natural <strong>in</strong>cidence, is the dual of a<br />

net of order s <strong>and</strong> degree t + 1. If <strong>in</strong> particular 1 < s = t, there arises<br />

a dual aff<strong>in</strong>e plane of order s. Moreover, <strong>in</strong> this case the <strong>in</strong>cidence<br />

structure πx with po<strong>in</strong>tset x ⊥ , with l<strong>in</strong>eset the set of spans {y, z} ⊥⊥ ,<br />

where y, z ∈ x ⊥ , y = z, <strong>and</strong> with the natural <strong>in</strong>cidence, is a projective<br />

plane of order s.


9.9. BAGCHI, BROUWER AND WILBRINK 413<br />

2. Let x be an antiregular po<strong>in</strong>t of S with order s, s > 1.Let y ∈ x ⊥ \ {x}<br />

with L be<strong>in</strong>g the l<strong>in</strong>e xy. A projective plane π(x, y) of order s may be<br />

constructed as follows.<br />

Po<strong>in</strong>ts of π(x, y) are of three types:<br />

(i) po<strong>in</strong>ts of x ⊥ that are not on L;<br />

(ii) l<strong>in</strong>es through y different from L;<br />

(iii) the po<strong>in</strong>t x.<br />

L<strong>in</strong>es of π(x, y) are also of three types:<br />

(a) po<strong>in</strong>ts of y ⊥ that are not on L;<br />

(b) l<strong>in</strong>es through x different from L;<br />

(c) the po<strong>in</strong>t y.<br />

Incidence is def<strong>in</strong>ed as follows: A po<strong>in</strong>t x of type (i) is <strong>in</strong>cident with a<br />

l<strong>in</strong>e y of type (a) iff x ⊥ y <strong>in</strong> S, <strong>and</strong> is <strong>in</strong>cident with a l<strong>in</strong>e L of type<br />

(b) iff x|L <strong>in</strong> S. A po<strong>in</strong>t M of type (ii) is <strong>in</strong>cident with the s l<strong>in</strong>es of<br />

type (a) with which it is <strong>in</strong>cident <strong>in</strong> S <strong>and</strong> with the l<strong>in</strong>e y of type (c).<br />

The po<strong>in</strong>t x of type (iii) is <strong>in</strong>cident with all l<strong>in</strong>es of type (b) <strong>and</strong> with<br />

the l<strong>in</strong>e y of type (c). There are no other <strong>in</strong>cidences.<br />

Proof. We leave the proof of Part 1 as an easy exercise <strong>and</strong> give a few remarks<br />

about the proof of Part 2.<br />

So assume that x is antiregular <strong>and</strong> y ∈ x ⊥ \ {x}. If z <strong>and</strong> w are any two<br />

noncoll<strong>in</strong>ear po<strong>in</strong>ts of x ⊥ \y ⊥ , then {y, z, w} is a triad with x as center. S<strong>in</strong>ce<br />

x is antiregular, each triad conta<strong>in</strong>ed <strong>in</strong> x ⊥ has exactly two centers by Part<br />

1 of Theorem 9.8.4. So there is a unique po<strong>in</strong>t u of y ⊥ \ x ⊥ which is coll<strong>in</strong>ear<br />

<strong>in</strong> S with both z <strong>and</strong> w. Hence u is the unique l<strong>in</strong>e of π(x, y) through z <strong>and</strong><br />

w. The rema<strong>in</strong><strong>in</strong>g details are easy.<br />

9.9 Bagchi, Brouwer <strong>and</strong> Wilbr<strong>in</strong>k<br />

The ma<strong>in</strong> result of this section says that if a f<strong>in</strong>ite GQ S = (P, B, I) of order<br />

s has an antiregular po<strong>in</strong>t (<strong>in</strong> which case s must be odd), then each po<strong>in</strong>t of<br />

S must be antiregular. This is due to B. Bagchi, A. E. Brouwer <strong>and</strong> H. A.<br />

Wilbr<strong>in</strong>k [BBW91]


414 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

Let S = (P, B, I) be a GQ of order (s, t), s > 1, t > 1. Let V be the<br />

vector space over F2 with basis P. Clearly the dimension of V over F2 is<br />

dim(V ) = (1 + s)(1 + st).<br />

Def<strong>in</strong>e π : V → V to be the l<strong>in</strong>ear map satisfy<strong>in</strong>g π : x ↦→ Γ(x) = x⊥ \{x}.<br />

For a ∈ P, πa denotes π(a). For A ⊆ P, πA = <br />

a∈A πa. The first lemma is<br />

self-evident.<br />

Lemma 9.9.1. For A ⊆ P, πA is the sum of all the po<strong>in</strong>ts x ∈ P for which<br />

|Γ(x) ∩ A| is odd.<br />

For z ∈ P, put VZ = 〈x : x ∈ Z ⊥ 〉. So dim(VZ) = 1 + s + st. Def<strong>in</strong>e<br />

PP = 〈πx : x ∈ P〉 <strong>and</strong> PZ = 〈πx : x ∈ Z ⊥ 〉, <strong>and</strong> KZ = 〈A ⊆ Z ⊥ : πA = 0〉.<br />

Lemma 9.9.2. π : VZ ↦→ PZ is onto with kernel KZ, so dim(PZ) = 1 + s +<br />

st − dim(KZ).<br />

Proof. Immediate.<br />

Lemma 9.9.3. Let Y, Z be dist<strong>in</strong>ct, noncoll<strong>in</strong>ear po<strong>in</strong>ts. π Y ⊥ ∩Z ⊥ = πY +<br />

πZ + {x : (x, y, z) is a triad with an odd number of centers.<br />

Proof. Clearly if X ∈ Y ⊥ ∩ Z ⊥ , then X ∈ π Y ⊥ ∩Z ⊥, <strong>and</strong> X ∈ πy + πz if<br />

s − 1 is even. And if X ∈ Γ(Y ) \ Γ(z), then X is coll<strong>in</strong>ear with a unique<br />

po<strong>in</strong>t of y ⊥ ∩ z ⊥ . So (Γ(Y ) − Γ(Z)) ∪ (Γ(Z) − Γ(Y ) = πY + πZ ⊆ π Y ⊥. For<br />

X ∈ Y ⊥ ∪ Z ⊥ , (X, Y, Z) is a triad <strong>and</strong> X is <strong>in</strong> π y ⊥ ∩z ⊥ if <strong>and</strong> only if (X, Y, Z)<br />

has an odd number of centers. F<strong>in</strong>ally, for X = Y or X = Z, X ∈ π y ⊥ ∩z ⊥<br />

if <strong>and</strong> only if 1 + t is odd. But if X is not <strong>in</strong> the right h<strong>and</strong> side, then<br />

(LHS)X = (RHS)X if <strong>and</strong> only if t is odd.<br />

Lemma 9.9.4. Suppose that s is odd <strong>and</strong> fix Z ∈ P. Then dim(KZ) = t, so<br />

dim(PZ = (s − 1)(t + 1) + 2.<br />

Proof. We must first determ<strong>in</strong>e for which A ⊆ Z ⊥ it is true that πA = 0.<br />

For each l<strong>in</strong>e ℓ through Z put ℓ ′ = ℓ ∗ \ {Z}. So suppose that ∅ = A ⊆ Z ⊥<br />

<strong>and</strong> πA = 0. Suppose that some l<strong>in</strong>e ℓ through Z has po<strong>in</strong>ts y, w with<br />

y ∈ ℓ ′ ∩ A, w ∈ ℓ ′ \ A. Put e = 1 if Z ∈ A, e = 0 if Z ∈ A. Then<br />

0 = (πA)Y ≡2 |(ℓ ′ ∩ A) \ {Y }| + e, <strong>and</strong> 0 = (πA)w ≡2 |ℓ ′ ∩ A| + e. This<br />

impossibility shows that ℓ ′ ⊆ A or ℓ ′ ∩ A = ∅.<br />

S<strong>in</strong>ce s is odd, 0 = (πA)Z ≡2 |{ℓ ′ : ℓ ′ ⊆ A}|, imply<strong>in</strong>g that A conta<strong>in</strong>s<br />

i = j, ℓ ′ i ∪ ℓ′ j = D satisfies πD = 0. One way to see this is: s odd implies


9.9. BAGCHI, BROUWER AND WILBRINK 415<br />

πℓi = P. So πℓi+ℓj = π ℓ ′ i +ℓ′ j<br />

= πℓi + πℓj = P + P = 0. Start<strong>in</strong>g with any<br />

A ⊆ Z ⊥ for which πA = 0, we may add a pair of l<strong>in</strong>es (if necessary) so as to<br />

suppose that some particular po<strong>in</strong>t W ∈ Z ⊥ \ {Z} satisfies W ∈ A. Then<br />

the only possible po<strong>in</strong>t of A coll<strong>in</strong>ear with W would be Z. So if Z ∈ A,<br />

(πA)W = 1, an impossibility. Hence Z ∈ A. S<strong>in</strong>ce Z is not <strong>in</strong> the sum of two<br />

l<strong>in</strong>es through Z, Znot ∈ A for every A ⊆ Z ⊥ with πA = 0. It is now easy to<br />

see that<br />

{ℓ0 + ℓ1, ℓ0 + ℓ2, . . . , ℓ0 + ℓt}<br />

is a basis for KZ.<br />

Lemma 9.9.5. Assume s is odd <strong>and</strong> let Z be any po<strong>in</strong>t of P. Then dim(P) ≥<br />

(s − 1)(t + 1) + 2, with equality if <strong>and</strong> only if all triads (X, Y, Z) have an<br />

even number of centers if <strong>and</strong> only if each triad of po<strong>in</strong>ts of P has an even<br />

number of centers.<br />

Proof. Clearly P ⊇ PZ, so dim(P) ≥ dim(PZ) = (s − 1)(t + 1) + 2, with<br />

equality if <strong>and</strong> only if for each y ∈ P \ Z ⊥ there is some Y ⊆ Z ⊥ with<br />

πy = πY . First, if all triads (z, x, y) have an even number of centers, then<br />

for any y ∈ P \ z ⊥ by Lemma 9.9.3 we have πy = π y ⊥ ∩z ⊥ + πz = πY , with<br />

Y = {z} ∪ (y ⊥ ∩ z ⊥ ). So P = Pz <strong>and</strong> dim(P) = (s − 1)(t + 1) + 2.<br />

Conversely, suppose dim(P) = (s − 1)(t + 1) + 2. Let y ∈ P \ z ⊥ . There<br />

must be some Y ⊆ z ⊥ with πy = πY . Suppose zIℓIIm ∼ y. We may add<br />

the sum of ℓ <strong>and</strong> one other l<strong>in</strong>e through z to Y to obta<strong>in</strong> Y0 ⊆ z ⊥ with<br />

πY0 = πY = πy. So we may assume m ∈ Y . Then let n be any po<strong>in</strong>t of ℓ ′<br />

with n = m. If n ∈ Y , we would have<br />

1 = (πy)m = (πY )n = (πy)n = 0,<br />

where (πY )m = (πY )n because m <strong>and</strong> n are coll<strong>in</strong>ear with the same number<br />

of po<strong>in</strong>ts of Y , all on ℓ. This impossibility shows that if m ∈ Y , then n ∈ Y .<br />

It follows readily that for each l<strong>in</strong>e ℓ through z, either ℓ ′ ∩ Y = {m} or<br />

ℓ ′ ∩ Y = ℓ ′ \ {m}.<br />

So we may assume that Y ∩ ℓ ′ i = {mi}, 0 ≤ i ≤ t − 1, <strong>and</strong> Y ∩ ℓ ′ t = {mt}<br />

or Y ∩ ℓ ′ t = ℓ ′ t \ {mt}. So Y ⊆ 〈y⊥ ∩ z⊥ , ℓt, z〉. But s<strong>in</strong>ce πℓt = 1, we may<br />

write πy = πY = 〈πy⊥∩z ⊥, 1, πz〉.<br />

Suppose πy = aπy⊥∩z ⊥ + bπz + c · 1, <strong>and</strong> consider the coefficients on po<strong>in</strong>ts<br />

p, m, n where zIℓIm, n ∈ ℓ ′ \ {m}, mIKIy, KIp, m = p = y.


416 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

(πy)p = 1 (π y ⊥ ∩z ⊥)p = 1 (πz)p = 0 1p = 1<br />

(πy)m = 1 (π y ⊥ ∩z ⊥)m = 0 (πz)m = 1 1m = 1<br />

(πy)m = 0 (π y ⊥ ∩z ⊥)n = 1 (πz)n = 1 1n = 1.<br />

The top row of equalities sayw 1 = a+c; the second row implies 1 = b+c;<br />

<strong>and</strong> the third row says 0 = a + b + c. The first row m<strong>in</strong>us the second says<br />

a = b, so 0 = a + b implies c = 0, <strong>and</strong> then a = b = 1. So πy = π y ⊥ ∩z ⊥ + πz.<br />

By Lemma 9.9.3, each triad (z, x, y) has an even number of centers.<br />

Theorem 9.9.6. Let s be odd <strong>and</strong> suppose each triad of ponts has an even<br />

number of centers. Then t is odd <strong>and</strong> t ≥ s. If s = t, then each triad of<br />

po<strong>in</strong>ts has 0 or 2 centers.<br />

Proof. Fix y, z ∈ P, y ∼ z, y ⊥ ∩ z ⊥ = {m0, m1, . . . , mt}. Let L be a l<strong>in</strong>e<br />

through m0 not through y or z, <strong>and</strong> suppose that x − 1, x2, ldots, xs are the<br />

po<strong>in</strong>ts of L ∗ \ {m0}. So (xi, y, z) is a triad with m0 as one center. Moreover,<br />

△i = x ⊥ i ∩y ⊥ ∩z ⊥ \{m0}, 1 ≤ i ≤ s, partitions {m1, m2, . . . , mt} <strong>in</strong>to an odd<br />

number of sets, each hav<strong>in</strong>g an odd number of elements. So t must be odd.<br />

And t ≥ s, with equality if <strong>and</strong> only if each centric triad (x, y, z) has exactly<br />

2 centers. So if s = t, then each triad of po<strong>in</strong>ts has 0 or 2 centers.<br />

Corollary 9.9.7. If s = t <strong>and</strong> some po<strong>in</strong>t is antiregular, then all po<strong>in</strong>ts are<br />

antiregular (<strong>and</strong> s is odd by Theorem 9.8.4, part 2.).<br />

Corollary 9.9.8. If s = t is odd <strong>and</strong> some po<strong>in</strong>t x is coregular (i.e., each<br />

l<strong>in</strong>e through x is regular), then all po<strong>in</strong>ts are antiregular (by Theorem 9.8.4,<br />

part 3.).<br />

9.10 <strong>Ovoids</strong>, Spreads <strong>and</strong> Polarities<br />

Recall the notion of k-arc, <strong>and</strong> note that the number of l<strong>in</strong>es through the<br />

po<strong>in</strong>ts of a k-arc is (1+t)k, which must be less than or equal to (1+t)(1+st).<br />

It follows that k ≤ 1 + st, with equality if <strong>and</strong> only if the k-arc effects a<br />

partition of the l<strong>in</strong>es. We give these absolutely maximal k-arcs a name.<br />

ovoid An ovoid of S is a set O of po<strong>in</strong>ts of S such that each l<strong>in</strong>e of S is<br />

<strong>in</strong>cident with a unique po<strong>in</strong>t of O. Clearly an ovoid is just a k-arc with<br />

|k| = 1 + st.


9.10. OVOIDS, SPREADS AND POLARITIES 417<br />

spread, larc Dually, a spread of S is a set M of l<strong>in</strong>es of S for each each<br />

po<strong>in</strong>t of S is <strong>in</strong>cident with a unique l<strong>in</strong>e of S. The po<strong>in</strong>t-l<strong>in</strong>e dual<br />

notion to that of arc apparently does not have a st<strong>and</strong>ard name, but<br />

we shall use the term l<strong>in</strong>e-arc or larc. So a k-larc is a set of k l<strong>in</strong>es, no<br />

two concurrent. Clearly a spread is just a (1 + st)-larc.<br />

polarity Suppose s = t <strong>and</strong> let ρP : P → B <strong>and</strong> ρB : B → P be bijections<br />

with the follow<strong>in</strong>g properties: (i) x <strong>and</strong> y are coll<strong>in</strong>ear po<strong>in</strong>ts if <strong>and</strong><br />

only if ρp(x) <strong>and</strong> ρp(y) are concurrent l<strong>in</strong>es.<br />

(ii) L <strong>and</strong> M are concurrent l<strong>in</strong>es if <strong>and</strong> only if ρB(L) <strong>and</strong> ρB(M) are<br />

coll<strong>in</strong>ear po<strong>in</strong>ts.<br />

(iii) The maps ρP <strong>and</strong> ρB are <strong>in</strong>verses of each other.<br />

Then the map ρ : P ∪ B → B ∪ P def<strong>in</strong>ed so that the restriction of ρ<br />

to P (respectively, B) is just ρP (respectively, ρB), is called a polarity<br />

of S. We often denote the image of a po<strong>in</strong>t x under a polarity ρ by<br />

x ρ . Then x is called an absolute po<strong>in</strong>t with respect to ρ provided xIx ρ .<br />

Absolute l<strong>in</strong>es are def<strong>in</strong>ed dually.<br />

duality If s = t <strong>and</strong> ρP : P → B satisfies (i), then ρP <strong>in</strong>duces a unique map<br />

ρB : B → P that satisfies (ii), <strong>and</strong> ρ def<strong>in</strong>ed as above is an isomorphism<br />

between S <strong>and</strong> its po<strong>in</strong>t-l<strong>in</strong>e dual S × . The map ρ is called a duality.<br />

A great deal is known about which GQ have ovoids <strong>and</strong>/or spreads, however,<br />

there still are some open problems. When it is known that a GQ does<br />

not have an ovoid, for example, it usually is not known just how large k<br />

can be for which a k-arc exists. The follow<strong>in</strong>g argument, which is the one<br />

orig<strong>in</strong>ally used by E. Shult [SS79], shows that no GQ with t = s 2 can have<br />

an ovoid. This latter result was also proved by J. A. Thas [Th81].<br />

Theorem 9.10.1. If s > 1 <strong>and</strong> t > s 2 − s, then S has no ovoid.<br />

Proof. Let O be an ovoid of S <strong>and</strong> suppose that s > 1. Fix a po<strong>in</strong>t x ∈ O<br />

<strong>and</strong> let V = {y ∈ O : y ∼ x}. Let Z = {z1, . . . , zd}, d = t(s2 − s + 1), be the<br />

set of po<strong>in</strong>ts not <strong>in</strong> O <strong>and</strong> not coll<strong>in</strong>ear with x. For each i, 1 ≤ i ≤ d, let ti<br />

be the number of po<strong>in</strong>ts of V coll<strong>in</strong>ear with zi. If we count the ordered pairs<br />

(y, z) for which y ∈ V , z ∈ Z <strong>and</strong> y ∼ z, we f<strong>in</strong>d that d i=1 ti = (1 + t)ts. If<br />

we cound the ordered triples (y1, y2, z) ∈ V ×V ×Z for which y1 ∼ z ∼ y2 <strong>and</strong><br />

y1 ∼ y2, we f<strong>in</strong>d that <br />

i ti(ti − 1) = (1 + t)t 2 . S<strong>in</strong>ce d <br />

i t2 i<br />

− (<br />

i ti) 2 ≥ 0,


418 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

it follows that t(s 2 − s + 1)(1 + t)t(t + s) − (1 + t) 2 t 2 s 2 ≥ 0. After a little<br />

simplification we f<strong>in</strong>d (s − 1)(s 2 − s − t) ≥ 0, from which t ≤ s 2 − s.<br />

Theorem 9.10.2. Let s = t <strong>and</strong> suppose that S has a regular pair (x, y) of<br />

noncoll<strong>in</strong>ear po<strong>in</strong>ts. If O is an ovoid of S, then |O∩{x, y} ⊥⊥ |, |O∩{x, y} ⊥ | ∈<br />

{0, 2}, <strong>and</strong> O ∩ ({x, y} ⊥ ∪ {x, y} ⊥⊥ )| = 2. If s = 1 <strong>and</strong> S has a regular po<strong>in</strong>t<br />

not on O, then s is even.<br />

Proof. Let O ∩ ({x, y} ⊥ ∪ {x, y} ⊥⊥ ) = {y1, . . . , yr}. If u ∈ P \ ({x, y} ⊥ ∪<br />

{x, y} ⊥⊥ ), then u is on just one l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g a po<strong>in</strong>t of {x, y} ⊥ to a po<strong>in</strong>t of<br />

{x, y} ⊥⊥ . We count the number of pairs (L, u), with u a po<strong>in</strong>t of O which<br />

is <strong>in</strong>cident with L. We obta<strong>in</strong> (s + 1) 2 = s 2 + 1 − r + r(1 + s). Hence<br />

r = 2. S<strong>in</strong>ce no two po<strong>in</strong>ts of O are coll<strong>in</strong>ear, it must be that |O ∩ {x, y} ⊥ |,<br />

|O ∩ {x, y} ⊥⊥ | ∈ {0, 2}.<br />

Let z be a regular po<strong>in</strong>t of S not on the ovoid O, <strong>and</strong> keep <strong>in</strong> m<strong>in</strong>d that<br />

we are assum<strong>in</strong>g s = t. Let y ∈ O, z ∼ y = z. The po<strong>in</strong>ts of O coll<strong>in</strong>ear with<br />

y are denoted by z0, . . . , zs, with z0Izy. By the first part of the theorem, for<br />

each i = 1, . . . , s, {z, zi} ⊥⊥ ∩O = {zi, zj} for some j = i. Hence |{z1, . . . , zs}|<br />

is even, prov<strong>in</strong>g the second part of the theorem.<br />

There is an immediate corollary.<br />

Corollary 9.10.3. If a GQ of order s, s even, has a regular pair of noncoll<strong>in</strong>ear<br />

po<strong>in</strong>ts, then its po<strong>in</strong>tset cannot be partitioned <strong>in</strong>to ovoids.<br />

Proof. Let {x, y} be a regular pair of noncoll<strong>in</strong>ear po<strong>in</strong>ts of the GQ S of<br />

order s. By Theorem 9.9.2 |{x, y} ⊥⊥ | is even, forc<strong>in</strong>g s to be odd.<br />

Theorem 9.10.4. If s = t <strong>and</strong> S admits a polarity ρ, then 2s is a square.<br />

Moreover, the set of all absolute po<strong>in</strong>ts (resp., l<strong>in</strong>es) is an ovoid (resp.,<br />

spread) of S.<br />

Proof. Let ρ be a polarity of S. We first prove that each l<strong>in</strong>e of S is <strong>in</strong>cident<br />

with at most one absolute po<strong>in</strong>t of ρ. Let x <strong>and</strong> y be dist<strong>in</strong>ct absolute po<strong>in</strong>ts<br />

<strong>in</strong>cident with the l<strong>in</strong>e L. Then xIx ρ , yIy ρ , <strong>and</strong> x ρ ∼ y ρ s<strong>in</strong>ce x ∼ y. Hence<br />

L ∈ {x ρ , y ρ }, s<strong>in</strong>ce otherwise there arises a triangle with sides L, x ρ , y ρ . So<br />

suppose L = x ρ . As yIx ρ , we have xIy ρ . S<strong>in</strong>ce yIy ρ , we have y ρ = xy =<br />

L = x ρ , imply<strong>in</strong>g x = y, a contradiction. Hence each l<strong>in</strong>e of S is <strong>in</strong>cident<br />

with at most one absolute po<strong>in</strong>t. Dually, each po<strong>in</strong>t is <strong>in</strong>cident with at most<br />

one absolute l<strong>in</strong>e. Also note that L is absolute if <strong>and</strong> only if LIL ρ if <strong>and</strong>


9.11. SUBQUADRANGLES 419<br />

only if L ρ is absolute. This shows that any absolute l<strong>in</strong>e is <strong>in</strong>cident with<br />

a (necessarily unique) absolute po<strong>in</strong>t. Now let L be a non-absolute l<strong>in</strong>e, so<br />

L IL ρ . If L ρ IMIuIL, then L ρ Iu ρ IM ρ IL. Hence u ρ is the l<strong>in</strong>e through L ρ<br />

concurrent with L, i.e., u ρ = M, <strong>and</strong> M ρ = u. Consequently u <strong>and</strong> M are<br />

absolute, prov<strong>in</strong>g that each l<strong>in</strong>e (resp., po<strong>in</strong>t) is <strong>in</strong>cident with a (necessarily<br />

unique) absolute po<strong>in</strong>t (resp., l<strong>in</strong>e). It follows that the set of absolute po<strong>in</strong>ts<br />

is an ovoid of S, <strong>and</strong> that dually the set of absolute l<strong>in</strong>es is a spread.<br />

Denote the absolute po<strong>in</strong>ts of ρ by x1, . . . , xs2 +1. It is clear that the<br />

absolute l<strong>in</strong>es of ρ are the images x ρ<br />

i = Li, 1 ≤ i ≤ s2 + 1. Suppose that the<br />

po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of S are ordered so that P = {x1, . . . , xs2 +1, . . . , xv},<br />

B = {L1, . . . , Ls2 +1, . . . , Lb}, with Li = x ρ<br />

i , for 1 ≤ i ≤ v = b. It follows<br />

that for all i, j, 1 ≤ i, j ≤ v, xiILj if <strong>and</strong> only if LiIxj. Hence the l<strong>in</strong>epo<strong>in</strong>t<br />

<strong>in</strong>cidence matrix A def<strong>in</strong>ed <strong>in</strong> Section 9.7 is symmetric <strong>and</strong> by the<br />

proof of Theorem 9.7.1 A2 has eigenvalues θi with multiplicity di, as follows:<br />

θ0 = (1+s) 2 , d0 = 1; θ1 = 0, d1 = (1+s2 )s<br />

; θ2 = 2s, d2 = 2<br />

(1+s)2s . S<strong>in</strong>ce A has<br />

2<br />

constant row sum equal to s + 1, it clearly has 1 + s as an eigenvalue. Hence<br />

A has eigenvalues s + 1, 0, √ 2s, <strong>and</strong> − √ 2s, with respective multiplicities<br />

1, s(s 2 +1)/2, a1 <strong>and</strong> a2, where a1 +a2 = s(s+1) 2 /2. Consequently tr(D) =<br />

s + 1 + (a1 − a2) √ 2s. But tr(D) is also the number of absolute po<strong>in</strong>ts of ρ,<br />

i.e., tr(D) = 1 + s 2 . So s 2 + 1 = s + 1 + (a1 − a2) √ 2s, imply<strong>in</strong>g that 2s is a<br />

square.<br />

There is a related result by W. Haemers [Ha03] which says that if there<br />

is a self-dual GQ with order s ≡ 2 (mod 4), then 2s is a square.<br />

9.11 Subquadrangles<br />

The GQ = (P ′ , B ′ , I ′ ) of order (s ′ , t ′ ) is called a subquadrangle of S provided<br />

P ′ ⊆ P , B ′ ⊆ B <strong>and</strong> I ′ is the restriction of I to P ′ × B ′ ∪ B ′ × P ′ . If S ′ = S,<br />

we say S ′ is a proper subquadrangle of S. From |P | = |P ′ | it follows readily<br />

that s ′ = s <strong>and</strong> t ′ = t, <strong>and</strong> hence S ′ = S. Similarly, if |B ′ | = |B|, then<br />

S ′ = S.


420 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

Let L ∈ B. Then precisely one of the follow<strong>in</strong>g occurs:<br />

(i) L ∈ B ′ , i.e., L belongs to S ′ ;<br />

(ii) L ∈ B ′ <strong>and</strong> L is <strong>in</strong>cident with a unique po<strong>in</strong>t x of S ′ ;<br />

i.e., L is tangent to S ′ at x;<br />

(iii) L ∈ B ′ <strong>and</strong> L is <strong>in</strong>cident with no po<strong>in</strong>t of S ′ ;<br />

i.e., L is external to S ′ .<br />

Dually, one may def<strong>in</strong>e tangent po<strong>in</strong>t <strong>and</strong> external po<strong>in</strong>t of S. From the<br />

def<strong>in</strong>ition of a GQ it follows easily that no tangent po<strong>in</strong>t can be <strong>in</strong>cident with<br />

a tangent l<strong>in</strong>e.<br />

Theorem 9.7.3 deals with the simplest possible application of the “<strong>in</strong>terlac<strong>in</strong>g<br />

of eigenvalues” techniques, but it has an <strong>in</strong>terest<strong>in</strong>g application as<br />

follows.<br />

Theorem 9.11.1. Let S ′ be a subquadrangle of S hav<strong>in</strong>g parameters (s ′ , t ′ ).<br />

Clearly 1 ≤ s ′ ≤ s <strong>and</strong> 1 ≤ t ′ ≤ t. Then either s = s ′ or s ≥ s ′ t ′ . Dually,<br />

t = t ′ or t ≥ s ′ t ′ . Moreover, if s = s ′ , then each po<strong>in</strong>t of S \ S ′ is coll<strong>in</strong>ear<br />

with exactly the 1 + st ′ po<strong>in</strong>ts of an ovoid of S ′ . Dually, if t = t ′ , then each<br />

l<strong>in</strong>e of S \ S ′ is concurrent with the 1 + s ′ t l<strong>in</strong>es of a spread of S ′ . If s = s ′ t ′ ,<br />

then each l<strong>in</strong>e of S \ S ′ is concurrent with 1 + s ′ l<strong>in</strong>es of S ′ .<br />

Proof. Let ∆1 be the set of <strong>in</strong>dices of the po<strong>in</strong>ts of S ′ , <strong>and</strong> let ∆2 be the set<br />

of the rema<strong>in</strong><strong>in</strong>g <strong>in</strong>dices of po<strong>in</strong>ts. So δ1 = 1 + s ′ + s ′ t ′ ≤ s + (1+s′ )(1+s ′ t ′ )<br />

. 1+s<br />

This is equivalent to 0 ≤ (s − s ′ t ′ )(s − s ′ ), which proves the ma<strong>in</strong> <strong>in</strong>equality.<br />

If s = s ′ , then any l<strong>in</strong>e of S with at least two po<strong>in</strong>ts of S ′ must have all of its<br />

po<strong>in</strong>ts <strong>in</strong> S ′ . By Theorem 9.7.3, a po<strong>in</strong>t x outside S ′ must be coll<strong>in</strong>ear with<br />

1 + s ′ t ′ po<strong>in</strong>ts <strong>in</strong>side S ′ , with at most one on each l<strong>in</strong>e through x. The ovoid<br />

of S ′ obta<strong>in</strong>ed this way is said to be subtended by x. The rema<strong>in</strong>der of the<br />

theorem is obta<strong>in</strong>ed by po<strong>in</strong>t-l<strong>in</strong>e duality.<br />

The previous proof was given by S. E. Payne [Pa73], but see FGQ for<br />

references to works of J. A. Thas with simple comb<strong>in</strong>atorial proofs of this<br />

result as well as of those that follow.<br />

Theorem 9.11.2. Let S ′ = (P ′ , B ′ , I ′ ) be a proper subquadrangle of S =<br />

(P, B, I), with S hav<strong>in</strong>g order (s, t) <strong>and</strong> S ′ hav<strong>in</strong>g order (s, t ′ ), i.e., s = s ′<br />

<strong>and</strong> t > t ′ . Then we have:


9.11. SUBQUADRANGLES 421<br />

(i) t ≥ s; if t = s, then t ′ = 1.<br />

(ii) If s > 1, then t ′ ≤ s; if t ′ = s ≥ 2, then t = s 2 .<br />

(iii) If s = 1, then 1 ≤ t ′ < t is the only restriction on t ′ .<br />

(iv) If s > 1 <strong>and</strong> t ′ > 1, then √ s ≤ t ′ ≤ s, <strong>and</strong> s 3/2 ≤ t ≤ s 2 .<br />

(v) If t = s 3/2 > 1 <strong>and</strong> t ′ > 1, then t ′ = √ s.<br />

(vi) Let S ′ have a proper subquadrangle S ′′ of order (s, t ′′ ), s > 1. Then<br />

t ′′ = 1, t ′ = s, <strong>and</strong> t = s 2 .<br />

Proof. All these are easy consequences of Theorem 9.11.1 <strong>and</strong> Higman’s <strong>in</strong>equality.<br />

We give two examples. Start with part (ii). Suppose that s > 1.<br />

By Higman’s <strong>in</strong>equality we have t ≤ s 2 . Us<strong>in</strong>g the po<strong>in</strong>t-l<strong>in</strong>e dual of Theorem<br />

9.11.1 st ′ = s ′ t ′ ≤ t ≤ s 2 , so t ′ ≤ s. If t ′ = s, then clearly t = s 2 .<br />

Now consider part (vi). Let S ′ have a proper subquadrangle S ′′ of order<br />

(s, t ′′ ), s > 1. Then by part (ii) t ′ ≤ s <strong>and</strong> by the previous theorem st ′′ ≤ t ′ .<br />

Hence t ′′ ≤ t ′ /s ≤ s/s, imply<strong>in</strong>g t ′′ = 1 <strong>and</strong> t ′ = s. Aga<strong>in</strong> us<strong>in</strong>g (ii) we have<br />

t = s 2 .<br />

The follow<strong>in</strong>g theorem can be helpful <strong>in</strong> recogniz<strong>in</strong>g subquadrangles.<br />

Theorem 9.11.3. Let S ′ = (P ′ , B ′ , I ′ ) be a substructure of the GQ S =<br />

(P, B, I) of order (s, t) for which the follow<strong>in</strong>g conditions are satisfied:<br />

(i) If x, y ∈ P ′ (x = y) <strong>and</strong> xILIy, then L ∈ B ′ .<br />

(ii) Each element of B ′ is <strong>in</strong>cident with 1 + s elements of P ′ .<br />

Then there are four possibilities:<br />

(a) S ′ is a dual grid (<strong>and</strong> then s ′ = 1).<br />

(b) The elements of B ′ are l<strong>in</strong>es which are <strong>in</strong>cident with a dist<strong>in</strong>guished<br />

po<strong>in</strong>t of P , <strong>and</strong> P ′ consists of those po<strong>in</strong>ts of P which are <strong>in</strong>cident with those<br />

l<strong>in</strong>es.<br />

(c) B ′ = ∅ <strong>and</strong> P ′ is a set of pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts of P .<br />

(d) S ′ is a subquadrangle of order (s, t ′ ).<br />

Proof. Suppose that S ′ = (P ′ , B ′ , I ′ ) satisfies (i) <strong>and</strong> (ii) <strong>and</strong> is not of type<br />

(a), (b) or (c). Then P ′ <strong>and</strong> B ′ are not empty <strong>and</strong> s > 1. If L ′ ∈ B ′ , then<br />

there exists a po<strong>in</strong>t x ′ ∈ P ′ such that x ′ is not I-<strong>in</strong>cident with L ′ . Let x<br />

<strong>and</strong> L be def<strong>in</strong>ed by x ′ ILIxIL ′ . By (i) <strong>and</strong> (ii) we have x ∈ P ′ <strong>and</strong> L ∈ B ′ .<br />

Hence S ′ satisfies Axiom 2 <strong>in</strong> the def<strong>in</strong>ition of GQ. We now show that each


422 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

po<strong>in</strong>t is <strong>in</strong>cident with the same number of po<strong>in</strong>ts. So suppose that x ′ ∈ P ′<br />

<strong>and</strong> suppose that x ′ is <strong>in</strong>cident with t ′ + 1 l<strong>in</strong>es of B ′ . S<strong>in</strong>ce B ′ = ∅, t ′ ≥ 0.<br />

Let y ′ ∈ P ′ be a po<strong>in</strong>t which is not coll<strong>in</strong>ear with x ′ <strong>and</strong> suppose it is <strong>in</strong>cident<br />

with t ′′ + 1 l<strong>in</strong>es of B ′ . By Axiom 2 t ′ = t ′′ . Hence t ′ + 1 is the number of<br />

l<strong>in</strong>es of B ′ which are <strong>in</strong>cident with any po<strong>in</strong>t not coll<strong>in</strong>ear with at least one<br />

of the po<strong>in</strong>ts x ′ , y ′ . So we consider a po<strong>in</strong>t z ′ ∈ P ′ which is <strong>in</strong> {x ′ , y ′ } ⊥ .<br />

First suppose that t ′ = 0. Let L ′ = x ′ z ′ , L ′′ = y ′ z ′ , <strong>and</strong> let L ∈ B ′ \<br />

{L ′ , L ′′ }. Then neither x ′ nor y ′ is <strong>in</strong>cident with L. S<strong>in</strong>ce there exists a l<strong>in</strong>e<br />

of B ′ which is <strong>in</strong>cident with x ′ (resp., y ′ ) <strong>and</strong> concurrent with L, it follows<br />

that L <strong>and</strong> L ′ (resp., L <strong>and</strong> L ′′ ) are concurrent. Hence z ′ IL <strong>and</strong> S ′ is of type<br />

(b), a contradiction.<br />

Now suppose that t ′ > 0. Consider a l<strong>in</strong>e L ∈ B ′ for which x ′ IL <strong>and</strong> z ′<br />

is not <strong>in</strong>cident with L. On L there is a po<strong>in</strong>t u ′ with u ′ ∼ y ′ <strong>and</strong> u ′ ∼ z ′ .<br />

Then the number of l<strong>in</strong>es of B ′ which are <strong>in</strong>cident with z ′ equal the number<br />

of l<strong>in</strong>es of B ′ which are <strong>in</strong>cident with u ′ , which equals t ′′ + 1 s<strong>in</strong>ce y ′ ∼ u ′ ,<br />

<strong>and</strong> hence equals t ′ + 1. We conclude that each po<strong>in</strong>t of B ′ is <strong>in</strong>cident with<br />

t ′ + 1 ≥ 2 l<strong>in</strong>es of B ′ . This completes a proof of the theorem.<br />

9.12 Coll<strong>in</strong>eations<br />

A coll<strong>in</strong>eation θ of a GQ(s, t) = S is formally def<strong>in</strong>ed as a pair of permutations<br />

θ = (α, β), where α is a permutation of the po<strong>in</strong>ts <strong>and</strong> β is a<br />

permutation of the l<strong>in</strong>es, such that a po<strong>in</strong>t x is <strong>in</strong>cident with a l<strong>in</strong>e ℓ if <strong>and</strong><br />

only if x α is <strong>in</strong>cident with the l<strong>in</strong>e ℓ β . However, s<strong>in</strong>ce there are no triangles<br />

<strong>in</strong> S, a coll<strong>in</strong>eation is completely determ<strong>in</strong>ed by a permutation of po<strong>in</strong>ts that<br />

preserves coll<strong>in</strong>earity or a permutation of the l<strong>in</strong>es that preserves concurrency.<br />

So we usually describe a coll<strong>in</strong>eation as a permutation of the po<strong>in</strong>ts<br />

with the <strong>in</strong>duced permutation of l<strong>in</strong>es taken for granted.<br />

Theorem 9.12.1. The substructure Sθ = (Pθ, Bθ, Iθ) of the elements fixed<br />

by θ must be given by at least one of the follow<strong>in</strong>g:<br />

(i) Bθ = ∅ <strong>and</strong> Pθ is a set of pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts.<br />

(i’) Bθ = ∅ <strong>and</strong> Bθ is a set of pairwise nonconcurrent l<strong>in</strong>es.<br />

(ii) Pθ conta<strong>in</strong>s a po<strong>in</strong>t x such that x ∼ y for every po<strong>in</strong>t y ∈ Pθ, <strong>and</strong><br />

each l<strong>in</strong>e of Bθ is <strong>in</strong>cident with x.<br />

(ii’) Bθ conta<strong>in</strong>s a l<strong>in</strong>e L such that L ∼ M for each l<strong>in</strong>e M ∈ Bθ, <strong>and</strong><br />

each po<strong>in</strong>t of Pθ is <strong>in</strong>cident with L.


9.12. COLLINEATIONS 423<br />

(iii) Sθ is a grid.<br />

(iii’) Sθ is a dual grid.<br />

(iv) Sθ is a subquadrangle of order (s ′ , t ′ ), s ′ ≥ 2, t ′ ≥ 2.<br />

Proof. Suppose Sθ is not of any of the first six types. Then Pθ = ∅ = Bθ.<br />

Bθ. Dually, if L, B ∈ Bθ, L = M, L ∼ M, then the po<strong>in</strong>t common to<br />

L <strong>and</strong> M belongs to Pθ. Next, let L ∈ Bθ <strong>and</strong> consider a po<strong>in</strong>t x ∈ Pθ<br />

with x not <strong>in</strong>cident with L. further, let y <strong>and</strong> M be def<strong>in</strong>ed by xIMIyIL.<br />

Then x θ IM θ Iy θ IL θ , i.e., xIM θ Iy θ IL. Hence M = M θ <strong>and</strong> y = y θ . It<br />

follows that Sθ satisfies Axiom 2 <strong>in</strong> the def<strong>in</strong>ition of GQ. At this po<strong>in</strong>t the<br />

proof of Theorem 9.11.3 can be adapted to complete a proof of the present<br />

theorem.<br />

Let S = (P, B, I) be a GQ of order (s, t) with P = {x1, . . . , xv} <strong>and</strong><br />

B = {L1, . . . , Lb}. Let A be the b × v <strong>in</strong>cidence matrix given <strong>in</strong> Section 9.7.<br />

Then A T A = B + (t + 1)I, where B is an adjacency matrix of the po<strong>in</strong>t<br />

graph of S. If M = A T A, then (see Eq. 9.32) M has eigenvalues θ0 =<br />

(1 + s)(1 + t); θ1 = 0; θ2 = s + t, with respective multiplicities d0 = 1; d1 =<br />

s 2 (1 + st)/(s + t); θ2 = st(1 + s)(1 + t)/(s + t).<br />

Let θ be an automorphism (i.e., coll<strong>in</strong>eation) of S <strong>and</strong> let Q = (qij)<br />

(resp., R = (rij)) be the v × v matrix (resp., b × b matrix) with qij = 1 if<br />

x θ i = xj (resp., L θ i = Lj) <strong>and</strong> qij = 0 (resp., rij = 0) otherwise. Then Q<br />

<strong>and</strong> R are permutation matrices for which AQ = RA (which is equivalent to<br />

A T R = QA T s<strong>in</strong>ce Q T = Q −1 <strong>and</strong> R T = R −1 ). It follows that<br />

QM = QA T A = A T RA = A T AQ = MQ.<br />

Theorem 9.12.2. (C.T. Benson [Be70]) If f is the number of po<strong>in</strong>ts fixed by<br />

the automorphism θ <strong>and</strong> if g is the number of po<strong>in</strong>ts x for which x ∼ x θ = x,<br />

then<br />

tr(QM) = (1 + t)f + g <strong>and</strong> (1 + t)f + g ≡ 1 + st (mod s + t).<br />

Proof. Suppose that θ has order n, so that (QM) n = Q n M n = M n . It<br />

follows that the eigenvalues of QM are the eigenvalues of M multiplied by the<br />

appropriate roots of unity. S<strong>in</strong>ce MJ = (1+s)(1+t)J (where <strong>in</strong> this case J is<br />

the v×v matrix with all entries equal to 1), we have (QM)J = (1+s)(1+t)J,<br />

so (1 + s)(1 + t) is an eigenvalue of QM. S<strong>in</strong>ce d0 = 1 it follows that this<br />

eigenvalue of QM has multiplicity 1. Further, it is clear that 0 is an eigenvalue


424 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

of QM with multiplicity d1 = s 2 (1+st)/(s+t). For each divisor d of n, let Ud<br />

denote the sum of all primitive dth (complex) roots of unity. Then Ud is an<br />

<strong>in</strong>teger. For each divisor d of n, the primitive dth roots of unity all contribute<br />

the same number of times to eigenvalues of QM hav<strong>in</strong>g absolute value equal<br />

to s + t. Let ad denote the multiplicity of ζd(s + t) as an eigenvalue of QM,<br />

with d|n <strong>and</strong> ζd a primitive dth root of unity. Then we have<br />

tr(QM) = <br />

ad(s + t)Ud + (1 + s)(1 + t).<br />

d|n<br />

Hence tr(QM) ≡ 1 + st (mod s + t). Let f <strong>and</strong> g be as given <strong>in</strong> the theorem.<br />

S<strong>in</strong>ce the entry on the ith row <strong>and</strong> ith column opf QM is the number of<br />

l<strong>in</strong>es <strong>in</strong>cident with xi <strong>and</strong> x θ i , we have tr(QM) = (1 + t)f + g, complet<strong>in</strong>g<br />

the proof.<br />

Corollary 9.12.3. If fP (resp., fB) is the number of po<strong>in</strong>ts (resp., l<strong>in</strong>es)<br />

fixed by the automorphism θ, <strong>and</strong> if gP (resp., gB) is the number of po<strong>in</strong>ts x<br />

(resp., l<strong>in</strong>es L) for which x ∼ x θ = x (resp., L ∼ L θ = L), then<br />

tr(QA T A) = (1 + t)fP + gP = (1 + s)fB + gB = tr(RAA T ).<br />

Proof. The last equality of just the dual of the first, which was established<br />

<strong>in</strong> the preced<strong>in</strong>g theorem. To obta<strong>in</strong> the middle equality we <strong>in</strong>troduce some<br />

additional notation.<br />

FP = {x ∈ P : x θ = x}; fP = |FP |.<br />

GP = {x ∈ P : x ∼ x θ = x}; gP = |GP |.<br />

For each x ∈ GP there is a unique l<strong>in</strong>e Lx = 〈x, x θ 〉. We split GP <strong>in</strong>to two<br />

subsets.<br />

G 1 P = {x ∈ GP : L θ x = Lx}; g 1 P = |G1 P |.<br />

G 2 P = {x ∈ GP : L θ x = Lx}; g 2 P = |G2 P |.<br />

M = {(x, L) ∈ P × B : xIL, x ∼ x θ , L ∼ L θ }.<br />

N = {(x, L) ∈ P × B : xIL, x ∼ x θ = x; L ∼ L θ = L}.<br />

Clearly N ⊆ M.<br />

Suppose that x is a po<strong>in</strong>t such that there is a l<strong>in</strong>e L with (x, L) ∈ M.<br />

Then x ∈ FP ∪ GP . If x ∈ FP , then (x, L) ∈ M if <strong>and</strong> only if xIL. So s


9.12. COLLINEATIONS 425<br />

belongs to 1 + t pairs (x, L) ∈ M, none of which are <strong>in</strong> N . If x ∈ G1 P , then<br />

the unique pair (x, L) ∈ M is (x, Lx), <strong>and</strong> this pair is not <strong>in</strong> N . If x ∈ G 2 P ,<br />

then the only pairs (x, L) ∈ M are (x, Lx) <strong>and</strong> (x, L θ−1<br />

x ), <strong>and</strong> they are both<br />

<strong>in</strong> N . Hence we have the follow<strong>in</strong>g:<br />

|mN| = 2 · g 2 P ;<br />

|M| = (1 + t)fP + g 1 P + 2 · g 2 P<br />

= (1 + t)fP + gP + g 2 P<br />

= (1 + t)fP + gP + 1<br />

|N |.<br />

2<br />

Clearly the dual of this result is: |M| = (1 + s)fB + gB + 1<br />

|N |. So the<br />

2<br />

desired middle equality of the corollary holds.<br />

whorl A whorl about a po<strong>in</strong>t p is a coll<strong>in</strong>eation of S that fixes each l<strong>in</strong>e<br />

<strong>in</strong>cident with p. A whorl about a l<strong>in</strong>e is def<strong>in</strong>ed dually.<br />

elation Traditionally an elation θ about a po<strong>in</strong>t p was def<strong>in</strong>ed to be a whorl<br />

about p such that θ = id or such that θ fixes no po<strong>in</strong>t of P \ p ⊥ . It<br />

gradually has become clear that a better def<strong>in</strong>ition would require that<br />

an elation act semiregularly on the po<strong>in</strong>ts of P \ p ⊥ , i.e., if some power<br />

of θ fixes a po<strong>in</strong>t of P \ p ⊥ , then θ is the identity. (For a thorough<br />

discussion of these ideas see [PT03] <strong>and</strong> [TP06].) An elation about a<br />

l<strong>in</strong>e is def<strong>in</strong>ed dually.<br />

(p, l)-elation Let (p, L) ∈ P × B be a flag, i.e., the po<strong>in</strong>t p is <strong>in</strong>cident<br />

with the l<strong>in</strong>e L. A (p, L)-elation is an automorphism θ of S that is<br />

simultaneously a whorl about p <strong>and</strong> a whorl about L. The name is<br />

justified, s<strong>in</strong>ce us<strong>in</strong>g Theorem 9.12.1 it is easy to check that a (p, L)elation<br />

is <strong>in</strong>deed an elation about p <strong>and</strong> also an elation about L.<br />

Theorem 9.12.4. Let (p, L) be a flag, <strong>and</strong> let G(p, L) be the group of all<br />

(p, L)-elations. Then G(p, L) has order divid<strong>in</strong>g st.<br />

Proof. For, if N is a l<strong>in</strong>e through p different from L, then G(p, L) acts<br />

semiregularly on the st l<strong>in</strong>es meet<strong>in</strong>g N at po<strong>in</strong>ts other than p. Similarly, if<br />

u is a po<strong>in</strong>t of L different from p, then G(p, L) acts semiregularly on the st<br />

po<strong>in</strong>ts of u ⊥ not on L. Hence, G(p, L) has order st if <strong>and</strong> only if G(p, L) acts<br />

regularly on the set of l<strong>in</strong>e of N ⊥ not through p if <strong>and</strong> only if G(p, L) acts<br />

regularly on the set of po<strong>in</strong>ts of u ⊥ not on L.


426 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

(p, L)-transitive If G(p, L) has order st we say S is (p, L)-transitive.<br />

panel A panel of S is an ordered triple (x, L, y) where x, y are dist<strong>in</strong>ct po<strong>in</strong>ts<br />

on L, or an ordered triple (L, p, M) where L <strong>and</strong> M are dist<strong>in</strong>ct l<strong>in</strong>es<br />

<strong>in</strong>cident with p.<br />

(x, L, y)-elation For a given panel (x, L, y), let H(x, L, y) = G(x, L)∩G(y, L),<br />

i.e., θ ∈ J(x, L, y) if <strong>and</strong> only if x fixes x <strong>and</strong> y l<strong>in</strong>ewise <strong>and</strong> L po<strong>in</strong>twise.<br />

An element θ of H(x, L, y) is called an (x, L, y)-elation. Note<br />

that θ is an elation about each of x, L, y.<br />

Moufang panel Clearly the set H(x, L, y) of (x, L, y)-elations is a group.<br />

If M is a l<strong>in</strong>e through x different from L, then H(x, L, y) acts semiregularly<br />

on the po<strong>in</strong>ts of M different from x. Hence |H(x, L, y)| divides<br />

s. If |H(x, L, y)| = s, we say that the panel (x, L, y) is Moufang.<br />

(x, L, y)-symmetry By def<strong>in</strong>ition each θ ∈ H(x, L, y) fixes both x <strong>and</strong> y<br />

l<strong>in</strong>ewise. Let M be a l<strong>in</strong>e fixed by the nonidentity automorphism θ ∈<br />

H(x, L, y) <strong>and</strong> suppose that M is not <strong>in</strong>cident with either x or y. An<br />

easy exercise shows that M must meet L at some po<strong>in</strong>t z different from<br />

x <strong>and</strong> y. However, <strong>in</strong> general we do not know whether or not θ is a whorl<br />

about z. If it is true for each po<strong>in</strong>t z <strong>in</strong>cident with L that θ is a whorl<br />

about z whenever θ fixes some l<strong>in</strong>e through z different from L, then we<br />

call θ an (x, L, y)-symmetry. It is not clear from the def<strong>in</strong>ition that<br />

the set of all (x, L, y)-symmetries is a group or that the group H(x, L, y)<br />

of (x, L, y)-elations is <strong>in</strong> fact a group of (x, L, y)-symmetries. We shall<br />

study this situation <strong>in</strong> some detail.<br />

symmetry A symmetry about the l<strong>in</strong>e L is an automorphism of S that<br />

fixes each l<strong>in</strong>e concurrent with L. Clearly, if θ is a symmetry about L<br />

then it is an (x, L, y)-symmetry for each pair (x, y) of dist<strong>in</strong>ct po<strong>in</strong>ts<br />

<strong>in</strong>cident with L, <strong>and</strong> hence θ is also an elation about L. The symmetries<br />

about L form a group that acts semiregularly on the set of s po<strong>in</strong>ts<br />

<strong>in</strong>cident with any l<strong>in</strong>e M meet<strong>in</strong>g L but not on L. Hence the group of<br />

symmetries about L has order divid<strong>in</strong>g s. It is also clear that if L is<br />

regular, then any (x, L, y)-elation is an (x, L, y)-symmetry.


9.13. A COSET GEOMETRY 427<br />

9.13 A Coset <strong>Geometry</strong><br />

Let G be a group with |G| = s 2 t, s > 1, t > 1. Let F = {A0, . . . , Ar} be a<br />

collection of r + 1 subgroups, each of order s. Let F ∗ = {A ∗ 0, . . . , A ∗ r} be a<br />

family of r + 1 subgroups, each of order st, with the property that Ai ≤ A ∗ i<br />

for 0 ≤ i ≤ r. Construct a coset geometry Q(G, F, F ∗ ) as follows:<br />

Po<strong>in</strong>ts are of three types:<br />

(1) Elements g of G.<br />

(2) Cosets A∗ i g, 0 ≤ i ≤ r, g ∈ G.<br />

(2) A symbol (∞).<br />

L<strong>in</strong>es are two types:<br />

(a) Cosets Aig, 0 ≤ i ≤ r, g ∈ G.<br />

(b) Symbols [Ai], 0 ≤ i ≤ r.<br />

Incidence is def<strong>in</strong>ed as follows:<br />

• (∞) is <strong>in</strong>cident with each [Ai], 0 ≤ i ≤ r.<br />

• [Ai] is <strong>in</strong>cident with (∞) <strong>and</strong> with each of the s cosets A ∗ i g of A∗ i<br />

0 ≤ i ≤ r.<br />

<strong>in</strong> G,<br />

• A ∗ i g is <strong>in</strong>cident with [Ai] <strong>and</strong> with each of the t cosets of Ai conta<strong>in</strong>ed<br />

<strong>in</strong> A ∗ i g.<br />

• Aig is <strong>in</strong>cident with A ∗ i <strong>and</strong> with each of the s elements of G <strong>in</strong> Aig.<br />

• g is <strong>in</strong>cident with each coset Aig, 0 ≤ i ≤ r.<br />

We now consider what properties of (G, F, F ∗ ) correspond to properties<br />

of Q(G, F, F ∗ ) that are required for Q(G, F, F ∗ ) to be a GQ (necessarily of<br />

order (s, t)).<br />

We first consider whether or not there are two po<strong>in</strong>ts on two l<strong>in</strong>es. It will<br />

follow that this cannot happen if <strong>and</strong> only if the follow<strong>in</strong>g property holds:<br />

P1. Ai ∩ Aj = {e} for 0 ≤ i < j ≤ r.<br />

(i) It is clear that [Ai] <strong>and</strong> [Aj] have only the po<strong>in</strong>t (∞) <strong>in</strong> common.


428 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

(ii) [Ai] <strong>and</strong> Ajg have only A∗ jg <strong>in</strong> common, <strong>and</strong> then only when i = j.<br />

(iii) Suppose some two l<strong>in</strong>es Aig <strong>and</strong> Ajh have two po<strong>in</strong>ts <strong>in</strong> common.<br />

Without loss of generality we may suppose that these are the po<strong>in</strong>ts g <strong>and</strong> h<br />

(s<strong>in</strong>ce otherwise i = j <strong>and</strong> A∗ i g = A∗i h <strong>and</strong> |Aig∩Aih| ≥ 1 implies Aig = Aih).<br />

This implies gh−1 ∈ Ai ∩ Aj. Hence we have the follow<strong>in</strong>g: Two po<strong>in</strong>ts are<br />

on at most one l<strong>in</strong>e if <strong>and</strong> only if Ai ∩ Aj = {e} for 0 ≤ i < j ≤ r. From now<br />

on we suppose that this condition P1 is satisfied.<br />

The next property to consider is that there should be no triangles. It<br />

is easy to check that there is no triangle with (∞) as one of its vertices.<br />

Similarly, there is no triangle with two vertices of the type A ∗ i g, A ∗ i h.<br />

P2. A ∗ i ∩ Aj = {e} if i = j.<br />

Suppose there is a triangle with dist<strong>in</strong>ct vertices g, h ∈ G <strong>and</strong> whose<br />

third vertex is A ∗ i g = A ∗ i h. To have a triangle, the l<strong>in</strong>e through g <strong>and</strong> h must<br />

be of the form Ajg = Ajh, for some i = j. Then gh−1 ∈ Aj ∩ A∗ i . Conversely,<br />

if |Aj ∩ A∗ i | ≥ 2, such a triangle arises. Hence we have the follow<strong>in</strong>g: There is<br />

no triangle hav<strong>in</strong>g a vertex on a l<strong>in</strong>e of the type [Ai] if <strong>and</strong> only if property<br />

P2 holds. From now on we suppose that this condition P2 is satisfied.<br />

P3. AiAj ∩ Ak = {e} if i, j, k are dist<strong>in</strong>ct.<br />

Suppose that g, h <strong>and</strong> x are three dist<strong>in</strong>ct po<strong>in</strong>ts of type (1) that are<br />

the vertices of a triangle. Necessarily there are three dist<strong>in</strong>ct <strong>in</strong>dices i, j<br />

<strong>and</strong> k for which Aih = Aix, Ajx = Ajg <strong>and</strong> Akg = Akh. This forces<br />

hx −1 ∈ Ai, xg −1 ∈ Aj <strong>and</strong> gh −1 ∈ Aj <strong>and</strong> gh −1 ∈ Ak, from which it follows<br />

that hg −1 ∈ AiAj ∩ Ak. Conversely, suppose e <strong>and</strong> x are dist<strong>in</strong>ct elements of<br />

AiAj ∩ Ak, with x = ab, a ∈ Ai, b ∈ Aj. Then e, a <strong>and</strong> b −1 are the vertices<br />

of a triangle with sides Aia = Aie, Aje = Ajb −1 <strong>and</strong> Aka = Akb −1 . It follows<br />

that no triangle exists with vertices of type (1) if <strong>and</strong> only if property P3<br />

holds. From now on we suppose that this condition P3 is satisfied.<br />

Let p be a po<strong>in</strong>t not <strong>in</strong>cident with a l<strong>in</strong>e L. We now consider whether or<br />

not there really is a po<strong>in</strong>t x <strong>in</strong>cident with L <strong>and</strong> coll<strong>in</strong>ear with p.<br />

P4. G = A∗ i Aj for i = j.<br />

The po<strong>in</strong>t (∞) is always coll<strong>in</strong>ear with the po<strong>in</strong>t A∗ i g on an arbitrary l<strong>in</strong>e<br />

Aig not <strong>in</strong>cident with (∞). Consider the case where p = A∗ i g <strong>and</strong> L = Ajh. If<br />

i = j, then A∗ i h is coll<strong>in</strong>ear with A∗ i g on [Ai. So suppose i = j. A po<strong>in</strong>t x on<br />

L coll<strong>in</strong>ear with p would have to be an element x ∈ G for which Ajh = Ajx<br />

<strong>and</strong> A∗ i g = A∗i x, i.e., x ∈ A∗i g ∩ Ajh. This says that for any g, h ∈ G, there


9.13. A COSET GEOMETRY 429<br />

would have to be elements a∗ i ∈ A∗i <strong>and</strong> aj ∈ Aj for which a∗ i g = ajh, which<br />

is equivalent to gh−1 = (a∗ i ) −1aj ∈ A∗ i Aj. So our GQ property holds with p<br />

of the form A∗ i g if <strong>and</strong> only if property P4 holds.<br />

To consider the f<strong>in</strong>al case with p = g ∈ G, first def<strong>in</strong>e<br />

Ω = ∪{Ai : 0 ≤ i ≤ r}.<br />

Let i = j, 0 ≤ i, j ≤ r. S<strong>in</strong>ce P1 <strong>and</strong> P2 are assumed to hold, each coset<br />

of Ai different from Ai but conta<strong>in</strong>ed <strong>in</strong> A ∗ i is disjo<strong>in</strong>t from Aj, <strong>and</strong> we have<br />

the follow<strong>in</strong>g<br />

A ∗ i ⊆ Ai ∪ {Aig : Ai ∩ Ω = ∅}.<br />

Clearly g ⊥ A∗ i g for each i, so we need to consider only those cases where<br />

p = g <strong>and</strong> L = Ajh with g ∈ Ajh. Multiply<strong>in</strong>g on the right by g−1 we may<br />

without loss of generality assume that p = g = e <strong>and</strong> L = Ajg with g ∈ Aj.<br />

First consider the case where g ∈ A∗ j \ Aj. Here A∗ jg = A∗ j is a po<strong>in</strong>t on Ajg<br />

coll<strong>in</strong>ear with e on the l<strong>in</strong>e Aj. So we may assume that g ∈ A∗ j . So we need<br />

a po<strong>in</strong>t x on Aj different from A∗ j coll<strong>in</strong>ear with e on some l<strong>in</strong>e Ai = Aix,<br />

i = j. Hence there must be an i, i = j, with Ai ∩ Ajg = ∅. S<strong>in</strong>ce there are<br />

to be no triangles, <strong>in</strong> fact |Ai ∩ Ajg| must equal 1. In other words, if Ajg is<br />

a coset of Aj disjo<strong>in</strong>t from Ω it must be the case that Ajg ⊂ A∗ j . Hence, <strong>in</strong><br />

the presence of the properties P1 through P4, if p is a po<strong>in</strong>t not on a l<strong>in</strong>e L,<br />

there will be a (necessarily unique) po<strong>in</strong>t x on L coll<strong>in</strong>ear with p if <strong>and</strong> only<br />

if the follow<strong>in</strong>g property holds:<br />

P5. A ∗ i = Ai ∪ {Aig : Ai ∩ Ω = ∅}.<br />

Clearly P2 implies P1, <strong>and</strong> s<strong>in</strong>ce G is f<strong>in</strong>ite, a comb<strong>in</strong>atorial argument<br />

shows that P2 implies P4. Hence Q(G, F, F ∗ ) is a GQ if <strong>and</strong> only if P2, P3<br />

<strong>and</strong> P5 hold.<br />

For the follow<strong>in</strong>g three lemmas suppose that (G, F, F ∗ ) satisfies P2 <strong>and</strong><br />

P3.<br />

Lemma 9.13.1.<br />

Proof. If g ∈ Ai, the result is true by P2. So suppose g ∈ Ai <strong>and</strong> let<br />

x, y ∈ Aig ∩ Aj. Say x = aj = aig <strong>and</strong> y = a ′ j = a′ ig with aj, a ′ j ∈ Aj <strong>and</strong><br />

ai, a ′ i ∈ Ai. Then g = a −1<br />

i aj = (a ′ i )−1a ′ j , which implies that a′ ia−1 i = a′ ja−1 j ∈<br />

Ai ∩ Aj = {e}. Hence x = y, prov<strong>in</strong>g the lemma.


430 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

Lemma 9.13.2. For g ∈ Ω \ Aj, Ajg ∩ Ω = {g}.<br />

Proof. Clearly g ∈ Ajg ∩ Ω. And g ∈ Ai for a unique i, i = j. By the<br />

previous lemma, |Ajg ∩ Ai| = 1. If x ∈ Ajg ∩ Ak for some k dist<strong>in</strong>ct from i<br />

<strong>and</strong> j, then x ∈ AjAi ∩ Ak, contradict<strong>in</strong>g P3.<br />

Lemma 9.13.3. Under the exist<strong>in</strong>g hypotheses, r ≤ t, with equality hold<strong>in</strong>g<br />

if <strong>and</strong> only if P5 holds.<br />

Proof. Clearly |Ω \ Aj| = r(s − 1). So the 1 + r(s − 1) dist<strong>in</strong>ct cosets of Aj<br />

that meet Ω leave st − (1 + r(s − 1)) = st − 1 − r(s − 1) cosets of Aj disjo<strong>in</strong>t<br />

from Ω. P5 says that |A ∗ j | = st = s + s(st − 1 − r(s − 1)) = s2 t − rs(s − 1),<br />

i.e., rs(s − 1) = s 2 t − st = ts(s − 1), so that P5 holds if <strong>and</strong> only if r = t.<br />

Theorem 9.13.4. (W. M. Kantor) If (G, F, F ∗ ) is given as as orig<strong>in</strong>ally<br />

def<strong>in</strong>ed but with r = t, then Q(G, F, F ∗ ) is a GQ of order (s, t) provided P2<br />

<strong>and</strong> P3 hold.<br />

For the rema<strong>in</strong>der of this book we revert to the usual notation<br />

for P2 <strong>and</strong> P3. Relabel P3 as K1 <strong>and</strong> P2 as K2.<br />

Lemma 9.13.5. Let (G, F, F ∗ ) be given as as orig<strong>in</strong>ally def<strong>in</strong>ed but satisfy<strong>in</strong>g<br />

K1 <strong>and</strong> K2, so that r ≤ t. If i, j, k are dist<strong>in</strong>ct <strong>in</strong>dices between 0 <strong>and</strong> r,<br />

then A ∗ i , AiAj \ Ai, AiAk \ Ai are disjo<strong>in</strong>t.<br />

Proof. It is easy to see that K2 forces A∗ i ∩AiAj = Ai, so that A∗ i ∩AiAj = ∅.<br />

Suppose x ∈ AiAj \ Ai ∩ AiAk \ Ai. Then x = aiaj = a ′ iak, aj = e = ak, with<br />

the obvious notation. Then a −1<br />

i a′ i = aja −1<br />

k ∈ Ai ∩ AjAk = {e}. This forces<br />

ai = a ′ i <strong>and</strong> aj = ak ∈ Aj ∩ Ak = {e}, <strong>and</strong> hence x ∈ Ai, a contradiction.<br />

From the above Lemma we see that s<strong>in</strong>ce A ∗ 0 , A0A1 \ A0, . . . , A0Ar \ A0<br />

are pairwise disjo<strong>in</strong>t, st+r(s 2 −s) ≤ s 2 t, with equality if <strong>and</strong> only if these sets<br />

partition G if <strong>and</strong> only if r = t. We record this <strong>in</strong>formation <strong>in</strong> the follow<strong>in</strong>g<br />

theorem.<br />

Theorem 9.13.6. If Q(G, F, F ∗ ) is a GQ (of order (s, t)), then we have the<br />

follow<strong>in</strong>g two partitions:


9.14. WEAK 4-GONAL FAMILIES 431<br />

(1) A ∗ i ∪j=i(AiAj \ Ai) is a partition of G.<br />

(2) Ai ∪ (Aig : Aig ∩ Ω = ∅) is a partition of A ∗ .<br />

When (G, F, F ∗ ) satisfies r = t <strong>and</strong> satisfies properties K1 <strong>and</strong> K2, we<br />

refer to (G, F, F ∗ ) (or sometimes just F) as a Kantor family or a 4-gonal<br />

family. It is clear that F ∗ is completely determ<strong>in</strong>ed as a collection of sets by<br />

F, but it is not clear if only F is given that the members of F ∗ are actually<br />

groups. We will have more to say on this matter later.<br />

Let (G, F, F ∗ ) be a 4-gonal family, <strong>and</strong> let S = Q(G, F, F ∗ ) = (P, B, I)<br />

be the associated generalized quadrangle. For each h ∈ G def<strong>in</strong>e θh by<br />

g θh = gh; (Aig) θh = Aigh; (A ∗ i g) θh = A ∗ i gh; [Ai] θh = [Ai]; (∞) θh = (∞); for<br />

g ∈ G, Ai ∈ F, A ∗ i ∈ F ∗ . Then θh is an automorphism of S which fixes the<br />

po<strong>in</strong>t (∞) <strong>and</strong> fixes each l<strong>in</strong>e [Ai], 0 ≤ i ≤ t. Moreover, G ′ = {θh : h ∈ G} is<br />

a group (under composition of maps) isomorphic to G, <strong>and</strong> G ′ acts regularly<br />

on the po<strong>in</strong>ts g ∈ G of type (1). Hence each θh is an elation about (∞).<br />

We say that G (or G ′ ) is an elation group <strong>and</strong> that (S (∞) , G) is an elation<br />

generalized quadrangle (EGQ).<br />

9.14 Weak 4-Gonal Families<br />

Let G be a group of order s 2 t, s > 1, t > 1. Let F = {Ai : 0 ≤ i ≤ t} be a<br />

family of 1 + t subgroups of G, each of order s, for which K1 holds. Then we<br />

say F is a weak 4-gonal family for G. Put<br />

A ∗ i = Ai ∪ (Aig : g ∈ G <strong>and</strong> Aig ∩ Aj = ∅∀j = i). (9.49)<br />

Then for each i, 0 ≤ i ≤ t, A ∗ i<br />

F is a 4-gonal family for G if <strong>and</strong> only if A ∗ i<br />

is a set of st elements of G. It follows that<br />

is a subgroup of G for all i.<br />

Problem: When is a weak 4-gonal family necessarily a 4-gonal family?<br />

Later, after we have studied TGQ <strong>and</strong> STGQ a bit more we will give<br />

two theorems that provide partial answers to this problem. For the moment<br />

we show that some additional hypothesis is required by giv<strong>in</strong>g some examples<br />

due to X. Chen (the two smallest caes, 1987) <strong>and</strong> D. Frohardt (private<br />

communication, 1988).<br />

Let D2n be the dihedral group of order 4n. Say


432 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

D2n =< a, b : a 2 = b 2n = 1, ab = b −1 a > .<br />

So D2n = {1, b, b 2 , . . . , b 2n−1 , ab, ab 2 , . . . , ab 2n−1 }, <strong>and</strong> b i a = ab −i for all<br />

i ∈ Z.<br />

Case 1 n = 2. Put A0 =< a >, A1 =< ab >, A2 =< b 2 >. It is an<br />

easy exercise to show that F = {A0, A1, A2} is a weak 4-gonal family for<br />

D2n = D4 that is not a 4-gonal family.<br />

Case 2 n ≥ 3. Put A0 =< a >, <strong>and</strong> for 1 ≤ i ≤ n, put Ai =< ab 2i−1 >.<br />

It is aga<strong>in</strong> a straightforward exercise to show that F = {A0, A1, . . . , An} is a<br />

weak 4-gonal family for D2n. S<strong>in</strong>ce there is no GQ(2, n) for n = 3 or n ≥ 5,<br />

clearly F cannot be a 4-gonal family <strong>in</strong> these cases. We give a computational<br />

argument that shows this for all n ≥ 3. So let 1 ≤ i, t, k ≤ n with t, k, −i<br />

dist<strong>in</strong>ct modulo n. Put j ≡ i + t − k (mod n), with 1 ≤ j ≤ n. Then<br />

Aib 2k+1 ∪Aib 2t+1 ⊆ A ∗ i , but ab2j−1 = b 2k+1 ·ab 2i−1 ·b 2t+1 = ab −2k−1+2i−1+2t+1 ∈<br />

Aib 2k+1 · Aib 2t+1 ∩ Aj ⊆ A ∗ i ∩ Aj, so F is not a 4-gonal family.<br />

9.15 Elation <strong>Generalized</strong> Quadrangles<br />

Let (S p , G) = (P, B, I) be an elation generalized quadrangle (EGQ) of order<br />

(s, t), s > 1, t > 1, i.e., G is a group of elations about the po<strong>in</strong>t p act<strong>in</strong>g<br />

regularly on the s 2 t po<strong>in</strong>ts not coll<strong>in</strong>ear with p. Let y be a fixed po<strong>in</strong>t of<br />

P \ p ⊥ . Let L0, . . . , Lt be the l<strong>in</strong>es <strong>in</strong>cident with the po<strong>in</strong>t p, <strong>and</strong> def<strong>in</strong>e<br />

zi <strong>and</strong> Mi by LiIziIMiIy, 0 ≤ i ≤ t. Put Si = {θ ∈ G : M θ i = Mi},<br />

S ∗ i = {θ ∈ G : zθ i = zi}, <strong>and</strong> F = {Si : 0 ≤ i ≤ t}. Then |G| = s 2 t; F is a<br />

collection of 1 + t subgroups of G, each of order s; for each i, 0 ≤ i ≤ t, S ∗ i is<br />

a subgroup of order st conta<strong>in</strong><strong>in</strong>g Si as a subgroup. Moreover, the follow<strong>in</strong>g<br />

two conditions are satisfied:<br />

K1. SiSj ∩ Sk = {e}, for i, j, k dist<strong>in</strong>ct.<br />

K2. S ∗ i ∩ Sj = {e}, for dist<strong>in</strong>ct i, j.<br />

Hence if we also put F ∗ = {S ∗ i : 0 ≤ i ≤ t}, (G, F, F ∗ ) is a Kantor family,<br />

<strong>and</strong> Q(G, F, F ∗ ) is a GQ(s, t).<br />

Exercise 9.15.0.1. Show that if we start with an EGQ (S p , G) <strong>and</strong> obta<strong>in</strong><br />

the Kantor family (G, F, F ∗ ) as above, the associated generalized quadrangle<br />

Q(G, F, F ∗ ) is naturally isomorphic to the orig<strong>in</strong>al EGQ (S p , G).


9.15. ELATION GENERALIZED QUADRANGLES 433<br />

Most known examples of GQ are EGQ, the notable exceptions be<strong>in</strong>g<br />

those of order (s − 1, s + 1) <strong>and</strong> their duals. Moreover, the known examples<br />

of EGQ fall <strong>in</strong>to one of two categories, <strong>in</strong> the first of whcih G conta<strong>in</strong>s<br />

a full group of symmetries about each l<strong>in</strong>e through the base po<strong>in</strong>t p. In<br />

this case we shall soon see that G is elementary abelian <strong>and</strong> S is called<br />

a translation generalized quadrangle (TGQ) with base po<strong>in</strong>t p <strong>and</strong><br />

translation group G. Briefly, we say S (p) , G) (or S (p) ) is a TGQ.<br />

A TGQ of order (s, t) must have s ≤ t s<strong>in</strong>ce it has some regular l<strong>in</strong>e. The<br />

second category of EGQ is at the opposite end of the hypothetical spectrum.<br />

Here G conta<strong>in</strong>s a full group C of symmetries about the po<strong>in</strong>t p. Here we say<br />

S (p) , G) (or S (p) ) is a skew-translation generalized quadrangle (STGQ)<br />

with base po<strong>in</strong>t p <strong>and</strong> skew-translation group G. If S (p) is an STGQ, then<br />

t ≤ s, s<strong>in</strong>ce S has a regular po<strong>in</strong>t.<br />

The follow<strong>in</strong>g simple result is occasionally helpful.<br />

Lemma 9.15.1. Let σ, θ be nonidentity symmetries about dist<strong>in</strong>ct l<strong>in</strong>es L,<br />

M, respectively, <strong>in</strong> an arbitrary f<strong>in</strong>ite generalized quadrangle. Then<br />

(i) σθ = θσ if <strong>and</strong> only if L ⊥ M.<br />

(ii) σθ is not a symmetry about any l<strong>in</strong>e (or po<strong>in</strong>t).<br />

(iii) The existence of even one nonidentity symmetry σ about some l<strong>in</strong>e L<br />

means that σ has f = s + 1 fixed po<strong>in</strong>ts <strong>and</strong> g = (1 + s)st po<strong>in</strong>ts moved<br />

by σ to coll<strong>in</strong>ear po<strong>in</strong>ts. So by Theorem 9.12.2 we have (1 + t)f +<br />

g = (1 + t)(1 + s) + (1 + s)st ≡ 1 + st (mod s + t), which implies<br />

(1 + s)st ≡ 0 (mod s + t.<br />

Proof. First suppose that L <strong>and</strong> M meet at a po<strong>in</strong>t x, <strong>and</strong> let y ∈ P \ x ⊥ .<br />

Let L ′ be the l<strong>in</strong>e through y meet<strong>in</strong>g L <strong>and</strong> M ′ the l<strong>in</strong>e through y meet<strong>in</strong>g<br />

M. It follows readily that both y σθ <strong>and</strong> y θσ must be the po<strong>in</strong>t at which (M ′ ) σ<br />

meets (L ′ ) θ . But if σθ <strong>and</strong> θσ have the same effect on po<strong>in</strong>ts of P \x ⊥ , clearly<br />

σθ = θσ. Now suppose that L ⊥ M. Clearly L θ ⊥ L, so that L θσ = L θ , but<br />

L σθ = L θ . This proves (i).<br />

For the proof of (ii), note that if LIxIM, then x σθ = x, y σθ = y = y σθ if<br />

<strong>and</strong> only if y ∈ x ⊥ \ {x}, <strong>and</strong> y σθ ⊥ y if <strong>and</strong> only if y ∈ x ⊥ . And if l ⊥ M,<br />

then y σθ ⊥ y for all y not <strong>in</strong>cident with any l<strong>in</strong>e of {L, M} ⊥ . It follows<br />

readily that ξθ is not a symmetry about any l<strong>in</strong>e or po<strong>in</strong>t.


434 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

For the rema<strong>in</strong>der of this section let (S p , G) be an EGQ with Kantor<br />

family (G, F, F ∗ ), where F = {A0, . . . , At}, etc., <strong>and</strong> identify (S p , G) with<br />

the coset geometry version Q(G, F, F ∗ ). We start by collect<strong>in</strong>g a variety of<br />

elementary facts most of whose proofs are either already clear or are left to<br />

the reader as rout<strong>in</strong>e exercises.<br />

Theorem 9.15.2. Let (S p , G) = Q(G, F, F ∗ ) be an EGQ with Kantor family<br />

F = {A0, . . . , At}, etc.<br />

(i) G acts by right multiplication as a (maximal) group of elations about<br />

p = (∞).<br />

(ii) Ai is the subgroup of G fix<strong>in</strong>g the l<strong>in</strong>e Ai of Q(G, F, F ∗ ). More generally,<br />

A h is the stabilizer <strong>in</strong> G of the l<strong>in</strong>e Ah.<br />

(iii) A ∗ i h is the stabilizer <strong>in</strong> G of the po<strong>in</strong>t A ∗ i h.<br />

(iv) Each automorphism of G leav<strong>in</strong>g F <strong>in</strong>variant <strong>in</strong>duces a coll<strong>in</strong>eation of<br />

Q(G, F, F ∗ ) fix<strong>in</strong>g (∞).<br />

(v) G =< Ai : 0 ≤ i ≤ t >.<br />

(vi) Ai is a group of symmetries about [Ai] if <strong>and</strong> only if Ai ✁ G only if [Ai]<br />

is a regular l<strong>in</strong>e if <strong>and</strong> only if AB = BA for all B ∈ F, <strong>in</strong> which case<br />

s ≤ t.<br />

(vii) C = ∩(A ∗ : A ∈ F) is a group of symmetries about (∞) if <strong>and</strong> only if<br />

C ✁ G. Moreover, <strong>in</strong> this case G conta<strong>in</strong>s a full group of symmetries<br />

about (∞) if <strong>and</strong> only if |C| = t, <strong>in</strong> which case (∞) is a center of<br />

symmetry <strong>and</strong> is regular, imply<strong>in</strong>g that s ≥ t. Recall that <strong>in</strong> this case<br />

S (∞) is called a skew-translation generalized quadrangle (STGQ).<br />

(viii) Ai is a group of whorls about [Ai] if <strong>and</strong> only if Ai G ⊆ A ∗ i .<br />

(ix) Ai is a group of whorls about the po<strong>in</strong>t A∗ i if <strong>and</strong> only if Ai ✁ A∗ i if <strong>and</strong><br />

only if Ai h is a group of whorls about A∗ i h for each h ∈ G.<br />

(x) A ∗ i is a group of whorls about [Ai] if <strong>and</strong> only if A ∗ ✁ G.<br />

(xi) If G is abelian, then Q(G, F, F ∗ ) is a TGQ.


9.15. ELATION GENERALIZED QUADRANGLES 435<br />

Proof. The details are fairly straightforward, so we leave them as exercises,<br />

except that we give the proof of part (vi) assum<strong>in</strong>g that the previous parts<br />

have been proved. Then h ∈ G determ<strong>in</strong>es a symmetry about [Ai] if <strong>and</strong> only<br />

if the coll<strong>in</strong>eation it determ<strong>in</strong>es by right multiplication fixes each l<strong>in</strong>e of the<br />

form Aig if <strong>and</strong> only if Aigh = Aig for all g ∈ G if <strong>and</strong> only if ghg −1 ∈ Ai<br />

for all g ∈ G. Hence h is a symmetry about [Si] if <strong>and</strong> only if all conjugates<br />

of h lie <strong>in</strong> Ai. It follows that Ai is a group of symmetries about [Ai] if <strong>and</strong><br />

only if Ai ✁ G, <strong>in</strong> which case [Ai] is a regular l<strong>in</strong>e. Now let g be an arbitrary<br />

po<strong>in</strong>t not coll<strong>in</strong>ear with (∞). The set AiAjg consists of those po<strong>in</strong>ts not<br />

coll<strong>in</strong>ear with (∞) which lie on l<strong>in</strong>es of {[Ai], Ajg} ⊥ , i = j. Similarly, the<br />

set AjAig consists of those po<strong>in</strong>ts not coll<strong>in</strong>ear with (∞) which lie on l<strong>in</strong>es<br />

of {[Aj], Aig} ⊥ . Hence ([Ai], Ajg) is regular if <strong>and</strong> only if AiAjg = AjAig if<br />

<strong>and</strong> only if AiAj = AjAi. So [Ai] is regular if <strong>and</strong> only if AiAj = AjAi for<br />

all j = 0, . . . , t.<br />

Exercise 9.15.2.1. Let Q(G, F, F ∗ ) be an EGQ with s = t > 1. Let A <strong>and</strong><br />

B be dist<strong>in</strong>ct members of F. Show that the pair ([A], B) of nonconcurrent<br />

l<strong>in</strong>es is antiregular if <strong>and</strong> only if both the follow<strong>in</strong>g hold:<br />

(i) AB ∩ BA = A ∪ B, <strong>and</strong><br />

(ii) For each D ∈ F \ {A, B}, |AB ∩ Da| = 1 for each a ∈ A.<br />

Note: In the above context let A be a fixed member of F. Suppose that<br />

whenever D <strong>and</strong> B are (not necessarily dist<strong>in</strong>ct) members of F \ {A} it is<br />

true that |AB ∩ DA| = 2s − 1. It follows from the above exercise that the<br />

l<strong>in</strong>e [A] must be antiregular.<br />

PROBLEM 1. Let Q(G, F, F ∗ ) be an EGQ with s = t > 1. Suppose that<br />

whenever A <strong>and</strong> B are dist<strong>in</strong>ct members of F it is true that AB∩BA = A∪B.<br />

Does it follow that each l<strong>in</strong>e through the po<strong>in</strong>t (∞) must be antiregular?<br />

Exercise 9.15.2.2. An EGQ(p, p) (with p a prime) must be classical.<br />

The sequence of steps <strong>in</strong> this exercise provide a fairly elementary proof<br />

that an EGQ with order (p, p) with p a prime must be classical. Let G be<br />

a group with order p 3 , <strong>and</strong> let F = {A0, . . . , Ap} be a 4-gonal family with<br />

F ∗ the appropriate set of 1 + p subgroups of order p 2 , etc. S<strong>in</strong>ce we already<br />

know that there is only one GQ(2, 2), we assume throughout that p is an odd<br />

prime.


436 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

(i) Use K2 to show that no A ∗ ∈ F ∗ may be cyclic <strong>and</strong> hence each A ∗<br />

must be elementary abelian.<br />

(ii) Show that for dist<strong>in</strong>ct A ∗ , B ∗ ∈ F ∗ it must be true that |A ∗ ∩ B ∗ | = p.<br />

(iii) Let G be abelian. For dist<strong>in</strong>ct A, B ∈ F, AB = BA is a subgroup<br />

of order p 2 . Use Theorem 9.13.6 to show that each element of G has<br />

order divid<strong>in</strong>g p. Hence G is elementary abelian.<br />

(iv) Let G be abelian. Show that G may be viewed as a vector space over<br />

Zp <strong>and</strong> that F may be viewed as a p+1-arc <strong>in</strong> the associated projective<br />

plane P G(2, p). By a famous theorem of B. Segre F is a conic <strong>and</strong> hence<br />

is unique up to isomorphism. The associated GQ, which we denote<br />

at this time by Q(G, F, F ∗ ), is isomorphic to the orthogonal geometry<br />

Q(4, p) <strong>and</strong> also to the po<strong>in</strong>t-l<strong>in</strong>e dual of the symplectic geometry W (p).<br />

(v) Let G be non-abelian. Recall (cf. [Ha59]) that there are only two nonabelian<br />

groups (up to isomorphism) of order p 3 <strong>and</strong> that <strong>in</strong> one of them<br />

the subgroups of order p 2 are cyclic. Hence this group cannot admit a<br />

4-gonal family. We have the follow<strong>in</strong>g construction of the other nonabelian<br />

group of order p 3 . G = {(a, c, b) : a, c, b ∈ Zp. The b<strong>in</strong>ary<br />

operation of G is given by<br />

(a, c, b) · (a ′ , c ′ , b ′ ) = (a + a ′ , c + c ′ + ba ′ , b + b ′ ),<br />

where addition <strong>and</strong> multiplication here are those <strong>in</strong> Zp.<br />

(vi) Put C = {(0, c, 0) : c ∈ Zp}. Then C is the center of G <strong>and</strong> A ∗ ∩B ∗ = C<br />

for dist<strong>in</strong>ct A ∗ , B ∗ ∈ F ∗ . C ∪ (A ∗ \ C) : A ∗ ∈ F ∗ ) is a partition of<br />

G. Two elements of G belong to subgroup of order p 2 if <strong>and</strong> only if<br />

they commute. If g ∈ (G \ C), then the unique subgroup of order<br />

p 2 conta<strong>in</strong><strong>in</strong>g g is < g > ·C. Conclude that there are exactly p + 1<br />

subgroups of G hav<strong>in</strong>g order p 2 . Hence F ∗ is uniquely determ<strong>in</strong>ed.<br />

(vii) Let A ∗ , B ∗ be dist<strong>in</strong>ct subgroups of order p 2 , i.e., elements of F ∗ .<br />

Then A ∗ is normal <strong>in</strong> G, A ∗ has p subgroups of order p other than C.<br />

Conjugation by elements of B fixes C <strong>and</strong> permutes the p other groups<br />

of order p <strong>in</strong> A ∗ regularly <strong>in</strong> a cycle of order p. Let A ′ be any subgroup<br />

of order p <strong>in</strong> A ∗ different from C. Similarly for B ′ <strong>in</strong> B ∗ . By first<br />

lett<strong>in</strong>g B ′ act on G by conjugation we may choose any subgroup of A ∗


9.15. ELATION GENERALIZED QUADRANGLES 437<br />

(other than C) we want for the group A. Then conjugat<strong>in</strong>g by A we<br />

may choose any subgroup of B ∗ (other than C) to be the group B.<br />

(viii) Put A∞ = {(0, 0, b) : b ∈ Zp} <strong>and</strong> then necessarily A∗ ∞ = {(0, c, b) :<br />

c, b ∈ Zp}. Similarly, put A0 = {(a, 0, 0) : a ∈ Zp} <strong>and</strong> A∗ 0 = {(a, c, 0) :<br />

a, c ∈ Zp}. For 0 = t ∈ Zp, put A∗ t = {(a, c, ta) : a, c ∈ Zp}. At<br />

this po<strong>in</strong>t we do not know what At is, but we will show that it is now<br />

uniquely determ<strong>in</strong>ed. By K1, we know that A0A∞ ∩ At = {(0, 0, 0)}. If<br />

i, j are dist<strong>in</strong>ct, nonzero elements of Zp, then (i, 0, ti) <strong>and</strong> (j, 0, tj) are<br />

p − 1 dist<strong>in</strong>ct elements of A0A∞ ∩ At <strong>and</strong> do not belong to a subgroup<br />

of order p. These p − 1 elements generate p − 1 dist<strong>in</strong>ct subroups<br />

of A∗ t<br />

of A∗ t different from C. Hence there is only one rema<strong>in</strong><strong>in</strong>g subgroup of<br />

A∗ t of order p that can be At. Hence F is uniquely determ<strong>in</strong>ed as soon<br />

as we have chosen A0 <strong>and</strong> A∞.<br />

(ix) Show that for 0 = t ∈ Zp, it must be that<br />

At = {(a, t<br />

2 a2 , ta) : a ∈ Zp}.<br />

Theorem 9.15.3. Let S = (P, B, I) be a GQ of order (s, t) with 1 ≤ s ≤ t,<br />

<strong>and</strong> let p be a po<strong>in</strong>t for which {p, x} ⊥⊥ = {p, x} for all x ∈ P \ p ⊥ . Let G be<br />

a group of whorls about p.<br />

(i) If y ⊥ p, y = p, <strong>and</strong> θ is a nonidentity whorl about both p <strong>and</strong> y, then<br />

all po<strong>in</strong>ts fixed by θ lie on the l<strong>in</strong>e py <strong>and</strong> all l<strong>in</strong>es fixed by θ meet py.<br />

(ii) If θ is a nonidentity whorl about p, then θ fixes at most one po<strong>in</strong>t of<br />

P \ p ⊥ .<br />

(iii) If G is generated by elations about p, then G is a group of elations, i.e.,<br />

the set of elations about p is a group.<br />

(iv) If G is transitive on P \ p ⊥ <strong>and</strong> |G| > s 2 t, then G is a Frobenius group<br />

on P \ p ⊥ , so that the set of all elations about p is a normal subgroup<br />

of G of order s 2 t act<strong>in</strong>g regularly on P \ p ⊥ , i.e., S (p) is an EGQ with<br />

some normal subgroup of G as elation group.<br />

(v) If G is transitive on P \p ⊥ <strong>and</strong> G is generated by elations about p, then<br />

(S (p) , G) is an EGQ.


438 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

Proof. Both (i) <strong>and</strong> (ii) are easy consequences of Theorem 9.12.1 Suppose<br />

there is some po<strong>in</strong>t x ∈ P \ p ⊥ for which |G| = |Gx| = 1. Then by (ii) G<br />

is a Frobenius group on x G (cf. [Ja80]). So the Frobenius kernel of G acts<br />

regularly on x G . If G is generated by elations about p (so trivially |G| = |Gx|<br />

if |G| > 1), then G itself must act regularly on x G . S<strong>in</strong>ce this holds for each<br />

x ∈ P \ p ⊥ , each element of G is an elation about p. Parts (iii), (iv) <strong>and</strong> (v)<br />

of the theorem are now easy consequences.<br />

9.16 Elation Groups as p-Groups<br />

Let G be a group with |G| = s 2 t, s > 1, t > 1. Let F = {A0, A1, . . . , Ar}<br />

be a set of 1 + r subgroups of G of order s. Suppose that Ai ≤ A ∗ i with<br />

|A ∗ i | = st. Assume that F satisfies K1 <strong>and</strong> K2. We have seen that r ≤ t <strong>and</strong><br />

if A, B <strong>and</strong> C are dist<strong>in</strong>ct members of F, then A ∗ , AB \ A, <strong>and</strong> AC \ A are<br />

disjo<strong>in</strong>t. In this general a sett<strong>in</strong>g we need one more prelim<strong>in</strong>ary lemma.<br />

Lemma 9.16.1. For 0 ≤ i, j ≤ r, i = j, <strong>and</strong> g ∈ G, we have A ∗ i<br />

∩ Ag<br />

j<br />

= {e}.<br />

Proof. |A∗ i Aj| = s2t = |G|, so A∗ i Aj = G. (Notation: ag = g−1ag.) Suppose<br />

a ∈ A∗ i ∩ Agj<br />

, so ag−1 ∈ Aj. Write g−1 = hb, h ∈ A∗ i , b ∈ Aj. Then<br />

ag−1 = gag−1 = b−1h−1ahb ∈ Aj, so ah ∈ A∗ i ∩ Aj = {e}, forc<strong>in</strong>g a = e.<br />

For the rema<strong>in</strong>der of this section we assume that r = t, so Q(G, F, F ∗ ) is<br />

a GQ(s, t). If p is a prime <strong>and</strong> s any positive <strong>in</strong>teger, we write p e ||s to mean<br />

that p e divides s but p e+1 does not divide s. And we write sp = p e to mean<br />

that pe s<br />

||s. So sp = 1 means that p does not divide s. Also def<strong>in</strong>e sp ′ := sp .<br />

Lemma 9.16.2. If sp > 1, then tp ′ < sp.<br />

Proof. Choose A ∈ F. Let P ∈ Sylp(G) conta<strong>in</strong> A∗ p ∈ Sylp(A∗ ). For each<br />

B ∈ F \ A choose Bp ∈ Sylp(B). Then Bp is G-conjugate to a subgroup QB<br />

of P . From Lemma 9.16.1, if B, C ∈ F \ {A}, B = C, then A∗ p ∩ QB = {e},<br />

<strong>and</strong> if QB = Bg1 p , QC = Cg2 p , then |QB<br />

−1<br />

g1g ∩ QC| = |B 2 ∩ C∗ | = 1. So A∗ p ,<br />

QB : B ∈ F \ {A} pairwise <strong>in</strong>tersect <strong>in</strong> {e}. So |A∗ p| + <br />

B∈F\{A} (|Qp| − 1) =<br />

sptp + t(sp − 1) ≤ |P | = s2 ptp. Hence tp ′tp(sp − 1) ≤ sptp(sp − 1), forc<strong>in</strong>g<br />

tp ′ ≤ sp.<br />

Notation: Let π(s) denote the set of dist<strong>in</strong>ct primes that divide s.<br />

The next two theorems are due to D. Frohardt (cf., [Fr88]).


9.16. ELATION GROUPS AS P -GROUPS 439<br />

Theorem 9.16.3. Let k = |π(s)|. Then t k−1 < s. If s ≤ t, then s is a prime<br />

power.<br />

Proof. If k = 1, clearly s is a prime power. So suppose k ≥ 2. By<br />

Lemma 9.16.2, tk−1 ≤ <br />

p∈π(s)<br />

tp ′ < p∈π(s) sp = s, imply<strong>in</strong>g t < s.<br />

Theorem 9.16.4. If s is a prime power, say s = p e , then G is a p-group.<br />

Proof. For each A ∈ F, choose SA ∈ Sylp(G) such that A ≤ SA <strong>and</strong> SA<br />

conta<strong>in</strong>s a Sylow p-subgroup of A∗ . S<strong>in</strong>ce G has at most |G|p ′ = tp ′ dist<strong>in</strong>ct<br />

Sylow p-subgroups <strong>and</strong> |F| = ⊔√⊔√ ′ + ∞, by the pigeonhole pr<strong>in</strong>ciple there<br />

is an S ∈ Sylp(G) with S = SA for at least tp + 1 members A of F. Fix<br />

such an S, <strong>and</strong> put FS = {A ∈ F : SA = S}. Put A + := A∗ ∩ S for<br />

all A ∈ FS <strong>and</strong> F ∗ S = {A+ : A ∈ FS}. It follows that (S, FS, F ∗ S ; s, tp)<br />

satisfies K1 <strong>and</strong> K2. Here |A| = s, |A∗ | = |A∗ ∩ S} = (st)p = stp. By<br />

the observation recalled at the beg<strong>in</strong>n<strong>in</strong>g of this section, |FS| = tp + 1 <strong>and</strong><br />

S = (A∗ ∩ S) ∪ {AB \ A : B ∈ FS \ {A}} for each A ∈ FS. (Keep <strong>in</strong> m<strong>in</strong>d<br />

that A is a p-group, A ≤ S, but A∗ meets S <strong>in</strong> a Sylow p-subgroup of A∗ .)<br />

Fix a group A ∈ FS. Let C ∈ F. Then |CS| ≤ |G| = s2t = tp ′ · tps2 <<br />

stps2 = |C|·|S|, s<strong>in</strong>ce tp < s by Lemma 9.16.2. Then |CX| = |C|·|S|<br />

< |C|·|S|,<br />

|C∩S<br />

forc<strong>in</strong>g C ∩ S = {e}. So either C ∩ A∗ = {e} (imply<strong>in</strong>g C = A), or there<br />

is some B ∈ FS \ {A} with C ∩ (AB \ A) = {e} (imply<strong>in</strong>g that C = B).<br />

In any case C must be one of the A ′ is conta<strong>in</strong>ed <strong>in</strong> FS, so C ≤ S. Hence<br />

F = FS. Then t = |F| − 1 = |FS| − 1 = tp, imply<strong>in</strong>g that G is a pp-group<br />

(<strong>and</strong> G = S).<br />

Corollary 9.16.5. Let S = (S (p) , G) be an EGQ of order (s, t) with s > 1,<br />

t > 1. If s ≤ t, then s <strong>and</strong> t are powers of the same prime. If s is a prime<br />

power, then s <strong>and</strong> t are powers of the same prime. And <strong>in</strong> any case, s<strong>in</strong>ce<br />

s ≤ t 2 , by Theorem 9.16.3s is divisible by at most two dist<strong>in</strong>ct primes.<br />

The next theorem is due to D. Hachenberger(cf. [Ha96]). Note: This<br />

theorem was also proved by X. Chen, around 1990 ([Ch90]), but I cannot<br />

f<strong>in</strong>d a specific published reference.<br />

Let F be a 4-gonal family for G with the same notation as above. Suppose<br />

that G conta<strong>in</strong>s a subgroup C of order t of symmetries about (∞), so (∞)<br />

is a regular po<strong>in</strong>t. So far we have just said that if S = S(G, F) is the


440 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

associated EGQ, then (S (p) , G) is an STGQ. This implies that s ≥ t. It is<br />

clear that C must be normal <strong>in</strong> G <strong>and</strong> that C ⊂ A ∗ for each A ∈ F, so that<br />

C ⊆ ∩(A ∗ i : Ai ∈ F). S<strong>in</strong>ce |A ∗ ∩ B ∗ | = t whenever A <strong>and</strong> B are dist<strong>in</strong>ct<br />

members of F, it follows that C = ∩{A ∗ i : Ai ∈ F} = A ∗ ∩ B ∗ for dis<strong>in</strong>ct<br />

A, B ∈ F. It now follows easily that A ∗ = AC for each A ∈ F.<br />

Hachenberger’s theorem says that <strong>in</strong> the situation just described, s <strong>and</strong> t<br />

are powers of the same prime p, i.e., G is a p-group.<br />

Theorem 9.16.6. If S is an STGQ with parameters (s, t), then s <strong>and</strong> t are<br />

powers of the same prime.<br />

Proof. Assume the notation developed previously. Clearly G = A∗ i · Aj, so<br />

for dist<strong>in</strong>ct<br />

|A ∗ i · A∗ j | = s2 t = (st)2<br />

|A ∗ i ∩A∗ j |, so |A∗ i ∩ A∗ j | = t, forc<strong>in</strong>g C = A∗ i ∩ A∗ j<br />

i, j. It is clear that the group of symmetries about (∞), i.e., C, must be<br />

normal <strong>in</strong> G, so that A ∗ i = AiC for all i.<br />

For dist<strong>in</strong>ct A, B ∈ F <strong>and</strong> any g1, g2 ∈ G, suppose that gC ∈ (AC) g1 /C ∩<br />

(BC) g2 g1 g2 g1 g2 /C = A C/C ∩ B C/C. So gC = a C = b C for some a ∈ A <strong>and</strong><br />

−1<br />

−1<br />

−1<br />

g1g b ∈ B. Then a 2 g1g C = bC, imply<strong>in</strong>g a 2 g1g ∈ A 2 ∩ B∗ = {C}. Hence<br />

a = e, imply<strong>in</strong>g gC = C. This says that (AC) g1 g2 /C ∩ (BC) /C = {id}.<br />

Suppose p is a prime with sp = pe > 1. Fix A ∈ F. Let Ap ∈<br />

Sylp(AC/C), so |Ap| = pe . Then there exists P ∈ Sylp(G/C) such that<br />

Ap ≤ P , <strong>and</strong> |P | = p2e . For each B ∈ F \ {A}, choose ¯ Bp ∈ Sylp(BC/C).<br />

There exists gB ∈ G such that Bp = ¯ BgB p ≤ P . Then AC/C ∩ Bp = {id},<br />

<strong>and</strong> for dist<strong>in</strong>ct B, D ∈ F \ {A}, it must be the case that Bp ∩ Dp = {id}.<br />

Hence SC = {Bp : B ∈ F} is a partial congruence partition of type (pe , t+1)<br />

<strong>in</strong> P . (This just means that SC is a set of t + 1 subgroups of P , each of order<br />

pe , <strong>and</strong> such that each two of them <strong>in</strong>tersect <strong>in</strong> the identity element.) This<br />

forces (t + 1)(pe − 1) + 1 ≤ p2e , which forces t ≤ pe .<br />

Suppose there is a second prime q with sq = qf > 1. (Frohardt’s results<br />

say that q is unique <strong>and</strong> s > t.) We may suppose that pe < qf , so pe < √ s.<br />

But now t ≤ pe < √ s. This forces t2 < s, which contradicts the <strong>in</strong>equality<br />

of D. G. Higman (cf. [PT84]). This proves that s is a prime power. Then by<br />

Theorem 9.16.4 G must be a p-group.<br />

9.17 A Model for STGQ<br />

There is always the hope that examples of GQ will be found that are truly different<br />

from the known ones. It is possible that such GQ may be constructed


9.17. A MODEL FOR STGQ 441<br />

us<strong>in</strong>g models that are suggested by but are more general than the known<br />

ones. With this thought as <strong>in</strong>spiration, we develop the follow<strong>in</strong>g abstract<br />

model for skew translation Gq (STGQ).<br />

Let F = Fq <strong>and</strong> ˜ F = F ∪ {∞}. For m <strong>and</strong> n positive <strong>in</strong>tegers, let<br />

f : F m × F m → F n be a fixed biadditive map. Put G = {(α, β, c) : α, β ∈<br />

F m ; c ∈ F n }. Def<strong>in</strong>e a b<strong>in</strong>ary operation on G by<br />

(α, β, c) · (α ′ , β ′ , c ′ ) = (α + α ′ , β + β ′ , c + c ′ + f(β, α ′ )).<br />

This makes G <strong>in</strong>to a group that is abelian if f is trivial <strong>and</strong> whose center<br />

is C = {(0, 0, c) : c ∈ F n } if f is nons<strong>in</strong>gular. Suppose that for each t ∈ F n<br />

there is an additive map δt : F m → F m <strong>and</strong> a map gt : F m → F n . Put<br />

For each t ∈ F n put<br />

A(∞) = {(0, β, 0) : β ∈ F m }.<br />

A(t) = {(α, α δt , gt(α)) : α ∈ F m }.<br />

We want A(t) to be closed under the product <strong>in</strong> G, so that it will be a<br />

subgroup of order q m . Writ<strong>in</strong>g out the product of two elements of A(t) we<br />

f<strong>in</strong>d that A(t) is a subgroup if <strong>and</strong> only if<br />

gt(α + β) − gt(α) − gt(β) = f(α δt , β) for all α, β ∈ F m , t ∈ F n . (9.50)<br />

Put β = 0 <strong>in</strong> Eq. 9.50 to obta<strong>in</strong><br />

gt(0) = 0 for all t ∈ F n . (9.51)<br />

From now on we suppose that the condition Eq. 9.50 holds, <strong>and</strong> put<br />

J = {A(t) : t ∈ ˜ F }.<br />

With A ∗ = AC for A ∈ J , we seek conditions on J <strong>and</strong> J ∗ = {A ∗ : A ∈<br />

J } that will force K1 <strong>and</strong> K2 to hold, i.e., that will force J to be a 4-gonal<br />

family. Clearly A ∗ is a group of order q m+n conta<strong>in</strong><strong>in</strong>g A as a subgroup, for<br />

each A ∈ J . We note that<br />

A ∗ (∞) = {(0, β, c) ∈ G : β ∈ F m , c ∈ F n },<br />

<strong>and</strong> (9.52)<br />

A ∗ (t) = {(α, α δt , c) ∈ G : α ∈ F m , c ∈ F n }, t ∈ F n .


442 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

It is easy to check that A ∗ (∞) ∩ A(t) = 1 = A ∗ (t) ∩ A(∞) for all t ∈ F n .<br />

An element of A ∗ (t) ∩ A(u) has the form (α, α δt , c) = (α, α δu , gu(α)). For<br />

t = u this must force α = 0, so<br />

A ∗ (t) ∩ A(u) = 1<br />

iff (9.53)<br />

δ(t, u) : α ↦→ α δt − α δu is nons<strong>in</strong>gular whenever t = u.<br />

From now on we assume that Eq. 9.53 holds. Then J will be a 4-gonal<br />

family for G iff AB ∩ D = 1 for dist<strong>in</strong>ct A, B, D ∈ J . Before <strong>in</strong>vestigat<strong>in</strong>g<br />

this condition we need a little more <strong>in</strong>formation about gt. Put β = −α <strong>in</strong><br />

Eq. 9.50 to obta<strong>in</strong><br />

imply<strong>in</strong>g<br />

−gt(α) − gt(−α) = f(α δt , −α) = −f(α δt , α) = −gt(2α) − 2gt(α),<br />

Us<strong>in</strong>g Eqs. 9.50 <strong>and</strong> 9.54 we obta<strong>in</strong><br />

gt(2α) = 3gt(α) + gt(−α). (9.54)<br />

gt((n + 1)α) = (n + 1)gt(α) + gt(nα) + ngt(−α),<br />

from which an <strong>in</strong>duction argument may be used to show that<br />

<br />

n + 1 n<br />

gt(nα) = gt(α) + gt(−α). (9.55)<br />

2<br />

2<br />

Note: If gt(−α) = −gt(α), then gt(nα) = ngt(α).<br />

If gt(−α) = gt(α), then gt(nα) = n 2 gt(α).<br />

Let g ∈ A(∞) · A(t) ∩ A(u), t = u, so g has the form<br />

g = (0, β, 0) · (α, α δt , gt(α)) = (α, β + α δt , gt(α) + f(β, α))<br />

= (α, α δu , gu(α)).<br />

So gt(α) − gu(α) = −f(β, α), with β = α δ(u,t) , should imply α = 0. That is:<br />

gu(α) − gt(α) = f(α δ(u,t) , α)<br />

= f(α δu , α) − f(α δt , α)<br />

= (gu(2α) − 2gu(α)) − (gt(2α) − 2gt(α))<br />

= (gu(α) + gu(−α)) − (gt(α) + gt(−α))


9.17. A MODEL FOR STGQ 443<br />

should imply that α = 0. This last condition says that gt(−α) = gu(−α)<br />

should imply that α = 0, <strong>and</strong> this holds for any α ∈ F 2 . Hence A(∞)·A(t)∩<br />

A(u) = 1 (for t = u) if <strong>and</strong> only if<br />

gt(α) = gu(α), t = u, implies α = 0. (9.56)<br />

It is also rout<strong>in</strong>e to show that A(∞) · A(t) ∩ A(u) = 1 iff A(t) · A(∞) ∩<br />

A(u) = 1 iff A(t) · A(u) ∩ A(∞) = 1. Hence we assume that Eq. 9.56 holds<br />

<strong>and</strong> proceed to the hard case: What does A(t) · A(u) ∩ A(v) = 1 mean when<br />

t, u, v are dist<strong>in</strong>ct elements of F ? An element of this <strong>in</strong>tersection would be<br />

of the form<br />

(α + β, α δt + β δu , gt(α) + gu(β) + f(α δt , β)) = (α + β, (α + β) δv , gv(α + β)).<br />

Hence the <strong>in</strong>tersection is trivial provided<br />

gt(α) + gu(β) + f(α δt , β) = gv(α + β)<br />

α δt + β δu = (α + β) δv<br />

t, u, v dist<strong>in</strong>ct<br />

⎫<br />

⎬<br />

⇒ α = β = 0. (9.57)<br />

⎭<br />

Use the second l<strong>in</strong>e <strong>in</strong> Eq. 9.57 to solve for β = α δ(t,v)δ−1 (v,u) <strong>and</strong> put<br />

γ = α δ(t,v) = β δ(v,u) . Then the first l<strong>in</strong>e of Eq. 9.57 becomes<br />

0 = gt(α) + gu(β) + f(α δt , β) − gv(α) − gv(β) − f(α δv , β)<br />

= gt(α) − gv(α) + gu(β) − gv(β)f(α δ(t,v) , β)<br />

= gt(α) − gv(α)gu(β) − gv(β) + f(β δ(v,u) , β)<br />

= gt(α) − gv(α) + gu(β) − gv(β) + (gv(β) + gv(−β)) − (gu(β) + gu(−β))<br />

= gt(α) − gv(α) + gv(−β) − gu(−β).<br />

Hence Eq. 9.57 is equivalent to<br />

gt(γ δ−1 (t,v) ) − gv(γ δ−1 (t,v) ) + gv(−γ δ−1 (v,u) ) − gu(−γ δ−1 (v,u) ) = 0<br />

implies γ = 0 if t, u, v are dist<strong>in</strong>ct elements of F.<br />

<br />

(9.58)<br />

We summarize these results (which first appeared <strong>in</strong> [Pa80]) as follows.<br />

Theorem 9.17.1. J is a 4-gonal family for G provided the follow<strong>in</strong>g hold:


444 CHAPTER 9. FINITE GENERALIZED QUADRANGLES<br />

(i) gt(α + β) − gt(α) − gt(β) = f(α δt , β) = f(β δt , α) for all α, β ∈ F m , t ∈<br />

F n .<br />

(ii) δ(t, u) : α ↦→ α δt − α δu is nons<strong>in</strong>gular for t = u.<br />

(iii) gt(α) = gu(α), t = u, implies that α = 0.<br />

(iv) Eq. 9.58 holds.<br />

If J is a 4-gonal family, the result<strong>in</strong>g GQ S = S(G, J ) has order (s, t) =<br />

(q m , q n ). As C is a group of t symmetries about (∞), it follows that (S (∞) , G)<br />

is an STGQ <strong>and</strong> m ≥ n. By (the po<strong>in</strong>t-l<strong>in</strong>e dual of ) part (iii) of Lemma 9.15.1<br />

we have (1+t)st ≡ 0 (mod s+t). In this case this means that q m+n (1+q n ) ≡<br />

0 (mod q m + q n ). Divide by q n to get 1 + q n ≡ 0 (mod 1 + q m−n ) (if m > n).<br />

From Lemma 20.18.7 we must have that m − n divides n <strong>and</strong> the quotient<br />

a is odd. This means that there is some positive <strong>in</strong>teger v (<strong>and</strong> some odd<br />

<strong>in</strong>teger a) for which m = v(1 + a) <strong>and</strong> n = va, so s = (q v ) (1+a) <strong>and</strong> t = (q v ) a .<br />

The known examples of STGQ all have either s = t or s = t 2 .


Chapter 10<br />

GQ Associated with an Oval or<br />

Ovoid<br />

Start<strong>in</strong>g with an oval O <strong>in</strong> a plane π embedded <strong>in</strong> P G(3, q) J. Tits constructed<br />

a GQ T2(O) with parameters s = t = q that is isomorphic to Q(4, q) when<br />

O is a conic. Similarly, start<strong>in</strong>g with an ovoid Ω <strong>in</strong> P G(3, q) embedded<br />

as a hyperplane <strong>in</strong> P G(4, q), he constructed a GQ T3(Ω) with parameters<br />

(s, t) = (q, q 2 ) that is isomorphic to Q(5, q) when Ω is an elliptic quadric.<br />

These constructions first appeared <strong>in</strong> Dembowski [De68]. In this chapter<br />

we start with T2(O) <strong>and</strong> along with it we study closely related GQ with<br />

paramteters (q − 1, q + 1) <strong>and</strong> (q + 1, q − 1). Our primary <strong>in</strong>terest will be <strong>in</strong><br />

the case that q = 2 e , but to start with we let q be an arbitrary prime power.<br />

Before consider<strong>in</strong>g the actual constructions we show how to use a regular<br />

po<strong>in</strong>t <strong>in</strong> a GQ with parameters (q, q) to produce a GQ with parameters<br />

(q − 1, q + 1).<br />

10.1 Expansion about a Regular Po<strong>in</strong>t<br />

Let S = (P, B, I) be a GQ with order s (i.e., we want s = t ≥ 2). The<br />

follow<strong>in</strong>g construction first appeared <strong>in</strong> [Pa71b].<br />

Theorem 10.1.1. To each regular po<strong>in</strong>t x of S there corresponds a GQ<br />

S ′ = (P ′ , B ′ , I ′ ) (often denoted by P(S, x)) with parameters (s − 1, s + 1).<br />

Proof. Let x be regular <strong>and</strong> put P ′ = P \ x ⊥ . The elements of B ′ are of two<br />

types: The l<strong>in</strong>es of B ′ of type (a) are the l<strong>in</strong>es of B which are not <strong>in</strong>cident<br />

445


446 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

with x; the l<strong>in</strong>es of B ′ of type (b) are the hyperbolic l<strong>in</strong>es {x, y} ⊥⊥ , y ∈ P ′ .<br />

The <strong>in</strong>cidence I ′ is def<strong>in</strong>ed as follows: for y ∈ P ′ <strong>and</strong> L ∈ B ′ of type (a), put<br />

yI ′ L iff yIL; if y ∈ P ′ <strong>and</strong> L ∈ B ′ is of type (b), then yI ′ L iff yIL. We now<br />

show that S ′ is a GQ with parameters (s − 1, s + 1).<br />

An easy check shows that any two po<strong>in</strong>ts of S ′ are <strong>in</strong>cident (with respect<br />

to I ′ ) with at most one l<strong>in</strong>e of S ′ . Also, each po<strong>in</strong>t of P ′ is <strong>in</strong>cident with<br />

exactly s + 2 l<strong>in</strong>es of B ′ , <strong>and</strong> each l<strong>in</strong>e of B ′ is <strong>in</strong>cident with exactly s − 1<br />

po<strong>in</strong>ts of P ′ . Consider a po<strong>in</strong>t y ∈ P ′ <strong>and</strong> a l<strong>in</strong>e L of type (a) with y I ′ L.<br />

Let z ∈ P ′ be def<strong>in</strong>ed by x ∼ z <strong>and</strong> zIL. If y ∼ z, then no l<strong>in</strong>e of type (a) is<br />

<strong>in</strong>cident with y <strong>and</strong> concurrent with L. But then, by the regularity of x, there<br />

is a po<strong>in</strong>t of P ′ which is <strong>in</strong>cident with the l<strong>in</strong>e {x, y} ⊥⊥ of type (b). If y ∼ z,<br />

then there is just l<strong>in</strong>e of type (a) with is <strong>in</strong>cident with y <strong>and</strong> concurrent with<br />

L. By the regularity of x, the l<strong>in</strong>e of type (b) conta<strong>in</strong><strong>in</strong>g y is not concurrent<br />

with L. F<strong>in</strong>ally, consider a po<strong>in</strong>t y ∈ P ′ <strong>and</strong> a l<strong>in</strong>e L = {x, u} ⊥⊥ , x ∼ u, of<br />

type (b) with y ∈ L. It is clear that no l<strong>in</strong>e of type (b) is <strong>in</strong>cident with y <strong>and</strong><br />

concurrent with L. If y is coll<strong>in</strong>ear with at least two po<strong>in</strong>ts of L, then by<br />

the regularity of x we have that y ∼ x, i.e., y ∈ P ′ , a contradiction. Hence<br />

y is coll<strong>in</strong>ear with at most one po<strong>in</strong>t of L. Suppose u ∼ y ∈ P ′ . S<strong>in</strong>ce x<br />

is regular, the triad (x, u, y) must have a center v, <strong>and</strong> each l<strong>in</strong>e through v<br />

must be <strong>in</strong>cident with a po<strong>in</strong>t of L. Hence the l<strong>in</strong>e M of type (a) def<strong>in</strong>ed<br />

by vIMIy is <strong>in</strong>cident with y <strong>and</strong> concurrent with L. We say that the GQ<br />

P(S, x) of order (s − 1, s + 1) is obta<strong>in</strong>ed by exp<strong>and</strong><strong>in</strong>g S about the po<strong>in</strong>t<br />

x.<br />

If L is a regular l<strong>in</strong>e of the GQ S of order s, we can also apply the po<strong>in</strong>tl<strong>in</strong>e<br />

dual construction <strong>and</strong> exp<strong>and</strong> S about the regular l<strong>in</strong>e L to obta<strong>in</strong> a<br />

GQ P(S, L) of order (s + 1, s − 1).<br />

10.2 The Construction of T2(O)<br />

Let Σ = P G(3, q) <strong>and</strong> let π be a hyperplane of Σ conta<strong>in</strong><strong>in</strong>g an oval O.<br />

Construct the follow<strong>in</strong>g <strong>in</strong>cidence geometry T2(O) = (P, B, I), with po<strong>in</strong>t<br />

set P <strong>and</strong> l<strong>in</strong>e set B as follows.<br />

The po<strong>in</strong>ts are of three types:<br />

(i) po<strong>in</strong>ts of Σ \ π;<br />

(ii) planes of Σ different from π <strong>and</strong> meet<strong>in</strong>g π <strong>in</strong> a l<strong>in</strong>e tangent to O;<br />

(iii) (∞).


10.2. THE CONSTRUCTION OF T2(O) 447<br />

The l<strong>in</strong>es are of two types:<br />

(a) l<strong>in</strong>es of Σ not <strong>in</strong> π <strong>and</strong> meet<strong>in</strong>g π <strong>in</strong> a po<strong>in</strong>t of O;<br />

(b) l<strong>in</strong>es of π tangent to O.<br />

Incidence is as follows. The po<strong>in</strong>t (∞) is <strong>in</strong>cident with all l<strong>in</strong>es of type<br />

(b). A po<strong>in</strong>t of type (ii) is <strong>in</strong>cident with the l<strong>in</strong>e of type (b) conta<strong>in</strong>ed <strong>in</strong> it<br />

<strong>and</strong> all l<strong>in</strong>es of type (a) conta<strong>in</strong>ed <strong>in</strong> it. A po<strong>in</strong>t of type (i) is <strong>in</strong>cident with<br />

the l<strong>in</strong>es of type (a) conta<strong>in</strong><strong>in</strong>g it. There are no other <strong>in</strong>cidences.<br />

It is a good exercise to show that T2(O) really is a GQ with parameters<br />

(q, q).<br />

Lemma 10.2.1. Each l<strong>in</strong>e of T2(O) of type (b) is regular <strong>in</strong> T2(O).<br />

Proof. Let LX be the l<strong>in</strong>e of π tangent to O at the po<strong>in</strong>t X, <strong>and</strong> let M be<br />

a l<strong>in</strong>e of T2(O) not concurrent with LX. This means that M is a l<strong>in</strong>e of Σ<br />

meet<strong>in</strong>g π at some po<strong>in</strong>t Y of O different from X. Let π ′ = 〈X, M〉. Then<br />

<strong>and</strong><br />

{LX, M} ⊥ = {LY } ∪ {L : L is a l<strong>in</strong>e through X <strong>in</strong> π ′ },<br />

{LX, M} ⊥⊥ = {LX} ∪ {L : L is a l<strong>in</strong>e through Y <strong>in</strong> π ′ }.<br />

This means that π is a coregular po<strong>in</strong>t of T2(O). Hence by Lemma 9.8.3<br />

we know that π is antiregular when q is odd <strong>and</strong> regular when q is even.<br />

When q is odd, up to duality the only known GQ of order q is this T2(O)<br />

where O must be a conic. S<strong>in</strong>ce our ma<strong>in</strong> <strong>in</strong>terest is <strong>in</strong> the case where q<br />

is even, until further notice we suppose that q = 2 e . In this case a<br />

slightly modified description of T2(O) is sometimes more useful. It should be<br />

clear to the reader that this construction is equivalent to the orig<strong>in</strong>al <strong>in</strong> this<br />

case.<br />

Let Σ = P G(3, q) with q = 2 e <strong>and</strong> let π be a hyperplane of Σ conta<strong>in</strong><strong>in</strong>g an<br />

oval O. Construct the po<strong>in</strong>t-l<strong>in</strong>e <strong>in</strong>cidence geometry T2(O) = S = (P, B, I)<br />

with po<strong>in</strong>t set P <strong>and</strong> l<strong>in</strong>e set B as follows.<br />

The po<strong>in</strong>ts of S are of two types:<br />

(i) po<strong>in</strong>ts of Σ \ π;<br />

(ii) planes of Σ conta<strong>in</strong><strong>in</strong>g the nucleus N of O.


448 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

The l<strong>in</strong>es are just the l<strong>in</strong>es of Σ that meet O <strong>in</strong> a unique po<strong>in</strong>t. Incidence<br />

is that <strong>in</strong>duced by <strong>in</strong>cidence <strong>in</strong> Σ. Note that the plane π considered as a po<strong>in</strong>t<br />

of S is <strong>in</strong>cident <strong>in</strong> Σ with the l<strong>in</strong>es of π <strong>in</strong>cident with N.<br />

The geometry T2(O) is a generalized quadrangle (GQ) of order q with a<br />

regular po<strong>in</strong>t π <strong>and</strong> regular l<strong>in</strong>es. So we have two contexts <strong>in</strong> which to apply<br />

the construction of Theorem 10.1.1. But s<strong>in</strong>ce we want to become quite<br />

familiar with these GQ we first give a direct proof that π is a regular po<strong>in</strong>t.<br />

The process of exp<strong>and</strong><strong>in</strong>g about a regular po<strong>in</strong>t <strong>and</strong> also about a regular l<strong>in</strong>e<br />

will be discussed <strong>in</strong> Section 10.6.<br />

Lemma 10.2.2. The po<strong>in</strong>t π of T2(O) is regular.<br />

Proof. First note that the l<strong>in</strong>es of T2(O) through the po<strong>in</strong>t π are the l<strong>in</strong>es<br />

through N <strong>in</strong> the plane π. Hence π ⊥ is just the set of planes of Σ through<br />

the nucleus N, <strong>in</strong>clud<strong>in</strong>g π itself. Let π1 <strong>and</strong> π2 be dist<strong>in</strong>ct planes through N<br />

viewed as po<strong>in</strong>ts of T2(O). Then π1 ∩ π2 = L is a l<strong>in</strong>e of Σ through N. If L is<br />

<strong>in</strong> π, then L is a l<strong>in</strong>e of T2(O) through both π1 <strong>and</strong> π2. Suppose that L does<br />

not lie <strong>in</strong> π. Let Qi be the unique po<strong>in</strong>t of O on πi, i = 1, 2. If X is a po<strong>in</strong>t<br />

of L not <strong>in</strong> π, then X is a po<strong>in</strong>t of 〈Qi, X〉, which is a l<strong>in</strong>e of T2(O) <strong>in</strong>cident<br />

with πi. It follows that {π1, π2} ⊥ is the set of po<strong>in</strong>ts of L \ π together with<br />

the po<strong>in</strong>t π. It then follows that {π1, π2} ⊥⊥ is the set of planes through L.<br />

This is enough to show that π is regular.<br />

If we view π as a regular po<strong>in</strong>t of T2(O), we can describe the projective<br />

plane Π(π) derived from the regularity of π (see Theorem 9.8.5) as follows.<br />

The po<strong>in</strong>ts of Π(π) are just the planes of Σ through the po<strong>in</strong>t N. The<br />

l<strong>in</strong>es of Π(π) are the l<strong>in</strong>es of Σ through N. Incidence is just that <strong>in</strong>duced by<br />

<strong>in</strong>cidence <strong>in</strong> Σ. It is clear that Π(π) is isomorphic to P G(2, q).<br />

By Lemma 10.2.1 we know that each l<strong>in</strong>e L through π <strong>in</strong> T2(O) is a<br />

regular l<strong>in</strong>e. So we now describe the projective plane Π(L). However, it is<br />

more natural to describe the po<strong>in</strong>t-l<strong>in</strong>e dual plane Π(L) ˆ .<br />

The “po<strong>in</strong>ts” of Π(L) ˆ are the planes of Σ through Q. The “l<strong>in</strong>es” of Π(L) ˆ<br />

are the l<strong>in</strong>es of Σ through Q not <strong>in</strong> π plus the l<strong>in</strong>es through N <strong>in</strong> π. Incidence<br />

is just that <strong>in</strong>herited from Σ, except for the l<strong>in</strong>es of π through N different<br />

from L. Suppose that L ′ is a l<strong>in</strong>e of π through N <strong>and</strong> the po<strong>in</strong>t Q ′ of O,<br />

Q ′ = Q. Then L ′ is <strong>in</strong>cident with each of the q + 1 planes through the l<strong>in</strong>e<br />

〈Q, Q ′ 〉. If we replace the l<strong>in</strong>e L ′ = 〈N, Q ′ 〉 with the l<strong>in</strong>e 〈Q, Q ′ 〉, then we may<br />

describe Π(L) ˆ as follows: the po<strong>in</strong>ts of Π(L) ˆ are just the planes through Q,


10.2. THE CONSTRUCTION OF T2(O) 449<br />

<strong>and</strong> the l<strong>in</strong>es of Π(L) ˆ are just the l<strong>in</strong>es of Σ through Q. Incidence is exactly<br />

that <strong>in</strong>herited from Σ. Hence Π(L) ˆ is clearly a Desarguesian plane.<br />

Now we suppose that O is a translation oval <strong>in</strong> π with translation axis<br />

L∞. (If O is not a conic, then L∞ is the unique translation axis of O.) In<br />

this case it follows that each po<strong>in</strong>t of L∞ is regular <strong>in</strong> T2(O). We want to<br />

<strong>in</strong>terpret this geometrically.<br />

Theorem 10.2.3. If O is a translation oval <strong>in</strong> π with translation axis L∞,<br />

then each po<strong>in</strong>t of L∞ is regular <strong>in</strong> T2(O).<br />

Proof. Suppose that O = {Q1, Q2, . . . , Qq, Q∞} with nucleus N <strong>and</strong> axis<br />

L∞ = 〈Q∞, N〉. Let π∞ be a po<strong>in</strong>t of T2(O) different from π on the l<strong>in</strong>e L∞.<br />

So <strong>in</strong> Σ, π∞ is a plane different from π pass<strong>in</strong>g through the l<strong>in</strong>e L∞. The<br />

po<strong>in</strong>ts of π∞ ⊥ are of two types:<br />

(i) the po<strong>in</strong>ts of π∞ \ π, coll<strong>in</strong>ear with π∞ on the l<strong>in</strong>es of π∞ through the<br />

po<strong>in</strong>t Q∞;<br />

(ii) the planes of Σ conta<strong>in</strong><strong>in</strong>g L∞ (each <strong>in</strong>cident with L∞ <strong>in</strong> T2(O)).<br />

To show that π∞ is regular <strong>in</strong> T2(Oα) we need to look at po<strong>in</strong>t-pairs<br />

(π∞, Z) where Z is a po<strong>in</strong>t of T2(Oα) not coll<strong>in</strong>ear with π∞. If Z is a po<strong>in</strong>t of<br />

the type that it is a plane through N meet<strong>in</strong>g π∞ <strong>in</strong> a l<strong>in</strong>e L different from<br />

L∞, then {π∞, Z} ⊥⊥ is the set of planes through the l<strong>in</strong>e L, imply<strong>in</strong>g that<br />

the pair is regular. So we may concentrate on the case where Z is a po<strong>in</strong>t<br />

X ∈ P G(3, q) \ π.<br />

Fix a po<strong>in</strong>t X ∈ Σ \ (π ∪ π∞). Put Ri = 〈X, Qi〉 ∩ π∞, 1 ≤ i ≤ q. Then<br />

<strong>in</strong> T2(O)<br />

{X, π∞} ⊥ = {〈X, Q∞, N〉} ∪ {Ri : 1 ≤ i ≤ q}.<br />

We have the ord<strong>in</strong>ary quadrangle:<br />

X I 〈X, Q∞〉 I 〈X, Q∞, N〉 I L∞ I π∞ I 〈Ri, Q∞〉 I Ri I 〈X, Qi〉 I X.<br />

Clearly {X, π∞} ⊥ \ {〈X, Q∞, N〉} is the projection from X onto π∞ of the<br />

q-arc O \ {Q∞}. Suppose P = 〈Ri, Rj〉 ∩ L∞ for dist<strong>in</strong>ct i, j. If P were<br />

either Q∞ or N, then the plane 〈X, Ri, Rj〉 would conta<strong>in</strong> Qi, Qj <strong>and</strong> either<br />

Q∞ or N, a contradiction. Let πX denote the plane πX = 〈X, Q∞, N〉, <strong>and</strong><br />

let M1, M2, . . . , Mq−1 be the l<strong>in</strong>es of πX through X meet<strong>in</strong>g L∞ <strong>in</strong> the q − 1<br />

po<strong>in</strong>ts different from Q∞ <strong>and</strong> N.


450 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

For 1 ≤ i ≤ q − 1 <strong>and</strong> 1 ≤ j ≤ q, put πi,j = 〈Mi, Rj〉. Then πi,j ∩ O =<br />

{Qj, Qi ′} for some po<strong>in</strong>t Qi ′ of O different from Qj <strong>and</strong> Q∞ <strong>and</strong> apparently<br />

depend<strong>in</strong>g on both i <strong>and</strong> j. Put yi,j = 〈Qi ′, Rj〉 ∩ πX.<br />

Then {〈X, Q∞, N〉, 〈X, Qj〉 ∩ π∞ = Rj} ⊥ = {y1,j, . . . , yq−1,j} ∪ {π∞, X}.<br />

This must be the span of {π∞, X}, so as a set it must be <strong>in</strong>dependent of Rj.<br />

We are about to <strong>in</strong>troduce coord<strong>in</strong>ates to show that this is <strong>in</strong>deed the case.<br />

Let α be a generator of the Galois group of Fq. We may choose coord<strong>in</strong>ates<br />

of Σ, π, etc., so that π = [0, 0, 0, 1] <strong>and</strong> Oα = {(x0, x1, x2, x3) : x3 = xα 1 +<br />

x α−1<br />

0 x2 = 0. So<br />

Oα = {(1, t, t α , 0) : t ∈ Fq} ∪ {(0, 0, 1, 0)} with nucleus N = (0, 1, 0, 0).<br />

Keep <strong>in</strong> m<strong>in</strong>d that Q∞ = (0, 0, 1, 0) <strong>and</strong> N = (0, 1, 0, 0).<br />

Let L∞ be the l<strong>in</strong>e 〈(0, 0, 1, 0), (0, 1, 0, 0)〉, so that L∞ is a translation axis<br />

of Oα, <strong>and</strong> the unique one if α = 2.<br />

The planes that pass through L∞ other than π are those of the form<br />

πa = [1, 0, 0, a], a ∈ Fq. Fix πa. We want to see algebraically that πa is a<br />

regular po<strong>in</strong>t of T2(Oα).<br />

Let a = a ′ ∈ Fq, b ′ , c ′ ∈ Fq, so X = (a ′ , b ′ , c ′ , 1) is a typical po<strong>in</strong>t of<br />

Σ \ (π ∪ πa). For each t ∈ Fq, the l<strong>in</strong>e 〈(1, t, t α , 0), X〉 meets the plane πa <strong>in</strong><br />

the po<strong>in</strong>t Rt = (a, b ′ + (a + a ′ )t, c ′ + (a + a ′ )t α , 1). For each b ∈ Fq the po<strong>in</strong>t<br />

Yb = (a ′ , b ′ + b, c ′ + (a + a ′ ) 1−α b α , 1) lies <strong>in</strong> the plane 〈X, L∞〉, <strong>and</strong> the l<strong>in</strong>e<br />

〈Rt, Yb〉 meets the oval Oα <strong>in</strong> the po<strong>in</strong>t (1, b<br />

a+a ′ + t, b<br />

a+a ′ + t α , 0). Note that<br />

Y0 = X. Then <strong>in</strong> T2(Oα) we have {X, πa} ⊥⊥ = {πa} ∪ {Yb : b ∈ Fq} (which<br />

is <strong>in</strong>dependent of t).<br />

Perhaps a simpler way to show that πa is a regular po<strong>in</strong>t of T2(Oα) is the<br />

follow<strong>in</strong>g.<br />

For any b ∈ Fq let θb be the homography of Σ with matrix<br />

⎛<br />

⎞<br />

[θb] =<br />

⎜<br />

⎝<br />

1 b b α 0<br />

0 1 0 0<br />

0 0 1 0<br />

0 ab ab α 1<br />

Then θb is an elation with axis πa <strong>and</strong> center (0, 1, b α−1 , 0) <strong>and</strong> leav<strong>in</strong>g the oval<br />

Oα <strong>in</strong>variant. Hence θb <strong>in</strong>duces a coll<strong>in</strong>eation of T2(Oα) that is a symmetry<br />

about πa, show<strong>in</strong>g that πa is a center of symmetry <strong>and</strong> hence regular as a<br />

po<strong>in</strong>t of T2(Oα). One can check that θd : Yb ↦→ Yb+(a+a ′ )d.<br />

⎟<br />

⎠ .


10.2. THE CONSTRUCTION OF T2(O) 451<br />

At this po<strong>in</strong>t it is easy <strong>and</strong> worthwhile to describe the aff<strong>in</strong>e plane A(πa, L∞)<br />

obta<strong>in</strong>ed from the regular po<strong>in</strong>t πa of T2(Oα) by consider<strong>in</strong>g the l<strong>in</strong>e L∞ as<br />

the l<strong>in</strong>e at <strong>in</strong>f<strong>in</strong>ity.<br />

The po<strong>in</strong>ts of A(πa, L∞) are just the po<strong>in</strong>ts of πa \ L∞. The l<strong>in</strong>es of<br />

A(πa, L∞) are of three types:<br />

(a) The perps {πa, X} ⊥ , X a po<strong>in</strong>t of Σ\(πa∪π). These are the projections<br />

of the aff<strong>in</strong>e part of Oa from the po<strong>in</strong>t X to the plane πa. Us<strong>in</strong>g coord<strong>in</strong>ates<br />

as above we see that they are the q-arcs of the form<br />

Ob,c,m = {(a, b + mt, c + mt α , 1) : t ∈ Fq} for b, c, m ∈ Fq, m = 0.<br />

Note: These are all the translation ovals isomorphic to Oα conta<strong>in</strong><strong>in</strong>g<br />

Q∞, hav<strong>in</strong>g L∞ as translation axis <strong>and</strong> N as nucleus. The q-arc Ob,c,m is the<br />

same as the q-arc O0,c+m 1−α b α ,m, so there really are only q(q − 1) such arcs.<br />

Warn<strong>in</strong>g: In the plane πa all po<strong>in</strong>ts look like (ax, y, z, x), so we may<br />

omit the first coord<strong>in</strong>ate. But then the ovals be<strong>in</strong>g discussed all appear <strong>in</strong><br />

slightly modified form. The usual homogeneous coord<strong>in</strong>ates (x, y, z) have<br />

been rotated to (y, z, x). So the st<strong>and</strong>ard form for an oval <strong>in</strong> this context is<br />

to have po<strong>in</strong>ts (t, f(t), 1) for some o-permutation f along with po<strong>in</strong>t Q∞ =<br />

(0, 1, 0) <strong>and</strong> nucleus (1, 0, 0).<br />

(b) The l<strong>in</strong>es of Σ ly<strong>in</strong>g <strong>in</strong> πa through the po<strong>in</strong>t Q∞.<br />

(c) The l<strong>in</strong>es of πa \ L∞ with po<strong>in</strong>t at <strong>in</strong>f<strong>in</strong>ity N.<br />

Incidence is determ<strong>in</strong>ed as follows. Consider two po<strong>in</strong>ts Y <strong>and</strong> Z of<br />

πa \ L∞. If they are coll<strong>in</strong>ear <strong>in</strong> T2(Oα), then they lie on a l<strong>in</strong>e meet<strong>in</strong>g L∞<br />

<strong>in</strong> the po<strong>in</strong>t Q∞, <strong>and</strong> are <strong>in</strong>cident with this l<strong>in</strong>e <strong>in</strong> A(πa, L∞). If Y <strong>and</strong> Z<br />

are not coll<strong>in</strong>ear <strong>in</strong> T2(Oα) but the l<strong>in</strong>e of Σ through them meets L∞ <strong>in</strong> the<br />

po<strong>in</strong>t N, then the span {Y, Z} ⊥⊥ conta<strong>in</strong>s the aff<strong>in</strong>e po<strong>in</strong>ts of the l<strong>in</strong>e Y Z of<br />

Σ plus the po<strong>in</strong>t π of T2(Oα). Hence the l<strong>in</strong>e through them <strong>in</strong> A(πa, L∞) is<br />

the l<strong>in</strong>e Y Z, which is then <strong>in</strong>cident with just its aff<strong>in</strong>e po<strong>in</strong>ts. If the l<strong>in</strong>e Y Z<br />

of Σ meets L∞ <strong>in</strong> a po<strong>in</strong>t different from Q∞ <strong>and</strong> N, then {Y, Z} ⊥⊥ is equal<br />

to {X, πa} ⊥ for any po<strong>in</strong>t X of {Y, Z} ⊥ \ {πa}. Here X ∈ Σ \ (πa ∪ π), <strong>and</strong><br />

{X, πa} ⊥ <strong>in</strong> T2(Oα) must be the projection of the q-arc Oα \ {Q∞} from X<br />

onto πa plus the plane 〈X, L∞〉. So the l<strong>in</strong>e through Y <strong>and</strong> Z <strong>in</strong> A(πa, L∞)<br />

is the q-arc just described. This proves the follow<strong>in</strong>g:


452 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

Lemma 10.2.4. The aff<strong>in</strong>e plane A(πa, L∞) is obta<strong>in</strong>ed by α-derivation of<br />

πa \L∞ with respect to (Q∞, N). (See the chapter on ovals for an explanation<br />

of this notation.)<br />

10.3 T2(Oα) is Self-dual when α is Additive<br />

J. Tits [Ti62] first showed that W (q) (which <strong>in</strong> the next section we show is<br />

isomorphic to T2(C) if C is a conic) is self-dual when q = 2 e <strong>and</strong> even selfpolar<br />

when e is odd. This was generalized <strong>in</strong> S. E. Payne [Pa70] to show that<br />

when O is a translation oval T2(O) is self-dual <strong>and</strong> is self-polar if <strong>and</strong> only if<br />

e is odd. It was implicit <strong>in</strong> [Ti62] that when q = 2 e W (q) is isomorphic to the<br />

po<strong>in</strong>t-l<strong>in</strong>e dual of Q(4, q). Us<strong>in</strong>g the Kle<strong>in</strong> correspondence (see Chapter 12)<br />

C. T. Benson [Be65] also showed explicitly that for all q W (q) is the po<strong>in</strong>t-l<strong>in</strong>e<br />

dual of Q(4, q) <strong>and</strong> is self-dual if <strong>and</strong> only if q is even. Some of his results did<br />

not appear <strong>in</strong> his published paper [Be70], <strong>and</strong> <strong>in</strong> 1972 J. A. Thas [Th72] gave<br />

an explicit treatment of this material (<strong>and</strong> more) with basically the same<br />

maps that appeared <strong>in</strong> [Ti62]. Some of this material aga<strong>in</strong> appeared <strong>in</strong> the<br />

survey paper [TP76] along with a good bit more.<br />

While we have a description of T2(Oα) h<strong>and</strong>y we give an explicit duality<br />

δ of T2(Oα).<br />

Lemma 10.3.1. The map δ def<strong>in</strong>ed below is a duality of T2(Oα).<br />

δ :<br />

(a, b, c, 1) ↦→ 〈(1, a, a α , 0), (0, c, b α , 1)〉;<br />

[t, 0, 1, w] ↦→ 〈(0, 0, 1, 0), (t, w, 0, 1)〉;<br />

[1, 0, 0, a] ↦→ 〈(1, a, a α , 0), (0, 1, 0, 0)〉;<br />

[0, 0, 0, 1] ↦→ 〈(0, 0, 1, 0), (0, 1, 0, 0)〉;<br />

〈(1, t, t α , 0), (0, u, w, 1)〉 ↦→ (t α , w, u α , 1);<br />

〈(a, b, 0, 1), (0, 0, 1, 0)〉 ↦→ [a α , 0, 1, b α ];<br />

〈(1, t, t α , 0), (0, 1, 0, 0)〉 ↦→ [1, 0, 0, t α ];<br />

〈(0, 0, 1, 0), (0, 1, 0, 0)〉 ↦→ [0, 0, 0, 1].<br />

Proof. It is a rout<strong>in</strong>e but somewhat tedious task (that we leave to the reader)<br />

to verify all the details. However, it is certa<strong>in</strong>ly easier to verify that δ really<br />

is a duality as claimed than it is to discover δ <strong>in</strong> the first place.<br />

When q is not a square we can say more. (See Theorem 9.10.4.)


10.4. THE ISOMORPHISM FROM T2(C) TO W (Q) 453<br />

Lemma 10.3.2. If α is an automorphism of maximal order <strong>and</strong> q is not a<br />

square, there is a field automorphism σ for which α · σ 2 = 1. In this case<br />

T2(Oα) is actually self-polar. In fact, the map δ ◦ σ 2 = σ 2 ◦ δ is a polarity.<br />

Proof. The rout<strong>in</strong>e argument is left as an exercise.<br />

10.4 The isomorphism from T2(C) to W (q)<br />

The classical geometry W (q) is def<strong>in</strong>ed as the s<strong>in</strong>gular po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of<br />

a symplectic polarity of P G(3, q). When q = 2 e , W (q) is a self-dual GQ of<br />

order q with all po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es regular. When Q is a non-s<strong>in</strong>gular (parabolic)<br />

quadric <strong>in</strong> P G(4, q), its po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es form a GQ of order q which is denoted<br />

by Q(4, q). In general it is isomorphic to the po<strong>in</strong>t-l<strong>in</strong>e dual of W (q), <strong>and</strong><br />

when q = 2 e it is isomorphic to W (q). For q even <strong>and</strong> C an irreducible conic<br />

<strong>in</strong> the plane π, we now compose an isomorphism from T2(C) to Q(4, q) with<br />

one from Q(4, q) to W (q) to get one from T2(C) to W (q), which we then<br />

slightly adjust to be <strong>in</strong> a more useful form.<br />

Always q = 2 e . Let Σ = P G(3, q) be embedded as the hyperplane<br />

[0, 0, 0, 0, 1] of P G(4, q). So Σ = {x0, x1, x2, x3, 0) ∈ P G(4, q) : xi ∈ Fq}.<br />

Let Q be the non-s<strong>in</strong>gular (parabolic) quadric <strong>in</strong> P G(4, q) with equation<br />

x0x1 + x 2 2 + x3x4 = 0, so<br />

with matrix<br />

Q = {(x0, x1, √ x0x1 + x3x4, x3, x4) ∈ P G(4, q) : xi ∈ Fq}<br />

⎛<br />

⎜<br />

AQ = ⎜<br />

⎝<br />

0 1 0 0 0<br />

0 0 0 0 0<br />

0 0 1 0 0<br />

0 0 0 0 1<br />

0 0 0 0 0<br />

hav<strong>in</strong>g polar form matrix BQ = AQ + A T Q<br />

⎛<br />

⎜<br />

BQ = ⎜<br />

⎝<br />

⎞<br />

⎟<br />

⎠<br />

given by<br />

0 1 0 0 0<br />

1 0 0 0 0<br />

0 0 0 0 0<br />

0 0 0 0 1<br />

0 0 0 1 0<br />

⎞<br />

⎟<br />


454 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

Clearly (0, 0, 1, 0, 0) is the nucleus of Q, <strong>and</strong> if ⊥ denotes the polarity<br />

determ<strong>in</strong>ed by Q,<br />

(x0, x1, x2, x3, x4) ⊥ = BQ(x0, x1, x2, x3, x4) T = [x1, x0, 0, x4, x3]<br />

with polar form<br />

B((xi), (yi)) = x0y1 + x1y0 + x3y4 + x4y3 = 0.<br />

Let π be the plane of Σ def<strong>in</strong>ed by x3 = 0 <strong>and</strong> C = π ∩ Q, so<br />

C = {(1, t, t 1/2 , 0, 0) : t ∈ Fq} ∪ {(0, 1, 0, 0, 0)} with nucleus N = (0, 0, 1, 0, 0).<br />

Construct T2(C) from Σ, π <strong>and</strong> C as usual. Note that C ⊂ Q. Moreover,<br />

C ⊂ (0, 0, 0, 0, 1) ⊥ , that is, (0, 0, 0, 0, 1) is coll<strong>in</strong>ear <strong>in</strong> Q(4, q) with every po<strong>in</strong>t<br />

of C.<br />

We may now def<strong>in</strong>e an isomorphism φ1 : T2(C) → Q(4, q) (the GQ obta<strong>in</strong>ed<br />

from Q) whose <strong>in</strong>verse map essentially acts by project<strong>in</strong>g Q from<br />

(0, 0, 0, 0, 1) onto Σ. It suffices to def<strong>in</strong>e φ1 on po<strong>in</strong>ts. (x0, x1, x2, 1, 0) is a<br />

typical po<strong>in</strong>t of T2(C) <strong>in</strong> Σ \ π.<br />

Here<br />

φ1 : (x0, x1, x2, 1, 0) ↦→ (x0, x1, x2, 1, x0x1 + x 2 2).<br />

(x0, x1, x2, 1, 0) ∼ (y0, y1, y2, 1, 0) <strong>in</strong> T2(C)<br />

iff (x0 + y0, x1 + y1, x2 + y2, 0, 0) ∈ C<br />

iff (x0 + y0)(x1 + y1) + (x2 + y2) 2 = 0<br />

iff B((x0, x1, x2, 1, x0x1 + x 2 2), (y0, y1, y2, 1, y0y1 + y 2 2)) = 0<br />

iff (x0, x1, x2, 1, x0x1 + x 2 2 ) ∼ (y0, y1, y2, 1, y0y1 + y 2 2 ) <strong>in</strong> Q.<br />

The other type of po<strong>in</strong>t of T2(C) is a plane of Σ meet<strong>in</strong>g π <strong>in</strong> a tangent to C.<br />

Fix t ∈ Fq. Then for each s ∈ Fq, [t, 1, 0, s, 0]∩[0, 0, 0, 0, 1] = (1, t, t 1/2 , 0, s) ⊥ ∩<br />

Σ is a plane of Σ meet<strong>in</strong>g π <strong>in</strong> a tangent to C at (1, t, t 1/2 , 0, 0). So we put<br />

φ1 : [t, 1, 0, s, 0] ∩ [0, 0, 0, 0, 1] ↦→ (1, t, t 1/2 , 0, s).<br />

Now (0, 1, 0, 0, s) ⊥ = [1, 0, 0, s, 0] <strong>and</strong> [1, 0, 0, s, 0]∩π ∩Q = (0, 1, 0, 0, 0). So a<br />

typical plane of Σ meet<strong>in</strong>g π <strong>in</strong> a tangent to C at (0, 1, 0, 0, 0) is [1, 0, 0, s, 0]∩<br />

[0, 0, 0, 0, 1]. So we put<br />

φ1 : [1, 0, 0, s, 0] ∩ [0, 0, 0, 0, 1] ↦→ (0, 1, 0, 0, s).


10.4. THE ISOMORPHISM FROM T2(C) TO W (Q) 455<br />

F<strong>in</strong>ally put<br />

φ1 : π = (∞) :↦→ (0, 0, 0, 0, 1) ∈ Q.<br />

S<strong>in</strong>ce a map from one GQ of order q to a second one of order q is completely<br />

determ<strong>in</strong>ed by a map just on po<strong>in</strong>ts preserv<strong>in</strong>g coll<strong>in</strong>earity, φ1 is an<br />

isomorphism from T2(C) to Q(4, q).<br />

Let W (q) be the GQ def<strong>in</strong>ed as the s<strong>in</strong>gular po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of the symplectic<br />

polarity of P G(3, q) = [0, 0, 1, 0, 0] with form x0y1+x1y0+x3y4+x4y3 =<br />

0. We consider an isomorphism φ2 from Q(4, q) to W (q). Recall that the<br />

po<strong>in</strong>t (0, 0, 1, 0, 0) is the nucleus of Q. Let H be the hyperplane of P G(4, q)<br />

with coord<strong>in</strong>ates [0, 0, 1, 0, 0] <strong>and</strong> note that (0, 0, 1, 0, 0) ∈ H. Project<strong>in</strong>g from<br />

(0, 0, 1, 0, 0) onto H maps the po<strong>in</strong>ts (respectively, l<strong>in</strong>es) of Q(4, q) onto the<br />

po<strong>in</strong>ts (respectively, l<strong>in</strong>es) of the GQ W (q) just def<strong>in</strong>ed. This map def<strong>in</strong>ed<br />

on the po<strong>in</strong>ts of Q(4, q) is given by<br />

φ2 :<br />

φ2 : (x0, x1, x2, x3, x4) ↦→ 〈(x0, x1, x2, x3, x4), (0, 0, 1, 0, 0)〉 ∩ H<br />

= (x0, x1, 0, x3, x4).<br />

So φ2 maps the po<strong>in</strong>ts of Q(4, q) specifically as follows:<br />

(x0, x1, x2, 1, x0x1 + x 2 2 ) ↦→ (x0, x1, 0, 1, x0x1 + x 2 2 ), for x0, x1, x2 ∈ Fq,<br />

(1, t, t 1/2 , 0, s) ↦→ (1, t, 0, 0, s), for s, t ∈ Fq,<br />

(0, 1, 0, 0, s) ↦→ (0, 1, 0, 0, s), for s ∈ Fq,<br />

(0, 0, 0, 0, 1) ↦→ (0, 0, 0, 0, 1).<br />

Note that for po<strong>in</strong>ts (xi), (yi) of Q, (xi) ∼ (yi) <strong>in</strong> Q if <strong>and</strong> only if<br />

0 = B((xi), (yi)) = x0y1 + x1y0 + x3y4 + x4y3.<br />

So φ2 : Q(4, q) → W (q) is an isomorphism, where W (q) is the symplectic<br />

geometry <strong>in</strong> H with the given form.<br />

Now def<strong>in</strong>e the map φ3 : W (q) → W (q) : (x0, x1, 0, x3, x4) ↦→ (x0, x1, x4, x3).<br />

F<strong>in</strong>ally, put φ = φ3◦φ2◦φ1 : T2(C) → W (q). Before express<strong>in</strong>g this succ<strong>in</strong>ctly<br />

<strong>in</strong> the follow<strong>in</strong>g theorem we give a little morenotation. 0 1<br />

P 0<br />

Let P = <strong>and</strong> put C = . Then<br />

1 0<br />

0 P<br />

⎡ ⎤ ⎡ ⎤<br />

C<br />

⎢<br />

⎣<br />

y0<br />

y1<br />

y2<br />

y3<br />

⎥<br />

⎦ =<br />

⎢<br />

⎣<br />

y1<br />

y0<br />

y3<br />

y2<br />

⎥<br />

⎦ .


456 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

Then ν : po<strong>in</strong>ts of P G(3, q) ↔ planes of P G(3, q) : (yi) ↦→ C(yi) T is a<br />

symplectic polarity of P G(3, q). So we may now view W (q) as the geometry<br />

of s<strong>in</strong>gular po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of ν.<br />

Theorem 10.4.1. Let π be the plane [0, 0, 0, 1] of Σ = P G(3, q), <strong>and</strong> let C<br />

be the conic <strong>in</strong> π def<strong>in</strong>ed by the equations x3 = x0x1 + x 2 2 = 0, that is,<br />

C = {(1, t, t 1/2 , 0) : t ∈ Fq} ∪ {(0, 1, 0, 0)}<br />

with nucleus N = (0, 0, 1, 0). Construct T2(C) from Σ, π <strong>and</strong> C. Recall<br />

that the po<strong>in</strong>ts of T2(C) are the po<strong>in</strong>ts (x0, x1, x2, 1) ∈ Σ \ π <strong>and</strong> the planes<br />

[x0, x1, 0, x2] conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t N = (0, 0, 1, 0). Let W (q) be the GQ def<strong>in</strong>ed<br />

as the s<strong>in</strong>gular po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of the symplectic polarity ν. Then there is<br />

an isomorphism φ : T2(C) → W (q) def<strong>in</strong>ed on the po<strong>in</strong>ts of T2(C) by:<br />

φ : (x0, x1, x2, 1) ↦→ (x0, x1, x0x1 + x 2 2 , 1), for x0, x1, x2 ∈ Fq,<br />

[x0, x1, 0, x2] ↦→ (x1, x0, x2, 0).<br />

10.5 Coord<strong>in</strong>ates for the general T2(O)<br />

Review the coord<strong>in</strong>atization of ovals <strong>in</strong> Chapter 4. If O is any oval of π∞ =<br />

P G(2, q) we may rearrange coord<strong>in</strong>ates so that the nucleus is N = (0, 1, 0)<br />

<strong>and</strong> any three particular particular po<strong>in</strong>ts of O have coord<strong>in</strong>ates Y = (0, 0, 1),<br />

X = (1, 0, 0), <strong>and</strong> Z = (1, 1, 1). Then there is an o-polynomial f(x) for which<br />

O = {(1, t, f(t)) : t ∈ Fq} ∪ {(0, 0, 1)}.<br />

For notational convenience we write f(t) = t α . Then we embed π∞ <strong>in</strong>to<br />

Σ = P G(3, q) as the plane [1, 0, 0, 0]. This means that any particular l<strong>in</strong>e of<br />

T2(O) through the po<strong>in</strong>t π∞ may be chosen to be the l<strong>in</strong>e ℓ∞ = 〈N, Y 〉. From<br />

the previous sections of this chapter we know that π∞ is a regular po<strong>in</strong>t <strong>and</strong><br />

each l<strong>in</strong>e through it is regular. Moreover, if α is additive, we know that each<br />

po<strong>in</strong>t of ℓ∞ is also regular. We want to consider the converse situation: What<br />

if some additional po<strong>in</strong>t of T2(O) is regular? We approach this problem by<br />

first assign<strong>in</strong>g coord<strong>in</strong>ates to the po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of T2(O) as follows.


10.5. COORDINATES FOR THE GENERAL T2(O) 457<br />

Coord<strong>in</strong>ates first for po<strong>in</strong>ts <strong>and</strong> then for l<strong>in</strong>es:<br />

π∞ ↔ (∞)<br />

[a, 1, 0, 0] ↔ (a)<br />

[v, u α , 0, 1] ↔ (u, v)<br />

(1, a, b, c) ↔ (a, b, c)<br />

〈Y, N〉 ↔ [∞]<br />

〈(0, 1, u, u α ), N〉 ↔ [u]<br />

〈(1, a, b, 0), Y 〉 ↔ [a, b]<br />

〈(1, a, b, c), (0, 1, u, u α )〉 ↔ [u, au α + c, au + b]<br />

(10.1)<br />

In terms of the coord<strong>in</strong>ates we now have the follow<strong>in</strong>g description of<br />

T2(O). x ↦→ x α is an o-polynomial with 0 α = 0; 1 α = 1.<br />

The po<strong>in</strong>ts of T2(O) are:<br />

The l<strong>in</strong>es of T2(O) are:<br />

(i) (∞)<br />

(ii) (a), a ∈ Fq<br />

(iii) (u, v), u, v ∈ Fq<br />

(iv) (a, b, c), a, b, c ∈ Fq (10.2)<br />

(a) [∞],<br />

(b) [u], u ∈ Fq<br />

(c) [a, b], a, b ∈ Fq<br />

(d) [u, v, w], u, v, w ∈ Fq (10.3)<br />

Incidence <strong>in</strong> T2(O) with these coord<strong>in</strong>ates is as follows:<br />

The po<strong>in</strong>t (∞) is <strong>in</strong>cident with [∞] <strong>and</strong> with each [u] for u ∈ Fq. The<br />

po<strong>in</strong>t (a) is <strong>in</strong>cident with [∞] <strong>and</strong> with [a, b] for all a, b ∈ Fq. The po<strong>in</strong>t<br />

(u, v) is <strong>in</strong>cident with [u] <strong>and</strong> with [u, v, w] for all u, v, w ∈ Fq. The po<strong>in</strong>t<br />

(a, b, c) is <strong>in</strong>cident with [a, b] <strong>and</strong> with [u, v, w] if <strong>and</strong> only if b + w = au <strong>and</strong><br />

c + v = au α , for a, b, c, u, v, w ∈ Fq.<br />

For convenience we note the follow<strong>in</strong>g:


458 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

(a, au + w, au α ) is on [u, v, w] for all a ∈ Fq;<br />

(a, b, c) is on [u, au α + c, au + b] for all u ∈ Fq;<br />

(a1, b1c1) ∼ (a2, b2, c2) iff (i) a1 = a2 <strong>and</strong> b1 = b2 or<br />

(ii) a1 = a2 <strong>and</strong> ((b1 + b2)/(a1 + a2)) α = (c1 + c2)/(a1 + a2);<br />

(a1, b1, c1) ∼ (a2, b2) iff c1 = a1a α 2 + b2. (10.4)<br />

It is easy to see that each of the q 3 elations of Σ with axis π∞ <strong>in</strong>duces<br />

a coll<strong>in</strong>eation (called a translation) of T2(O) which is given <strong>in</strong> terms of the<br />

coord<strong>in</strong>ates of T2(O) by the follow<strong>in</strong>g. For (σ1, σ2, σ3) ∈ F 3 q , def<strong>in</strong>e θ =<br />

θ(σ1, σ2, σ3) by:<br />

(x, y, z)<br />

(x, y)<br />

(x)<br />

(∞)<br />

[u, v, w]<br />

[u, v]<br />

[u]<br />

[∞]<br />

θ<br />

↦→ (x + σ1, y + σ2, z + σ3)<br />

θ<br />

↦→ (x, y + σ1x α + σ3)<br />

θ<br />

↦→ (x + σ1)<br />

θ<br />

↦→ (∞)<br />

θ<br />

↦→ [u, v + σ1u α + σ3, w + σ1u + σ2]<br />

θ<br />

↦→ [u + σ1, v + σ2]<br />

θ<br />

↦→ [u]<br />

θ<br />

↦→ [∞]<br />

(10.5)<br />

Note that the l<strong>in</strong>es meet<strong>in</strong>g [∞] are precisely the l<strong>in</strong>es of the form [a]<br />

<strong>and</strong> [a, b] for all a, b ∈ Fq, <strong>and</strong> the translations of the form θ(0, 0, σ3) for<br />

σ3 ∈ Fq form a group fix<strong>in</strong>g each of these l<strong>in</strong>es. These are symmetries about<br />

the l<strong>in</strong>e [∞], so that [∞] is an axis of symmetry. Similarly, for fixed u ∈ Fq<br />

the l<strong>in</strong>es meet<strong>in</strong>g [u] are the l<strong>in</strong>es of the form [∞], [a], <strong>and</strong> [u, v, w] for all<br />

a, v, w ∈ Fq. The q translations of the form θ(σ1, σ1u, σ1u α ), σ1 ∈ Fq are<br />

then symmetries about [u] (i.e., fix<strong>in</strong>g each l<strong>in</strong>e meet<strong>in</strong>g [u]), so that [u] is<br />

also an axis of symmetry. It follows that each l<strong>in</strong>e <strong>in</strong>cident with (∞) is an<br />

axis of symmetry.<br />

It also follows that (∞) is a center of symmetry, s<strong>in</strong>ce the translations of<br />

the form θ(0, σ2, 0), σ2 ∈ Fq are symmetries about the po<strong>in</strong>t (∞).


10.5. COORDINATES FOR THE GENERAL T2(O) 459<br />

For each nonzero t ∈ Fq there is a coll<strong>in</strong>eation φ = φt def<strong>in</strong>ed as follows<br />

(x, y, z)<br />

(x, y)<br />

(x)<br />

(∞)<br />

[u, v, w]<br />

[u, v]<br />

[u]<br />

[∞]<br />

φ<br />

↦→ (tx, ty, tz)<br />

φ<br />

↦→ (x, ty)<br />

φ<br />

↦→ (tx)<br />

φ<br />

↦→ (∞)<br />

φ<br />

↦→ [u, tv, tw]<br />

φ<br />

↦→ [tu, tv]<br />

φ<br />

↦→ [u]<br />

φ<br />

↦→ [∞]<br />

(10.6)<br />

If some po<strong>in</strong>t (1, a, b, c) is regular, then we see that all po<strong>in</strong>ts (1, a ′ , b ′ , c ′ )<br />

are regular. From this it follows easily that all po<strong>in</strong>ts of T2(O) are regular<br />

<strong>and</strong> T2(O) is essentially just T2(C) for a conic C. So suppose that O is not<br />

a conic, so that no po<strong>in</strong>t of the form (1, a, b, c) is regular.<br />

Now suppose that some po<strong>in</strong>t coll<strong>in</strong>ear with but dist<strong>in</strong>ct from (∞) is<br />

regular. We have seen that without loss of generality we may assume that<br />

such a po<strong>in</strong>t is on [∞]. And the translations are transitive on the po<strong>in</strong>ts<br />

of [∞] \ {(∞)}, so we may suppose that the po<strong>in</strong>t is (0). Because (∞) is<br />

regular, each pair of the form {(0), (u, v)} is regular. Hence we need only<br />

consider pairs of the form {(0), (a, b, c)} with a = 0, so (0) <strong>and</strong> (a, b, c) are<br />

not coll<strong>in</strong>ear. Then by apply<strong>in</strong>g a translation of the form θ(0, σ2, σ3) we may<br />

assume that (a, b, c) = (a, 0, 0). But then by apply<strong>in</strong>g the coll<strong>in</strong>eation φ a −1<br />

we may assume that (a, 0, 0) = (1, 0, 0). So we want to exam<strong>in</strong>e the case that<br />

{(0), (1, 0, 0) is a regular pair of po<strong>in</strong>ts. First note that<br />

<strong>and</strong><br />

{(0), (1, 0, 0)} ⊥ = {(1)} ∪ {(0, x, x α ) : x ∈ Fq},<br />

{(1), (0, 0, 0)} ⊥ = {(0)} ∪ {(1, y, y α ) : y ∈ Fq}.<br />

It follows that the pair {(0), (1, 0, 0)} is regular if <strong>and</strong> only if (0, x, x α ) ∼<br />

(1, y, y α ) for all x, y ∈ Fq. By Eq. 10.4 this is if <strong>and</strong> only if (x+y) α = x α +y α<br />

for all s, y ∈ Fq. In this case α is additive, so by Cor. 4.9.4 α is a generator


460 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

of the automorphism group of Fq, <strong>and</strong> we have seen that all po<strong>in</strong>ts of [∞]<br />

are regular <strong>and</strong> T2(O) is even self-dual. We record this as follows.<br />

Theorem 10.5.1. Some po<strong>in</strong>t W of (∞) ⊥ \ (∞) is regular if <strong>and</strong> only if O<br />

is a translation oval if <strong>and</strong> only if each po<strong>in</strong>t of 〈W, (∞)〉 is regular if <strong>and</strong><br />

only if T2(O) is self-dual.<br />

Now suppose that some l<strong>in</strong>e L not <strong>in</strong>cident with (∞) is regular. L meets<br />

some l<strong>in</strong>e M <strong>in</strong>cident with (∞), say at the po<strong>in</strong>t X. S<strong>in</strong>ce the translations are<br />

(sharply!) transitive on the po<strong>in</strong>ts not coll<strong>in</strong>ear with (∞) it follows readily<br />

that each l<strong>in</strong>e meet<strong>in</strong>g M is also regular. Suppose this is the case. Now<br />

suppose that {L1, L2} is any pair of skew l<strong>in</strong>es not <strong>in</strong>cident with (∞). If either<br />

of them meets M it is regular, so the pair {L1, L2} is regular. So suppose<br />

that neither of them meets M. S<strong>in</strong>ce M is regular, any triad conta<strong>in</strong><strong>in</strong>g M<br />

has a transversal, so there is a l<strong>in</strong>e L that meets each of M, L1, L2. S<strong>in</strong>ce<br />

L is regular, the pair {L1, L2} must also be regular. Hence every l<strong>in</strong>e is<br />

regular. S<strong>in</strong>ce q = 2 e , this means that every po<strong>in</strong>t is regular <strong>and</strong> T2(O) is<br />

aga<strong>in</strong> isomorphic to T2(C) for a conic C. (Actually, it forces O to be a conic.)<br />

Now suppose that each of two l<strong>in</strong>es M1, M2 through (∞) has a regular<br />

po<strong>in</strong>t <strong>in</strong> addition to (∞), so each po<strong>in</strong>t of Mi is regular, i = 1, 2. Without<br />

loss of generality we may assume that M1 = [∞] <strong>and</strong> M2 = [0]. Hence α is<br />

additive <strong>and</strong> T2(O) is self-dual by a duality <strong>in</strong>terchang<strong>in</strong>g (∞) <strong>and</strong> [∞], <strong>and</strong><br />

mapp<strong>in</strong>g [0] to a po<strong>in</strong>t of [∞] different from (∞) <strong>and</strong> the regular po<strong>in</strong>t of [0]<br />

to a regular l<strong>in</strong>e (not [∞]) through the image of [0]. Hence T2(O) is classical.<br />

This means that we have the follow<strong>in</strong>g possibilities for regular po<strong>in</strong>ts or l<strong>in</strong>es.<br />

Theorem 10.5.2. In any T2(O) the po<strong>in</strong>t (∞) <strong>and</strong> the l<strong>in</strong>es through it are<br />

regular. If T2(O) is not classical, then no other l<strong>in</strong>e can be regular <strong>and</strong> no<br />

po<strong>in</strong>t not coll<strong>in</strong>ear with (∞) can be regular. In this case it follows that every<br />

coll<strong>in</strong>eation of T2(O) must fix the po<strong>in</strong>t (∞). If some po<strong>in</strong>t X (not (∞)) on<br />

a l<strong>in</strong>e M through (∞) forms a regular pair with even one po<strong>in</strong>t not <strong>in</strong> (∞) ⊥ ,<br />

then we may assume that O is a translation oval Oα with α a generator of<br />

the automorphism group of Fq. If T2(Oα) is not classical, the only regular<br />

po<strong>in</strong>ts are those on [∞] <strong>and</strong> the only regular l<strong>in</strong>es are those <strong>in</strong>cident with<br />

(∞). In this case it follows that every coll<strong>in</strong>eation of T2(O) must fix the l<strong>in</strong>e<br />

[∞].


10.6. EXPANDING T2(O) ABOUT A REGULAR ELEMENT 461<br />

10.6 Exp<strong>and</strong><strong>in</strong>g T2(O) about a Regular Element<br />

Let O be an oval <strong>in</strong> π = P G(2, q) which is embedded as a hyperplane <strong>in</strong><br />

Σ = P G(3, q). We exp<strong>and</strong> about the regular po<strong>in</strong>t π. From the proof<br />

of Theorem 10.1.1 we see that we get the follow<strong>in</strong>g construction of a GQ<br />

T ∗ 2 (O+ ) of order (q − 1, q + 1).<br />

10.6.1 P(T2(O), π)<br />

Let T ∗ 2 (O+ ) = (P ∗ , B ∗ , I ∗ ) be the po<strong>in</strong>t-l<strong>in</strong>e geometry with po<strong>in</strong>tset P ∗ equal<br />

to the set of po<strong>in</strong>ts of Σ \ π, <strong>and</strong> with l<strong>in</strong>eset B ∗ equal to the set of l<strong>in</strong>es of<br />

Σ not <strong>in</strong> π that meet π <strong>in</strong> a po<strong>in</strong>t of the unique hyperoval O + conta<strong>in</strong><strong>in</strong>g O.<br />

Then T ∗ 2 (O+ ) is a GQ of order (q − 1, q + 1).<br />

This example was first given <strong>in</strong>dependently by R. W. Ahrens <strong>and</strong> G.<br />

Szekeres [AS69] <strong>and</strong> by M. Hall, Jr. [Ha71]. In the former paper an<br />

analogous construction was given for q odd by means of coord<strong>in</strong>ates.<br />

Let x be a fixed po<strong>in</strong>t of O + . The q 2 l<strong>in</strong>es of Σ <strong>in</strong>cident with x but not <strong>in</strong><br />

π form a spread of T ∗ 2 (O+ ). The set of all these spreads is a pack<strong>in</strong>g . Later<br />

we will consider the process of start<strong>in</strong>g with such a pack<strong>in</strong>g <strong>and</strong> recaptur<strong>in</strong>g<br />

T2(O). For the present we merely realize that we could have started with<br />

any po<strong>in</strong>t x of O + as the nucleus of an oval Ox <strong>in</strong> π. Then exp<strong>and</strong><strong>in</strong>g T2(Ox)<br />

about the regular po<strong>in</strong>t π will give the GQ T ∗ 2 (O+ ).<br />

10.6.2 P(T2(O), L)<br />

Now we try exp<strong>and</strong><strong>in</strong>g <strong>in</strong> the “other” direction. For this construction we<br />

do not need to restrict q to be even. Let L be the l<strong>in</strong>e of π tangent to<br />

O at the po<strong>in</strong>t Q. For all q, L is a regular l<strong>in</strong>e of T2(O). If we exp<strong>and</strong> T2(O)<br />

about the regular l<strong>in</strong>e L we obta<strong>in</strong> the follow<strong>in</strong>g GQ S ′′ = (P ′′ , B ′′ , I ′′ ) of<br />

order (q + 1, q − 1).<br />

The po<strong>in</strong>tset P ′′ has three types of po<strong>in</strong>ts:<br />

(i) The po<strong>in</strong>ts of Σ \ π;<br />

(ii) The planes that meet π <strong>in</strong> a l<strong>in</strong>e tangent to O at a po<strong>in</strong>t different<br />

from Q;<br />

(iii) The planes through Q not conta<strong>in</strong><strong>in</strong>g L.


462 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

The l<strong>in</strong>eset B ′′ consists of all l<strong>in</strong>es of Σ\π meet<strong>in</strong>g π at a po<strong>in</strong>t of O\{Q}.<br />

When q = 2 e <strong>and</strong> N is the nucleus of O, we can describe the po<strong>in</strong>ts of type<br />

(ii) as the planes of Σ that conta<strong>in</strong> N but not Q, <strong>and</strong> the po<strong>in</strong>ts of type (iii)<br />

are the planes of Σ that conta<strong>in</strong> Q but not N.<br />

One could also start with an arbitrary po<strong>in</strong>t P of W (q) <strong>and</strong> exp<strong>and</strong> about<br />

P to get a GQ with parameters (q − 1, q + 1), to get the po<strong>in</strong>t-l<strong>in</strong>e dual of<br />

the example just given. In this form the GQ is isomorphic to the examples<br />

first found by Ahrens <strong>and</strong> Szekeres [AS69].<br />

At this po<strong>in</strong>t we want to establish a more uniform notation for the three<br />

types of GQ that we have associated with an oval <strong>in</strong> case q = 2 e . S<strong>in</strong>ce<br />

each q-arc of P G(2, q) extends uniquely to a hyperoval, we suppose that O +<br />

is a hyperoval of π∞ embedded as a hyperplane <strong>in</strong> Σ = P G(3, q). Let P +<br />

denote the set of po<strong>in</strong>ts of Σ \ π∞ <strong>and</strong> let B + denote the set of l<strong>in</strong>es of Σ not<br />

conta<strong>in</strong>ed <strong>in</strong> π∞ <strong>and</strong> meet<strong>in</strong>g π∞ <strong>in</strong> a po<strong>in</strong>t of O + .<br />

Construction 10.6.3. S + = S(O + ) = (P + , B + , I + ) is the GQ with parameters<br />

(q − 1, q + 1) whose po<strong>in</strong>ts are the po<strong>in</strong>ts of P + <strong>and</strong> whose l<strong>in</strong>es are the<br />

l<strong>in</strong>es of B + . Incidence I + is just that <strong>in</strong>herited from <strong>in</strong>cidence <strong>in</strong> Σ.<br />

Let x be any po<strong>in</strong>t of O + <strong>and</strong> put Ox = O + \ {x}. Then Ox is an oval of<br />

π∞ with nucleus x. Let Ox denote the set of planes of Σ conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t<br />

x, <strong>and</strong> let Bx denote the set of l<strong>in</strong>es of Σ not conta<strong>in</strong>ed <strong>in</strong> π∞ <strong>and</strong> meet<strong>in</strong>g<br />

π∞ <strong>in</strong> a po<strong>in</strong>t of Ox. Then we have the follow<strong>in</strong>g construction.<br />

Construction 10.6.4. Sx = S(Ox) = (Px, Bx, Ix) is the GQ with parameters<br />

(q, q) whose po<strong>in</strong>ts are the po<strong>in</strong>ts of Px = P + ∪ Ox <strong>and</strong> whose l<strong>in</strong>es are the<br />

l<strong>in</strong>es <strong>in</strong> Bx. Incidence Ix is the one naturally <strong>in</strong>duced by <strong>in</strong>cidence <strong>in</strong> Σ.<br />

(Usually the nucleus x of Ox is understood <strong>and</strong> we write S = S(O) <strong>in</strong> place<br />

of Sx = S(Ox).)<br />

Now let x <strong>and</strong> y be any two po<strong>in</strong>ts of O + <strong>and</strong> put O − xy = O+ \ {x, y}.<br />

Then O − xy is a q-arc conta<strong>in</strong>ed <strong>in</strong> a unique hyperoval O + . Let Oxy denote the<br />

set of planes of Σ conta<strong>in</strong><strong>in</strong>g x but not y, so naturally Oyx denotes the set of<br />

is the set of l<strong>in</strong>es of Σ not conta<strong>in</strong>ed<br />

planes of Σ conta<strong>in</strong><strong>in</strong>g y but not x. B− xy<br />

<strong>in</strong> π∞ <strong>and</strong> meet<strong>in</strong>g π∞ <strong>in</strong> a po<strong>in</strong>t of the q-arc O− xy.<br />

Construction 10.6.5. S− xy = S(Oxy) = (P − xy , B− xy , I− xy ) is the GQ with parameters<br />

(q + 1, q − 1) whose po<strong>in</strong>ts are the po<strong>in</strong>ts of P − x,y = P + ∪ Oxy ∪ Oyx<br />

<strong>and</strong> whose l<strong>in</strong>es are the l<strong>in</strong>es of B− xy . Incidence I− xy is just that <strong>in</strong>herited from<br />

<strong>in</strong>cidence <strong>in</strong> Σ.


10.7. CONSTRICTING ABOUT A REGULAR SPREAD 463<br />

It should be clear that if we start with Sx <strong>and</strong> exp<strong>and</strong> about the regular<br />

po<strong>in</strong>t π∞ we obta<strong>in</strong> the Gq S + . Also, if we start with Sx <strong>and</strong> exp<strong>and</strong> about<br />

the l<strong>in</strong>e L where L is the l<strong>in</strong>e of π∞ through x meet<strong>in</strong>g Ox <strong>in</strong> the po<strong>in</strong>t y,<br />

. We now want to consider the reverse problem:<br />

then we obta<strong>in</strong> the GQ S− xy<br />

How to recover Sx from either S + or S− xy.<br />

10.7 Constrict<strong>in</strong>g about a Regular Spread<br />

Let S = (P, B, I) be a GQ of order s with a regular po<strong>in</strong>t x. Put P + x = P \x⊥ ,<br />

B1 x = {L ∈ B : x is not <strong>in</strong>cident with L}, B2 x = {{x, y} ⊥⊥ : y ∈ P \ x⊥ },<br />

B + x = B1 x ∪ B2 x . If I+ x is the natural <strong>in</strong>cidence on P + x × B+ x <strong>in</strong>duced by I <strong>and</strong><br />

conta<strong>in</strong>ment, then S + x = (P + x , B+ x , I+ x ) is the GQ P(S, x) of order (s−1, s+1)<br />

obta<strong>in</strong>ed by exp<strong>and</strong><strong>in</strong>g S about the po<strong>in</strong>t x.<br />

Let L0, L1, . . . , Ls be the l<strong>in</strong>es of S <strong>in</strong>cident with x. Put<br />

Mi = {L ∈ B 1 x : L ∼ Li}, 0 ≤ i ≤ s.<br />

Then each Mi is a spread of S + x , i.e., a set of 1 + (s − 1)(s + 1) = s 2 l<strong>in</strong>es<br />

that partitions the po<strong>in</strong>ts. Similarly, write M∞ for B 2 x . Then M∞ is also a<br />

spread, so that<br />

M = {M∞, M0, M1, . . . , Ms}<br />

is a pack<strong>in</strong>g of S + x , that is a partition of the l<strong>in</strong>es of S+ x <strong>in</strong>to spreads. Moreover,<br />

M∞ is a regular spread. This means that each pair {L, M} of dist<strong>in</strong>ct l<strong>in</strong>es<br />

of M∞ is a regular pair, so |{L, M} ⊥⊥ | = s, the maximum possible size,<br />

<strong>and</strong> {L, M} ⊥⊥ ⊂ M∞. But M∞ is even pivotal for the pack<strong>in</strong>g M: For<br />

L, M ∈ M∞, L = M, {L, M} ⊥ ⊂ Mk for some k ∈ {0, 1, . . . , s}.<br />

The fact that M∞ is a regular spread which is pivotal for the pack<strong>in</strong>g M<br />

can be viewed <strong>in</strong> another way.<br />

Consider the elements of M∞ as “po<strong>in</strong>ts” <strong>and</strong> the spans {L, M} ⊥⊥ of dist<strong>in</strong>ct<br />

elements of M∞ as “l<strong>in</strong>es.” Then M∞ with these “po<strong>in</strong>ts” <strong>and</strong> “l<strong>in</strong>es”<br />

is an aff<strong>in</strong>e plane π(M∞) of order s. The spreads M0, . . . , Ms determ<strong>in</strong>e the<br />

parallel classes of l<strong>in</strong>es of π(|mM∞) <strong>in</strong> the follow<strong>in</strong>g way. For dist<strong>in</strong>ct M1,<br />

N1 ∈ M∞, let T1 = {M1, N1} ⊥⊥ be the “l<strong>in</strong>e” of π(M∞) through M1 <strong>and</strong><br />

N1. Then T ⊥ 1 = {M1, N1} ⊥ is a subset of some Mk, 0 ≤ k ≤ s. Moreover,<br />

if Ti = {Mi, Ni} ⊥⊥ , 1 ≤ i ≤ s, are the dist<strong>in</strong>ct “l<strong>in</strong>es” of the parallel class of<br />

π(M∞) conta<strong>in</strong><strong>in</strong>g T1, then each T ⊥<br />

i is conta<strong>in</strong>ed <strong>in</strong> Mk, <strong>and</strong> {T ⊥ 1 , . . . , T ⊥ s }


464 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

partitions Mk. Two spans (i.e., “l<strong>in</strong>es” of π(M∞)) of M∞ have an element<br />

<strong>in</strong> common if <strong>and</strong> only if their perps belong to different members of<br />

{M0, . . . , Ms}. In this way each spread Mk, 0 ≤ k ≤ s, determ<strong>in</strong>es one<br />

parallel class of π(M∞).<br />

We are now ready to consider the reverse process of recover<strong>in</strong>g S from<br />

S + x by constrict<strong>in</strong>g S+ x<br />

about a regular spread M∞.<br />

Let S + = (P + , B + , I + ) be a GQ with parameters (s − 1, s + 1). Let<br />

M∞ be a regular spread of S + . So M∞ is a set of s 2 l<strong>in</strong>es, no two concurrent,<br />

such that each pair {L, M} of dist<strong>in</strong>ct l<strong>in</strong>es of M∞ is regular <strong>and</strong><br />

{L, M} ⊥⊥ ⊂ M∞. It follows immediately that the l<strong>in</strong>es <strong>and</strong> spans of M∞<br />

form the “po<strong>in</strong>ts” <strong>and</strong> “l<strong>in</strong>es,” respectively, of an aff<strong>in</strong>e plane π(M∞) of<br />

order s. If Ti = {Mi, Ni} ⊥⊥ , 1 ≤ i ≤ s, are the dist<strong>in</strong>ct “l<strong>in</strong>es” <strong>in</strong> one<br />

parallel class Ek of π(M∞), then Mk = ∪s ⊥<br />

i=1Ti = ∪si=1 {Mi, Ni} ⊥ = Ek is<br />

a spread of S + . If M0, . . . , Ms are the spreads obta<strong>in</strong>ed <strong>in</strong> this way, then<br />

M = {M∞, M0, . . . , Ms} is a pack<strong>in</strong>g of S + for which M∞ is pivotal.<br />

Construction 10.7.1. Constriction about a regular spread:<br />

Let S + = (P + , B + , I + ) be a GQ with parameters (s − 1, s + 1). Let M∞ be<br />

a regular spread of S + for which M = {M∞, M0, . . . , Ms} is the associated<br />

pack<strong>in</strong>g for which M∞ is pivotal.<br />

The l<strong>in</strong>es of B are to be given by<br />

B = (B + \ M∞) ∪ {[M0], . . . , [Ms]}.<br />

The elements of P are to be of three types:<br />

(i) the elements of P + ;<br />

(ii) the perps {L, M} ⊥ with L, M ∈ M∞, L = M;<br />

(iii) the symbol ∞.<br />

Incidence is def<strong>in</strong>ed as follows: If x ∈ P + , L ∈ B + \ M∞, then xIL if <strong>and</strong><br />

only if xI + L. If x ∈ P + <strong>and</strong> L = [Mi], then it is NOT true that xIL. If<br />

x = {L, M} ⊥ , L, M ∈ M∞, L = M, <strong>and</strong> N = [Mi], then xIN if <strong>and</strong> only<br />

if {L, M} ⊥ ⊂ Mi. F<strong>in</strong>ally, (∞)I[Mi] for each i = 0, 1, . . . , s. Then S is a<br />

GQ with order s for which (∞) is a regular po<strong>in</strong>t. In addition, Mj is pivotal<br />

for M if <strong>and</strong> only if [Mj] is regular as a l<strong>in</strong>e of S.<br />

Proof. It should be fairly clear that S is a GQ with order s for which (∞) is<br />

a regular po<strong>in</strong>t, <strong>and</strong> that if S is exp<strong>and</strong>ed about the po<strong>in</strong>t (∞), the GQ S +


10.8. CHARACTERIZING T ∗ 2 (O + ) WITH (0, 2)-SETS 465<br />

is obta<strong>in</strong>ed. So we want to consider what it means for [Mj] to be regular as<br />

a l<strong>in</strong>e of S. Without loss of generality we may consider what it means for<br />

[M0] to be regular. Let L be a l<strong>in</strong>e of S not concurrent with [M0], i.e., L<br />

belongs to Mk for some k with 1 ≤ k ≤ s. Let x <strong>and</strong> y be dist<strong>in</strong>ct po<strong>in</strong>ts of L<br />

<strong>in</strong> S + . Let Mx <strong>and</strong> My, respectively, be the l<strong>in</strong>es through x <strong>and</strong> y belong<strong>in</strong>g<br />

to M0. Let z be a po<strong>in</strong>t of My not on L or [M0], <strong>and</strong> let Lz be the l<strong>in</strong>e<br />

through z meet<strong>in</strong>g Mx <strong>in</strong> a po<strong>in</strong>t w. To be able to guarantee that Lz meets<br />

[Mk] is equivalent to say<strong>in</strong>g that {Mx, My} is regular <strong>and</strong> that {Mx, My} ⊥⊥<br />

is conta<strong>in</strong>ed <strong>in</strong> a s<strong>in</strong>gle member of M, which would have to be Mk s<strong>in</strong>ce L<br />

is <strong>in</strong> Mk. It follows that [M0] is regular <strong>in</strong> S if <strong>and</strong> only if M0 is regular<br />

<strong>and</strong> pivotal <strong>in</strong> S + .<br />

10.8 Characteriz<strong>in</strong>g T ∗ 2 (O+ ) with (0, 2)-Sets<br />

We are go<strong>in</strong>g to identify some properties of T ∗ 2 (O + ) <strong>and</strong> show that these<br />

properties characterize such a GQ. This work derives primarily from [DST84]<br />

<strong>and</strong> [DST86].<br />

Let O + be a hyperoval <strong>in</strong> π∞ embedded as a hyperplane <strong>in</strong> Σ = P G(3, q).<br />

Recall that T ∗ 2 (O+ ) was obta<strong>in</strong>ed from T2(Ox) (for any po<strong>in</strong>t x of O + ) by<br />

exp<strong>and</strong><strong>in</strong>g about the regular (<strong>and</strong> coregular) po<strong>in</strong>t π∞. Hence each of the<br />

spreads of M = {M∞, M0, . . . , Mq} is (regular <strong>and</strong>) pivotal for M.<br />

Let x <strong>and</strong> y be any two po<strong>in</strong>ts of Σ \ π∞ <strong>and</strong> put Lxy = 〈x, y〉. If Lxy<br />

meets π∞ <strong>in</strong> a po<strong>in</strong>t of O + , then Lxy is a l<strong>in</strong>e of T ∗ 2 (O). But what if Lxy<br />

meets π∞ at a po<strong>in</strong>t not on O + ? Let z be any po<strong>in</strong>t of Σ \ (Lxy ∪ π∞). The<br />

plane π = 〈z, Lxy〉 meets π∞ <strong>in</strong> a l<strong>in</strong>e that meets O + <strong>in</strong> 0 or 2 po<strong>in</strong>ts, which<br />

means that <strong>in</strong> T ∗ 2 (O+ ) z is coll<strong>in</strong>ear with 0 or 2 po<strong>in</strong>ts of Lxy. For this reason<br />

we call the set of po<strong>in</strong>ts on Lxy a (0, 2)-set. The basic observation here is that<br />

there is a basic collection B1 of (0, 2)-sets such that each pair of noncoll<strong>in</strong>ear<br />

po<strong>in</strong>ts of T ∗ 2 (O+ ) belongs to a unique member of B1.<br />

Until further notice we let S = (P, B, I) be a GQ with parameters (s, t),<br />

s > 1, t > 1.<br />

Def<strong>in</strong>ition 10.8.1. A nonempty subset K of pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts<br />

of P is said to be a (0, 2)-set provided |x ⊥ ∩ K| ∈ {0, 2} for each po<strong>in</strong>t<br />

x ∈ (P \ K).<br />

Lemma 10.8.2. If K is a (0, 2)-set <strong>in</strong> S, then |K| = s + 1.


466 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

Proof. Fix a l<strong>in</strong>e L ∈ B on a po<strong>in</strong>t x of K. By the def<strong>in</strong>ition of a (0, 2)-set<br />

<strong>and</strong> the fact that there are no triangles <strong>in</strong> S, different po<strong>in</strong>ts of K \ {x} are<br />

coll<strong>in</strong>ear with different po<strong>in</strong>ts of L, <strong>and</strong> each po<strong>in</strong>t of L\{x} is coll<strong>in</strong>ear with<br />

a unique po<strong>in</strong>t of K different from x. Hence we have a bijection from the<br />

po<strong>in</strong>ts of K to the po<strong>in</strong>ts of L <strong>and</strong> |K| = s + 1.<br />

Lemma 10.8.3. If S has a (0, 2)-set, then s is odd.<br />

Proof. The number of l<strong>in</strong>es hav<strong>in</strong>g no po<strong>in</strong>t <strong>in</strong> common with K is (1 + t)(1 +<br />

st) − (1 + t)(1 + s) = (1 + t)s(1 − t) > 0, so there is a l<strong>in</strong>e L disjo<strong>in</strong>t from<br />

K. Each po<strong>in</strong>t of K is coll<strong>in</strong>ear with a unique po<strong>in</strong>t of L, which <strong>in</strong> turn is<br />

coll<strong>in</strong>ear with a second po<strong>in</strong>t of K. Hence the po<strong>in</strong>ts of K are split <strong>in</strong>to pairs<br />

with the two po<strong>in</strong>ts <strong>in</strong> a pair be<strong>in</strong>g coll<strong>in</strong>ear with the same po<strong>in</strong>t of L. Hence<br />

s + 1 is even. We also see that half the po<strong>in</strong>ts of L are coll<strong>in</strong>ear with two<br />

po<strong>in</strong>ts of K <strong>and</strong> half are coll<strong>in</strong>ear with no po<strong>in</strong>t of K.<br />

Example 10.8.3.1. The follow<strong>in</strong>g examples show that the def<strong>in</strong>ition is not<br />

vacuous.<br />

(a) In the GQ W (q) there can be no (0, 2)-set. First, by Lemma 10.8.3 if<br />

there were a (0, 2)-set K, q would have to be odd. But then any three<br />

po<strong>in</strong>ts of K would be a triad. S<strong>in</strong>ce all po<strong>in</strong>ts of W (q) are regular, each<br />

triad must be centric, contradict<strong>in</strong>g the def<strong>in</strong>ition of (0, 2)-set.<br />

(b) Consider the GQ Q = Q(4, q) with q odd. Let x, y, z be pairwise<br />

noncoll<strong>in</strong>ear po<strong>in</strong>ts of Q for which x ⊥ ∩ y ⊥ ∩ z ⊥ = ∅. (Rem<strong>in</strong>der: all<br />

l<strong>in</strong>es of Q are regular, so all po<strong>in</strong>ts are antiregular, so that each triad of<br />

po<strong>in</strong>ts has 0 or 2 centers.) The plane π = 〈x, y, z〉 meets Q <strong>in</strong> a conic<br />

C. Note that |C| = q + 1. We claim that C is a (0, 2)-set <strong>in</strong> Q. S<strong>in</strong>ce<br />

x ⊥ ∩y ⊥ ∩z ⊥ = ∅, the polar l<strong>in</strong>e L of π has no po<strong>in</strong>t <strong>in</strong> common with Q.<br />

Let u be an arbitrary po<strong>in</strong>t of Q \ C. Suppose first that |u ⊥ ∩ C| ≥ 3.<br />

Then u ⊥ conta<strong>in</strong>s π <strong>and</strong> hence conta<strong>in</strong>s C. This would contradict the<br />

choice of the po<strong>in</strong>ts x, y, z so that x ⊥ ∩y ⊥ ∩z ⊥ = ∅. Hence we see that<br />

|u ⊥ ∩C| ≤ 2. Suppose that |u ⊥ ∩C| = 1, say u ⊥ ∩C = {w}. Then each<br />

po<strong>in</strong>t of C \ {w} must be coll<strong>in</strong>ear with a unique po<strong>in</strong>t of uw \ {u, w}.<br />

Hence q = |C \ {w}| ≤ |uw \ {u, w}| = q − 1, an impossibility. Hence<br />

|u ⊥ ∩ C| = 0 or 2, show<strong>in</strong>g that C is a (0, 2)-set.<br />

(c) Let O be a hyperoval <strong>in</strong> the plane π embedded as a hyperplane of Σ =<br />

P G(3, q). Consider the GQ S = T ∗ 2 (O) of order (q − 1, q + 1), where


10.8. CHARACTERIZING T ∗ 2 (O + ) WITH (0, 2)-SETS 467<br />

necessarily q is even. Let L be a l<strong>in</strong>e of Σ not <strong>in</strong> π <strong>and</strong> meet<strong>in</strong>g π <strong>in</strong> a<br />

po<strong>in</strong>t that is not <strong>in</strong> O. We claim that the q po<strong>in</strong>ts of K = L \ π form<br />

a (0, 2)-set <strong>in</strong> S. Let x ∈ P = Σ \ π be a po<strong>in</strong>t of S not on L. Then <strong>in</strong><br />

Σ, the plane 〈x, L〉 meets π <strong>in</strong> a l<strong>in</strong>e M. If M is a secant of O, then x<br />

is coll<strong>in</strong>ear <strong>in</strong> S with 2 po<strong>in</strong>ts of K. If M is exterior to O, then x is<br />

coll<strong>in</strong>ear <strong>in</strong> S with no po<strong>in</strong>t of K.<br />

Let B1 be the set of all (0, 2)-sets of S of the type just constructed. So<br />

any two noncoll<strong>in</strong>ear po<strong>in</strong>ts of S lie <strong>in</strong> a unique member of B1.<br />

(d) Consider the special case of the previous example where O is a hyperconic<br />

C (a conic C ′ plus its nucleus N). We determ<strong>in</strong>e all (0, 2)-sets<br />

of T ∗ 2 (C). S<strong>in</strong>ce q must be even, we know that T2(C ′ ) ∼ = W (q), so<br />

that T ∗ 2 (C) ∼ = P(W (q), x), where x is any po<strong>in</strong>t of W (q). Let K be a<br />

(0, 2)-set <strong>in</strong> the GQ S = P(W (q), x), <strong>and</strong> let z1, z2, z3 be three dist<strong>in</strong>ct<br />

po<strong>in</strong>ts of K. Then z1, z2, z3 are pairwise noncoll<strong>in</strong>ear <strong>in</strong> S, but they<br />

could lie on a l<strong>in</strong>e of Σ. Suppose they lie on a l<strong>in</strong>e L of Σ. Let ν be the<br />

symplectic polarity of Σ def<strong>in</strong><strong>in</strong>g W (q). S<strong>in</strong>ce L does not conta<strong>in</strong> x,<br />

the polar l<strong>in</strong>e L ′ (with respect to ν) of L is not conta<strong>in</strong>ed <strong>in</strong> the polar<br />

plane x ν . If y ∈ L ′ \ x ν , then <strong>in</strong> P(W (q), x), y is coll<strong>in</strong>ear with the<br />

three po<strong>in</strong>ts z1, z2, z3 of K, a contradiction. So z1, z2, z3 def<strong>in</strong>e a<br />

unique plane H of Σ. The po<strong>in</strong>t H ν is conjugate (with respect to ν) to<br />

all po<strong>in</strong>ts of H, especially to z1, z2, z3. So if H ν were <strong>in</strong> P , it would<br />

be a po<strong>in</strong>t of S coll<strong>in</strong>ear with three po<strong>in</strong>ts of K, an impossibility. It<br />

follows that H ν must be coll<strong>in</strong>ear <strong>in</strong> W (q) to x, i.e., H ν ∈ x ν , imply<strong>in</strong>g<br />

x ∈ H. It follows that H is already determ<strong>in</strong>ed just by z1 <strong>and</strong> z2 (i.e.,<br />

H = 〈x, z1, z2〉). As z3 varies over the other po<strong>in</strong>ts of K we see that<br />

K ⊂ H. We know already that no three po<strong>in</strong>ts of K are coll<strong>in</strong>ear <strong>in</strong> Σ,<br />

<strong>and</strong> s<strong>in</strong>ce no two po<strong>in</strong>ts of K are coll<strong>in</strong>ear <strong>in</strong> P(W (q), x), the l<strong>in</strong>e of Σ<br />

def<strong>in</strong>ed by any two po<strong>in</strong>ts of K does not conta<strong>in</strong> x or H ν . We conclude<br />

that K ∪ {x, H ν } is a hyperoval of the plane H.<br />

Conversely, let O∗ be a hyperoval of a plane H = xν of Σ, with x, Hν ∈<br />

O∗ . We show that K = O∗ \ {x, Hν } is a (0, 2)-set of P(W (q), x).<br />

Clearly no two ponts of K are coll<strong>in</strong>ear <strong>in</strong> P(W (q), x). We now claim<br />

that z ⊥ 1 ∩ z⊥ 2 ∩ z⊥ 2<br />

= ∅ for any three po<strong>in</strong>ts of K. So suppose that<br />

u ∈ (z ⊥ 1 ∩ z ⊥ 2 ∩ z ⊥ 2 ). If uz1, uz2, uz3 are l<strong>in</strong>es of P(W (q), x), then they<br />

are conta<strong>in</strong>ed <strong>in</strong> the plane u ν conta<strong>in</strong><strong>in</strong>g u. But this means the plane u ν<br />

is H <strong>and</strong> u = H ν . This is impossible s<strong>in</strong>ce H ν is not <strong>in</strong> P(W (q), x).


468 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

So suppose, for example, that uz1 is a l<strong>in</strong>e of W (q) not <strong>in</strong> P(W (q), x),<br />

so it must go through the po<strong>in</strong>t x. In this case uz2 <strong>and</strong> uz3 cannot pass<br />

through x <strong>and</strong> must be l<strong>in</strong>es <strong>in</strong> P(W (q), x). S<strong>in</strong>ce u is coll<strong>in</strong>ear with<br />

all three of z1, z2, z3 <strong>in</strong> W (q), it must be that u ∈ 〈z1, z2, z3〉 = H, so<br />

uν = H <strong>and</strong> u = Hν , which is still impossible s<strong>in</strong>ce u ∈ P(W (q), x) but<br />

H ν ∈ P(W (q), x). Hence z ⊥ 1 ∩z⊥ 2 ∩z⊥ 2<br />

= ∅. This means that each po<strong>in</strong>t<br />

of P \ K is coll<strong>in</strong>ear <strong>in</strong> P(W (q), x) with at most two elements of K.<br />

So suppose that u ⊥ ∩K = {w}. Each of the q −1 po<strong>in</strong>ts z of K \{w} is<br />

coll<strong>in</strong>ear <strong>in</strong> P(W (q), x) with a unique one of the q − 2 po<strong>in</strong>ts (dist<strong>in</strong>ct<br />

from u <strong>and</strong> w) of the l<strong>in</strong>e uw of P(W (q), x). And each of the po<strong>in</strong>ts<br />

of uw different from u <strong>and</strong> w is coll<strong>in</strong>ear with just one of the po<strong>in</strong>ts of<br />

K \ {w}, so we have an impossibility. This means that K is a (0, 2)-set<br />

of P(W (q), x).<br />

Let H be any plane conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> for which H ν = x. For each pair<br />

(z1, z2) of po<strong>in</strong>ts of H such that {x, H ν , z1, z2} is a 4-arc, the number<br />

of (0, 2)-sets of P(W (q), x) conta<strong>in</strong><strong>in</strong>g z1 <strong>and</strong> z2 is the number of<br />

hyperovals <strong>in</strong> P G(2, q) conta<strong>in</strong><strong>in</strong>g a given 4-arc.<br />

(e) Consider aga<strong>in</strong> the GQ T ∗ 2 (O) where O is a hyperoval <strong>in</strong> the plane H<br />

of Σ. Let H ′ be a plane different from H <strong>and</strong> meet<strong>in</strong>g H <strong>in</strong> a l<strong>in</strong>e<br />

disjo<strong>in</strong>t from O. Let O ′ be a hyperoval of H ′ disjo<strong>in</strong>t from H. For a<br />

fixed po<strong>in</strong>t x ∈ O, denote by Li, 1 ≤ i ≤ q + 2, the l<strong>in</strong>es of Σ jo<strong>in</strong><strong>in</strong>g<br />

x to the po<strong>in</strong>ts of O ′ . We claim that the set K consist<strong>in</strong>g of the l<strong>in</strong>es<br />

L∗ i = Li \H of T ∗ 2 (O), 1 ≤ i ≤ q+2, is a (0, 2)-set of the po<strong>in</strong>t-l<strong>in</strong>e dual<br />

of T ∗ 2 (O). This means that we need to show that a l<strong>in</strong>e of T ∗ 2 (O) \ K<br />

meets 0 or 2 l<strong>in</strong>es of K. Such a l<strong>in</strong>e through x clearly meets 0 l<strong>in</strong>es<br />

of K. Let L be a l<strong>in</strong>e of Σ meet<strong>in</strong>g H <strong>in</strong> the po<strong>in</strong>t y, y = x. Suppose<br />

L meets the l<strong>in</strong>e M ∈ K <strong>and</strong> that M meets O ′ <strong>in</strong> the po<strong>in</strong>t z. So the<br />

plane 〈L, M〉 meets H ′ <strong>in</strong> a secant l<strong>in</strong>e to O ′ meet<strong>in</strong>g O ′ at z <strong>and</strong> at<br />

some other po<strong>in</strong>t z ′ . So L meets the l<strong>in</strong>es M <strong>and</strong> M ′ = 〈x, z ′ 〉 of K.<br />

S<strong>in</strong>ce no three of the l<strong>in</strong>es of K can be coplanar, the claim is proved.<br />

10.9 The Basic Assumptions<br />

Until notified otherwise we assume that S = (P, B, I) is a GQ with order<br />

(s, t), s > 1, t > 1. If either s ≤ 3 or t ≤ 3, all possibilities for S are<br />

known. Hence we also assume that s ≥ 4 <strong>and</strong> t ≥ 4. We are go<strong>in</strong>g to assume


10.9. THE BASIC ASSUMPTIONS 469<br />

two basic axioms that will allow us eventually to characterize T ∗ 2 (O) where<br />

O is a hyperoval. To beg<strong>in</strong>, we assume that there are appropriately many<br />

(0, 2)-sets.<br />

Basic Assumption 1. (BA1) S conta<strong>in</strong>s a collection B1 of (0, 2)-sets such<br />

that each pair of non-coll<strong>in</strong>ear po<strong>in</strong>ts is conta<strong>in</strong>ed <strong>in</strong> a unique element of B1.<br />

Lemma 10.9.1. Let x ∈ P , L ∈ B, with x ∈ L. There is one po<strong>in</strong>t y0 of L<br />

for which xy0 ∈ B. Let y1, . . . , ys be the other po<strong>in</strong>ts of L <strong>and</strong> let Li be the<br />

(0, 2)-set <strong>in</strong> B1 guaranteed by Basic Assumption 1 to conta<strong>in</strong> x <strong>and</strong> yi. Then<br />

for each choice i, j of two different <strong>in</strong>dices i, j ∈ {1, 2, . . . , s} there exists a<br />

l<strong>in</strong>e M ∈ B such that M ∩ L = ∅ <strong>and</strong> M ∩ Li = ∅ = M ∩ Lj.<br />

Proof. Fix i, j ∈ {1, . . . , s}, i = j. The set y⊥ i ∩ Lj conta<strong>in</strong>s the po<strong>in</strong>t yj.<br />

Hence by the def<strong>in</strong>ition of a (0, 2)-set, |y⊥ i ∩ Lj| = 2. So there exists a second<br />

po<strong>in</strong>t y ′ j ∈ Lj, y ′ j = yj, such that y ′ j ∈ y⊥ i . Aga<strong>in</strong> from the def<strong>in</strong>ition of<br />

(0, 2)-set it follows that there is a second po<strong>in</strong>t y ′ i ∈ y ′ j ∩ Li, y ′ i = yi. Then<br />

y ′ iy′ j ∈ B <strong>and</strong> y′ iy′ j ∩ L = ∅.<br />

Basic Assumption 2. (BA 2) (Usually known as Axiom (T)): Let x ∈ P ,<br />

L ∈ B with x ∈ L. Then there exists s (0, 2)-sets <strong>in</strong> B1 conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> a<br />

po<strong>in</strong>t of L. We denote these sets by L1, . . . , Ls. If M ∈ B, M ∩ L = ∅, <strong>and</strong><br />

if for at least two different <strong>in</strong>dices i, j ∈ {1, . . . , s} we have both M ∩ Li = ∅<br />

<strong>and</strong> M ∩ Lj = ∅, then M ∩ Lk = ∅ for all k ∈ {1, . . . , s}.<br />

From now on we assume that both BA 1 <strong>and</strong> BA 2 are satisfied. Then we<br />

def<strong>in</strong>e an <strong>in</strong>cidence structure S ′ = (P ′ , B ′ , ∈) where P ′ = P , B ′ = B ∪ B1.<br />

By Lemmas 10.8.2 <strong>and</strong> 10.8.3, S ′ is a 2−((s+1)(st+1), s+1, 1)-design with<br />

s odd. The elements of B ′ will be called blocks. In the case where s = q − 1<br />

<strong>and</strong> t = q + 1, such a design has the parameters of aff<strong>in</strong>e 3-space with q even.<br />

A major goal is to prove that this design is the aff<strong>in</strong>e space AG(3, s + 1).<br />

Lemma 10.9.2. Axiom (T) is equivalent to the axiom aris<strong>in</strong>g from Axiom<br />

(T) when the condition M ∩ L = ∅ is omitted.<br />

Proof. Let x, L, L1, . . . , Ls, y1, . . . , ys be given as <strong>in</strong> the hypothesis of<br />

Lemma 10.9.1. Let M ∈ B be such that for certa<strong>in</strong> <strong>in</strong>dices i <strong>and</strong> j, M ∩ Li =<br />

{yi}, M ∩ Lj = {y ′ j } <strong>and</strong> y′ j = yj. So <strong>in</strong> this case M ∩ L = ∅. Suppose that<br />

for an <strong>in</strong>dex r with i = r = j we have M ∩ Lr = ∅. S<strong>in</strong>ce yr ∈ y⊥ j ∩ Lr, it<br />

must be true that |y⊥ j ∩Lr| = 2. So there exists a po<strong>in</strong>t y ′ r ∈ Lr, y ′ r = yr, such<br />

that y ′ r ∈ y⊥ j <strong>and</strong> yjy ′ r = M. S<strong>in</strong>ce y′ ⊥<br />

r ∩ Lj conta<strong>in</strong>s the po<strong>in</strong>t yj ∈ Lj, it


470 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

follows that y ′ ⊥ ′<br />

r conta<strong>in</strong>s a second po<strong>in</strong>t y j ∈ Lj, y ′ j = yj. We have y ′ jy′ r ∈ B,<br />

y ′ jy ′ r ∩ L = ∅, <strong>and</strong> y ′ jy ′ r ∩ M = ∅. Us<strong>in</strong>g Axiom (T) we have y ′ jy ′ r ∩ Lk = ∅, for<br />

all k ∈ {1, . . . , s}. If we consider the po<strong>in</strong>t x <strong>and</strong> the l<strong>in</strong>e y ′ jy′ r , we have three<br />

(0, 2)-sets Lj, Lk, Lr <strong>in</strong> B1 jo<strong>in</strong><strong>in</strong>g x to a po<strong>in</strong>t of y ′ jy′ r . S<strong>in</strong>ce M ∩ y′ jy′ r = ∅<br />

<strong>and</strong> M ∩ Lj = ∅, M ∩ Lk = ∅, it follows from Axiom (T) that M ∩ Lr = ∅, a<br />

contradiction. Hence we may conclude that M ∩Lk = ∅ for all k ∈ {1, . . . , s},<br />

complet<strong>in</strong>g the proof.<br />

From now on S satisfies BA 1 <strong>and</strong> BA 2, <strong>and</strong> we let x, L, L1, . . . , Ls be as<br />

<strong>in</strong> the statement of Axiom (T), <strong>and</strong> y1, . . . , ys as <strong>in</strong> the proof of Lemma 10.9.1.<br />

Lemma 10.9.3. Us<strong>in</strong>g the notation of Axiom (T) suppose that L ∩ M = ∅.<br />

Then {L, M} is a regular pair.<br />

Proof. Then M ∩ Lk = ∅ for all k ∈ {1, . . . , s}. S<strong>in</strong>ce y⊥ k ∩ Lr = ∅, for<br />

all r = k, by the def<strong>in</strong>ition of (0, 2)-set Lr conta<strong>in</strong>s a po<strong>in</strong>t ykr such that<br />

yk ∼ ykr. As we saw <strong>in</strong> the proof of Lemma 10.9.2, the s − 1 po<strong>in</strong>ts ykr,<br />

1 ≤ r ≤ s, r = k, are coll<strong>in</strong>ear. The only way this can happen is for there<br />

to be a l<strong>in</strong>e Nk that conta<strong>in</strong>s the po<strong>in</strong>ts yk <strong>and</strong> ykr, r = k. So there arise<br />

s l<strong>in</strong>es, each of them hav<strong>in</strong>g a po<strong>in</strong>t <strong>in</strong> common with each of L1, . . . , Ls. In<br />

this way we get s2 po<strong>in</strong>ts that are exactly the po<strong>in</strong>ts of Li \ {x}, 1 ≤ i ≤ s.<br />

This means that we have such a l<strong>in</strong>e Nk through each common po<strong>in</strong>t of M<br />

<strong>and</strong> Lk, 1 ≤ k ≤ s. Hence N1, . . . , Ns ∈ {L, M} ⊥ .<br />

Let Ns+1 be the unique l<strong>in</strong>e of B through x meet<strong>in</strong>g L, say at the po<strong>in</strong>t z,<br />

<strong>and</strong> let zk = M ∩ Nk, 1 ≤ k ≤ s. We show that Ns+1 ∩ M = ∅. S<strong>in</strong>ce for each<br />

k we have zk ∈ L1 ∪ L2 ∪ · · ·∪Ls, it must be that zk ∼ x. On the other h<strong>and</strong>,<br />

a po<strong>in</strong>t zk cannot be coll<strong>in</strong>ear with z ∈ Ns+1 ∩ L without forc<strong>in</strong>g a triangle<br />

<strong>in</strong> S, so we only have s − 1 po<strong>in</strong>ts on Ns+1 which might be coll<strong>in</strong>ear with a<br />

po<strong>in</strong>t zk ∈ M. If Ns+1 ∼ M, then any of these s − 1 po<strong>in</strong>ts is coll<strong>in</strong>ear with<br />

at most one of the po<strong>in</strong>ts z1, . . . , zs, a contradiction. Hence M ∩ Ns+1 = ∅.<br />

Hence Ns+1 ∈ {L, M} ⊥ , forc<strong>in</strong>g {L, M} ⊥ = {N1, . . . , Ns, Ns+1}.<br />

Now consider an arbitrary l<strong>in</strong>e Nk ∈ {L, M} ⊥ , k = s + 1. With the<br />

previous notation we have {ykr} = Nk ∩Lr, r ∈ {1, . . . , s}, r = k, {ykr, yk} ⊂<br />

Nk, {yk} = Nk ∩ Lk ∩ L. From the def<strong>in</strong>ition of a (0, 2)-set it follows that for<br />

each r = k there exists another po<strong>in</strong>t y ′ kr ∈ Lk such that ykr ∼ y ′ kr . By Axiom<br />

(T) the l<strong>in</strong>e ykry ′ kr has one po<strong>in</strong>t <strong>in</strong> common with each of the sets Li \ {x},<br />

It follows that there are s − 1 l<strong>in</strong>es ykry ′ kr . Label these l<strong>in</strong>es as K1, . . . , Ks−1,<br />

so that |Ki ∩ Nj| = 1, 1 ≤ i ≤ s − 1, 1 ≤ j ≤ s. Hence apply<strong>in</strong>g Lemma 9.3.5<br />

of TFG we see that |Ki ∩ Ns+1| = 1. Consequently L <strong>and</strong> the s − 1 l<strong>in</strong>es Ki


10.9. THE BASIC ASSUMPTIONS 471<br />

belong to {L, M} ⊥⊥ (s<strong>in</strong>ce M must be one of the Ki). Through the po<strong>in</strong>t x<br />

on Ns+1 there is a l<strong>in</strong>e of B meet<strong>in</strong>g Nk, for 1 ≤ k ≤ s. But there is only<br />

one po<strong>in</strong>t left on each of the Nk available to be coll<strong>in</strong>ear with x <strong>and</strong> these<br />

po<strong>in</strong>ts must be coll<strong>in</strong>ear with each other, so there is a l<strong>in</strong>e K meet<strong>in</strong>g Ns+1<br />

at x <strong>and</strong> meet<strong>in</strong>g each of the l<strong>in</strong>es Nk, 1 ≤ k ≤ s. It follows that<br />

<strong>and</strong> {L, M} is a regular pair.<br />

{L, M} ⊥⊥ = {L, K, K1, . . . , Ks−1},<br />

Note: The grid def<strong>in</strong>ed by x <strong>and</strong> L will be denoted by G(x, L).<br />

We cont<strong>in</strong>ue with the same notation as above: x ∈ P ; L ∈ B; x is not<br />

<strong>in</strong>cident with L <strong>in</strong> S. Us<strong>in</strong>g BA 1 <strong>and</strong> BA 2 we construct a unique grid<br />

G(x, L) with l<strong>in</strong>es N1, . . . , Ns+1 <strong>in</strong> one rul<strong>in</strong>g of G(x, L) with xINs+1 <strong>and</strong><br />

l<strong>in</strong>es {L, K, K1, . . . , Ks−1} <strong>in</strong> the other rul<strong>in</strong>g with xIK. Def<strong>in</strong>e an <strong>in</strong>cidence<br />

structure S ∗ = (P ∗ , B ∗ , ∈) as follows. Put P ∗ = {y ∈ P : y ∈ Ni, Ni ∈<br />

{L, M} ⊥ , 1 ≤ i ≤ s + 1}; B ∗ = {L, M} ⊥ ∪ {L, M} ⊥⊥ ∪ B ∗ 1, where B ∗ 1 is the<br />

set of all (0, 2)-sets <strong>in</strong> B1 conta<strong>in</strong><strong>in</strong>g at least two po<strong>in</strong>ts of P ∗ .<br />

Lemma 10.9.4. The structure S ∗ = (P ∗ , B ∗ , ∈) is an aff<strong>in</strong>e plane of order<br />

s + 1, s odd.<br />

Proof. Clearly |P ∗ | = (s+1) 2 , <strong>and</strong> by Lemma 10.8.2 each block (i.e., element<br />

of B ∗ ) conta<strong>in</strong>s conta<strong>in</strong>s s + 1 po<strong>in</strong>ts of P . We claim that for any two po<strong>in</strong>ts<br />

u, v ∈ P ∗ , the block uv of S ∗ conta<strong>in</strong>s s + 1 po<strong>in</strong>ts of P ∗ . The case u ∼ v<br />

is trivial, so we may assume that at least one of u, v is not on L, say u ∈ L.<br />

If we can show that G(x, L) = G(u, L), it would follow that either v ∈ L,<br />

<strong>in</strong> which case uv is one of the (0, 2)-sets used <strong>in</strong> def<strong>in</strong><strong>in</strong>g P ∗ , or u ∈ L. In<br />

the latter case we may assume that u ∼ v. S<strong>in</strong>ce the blocks uw, w ∈ L<br />

cover all the po<strong>in</strong>ts of P ∗ , <strong>in</strong>clud<strong>in</strong>g v, we have that uv is one of the blocks<br />

def<strong>in</strong><strong>in</strong>g G(u, L) = G(v, L) <strong>and</strong> conta<strong>in</strong>ed <strong>in</strong> P ∗ . Clearly we may assume<br />

that u = x = v. There are three cases.<br />

Case 1 u ∼ x. In this case the (0, 2)-set Lk ∈ B1 def<strong>in</strong>ed by u <strong>and</strong> x<br />

belongs to the po<strong>in</strong>t sets of the grids G(x, L) <strong>and</strong> G(u, L). If u ∈ Nr, then<br />

clearly Nr belongs to both grids. If y ′ r ∈ Nr, y ′ r = u, y′ r = yr, then y ′ ⊥<br />

r<br />

⊥<br />

conta<strong>in</strong>s a<br />

conta<strong>in</strong>s the po<strong>in</strong>t u of Lk. By the def<strong>in</strong>ition of a (0, 2)-set, y ′ r<br />

second po<strong>in</strong>t of Lk, for example u ′ . The l<strong>in</strong>es L, Nr, y ′ u ′ belong to the grids<br />

G(x, L) <strong>and</strong> G(u, L). Consequently we may conclude that the two grids<br />

co<strong>in</strong>cide.


472 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

Case 2 u ∼ x with ux ∩ L = ∅. In this case choose a po<strong>in</strong>t w ∈ P ∗<br />

such that w ∼ x, w ∼ u, w ∈ L. (This is always possible s<strong>in</strong>ce s<strong>in</strong>ce are are<br />

assum<strong>in</strong>g that s ≥ 4.) By Case (1) we have G(x, L) = G(w, L). Us<strong>in</strong>g the<br />

same reason<strong>in</strong>g as <strong>in</strong> Case (1) it follows that G(u, L) = G(w, L). Hence we<br />

have G(x, L) = G(u, L).<br />

Case 3 u ∼ x <strong>and</strong> |ux ∩ L| = 1. In this case choose a po<strong>in</strong>t w ∈ P ∗<br />

such that w ∼ x, w = x <strong>and</strong> wx ∩ L = ∞. From the previous cases it<br />

follows that G(x, L) = G(w, L). On the other h<strong>and</strong>, s<strong>in</strong>ce u is a po<strong>in</strong>t of<br />

G(x, L) = G(w, L) <strong>and</strong> w ∼ u, we have G(u, L) = G(w, L). Aga<strong>in</strong> we may<br />

conclude that G(x, L) = G(w, L).<br />

It is now clear that S ∗ is an aff<strong>in</strong>e plane of order s + 1 (with s odd).<br />

Corollary 10.9.5. If x ∈ P , L ∈ B with x ∈ L, then the substructure of S ′<br />

generated by x <strong>and</strong> L is an aff<strong>in</strong>e plane of order s + 1.<br />

Proof. Let N be the unique l<strong>in</strong>e of B <strong>in</strong>cident with x <strong>and</strong> meeti<strong>in</strong>g L, say<br />

<strong>in</strong> the po<strong>in</strong>t z. With the s rema<strong>in</strong><strong>in</strong>g po<strong>in</strong>ts of L we def<strong>in</strong>e s (0, 2)-sets<br />

L1, . . . , Ls of B1, each of them conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t x. Lemmas 10.9.1, 10.9.3<br />

<strong>and</strong> 10.9.4 f<strong>in</strong>ish the proof.<br />

Corollary 10.9.6. If x ∈ P , L ∈ B1, with x ∈ L <strong>and</strong> |x ⊥ ∩ L| = 2, then the<br />

substructure of S ′ generated by x <strong>and</strong> the l<strong>in</strong>e L, is an aff<strong>in</strong>e plane of order<br />

s + 1.<br />

Proof. If x ⊥ ∩ L = {y1, y2}, then xyi ∈ B. By Cor. 10.9.5 the substructure of<br />

S ′ generated by y1 <strong>and</strong> the l<strong>in</strong>e xy2 is an aff<strong>in</strong>e plane of order s+1. This aff<strong>in</strong>e<br />

plane, , conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> L = y1y2, is also the substructure of S ′ generated<br />

by x <strong>and</strong> L.<br />

Def<strong>in</strong>ition 10.9.7. The aff<strong>in</strong>e plane of Lemma 10.9.4 will be called an aff<strong>in</strong>e<br />

plane of type 1. Each po<strong>in</strong>t <strong>in</strong> such a plane is <strong>in</strong>cident with two l<strong>in</strong>es of B<br />

<strong>and</strong> s (0, 2)-sets of B1. The l<strong>in</strong>es of B <strong>in</strong> such a plane form a (s+1)×(s+1)<br />

grid. Moreover, for each po<strong>in</strong>t x <strong>and</strong> each (0, 2)-set L ∈ B1, x ∈ L, <strong>in</strong> the<br />

plane, we have |x ⊥ ∩ L| = 2.<br />

Lemma 10.9.8. Let α be an aff<strong>in</strong>e plane of type 1 <strong>in</strong> S ′ with po<strong>in</strong>tset Pα.<br />

Let u ∈ P ′ \ Pα <strong>and</strong> let u ⊥ ∩ Pα = {x1, . . . , xs+1}. If x ′ <strong>and</strong> x ′′ are the po<strong>in</strong>ts<br />

of α (the projective closure of α) def<strong>in</strong>ed by the two parallel classes of l<strong>in</strong>es<br />

of B <strong>in</strong> α. Then the set O = {x1, . . . , xs+1, x ′ , x ′′ } is a hyperoval <strong>in</strong> α.


10.9. THE BASIC ASSUMPTIONS 473<br />

Proof. Let u ∈ P ′ \ Pα. The ma<strong>in</strong> axiom for GQ applies to u <strong>and</strong> the l<strong>in</strong>es of<br />

the grid <strong>in</strong> α. So we can put u ⊥ ∩ Pα = {x1, . . . , xs+1}. The l<strong>in</strong>es of the grid<br />

give rise to two parallel classes X ′ <strong>and</strong> X ′′ <strong>in</strong> α, which determ<strong>in</strong>e two po<strong>in</strong>ts<br />

x ′ <strong>and</strong> x ′′ <strong>in</strong> α. We claim that O = {x1, . . . , xs+1, x ′ , x ′′ } is a hyperoval <strong>in</strong> α.<br />

As the set conta<strong>in</strong>s s + 3 po<strong>in</strong>ts, we have only to prove that each l<strong>in</strong>e of α<br />

meets O <strong>in</strong> 0 or 2 po<strong>in</strong>ts.<br />

Clearly the l<strong>in</strong>e x ′ x ′′ of α has only the po<strong>in</strong>ts x ′ <strong>and</strong> x ′′ <strong>in</strong> common with<br />

O. Next consider a l<strong>in</strong>e R ∈ B <strong>in</strong> α. By the ma<strong>in</strong> axiom for GQ (applied to<br />

S) we have |u ⊥ ∩ R| = 1, i.e., u ⊥ ∩ R = {xi}, for a certa<strong>in</strong> i ∈ {1, . . . , s + 1}.<br />

Moreover, R belongs to exactly one of the two parallel classes, say X ′ . Hence<br />

x ′ belongs to R, with R the projective closure of R <strong>in</strong> α. Consequently<br />

|R ∩ O| = |{xi, x ′ }| = 2.<br />

F<strong>in</strong>ally we suppose that R is a l<strong>in</strong>e of α belong<strong>in</strong>g to B1. Then |u ⊥ ∩R| ∈<br />

{), 2} <strong>and</strong> hence |R∩(O \{x ′ , x ′′ })| ∈ {0, 2}. S<strong>in</strong>ce R is an element of neither<br />

of the parallel classes X ′ , X ′′ , there holds for R, the projective closure of R<br />

<strong>in</strong> α, |R ∩ O| ∈ {0, 2}.<br />

Hence we conclude that O is a hyperoval <strong>in</strong> α.<br />

Theorem 10.9.9. Let S be a GQ with parameters (s, s + 2) satisfy<strong>in</strong>g BA<br />

1 <strong>and</strong> BA 2. Then S has a pack<strong>in</strong>g of spreads for which each member is<br />

pivotal. Hence a GQ S1 may be constructed with a biregular po<strong>in</strong>t (∞) for<br />

which S ∼ = P(S1, (∞)). (This just means that (∞) is regular <strong>and</strong> each l<strong>in</strong>e<br />

through (∞) <strong>in</strong> S1 is regular.)<br />

Proof. We def<strong>in</strong>e a relation “” (“is parallel to”) on the set B of l<strong>in</strong>es of S.<br />

For L, M ∈ B, put LM iff there exists an aff<strong>in</strong>e plane α of type 1 such that<br />

L <strong>and</strong> M are parallel l<strong>in</strong>es <strong>in</strong> α, <strong>in</strong> which case we may also write LαM.<br />

Claim 1: Given any po<strong>in</strong>t x <strong>and</strong> any l<strong>in</strong>e L ∈ B, there is exactly one l<strong>in</strong>e<br />

through x which is parallel to L. To see this, count the number of l<strong>in</strong>es of B<br />

which are parallel to L. First note that |P | = (1 + s)(1 + s(s + 2)) = (1 + s) 3 .<br />

If L is a fixed l<strong>in</strong>e, there are (s+1)(s+2)s po<strong>in</strong>ts x not on L <strong>in</strong> P , each giv<strong>in</strong>g<br />

a plane whose po<strong>in</strong>ts are those of the grid G(x, L) with (s+1)s po<strong>in</strong>ts not on<br />

L <strong>and</strong> giv<strong>in</strong>g the same plane. Hence we obta<strong>in</strong> (s+1)(s+2)s/(s+1)s = s+2<br />

planes on L, each two <strong>in</strong>tersection precisely <strong>in</strong> L. Each of these planes has<br />

s l<strong>in</strong>es parallel to L <strong>and</strong> dist<strong>in</strong>ct from L, so together we have s(s + 2) + 1 =<br />

(s + 1) 2 l<strong>in</strong>es parallel to L (<strong>in</strong>clud<strong>in</strong>g L). If two l<strong>in</strong>es M <strong>and</strong> N are both<br />

parallel to L, M = N, then M <strong>and</strong> N are disjo<strong>in</strong>t. Hence the l<strong>in</strong>es parallel<br />

to L cover exactly (s + 1) · (s + 1) 2 po<strong>in</strong>ts, i.e., the set of l<strong>in</strong>es parallel to L<br />

is a spread of S, prov<strong>in</strong>g the Claim 1.


474 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

Claim 2. is an equivalence relation <strong>in</strong> B. S<strong>in</strong>ce reflexivity <strong>and</strong> symmetry<br />

are immediate, we have only to verify transitivity. So suppose L, M, N ∈ B<br />

with LαM <strong>and</strong> MβN. If we exclude the trivial cases, we may suppose that<br />

L, M <strong>and</strong> N are dist<strong>in</strong>ct <strong>and</strong> that α = β. We must show that there is an<br />

aff<strong>in</strong>e plane γ of type 1 such that LγN.<br />

Let x ∈ N. Apply<strong>in</strong>g Cor. 10.9.5 we see that the substructure of S ′<br />

generated by x <strong>and</strong> L is an aff<strong>in</strong>e plane γ of type 1. In γ there is just one<br />

parallel N ′ to L through x. We prove that N = N ′ . Suppose the contrary<br />

<strong>and</strong> let K ∈ {L, M} ⊥ , so K is a l<strong>in</strong>e of α. By the preced<strong>in</strong>g, x is <strong>in</strong>cident<br />

with just one parallel to K. S<strong>in</strong>ce x is not a po<strong>in</strong>t of α (for otherwise α would<br />

co<strong>in</strong>cide with β), x ⊥ conta<strong>in</strong>s s + 1 po<strong>in</strong>ts of α. We show that no one of the<br />

s + 1 l<strong>in</strong>es of B jo<strong>in</strong><strong>in</strong>g x to a po<strong>in</strong>t of α can be parallel to K.<br />

So let R be a l<strong>in</strong>e of B through x meet<strong>in</strong>g the plane α at the po<strong>in</strong>t y. In<br />

α, y is <strong>in</strong>cident with just one parallel K ′ to K. If RK, y would be <strong>in</strong>cident<br />

with two parallels K ′ <strong>and</strong> R to K, a contradiction. Also, the l<strong>in</strong>e N (resp.,<br />

N ′ ) cannot be parallel to K, otherwise we would have two parallels, namely<br />

M <strong>and</strong> K (resp., L <strong>and</strong> K) through M ∩ K (resp., L ∩ K) to N (resp.,<br />

N ′ ). Besides, we notice that the l<strong>in</strong>e N (resp., N ′ ) has no po<strong>in</strong>t <strong>in</strong> common<br />

with α, s<strong>in</strong>ce otherwise α <strong>and</strong> β would co<strong>in</strong>cide. So none of the s + 3 l<strong>in</strong>es<br />

through x, described above, is parallel to K. S<strong>in</strong>ce x is <strong>in</strong>cident with exactly<br />

s + 3 l<strong>in</strong>es <strong>and</strong> s<strong>in</strong>ce one of these l<strong>in</strong>es has to be a parallel to K, we have<br />

a contradiction. Hence N = N ′ , so is an equivalence relation with s + 3<br />

equivalence classes <strong>in</strong> B, each consist<strong>in</strong>g of (s+1) 2 elements. In other words,<br />

is a pack<strong>in</strong>g of spreads.<br />

Claim 3: Each equivalence class of is a regular spread, which is <strong>in</strong> fact<br />

pivotal for the pack<strong>in</strong>g . Let R be an equivalence class of l<strong>in</strong>es with respect<br />

to . We must prove for L, M ∈ R that {L, M} ⊥⊥ ⊂ R <strong>and</strong> |{L, M} ⊥⊥ | =<br />

s + 1. S<strong>in</strong>ce L, M ∈ R, there exists an aff<strong>in</strong>e plane α of type 1 such that<br />

LαM. The plane α conta<strong>in</strong>s s + 1 parallels to L, all of them belong<strong>in</strong>g<br />

to {L, M} ⊥⊥ . In other words, |{L, M} ⊥⊥ | = s + 1, <strong>and</strong> from the def<strong>in</strong>ition<br />

of parallelism <strong>in</strong> B it follows that {L, M} ⊥⊥ ⊂ R. This shows that R is a<br />

regular spread.<br />

If L1 <strong>and</strong> L2 are dist<strong>in</strong>ct l<strong>in</strong>es of R, say conta<strong>in</strong>ed <strong>in</strong> the plane α, the<br />

s + 1 l<strong>in</strong>es of {L1, L2} ⊥ are also conta<strong>in</strong>ed <strong>in</strong> α <strong>and</strong> hence belong to one<br />

equivalence class of . It follows that is a pack<strong>in</strong>g of spreads of S for which<br />

each member of the pack<strong>in</strong>g is pivotal. Hence we can constrict about any<br />

one of the equivalence classes <strong>and</strong> get a GQ S1 of order s + 1 with a regular<br />

po<strong>in</strong>t (∞) for which S ∼ = P(S1, (∞)). Moreover, each l<strong>in</strong>e through (∞) <strong>in</strong>


10.10. PARALLELISM 475<br />

S1 is regular.<br />

10.10 Parallelism<br />

We cont<strong>in</strong>ue to assume that S is a GQ with parameters (s, s+2) satisfy<strong>in</strong>g the<br />

basic BA 1 <strong>and</strong> Axiom (T). In the previous section we def<strong>in</strong>ed an equivalence<br />

relation on the set B of l<strong>in</strong>es of S so that each equivalence class is a regular<br />

spread, the collection of equivalence classes was a pack<strong>in</strong>g of spreads, <strong>and</strong><br />

each member of the pack<strong>in</strong>g is pivotal for the pack<strong>in</strong>g. We now extend the<br />

notion of parallelism.<br />

10.10.1 Parallelism <strong>in</strong> the set of aff<strong>in</strong>e planes of type 1<br />

Consider an aff<strong>in</strong>e plane α of type 1 <strong>in</strong> S ′ <strong>and</strong> let x ∈ P be such that x<br />

does not belong to α. The set x ⊥ conta<strong>in</strong>s s + 1 po<strong>in</strong>ts of α, so there exist<br />

two l<strong>in</strong>es L, M ∈ B <strong>in</strong>cident with x but hav<strong>in</strong>g no po<strong>in</strong>t <strong>in</strong> common with α.<br />

If follows from Cor. 10.9.5 that the substructure of S ′ generated by L <strong>and</strong><br />

M is an aff<strong>in</strong>e plane β of type 1. We claim that α <strong>and</strong> β have no po<strong>in</strong>t <strong>in</strong><br />

common. To prove this, suppose that y ∈ (α ∩ β). The elements of B <strong>in</strong> β<br />

belong to two different parallel classes. These parallel classes co<strong>in</strong>cide with<br />

the parallel classes conta<strong>in</strong><strong>in</strong>g the elements of B <strong>in</strong> α (the s + 1 elements<br />

of B which are <strong>in</strong>cident with x <strong>and</strong> meet α, def<strong>in</strong>e the other s + 1 parallel<br />

classes). Construct<strong>in</strong>g the two l<strong>in</strong>es N1, N2 through y which belong to these<br />

classes, we note that N1, N2 are l<strong>in</strong>es of both α <strong>and</strong> β. Consequently α <strong>and</strong><br />

β co<strong>in</strong>cide <strong>and</strong> x is a po<strong>in</strong>t of α, a contradiction. So we conclude that α <strong>and</strong><br />

β have no po<strong>in</strong>ts <strong>in</strong> common.<br />

Now we are able to def<strong>in</strong>e a parallel relation for aff<strong>in</strong>e planes of type 1.<br />

Def<strong>in</strong>ition 10.10.2. Parallelism <strong>in</strong> the set of aff<strong>in</strong>e planes of type 1.<br />

Two aff<strong>in</strong>e planes α <strong>and</strong> β of type 1 are said to be parallel (write αβ) if <strong>and</strong><br />

only if there exist l<strong>in</strong>es L, M ∈ B <strong>in</strong> α, L ′ , M ′ ∈ B <strong>in</strong> β, with |L ∩ M| = 1,<br />

|L ′ ∩ M ′ | = 1, LL ′ <strong>and</strong> MM ′ .<br />

S<strong>in</strong>ce “” is an equivalence relation <strong>in</strong> B, it follows that the new parallelism<br />

on planes of type 1 is also an equivalence relation. This relation def<strong>in</strong>es<br />

a partition <strong>in</strong> the set of all aff<strong>in</strong>e planes of type 1 <strong>in</strong> S ′ . It follows from the<br />

preced<strong>in</strong>g paragraphs that each equivalence class determ<strong>in</strong>es a partition of<br />

the po<strong>in</strong>t set of S ′ .


476 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

Suppose that αβ, α = β, <strong>and</strong> that x is a po<strong>in</strong>t of β. There exist s + 1<br />

l<strong>in</strong>es of B conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> a po<strong>in</strong>t of α. The two rema<strong>in</strong><strong>in</strong>g l<strong>in</strong>es of B<br />

through x lie <strong>in</strong> β. The po<strong>in</strong>t x is jo<strong>in</strong>ed to the po<strong>in</strong>ts of α which are not <strong>in</strong><br />

x ⊥ by s 2 + s (0, 2)-sets of B1, while the s rema<strong>in</strong><strong>in</strong>g (0, 2)-sets through x lie<br />

<strong>in</strong> β.<br />

Lemma 10.10.3. If two type 1 planes <strong>in</strong> S do not have a common block,<br />

then they are parallel.<br />

Proof. Let α, β be non parallel planes of type 1. The planes parallel to α<br />

are denoted by α = α1, α2, . . . , αs+1. Clearly β = αi for all i so the po<strong>in</strong>ts<br />

of αi ∩ β are coll<strong>in</strong>ear <strong>in</strong> S ′ . Hence αi <strong>and</strong> β have at most s + 1 po<strong>in</strong>ts <strong>in</strong><br />

common. S<strong>in</strong>ce β has (s + 1) 2 po<strong>in</strong>ts <strong>and</strong> s<strong>in</strong>ce α1, . . . , αs+1 partition the<br />

po<strong>in</strong>ts of P ′ , it follows that αi <strong>and</strong> β have exactly s + 1 po<strong>in</strong>ts <strong>in</strong> common<br />

for 1 ≤ i ≤ s + 1. Hence αi <strong>and</strong> β have a block <strong>in</strong> common. In particular,<br />

|α ∩ β| = s + 1.<br />

Let αα ′ , α = α ′ , <strong>and</strong> let α β. Further, let L, L ′ be the common blocks<br />

of α, α ′ , respectively. S<strong>in</strong>ce L ∩ L ′ = ∅, the blocks L, L ′ are parallel <strong>in</strong> β.<br />

Hence they both belong to B or to B1.<br />

Let α β, αα ′ , ββ ′ with α, α ′ , β, β ′ planes of type 1. The common<br />

block of α <strong>and</strong> β (resp., α ′ <strong>and</strong> β ′ ) is denoted by L (resp., L ′ ). Let γ,<br />

α = γ = β, be a plane of type 1 conta<strong>in</strong><strong>in</strong>g L. We claim that L ′ is conta<strong>in</strong>ed<br />

<strong>in</strong> a plane γ ′ parallel to γ. Let x ∈ L ′ <strong>and</strong> let γ ′ be the plane conta<strong>in</strong><strong>in</strong>g x<br />

<strong>and</strong> parallel to γ. The block common to γ ′ <strong>and</strong> α (resp., γ ′ <strong>and</strong> β) is denoted<br />

by M (resp., N). We have LαM <strong>and</strong> LβN. If γ = γ ′ then M = N; if<br />

γ = γ ′ , then M ∩ N = ∅. Hence M <strong>and</strong> N are parallel <strong>in</strong> γ ′ . Let M ′ (resp.,<br />

N ′ ) be the common block of γ ′ <strong>and</strong> α ′ (resp., γ ′ <strong>and</strong> β ′ ). Then Nγ ′N ′ <strong>and</strong><br />

Mγ ′M ′ . Hence M ′ γ ′N ′ . S<strong>in</strong>ce x ∈ M ′ ∩ N ′ we have M ′ = N ′ . Now it is<br />

clear that M ′ = N ′ = L ′ , so γ ′ conta<strong>in</strong>s L ′ .<br />

We have proved the follow<strong>in</strong>g lemma (where all planes are of type 1).<br />

Lemma 10.10.4. Let α <strong>and</strong> α ′ be dist<strong>in</strong>ct parallel planes, β <strong>and</strong> β ′ be dist<strong>in</strong>ct<br />

parallel planes, <strong>and</strong> α β. Put α ∩ β = L <strong>and</strong> α ′ ∩ β ′ = L ′ . If γ is a plane<br />

through L dist<strong>in</strong>ct from both α <strong>and</strong> β, then there is a plane γ ′ through L ′ that<br />

is parallel to γ.<br />

This permits us to def<strong>in</strong>e a parallelism <strong>in</strong> B1. For L, M ∈ B1, def<strong>in</strong>e<br />

LM provided there exist aff<strong>in</strong>e planes α, α ′ , β, β ′ of type 1 such that<br />

α ∩ β = L, α ′ ∩ β ′ = M, αα ′ <strong>and</strong> ββ ′ . Clearly the relation “” is reflexive


10.10. PARALLELISM 477<br />

<strong>and</strong> symmetric. Transitivity can be seen as follows. Let L, M, N ∈ B1 with<br />

LM, MN, <strong>in</strong> which case there are type 1 aff<strong>in</strong>e planes α, α ′ , β, β ′ , π, pi ′ ,<br />

ν, ν ′ with αα ′ , ββ ′ , ππ ′ , νν ′ , such that α ∩ β = L, α ′ ∩ β ′ = M = π ∩ ν,<br />

N = π ′ ∩ ν ′ . Lett<strong>in</strong>g π, ν, α ′ play the respective roles of α, β, γ <strong>in</strong> the<br />

previous lemma forces the existence of some type 1 plane α ′′ which is parallel<br />

to α ′ <strong>and</strong> which conta<strong>in</strong>s N. Likewise, lett<strong>in</strong>g β ′ play the role of γ forces the<br />

existence of some type 1 aff<strong>in</strong>e plane β ′′ which is parallel to β ′ <strong>and</strong> which<br />

conta<strong>in</strong>s N. In fact N = α ′′ ∩ β ′′ . By the transitivity of “” on type 1 aff<strong>in</strong>e<br />

planes, αα ′′ <strong>and</strong> ββ ′′ . Hence LN <strong>and</strong> we have the follow<strong>in</strong>g:<br />

Lemma 10.10.5. “” is an equivalence relation on B1.<br />

Corollary 10.10.6. Each parallel class of B1 partitions the po<strong>in</strong>ts ofP ′ .<br />

Proof. Let L ∈ B1, x ∈ P ′ , <strong>and</strong> let let α, β be dist<strong>in</strong>ct type 1 aff<strong>in</strong>e planes<br />

which meet at L. Furthermore, let α ′ , β ′ be dist<strong>in</strong>ct type 1 aff<strong>in</strong>e planes<br />

conta<strong>in</strong><strong>in</strong>g x such that such that αα ′ , ββ ′ . Put L ′ = α ′ ∩ β ′ . So x ∈ L ′<br />

<strong>and</strong> LL ′ . Suppose there is some L ′′ ∈ B1 which conta<strong>in</strong>s s <strong>and</strong> which is<br />

parallel to L. this forces the existence of planes γ <strong>and</strong> δ through LO ′′ with<br />

γα, δβ. but as classes of parallel planes partition P ′ , γ = α ′ , δ = β ′ .<br />

Hence L ′′ = L ′ . Hence there is exactly one member of B1 parallel to L which<br />

conta<strong>in</strong>s x (namely L ′ ). Observe that if x ∈ L, then L = L ′ .<br />

Corollary 10.10.7. If two members of B1 are parallel as l<strong>in</strong>es <strong>in</strong> a type 1<br />

aff<strong>in</strong>e plane, then they are parallel under as def<strong>in</strong>ed above.<br />

Proof. Let L, M ∈ B1 with LαM for some type 1 aff<strong>in</strong>e plane α. Let β<br />

be some other type 1 plane through L; let y be a po<strong>in</strong>t of M, let β ′ be the<br />

type 1 aff<strong>in</strong>e plane through y <strong>and</strong> parallel to β, <strong>and</strong> let M ′ be the common<br />

block on α <strong>and</strong> β ′ . Ovserve then that M ′ L, <strong>and</strong> hence M ′ αL. This forces<br />

M ′ = M, <strong>and</strong> hence LM.<br />

Lemma 10.10.8. Let α be a type 1 aff<strong>in</strong>e plane which does not conta<strong>in</strong> the<br />

block L. Then α <strong>and</strong> L have no common po<strong>in</strong>t if <strong>and</strong> only if L belongs to<br />

one of the parallel classes def<strong>in</strong>ed by the blocks of α.<br />

Proof. First assume that L is parallel to some block M ⊂ α. If L, M ∈ B,<br />

then they are parallel <strong>in</strong> an aff<strong>in</strong>e plane which meets α exactly at M <strong>and</strong><br />

hence L has no po<strong>in</strong>t of α. If L, M ∈ B1 then there are type 1 aff<strong>in</strong>e planes<br />

γ, γ ′ , δ, δ ′ , with γγ ′ , δδ ′ , L = γ ∩ δ, M = γ ′ ∩ δ ′ . Suppose L met α <strong>in</strong> a


478 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

po<strong>in</strong>t x. This would force γ to meet α <strong>in</strong> a block N through x. If N met M<br />

then γ could not be parallel to γ ′ , but NαM implies NM, which implies<br />

NL, a contradiction. Hence L must miss α.<br />

So now suppose that α <strong>and</strong> L have no common po<strong>in</strong>ts. Then L is <strong>in</strong> a<br />

parallel class conta<strong>in</strong><strong>in</strong>g a block of α as follows. If L ∈ B, choose x to be any<br />

po<strong>in</strong>t of α. If L ∈ B1, choose x to be a po<strong>in</strong>t of α coll<strong>in</strong>ear <strong>in</strong> S with two<br />

po<strong>in</strong>ts of L. Let β be the type 1 aff<strong>in</strong>e plane generated by L <strong>and</strong> x, <strong>and</strong> let<br />

M = α ∩ β. Because L misses σ, LβM, <strong>and</strong> hence LM.<br />

This lemma has the follow<strong>in</strong>g immediate corollary.<br />

Corollary 10.10.9. Parallel aff<strong>in</strong>e planes of type 1 def<strong>in</strong>e the same s + 2<br />

parallel classes of blocks.<br />

Corollary 10.10.10. If α <strong>and</strong> β are type 1 aff<strong>in</strong>e planes such that two<br />

dist<strong>in</strong>ct <strong>in</strong>tersect<strong>in</strong>g blocks L <strong>and</strong> M of α are parallel, respectively, to two<br />

dist<strong>in</strong>ct <strong>in</strong>tersect<strong>in</strong>g blocks L ′ , M ′ of β, then αβ.<br />

Recall that s<strong>in</strong>ce all GQ with parameters (3, t) are known, we are assum<strong>in</strong>g<br />

that s > 3.<br />

Lemma 10.10.11. Let y1z1u1 <strong>and</strong> y2z2u2 be two triangles of a type 1 aff<strong>in</strong>e<br />

plane α which are perspective from the po<strong>in</strong>t w, with w, y1, z1, u1, y2, z2, u2<br />

all dist<strong>in</strong>ct po<strong>in</strong>ts. Also assume that y1z1, y1u1, z1u1, y2z2, y2u2, z2u2, wy1,<br />

wz1, wu1 are all dist<strong>in</strong>ct l<strong>in</strong>es. If y1z1αy2z2 <strong>in</strong> B <strong>and</strong> z1u1αz2u2 <strong>in</strong> B, then<br />

u1y1αu2y2.<br />

Proof. S<strong>in</strong>ce members of B are l<strong>in</strong>es of S, no three of them can form a<br />

triangle. This forces u1y1, u2y2 ∈ B1. Let L ∈ B be a l<strong>in</strong>e meet<strong>in</strong>g α at<br />

the po<strong>in</strong>t w <strong>and</strong> construct a type 1 aff<strong>in</strong>e plane β1 through u1y1 that meets<br />

L at some po<strong>in</strong>t w ′ different from w. Count the different planes that could<br />

be constructed <strong>in</strong> this manner. For p ∈ u1y1 there is a unique po<strong>in</strong>t w1 of L<br />

which is coll<strong>in</strong>ear <strong>in</strong> S with p1. As u1y1 is a (0, 2)-set, there is a unique other<br />

po<strong>in</strong>t p2 ∈ u1y1 which is also coll<strong>in</strong>ear with w1. If w is coll<strong>in</strong>ear <strong>in</strong> S with<br />

both u1 <strong>and</strong> y1, this leaves s−1<br />

2 pairs of po<strong>in</strong>ts <strong>in</strong> u1y1 which are coll<strong>in</strong>ear<br />

with a po<strong>in</strong>t of L \ {w}. If w is not coll<strong>in</strong>ear <strong>in</strong> S with both u1 <strong>and</strong> y1, this<br />

leaves w+1<br />

2 pairs of po<strong>in</strong>ts <strong>in</strong> u1y1 which are coll<strong>in</strong>ear with a po<strong>in</strong>t of L \ {w}.<br />

This means that there are at least s−1<br />

2 different β1 which can be constructed<br />

<strong>in</strong> this manner. Similarly there are at least s−3 ways to construct a type 1<br />

2<br />

aff<strong>in</strong>e plane β2 through u2y2 which meets L \ {w, w1} <strong>in</strong> a po<strong>in</strong>t w2.


10.10. PARALLELISM 479<br />

If β1β2, then u1y1u2y2. Assume that β1 <strong>and</strong> b2 are not parallel. Suppose<br />

(hop<strong>in</strong>g for a contradiction) that w2z2w1z1. This would force w2z2y2w1z1y1<br />

<strong>and</strong> w2z2u2w1z1u1. It has been shown that when two parallel planes are<br />

<strong>in</strong>tersected with a third plane, the result<strong>in</strong>g l<strong>in</strong>es of <strong>in</strong>tersection are parallel.<br />

Specifically, (Ly1 ∩ w1z1y1)(Ly1 ∩ w2z2y2), i.e., y1w1y2w2. Similarly,<br />

u1w1u2w2. By the previous corollary, β1β2, a contradiction. Hence<br />

w2z2 w1z1. As w, z1, z2 are all coll<strong>in</strong>ear <strong>in</strong> the plane α, this argument shows<br />

also that w1y1 w2y2 <strong>and</strong> w1u1 w2u2, because either of these parallelisms<br />

would imply w1z1w2z2.<br />

Label these po<strong>in</strong>ts of <strong>in</strong>tersection: z3 = w1z1 ∩ w2z2; u3 = w1u1 ∩ w2u2,<br />

y3 = w1y1 ∩ w2y2. Recall that by hypothesis u1z1u2z2, <strong>and</strong> observe that<br />

u3z3 is the l<strong>in</strong>e of <strong>in</strong>tersection of the planes u1z1w1 <strong>and</strong> u2z2w2. From this<br />

u3z3 ∩ u1z1 = ∅ = u3z3 ∩ u2z2; i.e., u3z3u1z1w1u1z1 <strong>and</strong> u3z3u2z2w2u2z2. Thus<br />

u1z1u3z3, <strong>and</strong> similarly y1z1y3z3.<br />

This forces u3z3 <strong>and</strong> y3z3 to be members of B, <strong>and</strong> hence by the previous<br />

corollary, αu3z3y3. F<strong>in</strong>ally, observe that the plane u1y1w1 hits the parallel<br />

planes α <strong>and</strong> u3z3y3 <strong>in</strong> the respective parallel l<strong>in</strong>es y2u2 <strong>and</strong> y3u3. By<br />

transitivity, y1u1y2u2.<br />

Lemma 10.10.12. Let α <strong>and</strong> β be dist<strong>in</strong>ct parallel type 1 aff<strong>in</strong>e planes. Let<br />

u be a po<strong>in</strong>t not <strong>in</strong> α or β, <strong>and</strong> let L1, L2 be dist<strong>in</strong>ct blocks through u which<br />

do not belong to the parallel classes of blocks def<strong>in</strong>ed by α or β. Let yi be<br />

the common po<strong>in</strong>t of α <strong>and</strong> Li, <strong>and</strong> let zi be the common po<strong>in</strong>t of Li <strong>and</strong> β.<br />

Then y1y2z1z2.<br />

Proof. S<strong>in</strong>ce αβ, y1y2∩z1z2 = ∅. If y1y2 ∈ B, then the po<strong>in</strong>ts u, y1, y2, z1, ζ2<br />

all belong to a type 1 aff<strong>in</strong>e plane, <strong>in</strong> which case y1y2z1z2. Similarly, z1z2 ∈ B<br />

implies y1y2z1z2. Assume that neither y1y2 nor z1z2 is <strong>in</strong> B. For i = 1, 2 let<br />

Mi ∈ B be a l<strong>in</strong>e through y1 such that M1 meets M2 at some po<strong>in</strong>t w. Let w ′<br />

be the po<strong>in</strong>t of β on uw, <strong>and</strong> observe that M1u ∩ β = z1w ′ , M2u ∩ β = z2w ′ .<br />

As αβ, it must be that M1M1uz1w ′ <strong>and</strong> M2M2uz2w ′ . S<strong>in</strong>ce M1, M2 ∈ B,<br />

it follows that z1w ′ , z2w ′ ∈ B.<br />

Now choose a l<strong>in</strong>e L ∈ B through u which meets both α <strong>and</strong> β but misses<br />

both z1w ′ <strong>and</strong> z2w ′ . If L meets z1z2, then the type 1 aff<strong>in</strong>e plane conta<strong>in</strong><strong>in</strong>g<br />

L <strong>and</strong> z1z2 must meet α at exactly the l<strong>in</strong>e y1y2 (as αβ). In this case<br />

y1y2z1z2, <strong>and</strong> the proof is completed. So now assume that L misses z1z2<br />

<strong>and</strong> let u ′ = L ∩ β. As shown with β2 <strong>in</strong> the previous lemma, there are s−3<br />

2<br />

planes different from α which conta<strong>in</strong> y1y2 <strong>and</strong> a pont of L \ {u ′ }. Let γ be<br />

such a plane.


480 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

If u ∈ γ, then as above u, y1, y2, z1, z2 are all coplanar (here <strong>in</strong> γ) <strong>and</strong><br />

hence y1y2z1z2. So further assume that u is not <strong>in</strong> γ, <strong>and</strong> let u ′′ = L ∩ γ.<br />

Let v1 = y1u ′′ ∩ β, v2 = y2u ′′ ∩ β, w ′′ = wu ′′ ∩ β. To see that such po<strong>in</strong>ts<br />

actually exist, use Lemma 10.10.8 applied to β <strong>and</strong> observe that the parallel<br />

classes of β are the same as those of α. The plane u ′′ wy1 conta<strong>in</strong>s the l<strong>in</strong>es<br />

M1 of α <strong>and</strong> v1w ′′ of β. Hence M1v1w ′′ <strong>and</strong> likewise M2v2w ′′ , forc<strong>in</strong>g v1w ′′ ,<br />

v2w ′′ ∈ B. By transitivity, z1w ′ v1w ′′ <strong>and</strong> z2w ′ v2w ′′ .<br />

Now y1 ∈ z1u implies y1 ∈ Lz1 which implies y1u ′′ ⊂ Lz1, <strong>and</strong> hence<br />

v1 ∈ Lz1. Clearly u ′ <strong>and</strong> z1 are <strong>in</strong> Lz1. but as these three po<strong>in</strong>ts (v1, z1 <strong>and</strong><br />

u ′ ) are also <strong>in</strong> β., they must lie <strong>in</strong> a common block. Similarly, v2, z2, u ′ are<br />

on a common block, as are w ′′ , w ′ , u ′ .<br />

The two triangles frome by v1, v2, w ′′ <strong>and</strong> z1, z2, w ′ are perspective from<br />

the po<strong>in</strong>t u ′ . S<strong>in</strong>ce z1w ′ v1w ′′ <strong>and</strong> z2w ′ v2w ′′ , Lemma 10.10.11 <strong>in</strong>dicates that<br />

z1z2v1v2. As γ meets α <strong>and</strong> β <strong>in</strong> parallel l<strong>in</strong>es, u1yu2v1v2. Therefore<br />

y1y2z1z2.<br />

We are f<strong>in</strong>ally ready for the ma<strong>in</strong> theorem giv<strong>in</strong>g a characterization of<br />

T ∗ 2 (O), s + 1 even, which we give for both s <strong>and</strong> t greater than 3, s<strong>in</strong>ce<br />

otherwise the GQ is known to be unique (up to duality).<br />

10.11 A Characterization of T ∗ 2 (O), s + 1 even<br />

Theorem 10.11.1. Let S = (P, B, I) be a GQ with parameters (s, s + 2),<br />

s > 3, t > 3. Suppose that S has a set B1 of (0, 2)-sets such that every<br />

pair of non-coll<strong>in</strong>ear po<strong>in</strong>ts is conta<strong>in</strong>ed <strong>in</strong> a unique member of B1, <strong>and</strong> such<br />

that Axiom (T) holds. It follows that S is isomorphic to T ∗ 2 (O+ ) for some<br />

hyperoval O + .<br />

Proof. The hypotheses of the theorem have already been used to show that<br />

S satisfies a long list of properties, <strong>and</strong> it particular s is odd. Let S ′ =<br />

(P ′ , B ′ , I ′ ) be def<strong>in</strong>ed as above. The ma<strong>in</strong> goal is to show that S ′ is aff<strong>in</strong>e<br />

three-space over Fq with q = 2 e .<br />

From the construction, we know that for any two po<strong>in</strong>ts x, y of P , either<br />

x <strong>and</strong> y lie <strong>in</strong> a unique l<strong>in</strong>e of B or a unique (0, 2)-set of B1. The two<br />

block parallelisms have been shown to be equivalence relations on B <strong>and</strong> B1,<br />

respectively. Jo<strong>in</strong>tly they form an equivalence relation on B ′ . Let x ∈ P ′ ,<br />

L ∈ B ′ . We have shown that there exists a unique M ∈ B ′ through x which<br />

is parallel to L.


10.12. REGULAR OVOIDS IN P(T2(O), L) 481<br />

Let L <strong>and</strong> M be parallel blocks with x1 ∈ L, x2 ∈ M. Let w ∈ x1x2 \<br />

{x1, x2}, x ′ 1 ∈ L \ {x1}. Let α be an aff<strong>in</strong>e plane of type 1 through x1x ′ 1 but<br />

not through w. Let β be the type 1 aff<strong>in</strong>e plane through x2 parallel to α.<br />

Us<strong>in</strong>g Lemma 10.10.8 we see that M ⊂ β <strong>and</strong> there is a po<strong>in</strong>t x ′ 2 = wx′ ∩ β.<br />

S<strong>in</strong>ce M is the unique l<strong>in</strong>e of β which is parallel to L <strong>and</strong> which conta<strong>in</strong>s<br />

x2, it follows that M = x2x ′ 2 , i.e., it is shown that for any x′ ∈ L \ {x1} <strong>and</strong><br />

w ∈ x1x2 \ {x1, x2}, the block wx ′ meets M. This shows that S ′ satisfies (an<br />

aff<strong>in</strong>e version of) the Axiom of Veblen.<br />

Clearly each block conta<strong>in</strong>s more than 2 po<strong>in</strong>ts.<br />

By Section 1.1.3 we see that S ′ is the design of po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of an<br />

aff<strong>in</strong>e space. S<strong>in</strong>ce |P ′ | = (s + 1) 3 , the design S ′ is the design of po<strong>in</strong>ts <strong>and</strong><br />

l<strong>in</strong>es of AG(3, s + 1). Hence S is embedded <strong>in</strong> the aff<strong>in</strong>e space AG(3, s + 1),<br />

s + 1 odd. By a result of J. A. Thas (Section 7.3 <strong>in</strong> [PT84]) we know that<br />

either S ∼ = P(W (s + 1), x) or S ∼ = T ∗ 2 (O) for some hyperoval O. S<strong>in</strong>ce<br />

s + 1 is even, we have W (s + 1) ∼ = T2(O ′ ) with O ′ a conic. It follows that<br />

P(W (s + 1), x) ∼ = P(T2(O ′ ), (∞)) ∼ = T ∗ 2 (O′ ∪ {N}) with N the nucleus of<br />

the conic O ′ . We conclude that S is always isomorphic to a T ∗ 2 (O) with O a<br />

hyperoval.<br />

10.12 Regular <strong>Ovoids</strong> <strong>in</strong> P(T2(O), L)<br />

Let O + be a hyperoval (so q = 2 e ) <strong>in</strong> the plane π∞ embedded as a hyperplane<br />

<strong>in</strong> Σ = P G(3, q), <strong>and</strong> let P ′ be the set of po<strong>in</strong>ts Σ \ π∞. Let x, y be dist<strong>in</strong>ct<br />

po<strong>in</strong>ts of O + , <strong>and</strong> put Ox = O + \ {x}, O − xy = O + \ {x, y}. Then O − xy is a<br />

q-arc conta<strong>in</strong>ed <strong>in</strong> a unique hyperoval O + . Also put L = xy. Then π∞ is a<br />

biregular po<strong>in</strong>t of T2(Ox). Let Oxy denote the set of planes of Σ conta<strong>in</strong><strong>in</strong>g<br />

x but not y, so naturally Oyx denotes the set of planes of Σ conta<strong>in</strong><strong>in</strong>g y but<br />

not x. B − xy is the set of l<strong>in</strong>es of Σ not conta<strong>in</strong>ed <strong>in</strong> π∞ <strong>and</strong> meet<strong>in</strong>g π∞ <strong>in</strong> a<br />

po<strong>in</strong>t of the q-arc O − xy. If we exp<strong>and</strong> Sx = T2(Ox) about the regular l<strong>in</strong>e L,<br />

we get a GQ(q + 1, q − 1) with the follow<strong>in</strong>g description.<br />

Construction 10.12.1. S− xy = S(Oxy) = (P − xy , B− xy , I− xy ) is the GQ with<br />

parameters (q + 1, q − 1) whose po<strong>in</strong>ts are the po<strong>in</strong>ts of P − x,y = P + ∪ Oxy ∪ Oyx<br />

<strong>and</strong> whose l<strong>in</strong>es are the l<strong>in</strong>es of B− xy . Incidence I− xy is just that <strong>in</strong>herited from<br />

<strong>in</strong>cidence <strong>in</strong> Σ.<br />

We now want to consider the reverse problem: How to recover Sx from<br />

S − xy by constrict<strong>in</strong>g about a certa<strong>in</strong> ovoid. It is easy to see that Oxy <strong>and</strong> Oyx


482 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

are both ovoids of S − xy . Let π1, π2 ∈ Oxy. So π1 ∩ π2 = M is a l<strong>in</strong>e through<br />

x but not through y. First suppose that M is not conta<strong>in</strong>ed <strong>in</strong> π∞. Then<br />

πi ∩ O − xy = zi, i = 1, 2, with z1 = z2. Each of the q po<strong>in</strong>ts of M ∗ = M \ π∞ is<br />

coll<strong>in</strong>ear with πi on the l<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g it <strong>and</strong> zi. It is easy to see that if M is<br />

any l<strong>in</strong>e through x but not conta<strong>in</strong>ed <strong>in</strong> π∞, then the q planes through M not<br />

conta<strong>in</strong><strong>in</strong>g y are all coll<strong>in</strong>ear with the q po<strong>in</strong>ts of M ∗ = M \ π∞. Analogous<br />

remarks could be made about l<strong>in</strong>es M ′ through y but not conta<strong>in</strong>ed <strong>in</strong> the<br />

plane π∞. Now suppose that M = π1 ∩ π2 lies <strong>in</strong> π∞ <strong>and</strong> conta<strong>in</strong>s the po<strong>in</strong>t<br />

z ∈ O − xy , i.e., M = zx. And let M ′ be the l<strong>in</strong>e M ′ = zy. Then the planes<br />

different from π∞ through M form a span whose trace is the set of planes<br />

different from π∞ through M ′ .<br />

Let π1, π2, . . . , πq be the planes of Σ meet<strong>in</strong>g π∞ at the l<strong>in</strong>e L = xy,<br />

<strong>and</strong> let Oi be the set of po<strong>in</strong>ts of Σ \ π∞ conta<strong>in</strong>ed <strong>in</strong> πi, 1 ≤ i ≤ q. It is<br />

easy to see that each Oi is an ovoid <strong>and</strong> Ω = {Oxy, Oyx, O1, . . . , Oq} is a fan<br />

of ovoids, i.e., a partition of the po<strong>in</strong>ts of Sxy <strong>in</strong>to disjo<strong>in</strong>t ovoids. It is also<br />

the case that both Oxy <strong>and</strong> Oyx are pivotal for Σ. This means that each pair<br />

of po<strong>in</strong>ts of Oxy (resp., Oyx) is a regular pair whose span is conta<strong>in</strong>ed <strong>in</strong> Oxy<br />

(resp., Oyx) <strong>and</strong> whose perp is conta<strong>in</strong>ed <strong>in</strong> some member of Ω. In fact, by<br />

construction, Oyx is pivotal for the fan Ω. And Oxy is regular s<strong>in</strong>ce π∞ is<br />

a regular po<strong>in</strong>t of Sx (Oxy is the set of po<strong>in</strong>ts of S− xy that were po<strong>in</strong>ts of Sx<br />

coll<strong>in</strong>ear with π∞.<br />

If even one of the ovoids Oi is pivotal for the fan Ω, then the correspond<strong>in</strong>g<br />

po<strong>in</strong>t of the l<strong>in</strong>e L∞ = L <strong>in</strong> Sx is regular <strong>in</strong> Sx. We saw earlier that this<br />

means that each po<strong>in</strong>t of L is regular <strong>in</strong> Sx <strong>and</strong> Ox is a translation oval.<br />

10.13 A Regular Ovoid <strong>in</strong> GQ(q + 1, q − 1)<br />

At this stage we let q be any positive <strong>in</strong>teger, not necessarily even a prime<br />

power. We want to f<strong>in</strong>d a characterization of the GQ Sx ∼ = P(T2(Ox), L).<br />

So first merely assume that S is a GQ with parameters (q + 1, q − 1) <strong>and</strong><br />

that S has a regular ovoid O∞. This means that O∞ is a set of q 2 pairwise<br />

noncoll<strong>in</strong>ear po<strong>in</strong>ts of S such that for dist<strong>in</strong>ct po<strong>in</strong>ts x, y ∈ O∞ the pair<br />

{x, y} is regular <strong>and</strong> {x, y} ⊥⊥ ⊂ O∞.<br />

Lemma 10.13.1. Let π(O∞) be the po<strong>in</strong>t-l<strong>in</strong>e geometry whose po<strong>in</strong>ts are<br />

the po<strong>in</strong>ts of O∞, <strong>and</strong> whose l<strong>in</strong>es are the hyperbolic l<strong>in</strong>es {x, y} ⊥⊥ , x = y,<br />

x, y ∈ O∞, <strong>and</strong> whose <strong>in</strong>cidence is conta<strong>in</strong>ment. Then π(O∞) is an aff<strong>in</strong>e


10.13. A REGULAR OVOID IN GQ(Q + 1, Q − 1) 483<br />

plane of order q. It follows that each hyperbolic l<strong>in</strong>e is <strong>in</strong> a “parallel class”<br />

of pairwise disjo<strong>in</strong>t hyperbolic l<strong>in</strong>es that partition O∞.<br />

Proof. Easy exercise.<br />

Let T1, T2, . . . , Tq be the pairwise disjo<strong>in</strong>t l<strong>in</strong>es of one parallel class of<br />

π(O∞. The po<strong>in</strong>ts of these l<strong>in</strong>es account for all the po<strong>in</strong>ts of the ovoid O∞.<br />

Hence T1 ∪ · · · ∪ Tq = O∞. The next result shows how each such parallel<br />

class of π(O∞) determ<strong>in</strong>es an ovoid.<br />

Lemma 10.13.2. T ⊥ 1 ∪ T ⊥ 2 ∪ · · · ∪ T ⊥ q is an ovoid of S.<br />

Proof. Let Ti = {xi, yi} ⊥⊥ . Recall that T ⊥<br />

i is the set of po<strong>in</strong>ts coll<strong>in</strong>ear <strong>in</strong> S<br />

with every po<strong>in</strong>t of Ti. If z ∈ T ⊥ 1 ∩ T ⊥ 2<br />

, then every l<strong>in</strong>e of S through z must<br />

conta<strong>in</strong> a po<strong>in</strong>t of T1 <strong>and</strong> a po<strong>in</strong>t of T2. This is clearly impossible s<strong>in</strong>ce O∞<br />

is an ovoid <strong>and</strong> T1 ∩ T2 = ∅, Hence T ⊥ 1 ∪ T ⊥ 2 ∪ · · · ∪ T ⊥ q is certa<strong>in</strong>ly a set of<br />

q 2 dist<strong>in</strong>ct po<strong>in</strong>ts. If z1 <strong>and</strong> z2 are dist<strong>in</strong>ct po<strong>in</strong>ts of T ⊥ 1 , then both z1 <strong>and</strong><br />

z2 are coll<strong>in</strong>ear with all q po<strong>in</strong>ts of T1. Clearly z1 ∼ z2. Now suppose that<br />

zi ∈ T ⊥<br />

i , i = 1, 2. So each l<strong>in</strong>e through zi conta<strong>in</strong>s a po<strong>in</strong>t of Ti. This leaves<br />

no l<strong>in</strong>e through z1 available to pass through z2. It follows that no two po<strong>in</strong>ts<br />

of T ⊥ 1 ∪ T ⊥ 2 ∪ · · · ∪ T ⊥ q are coll<strong>in</strong>ear. S<strong>in</strong>ce this set has q 2 po<strong>in</strong>ts, it must be<br />

an ovoid.<br />

The previous lemma shows that for each parallel class of π(O∞) there is a<br />

correspond<strong>in</strong>g ovoid which is the union of the perps of the hyperbolic l<strong>in</strong>es <strong>in</strong><br />

that parallel class. Let E0, 1, . . . , Eq be the dist<strong>in</strong>ct parallel classes of l<strong>in</strong>es<br />

<strong>in</strong> π(O∞), <strong>and</strong> let Oi be the ovoid consist<strong>in</strong>g of the perps of the hyperbolic<br />

l<strong>in</strong>es <strong>in</strong> Ei, 0 ≤ i ≤ q. Then the follow<strong>in</strong>g result is clearly already proved.<br />

Corollary 10.13.3. M = {O∞, O0, . . . , Oq} is a fan of ovoids for which<br />

O∞ is pivotal.<br />

As an aside we show that <strong>in</strong> fact many more ovoids can be obta<strong>in</strong>ed from<br />

the above construction.<br />

Lemma 10.13.4. If T1, . . . , Tq are the hyperbolic l<strong>in</strong>es <strong>in</strong> one parallel class<br />

of π(O∞, let T ′<br />

i ∈ {Ti, T ⊥<br />

′<br />

i }, 1 ≤ i ≤ q. Then ∪q T i is an ovoid.<br />

Proof. For dist<strong>in</strong>ct i <strong>and</strong> j we have already noted that no po<strong>in</strong>t of Ti (resp.,<br />

T ⊥<br />

i ) is coll<strong>in</strong>ear with any po<strong>in</strong>t of Tj (resp., T ⊥ j ). Let y1 ∈ T1, z1 ∈ T ⊥ 1 ,<br />

z2 ∈ T ⊥ 2 . If z2 ∈ T1, then z2 ∼ z1, an impossibility. So suppose that y1 ∼ z2.<br />

i=1


484 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

S<strong>in</strong>ce every l<strong>in</strong>e through z2 conta<strong>in</strong>s a po<strong>in</strong>t of T2, there is some z ′ ∈ y1z2<br />

with z ′ ∈ T2. But then z ′ <strong>and</strong> y1 are two po<strong>in</strong>ts of O∞ that are coll<strong>in</strong>ear <strong>in</strong> S,<br />

aga<strong>in</strong> an impossibility. Therefore no two po<strong>in</strong>ts of ∪ q ′<br />

i=1T i are coll<strong>in</strong>ear.<br />

Later we will consider the possibility that ovoids <strong>in</strong> M \ {O∞} might be<br />

regular or even pivotal.<br />

Put I = {0, 1, . . . , q} <strong>and</strong> Ĩ = I ∪ {∞}.<br />

Lemma 10.13.5. Let b, d ∈ Oj, with j ∈ I, b = d. If {b, d} ⊥ ∩ O∞ = ∅,<br />

then {b, d} ⊥ ⊂ O∞. And the perps of the hyperbolic l<strong>in</strong>es <strong>in</strong> the parallel class<br />

of {b, d} ⊥ partition the ovoid Oj.<br />

Proof. Let b, d ∈ Oj with j ∈ I, b = d. Suppose a ∈ {b, d} ⊥ ∩ O∞ <strong>and</strong><br />

c ∈ {b, d} ⊥ with c ∈ O∞. As each l<strong>in</strong>e meets each ovoid of M exactly once,<br />

let a ′ = bc ∩ O∞ <strong>and</strong> let f be the unique po<strong>in</strong>t of ad coll<strong>in</strong>ear with a ′ . As<br />

a, a ′ ∈ O∞ (which is pivotal for M) <strong>and</strong> b ∈ {a, a ′ } ⊥ , then all of {a, a ′ } ⊥<br />

is conta<strong>in</strong>ed <strong>in</strong> Oj. Specifically, f ∈ Oj. But d is assumed to be <strong>in</strong> Oj, a<br />

contradiction as d ∼ f.<br />

Lemma 10.13.6. Let O∞, Oi, Oj be dist<strong>in</strong>ct ovoids of M.<br />

(i) x ∈ Oi, y ∈ Oj, <strong>and</strong> x ∼ y implies that |{x, y} ⊥ ∩ O∞| = 1.<br />

(ii) a ∈ O∞, b ∈ Oi, <strong>and</strong> a ∼ b implies that |{a, b} ⊥ ∩ Oj| = 1.<br />

Proof. For each a ∈ O∞, a ⊥ conta<strong>in</strong>s q(q − 1) noncoll<strong>in</strong>ear pairs (z, w) ∈<br />

Oi × Oj. As O∞ is pivotal, if a <strong>and</strong> a ′ are dist<strong>in</strong>ct po<strong>in</strong>ts <strong>in</strong> O∞, then a ⊥<br />

<strong>and</strong> a ′⊥ can never conta<strong>in</strong> the same noncoll<strong>in</strong>ear pair (z, w) ∈ Oi × Oj. Thus<br />

there are (|O∞|)q(q − 1) = q 3 (q − 1) such pairs as a runs over the elements<br />

of O∞.<br />

On the other h<strong>and</strong>, count<strong>in</strong>g such pairs shows that there are q 2 choices<br />

for z ∈ Oi <strong>and</strong> q 2 − q choices for w ∈ Oj with z ∼ w. This gives q 3 (q − 1)<br />

noncoll<strong>in</strong>ear pairs (z, w)Oi × Oj, which proves part (i).<br />

For a fixed a ∈ O∞, x ∈ Oi, {a, x} ⊥ has exactly q po<strong>in</strong>ts. If any two<br />

of these were <strong>in</strong> the same ovoid of M, then the previous lemma would be<br />

contradicted. This proves (ii).


10.14. CONSTRICTING ABOUT A REGULAR OVOID 485<br />

10.14 Constrict<strong>in</strong>g about a Regular Ovoid<br />

As <strong>in</strong> the previous section we assume that S is a GQ with parameters (q +<br />

1, q − 1) <strong>and</strong> that S has a regular ovoid O∞ with associated fan M for which<br />

O∞ is pivotal. At this po<strong>in</strong>t we construct a GQ S∞ = (P∞, B∞, I∞) of order<br />

q via a method called constriction about O∞.<br />

• Po<strong>in</strong>ts of S∞ : P∞ = P \O∞ together with the symbols (O0), . . . , (Oq).<br />

• L<strong>in</strong>es of S∞ : B∞ = B ∪ {T ⊥ : T is a l<strong>in</strong>e of π(O∞)} ∪ {L∞}.<br />

• Incidence I∞ of S∞: A l<strong>in</strong>e of B is <strong>in</strong>cident with a po<strong>in</strong>t of P∞<br />

provided the two were <strong>in</strong>cident <strong>in</strong> S. If T is a hyperbolic l<strong>in</strong>e of O∞,<br />

then T ⊥ is <strong>in</strong>cident with the q po<strong>in</strong>ts it conta<strong>in</strong>s, <strong>and</strong> T ⊥ I∞ (Oi)<br />

provided Oi is the (unique) ovoid <strong>in</strong> M conta<strong>in</strong><strong>in</strong>g T ⊥ . F<strong>in</strong>ally, L∞ is<br />

<strong>in</strong>cident with each of the q + 1 po<strong>in</strong>ts (Oi), 0 ≤ i ≤ q.<br />

Of course this is just the po<strong>in</strong>t-l<strong>in</strong>e dual version of constrict<strong>in</strong>g about a<br />

regular spread. Hence it follows that L∞ is a regular l<strong>in</strong>e of S∞, <strong>and</strong> (Oj),<br />

j ∈ I, is a regular po<strong>in</strong>t of S∞ if <strong>and</strong> only if Oj is pivotal for M. (See<br />

Construction 10.7.1.)<br />

For the moment, consider the plane π(O∞). Let E0 = {T1, T2, . . . , Tq}<br />

<strong>and</strong> E1 = {R1, R2, . . . , Rq} be dist<strong>in</strong>ct parallel classes of l<strong>in</strong>es <strong>in</strong> π(O∞).<br />

Obs. 10.14.1. Each po<strong>in</strong>t of π(O∞) is on a unique hyperbolic l<strong>in</strong>e Ti <strong>and</strong> a<br />

unique hyperbolic l<strong>in</strong>e Rj, so we may label these po<strong>in</strong>ts as xi,j = Ti ∩ Rj.<br />

Hence T ⊥<br />

i = {xi,j, xi,h} ⊥ for any h = j, <strong>and</strong> R ⊥ j = {xi,j, xk,j} ⊥ for any<br />

k = i. We now wish to abuse the notation bit, us<strong>in</strong>g the “perp” notation for<br />

whichever GQ we f<strong>in</strong>d convenient. The context should make it clear what<br />

the notation means. The next observation follows with a little thought.<br />

Obs. 10.14.2. In the GQ S∞, {T ⊥<br />

i , R⊥ j }⊥ is the set of l<strong>in</strong>es of S which<br />

conta<strong>in</strong> xi,j, together with the l<strong>in</strong>e L∞.<br />

Moreover,<br />

Obs. 10.14.3. {T ⊥<br />

i , R ⊥ j } ⊥⊥ = {{xi,j, xi,h} ⊥ , {xi,j, xk,j} ⊥ } ⊥⊥ for any h = j<br />

<strong>and</strong> k = i. In other words,<br />

{T ⊥<br />

i , R⊥ j }⊥⊥ = {ℓ ⊥ : ℓ is <strong>in</strong>cident with xi,j <strong>in</strong> π(O∞)}.


486 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

From the regularity of L∞ <strong>in</strong> S∞ there is an aff<strong>in</strong>e plane π(L∞) =<br />

(P(L∞, L(L∞)) whose po<strong>in</strong>ts are the spans (<strong>in</strong> S∞) of l<strong>in</strong>es meet<strong>in</strong>g L∞<br />

at dist<strong>in</strong>ct poionts, <strong>and</strong> whose l<strong>in</strong>es are the l<strong>in</strong>es of S∞ different from L∞ but<br />

meet<strong>in</strong>g it at dist<strong>in</strong>ct po<strong>in</strong>ts. Incidence is conta<strong>in</strong>ment. Hence<br />

P(L∞) = {{ℓ ⊥ , m ⊥ } ⊥⊥ : ℓ, m are l<strong>in</strong>es <strong>in</strong> dist<strong>in</strong>ct parallel classes of π(O∞)}<br />

Also,<br />

= {{T ⊥<br />

i , R⊥ j }⊥⊥ : 1 ≤ i, j ≤ q}.<br />

L(L∞) = {ℓ ⊥ : ℓ is a l<strong>in</strong>e of π(O∞)}.<br />

Probably the next result is <strong>in</strong>tuitively clear, but we give a detailed proof.<br />

Theorem 10.14.4. The aff<strong>in</strong>e planes π(O∞) <strong>and</strong> π(L∞) are isomorphic.<br />

Proof. Def<strong>in</strong>e ψ from P(O∞) to P(L∞) by ψ(xi,j) = {T ⊥<br />

i , R ⊥ j } ⊥⊥ . To see<br />

that ψ preserves coll<strong>in</strong>earity, first suppose that ℓ = Ti = {xi,1, . . . , xi,q}.<br />

So, ψ(ℓ) = {{T ⊥<br />

i , R⊥ 1 }⊥⊥ , {T ⊥<br />

i , R⊥ 2 }⊥⊥ , . . . , {T ⊥<br />

i , R⊥ q }⊥⊥ }, i.e., exactly the<br />

set of po<strong>in</strong>ts <strong>in</strong> P(L∞) on the l<strong>in</strong>e T ⊥<br />

i . Now suppose that ℓ ∈ E0, say<br />

ℓ = {x1,r1, x2,r2, . . . , xq,rq}. So<br />

ψ(ℓ) = {ψ(x1,r1), ψ(x2,r2), . . . , ψ(xq,rq)}<br />

= {{T ⊥ 1 , R⊥ r1 }⊥⊥ , {T ⊥ 2 , R⊥ r2 }⊥⊥ , . . . , {T ⊥ q , R⊥ rq }⊥⊥ }<br />

= {{T ⊥ 1 , ℓ⊥ } ⊥⊥ , {T ⊥ 2 , ℓ⊥ } ⊥⊥ , . . . , {T ⊥ q , ℓ⊥ } ⊥⊥ }.<br />

But this is exactly the set of po<strong>in</strong>ts <strong>in</strong> P(L∞) on the l<strong>in</strong>e ℓ ⊥ ∈ L(L⊥).<br />

So ψ maps l<strong>in</strong>es to l<strong>in</strong>es. Thus ψ is an isomorphism between π(O∞) <strong>and</strong><br />

π(L∞).<br />

Now suppose that the ovoid O0 is also pivotal for the fan M, so that<br />

the po<strong>in</strong>t (O0) of L∞ is regular <strong>in</strong> S∞. From the regularity of (O0) there<br />

is a st<strong>and</strong>ard construction of a projective plane π ∗ ((O0)) whose po<strong>in</strong>ts are<br />

the po<strong>in</strong>ts of S∞ coll<strong>in</strong>ear with (O0), <strong>and</strong> whose l<strong>in</strong>es are the spans {x, y} ⊥⊥<br />

for which x <strong>and</strong> y are dist<strong>in</strong>ct po<strong>in</strong>ts of S∞ coll<strong>in</strong>ear with (O0). Now form<br />

an aff<strong>in</strong>e plane π((O0)) = (P((O0)), L((L0)) by remov<strong>in</strong>g the l<strong>in</strong>e L∞ <strong>and</strong><br />

all of its po<strong>in</strong>ts from the plane π ∗ ((O0)). This new aff<strong>in</strong>e plane has po<strong>in</strong>tset<br />

P((O0)) = {x : x ∈ O0} <strong>and</strong> l<strong>in</strong>eset L((O0)) = {{x, y} ⊥⊥ : x, y ∈ O0}. But<br />

these are exactly the po<strong>in</strong>t- <strong>and</strong> l<strong>in</strong>esets of π(O0), <strong>and</strong> the <strong>in</strong>cidences are the<br />

same. So here we see that the follow<strong>in</strong>g theorem is proved.


10.14. CONSTRICTING ABOUT A REGULAR OVOID 487<br />

Theorem 10.14.5. Suppose that both O∞ <strong>and</strong> O0 are pivotal for the fan<br />

M. The two aff<strong>in</strong>e planes π((O0)) <strong>and</strong> π(O0) are identical (not merely isomorphic).<br />

Cont<strong>in</strong>ue with the basic hypothesis be<strong>in</strong>g that S is a GQ of order (q +<br />

1, q − 1) with the regular ovoid O∞, which means it is pivotal for a unique<br />

fan M.<br />

Theorem 10.14.6. Suppose that {x1, x2} is a regular pair of po<strong>in</strong>ts <strong>in</strong> S<br />

with x1 ∼ x2. Put T = {x1, x2} ⊥⊥ = {x1, . . . , xq} <strong>and</strong> T ⊥ = {y1, . . . , yq}.<br />

Then exactly one of the follow<strong>in</strong>g must occur:<br />

(i) There are dist<strong>in</strong>ct i, j ∈ Ĩ such that T ⊆ Oi <strong>and</strong> T ⊥ ⊆ Oj.<br />

(ii) Exactly one of T , T ′ has a unique po<strong>in</strong>t <strong>in</strong> common <strong>in</strong> O∞. Without loss<br />

of generality we may assume that T ⊥ ∩ O∞ = {y1} <strong>and</strong> T ∩ O∞ = ∅.<br />

In this case there is a unique Oi for which T ⊥ \ {y1} ⊆ Oi. Also,<br />

|T ∩ Oj| = 1 for each j = ∞, i.<br />

Proof. S<strong>in</strong>ce O∞ is pivotal for M, if either T or T ⊥ has two po<strong>in</strong>ts <strong>in</strong> common<br />

with O∞, then it is conta<strong>in</strong>ed <strong>in</strong> O∞ <strong>and</strong> its perp is conta<strong>in</strong>ed <strong>in</strong> some Oi.<br />

If T ∩ O∞ = ∅ = T ⊥ ∩ O∞, then by part (i) of Lemma 10.13.6 there must<br />

be dist<strong>in</strong>ct i, j ∈ I for which T ⊂ Oi <strong>and</strong> T ⊥ ⊂ Oj. In the rema<strong>in</strong><strong>in</strong>g case,<br />

exactly one of T , T ⊥ has a unique po<strong>in</strong>t <strong>in</strong> common with O∞. Without loss<br />

of generality we assume that T ⊥ ∩ O∞ = {y1}. If T had two po<strong>in</strong>ts <strong>in</strong> the<br />

same Oi, 0 ≤ i ≤ q, then by Lemma 10.13.5, T ⊥ would have to be conta<strong>in</strong>ed<br />

<strong>in</strong> O∞, a contradiction. So T meets some q of the ovoids each <strong>in</strong> one po<strong>in</strong>t<br />

<strong>and</strong> there is a unique i left for which T ⊥ \{y1} ⊂ Oi. Also, y2, . . . , yq must be<br />

<strong>in</strong> perps of dist<strong>in</strong>ct hyperbolic l<strong>in</strong>es of O∞, which means they are on dist<strong>in</strong>ct<br />

l<strong>in</strong>es (= L∞) through (Oi) <strong>in</strong> S∞. By part (ii) of Lemma 10.13.6, |T ∩Oj| = 1<br />

for each j = ∞, i.<br />

Hence <strong>in</strong> S∞, {y2, . . . , yq} ⊆ {(Oi), x1, . . . , xq} ⊥ <strong>and</strong> {y2, . . . , yq} ⊥ =<br />

{(Oi), x1, . . . , xq}. Let T0 be the l<strong>in</strong>e of S∞ through (Oi), T0 = L∞, <strong>and</strong><br />

T0 ∩ {y2, . . . , yq} = ∅. The l<strong>in</strong>es of S through y1 together with L∞ form one<br />

rul<strong>in</strong>g of a grid Γ. For ease of notation, suppose that Oi = O0, <strong>and</strong> xj ∈ Oj,<br />

1 ≤ j ≤ q. Then the other rul<strong>in</strong>g of Γ consists of y ⊥ 1 ∩ Ok = Tk, 0 ≤ k ≤ q,<br />

<strong>and</strong> xj ∈ Oj ∩ y ⊥ 1 .<br />

Note 10.14.7. A consequence of the preced<strong>in</strong>g proof is the follow<strong>in</strong>g: If y1 ∈<br />

O∞ <strong>and</strong> y2 ∈ Oi, <strong>and</strong> if {y1, y2} is regular <strong>in</strong> S, then {y1, y2} ⊥⊥ \ {y1} ⊂ Oi.


488 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

Corollary 10.14.8. With the notation adopted above, if for some i ∈ I, Oi<br />

is regular, then it is pivotal for M.<br />

Proof. If Oi is regular for some i ∈ I, <strong>and</strong> x, y are dist<strong>in</strong>ct po<strong>in</strong>ts of Oi, then<br />

{x, y} is regular <strong>and</strong> {x, y} ⊥⊥ ⊂ Oi. This does not permit the second case<br />

of Theorem 10.13.6 to hold, hence the first case must hold.<br />

Now suppose that O is a regular ovoid of S different from O∞. Recall<br />

that π(O∞) <strong>and</strong> π(O) are aff<strong>in</strong>e planes whose “l<strong>in</strong>es” are the hyperbolic l<strong>in</strong>es<br />

conta<strong>in</strong>ed <strong>in</strong> them. Clearly π(O∞) ∩ π(O) is a subspace of π(O∞) <strong>and</strong> of<br />

π(O). Hence we have proved the follow<strong>in</strong>g.<br />

Theorem 10.14.9. Any regular ovoid of S different from O∞ meets O∞ <strong>in</strong><br />

exactly 0, 1, or q po<strong>in</strong>ts.<br />

Theorem 10.14.10. If O is a regular ovoid with |O ∩ O∞| = q, then O =<br />

T1 ∪ T ⊥ 2 ∪ · · · ∪ T ⊥ q , where O ∩ O∞ = T1, <strong>and</strong> O∞ = T1 ∪ T2 ∪ · · · ∪ Tq is a<br />

parallel class partition of the po<strong>in</strong>ts of O∞, so Ok = T ⊥ 1 ∪ T ⊥ 2 ∪ · · · ∪ T ⊥ q for<br />

some k ∈ I.<br />

Proof. Suppose that O∞ = {z1, . . . , zq, xa+1, . . . , x2q, . . . , x q 2}, where T1 =<br />

{z1, . . . , zq}, T2 = {xq+1, . . . , xq}, . . . , Tq = {x(q−1)q+1, . . . , x q 2} are the disjo<strong>in</strong>t<br />

hyperbolic l<strong>in</strong>es of one parallel class of O∞, <strong>and</strong><br />

O = {z1, . . . , zq, yq+1, . . . , y q 2},<br />

with O ∩ O∞ = T1. Let y ∈ O ∩ Ok for some k = ∞. Then {zi, y} ⊥⊥ \<br />

{zi} ⊂ Ok by Theorem 10.13.6, so ∪ q <br />

i=1 {zi, y} ⊥⊥ \ {zi} gives 1+q(q −2) =<br />

q2 − 21 + 1 po<strong>in</strong>ts of O ∩ Ok. S<strong>in</strong>ce 2(q2 − 2q + 1) > q2 − q for q ≥ 3,<br />

O \ O∞ must be conta<strong>in</strong>ed <strong>in</strong> just one Ok, i.e., |O ∩ Ok| = q2 − q, <strong>and</strong><br />

hence O ∩ Ok = {yq+1, . . . , yq2}. Clearly no yj is coll<strong>in</strong>ear with any zi. So<br />

y⊥ j ∩ O∞ = {xi1, . . . , xiq} is disjo<strong>in</strong>t from T1. So the parallel class of O∞<br />

conta<strong>in</strong><strong>in</strong>g T1 must conta<strong>in</strong> q − 1 hyperbolic l<strong>in</strong>es T2, . . . , Tq whose perps<br />

cover O ∩ Ok. Let T ′ 1 be the po<strong>in</strong>ts of Ok \ (O ∩ Ok). Then T ′ 1 must meet<br />

the same l<strong>in</strong>es that T1 does, forc<strong>in</strong>g T ′ 1 = T ⊥ 1 .<br />

So we have the follow<strong>in</strong>g:<br />

O∞ = T1 ∪ · · · ∪ Tq,<br />

Ok = T ⊥ 1 ∪ · · · ∪ T ⊥ q ,<br />

O = T1 ∪ T ⊥ 2 ∪ · · · ∪ T ⊥ q .


10.14. CONSTRICTING ABOUT A REGULAR OVOID 489<br />

This completes a proof of the theorem.<br />

Note 10.14.11. Cont<strong>in</strong>u<strong>in</strong>g with the notation of the above proof, let x1 ∈ T1,<br />

x2 ∈ T ⊥ 2 . By hypothesis {x1, x2} ⊥⊥ ⊂ O. If two po<strong>in</strong>ts of {x1, x2} ⊥⊥ belong<br />

to the same T ⊥ j , then of course {x1, x2} ⊥⊥ would have to equal T ⊥ j . So<br />

T = {x1, x2} ⊥⊥ has one po<strong>in</strong>t <strong>in</strong> each of T1, T ⊥ 2 , . . . , T ⊥ q . Now let {x1, x2} ⊥ =<br />

{w1, . . . , wq} = T ⊥ . Clearly T ⊥ ∩ O∞ = T ⊥ ∩ Ok = ∅, s<strong>in</strong>ce both O∞ <strong>and</strong> Ok<br />

are ovoids. If two po<strong>in</strong>ts of T ⊥ belong to the same Oj, then s<strong>in</strong>ce T ∩O∞ = ∅,<br />

it would have to be that T ⊂ O∞. Hence |T ⊥ ∩ Oj| = 1 for each j = ∞, k.<br />

Theorem 10.14.12. If O is a regular ovoid with |O ∩ O∞| = 1, then |O ∩<br />

Oi| = q − 1 for 0 ≤ i ≤ q. If O ∩ O∞ = {z} <strong>and</strong> x ∈ O ∩ Oi, then<br />

{z, x} ⊥⊥ \ {z} = O ∩ Oi.<br />

Proof. Suppose O ∩O∞ = {z}. From Note ?? we see that if x ∈ O \O∞, say<br />

x ∈ Oi, then {z, x} ⊥⊥ \{z} ⊂ Oi. First suppose that {z, x} ⊥⊥ \{z} ⊂ O∩Oi,<br />

{z, y} ⊥⊥ \ {z} ⊂ O ∩ Oi, <strong>and</strong> z ∈ {x, y} ⊥⊥ , so {x, y} ⊥⊥ ∩ O∞ = ∅. Say:<br />

{z, x} ⊥⊥ = {z, x = x2, . . . , xq}; {z, y} ⊥⊥ = {z, y = y2, . . . , yq}.<br />

S<strong>in</strong>ce {x, y} ⊥⊥ ∩ O∞ = ∅, if {x, y} ⊥ ∩ O∞ = ∅ also, then {x, y} ⊥ ⊂ Ok for<br />

some k = i, ∞, <strong>and</strong> {x, y} ⊥⊥ ⊂ Oi. On the other h<strong>and</strong>, if {x, y} ⊥ ∩ O∞ = ∅,<br />

then {x, y} ⊂ Oi implies {x, y} ⊥ ⊂ O∞ <strong>and</strong> {x, y} ⊥⊥ ⊂ Oi. Either way we<br />

have the follow<strong>in</strong>g: For x, y ∈ O ∩ Oi, {x, y} ⊥⊥ ⊂ (O ∩ Oi) ∪ {z} = O. Then<br />

the l<strong>in</strong>es covered by z1 are the same l<strong>in</strong>es as those covered by z, an obvious<br />

impossibility. Hence it must be that |(O∩Oi)| = q−1 for each i = 0, 1, . . . , q.<br />

And if x ∈ O ∩ Oi, then {z, x} ⊥⊥ \ {z} = O ∩ Oi for each i = 0, . . . , q.<br />

Theorem 10.14.13. Let O be a regular ovoid with |O ∩ O∞| = 0. Then<br />

exactly one of the follow<strong>in</strong>g two possibilities must hold:<br />

(i) O is some Oi ∈ M, <strong>in</strong> which case Oi is pivotal for the fan M;<br />

(ii) There is a unique Oi, 0 ≤ i ≤ q, for which |O ∩ O∞| = |O ∩ Oi| = 0,<br />

<strong>and</strong> |O ∩ Oj| = q for j = i, ∞. In this case O ∪ {(Oi)} is an ovoid of<br />

S∞.<br />

Proof. Suppose O ∩ O∞ = ∅. Let x, y be dist<strong>in</strong>ct po<strong>in</strong>ts of O, so T =<br />

{x, y} ⊥⊥ ⊂ O, <strong>and</strong> T ∩ O∞ = ∅. If T ⊥ ∩ O∞ = ∅, then T ⊂ Oi for some


490 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

i = ∞, <strong>and</strong> T ⊥ ⊂ Ok for some k = i, ∞. If T ⊥ ∩ O∞ = ∅, then either<br />

T ⊥ ⊂ O<strong>in</strong>fty <strong>and</strong> T ⊂ Oi for some i, or |T ⊥ ∩ O∞| = 1 <strong>and</strong> T ⊥ \ O∞ ⊂ Oi<br />

for some i ∈ I while |T ∩ Oj| = 1 for each j = i, ∞. In all cases, if x, y are<br />

dist<strong>in</strong>ct po<strong>in</strong>ts of O ∩ Oi for some i, then {x, y} ⊥⊥ ⊂ O ∩ Oi. Hence O ∩ Oi<br />

is a subspace of O, <strong>and</strong> must have size 0, 1, q or q 2 . One possibility is that<br />

O = Oi ∈ M, for some i with 0 ≤ i ≤ q.<br />

Suppose that O ∈ M, so |O ∩ Oi| = 0, 1 or q for each i = ∞. Let ai be<br />

the number of Oj with |O ∩ Oj| = i, i = −.1.q, for 0 ≤ j ≤ q. Clearly each<br />

ai ≥ 0, <strong>and</strong> we have<br />

(i) a0 + a1 + aq = q + 1,<br />

(ii) 0 · a0 + 1 · a1 + q · aq = q 2 ,<br />

from which a1 = q(q − aq). Put k = q − aq, so a1 = kq. It follows that<br />

q − k = aq = q + 1 − a0 − a1, imply<strong>in</strong>g a1 + a0 = k + 1 = a0 + kq, or k(q − 1) =<br />

1−a0, which must be nonnegative. This allows only two possibilities: a0 = 1<br />

or 0. If a0 = 1, then ik = 0 = a1 <strong>and</strong> aq = q. In this case O is disjo<strong>in</strong>t<br />

from O∞ <strong>and</strong> from one other member of M, say O0, <strong>and</strong> meets each of the<br />

others O1, . . . , Oq <strong>in</strong> q po<strong>in</strong>ts. For the other case, suppose a0 = 0. Here<br />

k = 1 <strong>and</strong> q = 2. So for q ≥ 4 we have only the first case, i.e., O meets<br />

each of O1, . . . , Oq <strong>in</strong> a “l<strong>in</strong>e” of O. It is now straightforward to check that<br />

O ∪ {(Oi)} is an ovoid of S∞.<br />

At this po<strong>in</strong>t we suppose that <strong>in</strong> addition to hav<strong>in</strong>g O∞ pivotal<br />

for the fan M, the ovoid O0 is regular, so that <strong>in</strong> fact it is also<br />

pivotal for M.<br />

Theorem 10.14.14. Suppose {x, y} is a regular pair of po<strong>in</strong>ts with x ∼ y.<br />

Put T = {x, y} ⊥⊥ , T ⊥ = {x, y} ⊥ . Then there must exist dist<strong>in</strong>ct i, j ∈ Ĩ for<br />

which T ⊂ Oi, T ⊥ ⊂ Oj.<br />

Proof. Suppose not. Then one of T ⊥ , T has a unique po<strong>in</strong>t <strong>in</strong> common with<br />

O∞, say |T ⊥ ∩O∞| = 1. Then there is some i = ∞ for which |T ⊥ ∩Oi| = q−1.<br />

Clearly Oi is not regular, so i = 0. Then |T ∩ Oj| = 1 for each j = i, ∞,<br />

<strong>in</strong>clud<strong>in</strong>g j = 0. But |T ∩ O0| = 1 says there must be some k for which<br />

|T ∩ Ok| = q − 1, an impossibility for q ≥ 4.<br />

Theorem 10.14.15. Suppose O is a regular ovoid of S. Then O ∈ M.


10.15. QUIVERS - AND A3 491<br />

Proof. Suppose that O is a regular ovoid of S with O ∈ M. Then |O∩O∞| =<br />

0, 1 or q, <strong>and</strong> |O ∩ O0| = 0, 1 or q.<br />

Case (i) |O ∩ O0| = q. In this case there is a k with O ∩ Ok| = q 2 − q,<br />

so k = 0 <strong>and</strong> |O ∩ O0| = 0. But Theorem 10.14.13 applied to O0 <strong>in</strong> place of<br />

O∞ says there is some j with |O ∩ Oj| = 0 <strong>and</strong> O ∩ Om| = q for m = 0, j.<br />

Hence this case cannot arise.<br />

Case (ii) |O ∩ O∞| = 1. Here |O ∩ Oi| = q − 1 for 0 ≤ i ≤ q. But<br />

|O ∩ O0| = q − 1 if q > 2, so this case cannot arise.<br />

Case (iii) |O ∩ O∞| = 0. By symmetry we may suppose that we also have<br />

|O ∩ O0| = 0. But if O ∈ M then also O ∩ Oj| = q for j = 0, ∞. But<br />

suppose x ∈ O ∩ Oj, y ∈ O ∩ Ok, j = k, <strong>and</strong> j, k = i, ∞. Then {x, y} ⊥⊥<br />

does not belong to a s<strong>in</strong>gle member of M, contradict<strong>in</strong>g Theorem 10.14.14.<br />

Hence this case does not arise, complet<strong>in</strong>g the proof.<br />

10.15 Quivers - <strong>and</strong> A3<br />

Cont<strong>in</strong>ue to assume that O∞ is pivotal for the fan M as above. Then for<br />

a1, a2 ∈ O∞ put a1 ≡ a2 provided a⊥ 1 ∩ O0 = a − 2⊥ ∩ O0. Clearly “ ≡ ” is<br />

an equivalence relation def<strong>in</strong>ed on O∞ by O0. Let [a] denote the equivalence<br />

class conta<strong>in</strong><strong>in</strong>g the element a, so that [a1] = [a2] if <strong>and</strong> only if a⊥ 1 ∩Oo ∩a⊥ 2 =<br />

∅. There are q equivalence classes <strong>in</strong> O∞ each with q elements. Similarly, for<br />

b ∈ O0, put [b] = {b1 ∈ O0 : b ⊥ ∩ O∞ ∩ b ⊥ 1<br />

= ∅}.<br />

For a ∈ O∞ let [a] ⊥ = [b]. Then the q 2 l<strong>in</strong>es jo<strong>in</strong><strong>in</strong>g po<strong>in</strong>ts of [a] with<br />

po<strong>in</strong>ts of [b] form a set of l<strong>in</strong>es called a quiver. Two l<strong>in</strong>es of a quiver are<br />

concurrent if <strong>and</strong> only if they meet at a po<strong>in</strong>t of O∞ ∪O0. Two l<strong>in</strong>es meet<strong>in</strong>g<br />

at a po<strong>in</strong>t of O∞ ∪ O0 are <strong>in</strong> a unique quiver. Two noncurrent l<strong>in</strong>es L <strong>and</strong> M<br />

are <strong>in</strong> the same quiver if <strong>and</strong> only if the po<strong>in</strong>t of O∞ on L is coll<strong>in</strong>ear with<br />

the po<strong>in</strong>t of O0 on M, <strong>and</strong> the po<strong>in</strong>t of O0 on L is coll<strong>in</strong>ear with the po<strong>in</strong>t<br />

of O∞ on M. Each po<strong>in</strong>t of O∞ (resp., O0) determ<strong>in</strong>es a unique quiver. It<br />

follows that there are q quivers, each conta<strong>in</strong><strong>in</strong>g q 2 l<strong>in</strong>es, <strong>and</strong> each l<strong>in</strong>e is <strong>in</strong><br />

a unique quiver. Each l<strong>in</strong>e not <strong>in</strong> a given quiver is concurrent with exactly q<br />

pairwise noncurrent l<strong>in</strong>es of that quiver, <strong>and</strong> each po<strong>in</strong>t of P \ (O∞ ∪ O0 is<br />

on a unique l<strong>in</strong>e <strong>in</strong> each quiver.<br />

In the paper [Pa85b] where quivers were first def<strong>in</strong>ed, there were properties<br />

A1, . . . , A7 that were shown to characterize the GQ P(T2(O), L) where<br />

O is an oval <strong>in</strong> P G(2, 2 e ) <strong>and</strong> L is one of the l<strong>in</strong>es (through π∞) known to


492 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

be regular. In the present situation S is already assumed to satisfy A1 <strong>and</strong><br />

A2 merely because S has a regular ovoid O∞ that is pivotal for the fan M.<br />

S<strong>in</strong>ce this notation has been used <strong>in</strong> a variety of published accounts of this<br />

material, we cont<strong>in</strong>ue to use it. It is time to discuss property A3.<br />

In fact, for each i, 0 ≤ i ≤ q, there is a property A3(i). To simplify<br />

notation, we write A3 <strong>in</strong> place of A3(0), <strong>and</strong> state this property for i = 0.<br />

A3 Let L1, M1 be nonconcurrent l<strong>in</strong>es of S meet<strong>in</strong>g l<strong>in</strong>es L2, M2 at four<br />

dist<strong>in</strong>ct po<strong>in</strong>ts belong<strong>in</strong>g to members of M ′ = M \ {O∞, O0}. Let aj<br />

be the po<strong>in</strong>t of O∞ <strong>in</strong>cident with Lj, j = 1, 2, <strong>and</strong> let bj be the po<strong>in</strong>t<br />

on Mj coll<strong>in</strong>ear with aj, j = 1, 2. Then b1 ∈ O0 iff b2 ∈ O0.<br />

We now suppose that S also satisfies A3 (so the ovoid O0 is play<strong>in</strong>g a<br />

special role), <strong>and</strong> thus it satisfies A1, A2 <strong>and</strong> A3.<br />

Lemma 10.15.1. Let L <strong>and</strong> M be nonconcurrent l<strong>in</strong>es belong<strong>in</strong>g to some<br />

quiver Q. Then the follow<strong>in</strong>g hold:<br />

(i) The l<strong>in</strong>es of {L, M} ⊥ not <strong>in</strong> Q (i.e., not <strong>in</strong>cident with the po<strong>in</strong>ts of<br />

O∞ ∪ O0 on L <strong>and</strong> M) are all <strong>in</strong> a common quiver Q ′ .<br />

(ii) L <strong>and</strong> M belong to a q × q grid G hav<strong>in</strong>g q l<strong>in</strong>es (of {L, M} ⊥ ) <strong>in</strong> Q ′<br />

<strong>and</strong> q l<strong>in</strong>es <strong>in</strong> Q. The po<strong>in</strong>ts of G are precisely those po<strong>in</strong>ts on l<strong>in</strong>es<br />

{L, M} ⊥ not <strong>in</strong> O∞ ∪ O0.<br />

(iii) If (L, M, K) is a triad of l<strong>in</strong>es <strong>in</strong> Q, then K belongs to the q × q grid<br />

conta<strong>in</strong><strong>in</strong>g L <strong>and</strong> M iff (L, M, K) is centric.<br />

Proof. Let L <strong>and</strong> M be nonconcurrent l<strong>in</strong>es belong<strong>in</strong>g to a same quiver Q.<br />

This means that the po<strong>in</strong>t of O∞ on L (resp., M) is coll<strong>in</strong>ear with the po<strong>in</strong>t<br />

of O0 on M (resp., L). Let K1, . . . , Kq be the l<strong>in</strong>es of {L, M} ⊥ meet<strong>in</strong>g L <strong>and</strong><br />

M at po<strong>in</strong>ts of P \ (O∞ ∪ O0). For 1 ≤ i, j ≤ q, i = j, by A3 the po<strong>in</strong>t of O∞<br />

on Ki must be coll<strong>in</strong>ear with the po<strong>in</strong>t of O0 on Kj. It follows that K1, . . . ,<br />

Kq must all belong to a quiver Q ′ , prov<strong>in</strong>g (i). Let Ki, Kj, Kk be any three<br />

dist<strong>in</strong>ct l<strong>in</strong>es of {L, M} ⊥ meet<strong>in</strong>g L <strong>and</strong> M at po<strong>in</strong>ts of P \(O∞ ∪O0). Let x<br />

be any po<strong>in</strong>t of Ki not on L or M <strong>and</strong> not <strong>in</strong> O∞ ∪ O0. To complete the grid<br />

it is suffices to know that the l<strong>in</strong>e Nj through x <strong>and</strong> meet<strong>in</strong>g Kj is the same<br />

as the l<strong>in</strong>e Nk through x meet<strong>in</strong>g Kk. But there is only one l<strong>in</strong>e through x <strong>in</strong><br />

the quiver Q, <strong>and</strong> apply<strong>in</strong>g part (i) to Ki <strong>and</strong> Kj (<strong>and</strong> <strong>in</strong>dependently to Ki<br />

<strong>and</strong> Kk) we see that all the l<strong>in</strong>es of {Ki, Kj} ⊥ (<strong>in</strong>clud<strong>in</strong>g L <strong>and</strong> M <strong>and</strong> Nj)


10.15. QUIVERS - AND A3 493<br />

belong to one quiver, i.e., Q. Similarly all the l<strong>in</strong>es of {Ki, Kk} ⊥ (<strong>in</strong>clud<strong>in</strong>g<br />

L <strong>and</strong> M <strong>and</strong> Nk) belong to the same quiver. Hence Nj = Nk. It is now<br />

clear how to complete the grid.<br />

By the po<strong>in</strong>t-l<strong>in</strong>e dual of Theorem 9.7.5 (with m = n = q <strong>in</strong> this case)<br />

each l<strong>in</strong>e not <strong>in</strong> the grid is concurrent withy exactly two l<strong>in</strong>es of the grid.<br />

This means that each l<strong>in</strong>e of S not <strong>in</strong> Q or Q ′ meets the grid <strong>in</strong> a unique<br />

po<strong>in</strong>t.<br />

For the proof of part (iii), let L = L1, M = L2, L3, . . . , Lq be the l<strong>in</strong>es<br />

of Q belong<strong>in</strong>g to the grid conta<strong>in</strong><strong>in</strong>g L <strong>and</strong> M. If K is one of L3, . . . , Lq,<br />

then (L, M, K) has q centers (i.e., transversals). Otherwise, K must be the<br />

l<strong>in</strong>e through the po<strong>in</strong>t of O∞ on one of L1, . . . , Lq <strong>and</strong> through the po<strong>in</strong>t of<br />

O0 on one of the other l<strong>in</strong>es of L1, . . . , Lq. In this case it is easy to check<br />

that (L, M, K) has no center.<br />

Lemma 10.15.2. In the GQ S∞ the po<strong>in</strong>t (O0) is coregular.<br />

Proof. L∞ is already known to be regular <strong>in</strong> S∞. What rema<strong>in</strong>s to be seen is<br />

that each l<strong>in</strong>e K of the form K = {a1, a2} ⊥ such that K ⊂ O0 <strong>and</strong> K ⊥ ⊂ O∞<br />

is regular as a l<strong>in</strong>e of S∞. As a set of po<strong>in</strong>ts of S, K determ<strong>in</strong>es a quiver<br />

Q for which a l<strong>in</strong>e L of S is <strong>in</strong> Q iff it is concurrent with K <strong>in</strong> S∞. Let M<br />

be a l<strong>in</strong>e of S∞ not concurrent with K. If M is concurrent with L∞ <strong>in</strong> S∞,<br />

then (I, M) is regular <strong>in</strong> S∞ because L∞ is regular. If M is not concurrent<br />

with L∞ <strong>in</strong> S∞, then M ∈ B, i.e., M is also a l<strong>in</strong>e of S <strong>and</strong> belongs to some<br />

quiver Q ′ , Q ′ = Q. Through each po<strong>in</strong>t of O1 ∪ · · · ∪ Oq on M (<strong>in</strong> S) there<br />

is a unique l<strong>in</strong>e of Q. These l<strong>in</strong>es form part of a q × q grid G of l<strong>in</strong>es <strong>and</strong><br />

po<strong>in</strong>ts <strong>in</strong> S (by Lemma ??). In S∞, G is completed to a (q + 1) × (q + 1) grid<br />

G∞ by <strong>in</strong>clud<strong>in</strong>g the po<strong>in</strong>t (O0), the l<strong>in</strong>e K = {a1, α2} ⊥ determ<strong>in</strong><strong>in</strong>g Q, the<br />

l<strong>in</strong>e {a ′ 1 , a′ 2 }⊥ determ<strong>in</strong><strong>in</strong>g Q ′ , <strong>and</strong> the po<strong>in</strong>ts on these latter two l<strong>in</strong>es.<br />

It is easy to see <strong>in</strong> view of Lemmas 10.15.1 <strong>and</strong> 10.15.2 that A3(i) is<br />

equivalent to hav<strong>in</strong>g (Oi) be a coregular po<strong>in</strong>t of S∞. If each l<strong>in</strong>e meet<strong>in</strong>g<br />

L∞ is regular, then each l<strong>in</strong>e of S∞ is regular. (Proof: If {L1, L2} is any<br />

pair of noncurrent l<strong>in</strong>es, they form a regular pair if either of them meets<br />

L∞. If neither meets L∞, s<strong>in</strong>ce L∞ is regular, the triad {L∞, L1, L2} must<br />

be centric, say with transversal M. But then s<strong>in</strong>ce M ∈ {L1, L2} ⊥ , the pair<br />

{L1, L2} must be regular. Hence all l<strong>in</strong>es are regular.) By the theorem of<br />

Benson, S∞ is then isomorphic to the dual of W (q), i.e., to the GQ Q(4, q)<br />

aris<strong>in</strong>g from a nons<strong>in</strong>gular (parabolic) quadric <strong>in</strong> P G(4, q). Here q is any<br />

prime power. This essentially completes a proof of the follow<strong>in</strong>g theorem.


494 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

Theorem 10.15.3. Let S = (P, B, I) be a GQ of order (q + 1, q − 1), q ≥ 4.<br />

Then S is isomorphic to the GQ obta<strong>in</strong>ed by exp<strong>and</strong><strong>in</strong>g Q(4, q) about any<br />

(necessarily regular) l<strong>in</strong>e if <strong>and</strong> only if there is a partition of the po<strong>in</strong>tset<br />

P = O∞ ∪ O0 ∪ · · · ∪ Oq <strong>in</strong>to ovoids <strong>in</strong> such a way that the follow<strong>in</strong>g hold:<br />

(i) O∞ is pivotal for the fan M = {O∞, O0, . . . , Oq}, i.e., x, y ∈ O∞,<br />

x = y, implies that {x, y} ⊥ is conta<strong>in</strong>ed <strong>in</strong> a s<strong>in</strong>gle member of M.<br />

(ii) If L1 <strong>and</strong> M1 are nonconcurrent l<strong>in</strong>es meet<strong>in</strong>g nonconcurrent l<strong>in</strong>es<br />

L2 <strong>and</strong> M2 <strong>in</strong> four po<strong>in</strong>ts of O0 ∪ · · · ∪ Oq, let ai be the po<strong>in</strong>t of O∞ on Li,<br />

i = 1, 2. If ai ∼ bi with biIMi, i = 1, 2, then b1 <strong>and</strong> b2 belong to the same<br />

member of M \ {O∞}.<br />

Here condition (i) says that we may constrict S about O∞ to obta<strong>in</strong> a<br />

GQ S∞ of order s with a regular l<strong>in</strong>e L∞. Condition (ii) says that each po<strong>in</strong>t<br />

(Oi), 0 ≤ i ≤ q, is coregular <strong>in</strong> S∞. We know that this means that the po<strong>in</strong>t<br />

(Oi) itself is regular if q is even <strong>and</strong> is antiregular if q is odd. So if even one<br />

of the coregular po<strong>in</strong>ts (Oi), 0 ≤ i ≤ q, is pivotal for Ω, forc<strong>in</strong>g (Oi) to be<br />

regular as a po<strong>in</strong>t of S∞, then s is even <strong>and</strong> all of the po<strong>in</strong>ts as well as all of<br />

the l<strong>in</strong>es of S∞ are regular.<br />

10.16 A1, A2, A3 <strong>and</strong> A4<br />

Our next goal is to characterize the GQ of order (q + 1, q − 1) aris<strong>in</strong>g from<br />

a q-arc <strong>in</strong> P G(2, q), q = 2e . So <strong>in</strong> addition to the basic properties A1, A2<br />

<strong>and</strong> A3 used <strong>in</strong> the preced<strong>in</strong>g results, we now assume that q is even, i.e.,<br />

that A4 holds.<br />

Cont<strong>in</strong>u<strong>in</strong>g with the notation from above <strong>and</strong> assum<strong>in</strong>g that Ai holds for<br />

1 ≤ i ≤ 4, we are now essentially assum<strong>in</strong>g that the coregular po<strong>in</strong>t (O0)<br />

of S∞ is also regular, so that the ovoid O0 is also pivotal for M. But this<br />

means that <strong>in</strong> all the results obta<strong>in</strong>ed so far (exclud<strong>in</strong>g Theorem 10.15.3) the<br />

roles of O0 <strong>and</strong> O∞ are <strong>in</strong>terchangeable.<br />

S<strong>in</strong>ce (O0) is a regular po<strong>in</strong>t of S∞, we may exp<strong>and</strong> S∞ about the po<strong>in</strong>t<br />

(O0) to obta<strong>in</strong> a GQ S0 ∞ of order (q − 1, q + 1) as follows:<br />

S0 ∞ = (P 0 ∞ , B0 ∞ , I0 ∞ ), where P 0 ∞ = O1 ∪ · · · ∪ Oq, <strong>and</strong> B0 ∞ = B ∪ {x, y}⊥ :<br />

x = y; x, y ∈ O∞ or x, y ∈ O0 <strong>and</strong> {x, y} ⊥ ∩ (O∞ ∪ O0) = ∅}. Here <strong>and</strong><br />

(unless noted otherwise) <strong>in</strong> all that follows “⊥” denotes the perp <strong>in</strong> S. For<br />

x ∈ P 0 ∞ , L ∈ B, we have xI0 ∞L iff xIL. For z ∈ P 0 ∞ , L = {x, y}⊥ ∈ B0 ∞ \ B,<br />

L if <strong>and</strong> only if z ∈ L.<br />

we have zI 0 ∞


10.17. PSEUDOLINES: A1, · · · , A6 495<br />

Let x, y ∈ P 0 ∞ . To denote that x <strong>and</strong> y are coll<strong>in</strong>ear <strong>in</strong> S0 ∞ , we write<br />

x ′′<br />

∼ y. Note that x ′′<br />

∼ y iff x ∼ y or {x, y} ⊥ ⊂ O∞ or {x, y} ⊥ ⊂ O0.<br />

Index the quivers of l<strong>in</strong>es of S as Q1, . . . , Qq, <strong>and</strong> put<br />

<strong>and</strong><br />

Q∞ = {{a1, a2} ⊥ : a1, a2 ∈ O∞ <strong>and</strong> [a1] = [a2]},<br />

Q0 = {{b1, b2} ⊥ : b1, b2 ∈ O0 <strong>and</strong> [b1] = [b2]}.<br />

Then Q = {Q∞, Q0, . . . , Qq} is the partition of the l<strong>in</strong>es of S 0 ∞ <strong>in</strong>to<br />

spreads aris<strong>in</strong>g from exp<strong>and</strong><strong>in</strong>g S∞ about the po<strong>in</strong>t (O0). Because (O0)<br />

is coregular <strong>in</strong> S∞, each spread <strong>in</strong> Q is a pivotal member of Q. Note also<br />

that if the roles of O∞ <strong>and</strong> O0 were <strong>in</strong>terchanged so as to first construct a<br />

GQ S0 of order q <strong>and</strong> then a GQ S ∞ 0 of order (q − 1, q + 1), S∞ 0 <strong>and</strong> S0 ∞<br />

would be exactly the same GQ.<br />

10.17 Pseudol<strong>in</strong>es: A1, · · · , A6<br />

Let x ∈ Oi, y ∈ Oj, 1 ≤ i, j ≤ q, i = j, x ∼ y. By Lemma ?? there is<br />

a unique a ∈ O∞ ∩ {x, y} ⊥ <strong>and</strong> there is a unique b ∈ O0 ∩ {x, y} ⊥ . Put<br />

xy = {a, b} ⊥ . Then xy is called the pseudol<strong>in</strong>e through x <strong>and</strong> y. Clearly<br />

xy is a set of q po<strong>in</strong>ts conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> y, uniquely determ<strong>in</strong>ed by any two<br />

po<strong>in</strong>ts of xy, <strong>and</strong> with |xy ∩ Oi| = 1 for each i = 1, 2, . . . , q. Each po<strong>in</strong>t x of<br />

P 0 ∞ is on q2 pseudol<strong>in</strong>es of this type determ<strong>in</strong>ed by the q 2 pairs <strong>in</strong><br />

(x ⊥ ∩ O∞) × (x ⊥ ∩ O0).<br />

The next property we <strong>in</strong>troduce for S is A5.<br />

A5 : Let (L1, L2, L3) be a centric triad of l<strong>in</strong>es for which the po<strong>in</strong>ts of O∞<br />

on L1, L2, L3 are each coll<strong>in</strong>ear with the po<strong>in</strong>ts of O0 on L1, L2, L3. If for<br />

some (a, b) ∈ O∞ × O0, a ∼ b, both L1 <strong>and</strong> L2 are <strong>in</strong>cident with po<strong>in</strong>ts of<br />

{a, b} ⊥ , then L3 is also <strong>in</strong>cident with a po<strong>in</strong>t of {a, b} ⊥ .<br />

Property A5 is easily seen to be equivalent to the follow<strong>in</strong>g.<br />

Lemma 10.17.1. Let x <strong>and</strong> y be noncoll<strong>in</strong>ear po<strong>in</strong>ts <strong>in</strong> dist<strong>in</strong>ct members of<br />

Ω \ {O∞, O0}. If G is any grid conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> y, then G conta<strong>in</strong>s all q<br />

po<strong>in</strong>ts of the pseudol<strong>in</strong>e xy.


496 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

F<strong>in</strong>ally, we state A6.<br />

A6: Let x1, x2, x3 be dist<strong>in</strong>ct po<strong>in</strong>ts of some Oj, 1 ≤ j ≤ q. Let (L1, L2, L3)<br />

<strong>and</strong> (M1, M2, M3) be two triads of l<strong>in</strong>es such that Li meets Mi at xi, i =<br />

1, 2, 3. Suppose that the three po<strong>in</strong>ts of O∞ on L1, L2, L3 (respectively, M1, M2, M3)<br />

are each coll<strong>in</strong>ear with the three po<strong>in</strong>ts of O0 on L1, L2, L3 (resp., M1, M2, M3).<br />

Then (L1, L2, L3) is centric if <strong>and</strong> only if (M1, M2, M3) is centric.<br />

Property A6 also has a restatement <strong>in</strong> terms of grids. (Throughout<br />

this section the word “grid” will refer to one of the grids constructed <strong>in</strong><br />

Lemma 10.15.1.)<br />

Theorem 10.17.2. Let Gi be a q × q grid with l<strong>in</strong>es from quivers Qi <strong>and</strong><br />

Q ′ i , i = 1, 2. Suppose that G1 <strong>and</strong> G2 both have l<strong>in</strong>es <strong>in</strong>cident with x <strong>and</strong> y,<br />

with x, y ∈ Oj, 1 ≤ j ≤ q, x = y. Then the set of q po<strong>in</strong>t of Oj <strong>in</strong>cident with<br />

the l<strong>in</strong>es of G1 is the same set of q po<strong>in</strong>ts of Oj <strong>in</strong>cident with G2.<br />

Proof. This is a rather immediate restatement of A6, s<strong>in</strong>ce <strong>in</strong> the statement<br />

of A6 the triad (L1, L2, L3) is centric if <strong>and</strong> only if it is part of a grid G1 if<br />

<strong>and</strong> only if (M1, M2, M3) is centric if <strong>and</strong> only if it is part of a grid G2.<br />

The follow<strong>in</strong>g corollary just collects some of the <strong>in</strong>formation already obta<strong>in</strong>ed.<br />

Corollary 10.17.3. Let x, y ∈ Oj, x = y, 1 ≤ j ≤ q. There are three<br />

possibilities:<br />

(i) {x, y} ⊥ ∩ O∞ = ∅, i<strong>in</strong> which case {x, y} ⊥ ⊂ O∞ <strong>and</strong> {x, y} ⊥⊥ is a set<br />

of q po<strong>in</strong>ts of Oj that form a l<strong>in</strong>e through the po<strong>in</strong>t (O∞) of S 0 ∞. No<br />

grid conta<strong>in</strong>s two po<strong>in</strong>ts of {x, y} ⊥⊥ , but for each a ∈ {x, y} ⊥ , the l<strong>in</strong>es<br />

through a are the l<strong>in</strong>es of one quiver through the po<strong>in</strong>ts of {x, y} ⊥⊥ .<br />

(ii) {x, y} ⊥ ∩ O0 = ∅, <strong>in</strong> which case {x, y} ⊥ ⊂ O0 <strong>and</strong> {xy} ⊥⊥ is a set<br />

of q po<strong>in</strong>ts of Oj that form a l<strong>in</strong>e through the po<strong>in</strong>t (O0) of S0 ∞ . No<br />

grid conta<strong>in</strong>s two po<strong>in</strong>ts of {x, y} ⊥⊥ , but for each b ∈ {x, y} ⊥ , the l<strong>in</strong>es<br />

through b are the l<strong>in</strong>es of one quiver through the po<strong>in</strong>ts of {x, y} ⊥⊥ .<br />

(iii) {x, y} ⊥ ∩(O∞ ∪O0) = ∅. In this case let Lx <strong>and</strong> Ly be the l<strong>in</strong>es through<br />

x <strong>and</strong> y, respectively, <strong>in</strong> some quiver Q. Let G be the grid conta<strong>in</strong><strong>in</strong>g<br />

Lx <strong>and</strong> Ly. The l<strong>in</strong>es of G lie <strong>in</strong> Q <strong>and</strong> <strong>in</strong> a second quiver Q ′ <strong>and</strong><br />

meet Oj <strong>in</strong> a set xy of q po<strong>in</strong>ts. By Theorem 10.17.2 there are q/2<br />

grids conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> y <strong>and</strong> all meet<strong>in</strong>g Oj <strong>in</strong> the same set xy of q


10.17. PSEUDOLINES: A1, · · · , A6 497<br />

po<strong>in</strong>ts. Here xy is called the pseudol<strong>in</strong>e through x <strong>and</strong> y <strong>and</strong> is clearly<br />

determ<strong>in</strong>ed uniquely by any two po<strong>in</strong>ts of xy.<br />

At this po<strong>in</strong>t a pseudol<strong>in</strong>e xy is def<strong>in</strong>ed for all pairs of noncol<strong>in</strong>ear po<strong>in</strong>ts<br />

<strong>in</strong> different members of M \ {O∞, O0} <strong>and</strong> for dist<strong>in</strong>ct po<strong>in</strong>ts x, y <strong>in</strong> Oj,<br />

1 ≤ j ≤ q when {x, y} ⊥ ∩ (O∞ ∪ O0) = ∅. Fix x ∈ P 0 ∞ . Then (x⊥ ∩ (O∞)) ⊥<br />

<strong>and</strong> (x ⊥ ∩ (O0)) ⊥ are the unique l<strong>in</strong>es through (O∞) <strong>and</strong> (O0), respectively,<br />

<strong>in</strong> S 0 ∞ that are <strong>in</strong>cident with x. If x ∈ Oj, 1 ≤ j ≤ q, then there are q − 1<br />

pseudol<strong>in</strong>es through x <strong>and</strong> ly<strong>in</strong>g <strong>in</strong> Oj.<br />

Lemma 10.17.4. Let x <strong>and</strong> y be dist<strong>in</strong>ct po<strong>in</strong>ts of P 0 ∞ = O1 ∪· · ·∪Oq. Then<br />

there are four possibilities for the pair (x, y).<br />

(i) x ∼ y <strong>in</strong> S, <strong>in</strong> which case x ′′<br />

∼ y.<br />

(ii) If x ∼ y where x <strong>and</strong> y are <strong>in</strong> dist<strong>in</strong>ct members of M \ {O∞, O0},<br />

then xy is a pseudol<strong>in</strong>e with xy = {a, b} ⊥ = {x1, x2, . . . , xq}, where<br />

a ∈ O∞, b ∈ O0, xi ∈ Oi, 1 ≤ i ≤ q are uniquely determ<strong>in</strong>ed. For<br />

each a ′ ∈ O∞ \ [a] (resp., b ′ ∈ O0 \ [b]) there is a unique i ∈ {1, . . . , q}<br />

(resp., j ∈ {1, . . . , q} for which a ′ ∈ x ⊥ i (resp., b′ ∈ x ⊥ j ).<br />

(iii) If x <strong>and</strong> y are both <strong>in</strong> Oj, 1 ≤ j ≤ q, with {x, y} ⊥ ∩ (O∞ ∪ O0) = ∅,<br />

then xy is a pseudol<strong>in</strong>e with xy ⊂ Oj.<br />

(iv) Suppose x <strong>and</strong> y are <strong>in</strong> the same ovoid Oj with {x, y} ⊥ ⊂ O∞ (resp.,<br />

{x, y} ⊥ ⊂ O0). In this case {x, y} ⊥⊥ is a l<strong>in</strong>e of S 0 ∞ .<br />

Proof. The only part that might still need verification is part (ii). For case<br />

(ii), let xy = {a, b} ⊥ = {x1, . . . , xq} as <strong>in</strong> the statement of the lemma. For<br />

1 ≤ i < j ≤ q, (x⊥ i ∩ O∞) ∩ (x⊥ j ∩ O∞) = {a}. So ∪ q <br />

⊥<br />

i=1 (xi ∩ O∞) \ {a} <br />

consists of q(q−1) po<strong>in</strong>ts of L∞\{a}. Moreover, if x⊥ i ∩O∞ conta<strong>in</strong>s a po<strong>in</strong>t a ′<br />

of [a], a ′ = a, then xi ∈ {a, a ′ } ⊥ ⊂ Oi, an impossibility. As |O∞\[a]| = q2 −q,<br />

for each a ′ ∈ O∞ \ [a], there is a unique i for which a ′ ∈ x⊥ i . As the roles of<br />

O∞ <strong>and</strong> O0 may be <strong>in</strong>terchanged, the proof of (ii) is complete.<br />

Now consider the two cases where the pseudol<strong>in</strong>e xy is def<strong>in</strong>ed. Def<strong>in</strong>e<br />

the slope of the pseudol<strong>in</strong>e xy as follows. If xy = {a, b} ⊥ where a ∈ O∞ <strong>and</strong><br />

b ∈ O0, then xy is said to have slope s(xy) = [a]. If xy ⊂ Oj, then xy is said<br />

to have slope s(xy) = ∞. This gives q + 1 different slopes.


498 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

Lemma 10.17.5. Let x, y ∈ P 0 ∞ be <strong>in</strong> the same ovoid Oj of M, so that<br />

xy = {x1, . . . , xq} ⊂ Oj. For each a ′ ∈ O∞ (resp., b ′ ∈ O0) there is a unique<br />

xi (resp., xj) such that a ′ ∈ x ⊥ i (resp., b′ ∈ x ⊥ j ).<br />

Proof. For x1, x2, dist<strong>in</strong>ct members of xy, observe that (x⊥ 1 ∩ O∞) ∩ (x2 ∩<br />

O∞) = ∅, s<strong>in</strong>ce otherwise x1x2 would not be def<strong>in</strong>ed (but x1x2 = xy). This<br />

forces | ∪ q<br />

i=1 (x⊥i ∩ O∞)| = q2 , <strong>in</strong> which case ∪ q<br />

i=1 (x⊥i ∩ O∞) = O∞. A similar<br />

argument holds with O0 <strong>in</strong> place of O∞.<br />

Corollary 10.17.6. Let z ∈ P 0<br />

<strong>in</strong>fty \ xy, where xy is a pseudol<strong>in</strong>e with slope<br />

m, <strong>and</strong> suppose that z is not coll<strong>in</strong>ear <strong>in</strong> S0 ∞ with w for each w ∈ xy. For<br />

each slope m ′ = m there is a unique w ∈ xy for which s(zw) = m ′ .<br />

The follow<strong>in</strong>g lemma demonstrates the connection between pseudol<strong>in</strong>es<br />

of S <strong>and</strong> (0, 2)-sets of S 0 ∞ .<br />

Lemma 10.17.7. Let x, y ∈ P 0 ∞ be such that x <strong>and</strong> y are not coll<strong>in</strong>ear <strong>in</strong><br />

S0 ∞. Then xy is a (0, 2)-set <strong>in</strong> S0 ∞.<br />

Proof. First consider the case where xy ⊂ Oi ∈ M, 1 ≤ i ≤ q. Let z be a<br />

po<strong>in</strong>t of P 0 ∞ \ xy which is coll<strong>in</strong>ear <strong>in</strong> S0 ∞ with some po<strong>in</strong>t of xy. As xy is<br />

determ<strong>in</strong>ed by any two of its po<strong>in</strong>ts, assume this po<strong>in</strong>t to be x. Here there<br />

are two subcases.<br />

Beg<strong>in</strong> by assum<strong>in</strong>g z ∈ Oi <strong>and</strong> hence {x, z} ⊥ ⊂ O∞ or {x, z} ⊥ ⊂ O0.<br />

Without loss of generality suppose that {x, z} ⊥ ⊂ O∞. There is a particular<br />

w which is coll<strong>in</strong>ear with at least one po<strong>in</strong>t of z⊥ ∩ O0. But as z <strong>and</strong> w are<br />

both <strong>in</strong> Oi it follows that {z, w} ⊥ ⊂ O0 <strong>and</strong> hence z is coll<strong>in</strong>ear with w <strong>in</strong><br />

S0 ∞ ( <strong>and</strong> also w = x). Furthermore w is uniquely determ<strong>in</strong>ed this way. If<br />

there were some u ∈ xy with z ′′<br />

∼ u this would force z ∼ y, a contradiction<br />

as z, u ∈ Oi.<br />

Next assume z ∈ Oj = Oi. In this case z ′′<br />

∼ x implies z ∼ x, <strong>in</strong> which<br />

case there is a l<strong>in</strong>e L ∈ B through x <strong>and</strong> z. Let Q be the quiver conta<strong>in</strong><strong>in</strong>g<br />

L, <strong>and</strong> let M be the l<strong>in</strong>e of Q through y. If G is the grid conta<strong>in</strong><strong>in</strong>g Q,<br />

there is another quiver Q ′ <strong>in</strong> G. Let K be the unique l<strong>in</strong>e of Q ′ through z<br />

<strong>in</strong> G. Observe that K conta<strong>in</strong>s a unique po<strong>in</strong>t w of xy. On the other h<strong>and</strong><br />

if xILIzIKIw with w ∈ xy, L = K, then L <strong>and</strong> K are <strong>in</strong> the unique grid<br />

determ<strong>in</strong>ed by L <strong>and</strong> y. Hence xy is a (0, w)-set of S0 ∞ .<br />

Now consider the case where x ∈ Oj, y ∈ Ok, j = k with x ∼ y. Write<br />

xy = {a, b} ⊥ with a ∈ O∞, b ∈ O0. Choose z ∈ P 0 ′′<br />

∞ − xy with z ∼ x. Beg<strong>in</strong>


10.17. PSEUDOLINES: A1, · · · , A6 499<br />

by assum<strong>in</strong>g z ∈ Oj; which would mean that x ∼ z on some l<strong>in</strong>e L ∈ B with<br />

L <strong>in</strong> the quiver Q. Let M be the l<strong>in</strong>e through y <strong>in</strong> Q. Let Q ′ be the other<br />

quiver conta<strong>in</strong><strong>in</strong>g l<strong>in</strong>es of the grid determ<strong>in</strong>ed by L <strong>and</strong> M. Let K be the<br />

unique l<strong>in</strong>e of Q ′ through z. If G is any grid conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> y, then G<br />

conta<strong>in</strong>s all q po<strong>in</strong>ts of xy. So K has a unique po<strong>in</strong>t w of xy. Observe that<br />

w is the unique other po<strong>in</strong>t of xy coll<strong>in</strong>ear <strong>in</strong> S0 ∞ with z.<br />

F<strong>in</strong>ally assume z ′′<br />

∼ x with z ∈ Oj. Once aga<strong>in</strong> assume that {x, z} ⊥ ⊂<br />

O∞. Thus a ∈ {x, z} ⊥ . S<strong>in</strong>ce x is the unique po<strong>in</strong>t of Oj on xy, if w is a<br />

po<strong>in</strong>t different from x with z ′′<br />

∼ w, it follows that z ∼ w. Let K be the l<strong>in</strong>e<br />

of B through a <strong>and</strong> z. The po<strong>in</strong>t b is coll<strong>in</strong>ear with a unique po<strong>in</strong>t w on<br />

K. This forces w ∈ {a, b} ⊥ , i.e., w ∈ xy. Observe that this makes w the<br />

unique po<strong>in</strong>t of xy other than x with which z is coll<strong>in</strong>ear <strong>in</strong> S0 ∞ . Hence xy is<br />

a (0, 2)-set.<br />

At this po<strong>in</strong>t we see that if x <strong>and</strong> y are po<strong>in</strong>ts of P 0 ∞ that are not coll<strong>in</strong>ear<br />

<strong>in</strong> S0 ∞, then the pseudol<strong>in</strong>e xy provides a uniquely def<strong>in</strong>ed (0, 2)-set through<br />

x <strong>and</strong> y. This means that Axiom 1 of Section 2 is satisfied.<br />

If β is a set of q2 po<strong>in</strong>ts of P 0 ∞ , we call β a special plane provided that<br />

for x, y ∈ β, x ′′<br />

∼ implies that {x, y} ⊥⊥ ∩ P 0 ∞ ⊂ β, <strong>and</strong> if it is not true that<br />

x ′′<br />

∼ y, then xy ⊂ β. Note that a special plane β together with the l<strong>in</strong>es <strong>and</strong><br />

pseudol<strong>in</strong>es it conta<strong>in</strong>s is actually an aff<strong>in</strong>e plane of order q. Moreover, two<br />

dist<strong>in</strong>ct special planes <strong>in</strong>tersect<strong>in</strong>g <strong>in</strong> at least three dist<strong>in</strong>ct po<strong>in</strong>ts must have<br />

a l<strong>in</strong>e of S0 ∞ or a pseudol<strong>in</strong>e of S as their <strong>in</strong>tersection.<br />

Lemma 10.17.8. Three types of special planes immediately arise.<br />

(i) Each ovoid of M \ {O∞, O0} is a special plane.<br />

(ii) The q 2 po<strong>in</strong>ts on a q × q grid G of S (restricted to po<strong>in</strong>ts of P 0 ∞) is<br />

a special plane denoted βG. This follows from A5 <strong>and</strong> A6 (see their<br />

restatements above).<br />

(iii) For a ∈ O∞ ∪ O0, β = a ⊥ ∩ P 0 ∞ is a special plane.<br />

Proof. Parts (i) <strong>and</strong> (ii) are more or less obvious. For part (iii), let a ∈ O∞<br />

with x, y dist<strong>in</strong>ct po<strong>in</strong>ts <strong>in</strong> β. Consider first the case x ′′<br />

∼. If x ∼ y by some<br />

l<strong>in</strong>e L ∈ B, then {x, y} ⊥⊥ = L. So {x, y} ⊥⊥ ∩ P 0 ∞ = L \ {a} ⊂ a⊥ ∩ P 0 ∞.<br />

If x ′′<br />

∼ but x ∼ y, then x <strong>and</strong> y belong to the same ovoid Oi of M. As


500 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

a ∈ {x, y} ⊥ , it follows that {x, y} ⊥ ⊂ O∞ <strong>and</strong> hence {x, y} ⊥⊥ ⊂ Oi. In fact,<br />

{x, y} ⊥⊥ ⊂ Oi ∩ a⊥ ⊂ β.<br />

F<strong>in</strong>ally, consider the case that x is not coll<strong>in</strong>ear with y <strong>in</strong> S0 ∞ . Then<br />

x <strong>and</strong> y are <strong>in</strong> dist<strong>in</strong>ct ovoids of M, <strong>and</strong> there is a unique b ∈ O0 with<br />

{x, y} ⊥ ∩ O0 = {b}. In this case xy = {a, b} ⊥ , which is clearly conta<strong>in</strong>ed <strong>in</strong><br />

β.<br />

Let Π∗ be the set of special planes formed <strong>in</strong> one of these three ways.<br />

Let (x, L) be a non<strong>in</strong>cident po<strong>in</strong>t-l<strong>in</strong>e pair from S0 ∞. First consider the case<br />

where L ∈ B. There is a unique po<strong>in</strong>t on L which is coll<strong>in</strong>ear with x <strong>in</strong> S.<br />

If this po<strong>in</strong>t is <strong>in</strong> O∞ ∪ O0, call it a <strong>and</strong> observe that a⊥ ∩ P 0 ∞ is the unique<br />

plane of Π∗ conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> L. If this poiont is <strong>in</strong> P 0 ∞, call it y <strong>and</strong> let<br />

K ∈ B be the l<strong>in</strong>e through x <strong>and</strong> y. S<strong>in</strong>ce L <strong>and</strong> K determ<strong>in</strong>e a unique grid<br />

G, βG is the unique plane of Π ∗ through x <strong>and</strong> L.<br />

Now consider L ∈ B0 ∞ \ B, <strong>in</strong> which case there is some i ∈ {1, . . . , q} with<br />

L ⊂ Oi. Suppose that L⊥ ⊂ O∞. If x ∈ Oi, then Oi is the unique plane of<br />

Π∗ conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> L. If x ∈ Oj = Oi, then there is a unique y <strong>in</strong>cident <strong>in</strong><br />

S0 ∞ with L such that x ′′<br />

∼ y on some l<strong>in</strong>e M ∈ B0 ∞. As x <strong>and</strong> y are <strong>in</strong> different<br />

ovoids of M, M is actually <strong>in</strong> B. Let M ∩ O∞ = {a}. Then a⊥ ∩ P 0 ∞ is the<br />

unique plane of Π∗ conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> L.<br />

The follow<strong>in</strong>g important lemma has now been proved.<br />

Lemma 10.17.9. If (x, L) is a non<strong>in</strong>cident po<strong>in</strong>t-l<strong>in</strong>e pair from S0 ∞ , then x<br />

<strong>and</strong> L lie <strong>in</strong> a unique plane of Π∗ .<br />

If β is the plane of Π ∗ determ<strong>in</strong>ed by the non<strong>in</strong>cident po<strong>in</strong>t-l<strong>in</strong>e pair (x, L)<br />

from S 0 ∞, then by this lemma there exist q −1 pseudol<strong>in</strong>es <strong>in</strong> β which conta<strong>in</strong><br />

x <strong>and</strong> a po<strong>in</strong>t of L. Let L = {L1, . . . , Lq−1} be the set of these pseudol<strong>in</strong>es.<br />

This leads to the follow<strong>in</strong>g lemma which is the penultimate (<strong>and</strong> perhaps<br />

most significant) claim of this section.<br />

Lemma 10.17.10. Let x, L, β <strong>and</strong> L be as described above with x ∈ M ∈ B 0 ∞<br />

<strong>and</strong> L ∩ M = ∅. If at least two dist<strong>in</strong>ct members, say Li <strong>and</strong> Lj of L meet<br />

M, then every member of L meets M.<br />

Proof. Let yi = Li ∩M, yj = Lj ∩M. Obviously x, yi <strong>and</strong> yj are <strong>in</strong> β. By the<br />

previous lemma (x, M) determ<strong>in</strong>e a unique plane β ′ ∈ Π ∗ which also conta<strong>in</strong>s<br />

x, yi, yj, i.e., {x, yi, yj} ⊂ β ∩ β ′ . But the <strong>in</strong>tersection of two dist<strong>in</strong>ct planes<br />

of Π ∗ must be a l<strong>in</strong>e. S<strong>in</strong>ce x, yi, <strong>and</strong> yj are not mutually coll<strong>in</strong>ear (by an


10.17. PSEUDOLINES: A1, · · · , A6 501<br />

aff<strong>in</strong>e l<strong>in</strong>e), it follows that β ′ = β. Hence M is parallel to L <strong>in</strong> β. Therefore<br />

each aff<strong>in</strong>e l<strong>in</strong>e which meets L <strong>in</strong> β must also meet M <strong>in</strong> β. Namely, each of<br />

the pseudol<strong>in</strong>es of L meets M.<br />

The importance of the preced<strong>in</strong>g lemma lies <strong>in</strong> the fact that it shows that<br />

Axiom (T) (also called Axiom 2) of Section 10.9 is satisfied <strong>in</strong> S0 ∞ . Hence it<br />

follows fromTheorem 10.11.1 that<br />

Corollary 10.17.11. S 0 ∞ is isomorphic to T ∗ 2 (O+ ) for some hyperoval O + .<br />

But then it is clear that S is obta<strong>in</strong>ed by first constrict<strong>in</strong>g about a pivotal<br />

spread to obta<strong>in</strong> a GQ T2(O) for some oval O conta<strong>in</strong>ed <strong>in</strong> O + , <strong>and</strong> then<br />

exp<strong>and</strong><strong>in</strong>g about a regular l<strong>in</strong>e, i.e., S is the GQ of order (q + 1, q − 1)<br />

derived from a q-arc <strong>in</strong> P G(2, q).<br />

Recapitulatiion: Suppose that S is a GQ with parameters (q +1, q −1),<br />

q = 2 e . Suppose that S has an ovoid O∞ that is regular, i.e., each pair {x, y}<br />

of dist<strong>in</strong>ct po<strong>in</strong>ts of O∞ is a regular pair with {x, y} ⊥⊥ ⊂ O∞. This gives an<br />

aff<strong>in</strong>e plane π(O∞) whose po<strong>in</strong>ts are the po<strong>in</strong>ts of O∞ <strong>and</strong> whose l<strong>in</strong>es are the<br />

spans of pairs of po<strong>in</strong>ts of O∞. This is enough to complete the construction<br />

of a fan M = {O∞, O0, O1, . . . , Oq} of ovoids for which O∞ is pivotal. This<br />

means that the perp of each pair of po<strong>in</strong>ts of O∞ is conta<strong>in</strong>ed <strong>in</strong> some Oi,<br />

<strong>and</strong> each Oi is the disjo<strong>in</strong>t union of the perps of the aff<strong>in</strong>e l<strong>in</strong>es <strong>in</strong> one parallel<br />

class of π(O∞), for 0 ≤ i ≤ q. At this po<strong>in</strong>t we can say that S is isomorphic<br />

to a GQ obta<strong>in</strong>ed from a q-arc <strong>in</strong> P G(2, q) provided that properties A3, A5<br />

<strong>and</strong> A6 hold.


502 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

10.18 The Construction of T3(Ω)<br />

Let Ω be an ovoid of Σ = P G(3, q) which is embedded as a hyperplane <strong>in</strong><br />

P G(4, q). Construct the po<strong>in</strong>t-l<strong>in</strong>e <strong>in</strong>cidence geometry S = (P, B, I) with<br />

po<strong>in</strong>tset P, l<strong>in</strong>eset B, <strong>and</strong> <strong>in</strong>cidence I, as follows:<br />

The po<strong>in</strong>ts of S, i.e., elements of P are of three types:<br />

(i) The po<strong>in</strong>ts of P G(4, q) \ Σ;<br />

(ii) The hyperplanes of P G(4, q) meet<strong>in</strong>g Σ <strong>in</strong> a plane tangent to O.<br />

(iii) The symbol (∞).<br />

The l<strong>in</strong>es of S are of two types:<br />

(a) The l<strong>in</strong>es of P G(4, q) that are not conta<strong>in</strong>ed <strong>in</strong> Σ <strong>and</strong> meet Σ <strong>in</strong> a<br />

(necessarily unique) po<strong>in</strong>t of Ω.<br />

(b) The po<strong>in</strong>ts of Ω.<br />

It is rout<strong>in</strong>e to verify that S is a GQ with parameters (q, q 2 ). When Ω<br />

is an elliptic quadric, it is possible to show that T3(Ω) is isomorphic to the<br />

po<strong>in</strong>t-l<strong>in</strong>e dual of Q(5, q). When q is odd, there is, of course, only the classical<br />

elliptic quadric ovoid. In all cases there is an elementary abelian group of<br />

coll<strong>in</strong>eations of S act<strong>in</strong>g sharply transitively on the po<strong>in</strong>ts of type (i) (i.e.,<br />

po<strong>in</strong>ts not coll<strong>in</strong>ear with (∞)), <strong>and</strong> fix<strong>in</strong>g each l<strong>in</strong>e through (∞). A GQ<br />

admitt<strong>in</strong>g such a group of coll<strong>in</strong>eations is called a translation GQ with base<br />

po<strong>in</strong>t (∞). If S is a GQ with a fixed po<strong>in</strong>t P for which there is a group G<br />

of coll<strong>in</strong>eations fix<strong>in</strong>g each l<strong>in</strong>e through P <strong>and</strong> act<strong>in</strong>g sharply transitively on<br />

the set of po<strong>in</strong>ts not coll<strong>in</strong>ear with P , then S is said to be an elation GQ with<br />

elation group G at the base po<strong>in</strong>t P . We then write that S = (S (P ) , G) is an<br />

elation GQ, or (S (P ) , G) is an EGQ. See [PT84] <strong>and</strong> [KT04] for a much more<br />

thorough <strong>in</strong>troduction to f<strong>in</strong>ite EGQ. For our present purposes it suffices to<br />

be able to view some of the known examples as EGQ. In the next section we<br />

consider the po<strong>in</strong>t-l<strong>in</strong>e dual of T3(Ω) <strong>in</strong> the special case where q = 2 e , e odd,<br />

<strong>and</strong> Ω is the Tits ovoid.<br />

10.19 The Po<strong>in</strong>t-L<strong>in</strong>e Dual of T3(Ω)<br />

The GQ T3(Ω) where Ω is the Tits-ovoid is naturally viewed as a TGQ of<br />

order (q, q 2 ), where q is an odd power of 2. In this section we view it as<br />

an EGQ with parameters (q 2 , q). The fact that the elation group G admits<br />

this one four-gonal family at least suggests the possibility that it may admit


10.19. THE POINT-LINE DUAL OF T3(Ω) 503<br />

another one. We give an explicit description of this group G with the hope<br />

that this view of it may suggest some other way to construct a four-gonal<br />

family. However, this approach has not led to anyth<strong>in</strong>g new so far as we<br />

know.<br />

Let Fq = GF (q), q = 2 e , e odd. Let σ ∈ Aut(Fq) be chosen so that<br />

σ 2 = 2. Def<strong>in</strong>e<br />

f : F 2 q → Fq : (a, b) ↦→ a σ+2 + ab + b σ .<br />

The Tits-ovoid Ω of Σ = P G(3, q) is given by<br />

Ω = {(0, 1, 0, 0)} ∪ {(1, f(a, b), a, b) : a, b ∈ Fq}.<br />

The GQ T3(Ω) with parameters (q, q 2 ) is constructed as follows. First embed<br />

Σ <strong>in</strong>to P G(4, q) by (x, y, z, w) ↦→ (0, x, y, z, w).<br />

Po<strong>in</strong>ts of T3(Ω) are of three types:<br />

(i) po<strong>in</strong>ts of P G(4, q) \ Σ;<br />

(ii) solids of P G(4, q) \ Σ meet<strong>in</strong>g Σ <strong>in</strong> a plane tangent to Ω;<br />

(iii) a symbol (∞).<br />

L<strong>in</strong>es of T3(Ω) are of two types:<br />

(a) l<strong>in</strong>es of P G(4, q) meet<strong>in</strong>g Σ <strong>in</strong> a po<strong>in</strong>t of Ω.<br />

(b) po<strong>in</strong>ts of Ω.<br />

Incidence <strong>in</strong> T3(Ω) is def<strong>in</strong>ed by the follow<strong>in</strong>g:<br />

The po<strong>in</strong>t (∞) is <strong>in</strong>cident with the 1 + q 2 l<strong>in</strong>es of type (b). Suppose △<br />

is a solid of P G(4, q) meet<strong>in</strong>g Σ <strong>in</strong> the plane Tp tangent to Ω at the po<strong>in</strong>t p.<br />

Then △ is <strong>in</strong>cident with p (as a l<strong>in</strong>e of type (b)) <strong>and</strong> with the q 2 l<strong>in</strong>es of △<br />

not <strong>in</strong> Σ. The po<strong>in</strong>t x of P G(4, q) \ Σ is <strong>in</strong>cident with the 1 + q 2 l<strong>in</strong>es px,<br />

p ∈ Ω.<br />

This construction gives T3(Ω) as a translation GQ (TGQ) of order (q, q 2 )<br />

whose po<strong>in</strong>t-l<strong>in</strong>e dual T3(Ω) ˆ is an elation GQ (EGQ) of order (q 2 , q).<br />

Def<strong>in</strong>e θ(a, b, c, d, e) : (u, x, y, z, w) ↦→ (u, x, y, z, w)[a, b, c, d, e], where<br />

⎛<br />

⎜<br />

[a, b, c, d, e] = ⎜<br />

⎝<br />

1 0 c d e<br />

0 1 f(a, b) a b<br />

0 0 1 0 0<br />

0 0 a σ+1 + b 1 a σ<br />

0 0 a 0 1<br />

⎞<br />

⎟ ; for a, b, c, d, e ∈ Fq.<br />


504 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

A rout<strong>in</strong>e check shows that G = {θ(a, b, c, d, e) : a, b, c, d, e ∈ Fq} is a<br />

group of order q 5 with b<strong>in</strong>ary operation<br />

[a, b, c, d, e] · [a ′ , b ′ , c ′ , d ′ , e ′ ] =<br />

[a + a ′ , b + b ′ + a · a ′σ , c + c ′ + d(a ′σ+1 + b ′ ) + ea ′ , d + d ′ , e + e ′ + da ′σ ].<br />

Moreover, G leaves Ω <strong>in</strong>variant. In fact, G fixes the “l<strong>in</strong>e” P = (0, 0, 1, 0, 0) ∈<br />

Ω <strong>and</strong> is sharply transitive on the q 5 l<strong>in</strong>es of T3(Ω) not concurrent with P<br />

(i.e., the q 5 l<strong>in</strong>es of P G(4, q) met<strong>in</strong>g Σ at a po<strong>in</strong>t of Ω different from P ).<br />

Let Q be the “l<strong>in</strong>e” Q = (0, 1, 0, 0, 0) ∈ Ω. The plane TQ = {(0, z1, 0, z3, z4) :<br />

z1, z3, z4 ∈ Fq} is the plane of Σ tangent to Ω at Q. Let L∞ be the<br />

l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t (1, 0, 0, 0, 0) with the “po<strong>in</strong>t” TQ, literally the l<strong>in</strong>e<br />

L∞ = 〈(1, 0, 0, 0, 0), (0, 1, 0, 0, 0)〉. So L∞ is an “arbitrary” l<strong>in</strong>e of T3(Ω) not<br />

meet<strong>in</strong>g P . The po<strong>in</strong>ts of T3(Ω) with which it is <strong>in</strong>cident are the po<strong>in</strong>ts of<br />

P G(4, q) \ Σ <strong>in</strong>cident <strong>in</strong> Σ with L∞ <strong>and</strong> the solid 〈Q, TQ〉. The subgroups of<br />

G fix<strong>in</strong>g the various po<strong>in</strong>ts of L form a 4-gonal family for G. We are about<br />

to calculate these groups.<br />

First note that the center Z(G) = {[0, 0, c, 0, 0] : c ∈ Fq} of G acts as a<br />

group of symmetries about the “l<strong>in</strong>e” P (i.e., fix<strong>in</strong>g all l<strong>in</strong>es meet<strong>in</strong>g P ).<br />

For t ∈ Fq, put<br />

A(t) = the stabilizer <strong>in</strong> G of (1, t, 0, 0, 0)<br />

= {[a, b, tf(a, b), ta, tb] : a, b ∈ Fq};<br />

A ∗ (t) = {[a, b, c, ta, tb] : a, b, c ∈ Fq};<br />

A(∞) = the stabilizer of the rema<strong>in</strong><strong>in</strong>g po<strong>in</strong>t of L∞<br />

= {0, 0, 0, d, e] : d, e ∈ Fq};<br />

A ∗ (∞) = {[0, 0, c, d, e] : c, d, e ∈ F + q}.<br />

Now recall the follow<strong>in</strong>g well-known facts about the ovoidal function f:<br />

f(a, b) + f(a ′ , b ′ ) + ab ′ + a ′ b = 0 iff (a, b) = (a ′ , b ′ ). (10.7)<br />

In particular, f(a, b) = 0 if <strong>and</strong> only if a = b = 0.<br />

f(a, b) σ+1 = b σ+2 + abf(a, b) σ + a σ f(a, b) 2 . (10.8)


10.19. THE POINT-LINE DUAL OF T3(Ω) 505<br />

<br />

1<br />

b<br />

+ f<br />

f(a, b) f(a, b) ,<br />

<br />

a<br />

, for (a, b) = (0, 0). (10.9)<br />

f(a, b)<br />

f(a, b) + f(a ′ , b ′ ) + aa ′σ+1 + ab ′ + a ′ b = f(a + a ′ , b + b ′ + aa ′σ ) (10.10)<br />

f(a, b) = f(a, y) iff y = b or y = b + a σ+1 . (10.11)<br />

We want to consider the problem of show<strong>in</strong>g directly that the groups<br />

A(t), t ∈ Fq ∪ {∞} actually give a 4-gonal family for G.<br />

It is rout<strong>in</strong>e to check that A ∗ (s) ∩ A(t) = {id} for dist<strong>in</strong>ct s, t ∈ Fq ∪<br />

{∞}. It is also easy to check that A(s)A(t) ∩ A(u) = {id} for dist<strong>in</strong>ct<br />

s, t, u ∈ Fq ∪ {∞}, as long as ∞ ∈ {s, t, u}. But suppose that s, t, u are<br />

dist<strong>in</strong>ct elements of Fq. We sketch the steps <strong>in</strong>volved <strong>in</strong> show<strong>in</strong>g directly<br />

that A(s)A(t) ∩ A(u) = {id}. So suppose that<br />

[a1 + a2, b1 + b2 + a1a σ 2, s(a σ+2<br />

1<br />

+ a1b1 + b σ 1) + t(a σ+2<br />

2<br />

a1s + a2t, b1s + b2t + sa1a σ 2 ]<br />

?<br />

= [a3, b3, u(a σ+2<br />

3 + a3b3 + b σ 3 ), a3u, b3u].<br />

+ a2b2 + b σ 2),<br />

Equality holds if <strong>and</strong> only if the follow<strong>in</strong>g five conditions are satisfied:<br />

(i) a1 + a2 = a3;<br />

(ii) b1 + b2 + a1aσ 2 = b3;<br />

(iii) a1s + a2t = a3u;<br />

= b3u;<br />

(iv) b1s + b2t + sa1a σ 2<br />

(v) s(a σ+2<br />

1<br />

+ a1b1 + b σ 1 ) + t(a σ+2<br />

2<br />

Us<strong>in</strong>g (i) <strong>and</strong> (iii) we get:<br />

Us<strong>in</strong>g (ii) <strong>and</strong> (iv) we get:<br />

Then (i), (ii) <strong>and</strong> (v) imply that<br />

+ a2b2 + b σ 2) = u(a σ+2<br />

3<br />

+ a3b3 + b σ 3).<br />

a1s + a2t = (a1 + a2)u. (10.12)<br />

b1s + b2t + sa1a σ 2 = (b1 + b2 + a1a σ 2 )u. (10.13)


506 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

3. s(a σ+2<br />

1<br />

+ a1b1 + b σ 1 ) + t(aσ+2 2 + a2b2 + b σ 2<br />

= u (a1a + 2) σ+2 + (a1a2) σ+2 + (a1 + a2)(b1 + b2 + a1a σ 2 ) + (b1 + b2 + a1a σ 2 )σ .<br />

At this po<strong>in</strong>t it is quite straight-forward to reach the desired conclusion<br />

if a1a2(a1 + a2) = 0. So suppose that a1a2(a1 + a2) = 0. Solve for u:<br />

u = a1s + a2t<br />

a1 + a2<br />

=<br />

= b1s + b2t + sa1a σ 2<br />

b1 + b2 + a1a σ 2<br />

sf(a1, b1) + tf(a2, b2)<br />

f(a1, b1) + f(a2, b2) + a1a σ+1<br />

2<br />

+ a1b2 + a2b1<br />

Use the first l<strong>in</strong>e, cross multiply, cancel repeated terms, then organize so the<br />

factor s + t can be cancelled, to obta<strong>in</strong><br />

a1a σ+1<br />

2 = a1b2 + a2b1. (10.14)<br />

This equation says that the last denom<strong>in</strong>ator above is equal to f(a1, b1)+<br />

f(a2, b2). So now use<br />

a1s + a2t<br />

a1 + a2<br />

Simplify <strong>and</strong> cancel s + t to obta<strong>in</strong><br />

= sf(a1, b1) + tf(a2, b2)<br />

f(a1, b1) + f(a2, b2) .<br />

f(a, b)<br />

a = f(a2, b2)<br />

. (10.15)<br />

a2<br />

Recall: If α is an automorphism of Fq of maximal order, <strong>and</strong> if a·b·c = 0,<br />

then axα + bx + c = 0 has two solutions if<br />

<br />

tr<br />

<br />

a 1<br />

α−1 c<br />

b α<br />

α−2<br />

= 0,<br />

<strong>and</strong> no solution otherwise. So for α = σ with σ 2 = 2, we have<br />

ax σ σ+1 a c<br />

+ bx + c = 0 has no solution if <strong>and</strong> only if tr<br />

bσ+2 <br />

= 1. (10.16)<br />

.


10.19. THE POINT-LINE DUAL OF T3(Ω) 507<br />

Solve for b1 <strong>in</strong> Eq. 10.14 <strong>and</strong> put this value of b1 <strong>in</strong> Eq. 10.15. After<br />

clear<strong>in</strong>g terms, we f<strong>in</strong>d<br />

(a σ 1 a1−σ<br />

2<br />

+ a1)b σ 2 + a1(a1 + a2)b2 + a1a σ+2<br />

2<br />

σ+2<br />

+ a2a1 + aσ1 a32 + a21 aσ+1 2 = 0,<br />

which we view as say<strong>in</strong>g that b2 is a solution of an equation of the type <strong>in</strong><br />

Eq. 10.16, so it is exactly what we want not to happen.<br />

+ a1 = 0. Also, f(a1, a2) = 0 can be<br />

+ a2a σ+2<br />

1 + aσ 1a32 + a21 aσ+1 2 = 0.<br />

So A(s)A(t) ∩ A(u) = {id} if <strong>and</strong> only if<br />

Now a1 = a2 implies that a σ 1a 1−σ<br />

2<br />

used to show that the “constant” term a1a σ+2<br />

2<br />

= tr<br />

σ (a1a 1 = tr<br />

1−σ<br />

2<br />

a σ+1<br />

1<br />

⎜<br />

= tr ⎝<br />

+ a1) σ+1 (a1a σ+2<br />

2<br />

σ+2<br />

+ a2a1 (a1a2 + a 2 1) σ+2<br />

+ a2 1 aσ+1<br />

2<br />

(a σ−1<br />

1 a 1−σ<br />

2 + 1) σ+1 · a1 · (a σ+2<br />

2 + a2a σ+1<br />

1 + a1a σ+1<br />

2<br />

⎛<br />

a σ+2<br />

1 (a1 + a2) σ+2<br />

σ−1<br />

a1 +aσ−1<br />

2<br />

a σ−1<br />

σ+1 · a2 · (a1 + a2)(a<br />

2<br />

σ 2<br />

σ−1<br />

(a1 = tr<br />

σ+1<br />

a1 + a<br />

= tr<br />

σ+1<br />

2<br />

= 1 + tr<br />

= 1 + tr<br />

+ a σ−1<br />

2<br />

+ a 2−σ<br />

1 a 2σ−1<br />

2<br />

2−σ<br />

a1 a2σ−1 2<br />

2−σ<br />

a1 a 2σ−1<br />

2<br />

+ a 2σ−1<br />

1<br />

+ a 2σ−1<br />

1<br />

(a1 + a2) σ+2<br />

) σ+1 (a σ 2 + a2a σ−1<br />

1<br />

(a1 + a2) σ+1<br />

+ a 2σ−1<br />

1<br />

a 2−σ<br />

2<br />

(a1 + a2) σ+1<br />

a 2−σ<br />

2<br />

+ a2σ−2<br />

1<br />

(a1 + a2) σ+1<br />

a 2−σ<br />

2<br />

+ a2σ−2<br />

1<br />

(a1 + a2) σ+1<br />

We used the fact that (see Lemma 4.13.4(b))<br />

σ+1<br />

a1 + a<br />

tr<br />

σ+1<br />

2<br />

(a1 + a2) σ+1<br />

<br />

= 1.<br />

This means that we need to show that<br />

+ a2a σ−1<br />

1<br />

+ a σ 1 )<br />

+ aσ 1 a3 2 )<br />

<br />

+ a σ−1<br />

1<br />

+ a σ 1 )<br />

<br />

+ a 2σ−2<br />

1 a 3−σ<br />

2<br />

a 3−σ<br />

2<br />

a 3−σ<br />

2<br />

+ a2 1 aσ−1<br />

2<br />

+ a2 1 aσ−1<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

+ a2a σ−1<br />

2<br />

<br />

<br />

.<br />

a3 <br />

2)


508 CHAPTER 10. GQ ASSOCIATED WITH AN OVAL OR OVOID<br />

tr<br />

2−σ<br />

a1 a 2σ−1<br />

2<br />

Write this last trace as<br />

tr<br />

a 2−σ<br />

1<br />

+ a 2σ−1<br />

1<br />

aσ−1<br />

2<br />

a 2−σ<br />

2<br />

+ a 2σ−2<br />

1<br />

(a1 + a2) σ+1<br />

(a1 + a2) σ + a 2σ−2<br />

1<br />

a 2−σ<br />

1<br />

(a1 + a2) σ+1<br />

a σ−1<br />

2<br />

= tr<br />

(a1 + a2)<br />

2−σ<br />

a1 a<br />

= tr<br />

σ−1 <br />

2<br />

+<br />

(a1 + a2)<br />

a2σ−2 1<br />

+<br />

a 3−σ<br />

2<br />

a 2−σ<br />

2<br />

a 2−σ<br />

2<br />

+ a 2 1a σ−1<br />

2<br />

<br />

(a1 + a2)<br />

<br />

(a1 + a2) σ<br />

2−σ<br />

a1 a σ−1 σ<br />

2<br />

= 0.<br />

(a1 + a2)<br />

?= 0.<br />

Hence we have <strong>in</strong>dependent confirmation that we have a 4-gonal family.


Chapter 11<br />

Classifiy<strong>in</strong>g <strong>Ovoids</strong> - Part 2<br />

The bulk of this chapter is adapted more or less directly from the two papers<br />

by M. Brown [Br00a] <strong>and</strong> [Br00b].<br />

11.1 <strong>Ovoids</strong><br />

If Ω is an ovoid of P G(3, q), q = 2 e , then Ω def<strong>in</strong>es a polarity ν of P G(3, q)<br />

as follows. If π is the tangent plane to Ω at the po<strong>in</strong>t P , then ν <strong>in</strong>terchanges<br />

π <strong>and</strong> P . If π meets Ω <strong>in</strong> the oval O with nucleus N, then the polarity ν<br />

<strong>in</strong>terchanges π <strong>and</strong> N. This polarity is necessarily a symplectic polarity of<br />

P G(3, q). The po<strong>in</strong>ts of P G(3, q) (all of which are s<strong>in</strong>gular po<strong>in</strong>ts with respect<br />

to ν) <strong>and</strong> the l<strong>in</strong>es of P G(3, q) that are tangent to Ω (i.e., the s<strong>in</strong>gular l<strong>in</strong>es<br />

with respect to ν – s<strong>in</strong>gular means <strong>in</strong>cident with its image under ν) form a<br />

generalized quadrangle denoted W (q). It then follows that for any ovoid Ω of<br />

P G(3, q), Ω is also an ovoid of the generalized quadrangle W (q) constructed<br />

from the symplectic polarity that it def<strong>in</strong>es. Conversely, if Ω is an ovoid of<br />

the GQ W (q), then by Thas, Ω is also an ovoid of P G(3, q). (This is our<br />

Theorem 7.6.2.)<br />

Let π be a plane of Σ = P G(3, q) <strong>and</strong> let O be an oval <strong>in</strong> π. Let T2(O)<br />

be the GQ constructed from Σ, π <strong>and</strong> O, <strong>and</strong> let O be an ovoid of T2(O). If<br />

π = (∞) is not a po<strong>in</strong>t of Ω then of the q 2 + 1 po<strong>in</strong>ts of Ω, q 2 − q are aff<strong>in</strong>e<br />

po<strong>in</strong>ts (that is, po<strong>in</strong>ts of Σ \ π) <strong>and</strong> q + 1 po<strong>in</strong>ts are planes of Σ meet<strong>in</strong>g π <strong>in</strong><br />

dist<strong>in</strong>ct l<strong>in</strong>es tangent to O. If the q 2 − q aff<strong>in</strong>e po<strong>in</strong>ts of Ω have the property<br />

that no three are coll<strong>in</strong>ear <strong>in</strong> Σ, then we say that Ω is a projective ovoid of<br />

T2(O).<br />

509


510 CHAPTER 11. CLASSIFIYING OVOIDS - PART 2<br />

Lemma 11.1.1. Let Ω be a projective ovoid of the GQ T2(O) <strong>and</strong> let A be<br />

the set of q 2 − q aff<strong>in</strong>e po<strong>in</strong>ts of Ω. Then A ∪ O is an ovoid of Σ = P G(3, q).<br />

Conversely, let Ω be an ovoid of Σ <strong>and</strong> let the oval O be the <strong>in</strong>tersection<br />

of the plane π with Ω. Then<br />

Ω = (Ω \ O) ∪ {πP ; πP is the tangent plane to Ω at a po<strong>in</strong>t P ∈ O}<br />

is a projective ovoid of the GQ T2(O) constructed from O, π <strong>and</strong> Σ.<br />

Proof. Start with the projective ovoid Ω of T2(O). We check that A ∪ O has<br />

the property that no three of its po<strong>in</strong>ts are coll<strong>in</strong>ear <strong>in</strong> Σ. Let P , Q, R be<br />

three dist<strong>in</strong>ct po<strong>in</strong>ts of A ∪ O. If {P, Q, R} ⊂ A or {P, Q, R} ⊂ O, then<br />

clearly they are not coll<strong>in</strong>ear <strong>in</strong> Σ. First suppose P, Q ∈ O <strong>and</strong> R ∈ A. S<strong>in</strong>ce<br />

〈P, Q〉 is a l<strong>in</strong>e of π <strong>and</strong> R ∈ π, it follows that P, Q, R are not coll<strong>in</strong>ear <strong>in</strong> Σ.<br />

So suppose P ∈ O <strong>and</strong> Q, R ∈ A. S<strong>in</strong>ce any l<strong>in</strong>e of S <strong>in</strong>cident with P <strong>and</strong><br />

not conta<strong>in</strong>ed <strong>in</strong> π is a l<strong>in</strong>e of T2(O), <strong>and</strong> hence cannot conta<strong>in</strong> two po<strong>in</strong>ts<br />

of the ovoid Ω, clearly P, Q, R cannot be coll<strong>in</strong>ear <strong>in</strong> Σ. Thus A ∪ O is an<br />

ovoid of Σ.<br />

For the converse, suppose that Ω is an ovoid of Σ with O = π ∩ Ω <strong>and</strong><br />

let P, Q, be two po<strong>in</strong>ts of Ω. If P, Q ∈ Ω \ O, they are not coll<strong>in</strong>ear <strong>in</strong> T2(O)<br />

because otherwise they would lie on a l<strong>in</strong>e of Σ through a po<strong>in</strong>t R of O giv<strong>in</strong>g<br />

three po<strong>in</strong>ts of Ω coll<strong>in</strong>ear <strong>in</strong> Σ. If πP <strong>and</strong> πQ are dist<strong>in</strong>ct po<strong>in</strong>ts of T2(O),<br />

the only l<strong>in</strong>es of T2(O) <strong>in</strong>cident with them that have a po<strong>in</strong>t <strong>in</strong> common <strong>in</strong> S<br />

are their l<strong>in</strong>es <strong>in</strong> π which meet at the nucleus N of O, <strong>and</strong> N is not a po<strong>in</strong>t of<br />

T2(O). So no two po<strong>in</strong>ts of Ω of this type are coll<strong>in</strong>ear <strong>in</strong> T2(O). So suppose<br />

P ∈ Ω \ O <strong>and</strong> πQ are coll<strong>in</strong>ear po<strong>in</strong>ts of T2(O). But πQ is the tangent plane<br />

to Ω at Q <strong>and</strong> cannot conta<strong>in</strong> the po<strong>in</strong>t P , so no l<strong>in</strong>e through P could lie <strong>in</strong><br />

πQ <strong>and</strong> be <strong>in</strong>cident with both po<strong>in</strong>ts. So no two po<strong>in</strong>ts of Ω are coll<strong>in</strong>ear <strong>in</strong><br />

T2(O).<br />

Let π be a plane of Σ = P G(3, q) <strong>and</strong> Oα a translation oval of π with<br />

nucleus N, axis L <strong>and</strong> Q the po<strong>in</strong>t of Oα on L. Let Ω be an ovoid of Σ<br />

conta<strong>in</strong><strong>in</strong>g Oα. Let πa be a plane of Σ meet<strong>in</strong>g π <strong>in</strong> the l<strong>in</strong>e L <strong>and</strong> meet<strong>in</strong>g Ω<br />

<strong>in</strong> the oval Oa. The l<strong>in</strong>e L is tangent to Oa <strong>and</strong> the nucleus of Oa is not the<br />

po<strong>in</strong>t N. This follows from the facts that N is the nucleus of Oα; both Oα<br />

<strong>and</strong> Oa are secant plane sections of the ovoid Ω of Σ; <strong>and</strong> the polarity def<strong>in</strong>ed<br />

by Ω ensures that any po<strong>in</strong>t of Σ\Ω is the nucleus of exactly one secant plane<br />

section of Ω. Construct T2(Oα) from Σ, π, Oα as usual. Let Ω be the ovoid<br />

of T2(Oα) consist<strong>in</strong>g of the set of tangent planes to Ω meet<strong>in</strong>g Ω at a po<strong>in</strong>t of


11.1. OVOIDS 511<br />

Oα <strong>and</strong> the aff<strong>in</strong>e po<strong>in</strong>ts of Ω\Oα. Recall that the plane πa is a regular po<strong>in</strong>t<br />

of T2(Oα). It follows that any pair (Y, Z) of dist<strong>in</strong>ct po<strong>in</strong>ts with Y, Z ∈ π ⊥ a<br />

<strong>in</strong> T2(Oα) is also a regular pair <strong>in</strong> T2(Oα). Thus Theorem 9.10.2 may be<br />

applied to such a regular pair <strong>and</strong> the ovoid Ω of T2(Oα). It follows that the<br />

<strong>in</strong>tersection of the span {Y, Z} ⊥⊥ <strong>and</strong> Ω has size 0 or 2. Now <strong>in</strong>terpret this<br />

fact <strong>in</strong> the construction of the aff<strong>in</strong>e plane A(πa, L) constructed <strong>in</strong> Lemma ??<br />

(<strong>and</strong> the paragraph preced<strong>in</strong>g the lemma). It says that any l<strong>in</strong>e of A(πa, L)<br />

meets the set Oa \ L <strong>in</strong> at most 2 po<strong>in</strong>ts. Hence Oa \ L is a q-arc of A(πa, L).<br />

We summarize this discussion <strong>in</strong> the follow<strong>in</strong>g lemma.<br />

Lemma 11.1.2. Let Ω be an ovoid of Σ = P G(3, q), with π a plane of Σ<br />

such that π ∩ Ω is a translation oval Oα. Let L be an axis of Oα <strong>and</strong> let Q<br />

be the po<strong>in</strong>t of Oα on L. Let T2(Oα) be the GQ constructed from Σ, π, Oα,<br />

<strong>and</strong> let πa be a plane of Σ <strong>in</strong>tersect<strong>in</strong>g π <strong>in</strong> L, <strong>and</strong> so also a regular po<strong>in</strong>t of<br />

T2(Oα). Let A(πa, Q) be the aff<strong>in</strong>e plane constructed from Π(πa) by tak<strong>in</strong>g L<br />

to be the l<strong>in</strong>e at <strong>in</strong>f<strong>in</strong>ity. If πa, as a plane of Σ, meets Ω <strong>in</strong> an oval Oa, then<br />

Oa \ L is a q-arc <strong>in</strong> both πa <strong>and</strong> <strong>in</strong> A(πa, Q).<br />

Recall that the aff<strong>in</strong>e plane πa \ L can be recovered from A(πa, Q) by<br />

α −1 -derivation.<br />

At this po<strong>in</strong>t we want to expla<strong>in</strong><br />

how to normalize the coord<strong>in</strong>ates for<br />

0 1<br />

P 0<br />

the ovoid Ω. Let P = <strong>and</strong> let C be the matrix C = , so<br />

1 0<br />

0 P<br />

C is skew-symmetric (with 0’s on the diagonal). For ¯x = (x0, x1, x2, x3) <strong>and</strong><br />

¯y = (y0, y1, y2, y3) <strong>in</strong> F 4 q , put<br />

¯x ∗ ¯y = ¯xC ¯y T .<br />

Then (¯x, ¯y) ↦→ ¯x ∗ ¯y is a nons<strong>in</strong>gular, bil<strong>in</strong>ear alternat<strong>in</strong>g form. If we put<br />

¯x ⊥ = {¯y : ¯x ∗ ¯y = 0}, then for nonzero ¯x, ¯x ⊥ is a plane conta<strong>in</strong><strong>in</strong>g ¯x, <strong>and</strong><br />

the map ν : ¯x ↦→ ¯x ⊥ is a symplectic polarity. Recall that any two symplectic<br />

polarities are equivalent. So if Ω ′ is an ovoid with a plane section be<strong>in</strong>g<br />

an oval projectively equivalent to some Of, then there is an homography of<br />

P G(3, q) mapp<strong>in</strong>g Ω ′ to an ovoid Ω whose symplectic polarity is exactly ν,<br />

<strong>and</strong> Ω will also conta<strong>in</strong> a plane section that is an oval O equivalent to Of.<br />

If W (q) is the symplectic geometry (i.e., generalized quadrangle) def<strong>in</strong>ed by<br />

Ω, then the group of homographies of P G(3, q) leav<strong>in</strong>g W (q) <strong>in</strong>variant is<br />

known as the symplectic group Sp(4, q) <strong>and</strong> is transitive on the po<strong>in</strong>ts of<br />

W (q). Hence there is an homography preserv<strong>in</strong>g Ω <strong>and</strong> mapp<strong>in</strong>g the nucleus


512 CHAPTER 11. CLASSIFIYING OVOIDS - PART 2<br />

of O to the po<strong>in</strong>t N = (0, 0, 1, 0). Then by our assumption that ν is the<br />

polarity def<strong>in</strong>ed by Ω, we know that the plane conta<strong>in</strong><strong>in</strong>g O is [0, 0, 0, 1],<br />

i.e., O = Ω ∩ [0, 0, 0, 1]. Furthermore, the subgroup of Sp(3, q) fix<strong>in</strong>g N is<br />

transitive on the po<strong>in</strong>ts coll<strong>in</strong>ear with N <strong>in</strong> W (q), <strong>and</strong> hence also transitive<br />

on the q + 1 l<strong>in</strong>es of W (q) through N. So if O were a translation oval, for<br />

example, we could without loss of generality assume that the l<strong>in</strong>e x0 = x3 = 0<br />

is a translation axis of O.<br />

Let N be the po<strong>in</strong>t of P G(3, q) given above, with ν : N ↔ N ⊥ . The<br />

subgroup of Sp(4, q) leav<strong>in</strong>g N ⊥ <strong>in</strong>variant <strong>in</strong>duces a group of coll<strong>in</strong>eations<br />

of N ⊥ conta<strong>in</strong><strong>in</strong>g the group of elations of N ⊥ with center N. (To see this,<br />

consider a l<strong>in</strong>e ℓ of N ⊥ <strong>and</strong> a po<strong>in</strong>t Q different from N on ℓ. The group<br />

of elations with center Q <strong>and</strong> axis Q⊥ <strong>in</strong>duces <strong>in</strong> N ⊥ a group conta<strong>in</strong><strong>in</strong>g all<br />

elations of N ⊥ with center Q <strong>and</strong> axis ℓ. Lett<strong>in</strong>g Q range over all po<strong>in</strong>ts<br />

coll<strong>in</strong>ear <strong>in</strong> W (q) with N, the group generated conta<strong>in</strong>s all elations of N ⊥<br />

with center N.) For po<strong>in</strong>ts <strong>in</strong> N ⊥ = [0, 0, 0, 1] we may temporarily drop the<br />

f<strong>in</strong>al coord<strong>in</strong>ate, which is always 0. Then for the record, the homography<br />

with matrix<br />

⎛ ⎞<br />

1 0 c<br />

⎝ 0 1 bc ⎠ ,<br />

0 0 1<br />

for b, c ∈ Fq with c = 0, is an elation of [0, 0, 0, 1] with center N = (0, 0, 1)<br />

<strong>and</strong> axis [1, b, 0]. The homography with matrix<br />

⎛<br />

⎝<br />

1 0 0<br />

0 1 b<br />

0 0 1<br />

for b = 0, is an elation of [0, 0, 0, 1] with center N = (0, 0, 1) <strong>and</strong> axis [0, 1, 0].)<br />

Now the group of elations of N ⊥ with center N fixes each of the q + 1 l<strong>in</strong>es<br />

of W (q) through N <strong>and</strong> is transitive on the q po<strong>in</strong>ts different from N on<br />

each of the l<strong>in</strong>es. Hence we may assume that O conta<strong>in</strong>s the po<strong>in</strong>t Q∞ =<br />

(0, 1, 0, 0), that the po<strong>in</strong>t N is the nucleus, <strong>and</strong> that the l<strong>in</strong>e L∞ = 〈Q∞, N〉<br />

is a translation axis of O. This means that there is an o-permutation f such<br />

that<br />

O = {(1, f(t), t, 0) : t ∈ Fq} ∪ {(0, 1, 0, 0)} <strong>and</strong> has nucleus N = (0, 0, 1, 0).<br />

⎞<br />


11.2. A RESTRICTION ON PLANE SECTIONS OF AN OVOID 513<br />

Now consider the homography of P G(3, q) with matrix<br />

⎛<br />

⎞<br />

1 f(0)/A 0 0<br />

⎜<br />

H = ⎜ 0 1/A 0 0 ⎟<br />

⎝ 0 0 1 0 ⎠<br />

0 0 0 1/A<br />

where A = f(0) + f(1). It may be checked that HCH T = <br />

1 C, so that<br />

A<br />

the homography commutes with the symplectic polarity. The nucleus N is<br />

left <strong>in</strong>variant, so of course the plane N ⊥ = [0, 0, 0, 1] is left <strong>in</strong>variant. The<br />

oval po<strong>in</strong>t Q∞ is fixed <strong>and</strong> the general oval po<strong>in</strong>t (1, f(t)t, t, 0) is mapped to<br />

(1, f(0)+f(t)<br />

, t, 0). But if the oval is really a translation oval with translation<br />

A<br />

axis L∞, then s<strong>in</strong>ce the function t ↦→ f(0)+f(t)<br />

maps 0 to 0 <strong>and</strong> 1 to 1, this<br />

A<br />

must be the oval Oα for α a generator of the automorphism group of Fq,<br />

where Oα = {(1, tα , t, 0) : t ∈ Fq} ∪ {(0, 1, 0, 0)} with nucleus N = (0, 0, 1, 0).<br />

We state this as a theorem.<br />

Theorem 11.1.3. Let Ω be an ovoid of P G(3, q) conta<strong>in</strong><strong>in</strong>g an oval section<br />

O equivalent to the oval O(α) = {(1, t, t α ) : t ∈ Fq} ∪ {(0, 0, 1)} with nucleus<br />

(0, 1, 0), where α is a generator of Aut(Fq). Then coord<strong>in</strong>ates of P G(3, q)<br />

may be chosen so that the symplectic polarity of P G(3, q) def<strong>in</strong>ed by Ω has the<br />

alternat<strong>in</strong>g form x0y1 + x1y0 + x2y3 + x3y2 <strong>and</strong> conta<strong>in</strong>s the oval {(1, t α , t, 0) :<br />

t ∈ Fq} ∪ {(0, 1, 0, 0)} with nucleus (0, 0, 1, 0).<br />

At this po<strong>in</strong>t the reader should review the proof of the “plane representation<br />

theorem” of Glynn <strong>and</strong> Penttila, Theorem 7.6.1<br />

11.2 A restriction on plane sections of an ovoid<br />

Fix the notation essentially as <strong>in</strong> the preced<strong>in</strong>g section. For any a ∈ Fq,<br />

a = 0, πa = [1, 0, 0, a] is a secant plane to Ω. Recall π0 = [1, 0, 0, 0] <strong>and</strong><br />

suppose that π0 ∩ Ω = Oα = {(0, t, t α , 1) : t ∈ Fq} ∪ {(0, 0, 1, 0)} with<br />

nucleus N = (0, 1, 0, 0), where α is a generator of the Galois group of Fq.<br />

So Oα conta<strong>in</strong>s the po<strong>in</strong>t Q∞ = (0, 0, 1, 0) <strong>and</strong> has nucleus N = (0, 1, 0, 0)<br />

. Let ν be the symplectic polarity def<strong>in</strong>ed by Ω. We may assume that ν<br />

has the form x0y1 + x1y0 + x2y3 + x3y2 = 0 (by apply<strong>in</strong>g the homography<br />

(x0, x1, x2, x3) ↦→ (x3, x2, x1, x0), which commutes with the polarity ν, to the<br />

coord<strong>in</strong>atization given <strong>in</strong> Theorem 11.1.3. And we know that<br />

x ∈ Ω ⇐⇒ x ν is the tangent plane to Ω at x,


514 CHAPTER 11. CLASSIFIYING OVOIDS - PART 2<br />

<strong>and</strong><br />

x ∈ Ω ⇐⇒ x is the nucleus of the oval x ν ∩ Ω.<br />

Then ν : πa ↔ (0, 1, a, 0), which must be the nucleus Na of Oa = Ω ∩ πa.<br />

Recall the aff<strong>in</strong>e plane A(πa, L∞) obta<strong>in</strong>ed from the regularity of the po<strong>in</strong>t πa.<br />

The map θα : (ax, y, z, x) ↦→ (ax, y α , z, x) maps the aff<strong>in</strong>e plane A(πa, L∞) to<br />

the plane πa <strong>in</strong> st<strong>and</strong>ard form.<br />

S<strong>in</strong>ce Oa is an oval <strong>in</strong> πa conta<strong>in</strong><strong>in</strong>g Q∞ <strong>and</strong> hav<strong>in</strong>g nucleus Na =<br />

(0, 1, a, 0), there must be some o-permutation fa such that :<br />

Oa = {(a, y, ay + fa(y), 1) : y ∈ F } ∪ {(0, 0, 1, 0)}. (11.1)<br />

The map θα maps the aff<strong>in</strong>e part of Oa to {(a, y α , ay + fa(y), 1) : y ∈ Fq}.<br />

But we know that the q-arc Ω ∩ πa \ {(0, 0, 1, 0)} is a q-arc <strong>in</strong> both the<br />

aff<strong>in</strong>e plane πa m<strong>in</strong>us the l<strong>in</strong>e L∞ = x0 = x3 = 0, <strong>and</strong> <strong>in</strong> the aff<strong>in</strong>e plane<br />

A(πa, L∞) with the po<strong>in</strong>t Q∞ extend<strong>in</strong>g the q-arc to an oval <strong>in</strong> both cases.<br />

In the projective completion Āa of A(πa, L∞) we also have that Oa is<br />

an oval with some nucleus not the parallel class correspond<strong>in</strong>g to (0, 1, 0, 0).<br />

Hence under the isommorphism from Āα to πa we have that<br />

O ′ a = O θα<br />

a = {(a, yα , ay + fa(y), 1) : y ∈ Fq} ∪ {(0, 0, 1, 0)}<br />

is an oval with nucleus (0, 1, ā, 0) for some ā = 0. This means that there is<br />

an o-permutation ga such that<br />

The aff<strong>in</strong>e part of O ′ a<br />

which is also<br />

= Oθα<br />

a is {(a, y α , āy α + ga(y α ), 1) : y ∈ Fq} (11.2)<br />

= {(a, y α , ay + fa(y), 1) : y ∈ Fq}.<br />

This completes a proof of the follow<strong>in</strong>g:<br />

Theorem 11.2.1. If Ω is an ovoid of P G(3, q) with a plane section π0 ∩ Ω<br />

that is a translation oval with axis a tangent to Ω, then there are two opermutations<br />

f <strong>and</strong> g <strong>and</strong> nonzero constants a, ā ∈ Fq such that<br />

ay + f(y) = āy α + g(y α ) ∀y ∈ F. (11.3)<br />

Note that if we replace y with yα−1, this equation looks like


11.2. A RESTRICTION ON PLANE SECTIONS OF AN OVOID 515<br />

āy + g(y) = ay α−1<br />

+ f(y α−1<br />

), (11.4)<br />

i.e., the roles of f <strong>and</strong> g are <strong>in</strong>terchanged <strong>and</strong> α is <strong>in</strong>terchanged with α −1 .<br />

For a given nonzero a the o-permutations f <strong>and</strong> g were denoted above by<br />

fa <strong>and</strong> ga, respectively. When a = 0, we have f0 = α, i.e., f0(x) = x α .<br />

Recall the homography µs, for any s ∈ Fq. For each s,<br />

µs : πs ∩ Ω ↦→ Ōs = {(0, y, fs(y), 1) : y ∈ Fq} ∪ {(0, 0, 1, 0)}<br />

with nucleus N0 = (0, 1, 0, 0).<br />

We know that for dist<strong>in</strong>ct s, t ∈ Fq, Ōs <strong>and</strong> Ōt are compatible at Ns+t =<br />

(0, 1, s+t, 0). This means that a l<strong>in</strong>e of the form 〈(0, x, fs(x), 1), (0, y, ft(y), 1)〉<br />

cannot conta<strong>in</strong> the po<strong>in</strong>t (0, 1, s + t, 0). This is equivalent to the follow<strong>in</strong>g:<br />

Result 11.2.2. fs(x) + ft(y) = (s + t)(x + y) whenever s = t.<br />

In the special case where t = 0 = s, we have fs(x) + y α = s(x + y). This<br />

says that for nonzero s <strong>and</strong> each x ∈ Fq,<br />

This proves the follow<strong>in</strong>g:<br />

Corollary 11.2.3. tr<br />

y α + sy + fs(x) + sx = 0 has no solution y.<br />

<br />

fs(x)+sx<br />

s α<br />

<br />

= 1 ∀x ∈ Fq.<br />

α−1<br />

Note that if fs(x) + sx = fs(y) + sy, then fs(x)+fs(y)<br />

x+y = s = 0. S<strong>in</strong>ce<br />

fs is an o-permutation, there cannot be a third element z ∈ Fq for which<br />

fs(z) + sz = fs(x) + sx. Cor. 11.2.3 says that the function fs(x) + sx must<br />

take on exactly half the elements of Fq.<br />

Let K be the set of elements of Fq with trace 0 <strong>and</strong> δ a fixed element<br />

with trace 1.<br />

If we put R = {fs(x) + sx : x ∈ Fq}, then Cor. 11.2.3 says that<br />

s −α<br />

α−1 · R = K + δ, i.e., R = s α<br />

α−1 K + s α<br />

α−1 δ.


516 CHAPTER 11. CLASSIFIYING OVOIDS - PART 2<br />

11.3 <strong>Ovoids</strong> of P G(3, q) conta<strong>in</strong><strong>in</strong>g a conic<br />

We now restrict our attention to the case of an ovoid Ω of P G(3, q) that<br />

conta<strong>in</strong>s a conic section C. In Section 11.1 we saw how to obta<strong>in</strong> an associated<br />

ovoid Ω of the GQ T2(C). By us<strong>in</strong>g the isomorphism φ from T2(C) to W (q) we<br />

may map Ω onto an ovoid Ω (1) of W (q). It follows from Theorem 7.6.2 that<br />

Ω (1) is also an ovoid of P G(3, q). We now start with Ω <strong>in</strong> a canonical form<br />

<strong>and</strong> apply the explicit form of φ to construct the ovoid Ω (1) of P G(3, q). Note<br />

that while we shall eventually prove that Ω (1) <strong>and</strong> Ω are elliptic quadrics it<br />

is not immediately clear at this po<strong>in</strong>t that Ω (1) <strong>and</strong> Ω are even projectively<br />

equivalent <strong>in</strong> P G(3, q).<br />

Let Ω be an ovoid of P G(3, q) meet<strong>in</strong>g the plane π <strong>in</strong> a conic C. We<br />

may assume that the symplectic polarity of P G(3, q) def<strong>in</strong>ed by Ω has the<br />

form x0y1 + x1y0 + x2y3 + x3y2 = 0 (by apply<strong>in</strong>g the Kle<strong>in</strong> correspondence<br />

to theorem 22.6.6 of GGG). This means that the symplectic polarity is the<br />

same ν : (x0, x1, x2, x3) ↔ [x1, x0, x3, x2] considered above. Moreover, we<br />

know that x ∈ Ω ⇐⇒ x ν is the tangent plane to Ω at x <strong>and</strong> x ∈ Ω ⇐⇒ x<br />

is the nucleus of the oval x ν ∩ Ω.<br />

We may also assume that the plane π has equation x3 = 0 <strong>and</strong> that<br />

the conic C has equation x3 = x0x1 + x 2 2 = 0, that is, C = {1, t, t 1/2 , 0) :<br />

t ∈ Fq} ∪ {(0, 1, 0, 0)} <strong>and</strong> has nucleus N = (0, 0, 1, 0) (see Brown, O’Keefe,<br />

Penttila, Triads ... etc.). Then Ω gives rise to an ovoid Ω of T2(C) as follows:<br />

Ω = (Ω \ C) ∪ {[t, 1, 0, t 1/2 ] : t ∈ Fq} ∪ {[1, 0, 0, 0]}.<br />

Let φ : T2(C) → W (q) be the isomorphism given <strong>in</strong> Theorem 10.4.1 <strong>and</strong><br />

let φ(Ω) = Ω (1) . We don’t know just which po<strong>in</strong>ts are <strong>in</strong> Ω \ C = Ω \ C,<br />

but they all have the form (x0, x1, x2, 1) for some choices of xi ∈ Fq, <strong>and</strong><br />

φ : (x0, x1, x2, 1) ↦→ (x0, x1, x0x1 + x 2 2 , 1). Also, φ : [t, 1, 0, t1/2 ] ↦→ (1, t, t 1/2 , 0)<br />

<strong>and</strong> φ : [1, 0, 0, 0] ↦→ (0, 1, 0, 0). It follows that<br />

Ω (1) = {(x0, x1, x0x1+x 2 2, 1) : certa<strong>in</strong> xi ∈ Fq}∪{(x0, x1, √ x0x1, 0) : x0, x1 ∈ Fq}.<br />

We now determ<strong>in</strong>e the symplectic polarity given by Ω (1) .<br />

Lemma 11.3.1. The tangent planes to Ω (1) are given as follows:<br />

(a) If (x0, x1, x0x1 + x 2 2 , 1) ∈ Ω(1) , the tangent plane to Ω (1) at X =<br />

(x0, x1, x0x1 + x 2 2, 1) is πX = [x1, x0, 1, x0x1 + x 2 2].<br />

(b) The tangent plane to Ω (1) at X = (x0, x1, √ x0x1, 0) is<br />

πX = [x1, x0, 0, √ x0x1].


11.4. RESTRICTIONS ON A SECANT PLANE SECTION OF Ω 517<br />

Proof. Suppose (x0, x1, x0x1+x2 2, 1) <strong>and</strong> (y0, y1, y0y1+y 2 2, 1) are dist<strong>in</strong>ct po<strong>in</strong>ts<br />

of Ω\C. The plane [x1, x0, 1, x0x1 +x2 2 ] conta<strong>in</strong>s the po<strong>in</strong>t (y0, y1, y0y1 +y 2 2 , 1)<br />

iff 0 = x1y0 + x0y1 + y0y1 + y2 2 + x0x1 + x2 2 = (x0 + y0)(x1 + y1) + (x2 + y2) 2<br />

iff (x0 + y0, x1 + y1, x2 + y2, 0) ∈ C iff the l<strong>in</strong>e 〈(x0, x1, x2, 1), (y0, y1, y2, 1)〉<br />

through two po<strong>in</strong>ts of Ω \ C conta<strong>in</strong>s (x0 + y0, x1 + y1, x2 + y2, 0) ∈ C. This is<br />

not possible s<strong>in</strong>ce Ω is an ovoid of Σ conta<strong>in</strong><strong>in</strong>g C. Clearly πX does conta<strong>in</strong><br />

the po<strong>in</strong>t X <strong>and</strong> does not conta<strong>in</strong> N = (0, 0, 1, 0), so X is the unique po<strong>in</strong>t<br />

of Ω conta<strong>in</strong>ed <strong>in</strong> πX.<br />

Similarly, if X = (x0, x1, √ x0x1, 0), then X ∈ C <strong>and</strong> it is on the plane<br />

πX = [x1, x0, 0, √ x0x1]. If πX is secant to Ω (1) , then each l<strong>in</strong>e <strong>in</strong> πX through<br />

X must conta<strong>in</strong> a po<strong>in</strong>t of Ω different from X. In particular, πX must conta<strong>in</strong><br />

a po<strong>in</strong>t of πX ∩ π on C. Suppose πX conta<strong>in</strong>s the po<strong>in</strong>t (y0, y1, √ y0y1, 0).<br />

Then 0 = x1y0 + x0y1. This implies that there is a nonzero λ for which<br />

(x0, x1) = λ(y0, y1) <strong>and</strong> (x0, x1, √ x0x1, 0) = λ(y0, y1, √ y0y1, 0). This completes<br />

the proof.<br />

We now have the polarity associated with Ω (1) determ<strong>in</strong>ed on all the<br />

po<strong>in</strong>ts of Ω (1) . This is enough to establish that it must be the same polarity<br />

ν given by Ω.<br />

S<strong>in</strong>ce C ⊂ Ω (1) <strong>and</strong> Ω (1) def<strong>in</strong>es the same symplectic polarity as Ω, it<br />

follows that we may repeat the above process to generate another ovoid of<br />

P G(3, q) from Ω (1) . In fact we may repeat this process ad <strong>in</strong>f<strong>in</strong>itum. However,<br />

for our purposes here one iteration will be sufficient.<br />

We will now use φ <strong>and</strong> the fact that φ(Ω) = Ω (1) is an ovoid of P G(3, q)<br />

to generate conditions on some of the secant plane sections of Ω.<br />

11.4 Restrictions on a secant plane section of<br />

Ω<br />

In order to derive algebraic conditions on some secant plane sections of an<br />

ovoid Ω of P G(3, q) conta<strong>in</strong><strong>in</strong>g a conic we use the o-polynomial representation<br />

of hyperovals of P G(2, q). We have seen that any hyperoval of P G(2, q) is<br />

isomorphic to a hyperoval H of the form<br />

H = {(f(t), t, 1) : t ∈ Fq} ∪ {(1, 0, 0), (0, 1, 0)},


518 CHAPTER 11. CLASSIFIYING OVOIDS - PART 2<br />

where f is a permutation polynomial over Fq with f(0) = 0, f(1) = 1 <strong>and</strong><br />

the degree of f(t) is at most q − 2. Recall the follow<strong>in</strong>g theorem.<br />

Theorem 11.4.1. If q > 2, a permutation polynomial f with f(0) = 0 <strong>and</strong><br />

f(1) = 1 is an o-polynomial if <strong>and</strong> only if for each element s ∈ Fq, the<br />

function<br />

fs(x) = [f(x+s)+f(s)]/x, with fs(0) = 0, is a permutation polynomial over Fq.<br />

Let Ω be the ovoid of P G(3, q) as given early <strong>in</strong> Section 11.3, <strong>and</strong> let πa<br />

be the plane def<strong>in</strong>ed by the equation x0 = ax3, for a = 0. (Note that <strong>in</strong><br />

the case where a = 0, the plane π0 is the tangent plane to Ω at the po<strong>in</strong>t<br />

(0, 1, 0, 0) <strong>and</strong> hence is a po<strong>in</strong>t of the ovoid Ω of T2(C).)<br />

Let φ, which is an isomorphism from T2(C) to W (q), also represent the<br />

map on AG(3, q) = P G(3, q) \ π that it <strong>in</strong>duces. Thus<br />

φ : (x0, x1, x2, 1) ↦→ (x0, x1, x0x1 + x 2 2, 1).<br />

We claim that φ leaves <strong>in</strong>variant the set of po<strong>in</strong>ts of any plane of AG(3, q)<br />

whose projective completion conta<strong>in</strong>s N. For let π = [y1, y0, 0, y1x0 + y0x1]<br />

be any such plane. It conta<strong>in</strong>s the po<strong>in</strong>t (y0, y1, √ y0y1, 0) of C <strong>and</strong> the po<strong>in</strong>t<br />

(x0, x1, x2, 1). Then φ : (x0, x1, x2, 1) ↦→ (x0, x1, x0x1 + x2 2 , 1) ∈ π. Hence<br />

the aff<strong>in</strong>e part of π (i.e., π \ π) is mapped to itself by φ. (Note also that<br />

φ : [y1, y0, 0, x0y1 + x1y0] ↦→ (y0, y1, x0y1 + x1y0, 0) ∈ π.)<br />

We observe that πa = [1, 0, 0, a] conta<strong>in</strong>s the nucleus N = (0, 0, 1, 0) of C.<br />

The planes πa for 0 = a ∈ Fq are the secant planes to Ω meet<strong>in</strong>g π <strong>in</strong> the<br />

l<strong>in</strong>e 〈(0, 0, 1, 0), (0, 1, 0, 0)〉. Also the restriction of φ to the aff<strong>in</strong>e part of πa<br />

is given by<br />

φ|πa : (a, x1, x2, 1) ∈ πa ↦→ (a, x1, ax1 + x 2 2, 1).<br />

Now let Oa = Ω∩πa, so Oa is an oval of πa conta<strong>in</strong><strong>in</strong>g (0, 1, 0, 0) <strong>and</strong> with<br />

nucleus (0, 1, a, 0) (s<strong>in</strong>ce (0, 1, a, 0) is the image of πa under the polarity ν<br />

def<strong>in</strong>ed by Ω). For convenience we represent the po<strong>in</strong>ts of the plane πa us<strong>in</strong>g<br />

the coord<strong>in</strong>ates x1, x2, x3 (i.e., omitt<strong>in</strong>g the x0 coord<strong>in</strong>ate). Thus we write<br />

Oa = {(F (t), t, 1) : t ∈ Fq} ∪ {(1, 0, 0)} with nucleus Na = (1, a, 0),<br />

for some o-polynomial F . S<strong>in</strong>ce the l<strong>in</strong>e 〈(F (1), 1, 1), (F (0), 0, 1) does not<br />

conta<strong>in</strong> Na,<br />

⎛<br />

F (1) 1<br />

⎞<br />

1<br />

det ⎝ F (0) 0 1 ⎠ = A<br />

1 a 0<br />

′ = 1 + aF (1) + aF (0) = 0.


11.4. RESTRICTIONS ON A SECANT PLANE SECTION OF Ω 519<br />

Also put B ′ = aF (0) <strong>and</strong> consider the homography of P G(2, q) given by<br />

⎛<br />

⎞<br />

(x1, x2, x3) ↦→ (x1, x2, x3) ⎝<br />

a/A ′ 0 0<br />

1/A ′ 1 0<br />

B ′ /A ′ 0 1<br />

It follows that {(f(t), t, 1) : t ∈ Fq} ∪ {(1, 0, 0)}, where<br />

f(t) =<br />

⎠ .<br />

af(t) + t + B′<br />

A ′ , f(1) = 1 <strong>and</strong> f(0) = 0, (11.5)<br />

is an oval projectively equivalent to Oa <strong>and</strong> on the fundamental quadrangle.<br />

So f is an o-polynomial.<br />

Now φ|πa : (F (t), t, 1) ↦→ (F (t), t 2 + aF (t), 1), imply<strong>in</strong>g<br />

O (1)<br />

a = {(F (t), t2 + aF (t), 1) : t ∈ Fq} ∪ {(1, 0, 0)}<br />

= {(F ( √ t, t + aF ( √ t), 1) : t ∈ Fq} ∪ {(1, 0, 0)}<br />

is the oval that is the <strong>in</strong>tersection of πa with the ovoid Ω (1) , which also<br />

def<strong>in</strong>es the symplectic polarity ν. As ν : πa ↦→ (1, a, 0) (for either Ω or Ω (1) ),<br />

it follows that O (1)<br />

a also has nucleus (1, a, 0).<br />

Consider the map<br />

⎛<br />

(x1, x2, x3) ↦→ (x1, x2, x3) ⎝<br />

a 0 0<br />

1 1/A ′ 0<br />

0 B ′ /A ′ 1<br />

This homography maps (1, 0, 0) to itself <strong>and</strong> (F ( √ t), t+aF ( √ t), 1) ↦→ (t, g(t), 1)<br />

where<br />

g(t) = t + aF (√t) + B ′<br />

A ′<br />

,<br />

The important th<strong>in</strong>g here is that<br />

g(1) = 1 <strong>and</strong> g(0) = 0. (11.6)<br />

g(t) is an o-polynomial!<br />

Putt<strong>in</strong>g together Eqs. 11.5 <strong>and</strong> 11.6 <strong>and</strong> switch<strong>in</strong>g to the <strong>in</strong>determ<strong>in</strong>ate<br />

x we obta<strong>in</strong><br />

⎞<br />

⎠ .<br />

g(x) = A(x + √ x) + f( √ x), A = 1/A ′ = 0. (11.7)


520 CHAPTER 11. CLASSIFIYING OVOIDS - PART 2<br />

So far we have only considered planes of P G(3, q) that meet π <strong>in</strong> a l<strong>in</strong>e<br />

tangent to C at the po<strong>in</strong>t (0, 1, 0, 0). We now extend our considerations to any<br />

plane meet<strong>in</strong>g π <strong>in</strong> a l<strong>in</strong>e tangent to C. Let ψt be the homography of P G(3, q)<br />

that acts on po<strong>in</strong>ts of P G(3, q) by (x0, x1, x2, x3) ↦→ (x0, x1, x2, x3)[ψt], where<br />

[ψt] =<br />

Hence det[ψt] = 1 <strong>and</strong><br />

⎛<br />

⎜<br />

⎝<br />

t t 2 + 1 t 1<br />

2 (t + 1) 0<br />

1 t t 1<br />

2 0<br />

0 0 1 0<br />

t 1<br />

2 t 1<br />

2 (t + 1) t 1<br />

ψt : (x0, x1, x2, x3) ↦→<br />

⎞<br />

⎟<br />

⎠ .<br />

(tx0 + x1 + t 1<br />

2 x3, (t 2 + 1)x0 + tx1 + t 1<br />

2 (t + 1)x3,<br />

t 1<br />

2 (t + 1)x0 + t 1<br />

2 x1 + x2 + tx3, x3).<br />

It is a rout<strong>in</strong>e exercise to show that ψt <strong>in</strong>terchanges the po<strong>in</strong>t (0, 1, 0, 0)<br />

with the po<strong>in</strong>t (1, t, t 1<br />

2 , 0). If s = t, it maps (1, s, s 1<br />

2 , 0) to the po<strong>in</strong>t (1, b, b 1<br />

2 , 0)<br />

where b = t2 +ts+1.<br />

Hence ψt leaves <strong>in</strong>variant the conic C.<br />

t+s<br />

More remarkably, ψt commutes with the symplectic polarity ν. To see<br />

0 P<br />

this, recall the matrix C =<br />

that effects the polarity ν. A straight<br />

P 0<br />

forward calculation shows that [ψt]C[ψt] T = C, show<strong>in</strong>g that ψt really does<br />

commute with ν. Hence if we let Ωt = ψt(Ω), then we may apply the discussion<br />

of this section to the ovoid Ωt. Consequently we have the follow<strong>in</strong>g<br />

lemma.<br />

Lemma 11.4.2. Let Ω be an ovoid of P G(3, q) <strong>and</strong> let π be a plane of<br />

P G(3, q) such that π ∩ Ω is a conic C. If π ′ is any plane of P G(3, q) such<br />

that π ∩ π ′ is a l<strong>in</strong>e tangent to C but π ′ is not tangent to Ω, then the oval<br />

π ′ ∩ Ω is projectively equivalent to an oval<br />

{(f(t), t, 1) : t ∈ Fq} ∪ {(1, 0, 0)} with nucleus {(0, 1, 0)},<br />

where f is an o-polynomial satisfy<strong>in</strong>g the equation<br />

for some o-polynomial g <strong>and</strong> nonzero A ∈ Fq.<br />

g(x) = A(x + √ x) + f( √ x), (11.8)


11.4. RESTRICTIONS ON A SECANT PLANE SECTION OF Ω 521<br />

Our long term goal is to show that if Eq. 11.8 is satisfied then g(x) = √ x<br />

<strong>and</strong> f(x) = x 2 .<br />

Now consider o-polynomials f <strong>and</strong> g satisfy<strong>in</strong>g Eq. 11.8. S<strong>in</strong>ce f <strong>and</strong> g<br />

have zero constant term <strong>and</strong> no odd degree terms we may write<br />

From<br />

we see that from Eq. 11.8<br />

f(x) = f2x 2 + f4x 4 + · · · + fq−2x q−2 ,<br />

g(x) = g2x 2 + g4x 4 + · · · + gq−2x q−2 .<br />

f( √ x) = f2x + f4x 2 + f6x 3 + · · · + fq−2x q−2<br />

2<br />

g(x) = (A + f2)x + f4x 2 + f6x 3 + · · · + fq−2x q−2<br />

2 + Ax q<br />

2 .<br />

From this we see that A = f2 = 0 <strong>and</strong> similarly that gq/2 = A = 0, that<br />

is, the coefficient of √ x = x q<br />

2 <strong>in</strong> g(x) is not zero. Further, s<strong>in</strong>ce g has no odd<br />

degree terms, it follows that<br />

f6 = f10 = · · · = fq−2 = 0,<br />

that is, f has no terms of degree 2n where n is odd. And s<strong>in</strong>ce f has no term<br />

with degree greater than q − 2, it follows that<br />

gq/2+2 = gq/2+4 = · · · = gq−2 = 0,<br />

that is, g has no term of degree greater than q/2. Thus<br />

<br />

f(x) = f2x 2 +f2·2x 2·2 +f2·4x 2·4 +· · ·+fq−4x q−4 = Ax 2 (q−4)/4<br />

+<br />

where A = 0 <strong>and</strong><br />

g(x) = g2x 2 + g4x 4 + g6x 6 + · · · + gq/2x q/2 q/4 <br />

=<br />

where gq/2 = A = 0.<br />

Putt<strong>in</strong>g these equations together we f<strong>in</strong>d the follow<strong>in</strong>g:<br />

(i) f2 = A = gq/2 = 0;<br />

(ii) fi·4 = gi·2; 1 ≤ i ≤<br />

i=1<br />

i=1<br />

f4ix 4i , (11.9)<br />

g2ix 2i , (11.10)<br />

q − 4<br />

. (11.11)<br />

4


522 CHAPTER 11. CLASSIFIYING OVOIDS - PART 2<br />

11.5 Sparse <strong>and</strong> spare o-polynomials<br />

Def<strong>in</strong>e a partial order<strong>in</strong>g ≪ on the set of <strong>in</strong>tegers n where 0 ≤ n ≤ q − 1 <strong>and</strong><br />

q = 2h . If<br />

h−1<br />

b = bi2 i h−1<br />

<strong>and</strong> c = ci2 i<br />

i=0<br />

(where each bi <strong>and</strong> each ci is either 0 or 1), then b ≪ c if <strong>and</strong> only if bi ≤ ci<br />

for all i. Glynn def<strong>in</strong>ed this partial order to express the follow<strong>in</strong>g theorem:<br />

Theorem 11.5.1. Let f be a polynomial over Fq of degree at most q − 2<br />

satisfy<strong>in</strong>g f(a) = 0 if <strong>and</strong> only if a = 0 <strong>and</strong> f(1) = 1. Then f is an opolynomial<br />

if <strong>and</strong> only if the coefficient of x c <strong>in</strong> f(x) b (mod x q − x) is zero<br />

for all pairs of <strong>in</strong>tegers (b, c) satisfy<strong>in</strong>g 1 ≤ b ≪ c ≤ q − 1, b = q − 1.<br />

(Note that b = 1 <strong>in</strong> the theorem shows that an o-polynomial has no odd<br />

degree terms.)<br />

Let q = 2 h , h ≥ 3, <strong>and</strong> let f be an o-polynomial over Fq. We say that f<br />

is 2 k -sparse provided 1 ≤ k ≤ ⌊(h − 1)/2⌋ + 1 <strong>and</strong><br />

f(x) = f2x 2 +<br />

2h−2k −1<br />

i=1<br />

i=0<br />

fi·2k+1x i·2k+1<br />

.<br />

This says f(x) = f2x2 + a polynomial <strong>in</strong> x2k+1 with degree at most<br />

2h−k+1 − 2k+1 <strong>in</strong> x. We note that the f of Eq. 11.9 is 21-sparse. Also,<br />

s<strong>in</strong>ce x2k+2 = (x2k+1) 2 , if f is 2k+1-sparse then it is 2k-sparse (for 1 ≤ k ≤<br />

⌊(h − 1)/2⌋).<br />

Let g be another o-polynomial. We say that g is 2 k -spare provided 1 ≤<br />

k ≤ ⌊(h − 1)/2⌋ + 1 <strong>and</strong><br />

g(x) =<br />

2h−2k −1<br />

i=1<br />

gi·2kx i·2k<br />

+ gq/2x q/2 .<br />

This says that g(x) is a polynomial <strong>in</strong> x2k has degree at most q/2. We note that the g(x) of Eq. 11.10 is 21-spare. + a s<strong>in</strong>gle term gq/2x q/2 <strong>and</strong><br />

Lemma 11.5.2. Let f be an o-polynomial over Fq, q ≥ 8, <strong>and</strong> suppose that<br />

f is 2 k -sparse with k = ⌊(h − 1)/2⌋ + 1. Then f(x) = x 2 . (So if f <strong>and</strong> g<br />

satisfy Eq. 11.8, then g(x) = x 1/2 .)


11.5. SPARSE AND SPARE O-POLYNOMIALS 523<br />

Proof. Start with<br />

f(x) = f2x 2 +<br />

2h−2k −1<br />

i=1<br />

fi·2k+1x i·2k+1<br />

. (11.12)<br />

If h = 2j +1, then k = ⌊ h−1<br />

2 ⌋+1 = j +1 =⇒ 2k = h+1 =⇒ 2h−2k −1 =<br />

− 1<br />

2 . Hence the sum <strong>in</strong> Eq. 11.12 is empty <strong>and</strong> f(x) = f2x 2 .<br />

If h = 2j, then k = ⌊ h−1<br />

2 ⌋ + 1 = j =⇒ 2k = h =⇒ 2h−2k − 1 = 0.<br />

Hence the sum <strong>in</strong> Eq. 11.12 is empty <strong>and</strong> f(x) = f2x 2 .<br />

S<strong>in</strong>ce f(1) = 1, A = 1, <strong>and</strong> by Eq. 11.8 f(x) = x 2 <strong>and</strong> g(x) = √ x.<br />

Note: In the proof we showed that<br />

if k < ⌊<br />

h − 1<br />

⌋ + 1, then <strong>in</strong> all cases 2k + 1 ≤ h. (11.13)<br />

2<br />

We now know that f is 2 1 -sparse <strong>and</strong> g is 2 1 -spare. We proceed <strong>in</strong>ductively<br />

to the case where f is 2k-sparse <strong>and</strong> g is 2k-spare with k = ⌊ h−1⌋<br />

+ 1. Hence<br />

2<br />

by Lemma 11.5.2 it will follow that f(x) = x2 <strong>and</strong> g(x) = √ x.<br />

Lemma 11.5.3. Let f <strong>and</strong> g be o-polynomials over Fq with q = 2h ≥ 8 <strong>and</strong><br />

satisfy<strong>in</strong>g Eq. 11.8. If 1 ≤ k ≤ ⌊ h−1<br />

2 ⌋, <strong>and</strong> if f is 2k-sparse <strong>and</strong> g is 2k-spare, then f is 2k+1-sparse <strong>and</strong> g is 2k+1-spare. Proof. Assume that f is 2 k -sparse <strong>and</strong> g is 2 k -spare. First we shall apply<br />

Glynn’s criterion to f for particular values of b <strong>and</strong> c. Let<br />

b = 2 k+1 − 1 <strong>and</strong> c = 2 k+1 − 1 + α2 2k+1 ; 0 ≤ α ≤ 2 h−2k−1 − 1. (11.14)<br />

(These values of α ensure that c ≤ q − 1.)<br />

We consider the expansion of f(x) b before reduction modulo x q −x. Note<br />

that<br />

deg(f(x) b ) ≤ (2 k+1 − 1)(2 h−k+1 − 2 k+1 )<br />

= 2 h+2 + 2 k+1 − 2 2k+2 − 2 h−k+1 . (11.15)<br />

Now we consider which x d ≡ x c (mod x q − x) have degree small enough<br />

to appear <strong>in</strong> f(x) b . By Eq. 11.15 we have<br />

d = c + γ(2 h − 1) ≤ 2 h+2 + 2 k+1 − 2 2k+2 − 2 h−k+1 (for γ ≥ 0). (11.16)


524 CHAPTER 11. CLASSIFIYING OVOIDS - PART 2<br />

Now<br />

d = c + γ(2 h − 1) = 2 k+1 − 1 + γ(2 h − 1) + α2 2k+1<br />

≤ 2 h+2 + 2 k+1 − 2 2k+2 − 2 h−k+1 (from Eq. 11.16)<br />

=⇒ γ(2 h − 1) ≤ 2 h+2 + 1 − α2 2k+1 − 2 2k+2 − 2 h−k+1<br />

≤ 1 + 2 h+2 − 2 2k+2 − 2 h−k+1 (α ≥ 0)<br />

=⇒ γ ≤ 4(2h − 1) + 5 − 22k+2 − 2h−k+1 2h − 1<br />

≤<br />

4(2h − 1) + 4 − 24 − (2h − 1)<br />

2h = 3 −<br />

− 1<br />

12<br />

2h < 3<br />

− 1<br />

=⇒ γ = 0, 1, or 2.<br />

If γ is even, then d = 2 k+1 − 1 + γ(2 h − 1) + α2 2k+1 is odd. But s<strong>in</strong>ce f(x)<br />

has no odd degree term, neither does f(x) b . Hence if γ is even, then x d does<br />

not appear <strong>in</strong> f(x) b .<br />

This forces γ = 1, so<br />

d = c + 2 h − 1 = 2 k+1 − 1 + α2 2k+1 + 2 h − 1 ≡ 2 k+1 − 2 (mod 2 k+1 ). (11.17)<br />

S<strong>in</strong>ce f is 2 k -sparse,<br />

f(x) = f2x 2 +<br />

so each term of f(x) b looks like<br />

where<br />

f2 · x 2 t ·<br />

2h−2k −1<br />

i=1<br />

2h−2k −1<br />

i=1<br />

fi·2k+1x i·2k+1<br />

, (11.18)<br />

<br />

f i·2 k+1x i·2k+1 ti<br />

, (11.19)<br />

b = 2 k+1 2<br />

− 1 = t +<br />

h−2k −1<br />

2<br />

ti <strong>and</strong> d = 2t +<br />

h−2k −1<br />

i · 2 k+1 · ti ≡ 2t (mod 2 k+1 ).<br />

i=1<br />

(11.20)<br />

(Actually some of the terms <strong>in</strong> the sum would be miss<strong>in</strong>g if the correspond<strong>in</strong>g<br />

f i·2 k+1 were zero, but this does not affect the congruence modulo 2 k+1 .)<br />

Eqs. 11.17 <strong>and</strong> 11.20 imply that 2 k+1 − 2 ≡ 2t (mod 2 k+1 ), which implies<br />

i=1<br />

t ≡ 2 k − 1 (mod2 k ) =⇒ t ≥ 2 k − 1. (11.21)


11.5. SPARSE AND SPARE O-POLYNOMIALS 525<br />

This implies that<br />

f 2k −1<br />

2<br />

· (x 2 ) 2k −1 divides any term of f(x) b .<br />

Suppose that T (x) is such a term of degree d = c + 2 h − 1. So<br />

f 2k −1<br />

2<br />

· (x 2 ) 2k −1 |T (x).<br />

Note that b = 2 k+1 − 1 = 1 + 2 + 2 2 + · · · 2 k−1 + 2 k . S<strong>in</strong>ce t ≤ b = 2 k+1 − 1,<br />

by Eq. 11.21 t = 2 k − 1 or t = 2 k − 1 + 2 k = 2 k+1 − 1. But if t = b, then<br />

x d = f2 · x 2 b = f b 2 · (x 2(2k+1 −1) ).<br />

This says d = 2 k+2 −2 ≥ 2 k+1 +2 h −2 by Eq. 11.17, s<strong>in</strong>ce α ≥ 0. And this<br />

<strong>in</strong>equality implies 2 k+1 ≥ 2 h , which is clearly impossible. Hence t = 2 k − 1<br />

<strong>and</strong> the unique 2-adic expansion of t is<br />

Note that<br />

t = 2 k − 1 = 1 + 2 + 2 2 + · · · + 2 k−1 . (11.22)<br />

f(x) b = f(x) 20<br />

· f(x) 21<br />

· f(x) 22<br />

· f(x) 2k<br />

. (11.23)<br />

S<strong>in</strong>ce the only way to write t = 2 k − 1 <strong>in</strong> base 2 is given <strong>in</strong> Eq. 11.22, we<br />

must have only one ti = 0 (see Eq. 11.20) <strong>and</strong><br />

Then (see Eq. 11.17)<br />

T (x) = f 2k −1<br />

2<br />

· (x 2 ) 2k −1 ·<br />

<br />

f u·2 k+1 · x u·2k+1 2 k<br />

. (11.24)<br />

d − 2(2 k − 1) = u · 2 2k+1 = 2 k+1 − 1 + 2 h − 1 + α · 2 2k+1 − 2 k+1 + 2<br />

= 2 h + α · 2 2k+1 .<br />

Hence (u − α)2 2k+1 = 2 h , so<br />

u = α2 h−(2k+1) is an <strong>in</strong>teger, as it should be. (11.25)<br />

At this po<strong>in</strong>t we have shown that<br />

T (x) = (f2 · x 2 ) 2k −1 ·<br />

<br />

f α2 k+1 +2 h−k · x α·2k+1 +2 h−k 2 k<br />

. (11.26)


526 CHAPTER 11. CLASSIFIYING OVOIDS - PART 2<br />

is the unique term of degree d = c + 2 h − 1 <strong>in</strong> the expansion of f(x) b before<br />

reduction modulo x q − x. By Glynn’s theorem<br />

S<strong>in</strong>ce f2 = 0, we must have<br />

This says<br />

f 2k −1<br />

2<br />

· f 2k<br />

α·2 k+1 +2 h−k = 0.<br />

f α·2 k+1 +2 h−k = 0 for 0 ≤ α ≤ 2 h−2k−1 − 1. (11.27)<br />

f 2 h−k = f 2 h−k +1·2 k+1 = f 2 h−k +2·2 k+1 = · · · = f 2 h−k+1 −2 k+1 = 0. (11.28)<br />

By Eq. 11.11,<br />

g 2 h−k−1 = g 2 h−k−1 +1·2 k = g 2 h−k−1 +2·2 k = · · · = g 2 h−k −2 k = 0. (11.29)<br />

Note: This says that g i·2 k = 0 for all i ≥ 2 h−2k−1 (except for gq/2). S<strong>in</strong>ce<br />

g is 2 k -spare, at this po<strong>in</strong>t we have<br />

g(x) =<br />

2h−2k−1 −1<br />

i=1<br />

g i·2 kx i·2k<br />

+ gq/2x q/2 . (11.30)<br />

At this po<strong>in</strong>t we want to apply Glynn’s theorem to g with<br />

b = 2 k+1 − 1 <strong>and</strong> c = 2 k+1 − 1 + α · 2 k+1 , 0 ≤ α ≤ 2 h−2k−1 − 1.<br />

deg(g(x) b ) = q<br />

2 b = 2h+k − 2 k−1 . (11.31)<br />

We consider which x d ≡ x c (mod x q − x) have d ≤ deg(g(x) b ). By Eq. 11.31<br />

we have<br />

d ≤ 2 h+k − 2 k−1 .<br />

Here d = c + γ(2 h − 1) for some γ ≥ 0, so<br />

d = 2 k+1 − 1 + α · 2 k+1 + γ(2 h − 1) ≤ 2 h+k − 2 h−1<br />

=⇒ γ(2h − 1) ≤ 2 h+k − 2 h−1 − 2 k+1 + 1 = 2 k (2 h − 1) + 2 k − 2 h−1 − 2 k+1 + 1<br />

=⇒ γ ≤ 2 k + 2k − 2h−1 − 2k+1 + 1<br />

2h < 2<br />

− 1<br />

k .


11.5. SPARSE AND SPARE O-POLYNOMIALS 527<br />

Hence<br />

Now<br />

γ ≤ 2 k − 1. (11.32)<br />

d = c + γ(2 h − 1) = 2 k+1 − 1 + α · 2 k+1 + γ(2 h − 1) ≡ −(γ + 1) (mod 2 k ).<br />

S<strong>in</strong>ce every term of g(x) has degree congruent to 0 modulo 2 k , so does every<br />

term of g(x) b (before reduction modulo x q − x). So for x d to appear <strong>in</strong> g(x) b<br />

we must have d ≡ −(γ +1) ≡ 0 (mod 2 k ), i.e., γ = u·2 k −1. S<strong>in</strong>ce γ ≤ 2 k −1,<br />

clearly u = 1, γ = 2 k − 1 <strong>and</strong><br />

d = 2 k+1 −1+α·2 k+1 +(2 k −1)(2 h −1) = (α+1)2 k+1 +2 h+k −2 h −2 k . (11.33)<br />

We now show that most of the terms of g(x) b have degree less than d.<br />

First consider a term of the form<br />

(gq/2x q/2 ) 2k+1−3 (gi·2kx i·2k<br />

) 2 , 1 ≤ i ≤ 2 h−2k − 1. (11.34)<br />

We know from Eq. 11.29 that g i·2 k = 0 for i ≥ 2 h−2k−1 . So the largest possible<br />

degree of the form <strong>in</strong> Eq. 11.34 is<br />

2 h−1 (2 k+1 − 3) + (2 h−2k−1 − 1)2 k+1<br />

= 2 h+k − 2 h + 2 k (2 h−2k − 2 h−k−1 − 2)<br />

< 2 h+k − 2 h (s<strong>in</strong>ce k ≥ 1 =⇒ 2 h−2k ≤ 2 h−k−1 )<br />

< 2 h+k − 2 h + 2 k+1 − 2 k<br />

≤ (α + 1)2 k+1 + 2 h+k − 2 h − 2 k<br />

= d (by Eq. 11.33).<br />

Thus any term of g(x) b of the form <strong>in</strong> Eq. 11.34 has degree less than d. So we<br />

seek terms <strong>in</strong> g(x) b that have degree greater than all the terms of the form<br />

<strong>in</strong> Eq. 11.34.<br />

Consider the term<br />

(gq/2x q/2 ) 2k+1 −1 = g 2 k+1 −1<br />

q/2<br />

· (x 2h−1<br />

) 2k+1−1 . (11.35)<br />

S<strong>in</strong>ce the degree of this term is congruent to 0 modulo 2 h−1 , we also need<br />

d = (α + 1)2 k+1 + 2 h+k − 2 h − 2 k ≡ (α + 1)2 k+1 − 2 k ≡ 0 (mod 2 h−1 ).


528 CHAPTER 11. CLASSIFIYING OVOIDS - PART 2<br />

S<strong>in</strong>ce α ≤ 2 h−2k−1 − 1, also<br />

(α + 1)2 k+1 − 2 k ≤ 2 h−k − 2 k < 2 h−1 (for k ≥ 1).<br />

This means that d cannot be congruent to 0 modulo 2 h−1 . Hence the term<br />

<strong>in</strong> Eq. 11.35 cannot have degree d = (α + 1)2 k+1 + 2 h+k − 2 h − 2 k for any α.<br />

By hypothesis g(x) is 2 k -spare, so<br />

g(x) =<br />

2h−2k −1<br />

i=1<br />

gi·2kx i·2k<br />

+ gq/2x q/2 , with gq/2 = 0. (11.36)<br />

However, i = 2 h−2k − 1 gives i · 2 k = 2 h−k − 2 k , <strong>and</strong> g 2 h−k −2 k = 0 (see<br />

Eq. 11.29), <strong>and</strong> by Eq. 11.30 the upper limit on the sum <strong>in</strong> Eq. 11.36 may<br />

be taken to be 2 h−2k−1 − 1. This just says that for g i·2 k = gq/2, g i·2 k = 0 for<br />

i ≥ 2 h−2k−1 .<br />

Note that<br />

g(x) b = (g(x)) 20<br />

· (g(x)) 21<br />

· (g(x)) 22<br />

· · · (g(x)) 2k<br />

A typical term <strong>in</strong> this expansion is<br />

<br />

(gq/2x q/2 ) t 2<br />

·<br />

h−2k−1−1 i=1<br />

(gi·2kx i·2k<br />

) ti k+1<br />

, b = 2 − 1 = t +<br />

2h−2k−1 −1<br />

i=1<br />

(11.37)<br />

ti. (11.38)<br />

The degree of such a term is at most 2h−1t + 2h−2k−1−1 i=1 i · 2kti, <strong>and</strong> this is<br />

maximized by putt<strong>in</strong>g t1 = · · · t2h−2k−1−2 = 0 <strong>and</strong> t2h−2k−1−1 = 2k+1 − 1 − t. It<br />

is also clear that this is <strong>in</strong>creased by <strong>in</strong>creas<strong>in</strong>g the value of t. We want this<br />

to be strictly greater than the largest degree of any term <strong>in</strong> Eq. 11.34 which<br />

is 2h+k − 2h − 2h−1 + 2h−k − 2k+1 . Hence we need<br />

2 h−1 t+(2 h−2k−1 −1)2 k (2 k+1 −1−t) > 2 h+k −2 h −2 h−1 +2 h−k −2 k+1 . (11.39)<br />

If t = 2 k+1 − 3, then we get equality <strong>in</strong> Eq. 11.39. So 2 k+1 − 2 ≤ t ≤<br />

2 k+1 − 1, <strong>and</strong> we have already ruled out 2 k+1 − 1. Hence the only possibility<br />

is t = 2 k+1 − 2 <strong>and</strong> we get a term of the form<br />

(gq/2x q/2 ) 2k+1−2 · (ti·2kx i·2k<br />

) 1 = g 2k+1−2 q/2 · gi·2k · x 2h+k−2h +i·2k , (11.40)


11.5. SPARSE AND SPARE O-POLYNOMIALS 529<br />

for some choice of i. This term has degree d if <strong>and</strong> only if<br />

if <strong>and</strong> only if<br />

d = (α + 1)2 k+1 + 2 h+k − 2 h − 2 k = 2 h+k − 2 h + i · 2 k<br />

i = 2α + 1.<br />

Thus the coefficient of x d <strong>in</strong> g(x) b (<strong>and</strong> of x c when g(x) b is reduced mod<br />

x q − x) is<br />

g 2k+1 −2<br />

q/2<br />

· g α2 k+1 +2 k.<br />

S<strong>in</strong>ce gq/2 = 0, by Glynn’s criterion we have<br />

g α·2 k+1 +2 k = g (2α+1)·2 k = 0 for 0 ≤ α ≤ 2 h−2k−1 − 1. (11.41)<br />

This says g i·2 k = 0 if i is odd. Hence (compare Eq. 11.30) we have<br />

=<br />

2h−2k−2 −1<br />

i=1<br />

g(x) =<br />

2h−2k−1 −1<br />

i even<br />

g i·2 k+1 · x i·2k+1<br />

This says g(x) is 2 k+1 -spare!<br />

By Eq. 11.11 we then also have<br />

This says that<br />

g i·2 k · x i·2k<br />

+ gq/2x q/2<br />

+ gq/2 · x q/2 , <strong>and</strong> gq/2 = 0.<br />

(11.42)<br />

f α·2 k+2 +2 k+1 = 0 for 0 ≤ α ≤ 2 h−2k−1 − 1. (11.43)<br />

f i·2 k = 0 for all odd i with 1 ≤ i ≤ 2 h−2k − 1.<br />

(Compare Eq. 11.12.) This shows that<br />

f(x) = f2x 2 +<br />

2h−2k−1 −1<br />

i=1<br />

fi·2k+2 · x i·2k+2<br />

, f2 = 0. (11.44)<br />

And, f<strong>in</strong>ally, this is just the statement that f is 2 k+1 -sparse!<br />

Lemmas 11.5.2 <strong>and</strong> 11.5.3 have the follow<strong>in</strong>g theorem as an immediate<br />

corollary.


530 CHAPTER 11. CLASSIFIYING OVOIDS - PART 2<br />

Theorem 11.5.4. Let f(x) = q/2−1<br />

i=1<br />

o-polynomials over Fq with q = 2 h ≥ 8 <strong>and</strong> satisfy<strong>in</strong>g<br />

Then f(x) = x 2 <strong>and</strong> g(x) = √ x.<br />

g(x) = A(x + √ x) + f( √ x), A = 0.<br />

f2ix2i <strong>and</strong> g(x) = q/2−1 i=1<br />

g2ix2i be two<br />

Proof. S<strong>in</strong>ce f <strong>and</strong> g satisfy A(x + √ x) + f( √ x) = g(x), it follows that<br />

f2 = 0 = gq/2, f is 2 1 -sparse <strong>and</strong> g is 2 1 -spare. From Lemmas 11.5.2 <strong>and</strong><br />

11.5.3 we see that f(x) = x 2 <strong>and</strong> g(x) = √ x.<br />

11.6 The classification of ovoids conta<strong>in</strong><strong>in</strong>g a<br />

conic<br />

Lemma 11.4.2 says the follow<strong>in</strong>g. Let Ω be an ovoid of P G(3, q) <strong>and</strong> let π<br />

be a plane of P G(3, q) such that π ∩ Ω is a conic C. Let π ′ be any plane of<br />

P G(3, q) such that π ∩ π ′ is a l<strong>in</strong>e tangent to C but not tangent to Ω (i.e.,<br />

π ′ is any plane secant to Ω but meet<strong>in</strong>g C <strong>in</strong> a unique po<strong>in</strong>t). Then the oval<br />

π ′ ∩ Ω is projectively equivalent to an oval<br />

{(f(t), t, 1) : t ∈ Fq} ∪ {(1, 0, 0)} with nucleus (0, 1, 0),<br />

where f is an o-polynomial satisfy<strong>in</strong>g the equation<br />

g(x) = A(x + √ x) + f( √ x),<br />

for some o-polynomial g <strong>and</strong> nonzero A ∈ Fq. Hence by Theorem 11.5.4 we<br />

see that π ′ ∩ Ω is a conic. This proves the follow<strong>in</strong>g theorem.<br />

Theorem 11.6.1. Let Ω be an ovoid of P G(3, q), q even, <strong>and</strong> let π be a<br />

plane of P G(3, q) such that π ∩ Ω is a conic C. Then every secant plane<br />

section of Ω that <strong>in</strong>tersects C <strong>in</strong> exactly one po<strong>in</strong>t is a conic.<br />

This theorem allows us to prove the follow<strong>in</strong>g major classification theorem<br />

of M. Brown [Br00a].<br />

Theorem 11.6.2. Let Ω be an ovoid of P G(3, q), q even, <strong>and</strong> suppose there<br />

is at least one plane π of P G(3, q) such that π ∩ Ω is a conic. Then Ω is an<br />

elliptic quadric.


11.7. TRANSLATION OVALS AGAIN 531<br />

Proof. Let π ∩ Ω be the conic C, <strong>and</strong> let O be a secant plane section of Ω not<br />

meet<strong>in</strong>g C <strong>in</strong> exactly one po<strong>in</strong>t (so O meets C <strong>in</strong> exactly zero or two po<strong>in</strong>ts).<br />

Let the plane conta<strong>in</strong><strong>in</strong>g O be πO <strong>and</strong> let the nucleus of O be NO. Let P<br />

be a po<strong>in</strong>t of π ∩ πO not conta<strong>in</strong>ed <strong>in</strong> Ω. The plane 〈P, NO, N〉 (where N is<br />

the nucleus of C) meets Ω <strong>in</strong> an oval O ′ such that |O ′ ∩ C| = |O ′ ∩ O| = 1.<br />

Theorem 11.6.1 implies that O ′ is a conic, which then by the same theorem<br />

implies that O is a conic. This shows that all secant plane sections of Ω must<br />

be conics. Hence by Theorem 7.2.7 of Barlotti <strong>and</strong> Panella Ω must be an<br />

elliptic quadric.<br />

11.7 Translation ovals aga<strong>in</strong><br />

Recall the situation <strong>in</strong> Section 11.6, but let the polynomials fa(x) <strong>and</strong> ga(x)<br />

be denoted by f(x) <strong>and</strong> g(x), respectively. Then we have two o-permutations<br />

f <strong>and</strong> g that satisfy the equation<br />

ay + f(y) = āy α + g(y α ) ∀y ∈ F. (11.45)<br />

Putt<strong>in</strong>g y = 0 <strong>in</strong> this equation shows that f(0) = g(0) = A.<br />

Replace f <strong>and</strong> g with the functions<br />

¯f(y) = f(y) + A <strong>and</strong> ¯g(y) = g(y) + A,<br />

respectively. It follows that ¯ f <strong>and</strong> ¯g are o-permutations satisfy<strong>in</strong>g the equation<br />

Eq. 11.45 with ¯ f(0) = ¯g(0) = 0. For convenience from now on (until<br />

notice otherwise) we use f <strong>and</strong> g to represent the o-permutations satisfy<strong>in</strong>g<br />

Eq. 11.45.<br />

S<strong>in</strong>ce f <strong>and</strong> g are o-permutations with f(0) = g(0) = 0, we know they<br />

can be written as follows:<br />

f(t) =<br />

2<br />

f2i · t 2i ; g(t) =<br />

q−2<br />

i=1<br />

2<br />

g2i · t 2i . (11.46)<br />

Let α : t ↦→ t2k, where 1 ≤ k ≤ e − 1 <strong>and</strong> gcd(k, e) = 1. Then Eq. 11.45<br />

becomes<br />

at + āt 2k<br />

q−2<br />

2<br />

+ f2i · t 2i q−2<br />

2<br />

+ g2i · t 2i·2k<br />

= 0. (11.47)<br />

i=1<br />

i=1<br />

q−2<br />

i=1


532 CHAPTER 11. CLASSIFIYING OVOIDS - PART 2<br />

S<strong>in</strong>ce this equation must hold for all t ∈ Fq, when exponents are reduced<br />

modulo q − 1 it must be that all coefficients are 0.<br />

Suppose that for some i with 1 ≤ i ≤ q−2<br />

2 = 2e−1 −1 the b<strong>in</strong>ary expansion<br />

of i is given by<br />

i = b0 + b12 1 + b22 2 + · · · + be−22 e−2 .<br />

It then follows that<br />

i · 2 k+1 = b0 · 2 k+1 + b1 · 2 k+2 + · · · + be−k−2 · 2 e−1<br />

+ be−k−1 · 2 e + be−k · 2 e+1 + · · · + be−2 · 2 e+k−1<br />

≡ be−k−1 · 2 0 + · · · + be−2 · 2 k−1<br />

+ b0 · 2 k+1 + · · · + be−k−2 · 2 e−1 (mod 2 e − 1).<br />

(11.48)<br />

Consider the coefficient on t <strong>in</strong> Eq. 11.47 From Eq. 11.48 it follows that<br />

i · 2 k+1 ≡ 1 (mod q − 1) if <strong>and</strong> only if be−k−1 = 1 <strong>and</strong> all other bj equal zero.<br />

Hence i = 2 e−k−1 , <strong>and</strong> 2i = 2 e−k . Also, clearly 2i can never be congruent to<br />

1 mod q − 1 for i <strong>in</strong> the restricted range. Hence we have<br />

g 2 e−k = a. (11.49)<br />

Similarly, if we consider the coefficient on 2 k we see that<br />

f 2·2 k−1 = f 2 k = ā. (11.50)<br />

It is clear that 2i will never be odd modulo q−1, <strong>and</strong> from Eq. 11.48 i·2 k+1<br />

will be odd <strong>and</strong> greater than 1 (after reduction) if <strong>and</strong> only if be−k−1 = 1 <strong>and</strong><br />

i = 2 e−k−1 . Hence:<br />

If 2 e−k−1 ≪ i <strong>and</strong> 2 e−k−1 < i, then g2i = 0. (11.51)<br />

Interchang<strong>in</strong>g the roles of f <strong>and</strong> g <strong>and</strong> k with e − k we have also that<br />

If 2 k−1 ≪ i <strong>and</strong> 2 k−1 < i, then f2i = 0. (11.52)<br />

If we consider the coefficients on powers of t other than t <strong>and</strong> t2k, we see<br />

that 2i ≡ 2j · 2k (mod q − 1) if <strong>and</strong> only if i ≡ j · 2k (mod q − 1). Therefore<br />

f 2j·2 k = g2j, or, equivalently, g 2j·2 e−k = f2j, 1 ≤ j ≤ (q − 2)/2. (11.53)<br />

By study<strong>in</strong>g Eq. 11.48 we see that all cases are covered by the follow<strong>in</strong>g:


11.7. TRANSLATION OVALS AGAIN 533<br />

<strong>and</strong><br />

Dually,<br />

f2j =<br />

g2i =<br />

Keep <strong>in</strong> m<strong>in</strong>d:<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

At this stage we have that<br />

ā, if j = 2 k−1 ;<br />

0, if 2 k−1 ≪ j <strong>and</strong> 2 k−1 < j;<br />

g2i, if 2j = 2i · 2 k , which holds for i ≡ j · 2 e−k<br />

iff it is not true that 2 k−1 ≪ j.<br />

a, if i = 2 e−k−1 ;<br />

0, if 2 e−k−1 ≪ i <strong>and</strong> 2 e−k−1 < i;<br />

f2j, if 2i = 2j · 2 e−k , which holds for j ≡ i · 2 k<br />

iff it is not true that 2 e−k−1 ≪ i.<br />

f 2i·2 k = g2i, <strong>and</strong> g 2j·2 e−k = f2j.<br />

f(t) = ā · t 2k<br />

+<br />

= ā · t 2k<br />

+<br />

= ā · t 2k<br />

+<br />

g(t) = a · t 2e−k<br />

+<br />

= a · t 2e−k<br />

+<br />

= a · t 2e−k<br />

+<br />

2e−1 −1<br />

i=1<br />

2e−1 −1<br />

j=1<br />

2 k−1 ≪j<br />

2e−1 −1<br />

j=1<br />

2 k ≪2j<br />

2e−1 −1<br />

j=1<br />

2e−1 −1<br />

i=1<br />

2 e−k−1 ≪i<br />

2e−1 −1<br />

i=1<br />

2 e−k ≪2i<br />

f 2i·2 kt 2i·2k<br />

f2j · t 2j .<br />

f2j · t 2j .<br />

g 2j·2 e−kt 2j·2e−k<br />

g2i · t 2i .<br />

g2i · t 2i .<br />

(11.54)<br />

(11.55)<br />

(11.56)<br />

(11.57)


534 CHAPTER 11. CLASSIFIYING OVOIDS - PART 2<br />

2 e−k ≪ 2i ⇐⇒ 2i ≡ 2j · 2 e−k has a solution j;<br />

2 k ≪ 2j. ⇐⇒ 2j ≡ 2i · 2 k has a solution i.<br />

Note that 2 e − 2 k = 2 k + 2 k+1 + · · · + 2 e−1 ≤ 2j ⇐⇒ 2 r ≪ 2j for all<br />

r = k, k + 1, . . . , , e − 1. Hence <strong>in</strong> particular, f2j = 0 for 2j ≥ 2 e − 2 k . Thus<br />

f(t) = ā · t 2k<br />

+<br />

2 e −2 k −2<br />

2<br />

j=1<br />

2 k ≪2j<br />

f2jt 2j . (11.58)<br />

Dually, 2e − 2e−k = 2e−k + 2e−k+1 + · · · + 2e−1 ≤ 2i ⇐⇒ 2r ≪ 2i for all<br />

r = e − k, e − k + 1, . . . , e − 1. Hence <strong>in</strong> particular, g2i = 0 for 2i ≥ 2e − 2e−k .<br />

Thus<br />

g(t) = a · t 2e−k<br />

+<br />

2 e −2 e−k −2<br />

2<br />

i=1<br />

2 e−k ≪2i<br />

g2it 2i . (11.59)<br />

Without loss of generality we may assume that e ≥ 4 <strong>and</strong> 2 ≤ k ≤ e/2,<br />

s<strong>in</strong>ce the cases with 1 ≤ e ≤ 3 or with k = 1 were already taken care of <strong>in</strong><br />

the earlier sections. It is then easy to check that<br />

deg(f(t)) ≤ 2 e − 2 k − 2, <strong>and</strong> deg(g(t)) ≤ 2 e − 2 e−k − 2. (11.60)<br />

Keep <strong>in</strong> m<strong>in</strong>d:<br />

Dually,<br />

2 ≤ 2j ≤ 2 e − 2 k − 2 <strong>and</strong> 2 k ≪ 2j ⇐⇒<br />

2j = 2j0 + 2 k+1 j1, where 0 ≤ j0 ≤ 2 k−1 − 1, (11.61)<br />

0 ≤ j1 ≤ 2 e−k−1 − 1, not both j0 = 0 <strong>and</strong> j1 = 0.<br />

2 ≤ 2i ≤ 2 e − 2 e−k − 2 <strong>and</strong> 2 e−k ≪ 2i ⇐⇒<br />

2i = 2i0 + 2 e−k+1 i1, where 0 ≤ i0 ≤ 2 e−k−1 − 1, (11.62)<br />

0 ≤ i1 ≤ 2 k−1 − 1, not both i0 = 0 <strong>and</strong> i1 = 0.


11.7. TRANSLATION OVALS AGAIN 535<br />

And with this notation,<br />

2i · 2 k = (2i0 + 2 e−k+1 i1)2 k = 2 e+1 i1 + 2 k+1 i0 ≡ 2i1 + 2 k+1 i0,<br />

with the roles of i0 <strong>and</strong> i1 <strong>in</strong>terchanged exactly right <strong>and</strong> the congruence is<br />

modulo 2 e − 1.<br />

Dually,<br />

2j · 2 e−k = (2j0 + 2 k+1 j1)2 e−k = 2 e+1 j1 + 2 e−k+1 j0 ≡ 2j1 + 2 e−k+1 j0.<br />

f(x) − ā · x 2k<br />

g(x) − a · x 2e−k<br />

= f2jx 2j = f 2i·2 kx 2i·2k<br />

2j = 2j0 + 2 k+1 j1<br />

2i = 2i0 + 2 e−k+1 i1<br />

0 ≤ j0 ≤ 2 k−1 − 1 0 ≤ i0 ≤ 2 e−k−1 − 1<br />

0 ≤ j1 ≤ 2 e−k−1 − 1 0 ≤ i1 ≤ 2 k − 1<br />

(0 ≤ 2j ≤ 2 e − 2 k − 2) (0 ≤ 2i ≤ 2 e − 2 e−k − 2)<br />

(11.63)<br />

= g2ix 2i = g 2j·2 e−kx 2j·2e−k<br />

2i = 2i0 + 2 e−k+1 i1<br />

2j = 2j0 + 2 k+1 j1<br />

0 ≤ i0 ≤ 2 e−k−1 − 1 0 ≤ j0 ≤ 2 k−1 − 1<br />

0 ≤ i1 ≤ 2 k−1 − 1 0 ≤ j1 ≤ 2 e−k − 1<br />

(0 ≤ 2i ≤ 2 e − 2 e−k − 2) (0 ≤ 2j ≤ 2 e − 2 k − 2)<br />

(11.64)<br />

******************************************************************************************<br />

Glynn’s criterion for o-polynomials says that if (b, c) is a pair of <strong>in</strong>tegers<br />

satisfy<strong>in</strong>g 1 ≤ b ≪ c ≤ q − 1 with b = q − 1, then the coefficient of x c <strong>in</strong><br />

f(x) b (mod x q − x) is zero. We want to apply this with b = 2 k+1 − 1 <strong>and</strong><br />

c = b + 2 k+1 α, 0 ≤ α ≤ 2 e−k−1 − 1. This form of c guarantees that b ≪ c<br />

<strong>and</strong> keeps c <strong>in</strong> the range c ≤ 2 e − 1.<br />

From Eq. 11.60 we see that deg(f(x)) ≤ 2 e − 2 k − 2. Hence<br />

deg(f(x) b ) ≤ (2 k+1 − 1)(2 e − 2 k − 2) = 2 e+k+1 − 2 e − 2 2k+1 − 2 k+2 + 2 k + 2.<br />

We now determ<strong>in</strong>e which x d ≡ x c (mod x q −x) have degrees small enough<br />

to appear <strong>in</strong> f(x) b , where we consider f(x) b before reduction modulo x q − x.<br />

d = c + γ(2 e − 1) ≤ 2 e+k+1 − 2 e − 2 2k+1 − 2 k+2 + 2 k + 2<br />

=⇒ γ(2 e − 1) ≤ 2 e+k+1 − 2 e − 2 2k+1 − 2 k+2 − 2 k+1 + 2 k + 3 − 2 k+1 α<br />

=⇒ γ ≤ (2 k+1 − 1) − (22k+1 − 1) + (2 k+2 − 1) − 2 k<br />

2 e − 1<br />

< 2 k+1 − 1.


536 CHAPTER 11. CLASSIFIYING OVOIDS - PART 2<br />

If γ is even, then d = 2 k+1 − 1 + 2 k+1 α + γ(2 e − 1) is odd. But s<strong>in</strong>ce<br />

f has no odd degree term, neither does f(x) b . Hence γ must be odd. Say<br />

γ = 2m + 1 ≤ 2 k+1 − 3, so 0 ≤ m ≤ 2 k − 2.<br />

d = 2 k+1 − 1 + 2 k+1 α + (2m + 1)(2 e − 1)<br />

≡ 2 k+1 − 1 − (2m + 1) (11.65)<br />

≡ 2 k+1 − 2 − 2m (mod 2 k+1 ).<br />

Consider a term of f(x)−a·x 2k as <strong>in</strong> the far right h<strong>and</strong> side of Eq. 11.63.<br />

It looks like f2i·2kx2i·2k , where 2i · 2k = 2i0 · 2k + 2e+1i1 has been reduced<br />

modulo 2e − 1 to 2i · 2k ≡ 2i0 · 2k + 2i1. But we are first consider<strong>in</strong>g f(x) b<br />

before reduction modulo xq − x, so we may consider the polynomial ¯ f(x) b ,<br />

where ¯ f ≡ f (mod xq − x) is obta<strong>in</strong>ed by replac<strong>in</strong>g 2i · 2k ≡ 2i0 · 2k + 2i1<br />

with 2i · 2k = 2i0 · 2k + 2e+1i1.


Chapter 12<br />

The Kle<strong>in</strong> Correspondence<br />

12.1 Plücker Coord<strong>in</strong>ates<br />

The so-called Kle<strong>in</strong> Correspondence is a bijection between the set of l<strong>in</strong>es<br />

of P G(3, q) <strong>and</strong> the po<strong>in</strong>ts of a nons<strong>in</strong>gular hyperbolic quadric <strong>in</strong> P G(5, q).<br />

This is an extremely useful correspondence that will be applied <strong>in</strong> many of<br />

the results to come later. To establish the correspondence we need first to<br />

discuss “Plücker coord<strong>in</strong>ates” of l<strong>in</strong>es <strong>in</strong> P G(3, q).<br />

Let x = (x0, x1, x2, x3) <strong>and</strong> y = (y0, y1, y2, y3) be dist<strong>in</strong>ct po<strong>in</strong>ts determ<strong>in</strong><strong>in</strong>g<br />

a l<strong>in</strong>e ℓ of P G(3, q).<br />

The coord<strong>in</strong>ates of these two po<strong>in</strong>ts determ<strong>in</strong>e<br />

<br />

six field elements pij = <br />

xi<br />

<br />

xj <br />

<br />

yi yj , 0 ≤ i < j ≤ 3, which are the Plücker<br />

coord<strong>in</strong>ates of the l<strong>in</strong>e ℓ. Only the ratios of the pij are uniquely determ<strong>in</strong>ed,<br />

<strong>and</strong> any other two po<strong>in</strong>ts of ℓ determ<strong>in</strong>e the same set of l<strong>in</strong>e coord<strong>in</strong>ates,<br />

s<strong>in</strong>ce the ratios of the pij’s are unchanged if (xi) is replaced with (xi + λyi).<br />

Exp<strong>and</strong> the follow<strong>in</strong>g identity <strong>in</strong> terms of two-rowed m<strong>in</strong>ors:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x0 x1 x2 x3<br />

y0 y1 y2 y3<br />

x0 x1 x2 x3<br />

y0 y1 y2 y3<br />

<br />

<br />

<br />

<br />

<br />

≡ 0.<br />

<br />

<br />

When the characteristic of the field is not 2, we see that the Plücker<br />

coord<strong>in</strong>ates satisfy<br />

p01p23 + p02p31 + p03p12 = 0. (12.1)<br />

537


538 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

When the characteristic is 2, a patient exp<strong>and</strong><strong>in</strong>g of the expression <strong>in</strong><br />

Eq. 12.1 also easily yields the same conclusion. (Of course this argument<br />

works for any characteristic.) Hence the po<strong>in</strong>t<br />

G(ℓ) = L = (p01, p23, p02, p31, p03, p12) ∈ P G(5, q), (12.2)<br />

which is uniquely determ<strong>in</strong>ed by ℓ, lies on the Kle<strong>in</strong> quadric<br />

H5 = {¯x = (x0, . . . , x5) : x0x1 + x2x3 + x4x5 = 0}. (12.3)<br />

It is clear that H5 is nons<strong>in</strong>gular <strong>and</strong> conta<strong>in</strong>s the plane x0 = x2 = x4 = 0,<br />

so it must be hyperbolic.<br />

The po<strong>in</strong>t z = (zi) is on ℓ iff the matrix ⎝<br />

⎛<br />

z0 z1 z2 z3<br />

x0 x1 x2 x3<br />

y0 y1 y2 y3<br />

⎞<br />

⎠ has rank 2,<br />

which holds iff each 3 × 3 subdeterm<strong>in</strong>ant is zero. Exp<strong>and</strong><strong>in</strong>g by m<strong>in</strong>ors of<br />

the first row yields<br />

z is on ℓ iff zipjk − zjpik + zkpij = 0 whenever 0 ≤ i < j < k ≤ 3. (12.4)<br />

This is equivalent to:<br />

⎛<br />

⎜<br />

⎝<br />

0 p23 p31 p12<br />

−p23 0 p03 −p02<br />

−p31 −p03 0 p01<br />

−p12 p02 −p01 0<br />

which is equivalent to hav<strong>in</strong>g<br />

(zi) <strong>in</strong> the row space of<br />

⎛<br />

⎜<br />

⎝<br />

⎞ ⎛<br />

⎟ ⎜<br />

⎟ ⎜<br />

⎠ ⎝<br />

z0<br />

z1<br />

z2<br />

z3<br />

⎞<br />

⎟<br />

⎠ =<br />

⎛<br />

⎜<br />

⎝<br />

0 p01 p02 p03<br />

0<br />

0<br />

0<br />

0<br />

−p01 0 p12 −p31<br />

−p02 −p12 0 p23<br />

−p03 p31 −p23 0<br />

⎞<br />

⎟<br />

⎠ , (12.5)<br />

⎞<br />

⎟<br />

⎠ . (12.6)<br />

The preced<strong>in</strong>g argument makes it clear that the matrix <strong>in</strong> Eq. 12.5 has<br />

rank 2. It is easy to check that the rows of the matrix <strong>in</strong> Eq. 12.6 (when<br />

transposed) belong to the null space of the matrix <strong>in</strong> Eq. 12.5. But if any<br />

one of the pij’s is nonzero, the matrix of Eq. 12.6 has rank at least 2. And<br />

s<strong>in</strong>ce ¯x <strong>and</strong> ¯y are dist<strong>in</strong>ct po<strong>in</strong>ts, clearly some pij is not zero. So the matrix<br />

<strong>in</strong> Eq. 12.6 must have rank 2.


12.1. PLÜCKER COORDINATES 539<br />

Conversely, let (p01, p23, p02, p31, p03, p12) be a po<strong>in</strong>t of H5, i.e., some pij is<br />

nonzero <strong>and</strong> Eq. 12.1 is satisfied. It is now possible to show that the matrices<br />

<strong>in</strong> Eqs. 12.5 <strong>and</strong> 12.6 each have rank 2, <strong>and</strong> rows of one are <strong>in</strong> the (right)<br />

null space of the other. Each two l<strong>in</strong>es <strong>in</strong> either matrix have a unique pij<br />

(plus or m<strong>in</strong>us) <strong>in</strong> common, <strong>and</strong> they are <strong>in</strong>dependent iff that pij is nonzero.<br />

Morever, the l<strong>in</strong>e determ<strong>in</strong>ed by two dist<strong>in</strong>ct po<strong>in</strong>ts of P G(3, q) given by<br />

<strong>in</strong>dependent vectors <strong>in</strong> the row space of Eq. 12.6 has exactly the Plücker<br />

coord<strong>in</strong>ates (p01, p23, p02, p31, p03, p12). This proves that each po<strong>in</strong>t of H5 is<br />

the image of some l<strong>in</strong>e <strong>in</strong> P G(3, q) <strong>and</strong> provides us with the <strong>in</strong>verse of the<br />

map G. Specifically, let ā = (a0, a1, a2, a3, a4, a5) be an arbitrary po<strong>in</strong>t of H5.<br />

Def<strong>in</strong>e H(ā) to be the l<strong>in</strong>e of P G(3, q) given by<br />

H(ā) = the row space of<br />

⎛<br />

⎜<br />

⎝<br />

0 a0 a2 a4<br />

−a0 0 a5 −a3<br />

−a2 −a5 0 a1<br />

−a4 a3 −a1 0<br />

⎞<br />

⎟<br />

⎠ .<br />

Then H is the <strong>in</strong>verse of G. This shows that the correspondence between<br />

l<strong>in</strong>es of P G(3, q) <strong>and</strong> the po<strong>in</strong>ts of H5 is a bijection. We state this as a<br />

theorem.<br />

Theorem 12.1.1. The correspondence<br />

ℓ = 〈(xi), (yi)〉 ↔ L = (p01, p23, p02, p31, p03, p12)<br />

is a bijection from the set of l<strong>in</strong>es of P G(3, q) to the set of po<strong>in</strong>ts of the Kle<strong>in</strong><br />

quadric H5.<br />

We shall refer to the bijection established <strong>in</strong> Theorem 12.1.1 as the Kle<strong>in</strong><br />

correspondence.<br />

The Kle<strong>in</strong> correspondence makes it possible to <strong>in</strong>terpret any homography<br />

of P G(3, q) as a homography of P G(5, q) leav<strong>in</strong>g H5 <strong>in</strong>variant. Suppose the<br />

matrix A = (aij) gives a homography θ of P G(3, q). Let x = (x0, x1, x2, x3)<br />

<strong>and</strong> y = (y0, y1, y2, y3) be dist<strong>in</strong>ct po<strong>in</strong>ts <strong>and</strong> put ℓ = 〈x, y〉. Then if θ : x ↦→


540 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

x ′ = xA, <strong>and</strong> θ : y ↦→ y ′ = yA , put ℓ ′ = 〈x ′ , y ′ 〉. Then<br />

i.e.,<br />

G(ℓ) = (p01, p23, p02, p31, p03, p12)<br />

G(ℓ ′ ) = (p ′ 01 , p′ 23 , p′ 02 , p′ 31 , p′ 03 , p′ 12 )<br />

so p ′ ij =<br />

<br />

<br />

<br />

x′ i x ′ j<br />

y ′ i y ′ <br />

<br />

<br />

<br />

j<br />

=<br />

<br />

3<br />

r=0<br />

<br />

xrari 3 r=0 yrari<br />

=<br />

=<br />

3<br />

<br />

<br />

<br />

<br />

r=0<br />

3<br />

xrari 3 s=0 ysasi<br />

3<br />

<br />

<br />

<br />

<br />

r=0 s=0<br />

xrari xrarj<br />

ysasi ysasj<br />

p ′ ij<br />

= <br />

xrarj 3 s=0 ysasj<br />

0≤r


12.2. TIME OUT FOR H5 541<br />

Conversely, it is clear that each l<strong>in</strong>e of H5 corresponds to the l<strong>in</strong>es of<br />

P G(3, q) ly<strong>in</strong>g <strong>in</strong> a flat pencil. Let ℓ0, . . . , ℓq be the l<strong>in</strong>es of a flat pencil<br />

through the po<strong>in</strong>t p. By Theorem 12.1.3 the set of 1+q +q 2 l<strong>in</strong>es of P G(3, q)<br />

through p correspond to the po<strong>in</strong>ts of a totally s<strong>in</strong>gular plane of H5. Call<br />

this plane of H5 a Lat<strong>in</strong> plane. Similarly, the set of 1 + q + q 2 l<strong>in</strong>es ly<strong>in</strong>g<br />

<strong>in</strong> the plane conta<strong>in</strong><strong>in</strong>g ℓ0, . . . , ℓq also correspond to the po<strong>in</strong>ts of a totally<br />

s<strong>in</strong>gular plane of H5. Call this plane a Greek plane. Us<strong>in</strong>g G <strong>and</strong> its <strong>in</strong>verse<br />

H it is easy to see that two totally s<strong>in</strong>gular planes of the same type <strong>in</strong>tersect<br />

<strong>in</strong> a unique po<strong>in</strong>t, <strong>and</strong> two totally s<strong>in</strong>gular planes of different types <strong>in</strong>tersect<br />

<strong>in</strong> a l<strong>in</strong>e or <strong>in</strong> the empty set. Moreover, each totally s<strong>in</strong>gular l<strong>in</strong>e of H5<br />

lies <strong>in</strong> a unique totally s<strong>in</strong>gular plane of each type. Now suppose that π<br />

is a totally s<strong>in</strong>gular plane of H5 whose po<strong>in</strong>ts correspond to the 1 + q + q 2<br />

l<strong>in</strong>es M1, . . . , M 1+q+q 2 of P G(3, q). If these l<strong>in</strong>es are conta<strong>in</strong>ed <strong>in</strong> a plane,<br />

clearly they are all the l<strong>in</strong>es of that plane, <strong>and</strong> the orig<strong>in</strong>al totally s<strong>in</strong>gular<br />

plane of H5 must be a Greek plane. Otherwise, some three of the l<strong>in</strong>es, say<br />

M1, M2, M3 are not coplanar but each two meet. The only possibility is<br />

that they all three meet at a po<strong>in</strong>t p. Then the only way the rema<strong>in</strong><strong>in</strong>g l<strong>in</strong>es<br />

can meet all three of these l<strong>in</strong>es is for them all to be <strong>in</strong>cident with p, <strong>in</strong> which<br />

case the orig<strong>in</strong>al totally s<strong>in</strong>gular plane of H5 must be a Lat<strong>in</strong> plane. This<br />

completes a proof of the follow<strong>in</strong>g theorem.<br />

Theorem 12.1.4. The totally s<strong>in</strong>gular planes of H5 are partitioned <strong>in</strong>to two<br />

classes, with two such planes be<strong>in</strong>g <strong>in</strong> the same class if <strong>and</strong> only if they are<br />

the same or <strong>in</strong>tersect <strong>in</strong> a po<strong>in</strong>t, i.e., if <strong>and</strong> only if their <strong>in</strong>tersection has even<br />

projective dimension. Moreover, each totally s<strong>in</strong>gular l<strong>in</strong>e is conta<strong>in</strong>ed <strong>in</strong> a<br />

unique totally s<strong>in</strong>gular plane of each type. A Greek plane of H5 corresponds<br />

to the l<strong>in</strong>es of a s<strong>in</strong>gle plane of P G(3, q); a Lat<strong>in</strong> plane of H5 corresponds to<br />

the set of l<strong>in</strong>es of P G(3, q) through a fixed po<strong>in</strong>t of P G(3, q).<br />

12.2 Time out for H5<br />

S<strong>in</strong>ce the l<strong>in</strong>es of P G(3, q) are <strong>in</strong> one-to-one correspondence with the po<strong>in</strong>ts<br />

of the Kle<strong>in</strong> quadric H5, we pause to discuss this nons<strong>in</strong>gular quadric <strong>in</strong><br />

P G(5, q) just a bit before proceed<strong>in</strong>g to <strong>in</strong>vestigate further the Kle<strong>in</strong> corre-


542 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

spondence. First, let<br />

⎛<br />

⎜<br />

D = ⎜<br />

⎝<br />

0 1 0 0 0 0<br />

0 0 0 0 0 0<br />

0 0 0 1 0 0<br />

0 0 0 0 0 0<br />

0 0 0 0 0 1<br />

0 0 0 0 0 0<br />

⎞<br />

⎟ , <strong>and</strong> E = D + D<br />

⎟<br />

⎠<br />

T .<br />

In what follows let V denote the 6-dimensional vector space underly<strong>in</strong>g<br />

P G(5, q), i.e., V = {(a0, a1, . . . , a5) : ai ∈ Fq}. Then for (a), (b) ∈ V put<br />

1. ϖ(a) = (a)D(a) T ;<br />

2. ϖ((a), (b)) = (a) · E · (b) T .<br />

So H5 = {(a) ∈ P G(5, q) : ϖ(a) = 0}, <strong>and</strong> two po<strong>in</strong>ts (a) <strong>and</strong> (b) of<br />

H5 are coll<strong>in</strong>ear on a l<strong>in</strong>e ly<strong>in</strong>g <strong>in</strong> H5 if <strong>and</strong> only if ϖ((a), (b)) = 0. Let<br />

(a) = (a0, . . . , a5) <strong>and</strong> (b) = (b0, . . . , b5) be po<strong>in</strong>ts of H5. Then<br />

ϖ(a) = a0a1 + a2a3 + a4a5, (12.8)<br />

ϖ((a), (b)) = a0b1 + a1b0 + a2b3 + a3b2 + a4b5 + a5b4. (12.9)<br />

For a ∈ V , a ⊥ = {b ∈ V : ϖ(a, b) = 0. Of course these “perps” are<br />

immediately carried over to perps of po<strong>in</strong>ts <strong>and</strong> subspaces of P G(5, q). If<br />

W1 <strong>and</strong> W2 are subspaces of V for which V = W1 ⊕ W2 <strong>and</strong> W ⊥ 1 = W2 (so<br />

W ⊥ 2 = W1), write V = W1 ⊥ W2.<br />

Let ϖi = ϖ|Wi , i = 1, 2. We have shown <strong>in</strong> Chapter 5 that if W1 <strong>and</strong><br />

W2 have even dimension <strong>and</strong> ϖ1 <strong>and</strong> ϖ2 are both nons<strong>in</strong>gular, then both are<br />

hyperbolic or both are elliptic s<strong>in</strong>ce H5 is hyperbolic.<br />

Lemma 12.2.1. Here are some basic facts about H5:<br />

(i) The number of po<strong>in</strong>ts of H5 is the number of l<strong>in</strong>es of P G(3, q), which<br />

is (q 2 + 1)(q 2 + q + 1).<br />

(ii) Let x <strong>and</strong> y be dist<strong>in</strong>ct po<strong>in</strong>ts of H5 <strong>and</strong> let ℓ be the l<strong>in</strong>e ℓ = 〈x, y〉.<br />

Then the follow<strong>in</strong>g are equivalent:<br />

• ℓ has an additional po<strong>in</strong>t z on H5.<br />

• Each po<strong>in</strong>t of ℓ is on H5.<br />

• ϖ(x, y) = 0.


12.2. TIME OUT FOR H5 543<br />

• ℓ ⊂ ℓ ⊥ <strong>and</strong> ℓ ⊥ ∩ H5 is a pair of planes meet<strong>in</strong>g <strong>in</strong> the l<strong>in</strong>e ℓ.<br />

(iii) With the same hypothesis as <strong>in</strong> part (ii), the follow<strong>in</strong>g are equivalent:<br />

• x <strong>and</strong> y are the only po<strong>in</strong>ts of H5 on ℓ.<br />

• ϖ(x, y) = 0.<br />

• V = ℓ ⊥ ℓ ⊥ ; ℓ ⊥ ∩ H5 is an H3, i.e., a hyperbolic quadric <strong>in</strong> P G(3, q).<br />

Lemma 12.2.2. Let ℓ be a l<strong>in</strong>e of P G(5, q) disjo<strong>in</strong>t from H5, i.e., ℓ ∩ H5 is<br />

anisotropic, that is, elliptic. Hence ℓ is disjo<strong>in</strong>t from ℓ ⊥ , so V = ℓ ⊥ ℓ ⊥ <strong>and</strong><br />

ℓ ⊥ ∩ H5 must be an elliptic quadric E3 <strong>in</strong> P G(3, q).<br />

Lemma 12.2.3. Let x be a po<strong>in</strong>t of H5 <strong>and</strong> y a po<strong>in</strong>t of P G(5, q)\H5. Then<br />

the l<strong>in</strong>e ℓ = 〈x, y〉 has a unique po<strong>in</strong>t z = y + ax on H5 <strong>in</strong> addition to x if<br />

y ∈ x ⊥ , <strong>and</strong> has no po<strong>in</strong>t of H5 other than x if y ∈ x ⊥ . In this latter case<br />

ℓ ⊥ is a solid P G(3, q) meet<strong>in</strong>g H5 <strong>in</strong> a cone over a conic.<br />

Lemma 12.2.4. Let (x) be a po<strong>in</strong>t of P G(5, q) not on H5, i.e., ϖ(x) = 0.<br />

Then [x] ∩ H5 is a parabolic quadric (nons<strong>in</strong>gular quadric) <strong>in</strong> P G(4, q), so<br />

ϖ is nons<strong>in</strong>gular on x ⊥ = [xE], <strong>and</strong> [xE] ∩ H5 is a parabolic quadric <strong>in</strong><br />

P G(4, q), i.e., it is a classical generalized quadrangle often denoted by Q(4, q).<br />

Note that (x) is not on H5 if <strong>and</strong> only if (xE) is not on H5. Hence we<br />

may also say: The po<strong>in</strong>t (x) ∈ P G(5, q) \ H5 if <strong>and</strong> only if the hyperplane<br />

<strong>in</strong>tersection [x] ∩ H5 is a parabolic quadric P4, i.e., a GQ Q(4, q).<br />

We illustrate these results with a collection of examples. For this, def<strong>in</strong>e<br />

the follow<strong>in</strong>g po<strong>in</strong>ts:<br />

X1 = (0, 1, 0, 0, 0, 0) ∈ H5; X ⊥ 1 = [1, 0, 0, 0, 0, 0]<br />

X ⊥ 1 ∩ H5 = {(x0, 0, x2, x3, x4, x5) : x2x3 + x4x5 = 0}<br />

= cone over H3<br />

with vertex X1.<br />

X2 = (0, 0, 0, 0, 1, 0) ∈ H5 ∩ X⊥ 1 ; X⊥ 2<br />

ℓ12 = 〈X1, X2〉 ⊂ H5;<br />

ℓ ⊥ 12 ∩ H5 = {(0, x1, x2, x3, x4, 0) : x2x3 = 0}<br />

= pair of planes one Lat<strong>in</strong>, one Greek<br />

= [0, 0, 0, 0, 0, 1]<br />

x2 = 0 : Kle<strong>in</strong> corresponds to all l<strong>in</strong>es through (0, 0, 0, 1)<br />

x3 = 0 : Kle<strong>in</strong> corresponds to all l<strong>in</strong>es <strong>in</strong> plane [0, 1, 0, 0]


544 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

X3 = (1, 0, 0, 0, 0, 0) ∈ H5 \ X⊥ 1 ; X⊥ 3 = [0, 1, 0, 0, 0, 0]<br />

ℓ13 = 〈X1, X3〉 ℓ13 ∩ H5 = {X1, X3}<br />

ℓ ⊥ 13 ∩ H5 = {(0, 0, x2, x3, x4, x5) : x2x3 + x4x5 = 0} ∼ = H3.<br />

X4 = (0, 0, 0, 0, −1, 1) ∈ X ⊥ 1 \ H5; X ⊥ 4 = [0, 0, 0, 0, 1, −1]<br />

X ⊥ 4 ∩ H5 = {(x0, x1, x2, x3, x4, x4) : x0x1 + x2x3 + x 2 4 = 0}<br />

ℓ14 = 〈X1, X4〉 ℓ14 ∩ H5 = {X1}<br />

ℓ ⊥ 14 ∩ H5 = {(0, x1, x2, x3, x4, x4) : x2x3 + x 2 4 = 0}<br />

= cone with vertex X1 over a conic.<br />

X5 = (1, 0, 0, 0, −1, 1) ∈ P G(5, q) \ (X⊥ 1 ∪ H5); X ⊥ 5<br />

X ⊥ 5 ∩ H5 = {(x0, x1, x2, x3, x4, x1 + x4) :<br />

x0x1 + x2x3 + x4x1 + x 2 4 = 0} ∼ = Q(4, q)<br />

ℓ15 = 〈X1, X5〉 ℓ15 ∩ H5 = {X1, X1 + X5}<br />

= [0, 1, 0, 0, 0, 1, −1]<br />

ℓ ⊥ 15 ∩ H5 = {(0, x1, x2, x3, x4, x1 + x4) : x2x3 + x4(x1 + x4) = 0}<br />

∼ = H3.<br />

For ease of reference we list some of the above material <strong>in</strong> the follow<strong>in</strong>g<br />

corollary.<br />

Corollary 12.2.5. The follow<strong>in</strong>g <strong>in</strong>formation is conta<strong>in</strong>ed <strong>in</strong> the preced<strong>in</strong>g<br />

paragraphs.<br />

(i) ℓ ⊂ H5 =⇒ ℓ ⊥ ∩ H5 is a pair of planes through ℓ.<br />

(ii) |ℓ ∩ H5| = 2 =⇒ ℓ ⊥ ∩ H5 is a hyperbolic quadric H3.<br />

(iii) |ℓ ∩ H5| = 1 =⇒ ℓ ⊥ ∩ H5 is a cone with vertex ℓ ∩ H5 over a conic.<br />

(iv) |ℓ ∩ H5| = 0 =⇒ ℓ ⊥ ∩ H5 is an elliptic quadric E3.


12.3. RETURN TO THE KLEIN CORRESPONDENCE 545<br />

ℓ(A,0)<br />

✉ ✉ ✉<br />

p = (1, 0, x, y) p + u(0, 0, 0, 1)<br />

✉ ✉<br />

✉<br />

ap + bq<br />

q = (0, 1, 0, z)<br />

ℓ(A,u)<br />

✉<br />

ap + bq + u(0, 0, −b, a)<br />

q + u(0, 0, −1, 0)<br />

Figure 12.1: RA is a regulus<br />

ℓ∞<br />

✉<br />

✉<br />

(0, 0, 0, 1)<br />

(0, 0, −b, a)<br />

(0, 0, −1, 0)<br />

12.3 Return to the Kle<strong>in</strong> Correspondence<br />

Def<strong>in</strong>e an equivalence relation on the set of 2 × 2 matrices over Fq <br />

as follows.<br />

0 1<br />

With P =<br />

, let A, B be any 2 × 2 matrices over F . Then A ≡ B<br />

−1 0<br />

iff B = A + uP for some u ∈ F . A l<strong>in</strong>e of P G(3, q) will be given as the row<br />

space of a 2 × 4 matrix with rank 2. For example, if O (resp., I) is the 2 × 2<br />

zero (resp., identity) matrix over F , put<br />

ℓ∞ = 〈(O, I)〉 . (12.10)<br />

Then if u ∈ F <strong>and</strong> A is any 2 × 2 matrix over F , put<br />

ℓ(A,u) = 〈(I, A + uP )〉 . (12.11)<br />

Lemma 12.3.1. RA = {ℓ∞} ∪ {ℓ(A,u) : u ∈ F } is a regulus.<br />

<br />

x y<br />

Proof. If A ≡ B, then RA = RB, so we may assume that A = . It<br />

0 z<br />

is clear that RA consists of q + 1 pairwise skew l<strong>in</strong>es. Figure 1. shows the<br />

transversals of RA (the horizontal l<strong>in</strong>es for (0, 0) = (a, b) ∈ F 2 ).<br />

For a l<strong>in</strong>e ℓ of P G(3, q) recall that G(ℓ) denotes the po<strong>in</strong>t of H5 that<br />

corresponds to ℓ.


546 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

Lemma 12.3.2. If R is a regulus, then {G(ℓ) : ℓ ∈ R} is a conic <strong>in</strong> H5.<br />

Proof. S<strong>in</strong>ce any two reguli of P G(3, q) are projectively equivalent, without<br />

loss of generality we may assume that R is given as <strong>in</strong> the preced<strong>in</strong>g lemma. <br />

1 0 x y + u<br />

Then G(ℓ∞) = (0, 1, 0, 0, 0, 0) <strong>and</strong> G(ℓ(A,u)) = G<br />

0 1 −u z<br />

= (1, xz + yu + u2 , −u, y + u, z, −x). It is now easy to check that the po<strong>in</strong>ts<br />

of H5 that are the images of the l<strong>in</strong>es <strong>in</strong> R lie <strong>in</strong> the plane π1 spanned by<br />

the po<strong>in</strong>ts (0, 1, 0, 0, 0, 0), (0, 0, −1, +1, 0, 0) <strong>and</strong> (1, 0, 0, y, z, −x) <strong>and</strong> form a<br />

conic there. To see this, keep <strong>in</strong> m<strong>in</strong>d that x, y, z are fixed. Def<strong>in</strong>e the<br />

po<strong>in</strong>ts<br />

P = (1, 0, 0, y, z, −x); Q = (0, 0, −1, 1, 0, 0); R = (0, 1, 0, 0, 0, 0).<br />

Then 1 · P + u · Q + (xz + yu + u 2 ) · R is the general po<strong>in</strong>t of H5 <strong>in</strong> the<br />

image of R, along with the po<strong>in</strong>t R. If we take P , Q <strong>and</strong> R as fundamental<br />

po<strong>in</strong>ts generat<strong>in</strong>g the plane π1, we just need to see that the po<strong>in</strong>ts <strong>in</strong> the<br />

image of R satisfy a nons<strong>in</strong>gular quadratic equation. Let (w0, w1, w2) ↔<br />

w0 · P + w1 · Q + ω2 · R be the (homogeneous) coord<strong>in</strong>ates of a general po<strong>in</strong>t<br />

of π1 <strong>and</strong> consider the quadratic equation<br />

xzw 2 0 + yw0w1 − w0w2 + w 2 1 = 0.<br />

It is easy to check that this is the nondegenerate conic C1 consist<strong>in</strong>g of<br />

the po<strong>in</strong>ts <strong>in</strong> the image of R.<br />

We can say a bit more here. First determ<strong>in</strong>e the po<strong>in</strong>ts of π1 ∩ H5:<br />

aP + bQ + cR = (a, c, −b, ay + b, az, −ax). This po<strong>in</strong>t is on H5 if <strong>and</strong> only if<br />

ac = aby + b 2 + a 2 xz.<br />

There are two cases. If a = 0 <strong>and</strong> this po<strong>in</strong>t is on H5 it quickly follows that<br />

the po<strong>in</strong>t is R. If a = 0, then WOLG we may assume a = 1, <strong>in</strong> which case<br />

c = by + b 2 + xz <strong>and</strong> the po<strong>in</strong>t is one of those on the conic C1. So π1 ∩ H5 is a<br />

nondegenerate (parabolic) quadric. First suppose that q is odd. Then s<strong>in</strong>ce<br />

π1 ∩ H5 is a nondegenerate quadric, i.e., a conic C2, there is no po<strong>in</strong>t of π1<br />

<strong>in</strong> π ⊥ 1 . Let π2 = π ⊥ 1 . Then π2 ∩ H5 is a conic which Kle<strong>in</strong> corresponds to the<br />

l<strong>in</strong>es of the regulus R opp opposite to R. Second, suppose that q = 2 e <strong>and</strong><br />

aga<strong>in</strong> put π2 = π ⊥ 1 . Then the conic C1 has a nucleus N which is the unique<br />

po<strong>in</strong>t of π1 ∩π ⊥ 1 . In this case the regulus R opp opposite R Kle<strong>in</strong> corresponds<br />

to the conic C2 = π2 ∩ H5, <strong>and</strong> N is also the nucleus of C2. We state this as<br />

a theorem.


12.3. RETURN TO THE KLEIN CORRESPONDENCE 547<br />

Theorem 12.3.3. Let R be a regulus <strong>in</strong> P G(3, q) <strong>and</strong> R opp its opposite<br />

regulus. Let<br />

C1 = {G(ℓ) : ℓ ∈ R} = π1 ∩ H5; C2 = {G(ℓ) : ℓ ∈ R opp }.<br />

Put π2 = π ⊥ 1 . Then π2 ∩ H5 = C2.<br />

(i) If q is odd, then π1 ∩ π2 = ∅.<br />

(ii) If q = 2 e , <strong>and</strong> if N is the nucleus of C1, then π1 ∩ π2 = {N} <strong>and</strong> N<br />

is also the nucleus of C2.<br />

Let L1, L2, L3 be three pairwise-skew l<strong>in</strong>es of P G(3, q), so G(L1), G(L2)<br />

<strong>and</strong> G(L3) are three po<strong>in</strong>ts of H5 such that no two of them are coll<strong>in</strong>ear <strong>in</strong> H5.<br />

This means also that they are not on a l<strong>in</strong>e of P G(5, q). Let π be the plane<br />

they span. Then π ∩ H5 must be a conic C whose po<strong>in</strong>ts Kle<strong>in</strong>-correspond to<br />

a set of q + 1 pairwise disjo<strong>in</strong>t l<strong>in</strong>es down <strong>in</strong> P G(3, q). As above, there is a<br />

conic C ⊥ conta<strong>in</strong>ed <strong>in</strong> H5 such that each po<strong>in</strong>t of C ⊥ is coll<strong>in</strong>ear <strong>in</strong> H5 with<br />

each po<strong>in</strong>t of C. Hence the po<strong>in</strong>ts of C ⊥ Kle<strong>in</strong>-correspond to the opposite<br />

regulus of the regulus H(C). Hence:<br />

Corollary 12.3.4. Then Kle<strong>in</strong> correspondence G gives a bijection between<br />

the reguli of P G(3, q) <strong>and</strong> the conics ly<strong>in</strong>g <strong>in</strong> H5.<br />

Lemma 12.3.5. Let R1 <strong>and</strong> R2 be two reguli of P G(3, q) which share precisely<br />

one l<strong>in</strong>e ℓ <strong>and</strong> for which all l<strong>in</strong>es of R1 \ {ℓ} are disjo<strong>in</strong>t from all l<strong>in</strong>es<br />

of R2 \ {ℓ}. Us<strong>in</strong>g the Kle<strong>in</strong> correspondence, the l<strong>in</strong>es of Ri are mapped onto<br />

the po<strong>in</strong>ts of a conic Ci, i = 1, 2. Denote by πi the plane conta<strong>in</strong><strong>in</strong>g Ci so<br />

that πi ∩ H5 = Ci, i = 1, 2. If ℓ Kle<strong>in</strong> corresponds to the po<strong>in</strong>t V , C1 <strong>and</strong> C2<br />

have exactly one po<strong>in</strong>t V <strong>in</strong> common <strong>and</strong> no two po<strong>in</strong>ts of C1 ∪ C2 are on a<br />

common l<strong>in</strong>e conta<strong>in</strong>ed <strong>in</strong> H5. Then π1 ∩ π2 is a l<strong>in</strong>e through V <strong>and</strong> tangent<br />

to both C1 <strong>and</strong> C2. Also, 〈π1, π2〉 is a solid which meets H5 <strong>in</strong> a quadric which<br />

must be elliptic, s<strong>in</strong>ce no two po<strong>in</strong>ts of C1 ∪ C2 are on a common l<strong>in</strong>e of H5.<br />

It follows (from part (iv) of Theorem 5.4.5) that 〈π1, π2〉 ⊥ = π⊥ 1 ∩ π⊥ 2 is an<br />

elliptic l<strong>in</strong>e, which says that π⊥ 1 ∩ π⊥ 2 is disjo<strong>in</strong>t from H5.<br />

Proof. Suppose that π1 <strong>and</strong> π2 have only the po<strong>in</strong>t V <strong>in</strong> common, i.e., π1 <strong>and</strong><br />

π2 generate a projective 4-space P G(4, q). Then for each po<strong>in</strong>t pi of C2 \{V },<br />

1 ≤ i ≤ q, π1 <strong>and</strong> pi generate a projective 3-space Pi <strong>in</strong>tersect<strong>in</strong>g H5 <strong>in</strong> an<br />

elliptic quadric. Us<strong>in</strong>g the polarity ⊥ w.r.t. H5, we obta<strong>in</strong> q dist<strong>in</strong>ct l<strong>in</strong>es<br />

P ⊥<br />

i through the po<strong>in</strong>t P G(4, q) ⊥ <strong>and</strong> conta<strong>in</strong>ed <strong>in</strong> π⊥ 1 . However, these q l<strong>in</strong>es<br />

P ⊥<br />

i must be exterior to the conic π⊥ 1 ∩ H5, clearly an impossibility. Hence it


548 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

must be that π1 ∩ π2 is a l<strong>in</strong>e, <strong>and</strong> clearly it must be tangent to both C1 <strong>and</strong><br />

C2 at V .<br />

Corollary 12.3.6. Let S be a l<strong>in</strong>e spread of P G(3, q) for which S is the<br />

union of q reguli Ri, 1 ≤ i ≤ q, which pairwise <strong>in</strong>tersect <strong>in</strong> exactly the same<br />

l<strong>in</strong>e ℓ. Then S corresponds to a flock of a quadratic cone.<br />

Proof. Let S be a spread of P G(3, q) of the <strong>in</strong>dicated type. Under the Kle<strong>in</strong><br />

correspondence, the l<strong>in</strong>es of Ri correspond to the po<strong>in</strong>ts of a conic Ci <strong>and</strong> ℓ<br />

corresponds to the po<strong>in</strong>t V . Denote by πi the plane conta<strong>in</strong><strong>in</strong>g Ci. By the<br />

preced<strong>in</strong>g Lemma, each two planes πi <strong>and</strong> πj, i = j, <strong>in</strong>tersect <strong>in</strong> the unique<br />

l<strong>in</strong>e ℓij that is tangent to Ci (resp., Cj) <strong>in</strong> πi (resp., πj). This uniqueness<br />

shows that all the ℓij co<strong>in</strong>cide, i.e., the planes πi all conta<strong>in</strong> a common l<strong>in</strong>e<br />

m through V which is tangent to H5 at V . This forces their perps π⊥ i to all<br />

lie <strong>in</strong> a common 3-space Σ = m⊥ , which meets H5 <strong>in</strong> a cone K with vertex<br />

V . No two po<strong>in</strong>ts <strong>in</strong> C1 ∪ · · · ∪ Cq lie on a l<strong>in</strong>e conta<strong>in</strong>ed <strong>in</strong> H5, so as we saw<br />

<strong>in</strong> the preced<strong>in</strong>g proof, if C∗ i = π⊥ i ∩ H5, then F = {C∗ 1 , . . . , C∗ q } is a flock of<br />

K.<br />

12.4 Dual Coord<strong>in</strong>ates for L<strong>in</strong>es<br />

When we write (a) = (a0, a1, . . . , an), we usually mean that (a) is a po<strong>in</strong>t of<br />

P G(n, q). When we write [b] = [b0, b1, . . . , bn], we mean that [b] is a hyperplane<br />

of P G(n, q), <strong>and</strong> (a) is <strong>in</strong>cident with [b] if <strong>and</strong> only if n i=0 aibi = 0.<br />

Frequently, <strong>in</strong> what follows the same (n+1)-tuple will be used to coord<strong>in</strong>atize<br />

both a po<strong>in</strong>t <strong>and</strong> a hyperplane <strong>in</strong> the same paragraph or even <strong>in</strong> the same<br />

sentence.<br />

Note: We now change notation. In place of pij write ℓij. (This should<br />

make it easier to compare our results with those of Hirschfeld[Hi85]. )<br />

When we first associated a l<strong>in</strong>e of P G(3, q) with a po<strong>in</strong>t of P G(5, q), we<br />

used the fact that a l<strong>in</strong>e is determ<strong>in</strong>ed by any two of its po<strong>in</strong>ts. However, a<br />

l<strong>in</strong>e of P G(3, q) is also determ<strong>in</strong>ed as the <strong>in</strong>tersection of any two of the q + 1<br />

planes of P G(3, q) conta<strong>in</strong><strong>in</strong>g that l<strong>in</strong>e.<br />

Consider the general case. If [u] <strong>and</strong> [v] are two dist<strong>in</strong>ct planes through<br />

ℓ, where [u] = [u0, u1, u2, u3] <strong>and</strong> [v] = [v0, v1, v2, v3], then a dual coord<strong>in</strong>ate<br />

vector of ℓ is<br />

ˆL = ( ˆ ℓ01, ˆ ℓ23, ˆ ℓ02, ˆ ℓ31, ˆ ℓ03, ˆ ℓ12),


12.4. DUAL COORDINATES FOR LINES 549<br />

where ˆ ℓij = uivj − ujvi.<br />

To a l<strong>in</strong>e ℓ of P G(3, q), where G(ℓ) = (ℓ01, ℓ23, ℓ02, ℓ31, ℓ03, ℓ12) are associated<br />

the matrices Λ <strong>and</strong> ˆ Λ, where<br />

⎛<br />

⎞<br />

<strong>and</strong><br />

Λ =<br />

⎜<br />

⎝<br />

0 ℓ23 ℓ31 ℓ12<br />

−ℓ23 0 ℓ03 −ℓ02<br />

−ℓ31 −ℓ03 0 ℓ01<br />

−ℓ12 ℓ02 −ℓ01 0<br />

⎟<br />

⎠<br />

⎛<br />

0 ℓ23<br />

ˆ ˆℓ31<br />

ˆℓ12<br />

⎜<br />

ˆΛ<br />

⎜ −<br />

= ⎜<br />

⎝<br />

ˆ ℓ23 0 ℓ03<br />

ˆ −ˆ ℓ02<br />

−ˆ ℓ31 −ˆ ℓ03 0 ℓ01<br />

ˆ<br />

−ˆ ℓ12<br />

ˆℓ02 −ˆ ⎞<br />

⎟<br />

⎠<br />

ℓ01 0<br />

.<br />

Both Λ <strong>and</strong> ˆ Λ are skew-symmetric <strong>and</strong> s<strong>in</strong>gular, viz., each has rank 2<br />

with the row space of one be<strong>in</strong>g the null space of the other. Compare with<br />

Eqs. 12.5 <strong>and</strong> 12.6 to see that ℓ is the null space of Λ <strong>and</strong> hence the row<br />

space of ˆ Λ.<br />

If, for example, ℓ01 = 0, the last two rows of the matrix Λ are l<strong>in</strong>early<br />

<strong>in</strong>dependent. Then ℓ = [ℓ12, −ℓ02, ℓ01, 0] ∩ [−ℓ31, −ℓ03, 0, ℓ01].<br />

Then ˆ L can be computed as follows:<br />

<br />

<br />

<br />

ˆℓ01 = ℓ12 −ℓ02<br />

−ℓ31 −ℓ03<br />

<br />

<br />

<br />

= −ℓ12ℓ03 − ℓ02ℓ31 = ℓ01ℓ23 by Eq. 12.1.<br />

<br />

<br />

<br />

−ℓ31 0<br />

ˆℓ02 = ℓ12 ℓ01<br />

Cont<strong>in</strong>u<strong>in</strong>g <strong>in</strong> this fashion we f<strong>in</strong>d that<br />

This establishes the follow<strong>in</strong>g:<br />

<br />

<br />

<br />

= ℓ01ℓ31.<br />

ˆL = ( ˆ ℓ01, ˆ ℓ23, ˆ ℓ02, ˆ ℓ31, ˆ ℓ03, ˆ ℓ12)<br />

= ℓ01(ℓ23, ℓ01, ℓ31, ℓ02, ℓ12, ℓ03).<br />

Lemma 12.4.1. Up to a scalar factor, ˆ L is L with its components permuted<br />

as follows. Let R be the 2 × 2 permutation matrix with entry 1 <strong>in</strong> the two


550 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

off-diagonal positions <strong>and</strong> with zero diagonal. Let ˆ R be the 6 × 6 permutation<br />

matrix that is the direct sum of three copies of R. Then up to a scalar,<br />

<strong>and</strong><br />

So <strong>in</strong> fact we have the follow<strong>in</strong>g:<br />

Λ =<br />

ˆΛ =<br />

⎛<br />

⎜<br />

⎝<br />

⎛<br />

⎜<br />

⎝<br />

0 ℓ23 ℓ31 ℓ12<br />

−ℓ23 0 ℓ03 −ℓ02<br />

−ℓ31 −ℓ03 0 ℓ01<br />

−ℓ12 ℓ02 −ℓ01 0<br />

0 ℓ01 ℓ02 ℓ03<br />

−ℓ01 0 ℓ12 −ℓ31<br />

−ℓ02 −ℓ12 0 ℓ23<br />

−ℓ03 ℓ31 −ℓ23 0<br />

ˆL = L · ˆ R.<br />

Lemma 12.4.2. With the notation as above,<br />

0.<br />

(i) For any l<strong>in</strong>e ℓ, ϖ(ℓ) := ϖ(G(ℓ)) = 0;<br />

⎞<br />

⎟<br />

⎠ =<br />

⎛<br />

0 ℓ01<br />

ˆ ˆℓ02<br />

ˆℓ03<br />

⎜ −<br />

⎜<br />

⎝<br />

ˆ ℓ01 0 ℓ12<br />

ˆ −ˆ ℓ31<br />

−ˆ ℓ02 −ˆ ℓ12 0 ℓ23<br />

ˆ<br />

−ˆ ℓ03<br />

ˆℓ31 −ˆ ℓ23 0<br />

⎞<br />

⎟<br />

⎠ =<br />

⎛<br />

0 ℓ23<br />

ˆ ˆℓ31<br />

ˆℓ12<br />

⎜ −<br />

⎜<br />

⎝<br />

ˆ ℓ23 0 ℓ03<br />

ˆ −ˆ ℓ02<br />

−ˆ ℓ31 −ˆ ℓ03 0 ℓ01<br />

ˆ<br />

−ˆ ℓ12<br />

ˆℓ02 −ˆ ℓ01 0<br />

⎞<br />

⎟<br />

⎠ ,<br />

⎞<br />

⎟<br />

⎠ .<br />

(ii) Two l<strong>in</strong>es ℓ <strong>and</strong> ℓ ′ <strong>in</strong>tersect if <strong>and</strong> only if ϖ(ℓ, ℓ ′ ) := ϖ(G(ℓ), G(ℓ ′ )) =<br />

Proof. Eq. 12.1 takes care of part (i). Part (ii) is just Theorem 12.1.2.<br />

Lemma 12.4.3. ℓ = H(L) conta<strong>in</strong>s the po<strong>in</strong>t (x) if <strong>and</strong> only if (x)Λ = 0.<br />

Dually, ℓ lies <strong>in</strong> the plane [u] if <strong>and</strong> only if ˆ Λu = 0. Moreover, the columns<br />

(resp., rows) of Λ are orthogonal to the columns (resp., rows) of ˆ Λ. So the<br />

null space of one matrix is the row space of the other. This says ℓ conta<strong>in</strong>s<br />

the po<strong>in</strong>t (x) if <strong>and</strong> only if (x) is <strong>in</strong> the row space of ˆ Λ, <strong>and</strong> dually, ℓ is <strong>in</strong><br />

the plane [u] if <strong>and</strong> only if u is <strong>in</strong> the row space of Λ.<br />

Proof. This is just a rearrangement of the <strong>in</strong>formation conta<strong>in</strong>ed <strong>in</strong> Eqs. 12.5<br />

<strong>and</strong> 12.6.<br />

This association of a matrix ˆ Λ with a l<strong>in</strong>e of P G(3, q) by means of the<br />

po<strong>in</strong>t <strong>in</strong> H5 to which it Kle<strong>in</strong>-corresponds is useful <strong>in</strong> greater generality.


12.4. DUAL COORDINATES FOR LINES 551<br />

For any po<strong>in</strong>t (a) = (a0, . . . , a5) of P G(5, q), th<strong>in</strong>k of the components as<br />

be<strong>in</strong>g renamed so that (a) = (a01, a23, a02, a31, a03, a12). Then associate with<br />

the vector (a) the matrix<br />

⎛<br />

⎞<br />

Ca =<br />

⎜<br />

⎝<br />

0 a01 a02 a03<br />

−a01 0 a12 −a31<br />

−a02 −a12 0 a23<br />

−a03 a31 −a23 0<br />

⎟<br />

⎠ .<br />

where det(Ca) = (ϖ(a)) 2 . When ϖ(a) = 0, the row space of Ca is the l<strong>in</strong>e<br />

that Kle<strong>in</strong>-corresponds to the po<strong>in</strong>t (a).<br />

The “companion” matrix to Ca is<br />

⎛<br />

⎞<br />

Ĉa =<br />

⎜<br />

⎝<br />

0 a23 a31 a12<br />

−a23 0 a03 −a02<br />

−a31 −a03 0 a01<br />

−a12 a02 −a01 0<br />

A straightforward computation shows that<br />

Ca · Ĉa = −ϖ(a) · I.<br />

⎟<br />

⎠ .<br />

When (a) ∈ H5, each of Ca <strong>and</strong> Ĉa has rank 2, <strong>and</strong> the row space of one<br />

is the null space of the other. When (a) ∈ H5, then<br />

Ĉa = −ϖ(a) · C −1<br />

a .<br />

Fix a = (a01, a23, a02, a31, a03, a12) ∈ P G(5, q). A l<strong>in</strong>ear complex Aa is the<br />

set of l<strong>in</strong>es ℓ = H(L) satisfy<strong>in</strong>g<br />

Aa = {ℓ = H(L) : aL T = 0} = {ℓ ∈ P G(3, q) : aG(ℓ) T = 0.<br />

It follows that<br />

Aa = {ℓ ∈ P G(3, q) : G(ℓ) ∈ [a] ∩ H5}<br />

= {H(b) : b ∈ [a] ∩ H5},<br />

Let ϖ(a) = a01a23 + a02a31 + a03a12. Then A = Aa is special if ϖ(a) = 0,<br />

<strong>in</strong> which case it consists of all the l<strong>in</strong>es meet<strong>in</strong>g the l<strong>in</strong>e H(â), the axis of the<br />

complex. (Here â = aR.) If ϖ(a) = 0, then A is general.


552 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

Note that H(â) is def<strong>in</strong>ed if <strong>and</strong> only if ϖ(a) = 0. If this is the case, then<br />

a l<strong>in</strong>e ℓ = H(L) meets H(â) iff L · Râ T = La T = 0 iff aL T = 0 iff ℓ ∈ Aa.<br />

Another way to view this is that a special l<strong>in</strong>ear complex is the set of l<strong>in</strong>es<br />

correspond<strong>in</strong>g to the po<strong>in</strong>ts of H5 coll<strong>in</strong>ear <strong>in</strong> H5 with a fixed po<strong>in</strong>t â of H5.<br />

In this case the l<strong>in</strong>es of A correspond to the po<strong>in</strong>ts of the Kle<strong>in</strong> quadric H5<br />

ly<strong>in</strong>g <strong>in</strong> the hyperplane [a], which meets H5 <strong>in</strong> a cone. (This is a cone whose<br />

base is a hyperbolic quadric <strong>in</strong> some solid Σ with a vertex which is a po<strong>in</strong>t<br />

outside Σ.)<br />

On the other h<strong>and</strong>, if A is general, then A is the set of l<strong>in</strong>es of P G(3, q)<br />

correspond<strong>in</strong>g to po<strong>in</strong>ts of H5 ly<strong>in</strong>g <strong>in</strong> the hyperplane [a]. In this case the<br />

<strong>in</strong>tersection H5 ∩ [a] is a nons<strong>in</strong>gular quadric Q(4, q). We see this <strong>in</strong> the<br />

follow<strong>in</strong>g way. First, some aij must be nonzero. WOLG we may assume that<br />

a01 = 0, <strong>in</strong> which case we may assume that a01 = −1. Then (x0, . . . , x5) ∈ [a]<br />

iff<br />

x0 = a23x1 + a02x2 + a31x3 + a03x4 + a12x5. (12.12)<br />

Assum<strong>in</strong>g this, (x0, x1, . . . , x5) ∈ H5 iff<br />

a23x 2 1 + a02x1x2 + a31x1x3 + a03x1x4 + a12x1x5 + x2x3 + x4x5 = 0. (12.13)<br />

The polar form of this quadratic form on V5 is<br />

B(x, y) = 2a23x1y1 + a02(x1y2 + x2y1) + a31(x1y3 + x3y1) + a03(x1y4 + x4y1)<br />

+ a12(x1y5 + x5y1) + (x2y3 + x3y2) + (x4y5 + x5y4). (12.14)<br />

We know that the <strong>in</strong>tersection [a] ∩ H5 is either a cone with one po<strong>in</strong>t as<br />

vertex or a nons<strong>in</strong>gular quadric, <strong>in</strong> this case parabolic. It will be nons<strong>in</strong>gular<br />

if <strong>and</strong> only if there is no vector <strong>in</strong> V5 whose polar space is all of V5 <strong>and</strong><br />

which is <strong>in</strong> the <strong>in</strong>tersection [a] ∩ H5. Relative to this polar form, if x =<br />

(x1, x2, x3, x4, x5), then x ⊥ = V5 if <strong>and</strong> only if<br />

(2a23x1 + a02x2 + a31x3 + a03x4 + a12x5, a02x1 + x3,<br />

But this is zero if <strong>and</strong> only if<br />

a31x1 + x2, a03x1 + x5, a12x1 + x4) = 0. (12.15)<br />

x2 = −a31x1; x3 = −a02x1; x4 = −a12x1; x5 = −a03x1,


12.4. DUAL COORDINATES FOR LINES 553<br />

<strong>and</strong> (remember a01 = −1)<br />

−2(a01a23 + a02a31 + a03a12)x1 = 0.<br />

Hence we know the follow<strong>in</strong>g, if A is special, [a] ∩ H5 is a cone over an<br />

H3, <strong>and</strong> A is the set of l<strong>in</strong>es of P G(3, q) correspond<strong>in</strong>g to po<strong>in</strong>ts of the cone.<br />

If A is general, then [a] ∩ H5 is a nondegenerate (parabolic) quadric Q(4, q),<br />

a generalized quadrangle. We take another look at this a little later <strong>in</strong> this<br />

chapter.<br />

If A = Aa is general, then A determ<strong>in</strong>es a null polarity with skewsymmetric<br />

matrix<br />

⎛<br />

⎞<br />

CA = Ca =<br />

⎜<br />

⎝<br />

0 a01 a02 a03<br />

−a01 0 a12 −a31<br />

−a02 −a12 0 a23<br />

−a03 a31 −a23 0<br />

⎟<br />

⎠ .<br />

where det(CA) = (ϖ(a)) 2 = 0.<br />

Then (x) · CA · (y) T = (a) · L T , where L = G(ℓ) if ℓ = 〈(x), (y)〉. Hence<br />

the absolute l<strong>in</strong>es of the polarity associated with the l<strong>in</strong>ear complex A are<br />

precisely those which belong to the l<strong>in</strong>ear complex, <strong>and</strong> they are the l<strong>in</strong>es<br />

that Kle<strong>in</strong>-correspond to H5 ∩ [a] = Q(4, q).<br />

We collect this <strong>in</strong>formation <strong>in</strong> the follow<strong>in</strong>g theorem.<br />

Theorem 12.4.4. Let a = (a01, a23, a02, a31, a03, a12) satisfy ϖ(a) = 0, so<br />

the l<strong>in</strong>ear complex A = {ℓ ∈ P G(3, q) : a · G(ℓ) T = 0} is general. Associated<br />

with the l<strong>in</strong>ear complex A is a null polarity given by the matrix<br />

⎛<br />

⎞<br />

CA =<br />

⎜<br />

⎝<br />

C −1<br />

A<br />

0 a01 a02 a03<br />

−a01 0 a12 −a31<br />

−a02 −a12 0 a23<br />

−a03 a31 −a23 0<br />

= 1<br />

ϖ(a)<br />

⎛<br />

⎜<br />

⎝<br />

⎟<br />

⎠<br />

0 −a23 −a31 −a12<br />

a23 0 −a03 a02<br />

a31 a03 0 −a01<br />

a12 −a02 a01 0<br />

with <strong>in</strong>verse<br />

The absolute l<strong>in</strong>es of this polarity are the l<strong>in</strong>es of the l<strong>in</strong>ear complex A,<br />

<strong>and</strong> they are the l<strong>in</strong>es that Kle<strong>in</strong>-correspond to the po<strong>in</strong>ts of H5∩[a] = Q(4, q).<br />

⎞<br />

⎟<br />

⎠ .


554 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

At this po<strong>in</strong>t it is convenient to determ<strong>in</strong>e the null polarities that have<br />

(∞) = (1, 0, 0, 0) <strong>and</strong> π∞ = [0, 1, 0, 0] T as polar po<strong>in</strong>t-plane pair. Writ<strong>in</strong>g<br />

{(1, 0, 0, 0) · CA} T = [0, a01, a02, a03] T = λ[0, 1, 0, 0] T , we see that a01 = 0<br />

<strong>and</strong> a02 = a03 = 0. Without loss of generality we may put a01 = 1. Then<br />

ϖ(a) = a23 = 0. This means that there are q choices for each of a31 <strong>and</strong> a12<br />

<strong>and</strong> q − 1 choices for a23. Hence we have proved the follow<strong>in</strong>g:<br />

Corollary 12.4.5. There are exactly q 2 (q − 1) symplectic polarities <strong>in</strong>terchang<strong>in</strong>g<br />

(∞) <strong>and</strong> π∞, <strong>and</strong> <strong>in</strong> the notation of the preced<strong>in</strong>g paragraph we<br />

have<br />

CA =<br />

⎛<br />

⎜<br />

⎝<br />

0 1 0 0<br />

−1 0 a12 −a31<br />

0 −a12 0 a23<br />

0 a31 −1 0<br />

⎞<br />

⎟<br />

⎠<br />

, <strong>and</strong> C−1<br />

A<br />

12.5 L<strong>in</strong>ear Congruences<br />

= 1<br />

a23<br />

⎛<br />

⎜<br />

⎝<br />

0 −a23 −a31 −a12<br />

a23 0 0 0<br />

a31 0 0 −1<br />

a12 0 1 0<br />

A l<strong>in</strong>ear congruence is the set of l<strong>in</strong>es belong<strong>in</strong>g to two l<strong>in</strong>ear complexes.<br />

Two l<strong>in</strong>ear complexes Aa <strong>and</strong> Bb are apolar provided<br />

ϖ(a, b) = aRb T = 0 = a01b23 + a23b01 + a02b31 + a31b02 + a03b12 + a12b03.<br />

<strong>and</strong><br />

Let (a) <strong>and</strong> (b) be dist<strong>in</strong>ct po<strong>in</strong>ts of P G(5, q). So<br />

Aa = {ℓ ∈ P G(3, q) : G(ℓ) ∈ [a] ∩ H5},<br />

Ab = {ℓ ∈ P G(3, q) : G(ℓ) ∈ [b] ∩ H5}.<br />

Then, for example, if ϖ(a) = 0, Aa is the special l<strong>in</strong>ear complex consist<strong>in</strong>g<br />

of all l<strong>in</strong>es of P G(3, q) concurrent with the axis<br />

H(â) = row space of<br />

⎛<br />

⎜<br />

⎝<br />

0 a23 a31 a12<br />

−a23 0 a03 −a02<br />

−a31 −a03 0 a01<br />

−a12 a02 −a01 0<br />

⎞<br />

⎟<br />

⎠ .<br />

⎞<br />

⎟<br />

⎠ .


12.5. LINEAR CONGRUENCES 555<br />

On the other h<strong>and</strong>, if ϖ(a) = 0, then<br />

Aa = {ℓ ∈ P G(3, q) : G(ℓ) ∈ [a] ∩ H5}.<br />

We want to exam<strong>in</strong>e the various types of l<strong>in</strong>ear congruence. The first<br />

lemma is clearly true.<br />

Lemma 12.5.1. If a l<strong>in</strong>ear congruence is the <strong>in</strong>tersection of the two l<strong>in</strong>ear<br />

complexes Aa <strong>and</strong> Ab, it is equally well determ<strong>in</strong>ed to be the <strong>in</strong>tersection of<br />

any two of the l<strong>in</strong>ear complexes of the form<br />

As,t = Ac, where c = sa + tb.<br />

Here [a] ∩ [b] is a solid whose <strong>in</strong>tersection with H5 is completely determ<strong>in</strong>ed<br />

by the <strong>in</strong>tersection of its polar l<strong>in</strong>e<br />

([a] ∩ [b]) ⊥ = 〈[a] ⊥ , [b] ⊥ 〉 = 〈(aR), (bR)〉<br />

with H5.<br />

It is easier to see what the <strong>in</strong>tersection of two l<strong>in</strong>ear complexes is if one or<br />

both of them is special, so it will be helpful to determ<strong>in</strong>e whether or not one<br />

or both of the two l<strong>in</strong>ear complexes given <strong>in</strong> Lemma 12.5.1 is special. There<br />

are a few cases.<br />

Case 1. ([a] ∩ H5) ∩ ([b] ∩ H5) is an elliptic quadric E3 <strong>in</strong> P G(3, q)<br />

if <strong>and</strong> only if<br />

〈(aR), (bR)〉 is disjo<strong>in</strong>t from H5<br />

if <strong>and</strong> only if<br />

0 = ϖ(saR + tbR) = (saR + tbR)D(sRa T + tRb T ) has no nontrivial<br />

solution<br />

if <strong>and</strong> only if<br />

0 = s 2 aRDRa T + staR(D + D T )Rb T + t 2 bRDRb T has no nontrivial<br />

solution<br />

if <strong>and</strong> only if<br />

s 2 ϖ(a) + stϖ((a), (b)) + t 2 ϖ(b) = 0 has no nontrivial solution.<br />

From the above computations we see that


556 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

Lemma 12.5.2. The number of po<strong>in</strong>ts of 〈(aP ), (bP )〉 on H5 is the number<br />

of <strong>in</strong>equivalent nontrivial solutions (s, t) to<br />

s 2 ϖ(a) + stϖ((a), (b)) + t 2 ϖ(b) = 0. (12.16)<br />

Here two nontrivial solutions (s, t) <strong>and</strong> (s ′ , t ′ ) are equivalent provided<br />

there is a nonzero scalar λ for which (s ′ , t ′ ) = λ(s, t).<br />

In Case 1, when Eq. 12.16 has no solutions, so [a] ∩ [b] ∩ H5 is an elliptic<br />

quadric E3 <strong>and</strong> the l<strong>in</strong>ear congruence Aa ∩ Ab is a regular spread, the l<strong>in</strong>ear<br />

congruence is called an elliptic congruence.<br />

The rema<strong>in</strong><strong>in</strong>g cases deal with the situation where there is at least one<br />

solution to Eq. 12.16, so we assume that ϖ(a) = 0 (by Lemma 12.5.1).<br />

Case 2. ϖ(a) = 0, ϖ(b) = 0 <strong>and</strong> ϖ((a), (b)) = 0.<br />

In this case Eq. 12.16 becomes stϖ((a), (b)) + t 2 ϖ(b) = 0. The solution<br />

(s, t) = (1, 0) corresponds to (a). The solution (s, t) = (ϖ(b), ϖ((a), (b)) is<br />

a second solution. Put<br />

(c) = ϖ(b) · (a) − ϖ((a), (b)) · (b).<br />

Then ϖ(c) = 0 <strong>and</strong> a short computation shows ϖ((a), (c)) = 0. This implies<br />

that also ϖ((â), (ĉ)) = 0.<br />

This says that the two axes H( ˆ (a) <strong>and</strong> H( ˆ (c)) are skew, so Aa ∩ Ac is the<br />

set of l<strong>in</strong>es meet<strong>in</strong>g two skew l<strong>in</strong>es. In this case the l<strong>in</strong>ear congruence is called<br />

a hyperbolic congruence. The l<strong>in</strong>e 〈(aR), (cR)〉 is hyperbolic, so [a] ∩ [c] ∩ H5<br />

is a hyperbolic space H3 <strong>in</strong> P G(3, q).<br />

Case 3. ϖ(a) = 0, ϖ((a), (b)) = 0, ϖ(b) = 0. In this case the only<br />

solution (up to equivalence) (s, t) to Eq. 12.16 is (s, t) = (1, 0). So the l<strong>in</strong>ear<br />

congruence is the set of all l<strong>in</strong>es concurrent with the axis H(â) which are <strong>in</strong><br />

the l<strong>in</strong>ear complex Ab. But H(â) is conta<strong>in</strong>ed <strong>in</strong> Ab if <strong>and</strong> only if (mapp<strong>in</strong>g<br />

by G) (â) is an element <strong>in</strong> [b] ∩ H5. Clearly (â) <strong>in</strong> H5, <strong>and</strong> it is <strong>in</strong> [b] if <strong>and</strong><br />

only if ϖ((a), (b)) = (aR) · [b] T = 0, which holds by hypothesis. So <strong>in</strong> this<br />

case the l<strong>in</strong>ear congruence (called a parabolic congruence) is the set of l<strong>in</strong>es<br />

meet<strong>in</strong>g an axis ℓ which is conta<strong>in</strong>ed <strong>in</strong> a general l<strong>in</strong>ear complex W (q) that<br />

conta<strong>in</strong>s ℓ. Hence a parabolic congruence conta<strong>in</strong>s q 2 + q + 1 l<strong>in</strong>es, a l<strong>in</strong>e ℓ<br />

<strong>and</strong> a flat pencil of l<strong>in</strong>es at each po<strong>in</strong>t of ℓ conta<strong>in</strong><strong>in</strong>g ℓ, but such that the<br />

pencils at dist<strong>in</strong>ct po<strong>in</strong>ts of ℓ cover no po<strong>in</strong>t <strong>in</strong> common off the axis ℓ.


12.6. THE NULL SYSTEM ν 557<br />

If ϖ(a) = 0 = ϖ(b) <strong>and</strong> ϖ((a), (b)) = 0, we are back <strong>in</strong> Case 2. So the<br />

only rema<strong>in</strong><strong>in</strong>g case is<br />

Case 4. ϖ(a) = ϖ((a), (b)) = ϖ(b) = 0. In this case there are q + 1<br />

solutions to Eq. 12.16 <strong>and</strong> the two axes meet. So the l<strong>in</strong>ear congruence (called<br />

a degenerate congruence) consists of all the l<strong>in</strong>es meet<strong>in</strong>g two <strong>in</strong>tersect<strong>in</strong>g<br />

l<strong>in</strong>es, i.e., the l<strong>in</strong>es ly<strong>in</strong>g <strong>in</strong> a plane π or pass<strong>in</strong>g through a po<strong>in</strong>t p <strong>in</strong> the<br />

plane π. This congruence Kle<strong>in</strong>-corresponds to a pair of totally s<strong>in</strong>gular<br />

planes of H5, one Greek, one Lat<strong>in</strong>, that have a l<strong>in</strong>e <strong>in</strong> common.<br />

12.6 The null system ν<br />

<br />

0<br />

Put C =<br />

−1<br />

<br />

1 0<br />

⊕<br />

0 −1<br />

<br />

1<br />

.<br />

0<br />

We say that po<strong>in</strong>ts (xi) <strong>and</strong> (yi) of<br />

P G(3, q) are conjugate with respect to the null system ν provided B(¯x, ¯y) =<br />

(xi)C(yi) T = | x0 x1<br />

y0 y1<br />

| + | x2 x3<br />

y2 y3<br />

| = 0.<br />

Note that this is say<strong>in</strong>g that po<strong>in</strong>ts (xi) <strong>and</strong> (yi) are conjugate w.r.t. ν if<br />

<strong>and</strong> only if the Plücker coord<strong>in</strong>ates of the l<strong>in</strong>e 〈(xi), (yi)〉 satisfy p01 +p23 = 0.<br />

The null system ν is actually the correspondence ν: po<strong>in</strong>ts ↔ planes of<br />

P G(3, q) def<strong>in</strong>ed by: ν : (xi) ↦→ (xi) ⊥ = {(yi) : (xi)C(yi) T = 0}. This<br />

correspondence is a null polarity (also called a symplectic polarity), i.e.,<br />

1. (xi) ∈ (yi) ⊥ iff (yi) ∈ (xi) ⊥ ;<br />

2. (xi + λyi) ⊥ ⊇ (xi) ⊥ ∩ (yi) ⊥ , so the set of po<strong>in</strong>ts conjugate<br />

to all po<strong>in</strong>ts on a l<strong>in</strong>e is the set of po<strong>in</strong>ts on a l<strong>in</strong>e;<br />

3. (xi) ∈ (xi) ⊥ for all po<strong>in</strong>ts (xi).<br />

So <strong>in</strong> general 〈(xi), (yi)〉 ⊥ = (xi) ⊥ ∩ (yi) ⊥ , but not always will 〈(xi), (yi)〉<br />

<strong>and</strong> (xi) ⊥ ∩ (yi) ⊥ be the same l<strong>in</strong>e. This happens iff (xi) ∈ (yi) ⊥ iff (yi) ∈<br />

(xi) ⊥ . So the self-conjugate l<strong>in</strong>es w.r.t. ν through (xi) are precisely those<br />

of the form ℓ = 〈(xi), (yi)〉 where (xi) = (yi) ∈ (xi) ⊥ . This means the<br />

the q + 1 self-conjugate l<strong>in</strong>ese through (xi) are <strong>in</strong> the flat pencil of l<strong>in</strong>es <strong>in</strong><br />

(xi) ⊥ through (xi). Also, if ℓ = 〈(xi), (yi)〉 is self-conjugate, <strong>and</strong> if (zi) ∈<br />

(xi) ⊥ ∩ (yi) ⊥ = 〈(xi), (yi)〉 ⊥ , then (zi) ∈ ℓ. Hence there are no triangles of<br />

self-conjugate l<strong>in</strong>es.<br />

Let W (q) be the <strong>in</strong>cidence geometry whose po<strong>in</strong>ts are the po<strong>in</strong>ts of<br />

P G(3, q) <strong>and</strong> whose l<strong>in</strong>es are the self-conjugate l<strong>in</strong>es w.r.t. ν. Then W (q)<br />

has (1 + q)(1 + q 2 ) = 1 + q + q 2 + q 3 po<strong>in</strong>ts. S<strong>in</strong>ce it has 1 + q po<strong>in</strong>ts per l<strong>in</strong>e


558 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

<strong>and</strong> 1 + q l<strong>in</strong>es per po<strong>in</strong>t, it also has (1 + q)(1 + q 2 ) l<strong>in</strong>es. The fact that it<br />

has no triangles leads quickly to the follow<strong>in</strong>g:<br />

Theorem 12.6.1. W (q) is a generalized quadrangle with order (q, q).<br />

Note 12.6.2. If (xi), (yi), (zi) are any three pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts<br />

<strong>in</strong> W (q), then (xi) ⊥ , (yi) ⊥ , (zi) ⊥ are three dist<strong>in</strong>ct planes (whose pairwise<br />

<strong>in</strong>tersections are non-self-conjugate l<strong>in</strong>es). But any three planes meet <strong>in</strong> at<br />

least a po<strong>in</strong>t, so there is a po<strong>in</strong>t (wi) ∈ W (q) coll<strong>in</strong>ear <strong>in</strong> W (q) with all three<br />

po<strong>in</strong>ts (xi), (yi), (zi). This says each triad of po<strong>in</strong>ts of W (q) is centric. A<br />

count<strong>in</strong>g argument shows that each po<strong>in</strong>t of W (q) is regular (cf. Cor. 9.3.9).<br />

By Theorems 9.8.3 <strong>and</strong> 9.8.4 (comb<strong>in</strong>atorial arguments only!), the l<strong>in</strong>es of<br />

W (q) are regular or antiregular accord<strong>in</strong>g as q = 2 e or q is odd.<br />

If ℓ is a l<strong>in</strong>e of W (q), then the first two coord<strong>in</strong>ates of G(ℓ) sum to zero.<br />

If q = 2 e , this means they are equal. In fact if G(ℓ) = (a0, a1, a2, a3, a4, a5) =<br />

(a, −a, a2, a3, a4, a5) where a 2 = a2a3 + a4a5, it follows that at least one of the<br />

entries a2, a3, a4, a5 must be nonzero. Hence we may project the po<strong>in</strong>t G(ℓ) of<br />

P G(5, q) to a po<strong>in</strong>t of P G(3, q) by just dropp<strong>in</strong>g the first two coord<strong>in</strong>ates, i.e.,<br />

(a0, a1, a2, a3, a4, a5) ↦→ (a2, a3, a4, a5). If each po<strong>in</strong>t of a l<strong>in</strong>e L0 ∈ P G(5, q) is<br />

an image of a l<strong>in</strong>e of W (q) (i.e., if it is a l<strong>in</strong>e of the appropriate Q(4, q)), then<br />

its po<strong>in</strong>ts project to the po<strong>in</strong>ts of a l<strong>in</strong>e L <strong>in</strong> P G(3, q). We say L0 projects<br />

to L.<br />

We are go<strong>in</strong>g to show that when q = 2 e the l<strong>in</strong>es ℓ of W (q) through a<br />

po<strong>in</strong>t (xi) map by G to the po<strong>in</strong>ts of a l<strong>in</strong>e L0 of Q(4, q) ⊂ H5 that projects<br />

to a l<strong>in</strong>e L of W (q).<br />

Theorem 12.6.3. Let ℓ <strong>and</strong> ℓ ′ be l<strong>in</strong>es of W (q) which are dist<strong>in</strong>ct but <strong>in</strong>tersect<strong>in</strong>g.<br />

Say ℓ = 〈(xi), (zi)〉, ℓ ′ = 〈(xi), (z ′ i)〉,<br />

with (xi)C(zi) T = 0 = (xi)C(z ′ i )T , 0 = (zi)C(z ′ i )T .<br />

Then G(ℓ) = (p01, p23, p02, p31, p03, p12) <strong>and</strong> G(ℓ ′ ) = (p ′ 01 , p′ 23 , p′ 02 , p′ 31 , p′ 03 , p′ 12 )<br />

are coll<strong>in</strong>ear <strong>in</strong> the Kle<strong>in</strong> quadric H5, so<br />

<br />

<br />

<br />

p01<br />

<br />

p23 <br />

<br />

+<br />

<br />

<br />

<br />

p02<br />

<br />

p31 <br />

<br />

+<br />

<br />

<br />

<br />

p03<br />

<br />

p12 <br />

<br />

= 0.<br />

−p ′ 01 p′ 23<br />

−p ′ 02 p′ 31<br />

−p ′ 03 p′ 12<br />

If we project G(ℓ) <strong>and</strong> G(ℓ ′ ) to the po<strong>in</strong>ts p = (p02, p31, p03, p12) <strong>and</strong> p ′ =<br />

(p ′ 02, p ′ 31, p ′ 03, p ′ 12) <strong>in</strong> P G(3, q), the l<strong>in</strong>e through p <strong>and</strong> p ′ has Plücker coord<strong>in</strong>ates<br />

(p ′′<br />

01, p ′′<br />

23, p ′′<br />

02, p ′′<br />

31, p ′′<br />

03, p ′′<br />

12) = (x0x1 + x2x3, x0x1 − x2x3, −x 2 0, x 2 1, −x 2 2, −x 2 3).


12.6. THE NULL SYSTEM ν 559<br />

Proof. Somewhat tedious but straightforward calculations yield:<br />

p ′′<br />

01 =<br />

<br />

<br />

<br />

p02 p31<br />

p ′ 02 p ′ <br />

<br />

<br />

<br />

31<br />

= (x0x1 + x2x3) (z ′ i )C(zi) T ;<br />

p ′′<br />

23 =<br />

<br />

<br />

<br />

p03 p12<br />

p ′ 03 p ′ <br />

<br />

<br />

<br />

12<br />

= (x0x1 − x2x3) (z ′ i )C(zi) T ;<br />

p ′′<br />

02 =<br />

<br />

<br />

<br />

p02 p03<br />

p ′ 02 p ′ <br />

<br />

<br />

<br />

03<br />

= −x2 <br />

′<br />

0 (z i )C(zi) T ;<br />

p ′′<br />

31 =<br />

<br />

<br />

<br />

p12 p31<br />

p ′ 12 p ′ <br />

<br />

<br />

<br />

31<br />

= x2 <br />

′<br />

1 (z i )C(zi) T ;<br />

p ′′<br />

<br />

<br />

03 = <br />

p02 p12<br />

p ′ 02 p′ <br />

<br />

<br />

<br />

12<br />

= −x2 <br />

′<br />

2 (z i)C(zi) T ;<br />

p ′′<br />

<br />

<br />

12 = <br />

= −x2 <br />

′<br />

3 (z i)C(zi) T .<br />

p31 p03<br />

p ′ 31 p′ 03<br />

We give the details for two cases. S<strong>in</strong>ce ℓ, ℓ ′ ∈ W (q), we have p01 = −p23<br />

<strong>and</strong> p ′ 01 = −p′ 23 . These equalities say that<br />

<strong>and</strong><br />

Then we calculate<br />

p ′′<br />

01 =<br />

<br />

<br />

<br />

p02 p31<br />

p ′ 02 p ′ 31<br />

x0z1 + x2z3 = x1z0 + x3z2, (12.17)<br />

x0z ′ 1 + x2z ′ 3 = x1z ′ 0 + x3z ′ 2. (12.18)<br />

<br />

<br />

<br />

=<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x0 x2<br />

z0 z2<br />

x0 x2<br />

z ′ 0 z ′ 2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x3 x1<br />

z3 z1<br />

<br />

<br />

<br />

x3 x1<br />

z ′ 3 z ′ 1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

= (x0z2 − x2z0)(x3z ′ 1 − x1z ′ 3 ) − (x0z ′ 2 − x2z ′ 0 )(x3z1 − x1z3)<br />

= x0x1(z ′ 2z3 − z2z ′ 3) + x2x3(z ′ 0z1 − z0z ′ 1)<br />

+x0x3(z ′ 1z2 − z1z ′ 2) + x1x2(z ′ 3z0 − z ′ 0z3)


560 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

= (x0x1 + x2x3)(z ′ 2 z3 − z2z ′ 3 ) + (x0x1 + x2x3)(z ′ 0 z1 − z0z ′ 1 )<br />

−x2x3(z ′ 2z3 − z ′ 3z2) − (x0x1(z ′ 0z1 − z0z ′ 1)<br />

+x0x3(z ′ 1z2 − z ′ 2z1) + x1x2(z0z ′ 3 − z ′ 0z3)<br />

= (x0x1 + x2x3)(z ′ 0 z1 − z ′ 1 z0 + z ′ 2 z3 − z ′ 3 z2)<br />

+x0z1(−x3z ′ 2 − x1z0) − x1z0(−x2z ′ 3 − x0z ′ 1 )<br />

+x2z3(−x1z ′ 0 − x3z ′ 2 ) − x3z2(−x0z ′ 1 − x2z ′ 3 )<br />

= (x0x1 + x2x3)(z ′ i )C(zi) T + (x0z1 + x2z3)(−x1z ′ 0 − x3z ′ 2 )<br />

+ (x1z0 + x3z2)(x0z ′ 1 + x2z ′ 3 )<br />

= (x0x1 + x2x3)(z ′ i )C(zi) T + (x1z0 + x3z2)(x0z ′ 1 − x1z ′ 0 + x2z ′ 3 − x3z ′ 2 ))<br />

= (x0x1 + x2x3)(z ′ i)C(zi) T + (x1z0 + x3z2)(0)<br />

= (x0x1 + x2x3)(z ′ i)C(zi) T ,<br />

where the third to the last equation follows by Eq. 12.17, <strong>and</strong> the next to<br />

last equation follows by an application of Eq. 12.18<br />

The calculation of p ′′<br />

23<br />

03.<br />

other. We evaluate p ′′<br />

p ′′<br />

03 =<br />

<br />

<br />

<br />

p02 p12<br />

p ′ 02 p′ 12<br />

<br />

<br />

<br />

=<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

is similar, <strong>and</strong> the four others are similar to each<br />

x0 x2<br />

z0 z2<br />

x0 x2<br />

z ′ 0 z ′ 2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

x1 x2<br />

z1 z2<br />

<br />

<br />

<br />

x1 x2<br />

z ′ 1 z ′ 2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

= (x0z2 − x2z0)(x1z ′ 2 − x2z ′ 1 ) − (x0z ′ 2 − z′ 0 x2)(x1z2 − x2z1)<br />

= x2z2(z ′ 0x1 − z ′ 1x0) + x2z ′ 2(x0z1 − x1z0) + x 2 2(z ′ 1z0 − z ′ 0z1)


12.6. THE NULL SYSTEM ν 561<br />

= x2z2(z ′ 3 x2 − z ′ 2 x3) + x2z ′ 2 (x3z2 − x2z3) + x 2 2 (z′ 1 z0 − z ′ 0 z1)<br />

= z2x ′ 2(0) + (z2z ′ 3 − z3z ′ 2)(x 2 2) + x 2 2(z ′ 1z0 − z ′ 0z1)<br />

= −x 2 2 (z′ i )C(zi) T .<br />

Theorem 12.6.4. In the preced<strong>in</strong>g theorem it is clear that when q = 2 e , p<br />

<strong>and</strong> p ′ are coll<strong>in</strong>ear <strong>in</strong> W (q), i.e., p <strong>and</strong> p ′ are conjugate w.r.t. ν. This says<br />

that for q = 2 e if ℓ ∼ ℓ ′ <strong>in</strong> W (q), then G(ℓ) <strong>and</strong> G(ℓ ′ ) project to po<strong>in</strong>ts on a<br />

l<strong>in</strong>e of W (q).<br />

The above results make it clear that the po<strong>in</strong>t-l<strong>in</strong>e dual of W (q) is isomorphic<br />

to some k<strong>in</strong>d of substructure of the Kle<strong>in</strong> quadric H5. We <strong>in</strong>vestigate<br />

this a bit more. For convenience later, note that<br />

B(¯x, ¯y) = p01 + p23. (12.19)<br />

H = {(x0, −x0, x2, x3, x4, x5) ∈ P G(5, q) : xi ∈ F } (12.20)<br />

is a hyperplane of P G(5, q). Moreover,<br />

H ∩ H5 = {(x0, −x0, x2, x3, x4, x5) : x 2 0 = x2x3 + x4x5}. (12.21)<br />

⎛<br />

⎜<br />

Put A = ⎜<br />

⎝<br />

−1 0 0 0 0<br />

0 0 1 0 0<br />

0 0 0 0 0<br />

0 0 0 0 1<br />

0 0 0 0 0<br />

⎞<br />

⎟ . Then put<br />

⎠<br />

Q(4, q) = {(x0, x2, x3, x4, x5) ∈ P G(4, q) : (xi)A(xi) T = 0}.


562 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

Hence A + AT ⎛<br />

−2<br />

⎜ 0<br />

= ⎜ 0<br />

⎝ 0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

⎞<br />

0<br />

0 ⎟<br />

0 ⎟<br />

⎟,<br />

which is clearly nons<strong>in</strong>gular if q<br />

1 ⎠<br />

0 0 0 1 0<br />

is odd. So <strong>in</strong> this case Q(4, q) is nondegenerate.<br />

When q = 2e , then A + AT ⎛<br />

⎞<br />

0 0 0 0 0<br />

⎜ 0 0 1 0 0 ⎟<br />

= ⎜ 0 1 0 0 0 ⎟<br />

⎟,<br />

<strong>and</strong> (1, 0, 0, 0, 0) spans<br />

⎝ 0 0 0 0 1 ⎠<br />

0 0 0 1 0<br />

the left null space of A + AT . But (1, 0, 0, 0, 0) is NOT <strong>in</strong> Q(4, q), so Q(4, q)<br />

is nondegenerate <strong>in</strong> all cases.<br />

Recapitulation: Two l<strong>in</strong>es of P G(3, q) meet if <strong>and</strong> only if their images<br />

<strong>in</strong> H5 are coll<strong>in</strong>ear <strong>in</strong> H5. Moreover, if l1, l2 are concurrent l<strong>in</strong>es <strong>in</strong> P G(3, q)<br />

<strong>and</strong> l1, l2, . . . , lq+1 are the q + 1 l<strong>in</strong>es <strong>in</strong> the flat pencil spanned by l1, l2, then<br />

G(l1), . . . , G(lq+1) are po<strong>in</strong>ts of a totally isotropic l<strong>in</strong>e of H5. Hence the<br />

po<strong>in</strong>t where a flat pencil of l<strong>in</strong>es of W (q) meet can be mapped to the l<strong>in</strong>e of<br />

H ∩ H5 ∼ Q(4, q) of po<strong>in</strong>ts that are the images of the l<strong>in</strong>es of the flat pencil.<br />

It follows that G <strong>in</strong>duces a duality from W (q) onto Q(4, q).<br />

Corollary 12.6.5. Q(4, q) is a GQ(q, q) isomorphic to the po<strong>in</strong>t-l<strong>in</strong>e dual of<br />

W (q).<br />

If ℓ is a l<strong>in</strong>e of W (q), then the first two coord<strong>in</strong>ates of G(ℓ) sum to zero.<br />

S<strong>in</strong>ce q = 2 e , this means they are equal. In fact if G(ℓ) = (a0, a1, a2, a3, a4, a5) =<br />

(a, −a, a2, a3, a4, a5) where a 2 = a2a3 + a4a5, it follows that at least one of the<br />

entries a2, a3, a4, a5 must be nonzero. Hence we may project the po<strong>in</strong>t G(ℓ)<br />

of P G(5, q) to a po<strong>in</strong>t of P G(3, q) by just dropp<strong>in</strong>g the first two coord<strong>in</strong>ates,<br />

i.e., (a0, a1, a2, a3, a4, a5) ↦→ (a2, a3, a4, a5). This amounts to project<strong>in</strong>g the<br />

po<strong>in</strong>ts of G(W (q)) ∼ = Q(4, q) to P G(3, q) from the nucleus N = (1, 1, 0, 0, 0, 0)<br />

of the Q(4, q) which is H5 ∩ Π, where Π is the hyperplane [1, 1, 0, 0, 0, 0] of<br />

P G(5, q). Let T denote this projection map on the po<strong>in</strong>ts of GQ(4, q). S<strong>in</strong>ce<br />

a l<strong>in</strong>e through N cannot be <strong>in</strong>cident with more than one po<strong>in</strong>t of G(W (q)),<br />

it follows that if each po<strong>in</strong>t of a l<strong>in</strong>e L0 ∈ P G(5, q) is an image of a l<strong>in</strong>e of<br />

W (q) (i.e., if it is a l<strong>in</strong>e of the appropriate Q(4, q)), then its po<strong>in</strong>ts project<br />

to the po<strong>in</strong>ts of a l<strong>in</strong>e L <strong>in</strong> P G(3, q). We say L0 projects to L.


12.6. THE NULL SYSTEM ν 563<br />

Theorem 12.6.6. Let q = 2 e . Then there is a duality of W (q) def<strong>in</strong>ed as<br />

follows. If x = (x0, x1, x2, x3) is any po<strong>in</strong>t of W (q), put ax = x0x1 + x2x3.<br />

Then<br />

δ(x) = row space of<br />

⎛<br />

⎜<br />

⎝<br />

0 ax x 2 0, x 2 2<br />

ax 0 x 2 3 x2 1<br />

x 2 0 x2 3 0 ax<br />

x 2 2 x 2 1 ax 0<br />

If ℓ = 〈x, y〉 with p01 = p23, so ℓ ∈ W (q), then<br />

⎞<br />

δ : ℓ ↦→ T (G(ℓ)) = (p02, p31, p03, p12).<br />

⎟<br />

⎠ = H(ax, ax, x 2 0 , x2 1 , x2 2 , x2 3 ).<br />

For the rema<strong>in</strong>der of this section let q = 2 e <strong>and</strong> recall Theorem 9.4.10. To<br />

see how the duality δ maps a conic of Σ = P G(3, q) we need only consider<br />

one conic <strong>in</strong> each orbit. To beg<strong>in</strong>, suppose that C is a conic <strong>in</strong> the first<br />

orbit. So without loss of generality we may assume that C = {(t, 0, t 2 , 1) :<br />

t ∈ Fq} ∪ {(0, 0, 1, 0)} with nucleus P = (1, 0, 0, 0), which is the pole of the<br />

plane [0, 1, 0, 0] conta<strong>in</strong><strong>in</strong>g C. A straightforward application of the def<strong>in</strong>ition<br />

of the map δ yields the follow<strong>in</strong>g.<br />

δ : (0, 0, 1, 0) ↦→ 〈(1, 0, 0, 0), (0, 0, 0, 1)〉;<br />

δ : (t, 0, t 2 , 1) ↦→ 〈(t 2 , 0, 1, 0), (0, 1, 1, t 2 )〉;<br />

δ : (1, 0, 0, 0) : ↦→ 〈(1, 0, 0, 0), (0, 0, 1, 0)〉.<br />

The first two rows above give the q + 1 l<strong>in</strong>es of a regulus of l<strong>in</strong>es of W (q),<br />

<strong>and</strong> the third row gives image of the nucleus, which is a transversal of the<br />

regulus. The q other transversals are the l<strong>in</strong>es 〈(1, 0, 0, a), (0, a, 1 + a, 0)〉, all<br />

of which are l<strong>in</strong>es not <strong>in</strong> W (q). This proves the follow<strong>in</strong>g:<br />

Theorem 12.6.7. If C is a conic whose nucleus is the pole of the plane<br />

conta<strong>in</strong><strong>in</strong>g C, then δ maps C to the a regulus of l<strong>in</strong>es of W (q), <strong>and</strong> the<br />

nucleus of C maps to the only transversal of this regulus that is a l<strong>in</strong>e of<br />

W (q). Moreover, s<strong>in</strong>ce there are q 3 − q 2 conics <strong>in</strong> a plane with a given<br />

nucleus, <strong>and</strong> there are q 2 (q − 1) reguli of l<strong>in</strong>es of W (q) hav<strong>in</strong>g a fixed l<strong>in</strong>e<br />

as the unique transversal conta<strong>in</strong>ed <strong>in</strong> W (q), we see that δ yields a bijection<br />

between the conics <strong>in</strong> orbit 1 <strong>and</strong> the reguli of W (q) with a unique transversal<br />

that is a l<strong>in</strong>e of W (q).


564 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

If C is a conic <strong>in</strong> Orbit 2 with nucleus r, then δ maps the hyperconic<br />

C + = C ∪ {r} to regulus of l<strong>in</strong>es of W (q) with a unique transversal <strong>in</strong> W (q),<br />

but <strong>in</strong> this case the transversal is the image of one of the po<strong>in</strong>ts of the conic<br />

<strong>and</strong> the image of the nucleus is one of the l<strong>in</strong>es of the regulus.<br />

If ℓ is a l<strong>in</strong>e of Σ not <strong>in</strong> W (q), so ℓ = ℓ ⊥ , the images of ℓ <strong>and</strong> ℓ ⊥ are two<br />

opposite reguli with all their l<strong>in</strong>es <strong>in</strong> W (q). Clearly every regulus of l<strong>in</strong>es <strong>in</strong><br />

W (q) with at least two transversals which are l<strong>in</strong>es of W (q) must have q + 1<br />

transversals which are l<strong>in</strong>es of W (q). Also, <strong>in</strong> this case it is easy to see that<br />

the two reguli must be the image under δ of the po<strong>in</strong>ts of two l<strong>in</strong>es ℓ <strong>and</strong> ℓ ′<br />

with ℓ ′ = ℓ ⊥ = ℓ.<br />

Let R be a regulus of l<strong>in</strong>es of W (q). We have accounted for those with at<br />

least one transversal which is a l<strong>in</strong>e of W (q). What about those reguli R with<br />

all l<strong>in</strong>es <strong>in</strong> W (q) but no transversal <strong>in</strong> W (q)? In Exercise 9.4.10.1 we showed<br />

that no such regulus of l<strong>in</strong>es of W (q) can exist. This general discussion has<br />

an <strong>in</strong>terest<strong>in</strong>g corollary.<br />

Corollary 12.6.8. Let R be a regulus <strong>in</strong> P G(3, q), q = 2 e . Suppose that R<br />

is conta<strong>in</strong>ed <strong>in</strong> a spread S of P G(3, q), all of whose l<strong>in</strong>es belong to a l<strong>in</strong>ear<br />

complex A of l<strong>in</strong>es. Then the spread S is a regular spread, i.e., given any<br />

three l<strong>in</strong>es of S, the regulus of P G(3, q) conta<strong>in</strong><strong>in</strong>g the three l<strong>in</strong>es consists of<br />

l<strong>in</strong>es of A.<br />

Proof. Let W (q) be the symplectic geometry whose l<strong>in</strong>es are the l<strong>in</strong>es of A.<br />

Then S is a spread of W (q). We know that R has either 1 or q+1 transversals<br />

<strong>in</strong> A. But if R had q + 1 transversals <strong>in</strong> A (i.e., <strong>in</strong> W (q)), then R would be<br />

a span of l<strong>in</strong>es <strong>in</strong> W (q), so by the po<strong>in</strong>t-l<strong>in</strong>e dual of Theorem 9.10.2 could<br />

have at most two l<strong>in</strong>es of S. Hence R has exactly one l<strong>in</strong>e of A.<br />

Let δ be a duality of W (q). Then δ maps S to an ovoid Ω of W (q) (which<br />

is also an ovoid of P G(3, q) by Lemma 7.6.2). Ω def<strong>in</strong>es a null polarity ν<br />

of P G(3, q) such that each po<strong>in</strong>t N not on Ω lies on q + 1 l<strong>in</strong>es tangent to<br />

Ω that lie <strong>in</strong> a plane π. Then N is both the pole of the plane π w.r.t. the<br />

symplectic polarity ν <strong>and</strong> the nucleus of the oval π ∩Ω. S<strong>in</strong>ce R has a unique<br />

transversal <strong>in</strong> W (q) it is mapped by δ to a conic C of P G(3, q) whose nucleus<br />

is the pole of the plane conta<strong>in</strong><strong>in</strong>g C. As C is a conic conta<strong>in</strong>ed <strong>in</strong> an ovoid<br />

Ω of P G(3, q), by Theorem 11.6.2 Ω must be an elliptic quadric. As each<br />

triad of po<strong>in</strong>ts of Ω must have a unique center, which is then the nucleus of a<br />

conic <strong>in</strong> Ω, under δ we have that each triple of l<strong>in</strong>es of S must be conta<strong>in</strong>ed<br />

<strong>in</strong> a unique regulus of l<strong>in</strong>es of S, i.e., S is a regular spread.


12.7. A POLARITY π OF W (Q) WHEN Q = 2 2M+1 565<br />

Exercise 12.6.8.1. Put p1 = (1, 0, 0, 0), p2 = (1, 0, 1, 0), p3 = (0, 1, 0, 0),<br />

p4 = (0, 1, 1, k) where k = 0, 1. Put L∞ = 〈p1, p2〉, Lc = 〈p3 + cp1, p4 + cp2〉.<br />

Then R = {L∞} ∪ {Lc : c ∈ Fq} is a regulus with all its l<strong>in</strong>es <strong>in</strong> W (q). It<br />

opposite regulus has the l<strong>in</strong>es M∞ = 〈p1, p3〉 <strong>and</strong> Ma = 〈p2 + ap1, p4 + ap3〉.<br />

The unique transversal <strong>in</strong> W (q) is Ma with a 2 = 1+k. Compute the image of<br />

R <strong>and</strong> of R opp under the Kle<strong>in</strong> map G. If G(R) is the conic C <strong>in</strong> the plane<br />

π of P G(5, q), then G(R opp ) is a conic C ∗ <strong>in</strong> the plane π ⊥ . You should f<strong>in</strong>d<br />

that N = (0, 0, 1, 0, k, 1) is the nucleus of both C <strong>and</strong> C ∗ . Of course each<br />

po<strong>in</strong>t of C is coll<strong>in</strong>ear <strong>in</strong> H5 with each po<strong>in</strong>t of C ∗ . π ∩ π ⊥ = N. Let Π<br />

denote the hyperplane x0 = x1 of P G(5, q). Recall that this hyperplane meets<br />

H5 <strong>in</strong> quadric Q(4, q) with nucleus P = (1, 1, 0, 0, 0, 0). π ⊥ meets Π <strong>in</strong> the<br />

l<strong>in</strong>e 〈N, P 〉, which is exterior to H5, i.e., it is an elliptic l<strong>in</strong>e.<br />

12.7 A polarity π of W (q) when q = 2 2m+1<br />

A map π that maps po<strong>in</strong>ts of W (q) to l<strong>in</strong>es of W (q) <strong>and</strong> maps l<strong>in</strong>es of W (q)<br />

to po<strong>in</strong>ts of W (q) is a polarity of W (q) provided it preserves <strong>in</strong>cidence <strong>and</strong><br />

π 2 = id. Preserv<strong>in</strong>g <strong>in</strong>cidence means that if ℓ = 〈p, q〉 is a l<strong>in</strong>e of W (q), then<br />

π(p) must meet π(q) at π(ℓ), i.e., π(〈p, q〉) = π(p) ∩ π(q).<br />

Also note that if α ∈ Aut(Fq), then replac<strong>in</strong>g each coord<strong>in</strong>ate (of po<strong>in</strong>t,<br />

hyperplane, etc.) by its image under α <strong>in</strong>duces an automorphism of the entire<br />

projective space. In the present situation, s<strong>in</strong>ce the matrix C is equal to its<br />

image under this map, each automorphism of Fq <strong>in</strong>duces an isomorphism of<br />

W (q).<br />

From now on let q = 2 e = 2 2m+1 with σ = 2 m+1 : x ↦→ x σ ∈ Aut(F ),<br />

F = GF (q). So σ 2 = 2. Def<strong>in</strong>e a map π from the po<strong>in</strong>ts of P G(3, q) to the<br />

l<strong>in</strong>es of W (q) by<br />

π : (x0, x1, x2, x3) ↦→ row space of<br />

⎛<br />

⎜<br />

⎝<br />

0 a σ<br />

2 x σ 0 xσ 2<br />

a σ<br />

2 0 x σ 3 xσ 1<br />

x σ 0 xσ 3 0 a σ<br />

2<br />

x σ 2 xσ 1<br />

which is the l<strong>in</strong>e with Plücker coord<strong>in</strong>ates<br />

where a = (x0x1 + x2x3).<br />

a σ<br />

2 0<br />

(a σ<br />

2 , a σ<br />

2 , x σ 0 , xσ 1 , xσ 2 , xσ 3 ) = (p01, p23, p02, p31, p03, p12),<br />

⎞<br />

⎟<br />

⎠ , a = x0x1 + x2x3,


566 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

Also def<strong>in</strong>e π from the set of l<strong>in</strong>es of W (q) to the po<strong>in</strong>ts of P G(3, q) by:<br />

if (xi)C(zi) T <br />

x0, x1, x2, x3<br />

= 0, then π :<br />

↦→ (p<br />

z0, z1, z2, z3<br />

σ<br />

2<br />

02, p σ<br />

2<br />

31, p σ<br />

2<br />

03, p σ<br />

2<br />

12).<br />

So π(xi) is the l<strong>in</strong>e whose last four Plücker coord<strong>in</strong>ates are (xσ 0 , xσ1 , xσ2 , xσ3 ).<br />

And if L is a l<strong>in</strong>e whose last four Plücker coord<strong>in</strong>ates are (p02, p31, p03, p12),<br />

then π(L) = (p σ<br />

2 2 2 2<br />

02, p σ<br />

31, p σ<br />

03, p σ<br />

12). S<strong>in</strong>ce σ2 = 2, clearly π2 = id.<br />

Theorem 12.7.1. π(xi) ∩ π(zi) = π((xi) · (zi)) when (xi)C(zi) T = 0. So π<br />

is a polarity of W (q).<br />

Proof. π(xi) is the l<strong>in</strong>e with Plücker coord<strong>in</strong>ates px = (a σ<br />

2<br />

x , a σ<br />

2<br />

x , xσ 0, xσ 1, xσ 2, xσ 3),<br />

ax = x0x1 + x2x3. Similarly, π(zi) is the l<strong>in</strong>e with Plücker coord<strong>in</strong>ates pz =<br />

(a σ<br />

2<br />

z , a σ<br />

2<br />

z , zσ 0 , zσ 1 , zσ 2 , zσ 3 ), az = z0z1 +z2z3. The theorem will be proved if we can<br />

σ <br />

x0 x2 2 <br />

show that the po<strong>in</strong>t π(L) = <br />

, <br />

x3<br />

σ <br />

x1 2 <br />

<br />

, <br />

x0<br />

σ <br />

x3 2 <br />

<br />

, <br />

z0 z2<br />

z3 z1<br />

z0 z3<br />

x1 x2<br />

z1 z2<br />

is on the two l<strong>in</strong>es with Plücker coord<strong>in</strong>ates px <strong>and</strong> pz. By Theorem 12.2.3<br />

the l<strong>in</strong>es of W (q) through π(L) are mapped to po<strong>in</strong>ts of H5 ly<strong>in</strong>g on a l<strong>in</strong>e<br />

L0 <br />

whose projection to P G(3, q) has Plücker coord<strong>in</strong>ates<br />

<br />

−, −, <br />

x0<br />

σ<br />

<br />

x2 <br />

<br />

, <br />

x3<br />

σ<br />

<br />

x1 <br />

<br />

, <br />

x0<br />

σ<br />

<br />

x3 <br />

<br />

, <br />

x1<br />

<br />

x2 σ<br />

<br />

. But the l<strong>in</strong>e of<br />

z0 z2<br />

z3 z1<br />

z0 z3<br />

z1 z2<br />

H5 through the po<strong>in</strong>ts px <strong>and</strong> pz, when projected to P G(3, q), also has Plücker<br />

coord<strong>in</strong>ates equal to those just given. Hence the two l<strong>in</strong>es are the same, complet<strong>in</strong>g<br />

the proof.<br />

Now that we know π is a polarity of W (q), we can show that the set Ω<br />

of po<strong>in</strong>ts that are self-conjugate w.r.t. π (i.e., (xi) ∈ π(xi)) forms an ovoid<br />

of W (q), <strong>and</strong> hence an ovoid of P G(3, q) by 7.6.2 .<br />

Theorem 12.7.2. Let P = P G(3, q), q = 2 e , have a null system ν, i.e., ν<br />

is a bijection from the po<strong>in</strong>ts of P G(3, q) to the planes of P G(3, q) such that<br />

(i) x ∈ ν(x) for all po<strong>in</strong>ts x ∈ P.<br />

(ii) x ∈ ν(y) iff y ∈ ν(x) for all x, y ∈ P.<br />

Let B be the set of l<strong>in</strong>es L of P G(3, q) that are self-conjugate w.r.t. ν,<br />

i.e., L = ν(x)∩ν(y) for dist<strong>in</strong>ct po<strong>in</strong>ts x, y of L. Then S = (P, B, ∈) is a GQ<br />

of order q, usually denoted W (q), <strong>in</strong> which all po<strong>in</strong>ts are regular. Let π be a<br />

polarity of S. So π : P ↔ B satisfies x ∈ π(y) iff y ∈ π(x) for all x, y ∈ P ;<br />

<strong>and</strong> π(L) ∈ L ′ iff π(L ′ ) ∈ L for all L, L ′ ∈ B. Put Ω = {x ∈ P : x ∈ π(x)};<br />

Ω ∗ = {L ∈ B : π(L) ∈ L}. Then:<br />

<br />

<br />

<br />

<br />

σ<br />

2


12.7. A POLARITY π OF W (Q) WHEN Q = 2 2M+1 567<br />

(a) Ω is an ovoid of S; hence Ω is an ovoid of P G(3, q)<br />

(b) Ω ∗ is a spread of S <strong>and</strong> hence a spread of P G(3, q);<br />

(c) The l<strong>in</strong>es of B pass<strong>in</strong>g through a po<strong>in</strong>t x form the plane ν(x).<br />

If x ∈ Ω, ν(x) ∩ Ω = {x}. If x ∈ Ω, ν(x) ∩ Ω is an oval .<br />

Proof. Suppose x <strong>and</strong> y are dist<strong>in</strong>ct po<strong>in</strong>ts of Ω on a l<strong>in</strong>e L of B. If “∼”<br />

denotes “coll<strong>in</strong>ear on a l<strong>in</strong>e of B”, we have: x ∈ π(x), y ∈ π(y), x ∼ y, so<br />

π(x) meets π(y). Hence, L ∈ {π(x), π(y)}, s<strong>in</strong>ce otherwise L, π(x), π(y)<br />

are the three sides of a triangle. So suppose L = π(x). Then y ∈ π(x) ⇒<br />

x ∈ π(y). S<strong>in</strong>ce y ∈ π(y), clearly π(y) = x · y = L = π(x), forc<strong>in</strong>g x = y, a<br />

contradiction. So we know each l<strong>in</strong>e of B is <strong>in</strong>cident with at most one po<strong>in</strong>t<br />

of Ω. L ∈ Ω ∗ iff π(L) ∈ L iff π(L) ∈ Ω. Now assume that L is a l<strong>in</strong>e of B<br />

for which L ∈ Ω ∗ , i.e., π(L) ∈ L. S<strong>in</strong>ce S is a GQ, there is a unique po<strong>in</strong>t<br />

u <strong>and</strong> a unique l<strong>in</strong>e M for which π(L) ∈ M ∈ B <strong>and</strong> u ∈ M ∩ L. Then<br />

L · u · M · π(L) =⇒ π(L) · π(u) · π(M) · L, where we write x · y to <strong>in</strong>dicate<br />

that x <strong>and</strong> y are <strong>in</strong>cident <strong>in</strong> S. If π(M) = u this gives a triangle. Hence<br />

π(u) = M <strong>and</strong> π(M) = u. Consequently u ∈ Ω <strong>and</strong> M ∈ Ω ∗ . So each l<strong>in</strong>e of<br />

B is <strong>in</strong>cident with at least one, <strong>and</strong> hence exactly one, po<strong>in</strong>t of Ω. It follows<br />

that Ω is an ovoid of S, <strong>and</strong> hence an ovoid of P G(3, q) by 7.6.2. Dually, Ω ∗<br />

is a spread of S. But it is then clear that the l<strong>in</strong>es of Ω ∗ partition the po<strong>in</strong>ts<br />

of P , i.e., Ω ∗ is a spread of P G(3, q).<br />

Although we officially already know that Ω is an ovoid of P G(3, q), we<br />

give an <strong>in</strong>dependent proof of this that gives a little more <strong>in</strong>sight <strong>in</strong>to the<br />

relationship between Ω, π <strong>and</strong> ν. S<strong>in</strong>ce a l<strong>in</strong>e of B is now known to conta<strong>in</strong><br />

a unique po<strong>in</strong>t of Ω, part (a) will be proved if we show that each l<strong>in</strong>e L ∈<br />

P G(3, q)\B has either 0 or 2 po<strong>in</strong>ts of Ω. So suppose L is a l<strong>in</strong>e of P G(3, q)\<br />

B, x ∈ L∩Ω, y ∈ L, y = x. Put L ′ = ν(x)∩ν(y) = ν(L). Note: L <strong>and</strong> L ′ are<br />

skew. For v ∈ L ∩ L ′ ⇒ v ∈ ν(x) ∩ ν(y) ⇒ L =< x, y >⊆ ν(v). And s<strong>in</strong>ce L<br />

would be a l<strong>in</strong>e through v <strong>in</strong> ν(v), L ∈ B, a contradiction. Put z = π(x)∩L ′ .<br />

π(x) ∩ L ′ is a po<strong>in</strong>t, s<strong>in</strong>ce π(x) <strong>and</strong> L ′ are both <strong>in</strong> ν(x), but π(x) ∈ B <strong>and</strong><br />

L ′ ∈ B. F<strong>in</strong>ally, put w = π(z) ∩ L ′ . Here observe that z ∈ π(x) iff x ∈ π(z)<br />

iff π(z) is a l<strong>in</strong>e of B conta<strong>in</strong><strong>in</strong>g x, so π(z) <strong>and</strong> L ′ are <strong>in</strong> ν(x), π(z) ∈ B,<br />

L ′ ∈ B. S<strong>in</strong>ce L ∩ L ′ = ∅, x = w. We claim that y ∈ Ω iff y is the unique<br />

po<strong>in</strong>t y = L ∩ π(w).


568 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

x ∈ π(x)<br />

p L ∈ B<br />

x ∈ Ω<br />

✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥<br />

❚<br />

❍<br />

❍❍❍❍❍❍❍❍❍❍❍❍❍<br />

❚❚❚❚❚❚<br />

L<br />

✔❚<br />

✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥✥<br />

✔<br />

❚❚<br />

′ ✉<br />

✔<br />

❡✉<br />

✔<br />

✔<br />

✔<br />

✔<br />

✔ w<br />

= ν(L) ∈ B<br />

✔<br />

✉<br />

z ✔✉<br />

✔<br />

π(z)<br />

π(w) π(x)<br />

First, z ∈ L ′ = ν(x) ∩ ν(y) ⇒ x, y ∈ ν(z) → L ⊆ ν(z). And w ∈ π(z) ⇒<br />

z ∈ π(w) ⇒ π(w) is a l<strong>in</strong>e of B through z, so π(w) is <strong>in</strong> ν(z). Then L ⊆ ν(z),<br />

π(w) ∈ ν(z), L ∈ B, π(w) ∈ B ⇒ L ∩ π(w) is a unique po<strong>in</strong>t p. We know<br />

x is the unique po<strong>in</strong>t of Ω on π(z), so w ∈ Ω ⇒ w ∈ π(w). So there is a<br />

unique po<strong>in</strong>t on π(w) coll<strong>in</strong>ear with w <strong>in</strong> S. But w ∈ L ′ ⊆ ν(y), so y ∈ ν(w).<br />

In fact, w ∈ ν(x) ∩ ν(y) ⇒ L = x · y ⊆ ν(w). So p = π(w) ∩ L is coll<strong>in</strong>ear<br />

with w <strong>and</strong> must be the unique po<strong>in</strong>t of π(w) coll<strong>in</strong>ear with w. Now p ∼ w,<br />

p ∈ π(w), w ∈ π(p), w ∈ π(w) ⇒ π(p) meets π(w) <strong>in</strong> S. And no triangles <strong>in</strong><br />

S forces p · w = π(p), i.e., p ∈ Ω. So p = L ∩ π(w) ∈ Ω.<br />

Conversely, suppose y ∈ Ω. Put w ′ = π(y) ∩ π(z). So y · z = π(w ′ ), <strong>and</strong><br />

y ∈ π(w ′ ) ∩ L. S<strong>in</strong>ce y <strong>and</strong> w ′ are coll<strong>in</strong>ear <strong>in</strong> S, <strong>and</strong> π(z) ⊆ ν(x), we have<br />

w ′ ∈ ν(y) ∩ π(z) ⊆ ν(y) ∩ ν(x) ∩ π(z) = L ′ ∩ π(z) = w. So w = w ′ , imply<strong>in</strong>g<br />

y = π(w) ∩ L, as claimed. Condition (c) is clear.


12.8. THE OVOID OF J. TITS 569<br />

π(y)<br />

x ∈ Ω<br />

❅ ❡✉ ❡✉ L ∈ B<br />

❅❅❅❅❅❅❅❅❅❅❅y<br />

= π(w) ∩ L<br />

❅ ❅<br />

<br />

z = π(x) ∩ L<br />

π(w)<br />

π(x)<br />

′<br />

w<br />

✉<br />

✉<br />

π(z)<br />

L ′ = ν(L)<br />

The above proof shows the follow<strong>in</strong>g: If x ∈ Ω, x ∈ L ∈ B, then the other<br />

po<strong>in</strong>t y of L∩Ω is obta<strong>in</strong>ed as follows: Put z = π(x)∩ν(L), w = π(z)∩ν(L).<br />

Then y = π(w) ∩ L. Moreover, y · w = π(y).<br />

12.8 The ovoid of J. Tits<br />

Return to the specific polarity π of Theorem 12.7.1, with q = 2 2m+1 , etc. Put<br />

Ω = {(xi) : (xi) ∈ π(xi)}. π(xi) was def<strong>in</strong>ed as the row space of a certa<strong>in</strong><br />

matrix, but it is also easy to confirm that π(xi) is the right null space of


570 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

⎛<br />

⎜<br />

⎝<br />

0 a σ/2<br />

x x σ 1 x σ 3<br />

a σ/2<br />

x 0 x σ 2 x σ 0<br />

x σ 1 x σ 2 0 a σ/2<br />

x<br />

x σ 3 x σ 0 a σ/2<br />

x<br />

0<br />

⎞<br />

⎟<br />

⎠ , ax = x0x1 + x2x3.<br />

And we know there must be exactly 1 + q 2 po<strong>in</strong>ts <strong>in</strong> Ω. But then it is<br />

easy to check directly that p = (0, 1, 0, 0) ∈ Ω, <strong>and</strong> if f(a, b) = a σ+2 +ab+b σ ,<br />

then (1, f(a, b), a, b) ∈ Ω. Hence we have<br />

Theorem 12.8.1. Ω = {(0, 1, 0, 0)} ∪ {(1, f(a, b), a, b) : a, b ∈ F } is the Tits<br />

ovoid.<br />

Def<strong>in</strong>e ηt ∈ P GL(3, q) by: For 0 = t ∈ F , ηt : (xi) ↦→ (xi)[ηt], where<br />

[ηt] =<br />

⎛<br />

⎜<br />

⎝<br />

And put N =< ηt : 0 = t ∈ F >.<br />

1 0 0 0<br />

0 t σ+2 0 0<br />

0 0 t 0<br />

0 0 0 t σ+1<br />

⎞<br />

⎟<br />

⎠ .<br />

Theorem 12.8.2. N fixes (0, 1, 0, 0) <strong>and</strong> (1, 0, 0, 0) <strong>and</strong> permutes the other<br />

po<strong>in</strong>ts of Ω <strong>in</strong> q + 1 orbits, each of size q − 1.<br />

Proof. Straightforward, given the above description of Ω.<br />

Theorem 12.8.3. f(a, b)+f(x, y)+x(a σ+1 +b)+ya = f(a+x, b+a σ x+y).<br />

Proof. Straightforward.<br />

For a, b ∈ F , def<strong>in</strong>e τa,b ∈ P GL(3, q) by τa,b : (xi) ↦→ (xi)[τa,b], where<br />

[τa,b] =<br />

⎛<br />

⎜<br />

⎝<br />

1 f(a, b) a b<br />

0 1 0 0<br />

0 a σ+1 + b 1 a σ<br />

0 a 0 1<br />

⎞<br />

⎟<br />

⎠ .<br />

Theorem 12.8.4. τa,b leaves Ω <strong>in</strong>variant. In fact,


12.8. THE OVOID OF J. TITS 571<br />

(i) τa,b : (1, f(x, y), x, y) ↦→ (1, f(a + x, b + a σ x + y), a + x, b + a σ x + y).<br />

(ii) [(τa,b) −1 ] = [τ a,a σ+1 +b] =<br />

⎛<br />

⎜<br />

⎝<br />

1 f(a, b) a a σ+1 + b<br />

0 1 0 0<br />

0 b 1 a σ<br />

0 a 0 1<br />

(iii) f(a, b) = f(a, y) iff y = b or y = b + a σ+1 .<br />

(iv) ηt ◦ τa,b ◦ (ηt) −1 = τ a<br />

t ,<br />

b<br />

t<br />

σ+1 .<br />

Proof. The proof of (i) is essentially Theorem 12.8.3, <strong>and</strong> parts (ii), (iii) <strong>and</strong><br />

(iv) are easy to check.<br />

Put T = 〈τa,b : a, b ∈ F 〉. The follow<strong>in</strong>g is now clear:<br />

Theorem 12.8.5. We have<br />

(i) T is a group.<br />

(ii) T fixes (0, 1, 0, 0) <strong>and</strong> is sharply transitive on Ω \ {(0, 1, 0, 0)}.<br />

(iii) Gp = 〈N , T 〉 = N · T = T ⋊ N , a semidirect product.<br />

The tangent plane to Ω at (1, f(x, y), x, y) is ν(1, f(x, y), x, y) = [f(x, y), 1, y, x] T .<br />

As it conta<strong>in</strong>s the po<strong>in</strong>t (1, f(a, b), a, b) iff (a, b) = (x, y), we have<br />

Theorem 12.8.6. The follow<strong>in</strong>g hold:<br />

(i) f(x, y) + f(a, b) + ay + bx = 0 iff (a, b) = (x, y).<br />

And putt<strong>in</strong>g x = y = 0,<br />

(ii) f(a, b) = 0 iff a = b = 0.<br />

Also,<br />

Theorem 12.8.7. The follow<strong>in</strong>g hold:<br />

(i) f(a, b) σ+1 = b σ+2 + abf(a, b) σ + a σ f(a, b) 2 .<br />

(ii)<br />

1<br />

f(a,b)<br />

= f<br />

<br />

b<br />

f(a,b) , <br />

a . f(a,b)<br />

Proof. Just substitute the value of f(a, b) <strong>in</strong> (i) <strong>and</strong> exp<strong>and</strong>. Do<strong>in</strong>g the same<br />

for (ii) will show that it is equivalent to (i).<br />

⎞<br />

⎟<br />


572 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

<strong>and</strong><br />

A brief computation shows that<br />

π(0, 1, 0, 0) = 〈(0, 1, 0, 0), (0, 0, 0, 1)〉 ⊂<br />

⊂ ν(0, 1, 0, 0) = [1, 0, 0, 0] T ,<br />

π(1, f(x, y), x, y) = 〈(0, x σ+1 + y, 1, x σ ), (1, y σ , 0, x σ+1 + y)〉 ⊂<br />

⊂ ν(1, f(x, y), x, y) = [f(x, y), 1, y, x] T .<br />

It follows that for each po<strong>in</strong>t p ∈ Ω, the stabilizer of the po<strong>in</strong>t p <strong>in</strong> Sz(q)<br />

must fix the l<strong>in</strong>e π(p).<br />

Def<strong>in</strong>e θ ∈ P GL(3, q) by: θ<br />

: (xi) ↦→ (xi)[θ], where<br />

0 1 0 1<br />

[θ] = ⊕ .<br />

1 0 1 0<br />

Theorem 12.8.8. The map θ leaves Ω <strong>in</strong>variant. In particular,<br />

(i) θ : (0, 1, 0, 0) ↔ (1, 0, 0, 0), <strong>and</strong><br />

(ii) θ : (1, f(a, b), a, b) ↔<br />

<br />

b 1, f f(a,b) , <br />

a<br />

f(a,b)<br />

b , f(a,b) , <br />

a<br />

f(a,b) .<br />

Proof. Writ<strong>in</strong>g out the image of (1, f(a, b), a, b) under θ shows that Theorem<br />

12.8.6(ii) proves the result.<br />

Now put Sz(q) = 〈N , T , θ〉, q = 22m+1 . Then it is clear that Sz(q)<br />

is doubly transitive on the po<strong>in</strong>ts of Ω. The stabilizer of one po<strong>in</strong>t (e.g.,<br />

(0, 1, 0, 0)) <strong>in</strong> Sz(q) is isomorphic to 〈N , T 〉. In fact, J. Tits [Ti62] proves<br />

that Sz(q) is the complete group of all coll<strong>in</strong>eations of P G(3, q) leav<strong>in</strong>g Ω<br />

<strong>in</strong>variant. In the present work we assume this without proof.<br />

Suppose that x ∈ Ω, so ν(x) is the plane tangent to Ω at x. S<strong>in</strong>ce Sz(q)<br />

is (doubly) transitive on po<strong>in</strong>ts, we may assume that p = (0, 1, 0, 0) <strong>and</strong> then<br />

study the stabilizer Gp = N T of the po<strong>in</strong>t p <strong>in</strong> Sz(q). Each element of Gp<br />

has a matrix of the form<br />

ηt · τa,b =<br />

⎛<br />

⎜<br />

⎝<br />

1 f(a, b) a b<br />

0 t σ+2 0 0<br />

0 t(a σ+1 + b) t ta σ<br />

0 t σ+1 a 0 t σ+1<br />

⎞<br />

⎟<br />

⎠ .


12.8. THE OVOID OF J. TITS 573<br />

As we saw above, π(p) = 〈p, (0, 0, 0, 1)〉 is fixed by these coll<strong>in</strong>eations,<br />

<strong>and</strong> the other l<strong>in</strong>es of ν(p) through p are permuted as follows:<br />

ηt · τα,b : 〈p, (0, 0, 1, c)〉 ↦→ 〈p, (0, 0, 1, a σ + ct σ )〉.<br />

Here a, b, t ∈ Fq with t = 0. So Gp fixes the l<strong>in</strong>e π(p) <strong>and</strong> is transitive on the<br />

q other l<strong>in</strong>es of ν(p) through p.<br />

The planes conta<strong>in</strong><strong>in</strong>g π(p) are the planes [x, 0, z, 0]. τa,b : [x, 0, 1, 0] ↦→<br />

[x + a, 0, 1, 0], so τ0,b fixes each plane through π(p). ν([x, 0, 1, 0]) = (0, x, 0, 1)<br />

is the nucleus of<br />

Ωx = Ω ∩ [x, 0, 1, 0] = {(0, 1, 0, 0)} ∪ {(1, f(x, b), x, b) : b ∈ Fq}.<br />

In particular, τ0,b : (1, f(x, y), x, y) ↦→ (1, f(x, b+y), x, b+y), <strong>and</strong> τ0,b <strong>in</strong>duces<br />

an elation of [x, 0, 1, 0] with axis π(p) <strong>and</strong> center (0, xb + b σ , 0, b). It follows<br />

that π(p) is the axis of the translation oval Ωx. We state this as a theorem.<br />

Theorem 12.8.9. If p ∈ Ω, then π(p) is the axis of the oval Ωx = ν(x) ∩ Ω<br />

for each po<strong>in</strong>t x ∈ π(p) \ {p}, i.e., π(p) is the axis of each (translation) oval<br />

of Ω determ<strong>in</strong>ed by a cutt<strong>in</strong>g plane through π(p).<br />

Such a family of q ovals conta<strong>in</strong><strong>in</strong>g a common tangent which is an axis of<br />

each of them is called an axial pencil.<br />

Now suppose that x ∈ Ω, so that ν(x)is a plane secant to Ω, <strong>and</strong> Ωx =<br />

ν(x) ∩ Ω is an oval <strong>in</strong> ν(x) with nucleus x. Moreover, as we show next, the<br />

po<strong>in</strong>t π(x) ∩ ν(x) is a special po<strong>in</strong>t of the oval Ωx called the noed of Ωx.<br />

(Sometimes the noed is called the corner of Ωx.)<br />

Of course, if x ∈ Ω, then x ∈ π(x). Suppose this holds. Then the only<br />

l<strong>in</strong>es of ν(x) which are self-conjugate w.r.t. ν pass through x. Hence π(x) ⊆<br />

ν(x), so z = π(x) ∩ ν(x) is a well-def<strong>in</strong>ed po<strong>in</strong>t. Now z ∈ π(x) ⇒ x ∈ π(z).<br />

And z ∈ ν(x) ⇒ x ∈ ν(z). Suppose for a moment that z ∈ Ω, i.e., z ∈ π(z).<br />

So z is the unique po<strong>in</strong>t of π(x) coll<strong>in</strong>ear <strong>in</strong> S with x, <strong>and</strong> x = π(z) ∩ ν(z) is<br />

the unique po<strong>in</strong>t of π(z) coll<strong>in</strong>ear with z. But x coll<strong>in</strong>ear with z <strong>in</strong> S implies<br />

π(x) must be concurrent with π(z), giv<strong>in</strong>g a triangle. The only possibility is<br />

then that z ∈ π(z). So z = π(x) ∩ ν(x) ∈ Ωx. And the subgroup of Sz(q)<br />

fix<strong>in</strong>g Ωx must fix the noed zx = π(x) ∩ ν(x). We have proved the follow<strong>in</strong>g:<br />

Theorem 12.8.10. If x ∈ Ω, then zx = π(x) ∩ ν(x) is a po<strong>in</strong>t of Ωx (i.e.,<br />

the noed), which must be fixed by the subgroup of Sz(q) fix<strong>in</strong>g x (or leav<strong>in</strong>g


574 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

<strong>in</strong>variant the plane Ωx). Also, if p = (0, 1, 0, 0) ∈ Ω, it is easy to check that p<br />

is the noed of each Ωx, i.e., of each plane section of Ω by a plane conta<strong>in</strong><strong>in</strong>g<br />

π(p).<br />

At this po<strong>in</strong>t we know that Sz(q) is doubly transitive on the po<strong>in</strong>ts of Ω,<br />

so <strong>in</strong> particular it is transitive on the set of secant l<strong>in</strong>es. The q + 1 ovals of<br />

Ω ly<strong>in</strong>g <strong>in</strong> the q + 1 planes through a fixed secant l<strong>in</strong>e form a bundle of Ω.<br />

For example, if x = (0, 0, x2, x3), ν(x) = [0, 0, x3, x2] T , <strong>and</strong> Ω ∩ ν(x) =<br />

Ωx = {(0, 1, 0, 0)} ∪ {(1, f(a, b), a, b) : ax3 + bx2 = 0}. As x2, x3 vary, these<br />

ovals Ωx vary over the q + 1 ovals that conta<strong>in</strong> the two po<strong>in</strong>ts (0, 1, 0, 0) <strong>and</strong><br />

(1, 0, 0, 0) of Ω. Hence this set of q + 1 ovals is a bundle. of ovals. Note that<br />

θ <strong>in</strong>terchanges (0, 0, 1, 0) <strong>and</strong> (0, 0, 0, 1), <strong>and</strong><br />

ηt : (0, 0, 1, y) ↦→ (0, 0, 1, yt σ ).<br />

Also, both N <strong>and</strong> θ leave the secant l<strong>in</strong>e L =< (1, 0, 0, 0), (0, 1, 0, 0) > <strong>in</strong>variant.<br />

So < N , θ > permutes the planes through L <strong>in</strong> at most two orbits. But<br />

(0, 0, 0, 1) θ·τ1,1 = (0, 0, 1, 1), so at least they are all <strong>in</strong> the same orbit under<br />

Sz(q). At this po<strong>in</strong>t we see that Sz(q) is transitive on the pairs (ℓ, π), where ℓ<br />

is a secant l<strong>in</strong>e conta<strong>in</strong>ed <strong>in</strong> a cutt<strong>in</strong>g plane π. This establishes the follow<strong>in</strong>g:<br />

Theorem 12.8.11. Each oval section of Ω is a translation oval equivalent to<br />

Oσ. Moreover, if x is the nucleus of some oval section, then the l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g<br />

the nucleus x <strong>and</strong> its noed zx must be the axis of the oval Ωx = ν(x) ∩ Ω.<br />

So consider an example of one of the planes of the bundle mentioned<br />

above. Let x = (0, 0, 1, 1), so ν(x) = [0, 0, 1, 1], <strong>and</strong> ν(x) ∩ Ω = Ωx =<br />

{(0, 1, 0, 0)} ∪ {(1, a σ+2 + a 2 + a σ , a, a) : a ∈ F }.<br />

π(0, 0, 1, 1) =< (1, 0, 1, 0), (0, 1, 0, 1) > .<br />

Here π(0, 0, 1, 1) ∩ Ω = (1, 1, 1, 1), the noed of Ωx. But the plane [0, 0, 1, 1]<br />

conta<strong>in</strong>s p = (0, 1, 0, 0) <strong>and</strong> meets ν(p) <strong>in</strong> the tangent l<strong>in</strong>e m = 〈p, (0, 0, 1, 1)〉,<br />

which is different from π(p). Hence the q planes through the l<strong>in</strong>e m different<br />

from [1, 0, 0, 0] meet Ω <strong>in</strong> an oval for which m is not an axis, i.e., the q ovals<br />

form a non-axial pencil.<br />

[τ −1<br />

1,1 θηtθτ1,1] =<br />

⎛<br />

⎜<br />

⎝<br />

t σ+2 1 + t σ+2 t σ+1 + t σ+2 t σ+2 + t σ+1<br />

0 1 0 0<br />

0 1 + t t σ+1 t + t σ+1<br />

0 1 + t 0 t<br />

⎞<br />

⎟<br />


12.8. THE OVOID OF J. TITS 575<br />

fixes (1, 1, 1, 1) <strong>and</strong> (0, 1, 0, 0) <strong>and</strong> (for a = 1) maps (1, a σ+2 + a 2 + a σ , a, a)<br />

to (1, b σ+2 + b 2 + b σ , b, b), where b = 1 + t −1 + at −1 , i.e., a = 1 + (b + 1)t. So<br />

these coll<strong>in</strong>eations, all of which leave <strong>in</strong>variant the ovoid Ω, act transitively<br />

on the q − 1 po<strong>in</strong>ts of Ωx other than (1, 1, 1, 1) <strong>and</strong> (0, 1, 0, 0).<br />

Now consider the homography<br />

φ : (x0, x1, x2, x3) ↦→ (x0, x1, x3, x2).<br />

Clearly φ commutes with ν, so φ preserves W (q), <strong>and</strong> φ fixes p = (0, 1, 0, 0).<br />

But φ maps the l<strong>in</strong>e π(p) to 〈p, (0, 0, 1, 0)〉 = π(p), so φ cannot belong to<br />

Sz(q). Put Ω = Ω1 <strong>and</strong> Ω φ = Ω2. This gives a very important example as<br />

described <strong>in</strong> the next thereom.<br />

Theorem 12.8.12. Let p = (0, 1, 0, 0) <strong>and</strong> ℓ = 〈p, (0, 0, 0, 1)〉, <strong>and</strong> let Ω1<br />

<strong>and</strong> Ω2 be the two Tits ovoids described above, both determ<strong>in</strong><strong>in</strong>g the same<br />

symplectic geometry W (q). Then ℓ is a l<strong>in</strong>e of W (q) (i.e., tangent to both<br />

Ω1 <strong>and</strong> Ω2 at p). However, ν(p) = [1, 0, 0, 0] is the tangent to Ωi at p for<br />

both i = 1 <strong>and</strong> i = 2. Hence each other plane through ℓ is a cutt<strong>in</strong>g plane<br />

with respect to Ωi, i = 1, 2, but such a plane meets Ω1 <strong>in</strong> an oval for which<br />

ℓ is an axis, <strong>and</strong> meets Ω2 <strong>in</strong> an oval for which ℓ is not an axis. (S<strong>in</strong>ce<br />

ℓ = 〈p, (0, 0, 0, 1)〉 is the axis of the <strong>in</strong>tersection with Ω of the planes through<br />

ℓ, ℓ φ = 〈p, (0, 0, 1, 0)〉 is the axis of the <strong>in</strong>tersection with Ω of the planes<br />

through ℓ φ .)<br />

=<br />

The spread associated with Ω is π(Ω). In detail:<br />

π(0, 1, 0, 0) =<br />

π(1, f(a, b), a, b) =<br />

⎛<br />

⎜<br />

⎝<br />

=<br />

0 1 0 0<br />

0 0 0 1<br />

<br />

;<br />

a σ a 2(σ+1) + (ab) σ + b 2 a σ+1 + b 0<br />

1 b σ 0 a σ+1 + b<br />

a σ+1 + b 0 b σ a 2(σ+1) + (ab) σ + b 2<br />

0 a σ+1 + b 1 a σ<br />

1 b σ 0 a σ+1 + b<br />

0 a σ+1 + b 1 a σ<br />

<br />

.<br />

⎞<br />

<br />

⎟<br />

⎠<br />

Exercise: Write out the conditions for these l<strong>in</strong>es to be a spread <strong>and</strong><br />

discover that this holds iff f(a, b) + f(c, d) = ad + bc iff (a, b) = (c, d).


576 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

12.9 The Hermitian geometry H(3, q 2 )<br />

Over E = GF (q 2 ) ⊇ F = GF (q), consider the Hermitian form on E 4 given<br />

by (where ā = a q for a ∈ E):<br />

U((x0, x1, x2, x3), (y0, y1, y2, y3)) =<br />

3<br />

xi¯y3−i. (12.22)<br />

Put H(3, q 2 ) = {(x0, x1, x2, x3) ∈ P g(3, q 2 ) : x0¯x3 + x1¯x2 + x2¯x1 + x3¯x0 = 0}.<br />

Note: H(3, q 2 ) is a generalized quadrangle GQ(q 2 , q).<br />

For a l<strong>in</strong>e l = 〈(xi), (yi)〉 <strong>in</strong> P G(3, q 2 ), recall the Kle<strong>in</strong> map G (with<br />

<strong>in</strong>verse H) def<strong>in</strong>ed by<br />

<br />

<br />

where lij = <br />

i=0<br />

G(l) = L = (l01, l23, l02, l31, l03, l12) ∈ Q + (5, q) = H5,<br />

xi xj<br />

yi yj<br />

<br />

<br />

<br />

.<br />

Recall that if a l<strong>in</strong>e ℓ of P G(3, q) has coord<strong>in</strong>ates L = (l01, l23, l02, l31, l03, l12),<br />

it has dual coord<strong>in</strong>ates ˆ L = (l23, l01, l31, l02, l12, l03).<br />

There is a unitary polarity µ : (a0, a1, a2, a3) ↔ {(ā3, ā2, ā1, ā0) T } ⊥ =<br />

[ā3, ā2, ā1, ā0] T . Here (a0, a1, a2, a3) belongs to H(3, q 2 ) if <strong>and</strong> only if (a0, a1, a2, a3) ∈<br />

(a0, a1, a2, a3) µ .<br />

So if l =<br />

a0 a1 a2 a3<br />

b0 b1 b2 b3<br />

<br />

, then<br />

l µ = {(ā3, ā2, ā1, ā0) T } ⊥ ∩ {( ¯ b3, ¯ b2, ¯ b1, ¯ b0) T } ⊥ .<br />

So l µ has dual coord<strong>in</strong>ates<br />

<br />

ā3 ā2<br />

<br />

<br />

<br />

,<br />

<br />

<br />

<br />

ā1<br />

<br />

ā0 <br />

<br />

,<br />

<br />

<br />

<br />

¯ b3 ¯ b2<br />

¯ b1 ¯ b0<br />

ā3 ā1<br />

¯b3 ¯b1 <br />

<br />

<br />

,<br />

<br />

<br />

<br />

ā0 ā2<br />

¯b0 ¯b2 <br />

<br />

<br />

,<br />

<br />

<br />

<br />

= ( ¯ l32, ¯ l10, ¯ l31, ¯ l02, ¯ l30, ¯ l21).<br />

ā3 ā0<br />

¯b3 ¯b0 <br />

<br />

<br />

,<br />

<br />

<br />

<br />

Hence l µ has regular coord<strong>in</strong>ates ( ¯ l01, ¯ l23, − ¯ l02, − ¯ l31, ¯ l12, ¯ l03).<br />

ā2 ā1<br />

¯b2 ¯b1 Hence l µ ⊆ H(3, q 2 ) if <strong>and</strong> only if l = l µ if <strong>and</strong> only if there is a nonzero<br />

ρ ∈ GF (q 2 ) for which<br />

(l01, l23, l02, l31, l03, l12) = ρ( ¯ l01, ¯ l23, − ¯ l02, − ¯ l31, ¯ l12, ¯ l03).


12.9. THE HERMITIAN GEOMETRY H(3, Q 2 ) 577<br />

Apply the <strong>in</strong>volution a ↦→ ā (which preserves H(3, q 2 )) to get<br />

This implies<br />

( ¯ l01, ¯ l23, ¯ l02, ¯ l31, ¯ l03, ¯ l12) = ¯ρ(l01, l23, −l02, −l31, l12, l03).<br />

which <strong>in</strong> turn implies that ρ¯ρ = 1.<br />

ρ¯ρ(l01, l23, −l02, −l31, l12, l03) =<br />

ρ( ¯ l01, ¯ l23, ¯ l02, ¯ l31, ¯ l03, ¯ l12) =<br />

(l01, l23, −l02, −l31, l12, l03),<br />

Recap: l ⊆ H(3, q 2 ) if <strong>and</strong> only if there exists a ρ ∈ GF (q 2 ) such that<br />

(i) ρˆρ = 1, <strong>and</strong><br />

(ii) (l01, l23, l02, l31, l03, l12) = ρ( ¯ l01, ¯ l23, − ¯ l02, − ¯ l31, ¯ l12, ¯ l03).<br />

For 0 = α ∈ E, replace l with αl, still on H(3, q 2 ), so that ρ is replaced<br />

with some nonzero ρ0 for which ρ0 ¯ρ0 = 1. Then<br />

(αl01, αl23, αl02, αl31, αl03, αl12) =<br />

ρ0(ā ¯ l01, ā ¯ l23, −ā ¯ l02, −ā ¯ l31, ā ¯ l12, ā ¯ l03) =<br />

α(l01, l23, l02, l31, l03, l12) =<br />

αρ( ¯ l01, ¯ l23, − ¯ l02, − ¯ l31, ¯ l12, ¯ l03).<br />

Hence αρ = ρ0 ¯α. S<strong>in</strong>ce ρ0 ¯ρ0 = 1, there exists an α0 ∈ E such that ρ = ¯α0<br />

α0<br />

(by Theorem 20.2.2). If we use α0 <strong>in</strong> place of α, then α0ρ = ρ0 ¯α0, so that<br />

ρ = ρ0 · ¯α0<br />

α0 = ρ0ρ, imply<strong>in</strong>g ρ0 = 1. So l ∈ P G(3, q) has a representation<br />

L = (l01, l23, l02, l31, l03, l12) = ( ¯l01, ¯l23, −¯l02, −¯l31, ¯l12, ¯l03). This says that l<br />

on H(3, q2 ) has a representation of the form L = (a, b, cα0, dα0, u, ū) where<br />

a, b, c, d ∈ F , u ∈ E, <strong>and</strong> α0 ∈ E is fixed with α q<br />

0 = −α0, <strong>and</strong> ab+cdα2 0 +uū =<br />

0.<br />

Now consider the cases q odd <strong>and</strong> q even separately.<br />

Case 1. q odd. Project (a, b, cα0, dα0, u, ū) to (a, b, c, d, e, f), where u =<br />

e+fα0. So l on H(3, q 2 ) maps to (a, b, c, d, e, f) where ab+cdα 2 0 +e2 −f 2 α 2 0 =<br />

0. Put


578 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

so that<br />

⎛<br />

0<br />

⎜ 0<br />

⎜<br />

A = ⎜ 0<br />

⎜<br />

⎝<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

α<br />

0<br />

0<br />

0<br />

0<br />

2 0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0 0 0 0 0 −α2 ⎞<br />

⎟ ,<br />

⎟<br />

⎠<br />

0<br />

⎛<br />

A + A T ⎜<br />

= ⎜<br />

⎝<br />

0 1 0 0 0 0<br />

1 0 0 0 0 0<br />

0 0 0 α 2 0 0 0<br />

0 0 α 2 0 0 0 0<br />

0 0 0 0 1 0<br />

0 0 0 2 0 −2α 2 0<br />

So H(3, q2 ) maps to the quadric Q− (5, q) given by A with polar form given<br />

by A+AT . Here Q− (5, q) is the orthogonal sum of two hyperbolic l<strong>in</strong>es <strong>and</strong> an<br />

<br />

1 0<br />

elliptic l<strong>in</strong>e. (Exercise: Show that Q((x4, x5)) = (x4, x5)<br />

0 −α2 <br />

x4<br />

0 x5<br />

⎞<br />

⎟ .<br />

⎟<br />

⎠<br />

gives an elliptic l<strong>in</strong>e.) Hence H(3, q 2 ) maps to (the po<strong>in</strong>t-l<strong>in</strong>e dual of)<br />

Q − (5, q), which is an elliptic quadric.<br />

Case 2. q = 2 e . Here α q<br />

0 = −α0 = α0 just says that α0 ∈ GF (q). So l on<br />

H(3, q 2 ) maps to a po<strong>in</strong>t L = (a, b, c, d, u, ū) with ab + cd + uū = 0. Write<br />

F = GF (q) ⊆ GF (q 2 ) = E = F (ζ), where ζ 2 + ζ + δ = 0, for some δ ∈ F<br />

with tr(δ) = 1.<br />

Here ζ + ¯ ζ = 1; ζ · ¯ ζ = δ. If α = a + bζ, then<br />

(i) α¯α = a 2 + ab + b 2 δ;<br />

(ii) α + ¯α = b.<br />

If u = e + fζ, then ζ(e + f ¯ ζ) + ¯ ζ(e + fζ) = e, <strong>and</strong> u + ū = f.<br />

Consider the l<strong>in</strong>ear map<br />

T : P G(5, q 2 ) → P G(5, q 2 ) : (x0, . . . , x5) ↦→ (x ′ 0 , . . . , x′ 5 ),


12.10. A CLOSER LOOK AT THE KLEIN CORRESPONDENCE 579<br />

where<br />

x ′ i = xi, 0 ≤ i ≤ 3,<br />

x ′ 4 = ζx4 + ¯zx5; x ′ 5 = x4 + x5.<br />

It follows that x4 = x ′ 4 + ¯ ζx ′ 5 ; x5 = x ′ 4 + ζx′ 5 .<br />

For l ∈ H(3, q 2 ), l = H(L), suppose that L = (a, b, c, d, ū, u), a, b, c, d ∈<br />

F , u ∈ E, with ab + cd + ūu = 0. So<br />

T : L ↦→ (a, b, c, d, ζū + ¯ ζu, ū + u) = (a, b, c, d, e, f),<br />

where u = e + fζ. And ab + cd + ūu = 0 becomes<br />

⎛<br />

0<br />

⎜ 0<br />

⎜<br />

(a, b, c, d, e, f) ⎜<br />

⎝<br />

1<br />

0<br />

0<br />

0<br />

1<br />

0<br />

1<br />

⎞ ⎛<br />

a<br />

⎟ ⎜<br />

⎟ ⎜ b<br />

⎟ ⎜<br />

⎟ ⎜ c<br />

⎟ ⎜<br />

⎟ ⎜ d<br />

1 ⎠ ⎝ e<br />

0 δ f<br />

⎞<br />

⎟ = 0.<br />

⎟<br />

⎠<br />

This quadratic form is elliptic. So for q even we also have that H(3, q 2 ) is<br />

isomorphic to the po<strong>in</strong>t-l<strong>in</strong>e dual of the elliptic orthogonal geometry Q − (5, q).<br />

12.10 A Closer Look at the Kle<strong>in</strong> Correspondence<br />

In this section we collect a variety of observations about the Kle<strong>in</strong> correspondence<br />

between l<strong>in</strong>es of P G(3, q) <strong>and</strong> po<strong>in</strong>ts of the Kle<strong>in</strong> quadric H5 <strong>in</strong><br />

P G(5, q). This is adapted shamelessly from Table 15.10 (pages 29 – 31 of<br />

Hirschfeld [Hi85]).


580 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

Table of properties of Kle<strong>in</strong> correspondence<br />

Σ = P G(3, q) q P G(5, q)<br />

(q 2 + 1)(q 2 + q + 1) l<strong>in</strong>es <strong>in</strong> Σ − (q 2 + 1)(q 2 + q + 1) po<strong>in</strong>ts on H5<br />

Two skew l<strong>in</strong>es − The two po<strong>in</strong>ts of H5 on a bisecant<br />

Two <strong>in</strong>tersect<strong>in</strong>g l<strong>in</strong>es − Two po<strong>in</strong>ts whose jo<strong>in</strong> is a l<strong>in</strong>e of H5<br />

A (flat) pencil of l<strong>in</strong>es − A l<strong>in</strong>e of H5<br />

The three sides of a triangle − The three vertices of a triangle whose<br />

sides lie on H5<br />

A plane (of l<strong>in</strong>es) − A Greek plane of H5<br />

(All l<strong>in</strong>es through) a po<strong>in</strong>t − A Lat<strong>in</strong> plane of H5<br />

q + 1 po<strong>in</strong>ts on a l<strong>in</strong>e − q + 1 Lat<strong>in</strong> planes through a po<strong>in</strong>t of H5<br />

q + 1 planes on a l<strong>in</strong>e − q + 1 Greek planes through a po<strong>in</strong>t of H5<br />

A unique l<strong>in</strong>e through two po<strong>in</strong>ts − Two Lat<strong>in</strong> planes meet <strong>in</strong> a unique po<strong>in</strong>t<br />

A unique l<strong>in</strong>e on two planes − Two Greek planes meet <strong>in</strong> a unique po<strong>in</strong>t<br />

A pencil of l<strong>in</strong>es lies <strong>in</strong> a unique plane − A l<strong>in</strong>e on H5 lies <strong>in</strong> just one Greek<br />

<strong>and</strong> passes through a unique po<strong>in</strong>t plane <strong>and</strong> just one Lat<strong>in</strong> plane<br />

The l<strong>in</strong>es through a po<strong>in</strong>t <strong>and</strong> <strong>in</strong> a plane − A Lat<strong>in</strong> plane <strong>and</strong> a Greek plane<br />

form a pencil or the emptyset accord<strong>in</strong>g meet <strong>in</strong> a l<strong>in</strong>e or <strong>in</strong> the empty set<br />

as the po<strong>in</strong>t is or is not on the plane<br />

The edges of a trihedral angle <strong>and</strong> the − the vertices <strong>and</strong> sides of a triangle<br />

pencils generated by pairs of the edges <strong>in</strong> a Lat<strong>in</strong> plane


12.10. A CLOSER LOOK AT THE KLEIN CORRESPONDENCE 581<br />

Table of Kle<strong>in</strong> properties cont<strong>in</strong>ued<br />

The sides of a triangle <strong>and</strong> the pencils − The vertices <strong>and</strong> sides of a triangle<br />

generated by pairs of the sides <strong>in</strong> a Greek plane<br />

The three face planes of a trihedral − The three Greek planes through the<br />

angle sides of a triangle <strong>in</strong> a Lat<strong>in</strong> plane<br />

The three vertices of a triangle − The three Lat<strong>in</strong> planes through the sides<br />

of a triangle <strong>in</strong> a Greek plane<br />

The 3-dimensional Pr<strong>in</strong>ciple of Duality − The consistent <strong>in</strong>terchange of Lat<strong>in</strong><br />

<strong>and</strong> Greek planes<br />

A dual conic − A conic <strong>in</strong> a Greek plane<br />

The generators of a quadratic cone − A conic <strong>in</strong> a Lat<strong>in</strong> plane<br />

Two non-coplanar pencils with a − A pair of <strong>in</strong>tersect<strong>in</strong>g l<strong>in</strong>es: the<br />

common l<strong>in</strong>e <strong>and</strong> dist<strong>in</strong>ct centers section of H5 by a tangent plane<br />

A regulus: the q + 1 transversals − A conic: the section of H5 by the<br />

to three skew l<strong>in</strong>es plane of a triangle with vertices<br />

but not sides on H5<br />

A hyperbolic congruence: the (q + 1) 2 − A hyperbolic quadric H3: the section<br />

transversals of two skew l<strong>in</strong>es ℓ, ℓ ′ of H5 by a solid Π3whose polar<br />

l<strong>in</strong>e meets H5 <strong>in</strong> two po<strong>in</strong>ts<br />

Two families of q + 1 pencils each − The two reguli on H3<br />

jo<strong>in</strong><strong>in</strong>g a po<strong>in</strong>t on one of ℓ, ℓ ′ to all<br />

the po<strong>in</strong>ts on the other


582 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

Table of Kle<strong>in</strong> properties cont<strong>in</strong>ued<br />

Σ = P G(3, q) q P G(5, q)<br />

An elliptic congruence: q 2 + 1 l<strong>in</strong>es − An elliptic quadric E3 : the section<br />

form<strong>in</strong>g a regular spread of H5 by a solid whose polar l<strong>in</strong>e is<br />

skew to H5. No two po<strong>in</strong>ts of E3<br />

are conjugate with respect to H5.<br />

The regulus conta<strong>in</strong><strong>in</strong>g three l<strong>in</strong>es of an − The conic section of H5 by a plane<br />

elliptic congruence lies <strong>in</strong> the congruence through 3 po<strong>in</strong>ts on a solid section<br />

E3 lies on E3<br />

An arbitrary spread of q 2 + 1 l<strong>in</strong>es − q 2 + 1 po<strong>in</strong>ts of H5, one <strong>in</strong> each Lat<strong>in</strong><br />

<strong>and</strong> <strong>in</strong> each Greek plane; an ovoid of H5<br />

A pack<strong>in</strong>g, i.e., a partition of the l<strong>in</strong>es of − A partition of H5 <strong>in</strong>to ovoids<br />

P G(3, q) <strong>in</strong>to q 2 + q + 1 spreads<br />

A pack<strong>in</strong>g of P G(3, q) by regular spreads − A partition of H5 <strong>in</strong>to elliptic<br />

quadrics E3<br />

A parabolic congruence: q 2 + q + 1 l<strong>in</strong>es − A quadratic cone with vertex V : the<br />

meet<strong>in</strong>g the axis ℓ, no two of which meet section of H5 by a tangent solid Σ,<br />

off ℓ whose polar l<strong>in</strong>e is therefore a tangent<br />

l<strong>in</strong>e at V<br />

The q + 1 pencils of l<strong>in</strong>es <strong>in</strong> the − The q + 1 generators of the cone<br />

parabolic congruence<br />

The q 3 reguli <strong>in</strong> the parabolic − the q 3 conic sections by planes<br />

congruence not through the vertex<br />

A special l<strong>in</strong>ear complex: the l<strong>in</strong>es − A cone with H3 as base: the section<br />

meet<strong>in</strong>g (or equal to) the axis of H5 by a non-tangent hyperplane


12.10. A CLOSER LOOK AT THE KLEIN CORRESPONDENCE 583<br />

Table of Kle<strong>in</strong> properties cont<strong>in</strong>ued<br />

Σ = P G(3, q) q P G(5, q)<br />

A general l<strong>in</strong>ear complex: (q 2 + 1)(q + 1) − A parabolic quadric P4 : the section<br />

l<strong>in</strong>es of a symplectic geometry of H5 by a non-tangent hyperplane<br />

The (q 2 + 1)(q + 1) pencils <strong>in</strong> a general − The (q 2 + 1)(q + 1) l<strong>in</strong>es on<br />

l<strong>in</strong>ear complex, one through each po<strong>in</strong>t P4; one <strong>in</strong> each Lat<strong>in</strong> plane <strong>and</strong><br />

<strong>and</strong> one <strong>in</strong> each plane <strong>and</strong> one <strong>in</strong> each Greek plane<br />

A pair of apolar l<strong>in</strong>ear complexes − A pair of conjugate hyperplanes<br />

The null polarity whose self-polar odd The harmonic homology whose axial<br />

l<strong>in</strong>es form a general l<strong>in</strong>ear complex hyperplane <strong>and</strong> center are the<br />

represent<strong>in</strong>g P G(4, q) <strong>and</strong> its pole<br />

The null polarity whose even The elation whose axial hyperplane <strong>and</strong><br />

self-polar l<strong>in</strong>es form a center are the represent<strong>in</strong>g P G(4, q) <strong>and</strong><br />

general l<strong>in</strong>ear complex its pole, which lies <strong>in</strong> P G(4, q) <strong>and</strong> is<br />

the nucleus of P4.<br />

The pseudo polarity with even The projectivity (x0, . . . , x5) ↦→<br />

bil<strong>in</strong>ear form (x5, x1, x2, x1 + x3, x2 + x4, x0)<br />

x0y0 + x0y1 + x1y0 + x2y3 + x3y2<br />

with fixed po<strong>in</strong>ts the plane<br />

x1 = x2 = x0 + x5 = 0<br />

The ord<strong>in</strong>ary polarity with odd The projectivity<br />

self-conjugate quadric (x0, . . . , x5) ↦→ (x5, 2x3, 2x4, 2νx1,<br />

E3 : −νx 2 0 + x 2 1 + x2x3 = 0 2νx2, 4νx0) with no fixed po<strong>in</strong>ts<br />

The ord<strong>in</strong>ary polarity with even The projectivity (x0, . . . , x5) ↦→<br />

self-conjugate quadric (x5, x1, −x2, −x3, x4, x0)<br />

H3 : x0x1 + x2x3 = 0 with fixed po<strong>in</strong>ts the planes x0 − x5 =<br />

= x2 = x3 = 0; x0 + x5 = x − 1 = x4


584 CHAPTER 12. THE KLEIN CORRESPONDENCE<br />

Table of Kle<strong>in</strong> properties cont<strong>in</strong>ued<br />

Σ = P G(3, q) q P G(5, q)<br />

A pair of complementary − A pair of conics on H5 <strong>in</strong> polar<br />

reguli on H3<br />

planes Π2, Π ′ 2<br />

H3 does not def<strong>in</strong>e a null polarity odd Π2 ∩ Π ′ 2 = ∅<br />

H3 does def<strong>in</strong>e a null polarity even Π2 ∩ Π ′ 2 = Π0<br />

Four skew l<strong>in</strong>es with 0, 1, or − Four po<strong>in</strong>ts generat<strong>in</strong>g a solid whose<br />

2 transversals polar l<strong>in</strong>e is skew, tangent, or<br />

bisecant to H5<br />

12.11 Spreads from Flocks: The Thas-Walker<br />

Construction<br />

In this section we give a construction discovered <strong>in</strong>dependently by J. A. Thas<br />

<strong>and</strong> M. Walker [Wa76]. It is a nice application of the Kle<strong>in</strong> correspondence<br />

(<strong>and</strong> is a more general converse of Cor. 12.3.5).<br />

Let F = {C1, C2, . . . , Ct} be a flock of a quadric Q of P G(3, q), with<br />

t = q − 1, q + 1, or q accord<strong>in</strong>g as Q is elliptic, hyperbolic or a cone. Let<br />

πi be the plane for which πi ∩ Q = Ci. Embed Q <strong>in</strong> the hyperbolic (Kle<strong>in</strong>)<br />

quadric H5. Let π⊥ i be the polar plane of πi with respect to H5 meet<strong>in</strong>g H5<br />

<strong>in</strong> the conic C∗ i = π⊥ i ∩H5. For i = j, πi ∩πj is a l<strong>in</strong>e exterior to H5, imply<strong>in</strong>g<br />

that (πi ∩ πj) ⊥ = π⊥ i ∪ π⊥ j lies <strong>in</strong> a 3-space that <strong>in</strong>tersects H5 <strong>in</strong> an elliptic<br />

quadric. In particular, no two po<strong>in</strong>ts of C ∗ i ∪ C∗ j<br />

are on a common l<strong>in</strong>e of H5.<br />

Thus<br />

(a) When Q is elliptic <strong>and</strong> F has carriers x <strong>and</strong> y, C ∗ 1 ∪ C ∗ 2 ∪ · · · ∪ C ∗ q−1 ∪<br />

{x, y} = O ∗ has size q 2 + 1 <strong>and</strong> no two po<strong>in</strong>ts of this set are on a common<br />

l<strong>in</strong>e of H5.<br />

(b) When Q is hyperbolic, C ∗ 1 ∪ · · · ∪ C∗ q+1 = O∗ has size q 2 + 1 <strong>and</strong> no<br />

two po<strong>in</strong>ts of this set are on a common l<strong>in</strong>e of H5.


12.11. SPREADS FROM FLOCKS: THE THAS-WALKER CONSTRUCTION585<br />

(c) when Q is a quadratic cone with vertex x, C∗ 1 ∪ C∗ 2 ∪ · · · ∪ C∗ q = O∗<br />

has size q2 + 1 <strong>and</strong> no two of its po<strong>in</strong>ts are on a common l<strong>in</strong>e of H5.<br />

So <strong>in</strong> each of the three cases O∗ is a set of q2 + 1 po<strong>in</strong>ts, no two on a l<strong>in</strong>e<br />

of H5, which also implies that no two are <strong>in</strong> a same plane of H5. There are<br />

(1 + q)(1 + q2 ) Lat<strong>in</strong> planes <strong>and</strong> that many Greek planes of H5. Moreover,<br />

there are 1 + q Greek planes on a give po<strong>in</strong>t of H5 <strong>and</strong> 1 + q Lat<strong>in</strong> planes<br />

on that po<strong>in</strong>t. S<strong>in</strong>ce no two po<strong>in</strong>ts of O∗ can lie <strong>in</strong> the same plane, it follows<br />

that each plane of H5 conta<strong>in</strong>s exactly one po<strong>in</strong>t of O∗ . Such a set O∗ is<br />

called an ovoid of H5.<br />

Under the Kle<strong>in</strong> correspondence the po<strong>in</strong>ts of O∗ correspond to q2 + 1<br />

mutually skew l<strong>in</strong>es of P G(3, q), i.e., a spread of P G(3, q). This construction<br />

of spreads is referred to as the Thas-Walker construction. It was noted <strong>in</strong><br />

Chapter 6 that flocks of elliptic quadrics are all l<strong>in</strong>ear, as are the flocks of a<br />

hyperbolic quadric when q is even. But there are many nonl<strong>in</strong>ear flocks of<br />

quadratic cones for all q <strong>and</strong> a few of hyperbolic quadrics when q is odd.


586 CHAPTER 12. THE KLEIN CORRESPONDENCE


Chapter 13<br />

q-Clans <strong>and</strong> Their Geometries<br />

13.1 Prelim<strong>in</strong>aries<br />

Let q be an arbitrary prime power, <strong>and</strong> let Fq = GF (q) be the Galois field<br />

with q elements. Let<br />

<br />

x y<br />

A =<br />

<strong>and</strong> A<br />

w z<br />

′ <br />

′ x y<br />

=<br />

′<br />

w ′ z ′<br />

<br />

be arbitrary 2 × 2 matrices over Fq.<br />

Def<strong>in</strong>ition 13.1.1. We say A <strong>and</strong> A ′ are equivalent <strong>and</strong> write A ≡ A ′<br />

provided x = x ′ , z = z ′ , <strong>and</strong> y + w = y ′ + w ′ .<br />

Theorem 13.1.2. αAα T = αA ′ α T for all α ∈ F 2 q iff A ≡ A′ .<br />

Proof. Write α = (a, b). Then<br />

Let P be the matrix P =<br />

αAα T = a 2 x + ab(y + w) + b 2 z. (13.1)<br />

0 1<br />

−1 0<br />

Theorem 13.1.3. Let A, A ′ , B <strong>and</strong> M be arbitrary 2 × 2 matrices over F ,<br />

<strong>and</strong> let σ ∈ Aut(F ). Then<br />

<br />

.<br />

1. A ≡ B iff B = A + uP for some u ∈ Fq;<br />

587


588 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

2. A ≡ B iff A σ ≡ B σ ;<br />

3. If A ≡ A ′ , then BAB T + M ≡ BA ′ B T + M.<br />

Proof. Parts 1. <strong>and</strong> 2. are clear. For Part 3, first compute the product<br />

BABT . <br />

a<br />

c<br />

<br />

b x<br />

d w<br />

<br />

y a<br />

z b<br />

<br />

c<br />

d<br />

= (13.2)<br />

<br />

2 2 a x + ab(y + w) + b z<br />

<br />

acx + bdz + ady + bcw<br />

.<br />

acx + bdz + adw + bcy c 2 x + cd(y + w) + d 2 z<br />

Now the result follows easily.<br />

Def<strong>in</strong>ition 13.1.4. The matrix A is said to be anisotropic provided αAα T =<br />

0 iff α = (0, 0).<br />

Theorem 13.1.5. Let A, A ′ be as above, B ∈ GL(2, q), σ ∈ Aut(F ), M<br />

any 2 × 2 matrix over F . Then<br />

1. A ≡ A ′ implies A is anisotropic iff A ′ is anisotropic;<br />

2. A is anisotropic iff BA σ B T is anisotropic;<br />

3. A−A ′ is anisotropic iff (BA σ B T +M)−(B(A ′ ) σ B T +M) is anisotropic.<br />

Proof. Easy exercise.<br />

<br />

x y<br />

From Eq. 13.1 it is clear that A =<br />

is anisotropic iff a<br />

w z<br />

2x +<br />

ab(y + w) + b 2 z is irreducible over F (as a homogeneous polynomial <strong>in</strong> a <strong>and</strong><br />

b). Us<strong>in</strong>g the quadratic formula when q is odd <strong>and</strong> the usual trace condition<br />

when q = 2 e , we obta<strong>in</strong> the follow<strong>in</strong>g result.<br />

Theorem 13.1.6. The matrix A =<br />

x y<br />

w z<br />

<br />

is anisotropic iff<br />

1. −det(A + A T ) = (y + w) 2 − 4xz is a nonsquare <strong>in</strong> F , if q is odd;<br />

2. xz/(y + w) 2 has absolute trace equal to 1, if q = 2 e .


13.2. Q-CLANS 589<br />

<br />

x y x<br />

When q is odd, ≡ y+w<br />

w z<br />

2<br />

when q = 2e <br />

x y x y + w<br />

,<br />

≡<br />

w z 0 z<br />

y+w<br />

2<br />

Hence <strong>in</strong> what follows, when we deal with an anisotropic matrix A, for<br />

<br />

x y/2<br />

q odd we may write A ≡<br />

, <strong>and</strong> for q even we may write<br />

y/2 z<br />

<br />

x y<br />

A ≡ . Then Eq. 13.2 may be rewritten as follows.<br />

0 z<br />

<br />

a b x y/2 a c<br />

= (13.3)<br />

c d y/2 z b d<br />

<br />

z<br />

<br />

.<br />

<br />

;<br />

a 2 x + aby + b 2 z acx + (ad + bc)y/2 + bdz<br />

acx + (ad + bc)y/2 + bdz c 2 x + cdy + d 2 z<br />

a b<br />

c d<br />

x y<br />

0 z<br />

a 2 x + aby + b 2 z (ad + bc)y<br />

0 c 2 x + cdy + d 2 z<br />

13.2 q-Clans<br />

a c<br />

b d<br />

<br />

Def<strong>in</strong>ition 13.2.1. A q-clan is a set C =<br />

<br />

<br />

, when q is even.<br />

<br />

xt yt<br />

At ≡<br />

<br />

, when q is odd, <strong>and</strong><br />

≡ (13.4)<br />

0 zt<br />

<br />

<br />

: t ∈ F<br />

(equivalence classes of) 2 × 2 matrices over F for which all pairwise differences<br />

As − At (s, t ∈ F, s = t) are anisotropic.<br />

For q odd, we assume <strong>in</strong> general that At ∈ C is symmetric <strong>and</strong> write<br />

xt yt/2<br />

At =<br />

. For q = 2<br />

yt/2 zt<br />

e we assume <strong>in</strong> general that At ∈ C is<br />

<br />

xt yt<br />

upper triangular <strong>and</strong> write At =<br />

.<br />

0 zt<br />

So for both q even <strong>and</strong> q odd we have<br />

xt yt<br />

C = At ≡<br />

: t ∈ F , where X : t ↦→ xt, Y : t ↦→ yt, Z :<br />

0 zt<br />

t ↦→ zt are functions from F to F . It is easy to check that if C is a q-clan,<br />

then X <strong>and</strong> Z must be one-to-one, <strong>and</strong> for q = 2e Y is also one-to-one.<br />

of q


590 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

<br />

a b<br />

Moreover, by Theorem 13.1.5 if 0 = u ∈ F, σ ∈ Aut(F ), B =<br />

∈<br />

c d<br />

GL(2, q), <strong>and</strong> if x, y, z are any fixed elements of F , replac<strong>in</strong>g At ∈ C with<br />

A ′ t ≡ µBAσt BT <br />

x y<br />

+ gives a new q-clan C<br />

0 z<br />

′ = {A ′ t : t ∈ F }. Hence<br />

it follows that the def<strong>in</strong>ition below of equivalence for q-clans does give a<br />

reasonable notion of equivalence for q-clans.<br />

Def<strong>in</strong>ition 13.2.2. Let C = {At : t ∈ F } <strong>and</strong> C ′ = {A ′ t : t ∈ F } be qclans.<br />

We say C <strong>and</strong> C ′ are equivalent <strong>and</strong> write C ∼ C ′ provided there exist<br />

the follow<strong>in</strong>g: 0 = µ ∈ F, B ∈ GL(2, q), σ ∈ Aut(F ), M a 2 × 2 matrix<br />

over F , <strong>and</strong> a permutation π : t ↦→ ¯t on F for which the follow<strong>in</strong>g holds:<br />

A ′ ¯t ≡ µBAσ t BT + M, for all t ∈ F. (13.5)<br />

Theorem 13.1.6 has an obvious <strong>in</strong>terpretation for q-clans.<br />

Theorem 13.2.3. Let X :<br />

t ↦→ xt, Y : t ↦→ yt, Z : t<br />

↦→ zt be three functions<br />

xt yt<br />

from F to F . Put C = At ≡<br />

: t ∈ F . Then C is a q-clan iff<br />

0 zt<br />

the follow<strong>in</strong>g holds:<br />

(i) −det At + AT <br />

t − As + AT <br />

s = (yt − ys) 2 − 4(xt − xs)(zt − zs) is<br />

a nonsquare <strong>in</strong> F for dist<strong>in</strong>ct t, s ∈ F , if q is odd.<br />

(ii) tr<br />

= 1 for dist<strong>in</strong>ct s, t ∈ F , if q = 2e .<br />

(xs+xt)(zs+zt)<br />

(ys+yt) 2<br />

13.3 Flocks of a Quadratic Cone<br />

Let K = {(x0, x1, x2, x3) ∈ P G(3, q) : x 2 1 = x0x2}. So K is a quadratic cone<br />

<strong>in</strong> P G(3, q) with vertex V = (0, 0, 0, 1).<br />

Def<strong>in</strong>ition 13.3.1. A flock of K is a partition F = {Ct : t ∈ F } of K \{V }<br />

<strong>in</strong>to q, pairwise disjo<strong>in</strong>t conics. Each conic Ct ∈ F is a plane <strong>in</strong>tersection<br />

Ct = πt ∩ K, where πt = [xt, yt, zt, 1] T is a plane not conta<strong>in</strong><strong>in</strong>g the vertex<br />

V . We also speak of πt as a plane of the flock F.<br />

The follow<strong>in</strong>g important connection between flocks <strong>and</strong> q-clans was first<br />

discovered by J. A. Thas [Th87].


13.3. FLOCKS OF A QUADRATIC CONE 591<br />

Theorem 13.3.2. Let X : t ↦→ xt, Y : t ↦→ yt, Z : t ↦→ zt be three functions<br />

on F . For t ∈ F , put πt = [xt, yt, zt, 1] T , Ct = πt ∩ K, F = {Ct <br />

: t ∈ F }.<br />

xt yt<br />

Also put At ≡<br />

<strong>and</strong> C = {At : t ∈ F }. Then C is a q-clan iff<br />

0 zt<br />

F is a flock.<br />

Proof. We already know that if C is a q-clan, then X <strong>and</strong> Z are permutations<br />

on F . Suppose zs = zt for dist<strong>in</strong>ct s, t ∈ F . Then (0, 0, 1, −zs) ∈ πs ∩<br />

πt ∩ K. So if F is a flock, Z (<strong>and</strong> similarly, X) must be one-to-one. So<br />

we may suppose <strong>in</strong> any case that X <strong>and</strong> Z are permutations. Then the<br />

po<strong>in</strong>t (a, b, c, d) ∈ P G(3, q) belongs to πs ∩ πt ∩ K for dist<strong>in</strong>ct s, t ∈ F<br />

iff b 2 = ac <strong>and</strong> −d = axs + bys + czs = axt + byt + czt. In this case,<br />

a(xs −xt)+b(ys −yt)+c(zs −zt) = 0. If a = 0, then b = 0 <strong>and</strong> −d = czs = czt<br />

implies c = 0 = d, an impossibility. Hence πs ∩ πt ∩ K = ∅ iff (multiply<br />

through by a = 0 <strong>and</strong> use ac = b 2 ) a 2 (xs − xt) + ab(ys − yt) + b 2 (zs − zt) = 0<br />

iff (a, b) (As − At) (a, b) T = 0. It follows that F is a flock iff C is a q-clan.<br />

Theorem 13.3.3. From Theorem 4.3.1 it follows that the most general projective<br />

semil<strong>in</strong>ear map T of P G(3, q) def<strong>in</strong>ed as a map on the planes of<br />

P G(3, q) not through the vertex V , that leaves <strong>in</strong>variant the cone K, is given<br />

a b<br />

by the follow<strong>in</strong>g. There is a matrix B =<br />

∈ GL(2, q), 0 = λ ∈<br />

c d<br />

F, σ ∈ Aut(F ), fixed elements x0, y0, z0 ∈ F , for which<br />

T :<br />

⎡<br />

⎢<br />

⎣<br />

x<br />

y<br />

z<br />

1<br />

⎤<br />

⎥<br />

⎦ ↦−→<br />

⎡<br />

⎢<br />

⎣<br />

x ′<br />

y ′<br />

z ′<br />

1<br />

⎤<br />

⎥<br />

⎦ =<br />

⎛<br />

⎜<br />

⎝<br />

λa 2 λab λb 2 x0<br />

2λac λ(ad + bc) 2λbd y0<br />

λc 2 λcd λd 2 z0<br />

0 0 0 1<br />

⎞ ⎡<br />

⎟ ⎢<br />

⎟ ⎢<br />

⎠ ⎣<br />

x σ<br />

y σ<br />

z σ<br />

1<br />

⎤<br />

⎥<br />

⎦ .<br />

(13.6)<br />

Proof. This is an <strong>in</strong>terest<strong>in</strong>g exercise. See [Hi85].<br />

<br />

xt yt<br />

Now let C = At ≡<br />

: t ∈ F be a q-clan. Let F(C) =<br />

0 zt<br />

<br />

πt ∩ K : πt = [xt, yt, zt, 1] T , t ∈ F be the correspond<strong>in</strong>g flock. Put λ =<br />

1, B = I, σ = id, M = −A0. Then C ′ = {A ′ t ≡ At − A0 : t ∈ F }<br />

is a q-clan equivalent to C with A ′ 0 =<br />

<br />

0 0<br />

. And T : [x, y, z, 1]<br />

0 0<br />

T ↦−→<br />

[x−x0, y −y0, z −z0, 1] T def<strong>in</strong>es a projective semil<strong>in</strong>ear map on P G(3, q) that


592 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

leaves the cone K <strong>in</strong>variant <strong>and</strong> maps F(C) to F(C ′ ). And the plane π ′ 0 of<br />

the flock F(C ′ ) is the plane π ′ 0 = [0, 0, 0, 1] T . Hence from now on we assume<br />

without loss of generality that each q-clan C conta<strong>in</strong>s the zero matrix <strong>and</strong><br />

the correspond<strong>in</strong>g flock F(C) conta<strong>in</strong>s a conic <strong>in</strong> the plane π = [0, 0, 0, 1] T .<br />

(It is possible, however, that the matrices of C are labeled so that As ∈ C is<br />

the zero matrix for some nonzero s ∈ F .)<br />

Theorem 13.3.3 has as an immediate consequence the follow<strong>in</strong>g very important<br />

theorem.<br />

<br />

xt yt<br />

Theorem 13.3.4. Let C = At ≡<br />

: t ∈ F<br />

0 zt<br />

<strong>and</strong> C ′ <br />

= A ′ t ≡<br />

<br />

′ x t y ′ <br />

t : t ∈ F be two (not necessarily dist<strong>in</strong>ct)<br />

0 z ′ t<br />

q-clans, normalized so that A0 = A ′ 0 is the zero matrix, with correspond<strong>in</strong>g<br />

flocks F(C) <strong>and</strong> F(C ′ ). Then F(C) <strong>and</strong> F(C ′ ) are projectively equivalent iff<br />

there exist the follow<strong>in</strong>g:<br />

(i) 0 = λ∈ F , <br />

a b<br />

(ii) B = ∈ GL(2, q),<br />

c d<br />

(iii) σ ∈ Aut(F ),<br />

(iv) π : F → F : t ↦→ ¯t, a permutation, such that the follow<strong>in</strong>g<br />

condition is satisfied:<br />

⎡<br />

⎢<br />

⎣<br />

x ′ ¯t<br />

y ′ ¯t<br />

z ′ ¯t<br />

1<br />

⎤<br />

⎥<br />

⎦ =<br />

⎛<br />

⎜<br />

⎝<br />

λa 2 λab λb 2 x ′ ¯0<br />

2λac λ(ad + bc) 2λbd y ′ ¯0<br />

λc 2 λcd λd 2 z ′ ¯0<br />

0 0 0 1<br />

⎞ ⎡<br />

⎟ ⎢<br />

⎟ ⎢<br />

⎠ ⎣<br />

x σ t<br />

y σ t<br />

z σ t<br />

1<br />

⎤<br />

⎥<br />

⎦ , t ∈ F. (13.7)<br />

For q odd, so the matrices of C <strong>and</strong> C ′ are symmetric, Eq. 13.7 is equivalent<br />

to<br />

A ′ ¯t = λBAσt BT + A ′ ¯0 , t ∈ F. (13.8)<br />

For q = 2e , so the matrices of C <strong>and</strong> C ′ are upper triangular, Eq. 13.7 is<br />

equivalent to<br />

A ′ ¯t ≡ λBAσt B T + A ′ ¯0 , t ∈ F. (In fact this holds for all q.) (13.9)<br />

Clearly Theorem 13.3.4 is just a very explicit way of say<strong>in</strong>g that C ∼ C ′<br />

iff F(C) <strong>and</strong> F(C ′ ) are projectively equivalent.


13.4. 4-GONAL FAMILIES FROM Q-CLANS 593<br />

13.4 4-Gonal Families from q-Clans<br />

Throughout this section C is a<br />

given q-clan normalized so that A0 is the zero<br />

0 1<br />

matrix. And P =<br />

.<br />

−1 0<br />

For α = (a, b), β = (c, d) ∈ F 2 , put α ◦ β = ac + bd = α(β) T . Then<br />

we may def<strong>in</strong>e a group K = {(α, c, β) ∈ F 2 × F × F 2 : α, β ∈ F 2 , c ∈ F }<br />

with b<strong>in</strong>ary operation<br />

(α, c, β) ◦ (α ′ , c ′ , β ′ ) = (α + α ′ , c + c ′ + β ◦ α ′ , β + β ′ ). (13.10)<br />

This makes K <strong>in</strong>to a group of order q 5 with (α, c, β) −1 =<br />

(−α, α ◦ β − c, −β). Start<strong>in</strong>g with the q-clan C put Kt = At + A T t for<br />

all At ∈ C. Also put gt(α) = αAtα T . It is then easy to check that the<br />

follow<strong>in</strong>g holds.<br />

gt(α + β) = gt(α) + gt(β) + αKtβ T . (13.11)<br />

Then we may def<strong>in</strong>e the follow<strong>in</strong>g subgroups of K.<br />

A(∞) = {(0, 0, β) ∈ K : β ∈ F 2 };<br />

A ∗ (∞) = {(0, c, β) ∈ K : c ∈ F, β ∈ F 2 };<br />

<strong>and</strong> for all t ∈ F<br />

A(t) = {(α, gt(α), αKt) ∈ K : α ∈ F 2 };<br />

A ∗ (t) = {(α, c, αKt) ∈ K : α ∈ F 2 , c ∈ F }.<br />

Put ˜ F = F ∪ {∞}, J (C) = {A(t) : t ∈ ˜ F }, J ∗ (C) = {A ∗ (t) : t ∈ ˜ F }.<br />

Theorem 13.4.1. The triple (K, J (C), J ∗ (C)) satisfies the conditions K1<br />

<strong>and</strong> K2 of Section 9.15. The result<strong>in</strong>g GQ is denoted GQ(C) <strong>and</strong> has parameters<br />

(q 2 , q).<br />

Proof. The proof is organized <strong>in</strong>to a sequence of steps. The property needed<br />

at several crucial po<strong>in</strong>ts is that s<strong>in</strong>ce C is a q-clan, the pairwise difference of<br />

dist<strong>in</strong>ct matrices <strong>in</strong> C is always anisotropic. Then if q is odd, −det(Kt−Ku) is<br />

a nonsquare <strong>in</strong> F , imply<strong>in</strong>g Kt−Ku is nons<strong>in</strong>gular. And if q = 2e , Kt−Ku =<br />

(yt − yu)P , which is nons<strong>in</strong>gular s<strong>in</strong>ce Y : t ↦→ yt is one-to-one.<br />

Step 1. A∗ (∞) A(t) = {e} = A∗ <br />

t A(∞) for all t ∈ F .<br />

Step 2. A∗ (t) A(u) = {e} for disti<strong>in</strong>ct t, u ∈ F , precisely because<br />

Kt − Ku is nons<strong>in</strong>gular.


594 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

Step 3. For dist<strong>in</strong>ct t, u ∈ F , the follow<strong>in</strong>g are equivalent:<br />

(i) A(∞)A(t) A(u) = {e};<br />

(ii) A(t)A(∞) A(u) = {e};<br />

(iii) A(t)A(u) A(∞) = {e};<br />

(iv) At − Au is anisotropic.<br />

Step 4. For dist<strong>in</strong>ct t, u, v ∈ F, A(t)A(u) A(v) = e iff B = (Kt −<br />

Kv) −1 )(At−Av)(Kt−Kv) −1 +(Kv−Ku) −1 (Av−Au)(Kv−Ku) −1 is anisotropic.<br />

Step 5. The conclusion of the proof with separate cases for q odd <strong>and</strong> q<br />

even.<br />

Steps 1 <strong>and</strong> 2 are quite easy, <strong>and</strong> together they show that K2 is satisfied.<br />

Step 3 is equally easy, <strong>and</strong> we leave the details to the reader. Step 4 is rather<br />

more <strong>in</strong>tricate, so we <strong>in</strong>clude the details.<br />

For dist<strong>in</strong>ct t, u, v ∈ F an arbitrary element of A(t)A(u) A(v) must<br />

have the form (α + β, gt(α) + gu(β) + αKtβ T , αKt + βKu)<br />

= (α + β, gv(α + β), (α + β)Kv). From equality of the third coord<strong>in</strong>ates<br />

we have α(Kt − Kv) = β(Kv − Ku), i.e., we may put γ = α(Kt − Kv) =<br />

β(Kv − Ku), so α = γ(Kt − Kv) −1 <strong>and</strong> β = γ(Kv − Ku) −1 . Equat<strong>in</strong>g middle<br />

coord<strong>in</strong>ates, we now obta<strong>in</strong><br />

0 = gt(α) + gu(β) + αKtβ T − gv(α) − gv(β) − αKvβ T<br />

= gt(α) − gv(α) + α(Kt − Kv)β T + gu(β) − gv(β)<br />

= αAtα T + β(Kv − Ku)β T + β(Au − Av)β T<br />

= α(At − Av)α T + β(Av − Au) T β T<br />

= γ(Kt − Kv) −1 (At − Av)(Kt − Kv) −1 γ T +<br />

γ(Kv − Ku) −1 (Av − Au)(Kv − Ku) −1 γ T = γBγ T .<br />

This essentially completes Step 4. Now note that<br />

0 = (Kv − Ku) − (Kt − Ku) + (Kt − Kv)<br />

= (Kt − Kv)[(Kt − Kv) −1 − (Kt − Kv) −1 (Kt − Ku)(Kv − Ku) −1<br />

+(Kv − Ku) −1 ](Kv − Ku) =⇒<br />

0 = (Kt − Kv) −1 − (Kt − Kv) −1 (Kt − Ku)(Kv − Ku) −1 + (Kv − Ku) −1 =⇒<br />

(Kt − Kv) −1 + (Kv − Ku) −1 =<br />

(Kt − Kv) −1 (Kt − Ku)(Kv − Ku) −1 .<br />

And now it follows that B + B T = (Kt − Kv) −1 + (Kv − Ku) −1<br />

= (Kt − Kv) −1 (Kt − Ku)(Kv − Ku) −1 .<br />

First suppose that q is odd. S<strong>in</strong>ce C is a q-clan, −det(B + B T ) =<br />

(−det(Kt − Kv) −1 )(−det(Kt − Ku)(−det(Kv − Ku) −1 ) is the product of three<br />

nonsquares <strong>in</strong> F , i.e., −det(B + B T ) is a nonsquare. Hence B is anisotropic.<br />

By Step 4, the proof is complete <strong>in</strong> this case.<br />

Now suppose that q = 2 e . If A is upper triangular with upper right h<strong>and</strong>


13.5. SOME FAMILIES OF Q-CLANS 595<br />

entry equal to y <strong>and</strong> K = A + A T , then K −1 AK −1 = P (y −2 A)P . Hence the<br />

matrix B of Step 4 appears <strong>in</strong> this case as B = P ((yt − yv) −2 (At − Av) +<br />

(yv − yu) −2 (Av − Au))P , which is anisotropic iff<br />

xt−xv<br />

(yt−yv) 2 + xv−xu<br />

(yv−yu) 2<br />

yt−yv<br />

(yt−yv) 2 + yv−yu<br />

(yv−yu) 2<br />

<br />

X Y<br />

=<br />

0<br />

0 Z<br />

zt−zv<br />

(yt−yv) 2 + zv−zu<br />

(yv−yu) 2<br />

1 = tr(XY/Z 2 ) = tr(N/D), where<br />

N = xtzt(yv + yu) 4 + xuzu(yt + yv) 4 + xvzv(yt + yu) 4<br />

+ (xtzu + xuzt)(yv + yt) 2 (yv + yu) 2<br />

+ (xtzv + xvzt)(yu + yt) 2 (yu + yv) 2<br />

+ (xuzv + xvzu)(yt + yu) 2 (yu + yv) 2 ,<br />

<strong>and</strong> D = (yt + yu) 2 (yt + yv) 2 (yu + yv) 2 .<br />

But s<strong>in</strong>ce At + Au, At + Av <strong>and</strong> Au + Av are anisotropic,<br />

(xt+xu)(zt+zu)<br />

1 = tr (yt+yu) 2 + (xt+xv)(zt+zv)<br />

(yt+yv) 2 + (xu+xv)(zu+zv)<br />

(yu+yv) 2<br />

<br />

= tr(N/D).<br />

It follows that B is anisotropic, complet<strong>in</strong>g the proof.<br />

<br />

is anisotropic iff<br />

Given a q-clan C, the geometries of major <strong>in</strong>terest to us are the generalized<br />

quadrangle GQ(C) of order (q 2 , q) <strong>and</strong> the associated flock F(C). Before<br />

proceed<strong>in</strong>g with a discussion of other related geometries we pause to give <strong>in</strong><br />

some detail several of the known <strong>in</strong>f<strong>in</strong>ite families of q-clans.<br />

13.5 Some Families of q-Clans<br />

S<strong>in</strong>ce a general theory without examples is clearly not <strong>in</strong>terest<strong>in</strong>g, we pause<br />

here to give several of the known <strong>in</strong>f<strong>in</strong>ite families that are rather easily shown<br />

to exist. Later <strong>in</strong> special sections the various known families will be studied<br />

<strong>in</strong> greater detail after more theory has been developed. For example, the<br />

known flocks will be studied <strong>in</strong> terms of the <strong>in</strong>tersection patterns of their<br />

planes.<br />

13.5.1 The Classical q-Clans<br />

Let x2 + bx + c be a fixed irreducible polynomial over F . For each t ∈ F put<br />

t tb<br />

At =<br />

. It is easy to see that for dist<strong>in</strong>ct s, t ∈ F, As − At =<br />

0 tc<br />

<br />

1 b<br />

(s−t) is anisotropic. The planes of the correspond<strong>in</strong>g flock are πt =<br />

0 c<br />

[t, bt, ct, 1] T , t ∈ F . This flock is characterized by the fact that it is l<strong>in</strong>ear, i.e.,


596 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

each plane πt conta<strong>in</strong>s the l<strong>in</strong>e L = {(−by − cz, y, z, 0) ∈ P G(3, q) : y, z, ∈ F }.<br />

In [PT84] it is shown that the correspond<strong>in</strong>g GQ is isomorphic to H(3, q 2 )<br />

aris<strong>in</strong>g from a nons<strong>in</strong>gular hermitian surface <strong>in</strong> P G(3, q 2 ), <strong>and</strong> it is the po<strong>in</strong>tl<strong>in</strong>e<br />

dual of the GQ Q(5, q) aris<strong>in</strong>g from the nons<strong>in</strong>gular elliptic quadric <strong>in</strong><br />

P G(5, q).<br />

13.5.2 W.M. Kantor [Ka80]; J.C. Fisher <strong>and</strong> J.A. Thas<br />

[FT79]; M. Walker [Wa76]<br />

<br />

2 t 3t<br />

Let q ≡ 2 (mod 3) <strong>and</strong> put At ≡<br />

0 3t3 <br />

. For q = pe , p odd, −det((At −<br />

As) + (At − As) T ) = −3(t − s) 4 is a nonsquare <strong>in</strong> F iff −3 is a nonsquare iff<br />

q ≡ 2 (mod 3). For q = 2e <br />

2 2<br />

t − s t − s<br />

, At −As =<br />

0 t3 − s3 <br />

, <strong>and</strong> (t−s)(t3−s3 )<br />

(t2−s2 ) 2 =<br />

1 + <br />

t t 2<br />

+ has trace 1 iff 1 = tr(1) iff e is odd.<br />

t+s t+s<br />

In this example the flock is l<strong>in</strong>ear iff q = 2. It is easy enough to show<br />

that no three of the planes of the flock conta<strong>in</strong> a common l<strong>in</strong>e <strong>and</strong> no four of<br />

the planes conta<strong>in</strong> a common po<strong>in</strong>t. J.A. Thas [Th93] has shown that this<br />

property characterizes this flock, with f<strong>in</strong>itely many values of q for which the<br />

proof is not yet complete.<br />

13.5.3 W.M Kantor [Ka86]<br />

Let q be odd, σ ∈ Aut(F ), m a nonsquare <strong>in</strong> F . For t ∈ F , put<br />

At =<br />

t 0<br />

0 −mt σ<br />

<br />

. In this case it is almost trivial to show that C =<br />

{At : t ∈ F } is a q- clan. All planes πt = [t, 0, −mt σ , 1] T of the flock F(C)<br />

conta<strong>in</strong> the po<strong>in</strong>t (0, 1, 0, 0). The flock is l<strong>in</strong>ear iff σ = id. The planes<br />

πt, πu, πr, for dist<strong>in</strong>ct t, u, r ∈ F , conta<strong>in</strong> a common l<strong>in</strong>e iff (u − t)/(r − t)<br />

is fixed by σ. J.A. Thas [Th87] has shown that any flock whose planes<br />

all conta<strong>in</strong> a common po<strong>in</strong>t must be l<strong>in</strong>ear or equivalent to the one <strong>in</strong> this<br />

example.


13.5. SOME FAMILIES OF Q-CLANS 597<br />

13.5.4 W.M. Kantor [Ka86] for q odd; S.E. Payne [Pa85]<br />

for q even<br />

<br />

3 t 5t<br />

For q ≡ ±2(mod 5) put At ≡<br />

0 5t5 <br />

, t ∈ F . For dist<strong>in</strong>ct s, t ∈ F ,<br />

when q is odd, −det (As − At) + (As − At) T = 5(s − t) 2 (t2 + 3ts + s2 ) 2 is a<br />

nonsquare <strong>in</strong> F iff q ≡ ±2(mod 5). And when q = 2e , (t − s)(t5 − s5 )/(t3 −<br />

s3 ) 2 = <br />

ts<br />

t2 +ts+s2 2 <br />

ts + t2 +ts+s2 <br />

+ 1 has trace 1 iff tr(1) = 1 iff e is odd.<br />

The associated flock is l<strong>in</strong>ear iff q = 2 or q = 3. The planes πt, πu, πr for<br />

dist<strong>in</strong>ct t, u, r ∈ F conta<strong>in</strong> a common l<strong>in</strong>e iff tur = 0 <strong>and</strong> t + u + r = 0. It<br />

follows that for q even, q > 2, no three planes conta<strong>in</strong> a common l<strong>in</strong>e. And<br />

it follows that for all q no four planes of the flock conta<strong>in</strong> a common l<strong>in</strong>e.<br />

13.5.5 H. Gevaert <strong>and</strong> N.L. Johnson [GJ88]; q = 5 e<br />

Let q = 5e <strong>and</strong> let k be a nonsquare of F . Then for t ∈ F put At =<br />

2 t 3t<br />

. Put M = (At−As)+(At−As) T . Then −det(M) =<br />

3t 2 t(1 + kt 2 ) 2 /k<br />

(t − s) 2 (k(t − s) 2 − 1) 2 /k is a nonsquare.<br />

The correspond<strong>in</strong>g flock was orig<strong>in</strong>ally derived from some “likeable” planes<br />

of W.M. Kantor.<br />

13.5.6 H. Gevaert <strong>and</strong> N.L. Johnson [GJ88]; q = 3 e<br />

Let q = 3 e , m a nonsquare of F , At ≡<br />

t t 3<br />

0 −t(t 8 + m 2 )/m<br />

<br />

, t ∈ F . Put<br />

M = At − As + A T t − AT s . Then −det(M) = (t − s)2 [((t − s) 4 − m] 2 /m is<br />

a nonsquare of F .<br />

The correspond<strong>in</strong>g flock was orig<strong>in</strong>ally derived from some planes of M.<br />

Ganley.<br />

There are three more <strong>in</strong>f<strong>in</strong>ite families known. For q odd, there is a flock<br />

discovered by J.C. Fisher (see Fisher <strong>and</strong> Thas [FT79]); for q = 2 e there<br />

is the Subiaco q-clan discovered by W. Cherowitzo, T. Penttila, I. P<strong>in</strong>neri<br />

<strong>and</strong> G. Royle [CPPR96], <strong>and</strong> also for q = 4 k there is the Adelaide q-clan<br />

discovered by Cherowitzo, O’Keefe <strong>and</strong> <strong>and</strong> Penttila [COP01]. For small<br />

odd q some “sporadic” examples are known. For q even there are no known<br />

sporadic examples, i.e., each known q-clan is a member of an <strong>in</strong>f<strong>in</strong>ite family.<br />

For a more complete study of the known examples with q even, see [CP02].


598 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

13.6 q-Clans, Flocks & Spreads of PG(3,q)<br />

Start<strong>in</strong>g with a q-clan C we show how to construct a l<strong>in</strong>e spread of PG(3,q)<br />

(similar to a construction of Gevaert <strong>and</strong> Johnson). Or we can start with<br />

the associated flock F(C) <strong>and</strong> use the Kle<strong>in</strong> correspondence to give the construction<br />

discovered <strong>in</strong>dependently by Thas <strong>and</strong> Walker (see Section 12.11)<br />

to f<strong>in</strong>d a spread of PG(3,q). We show that these two approaches are equivalent,<br />

<strong>and</strong> extend Theorem 13.3.4 to <strong>in</strong>clude the fact that equivalent q-clans<br />

give equivalent spreads. There is a st<strong>and</strong>ard (Bose-Barlotti) construction of<br />

a translation plane from a spread of PG(3,q), with isomorphic translation<br />

planes correspond<strong>in</strong>g to projectively equivalent spreads. In this book we ignore<br />

the correspond<strong>in</strong>g planes most the time, s<strong>in</strong>ce our real <strong>in</strong>terest is <strong>in</strong> the<br />

generalized quadrangles. However, see Section 13.8<br />

*******************************************************************************<br />

for a brief treatment of these planes as well as the ∆-planes derived from<br />

them. <br />

0 1<br />

With P =<br />

, let A, B be any 2 × 2 matrices over F . Then<br />

−1 0<br />

A ≡ B iff B = A + µP for some µ ∈ F . A l<strong>in</strong>e of P G(3, q) will be given as<br />

the row space of a 2 × 4 matrix with rank 2. For example, if O (resp., I) is<br />

the 2 × 2 zero (resp., identity) matrix over F , put<br />

L∞ = 〈(O, I)〉 . (13.12)<br />

Then if u ∈ F <strong>and</strong> A is any 2 × 2 matrix over F , put<br />

L(A,u) = 〈(I, A + uP )〉 . (13.13)<br />

Lemma 13.6.1. RA = {L∞} ∪ {L(A,u) : u ∈ F } is a regulus.<br />

<br />

x y<br />

Proof. If A ≡ B, then RA = RB, so we may assume that A = . It<br />

0 z<br />

is clear that RA consists of q + 1 pairwise skew l<strong>in</strong>es. Figure 1.1 shows the<br />

transversals of RA (the horizontal l<strong>in</strong>es for (0, 0) = (a, b) ∈ F 2 ).<br />

For a l<strong>in</strong>e L, L∗ denotes the set of po<strong>in</strong>ts <strong>in</strong>cident with L. And for a<br />

matrix A, R∗ A denotes the set of po<strong>in</strong>ts <strong>in</strong>cident with a l<strong>in</strong>e of the regulus<br />

RA.


13.6. Q-CLANS, FLOCKS & SPREADS OF PG(3,Q) 599<br />

L(A, 0)<br />

L(A, u)<br />

✉ ✉ ✉<br />

p = (1, 0, x, y) p + µ(0, 0, 0, 1)<br />

✉ ✉<br />

✉<br />

ap + bq<br />

q = (0, 1, 0, z)<br />

✉<br />

ap + bq + µ(0, 0, −b, a)<br />

q + µ(0, 0, −1, 0)<br />

Figure 13.1: RA is a regulus<br />

L∞<br />

Lemma 13.6.2. Let A, B be two 2 × 2 matrices over F .<br />

(i) 〈(I, A)〉 = 〈(I, B)〉 iff A = B.<br />

(ii) 〈(I, A)〉 ∈ RB iff A ≡ B iff RA = RB.<br />

(iii) R ∗ A ∩ R∗ B ⊇ L∗ ∞, with equality iff A − B is anisotropic.<br />

✉<br />

✉<br />

(0, 0, 0, 1)<br />

(0, 0, −b, a)<br />

(0, 0, −1, 0)<br />

Proof. Parts (i) <strong>and</strong> (ii) are<br />

trivial. For part (iii) we may assume (by part<br />

x1 y1<br />

x2 y2<br />

(ii) ) that A =<br />

, B =<br />

. Then clearly R<br />

0 z1<br />

0 z2<br />

∗ A ∩ R∗B ⊇ L∗∞ .<br />

And the conta<strong>in</strong>ment is proper iff there exist u, v ∈ F for which L(A,u) =<br />

〈(I, A + uP )〉 <strong>and</strong> L(B,v) <br />

= 〈(I,<br />

<br />

B + vP )〉<br />

<br />

have nonempty <strong>in</strong>tersection,<br />

<br />

which<br />

I A + uP<br />

I A + uP<br />

holds iff 0 = det<br />

= det<br />

<br />

I B + vP<br />

<br />

0 B − A + (v − u)P<br />

x2 − x1 y2 − y1 + v − u<br />

= det<br />

= (x2 − x1)(z2 − z1) + (v − u)(y2 − y1) +<br />

u − v z2 − z1<br />

(v − u) 2 = ∆.<br />

If (x2 − x1)(z2 − z1) = 0, we can put u = 0 <strong>and</strong> v = y1 − y2 to show that<br />

R∗ A ∩ R∗B ⊇ L∗ (A,u) ∩ L∗ (B,v) = ∅. And it also follows easily <strong>in</strong> this case that<br />

A−B is NOT anisotropic. So from now on assume that (x2−x1)(z2−z1) = 0.<br />

Then<br />

∆ =<br />

<br />

<br />

1<br />

x2 − x1 y2 − y1<br />

(z2 − z1, v − u)<br />

(z2 − z1)<br />

0 z2 − z1<br />

z2 − z1<br />

v − u<br />

<br />

.<br />

(13.14)


600 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

<strong>and</strong><br />

<br />

<br />

1<br />

x2 − x1 y2 − y1 v − u<br />

∆ =<br />

(v − u, x2 − x1)<br />

(x2 − x1)<br />

0 z2 − z1 x2 − x1<br />

(13.15)<br />

So if ∆ = 0, clearly A − B cannot be anisotropic, i.e., if R∗ A ∩ R∗B = L∗∞, then A − B is not anisotropic.<br />

Conversely, suppose R∗ A ∩ R∗B = L∗∞. Hence for all u, v ∈ F , ∆<br />

= 0. We<br />

a<br />

claim that A − B is anisotropic. For suppose (a, b)(B − A) = 0 with<br />

b<br />

(0, 0) = (a, b). If a = 0, put u = 0, v = b<br />

a (z2 − z1) to contradict ∆ = 0 <strong>in</strong><br />

Eq. 13.14. If b = 0, put u = 0 <strong>and</strong> v = a<br />

b (x2 − x1) to contradict ∆ = 0 <strong>in</strong><br />

Eq. 13.15.<br />

As an immediate corollary we have the follow<strong>in</strong>g theorem.<br />

Theorem 13.6.3. Let X : t ↦→ xt; Y : t ↦→ yt; Z : t ↦→ zt be three functions<br />

xt yt<br />

from F to F . For t ∈ F put At =<br />

. Then put C = {At : t ∈ F }.<br />

0 zt<br />

With the notation as above, Rt = RAt is a regulus for each t ∈ F . Put<br />

S(C) = ∪{Rt : t ∈ F }. Then C is a q-clan iff S(C) is a spread of P G(3, q),<br />

<strong>in</strong> which case X <strong>and</strong> Z are both one-to-one.<br />

It follows that with each q-clan C there is a correspond<strong>in</strong>g l<strong>in</strong>e spread S(C)<br />

of P G(3, q), from which a st<strong>and</strong>ard construction provides a translation plane<br />

π(C). One major goal of this section is to show that two q-clans C, C ′ are<br />

equivalent iff their associated spreads S(C), S(C ′ ) are projectively equivalent.<br />

The follow<strong>in</strong>g Lemma is a big step <strong>in</strong> this direction.<br />

Lemma 13.6.4. Let C <strong>and</strong> C ′ be two (not necessarily dist<strong>in</strong>ct) q-clans. Then<br />

there is a semil<strong>in</strong>ear transformation mapp<strong>in</strong>g S(C) to S(C ′ ) <strong>in</strong> such a way<br />

that it fixes L∞ <strong>and</strong> maps the q special reguli of S(C) on L∞ to the q special<br />

reguli of S(C ′ ), if <strong>and</strong> only if C ∼ C ′ .<br />

Proof. First suppose C = {At : t ∈ F } <strong>and</strong> C ′ = {A ′ t : t ∈ F } are equivalent.<br />

This means that there exist nonzero λ ∈ F, B ∈ GL(2, q), σ ∈ Aut(F ), a<br />

2 × 2 matrix M over F , <strong>and</strong> a permutation π : t ↦→ ¯t on the elements of F for<br />

which A ′ ¯t ≡ λBAσ t B T + M for all t ∈ F , i.e., for each t ∈ F there is a ut ∈ F<br />

for which A ′ ¯t = λBAσ t BT + M + utP . Consider the semil<strong>in</strong>ear transformation<br />

def<strong>in</strong>ed by


13.6. Q-CLANS, FLOCKS & SPREADS OF PG(3,Q) 601<br />

T : (x0, x1, x2, x3) ↦→ (x σ 0 , xσ1 , xσ2 , xσ3 )<br />

<br />

−1 −1 −1 −1 λ B λ B M<br />

O BT Clearly T leaves L∞ <strong>in</strong>variant, <strong>and</strong><br />

T : L(t,u) = 〈(I, At <br />

+ uP )〉 ↦→<br />

−1 −1 −1 −1 σ λ B , λ B M + (At + uσ <br />

T P )B<br />

= I, M + λBAσ t BT + uσ <br />

T λBP B<br />

= I, λBAσ t BT + uσλ(det(B))P + M <br />

= 〈(I, A ′ ¯t − utP + uσλ(det(B))P )〉 .<br />

Hence T : Rt ↦→ R ′ ¯t <strong>and</strong> thus maps S(C) to S(C ′ ).<br />

For the converse, suppose there is a semi-l<strong>in</strong>ear transformation<br />

T : (x0, x1, x2, x3) ↦→ (x σ 0 , xσ1 , xσ 2 , xσ3 )<br />

<br />

C1 C2<br />

C3 C4<br />

(here each Ci is a 2 × 2 matrix over F ) that fixes L∞ <strong>and</strong> maps Rt to R ′ ¯t<br />

for some permutation π : t ↦→ ¯t of<br />

the elements of F . The fact that T fixes<br />

0 0<br />

L∞ implies that C3 = .<br />

0 0<br />

It is an easy exercise to show that if A <strong>and</strong> B are two 2 × 2 matrices over<br />

F , then AP B is a scalar multiple of P iff A is a scalar multiple of BT . Then<br />

T : 〈(I, At + uP )〉 ∈ Rt ↦→ 〈(C1, C2 + (Aσ t + uσP )C4)〉<br />

= I, C −1<br />

1 C2 + C −1<br />

1 Aσ t C4 + uσC −1<br />

<br />

′<br />

1 P C4 ∈ R ¯t, for all u ∈ F . S<strong>in</strong>ce this<br />

holds for all u ∈ F , C −1<br />

1 P C4 must be a scalar multiple of P , so C −1<br />

1 = λCT 4<br />

for some nonzero λ ∈ F . Hence<br />

T : 〈(I, At + uP )〉 ↦→<br />

I, λC T 4 A σ t C4 + λC T 4 C2 + λu σ (det(C4))P ∈ R ′ ¯t.<br />

Therefore, A ′ ¯t ≡ λCT 4 Aσ t C4 + λC T 4 C2 for all t ∈ F , imply<strong>in</strong>g C ∼ C ′ .<br />

In order to improve the preced<strong>in</strong>g lemma to the theorem we really want, as<br />

well as to obta<strong>in</strong> related useful <strong>in</strong>formation concern<strong>in</strong>g the associated flocks,<br />

we need to use the Kle<strong>in</strong> map from l<strong>in</strong>es of P G(3, q) to po<strong>in</strong>ts of the Kle<strong>in</strong><br />

quadric to give the Thas-Walker construction of a spread of P G(3, q) start<strong>in</strong>g<br />

with a flock of a quadratic cone. This construction was given <strong>in</strong> detail <strong>in</strong> even<br />

greater generality <strong>in</strong> Section 12.11.<br />

<br />

.


602 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

<br />

xt yt<br />

Start<strong>in</strong>g with a q-clan C = {At ≡<br />

: t ∈ F }, we have the flock<br />

0 zt<br />

F(C) = {Ct : t ∈ F }, where Ct = πt ∩ K, πt = [xt, yt, zt, 1] T . We now have<br />

two constuctions of a spread of P G(3, q) start<strong>in</strong>g with C, one go<strong>in</strong>g directly,<br />

algebraically, from the q-clan, the other one us<strong>in</strong>g the associated conical flock<br />

<strong>and</strong> us<strong>in</strong>g the Kle<strong>in</strong> correspondence.<br />

Lemma 13.6.5. Our two constructions of spreads from a q-clan are equivalent.<br />

(The proof is a variation on a treatment <strong>in</strong> Gevaert <strong>and</strong> Johnson<br />

[GJ88].)<br />

Proof. What we wishto establish is that start<strong>in</strong>g with a q-clan<br />

xt yt<br />

C = At =<br />

: t ∈ F , the l<strong>in</strong>es of the regulus Rt (as def<strong>in</strong>ed <strong>in</strong><br />

0 zt<br />

Theorem 13.6.3) Kle<strong>in</strong>-correspond to to the po<strong>in</strong>ts of a conic ly<strong>in</strong>g <strong>in</strong> a plane<br />

π⊥ t , where πt is the usual plane [xt, yt, zt, 1] T of the associated flock. For this<br />

proof we use a different (but equivalent) Kle<strong>in</strong>-correspondence. We replace<br />

the Kle<strong>in</strong> map ℓ ↦→ G(ℓ) with the specific map ℓ ↦→ p(ℓ) given below. We<br />

know that the po<strong>in</strong>ts p(L∞) <strong>and</strong> p(Lt,u) for u ∈ F form a conic <strong>in</strong> some plane<br />

π T t . So the plane πt will be the <strong>in</strong>tersection of p(L∞) ⊥ , p(Lt,0) ⊥ , <strong>and</strong> p(Lt,1) ⊥ .<br />

<br />

x0, x1, x2, x3<br />

Given a l<strong>in</strong>e L =<br />

y0, y1, y2, y3<br />

specific Kle<strong>in</strong> map<br />

<br />

, put pij =<br />

p(L) = (p01, p02, p03, p12, −p13, p23).<br />

So p(L∞) = (0, 0, 0, 0, 0, 1). And L(t,u) =<br />

<br />

<br />

<br />

xi xj<br />

yi yj<br />

1, 0, xt, yt + u<br />

0, 1, −u, zt<br />

<br />

<br />

<br />

, <strong>and</strong> use the<br />

<br />

, so<br />

p(L(t,u)) = (1, −u, zt, −xt, yt + u, u2 + ytu + xtzt). Here H = {(a1, . . . , a6)<br />

∈ P G(5, q) : a1a6 + a2a5 + a3a4 = 0}.<br />

Put (ai) ◦ (bj) = 6 i=1 aib7−i. So (ai) ⊥ (bj) iff (ai) ◦ (bj) = 0. Then<br />

p(L∞) ⊥ = {(b1, . . . , b6) : b1 = 0}<br />

p(L(t,0)) ⊥ = (1, 0, zt, −xt, yt, xtzt) ⊥<br />

= {(bi) : b6 + ztb4 − xtb3 + ytb2 + xtztb1 = 0}.<br />

And p(L(t,1)) ⊥ = (1, −1, zt, −xt, yt + 1, 1 + yt + xtzt) ⊥ =<br />

{(bi) : b6 − b5 + ztb4 − xtb3 + (yt + 1)b2 + (1 + y + t + xtzt)b1 = 0}.<br />

The <strong>in</strong>tersection of these three perps is {(0, b2, b3, b4, b2, b6) : (−b3)xt +<br />

b2yt + b4zt + b6 = 0}. We identify {(0, b2, b3, b4, b2, b6) (which is on H iff<br />

b2 2 = (−b3)b4) with (−b3, b2, b4, b6) = (x0, x1, x2, x3) ∈ Σ. So Σ ∩ H = K :<br />

x2 1 = x0x2. And (−b3)xt + b2yt + b4zt + b6 = 0 becomes


13.6. Q-CLANS, FLOCKS & SPREADS OF PG(3,Q) 603<br />

⎡<br />

xt<br />

⎤<br />

⎢ yt ⎥<br />

(x0, x1, x2, x3) ⎢ ⎥<br />

⎣ zt ⎦ = 0.<br />

1<br />

This says that the regulus Rt Kle<strong>in</strong> - corresponds with C⊥ t where Ct =<br />

πt ∩K, πt = [xt, yt, zt, 1] T . Hence the two spread constructions are essentially<br />

the same.<br />

<br />

a b ax ay + bz<br />

Lemma 13.6.6. The transversal L =<br />

to RA<br />

<br />

0 0 −b a<br />

x y<br />

where A = that meets L∞ at (0, 0, −b, a) Kle<strong>in</strong>- corresponds to the<br />

0 z<br />

po<strong>in</strong>t of Σ given by (−a2 , −ab, −b2 , a2x + aby + b2z). This implies that the q<br />

transversals (of the reguli RA) through the po<strong>in</strong>t (0, 0, −b, a) of L∞, which all<br />

lie <strong>in</strong> a plane [b, −a, 0, 0] T conta<strong>in</strong><strong>in</strong>g L∞, must Kle<strong>in</strong>-correspond to po<strong>in</strong>ts<br />

on the generator of K through the po<strong>in</strong>t (a2 , ab, b2 , 0). Hence the q + 1 planes<br />

through L∞ Kle<strong>in</strong>-correspond to the q + 1 generators of the cone K.<br />

Proof. The proof is a rout<strong>in</strong>e application of the Kle<strong>in</strong> correspondence <strong>and</strong><br />

subsequent identification with po<strong>in</strong>ts of Σ as given <strong>in</strong> the proof of Lemma 13.6.5.<br />

Lemma 13.6.7. Let F = {C1, . . . , Cq} <strong>and</strong> F ′ = {C ′ 1 , . . . , C′ q } be two flocks<br />

of K. If |F ∩ F ′ | > (q − 1)/2, then F = F ′ .<br />

Proof. Let F ∩ F ′ = {C1, . . . , Cs}. Assume that C ′ i ∈ F. Then for s + 1 ≤<br />

j ≤ q, |C ′ i ∩ Cj| ≤ 2, <strong>and</strong> clearly C ′ i ⊆ Cs+1 ∪ . . . ∪ Cq. Hence |C ′ i | ≤ 2(q − s),<br />

imply<strong>in</strong>g q + 1 ≤ 2(q − s), i.e., s ≤ (q − 1)/2.<br />

The preced<strong>in</strong>g Lemma has an immediate but <strong>in</strong>terest<strong>in</strong>g corollary.<br />

Corollary 13.6.8. If F = {C1, . . . , Cq} is a flock of a quadratic cone K such<br />

that more than (q − 1)/2 of the planes πi (where πi ⊇ Ci) share a common<br />

l<strong>in</strong>e, then this flock must be a l<strong>in</strong>ear flock. In terms of the ovoid O we obta<strong>in</strong>:<br />

if more than (q − 1)/2 planes π ⊥ lie <strong>in</strong> a common projective 3-space, then<br />

O must be an elliptic quadric of that projective 3-space, imply<strong>in</strong>g that the<br />

correspond<strong>in</strong>g spread of P G(3, q) is regular.<br />

For small q the preced<strong>in</strong>g Corollary forces all flocks to be l<strong>in</strong>ear.<br />

Corollary 13.6.9. For q = 2, 3, or 4, each flock of a quadratic cone <strong>in</strong><br />

P G(3, q) must be l<strong>in</strong>ear.


604 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

Lemma 13.6.10. Two reguli R <strong>and</strong> R ′ of P G(3, q) which share precisely<br />

one l<strong>in</strong>e L <strong>and</strong> for which all l<strong>in</strong>es of R \ {L} are disjo<strong>in</strong>t from all l<strong>in</strong>es of<br />

R ′ \ {L}, are conta<strong>in</strong>ed <strong>in</strong> exactly one regular spread of P G(3, q).<br />

Proof. Us<strong>in</strong>g the Kle<strong>in</strong> correspondence, the l<strong>in</strong>es of R (resp., R ′ ) are mapped<br />

onto the po<strong>in</strong>ts of a conic C (resp., C ′ ). Denote by π (resp., π ′ ) the plane<br />

conta<strong>in</strong><strong>in</strong>g C (resp., C ′ ). So π ∩ H = C <strong>and</strong> π ′ ∩ H = C ′ . Moreover, C<br />

<strong>and</strong> C ′ have exactly one po<strong>in</strong>t V <strong>in</strong> common <strong>and</strong> no two po<strong>in</strong>ts of C ∪ C ′<br />

are on a common l<strong>in</strong>e of H. First suppose that π <strong>and</strong> π ′ have only the<br />

po<strong>in</strong>t V <strong>in</strong> common, i.e., π <strong>and</strong> π ′ generate a projective 4-space P G(4, q).<br />

Then for each po<strong>in</strong>t pi of C ′ \ {V }, π <strong>and</strong> pi generate a projective 3-space<br />

Pi <strong>in</strong>tersect<strong>in</strong>g H <strong>in</strong> an elliptic quadric, 1 ≤ i ≤ q. Us<strong>in</strong>g the polarity ⊥<br />

w.r.t. H, we obta<strong>in</strong> q dist<strong>in</strong>ct l<strong>in</strong>es Pi ⊥ through the po<strong>in</strong>t (P G(4, q)) ⊥ <strong>and</strong><br />

conta<strong>in</strong>ed <strong>in</strong> π ⊥ . However, these q l<strong>in</strong>es Pi ⊥ must be exterior to the conic<br />

π ⊥ ∩ H, clearly an impossibility. Hence it must be that π ∩ π ′ is a l<strong>in</strong>e <strong>and</strong><br />

that π <strong>and</strong> π ′ generate a projective 3-space P G(3, q) ′ . S<strong>in</strong>ce C <strong>and</strong> C ′ are<br />

conta<strong>in</strong>ed <strong>in</strong> the quadric P G(3, q) ′ ∩ H = Q, <strong>and</strong> s<strong>in</strong>ce no l<strong>in</strong>e of H conta<strong>in</strong>s<br />

po<strong>in</strong>ts of both C \ {V } <strong>and</strong> C ′ \ {V }, this quadric Q must be elliptic. Clearly<br />

Q Kle<strong>in</strong>-corresponds to the unique regular spread of P G(3, q) conta<strong>in</strong><strong>in</strong>g R<br />

<strong>and</strong> R ′ .<br />

Theorem 13.6.11. A flock of a quadratic cone <strong>in</strong> P G(3, q) is equivalent to<br />

a l<strong>in</strong>e spread S of P G(3, q), where S is the union of q reguli Ri, 1 ≤ i ≤ q,<br />

which pairwise <strong>in</strong>tersect <strong>in</strong> the same l<strong>in</strong>e L.<br />

Proof. Start<strong>in</strong>g with a flock of a quadratic cone, we have seen that there<br />

arises a spread of the <strong>in</strong>dicated type.<br />

Conversely, let S be a spread of P G(3, q) of the <strong>in</strong>dicated type. Under<br />

the Kle<strong>in</strong> correspondence, the l<strong>in</strong>es of Ri correspond to the po<strong>in</strong>ts of a conic<br />

Ci <strong>and</strong> L corresponds to V . Denote by πi the plane conta<strong>in</strong><strong>in</strong>g Ci. By the<br />

preced<strong>in</strong>g Lemma, each two planes πi <strong>and</strong> πj, i = j, <strong>in</strong>tersect <strong>in</strong> a l<strong>in</strong>e, say<br />

Lij, which is tangent to H at V . The l<strong>in</strong>e Lij is the unique tangent l<strong>in</strong>e of<br />

Ci (resp., Cj) at V . This uniqueness shows that all Lij, i = j, co<strong>in</strong>cide. So<br />

all planes πi conta<strong>in</strong> a common tangent l<strong>in</strong>e L of H at V , which forces their<br />

perps π ⊥ i to all lie <strong>in</strong> a common 3-space Σ = L⊥ which meets H <strong>in</strong> a cone K<br />

with vertex V . And clearly these planes π ⊥ i determ<strong>in</strong>e a flock of K.<br />

Theorem 13.6.12. If S is a spread of P G(3, q) which is the union of q<br />

reguli Ri, 1 ≤ i ≤ q, shar<strong>in</strong>g precisely one l<strong>in</strong>e L, <strong>and</strong> if S conta<strong>in</strong>s at least


13.6. Q-CLANS, FLOCKS & SPREADS OF PG(3,Q) 605<br />

one regulus R dist<strong>in</strong>ct from all the Ri, then S is a regular spread ( i.e., the<br />

regulus determ<strong>in</strong>ed by any three l<strong>in</strong>es of R is conta<strong>in</strong>ed <strong>in</strong> R). This means<br />

that the correspond<strong>in</strong>g translation plane is desarguesian, the associated flock<br />

is l<strong>in</strong>ear, <strong>and</strong> the GQ constructed from the associated q-clan is classical.<br />

Proof. Under the Kle<strong>in</strong> correspondence, the l<strong>in</strong>es of Ri (resp., R) correspond<br />

to the po<strong>in</strong>ts of a conic Ci (resp., C). Let O be the ovoid C1 ∪ . . . ∪ Cq.<br />

Denote by πi (resp., π) the plane conta<strong>in</strong><strong>in</strong>g Ci (resp., C). Let L correspond<br />

to V ∈ H. By the preced<strong>in</strong>g proof the planes πi share a common l<strong>in</strong>e M<br />

which is tangent to Ci at V .<br />

Suppose first that M ∩ π = ∅. If there exists a conic Ci hav<strong>in</strong>g exactly<br />

one po<strong>in</strong>t <strong>in</strong> common with C, then by the proof of Lemma 13.6.10, π <strong>and</strong><br />

πi <strong>in</strong>tersect <strong>in</strong> a l<strong>in</strong>e, contradict<strong>in</strong>g M ∩ π = ∅. So for any Ci, Ci meets C<br />

<strong>in</strong> exactly zero or two po<strong>in</strong>ts. Suppose Ci is one of the conics meet<strong>in</strong>g C<br />

<strong>in</strong> two po<strong>in</strong>ts. Then πi ∩ π is a l<strong>in</strong>e of π, so M ∩ πi ∩ π = ∅, contradict<strong>in</strong>g<br />

M ∩ π = ∅. Consequently M ∩ π = ∅. If M ⊂ π, then C must co<strong>in</strong>cide with<br />

one of the Ci, contrary to hypothesis. Hence |M ∩ π| = 1, imply<strong>in</strong>g that<br />

M <strong>and</strong> π generate a 3-space < M, π >. If V ∈ C, then there are at least<br />

(q + 1)/2 conics Ci hav<strong>in</strong>g a nontrivial <strong>in</strong>tersection with C. The planes πi of<br />

these conics Ci are conta<strong>in</strong>ed <strong>in</strong> < M, π >. Then by Corollary 13.6.8 O is an<br />

elliptic quadric <strong>and</strong> the correspond<strong>in</strong>g spread is regular. So suppose V ∈ C.<br />

Then each conic Ci has at most one further po<strong>in</strong>t <strong>in</strong> common with C. S<strong>in</strong>ce<br />

|C \ {V }| = q = |{C1, . . . , Cq}| <strong>and</strong> s<strong>in</strong>ce any po<strong>in</strong>t of C \ {V } is on exactly<br />

one Ci, it follows that each conic Ci has exactly one po<strong>in</strong>t <strong>in</strong> common with<br />

C \ {V }. Hence all planes πi are conta<strong>in</strong>ed <strong>in</strong> < M, π > <strong>and</strong> aga<strong>in</strong> O is an<br />

elliptic quadric.<br />

The preced<strong>in</strong>g theorem provides just the right f<strong>in</strong>ish<strong>in</strong>g touch to<br />

Lemma 13.6.4. Let C <strong>and</strong> C ′ be two q-clans whose associated spreads S(C)<br />

<strong>and</strong> S(C ′ ) (with special reguli all conta<strong>in</strong><strong>in</strong>g the l<strong>in</strong>e L∞) are projectively<br />

equivalent. If either spread is regular, then so is the other <strong>and</strong> the q-clan<br />

is classical, etc. So suppose that neither spread is regular <strong>and</strong> hence each<br />

spread has just the q given reguli. If T is any semi-l<strong>in</strong>ear transformation<br />

mapp<strong>in</strong>g one spread to the other, it clearly must leave L∞ <strong>in</strong>variant <strong>and</strong><br />

map the q reguli of the one spread to the q reguli of the other. Hence by<br />

Lemma 13.6.4 the two q-clans are equivalent. This completes a proof of the<br />

follow<strong>in</strong>g theorem.


606 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

Theorem 13.6.13. Two q-clans are equivalent iff their associated spreads<br />

(<strong>and</strong> flocks!) are projectively equivalent. Moreover, the proof of Lemma 13.6.4<br />

shows how to <strong>in</strong>terpret q-clan equivalence as projective equivalence of the correspond<strong>in</strong>g<br />

spreads.<br />

13.7 The Classical Examples<br />

Before mov<strong>in</strong>g on to more <strong>in</strong>terest<strong>in</strong>g topics, we review briefly the classical<br />

situation. <br />

xt yt<br />

Let C = {At =<br />

be a q-clan normalized as usual. Then as a<br />

0 zt<br />

set of planes, the flock F(C) = {πt = [xt, yt, zt, 1] T : t ∈ Fq} conta<strong>in</strong>s the<br />

plane π0 = [0, 0, 0, 1] T , <strong>and</strong> for t ∈ F \ {0}, Lt = πt ∩ π0 = {(a, b, c, 0) :<br />

axt + byt + czt = 0}. It is easy to see that if all planes of the flock conta<strong>in</strong><br />

the l<strong>in</strong>e L1, <strong>and</strong> if x1 = 1 or y1 = 1 accord<strong>in</strong>g as q is odd or even, then<br />

(xt, yt, zt) = t(x1, y1, z1) for t ∈ F . It follows that the flock F(C) is l<strong>in</strong>ear iff<br />

the matrices of the q-clan have the form At = tA1, for t ∈ F . Such a q-clan<br />

is also called l<strong>in</strong>ear. Although the concept of q-clan had not been recognized<br />

explicitly when the monograph [FGQ] was written, section 10.6.1 of [GFQ]<br />

basically conta<strong>in</strong>s a proof that when F(C) is l<strong>in</strong>ear, the associated GQ(C) is<br />

isomorphic to the classical GQ H(3, q2 ).<br />

If S is a spread of P G(3, q), the correspond<strong>in</strong>g translation plane π(S)<br />

is def<strong>in</strong>ed as follows. Embed P G(3, q) as a hyperplane <strong>in</strong> P G(3, q). The<br />

po<strong>in</strong>ts of π(S) are of two types: (i) the po<strong>in</strong>ts of P G(4, q) \ P G(3, q) <strong>and</strong> (ii)<br />

the l<strong>in</strong>es of S. The l<strong>in</strong>es are also of two types: (a) the planes of P G(4, q)<br />

meet<strong>in</strong>g P G(3, q) <strong>in</strong> a l<strong>in</strong>e of S, <strong>and</strong> (b) the ”<strong>in</strong>f<strong>in</strong>ite” l<strong>in</strong>e L∞ <strong>in</strong>cident with<br />

the po<strong>in</strong>ts of type (ii). Otherwise the <strong>in</strong>cidence <strong>in</strong> π(S) is the natural one<br />

<strong>in</strong>duced by <strong>in</strong>cidence <strong>in</strong> P G(4, q). The spread S is regular provided the<br />

regulus conta<strong>in</strong><strong>in</strong>g any triple (L1, L2, L3) of l<strong>in</strong>es of S is conta<strong>in</strong>ed <strong>in</strong> S. It is<br />

by now a ”classical” result that the spread S is regular iff the correspond<strong>in</strong>g<br />

translation plane π(S) is desarguesian (cf., Bruck <strong>and</strong> Bose [BB66]). For our<br />

present purposes it suffices to accept the follow<strong>in</strong>g theorem.<br />

Theorem 13.7.1. Let C be a normalized q-clan. The follow<strong>in</strong>g are equivalent:


13.8. THE BOSE-BARLOTTI ∆-PLANES 607<br />

(i) C is l<strong>in</strong>ear.<br />

(ii) GQ(C) is classical, i.e., isomorphic to H(3, q 2 ).<br />

(iii) The flock F(C) is l<strong>in</strong>ear.<br />

(iv) The translation plane π(C) is desarguesian.<br />

(v) The ovoid O(C) of the Kle<strong>in</strong> quadric H is classical,<br />

i.e., it is an elliptic quadric.<br />

13.8 The Bose-Barlotti ∆-Planes<br />

It is not our <strong>in</strong>tention to delve very deeply <strong>in</strong>to the theory of f<strong>in</strong>ite translation<br />

planes. However, the isomorphism classes of the planes <strong>in</strong>troduced <strong>in</strong> this section<br />

(each of which is derived from the po<strong>in</strong>t-l<strong>in</strong>e dual of a translation plane<br />

already associated with a flock of a cone) are <strong>in</strong> one-to-one correspondence<br />

with the orbits on the generators of the cone under the semi-l<strong>in</strong>ear group<br />

preserv<strong>in</strong>g the cone K <strong>and</strong> the given flock. Hence this <strong>in</strong>creases the number<br />

of geometries related to a q-clan <strong>and</strong> also motivates the determ<strong>in</strong>ation of the<br />

orbits on the generators of the cone under the appropriate group.<br />

Let P = P G(4, q) <strong>and</strong> let Σ be a hyperplane of P . If S is a spread of<br />

Σ, we will denote by π = π(P, Σ, S) the translation plane associated with<br />

S, whose po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es will be called, respectively, π-po<strong>in</strong>ts <strong>and</strong> π-l<strong>in</strong>es.<br />

The π-po<strong>in</strong>ts are the po<strong>in</strong>ts of P \ Σ <strong>and</strong> the l<strong>in</strong>es of S. The π-l<strong>in</strong>es are the<br />

planes of P which <strong>in</strong>tersect Σ at a l<strong>in</strong>e of S, <strong>and</strong> Σ. The <strong>in</strong>cidence relation<br />

is <strong>in</strong>clusion.<br />

Now let π d denote the dual plane of π. Let Σ1 be a hyperplane of P<br />

different from Σ. As Σ ∩ Σ1 is a plane of Σ, there is exactly one l<strong>in</strong>e L of S<br />

conta<strong>in</strong>ed <strong>in</strong> the plane Σ ∩ Σ1. Follow<strong>in</strong>g Bose <strong>and</strong> Barlotti [BB71] we can<br />

construct a projective plane ∆ = ∆(P, Σ, Σ1, S) us<strong>in</strong>g P, Σ, Σ1 <strong>and</strong> S. The<br />

po<strong>in</strong>ts <strong>and</strong> the l<strong>in</strong>es of ∆ will be called, respectively, ∆-po<strong>in</strong>ts <strong>and</strong> ∆-l<strong>in</strong>es.<br />

The ∆-po<strong>in</strong>ts are of three types. The ∆-po<strong>in</strong>ts of type (1) are the planes<br />

of P which <strong>in</strong>tersect Σ at a l<strong>in</strong>e of S different from L. The ∆-po<strong>in</strong>ts of type<br />

(2) are the planes of P which <strong>in</strong>tersect Σ at L <strong>and</strong> are not conta<strong>in</strong>ed <strong>in</strong> Σ1.<br />

The ∆-po<strong>in</strong>ts of type (3) are the po<strong>in</strong>ts of L.<br />

The ∆-l<strong>in</strong>es are of three types. The ∆-l<strong>in</strong>es of type (1) are the po<strong>in</strong>ts of<br />

P which do not belong to Σ or to Σ1. The ∆-l<strong>in</strong>es of type (2) are the planes<br />

of Σ1 which do not conta<strong>in</strong> L. The l<strong>in</strong>e L is the unique ∆-l<strong>in</strong>e of type (3).<br />

A ∆-l<strong>in</strong>e α of type (2) is <strong>in</strong>cident with a ∆-po<strong>in</strong>t β of type (2) iff α ∩ β<br />

is a l<strong>in</strong>e. In all other cases, a ∆-l<strong>in</strong>e <strong>and</strong> a ∆-po<strong>in</strong>t are <strong>in</strong>cident iff they are


608 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

<strong>in</strong>cident <strong>in</strong> P .<br />

The follow<strong>in</strong>g comment is for those readers who are familiar with the<br />

concept of derivation of a translation plane. Let R(Σ1) be the set of all πl<strong>in</strong>es<br />

α such that α is either a plane of Σ1 conta<strong>in</strong><strong>in</strong>g L or α = Σ. In π d ,<br />

R(Σ1) def<strong>in</strong>es a derivable net <strong>and</strong> ∆ is the derived plane of π d obta<strong>in</strong>ed by<br />

replac<strong>in</strong>g the derivable net R(Σ1).<br />

The follow<strong>in</strong>g theorem on ∆-planes is taken without proof from section<br />

8.4 of N.L. Johnson [Jo89].<br />

Theorem 13.8.1. The planes ∆(P, Σ, Σ1, S) <strong>and</strong> ∆(P, Σ, Σ2, S) are isomorphic<br />

iff there is a coll<strong>in</strong>eation σ of Σ such that:<br />

(1) σ : S ↦→ S<br />

(2) if αi = Σ ∩ Σi for i = 1, 2, then σ : α1 ↦→ α2.<br />

We can now put together Lemmas 13.6.4 <strong>and</strong> 13.6.6 along with Theorem<br />

13.8.1 to obta<strong>in</strong> the follow<strong>in</strong>g corollary.<br />

Corollary 13.8.2. Start<strong>in</strong>g with a given q-clan C, the number of pairwise<br />

dist<strong>in</strong>ct ∆-planes derived from the plane of the spread S(C) is the same as<br />

the number of orbits on the generators of the cone K under the group of<br />

semil<strong>in</strong>ear coll<strong>in</strong>eations preserv<strong>in</strong>g the flock F(C).<br />

13.9 Property (G); some projective planes<br />

Throughout this section C = {At : t ∈ F } will be a fixed q-clan normalized<br />

0 0<br />

so that A0 =<br />

<strong>and</strong> each At is symmetric or upper triangular<br />

0 0<br />

accord<strong>in</strong>g as q is odd or even. GQ(C) is the GQ of order (q2 , q) constructed<br />

0 1<br />

from C. Also P is always the matrix P =<br />

, α ◦ β = αβ<br />

−1 0<br />

T , so<br />

αP αT = α ◦ αP T = αP ◦ α = 0.<br />

In any GQ of order (q2 , q), each triad of l<strong>in</strong>es (three l<strong>in</strong>es, no two concurrent)<br />

has exactly 1+q transversals (by the po<strong>in</strong>t-l<strong>in</strong>e dual of Theorem 9.3.6).<br />

Then each triad of those transversals aga<strong>in</strong> has 1 + q transversals, but <strong>in</strong><br />

general there is no guarantee that this sequence of triads of transversals will<br />

produce a (1 + q) × (1 + q)-grid. We now consider a special situation where<br />

such grids are always present.<br />

Consider the notion of regularity for a l<strong>in</strong>e L <strong>in</strong> the follow<strong>in</strong>g form: For<br />

any triads (L = L1, L2, L3) <strong>and</strong> (M1, M2, M3) with Li ∼ Mj whenever 2 ≤


13.9. PROPERTY (G); SOME PROJECTIVE PLANES 609<br />

i + j ≤ 5, then also L3 ∼ M3. Property (G) is a variant that is weaker <strong>in</strong> two<br />

senses. Not every triad conta<strong>in</strong><strong>in</strong>g L is <strong>in</strong>volved, <strong>and</strong> the grids that occur do<br />

not imply regularity for the pairs of nonconcurrent l<strong>in</strong>es that are <strong>in</strong>volved.<br />

Also, Property (G) is a variant of the concept of 3-regularity that appears <strong>in</strong><br />

?? for GQ of order (s, t) with s = t 2 .<br />

Def. Let L1, M1 be dist<strong>in</strong>ct concurrent l<strong>in</strong>es. We say that the pair<br />

(L1, M1) has Property (G) provided whenever (L1, L2, L3, L4) are four dist<strong>in</strong>ct<br />

pairwise noncurrent l<strong>in</strong>es <strong>and</strong> (M1, M2, M3, M4) are four dist<strong>in</strong>ct l<strong>in</strong>es for<br />

which Li ∼ Mj whenever 2 ≤ i + j ≤ 7, then also L4 ∼ M4. A GQ S is said<br />

to have Property (G) at a po<strong>in</strong>t p provided each pair (L, M) of dist<strong>in</strong>ct l<strong>in</strong>es<br />

through p has Property (G).<br />

Theorem 13.9.1. The GQ GQ(C) has Property(G) at the pont (∞). Moreover,<br />

for each t ∈ ˜ F there is a desarguesian projective plane π(t) def<strong>in</strong>ed at<br />

the l<strong>in</strong>e [A(t)].<br />

Proof. We prove this theorem by exhibit<strong>in</strong>g the (q + 1) × (q + 1) grids that<br />

exist because of Property (G) at (∞) <strong>and</strong> then coord<strong>in</strong>atize the plane π(t) as<br />

P G(2, q). For check<strong>in</strong>g these figures it is convenient first to note coll<strong>in</strong>earities<br />

<strong>in</strong> GQ(C). For t ∈ ˜ F , p t ∼ r means that po<strong>in</strong>ts p <strong>and</strong> r lie on a l<strong>in</strong>e that is<br />

a coset of A(t), with the appropriate adjustment if r = A ∗ (t)g.<br />

(i) (α, c, β) ∞ ∼ (α, c + γα T , β + γ);<br />

(ii) (α, c, β) ∞ ∼ A ∗ (∞)(α, 0,0);<br />

(iii) (α, c, β) t ∼ (α + γ, c + γAtγ T + γKtα T , β + γKt), t ∈ F, γ ∈ F 2 ;<br />

(iv) (α, c, β) t ∼ A ∗ (t)(0, 0, β − αKt), t ∈ F.<br />

(13.16)<br />

In Figs. 13.2 <strong>and</strong> 13.3 a <strong>and</strong> b vary <strong>in</strong>dependently over the elements of F ,<br />

<strong>and</strong> δ = (0, 0) is arbitrary but fixed <strong>in</strong> F 2 .<br />

The grid li<strong>in</strong>es of Fig. 13.2 that meet [A(∞)] at po<strong>in</strong>ts other than (∞)<br />

meet [A(∞)] at po<strong>in</strong>ts of the form A ∗ (∞)(α + bδ, 0,0), b ∈ F . This set<br />

of po<strong>in</strong>ts is clearly <strong>in</strong>dependent of t. Moreover, if we coord<strong>in</strong>atize the po<strong>in</strong>t<br />

A ∗ (∞)(α, 0,0) with (α, 1) ∈ P G(2, q), then the set of po<strong>in</strong>ts of the form<br />

A ∗ (∞)(α + bδ, 0,0) is coord<strong>in</strong>atized by the l<strong>in</strong>e [δP, −α ◦ δP ] T <strong>in</strong> P G(2, q).<br />

So the po<strong>in</strong>ts of [A ∗ (∞)] other than (∞) are the aff<strong>in</strong>e po<strong>in</strong>ts of a projective<br />

plane π(∞) isomorphic to P G(2, q) with <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e [0, 0, 1] T , <strong>and</strong> whose


610 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

A<br />

<br />

∗ (∞)(α, 0,0) (α, c + aδP αT , β + aδP ) (α, c, β)<br />

A<br />

<br />

<br />

<br />

<br />

<br />

<br />

∗ (∞)(α + bδ, 0,0) p<br />

(α + bδ, c+<br />

b2gt(δ) + bδKtαT [A(∞)]<br />

[A(t)]<br />

,<br />

bδKt + β)<br />

(∞) ∗ A (t)(0, 0, β − αKt + aδP ) A∗ (t)(0, 0, β − αKt)<br />

p = (α + bδ, c + δ(αP + bKt)α T + b 2 δAtα T , β + δ(aP + bKt))<br />

Figure 13.2: Grids on [A(∞)] <strong>and</strong> [A(t)].<br />

A<br />

<br />

∗ (u)(0, 0, β − αKu) (α + aγ, c + a2γAuγ T + aγKuαT , β + aγKu)<br />

(α, c, β)<br />

q1<br />

<br />

[A(u)]<br />

p1<br />

❡ <br />

p2<br />

q2<br />

<br />

[A(t)]<br />

(∞) <br />

A<br />

<br />

∗ (t)(0, 0, β − αKt + aγ(Ku − Kt)) A∗ (t)(0, 0, β − αKt)<br />

q1 = A ∗ (u)(0, 0, β − αKu + bγ(Kt − Ku))<br />

q2 = (α + bδ, c + b 2 δAtδ T + bδKtα T , β + bδKt)<br />

Figure 13.3: Grids on [A(u)] <strong>and</strong> [A(t)].


13.10. THE FUNDAMENTAL LEMMA 611<br />

f<strong>in</strong>ite l<strong>in</strong>es are the sets of po<strong>in</strong>ts <strong>in</strong>cident with the l<strong>in</strong>es of a grid conta<strong>in</strong><strong>in</strong>g<br />

(∞).<br />

Similarly, the grid l<strong>in</strong>es meet<strong>in</strong>g [A(t)] at po<strong>in</strong>ts different from (∞) meet<br />

it at the po<strong>in</strong>ts A ∗ (t)(0, 0, β − αKt + aδP ), a ∈ F . And the po<strong>in</strong>ts of<br />

[A(t)] different from (∞) are the aff<strong>in</strong>e po<strong>in</strong>ts of a plane π(t) isomorphic to<br />

P G(2, q). Coord<strong>in</strong>atize A ∗ (t)(0, 0, β) as (β, 1) ∈ P G(2, q). Then the aff<strong>in</strong>e<br />

l<strong>in</strong>e of po<strong>in</strong>ts of the form A ∗ (t)(0, 0, β − αKt + aδP ), a ∈ F , is coord<strong>in</strong>atized<br />

by the l<strong>in</strong>e [δ, (αKt − β) ◦ δ] T , <strong>and</strong> the <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>e is [0, 0, 1] T . We claim that<br />

all grids conta<strong>in</strong><strong>in</strong>g (∞) <strong>and</strong> meet<strong>in</strong>g [A(t)] determ<strong>in</strong>e the same aff<strong>in</strong>e l<strong>in</strong>es,<br />

<strong>and</strong> hence exactly the same projective plane π(t). This follows from Fig. 13.3,<br />

which shows that all aff<strong>in</strong>e l<strong>in</strong>es of π(t) have the form [δ, (αKt − β) ◦ δ] T for<br />

some δ = (0, 0), δ ∈ F 2 . This is <strong>in</strong>dependent of u ∈ ˜ F \ {t}, so a unique<br />

plane π(t) is constructed.<br />

The po<strong>in</strong>ts p1 = (α+aγ +bδ, c+a 2 γAuγ T +aγKuα T +b 2 δAtδ T +bδKt(α+<br />

aγ) T , β+aγKu+bδKt) <strong>and</strong> p2 = (α+bδ+aγ, c+b 2 δAtδ T +bδKtα T +a 2 γAuγ T +<br />

aγKu(α + bδ) T , β + bδKt + aγKu) are the same po<strong>in</strong>t iff γ(Kt − Ku)δ T = 0.<br />

So if δ is a fixed nonzero element of F 2 , put γ = δ(Kt − Ku)P to obta<strong>in</strong> a<br />

(q+1)×(q+1) grid. And the set of po<strong>in</strong>ts on [A(t)] different from (∞) <strong>and</strong> on<br />

the grid l<strong>in</strong>es, is the set of po<strong>in</strong>ts of the form A ∗ (t)(0, 0, β−αKt+aγ(Ku−Kt)),<br />

which is coord<strong>in</strong>atized by the l<strong>in</strong>e [γ(Ku −Kt)P, (αKt−β)◦(γ(Ku −Kt)P )] T .<br />

Putt<strong>in</strong>g δ = γ(Ku−Kt)P here shows that l<strong>in</strong>es have the general form claimed<br />

above.<br />

13.10 The Fundamental Lemma<br />

The theorem of this section, which we refer to as the Fundamental Lemma,<br />

really conta<strong>in</strong>s the heart of the proof of the Fundamental Theorem.<br />

Theorem 13.10.1. Let C = {At : t ∈ F } <strong>and</strong> C ′ = {A ′ t : t ∈ F } be (not<br />

necessarily dist<strong>in</strong>ct) normalized q-clans. Let θ : GQ(C) → GQ(C ′ ) be an isomorphism<br />

for which θ : (∞) ↦→ (∞), [A(∞)] ↦→ [A ′ (∞)], (0, 0,0) ↦→ (0, 0,0).<br />

Then there exist the follow<strong>in</strong>g:<br />

(i) σ ∈ Aut(F )<br />

(ii) D ∈ GL(2, q)<br />

(iii) 0 = λ ∈ F<br />

(iv) π : F → F : t ↦→ ¯t, a permutation on F for which<br />

(v) A ′ ¯t ≡ λDT Aσ t D + A′ ¯0 ∀t ∈ F.


612 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

Moreover, θ is (<strong>in</strong>duced by) an automorphism of G given by<br />

θ = θ(σ, D, λ, π) : (α, c, β) ↦→ (13.17)<br />

(λ −1 α σ D −T , λ −1 c σ + λ −2 α σ D −T A ′ ¯0 D−1 (α σ ) T , β σ D + λ −1 α σ D −T K ′ ¯0 ).<br />

Conversely, given σ, D, λ, π satisfy<strong>in</strong>g the conditions given above, θ def<strong>in</strong>ed<br />

by Eq. 13.17 gives such an isomorphism.<br />

Proof. Clearly θ is completely determ<strong>in</strong>ed as a permutation of the elements<br />

of G. And there must be a permutation π : t ↦→ ¯t on F for which θ : [A(t)] ↦→<br />

[A(¯t)]. Moreover, θ must map grids to grids. Therefore θ must map π(∞)<br />

to π ′ (∞) <strong>and</strong> π(t) to π ′ (¯t), always mapp<strong>in</strong>g <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>ts to <strong>in</strong>f<strong>in</strong>ite po<strong>in</strong>ts<br />

<strong>and</strong> <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>es to <strong>in</strong>f<strong>in</strong>ite l<strong>in</strong>es. This means that there is a B ∈ GL(2, q)<br />

<strong>and</strong> a σ ∈ Aut(F ), <strong>and</strong> for each t ∈ F a Dt ∈ GL(2, q) <strong>and</strong> a σt ∈ Aut(F ),<br />

for which<br />

(i) θ : A ∗ (∞)(α, 0,0) ↦→ (A ′ ) ∗ (∞)(α σ B, 0,0),<br />

(ii) θ : A ∗ (t)(0, 0, β) ↦→ (A ′ ) ∗ (¯t)(0, 0, β σt Dt).<br />

(13.18)<br />

S<strong>in</strong>ce (α, c, β) ∞ ∼ A ∗ (∞)(α, 0,0), clearly (α, c, β) θ ∞ ∼<br />

(A ′ ) ∗ (∞)(α σ B, 0,0). This implies that as a permutation of the elements of<br />

G, θ must have the form<br />

θ : (α, c, β) ↦→ (α σ B, (α, c, β) θ2 , (α, c, β) θ3 ). (13.19)<br />

for some functions θ2 : F 5 → F <strong>and</strong> θ3 : F 5 → F 2 that we now proceed to<br />

determ<strong>in</strong>e.<br />

S<strong>in</strong>ce (α, c, β) t ∼ A ∗ (t)(0, 0, β − αKt) for each t ∈ F ,<br />

(α σ B, (α, c, β) θ2 , (α, c, β) θ3 ) ¯t ∼ (A ′ ) ∗ (¯t)(0, 0, (β − αKt) σt Dt).<br />

This implies (α, c, β) θ3 − α σ BK ′ ¯t = (β − αKt) σt Dt, or<br />

(α, c, β) θ3 = (β − αKt) σt Dt + α σ BK ′ t (<strong>in</strong>dependent of c). (13.20)<br />

With α = 0, (0, c, β) θ3 = β σt Dt = β σ0 D0 for all t ∈ F . First put<br />

β = (1, 0), <strong>and</strong> then β = (0, 1), to force Dt = D0 = D for all t ∈ F . And D<br />

is <strong>in</strong>vertible, so σt = σ0 for all t ∈ F . So now Eq. 13.20 implies<br />

(α, c, β) θ3 = (β − αKt) σ0 D + α σ BK ′ ¯t (∀t ∈ F ; ∀α, β ∈ F 2 ). (13.21)


13.10. THE FUNDAMENTAL LEMMA 613<br />

Then for dist<strong>in</strong>ct s, t ∈ F , Eq. 13.21 implies (β − αKt) σ0 D + α σ BK ′ ¯t =<br />

(β − αKs) σ0 D + α σ BK ′ ¯s, which may be rewritten as<br />

[α(Ks − Kt)] σ0 D = α σ B(K ′ ¯s − K ′ ¯t). (13.22)<br />

Put α = (1, 0), then α = (0, 1) to get<br />

Put Eq. 13.23 <strong>in</strong>to Eq. 13.22 to get<br />

(Ks − Kt) σ0 D = B(K ′ ¯s − K ′ ¯t). (13.23)<br />

α σ0 (Ks − Kt) σ0 D = α σ0 B(K ′ ¯s − K ′ ¯t) = α σ B(K ′ ¯s − K ′ ¯t). (13.24)<br />

S<strong>in</strong>ce Ks − Kt, D, B, K ′ ¯s − K ′ ¯t are all <strong>in</strong>vertible,<br />

σ0 = σ <strong>and</strong> D = (Ks − Kt) −σ B(K ′ ¯s − (K ′ ¯t). (13.25)<br />

At this po<strong>in</strong>t θ has the follow<strong>in</strong>g appearance:<br />

θ : (α, c, β) ↦→ (α σ B, (α, c, β) θ2 ,<br />

(β − αKt) σ (Ks − Kt) −σ B(K ′ ¯s − K ′ ¯t) + α σ BK ′ ¯t).<br />

(13.26)<br />

In Fig. 13.10 we have reconstructed Fig. 13.2 specialized so that<br />

(α, c, β) = (0, 0,0), γ = bδ = aδ.<br />

And <strong>in</strong> Fig. 13.5 we have the image under θ of Fig. 13.10, us<strong>in</strong>g especially<br />

Eq. 13.18<br />

Consider the impact of the existence of the center po<strong>in</strong>t p. The fact that<br />

p lies on the horizontal l<strong>in</strong>e forces p to have the form<br />

p = (γ σ B, γ σ BA ′ ¯tB T (γ σ ) T + δ ◦ γ σ B, γ σ BK ′ ¯t + δ)<br />

for some δ = (0, 0) (by part (i) of Eq. 13.16). Then the fact that p lies on<br />

the vertical l<strong>in</strong>e forces p to have the form<br />

p = (γ σ B, γ σ BA ′ ¯tB T (γ σ ) T , γ σ P D + γ σ BK ′ ¯t).<br />

Hence δ = γ σ P D <strong>and</strong> γ σ P D ◦ γ σ B = 0. This is for all γ = (0, 0). Hence<br />

DB T = µI for some µ with 0 = µ ∈ F . Set λ = µ −1 , so<br />

B = λ −1 D −T for some nonzero λ ∈ F. (13.27)


614 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

A<br />

<br />

∗ (∞) (0, 0, γP ) (0, 0,0)<br />

A<br />

<br />

∗ (∞)(γ, 0,0) (γ, γAtγ T , γ(P + Kt))<br />

(γ,<br />

γAtγ T ,<br />

γKt)<br />

<br />

(∞) A ∗ (t)(0, 0, γP ) A ∗ (t)(0, 0,0)<br />

Figure 13.4:<br />

(A<br />

<br />

′ ) ∗ (∞) (0, 0, γσP D)) (0, 0,0)<br />

(A<br />

<br />

<br />

′ ) ∗ (∞)(γσB, 0,0) p<br />

<br />

<br />

(γ σ B,<br />

γ σ BA ′ ¯tB T (γ σ ) T ,<br />

γ σ BK ′ ¯t)<br />

(∞) (A ′ ) ∗ (t)(0, 0, γ σ P D) (A ′ ) ∗ (¯t)(0, 0,0)<br />

Figure 13.5:


13.10. THE FUNDAMENTAL LEMMA 615<br />

Us<strong>in</strong>g this <strong>in</strong> Eq. 13.25 we obta<strong>in</strong><br />

(Ks − Kt) σ = λ −1 D −T (K ′ ¯s − K ′ ¯t)D −1 for all s, t ∈ F. (13.28)<br />

Then s = 0 <strong>in</strong> Eq. 13.28 gives<br />

So now Eq. 13.26 may be rewritten as<br />

λD T Kt σ D = K ′ ¯t − K ′ ¯0. (13.29)<br />

θ : (α, c, β) ↦→ (λ −1 α σ D −T , (α, c, β) θ2 , β σ D + λ −1 α σ D −T K ′ ¯0). (13.30)<br />

Putt<strong>in</strong>g γ = −α <strong>in</strong>to part (iii) of Eq. 13.16 we obta<strong>in</strong> p1 = (α, c, β) t ∼<br />

p2 = (0, c − αAtαT , β − αKt), so that pθ ¯t<br />

1 ∼ pθ 2 , where by Eq. 13.30 pθ1 =<br />

(λ−1ασD −T , (α, c, β) θ2 σ −1 σ −T ′ , β D + λ α D K ¯0) <strong>and</strong><br />

p2 θ = (0, (0, c − αAtαT , β − αKt) θ2 , (β − αKt) σD). S<strong>in</strong>ce (α, c, β) −1 =<br />

(−α, α ◦ β − c, −β), p1 θ ◦ (p2 θ ) −1 = (λ−1ασD −T , (α, c, β) θ2 σ , β D+<br />

λ−1ασD −T K ′ ¯0)◦(0, −(0, c−αAtαT , β−αKt) θ2 , −(β−αKt) σD) = (λ−1ασD −T , (α, c, β) θ2− (0, c−αAtαT , β−αKt) θ2 −1 σ −T ′ , λ α D K ¯0+α σKt σ D) must be <strong>in</strong> A ′ (¯t). Eq. 13.29<br />

implies that the third coord<strong>in</strong>ate is O.K., but from the middle coord<strong>in</strong>ate we<br />

have<br />

(α, c, β) θ2 = (0, c − αAtα T , β − αKt) θ2 + λ −2 α σ D −T A ′ ¯tD −1 (α σ ) T . (13.31)<br />

Put t = 0 to obta<strong>in</strong><br />

(α, c, β) θ2 = (0, c, β) θ2 + λ −2 α σ D −T A ′ ¯0D −1 (α σ ) T . (13.32)<br />

Now put γ = −β <strong>in</strong> part (i) of Eq. 13.16 to obta<strong>in</strong> p1 = (α, c, β) ∞ ∼ p2 =<br />

(α, c − βα T ,0), so p1 θ ∞ ∼ p2 θ . Then by Eq. 13.30<br />

<strong>and</strong><br />

So<br />

p1 θ = (λ −1 α σ D −T , (α, c, β) θ2 , β σ D + λ −1 α σ D −T K ′ ¯0)<br />

p2 θ = (λ −1 α σ D −T , (α, c − βα T ,0) θ2 , λ −1 α σ D −T K ′ ¯0).<br />

p1 θ ◦ (p2 θ ) −1 = (λ −1 α σ D −T , (α, c, β) θ2 , β σ D + λ −1 α σ D −T K ′ ¯0)◦<br />

(−λ −1 α σ D −T , λ −2 α σ D −T K ′ ¯0D −1 (α σ ) T − (α, c − βα T ,0) θ2 ,


616 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

−λ −1 α σ D −T K ′ ¯0) = (0, (α, c, β) θ2 − (α, c − βα T ,0) θ2 − λ −1 β σ (α σ ) T , β σ D)<br />

must be <strong>in</strong> A ′ (∞). Hence<br />

(α, c, β) θ2 = (α, c − βα T ,0) θ2 + λ −1 α σ (β σ ) T . (13.33)<br />

Set α = 0, so (0, c, β) θ2 = (0, c,0) θ2 , which is <strong>in</strong>dependent of β. Now use<br />

this <strong>in</strong> Eq. 13.32.<br />

(α, c, β) θ2 = (0, c,0) θ2 + λ −2 α σ D −T A ′ ¯0D −1 (α σ ) T . (13.34)<br />

Then (0, c,0) θ2 −2 σ −T ′ +λ α D A ¯0D −1 (ασ T 13.34<br />

)<br />

= (α, c, β)<br />

θ2 13.33<br />

= (α, c−βα T ,0) θ2 +<br />

λ−1ασ (βσ T 13.34<br />

) = (0, c − βαT ,0) θ2 −2 σ −T ′ + λ α D A ¯0(α σ ) T + λ−1ασ (βσ ) T . Put<br />

c = αβT <strong>in</strong>to these last equations to obta<strong>in</strong><br />

(0, αβ T ,0) θ2 = λ −1 α σ (β σ ) T ,<br />

where we used the fact that (0, 0,0) θ = (0, 0,0) implies (0, 0,0) θ2 = 0. Hence<br />

So Eq. 13.34 becomes<br />

(0, c,0) θ2 = λ −1 c σ . (13.35)<br />

(α, c, β) θ2 = λ −1 c σ + λ −2 α σ D −T A ′ ¯0D −1 (α σ ) T . (13.36)<br />

Now use Eq. 13.36 <strong>in</strong> Eq. 13.30.<br />

θ : (α, c, β) ↦→ (λ −1 α σ D −T ,<br />

λ −1 c σ + λ −2 α σ D −T A ′ ¯0D −1 (α σ ) T , β σ D + λ −1 α σ D −T K ′ ¯0). (13.37)<br />

Note : We have now shown that θ is an automorphism of G.<br />

Conversely, let 0 = λ ∈ F, σ ∈ Aut(F ), D ∈ GL(2, q), <strong>and</strong> ¯0 ∈ F .<br />

Then it is rout<strong>in</strong>e to check that θ def<strong>in</strong>ed by Eq. 13.37 is an automorphism<br />

of G which maps A(∞) to A ′ (∞). So θ is an isomorphism from GQ(C)<br />

to GQ(C ′ ) iff θ maps A(t) to A(¯t) for all t ∈ F , for some permutation<br />

π : t ↦→ ¯t. Consider the effect of θ on A(t). Here θ : (α, αAtα T , αKt) ↦→<br />

(λ −1 α σ D −T , λ −1 α σ At σ (α σ ) T +<br />

λ −2 α σ D −T A ′ ¯0D −1 A ′ ¯0D −1 (α σ ) T , α σ Kt σ D +λ −1 α σ D −T K ′ ¯0), which must be <strong>in</strong><br />

A ′ (¯t). From the middle coord<strong>in</strong>ates,<br />

λ −2 α σ D −T A ′ ¯tD −1 (α σ ) T = λ −1 α σ At σ (α σ ) T + λ −2 α σ D −T A ′ ¯0D −1 (α σ ) T . This


13.11. THE FUNDAMENTAL THEOREM 617<br />

can be rewritten as (α σ D −T [λD T At σ D + A ′ ¯0 − A ′ ¯t](α σ D −T ) T for all α ∈<br />

F 2 , t ∈ F , which is equivalent to<br />

λD T At σ D ≡ A ′ ¯t − A ′ ¯0 for all t ∈ F. (13.38)<br />

From the third coord<strong>in</strong>ates we obta<strong>in</strong><br />

α σ (Kt σ D + λ −1 D −T K ′ ¯0) = λ −1 α σ D −T K ′ ¯t. As this holds for all α ∈ F 2 , t ∈<br />

F , multiply<strong>in</strong>g on the left by λD T , we obta<strong>in</strong><br />

λD T Kt σ D = K ′ ¯t − K ′ ¯0. (13.39)<br />

We claim that the condition <strong>in</strong> Eq. 13.38 implies that of Eq. 13.39. First<br />

suppose that q is odd. If K <strong>and</strong> M are symmetric matrices, then K ≡ M<br />

iff K = M. So from Eq. 13.38, λDT At σ D = A ′ ¯t − A ′ ¯0. Add this to its<br />

transpose to get Eq. 13.39. Now suppose Eq. 13.38 holds with q = 2e .<br />

Let DT <br />

a b<br />

= with ∆ = det(D). If K <strong>and</strong> M are upper triangular<br />

c d<br />

matrices, then K ≡ M iff K = M. So from Eq. 13.38<br />

x ′ ¯t − x ′ ¯0 y ′ ¯t − y ′ ¯0<br />

0 z ′ ¯t − z ′ ¯0<br />

<br />

= A ′ ¯t − A ′ ¯0 ≡<br />

λD T At σ <br />

2 a xt<br />

D ≡<br />

σ + abyt σ + b2zt σ ∆yt σ<br />

0 c 2 xt σ + cdyt σ + d 2 zt σ<br />

So <strong>in</strong> particular, y ′ ¯t−y ′ ¯0 = λ∆yt σ . But Eq. 13.39 says (y ′ ¯t−y ′ ¯0)P = K ′ ¯t−<br />

K ′ ¯0 = λD T Kt σ D = λyt σ D T P D = λyt σ ∆P , which holds iff y ′ ¯t − y ′ ¯0 = λ∆yt σ .<br />

So for all q, Eq. 13.38 does imply Eq. 13.39.<br />

This completes the proof (<strong>in</strong> the hard direction) of the Fundamental<br />

Lemma, i.e., the proof of Theorem 13.10.1 The converse is a straightforward<br />

exercise essentially conta<strong>in</strong>ed <strong>in</strong> the steps already given.<br />

13.11 The Fundamental Theorem<br />

Frequently it is convenient to change the parameters <strong>in</strong> the Fundamental<br />

Lemma. Put µ = λ −1 <strong>and</strong> B = λ −1 D −T , so D = µB −T . Then collect<br />

the results of Lemma 13.6.4, Theorems 13.6.13 <strong>and</strong> 13.3.4 along with the<br />

Fundamental Lemma <strong>in</strong>to the follow<strong>in</strong>g Fundamental Theorem (F.T.).<br />

<br />

.


618 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

Theorem 13.11.1. (The Fundamental Theorem of q-Clan <strong>Geometry</strong>) For<br />

xt yt<br />

any prime power q, let C = {At ≡<br />

: t ∈ F } <strong>and</strong> C<br />

0 zt<br />

′ = {A ′ t ≡<br />

<br />

′ x t y ′ <br />

t : t ∈ F } be two (not necessarily dist<strong>in</strong>ct) normalized q-clans.<br />

0 z ′ t<br />

Then the follow<strong>in</strong>g are equivalent:<br />

(i) C ∼ C ′ ;<br />

(ii) The flocks F(C) <strong>and</strong> F(C ′ ) are projectively equivalent;<br />

(iii) GQ(C) <strong>and</strong> GQ(C ′ ) are isomorphic by an isomorphism mapp<strong>in</strong>g<br />

(∞) to (∞), [A(∞)] to [A ′ (∞)], <strong>and</strong> (¯0, 0, ¯0) to (¯0, 0, ¯0);<br />

(iv) The associated spreads S(C) <strong>and</strong> S(C ′ ) are equivalent .<br />

Moreover, these four conditions hold iff there exist σ ∈ Aut(F ), B ∈ GL(2, q), 0 =<br />

u ∈ F , <strong>and</strong> a permutation π : t ↦→ ¯t on F for which<br />

(v) A ′ ¯t ≡ uB−1 A σ t B−T + A ′ ¯0<br />

for all t ∈ F.<br />

The correspond<strong>in</strong>g isomorphism θ : GQ(C) ↦→ GQ(C ′ ) is given by<br />

(vi) θ = θ(u, B, σ, π) : (α, c, β) ↦→<br />

(α σ B, uc σ + α σ BA ′ ¯0 BT (α σ ) T , uβ σ B −T + α σ BK ′ ¯0 ).<br />

And the correspond<strong>in</strong>g isomorphism between the associated translation<br />

planes is <strong>in</strong>duced by the follow<strong>in</strong>g projective equivalence of the associated<br />

l<strong>in</strong>espreads of P G(3, q).<br />

(vii) T : (x0, x1, x2, x3) ↦→ (xσ 0 , xσ 1, xσ 2, xσ <br />

−1 u B<br />

3)<br />

O<br />

−1 ′ u BA ¯0<br />

B−T S(C) ↦→ S(C ′ ).<br />

If B−1 <br />

a b<br />

= , the correspond<strong>in</strong>g isomorphism Tθ : F(C) ↦→ F(C<br />

c d<br />

′ ) is<br />

def<strong>in</strong>ed for planes of the flocks by<br />

<br />

:


13.11. THE FUNDAMENTAL THEOREM 619<br />

(viii) Tθ :<br />

⎡<br />

⎢<br />

⎣<br />

x ′ ¯t<br />

y ′ ¯t<br />

z ′ ¯t<br />

1<br />

⎤<br />

⎥<br />

⎦ =<br />

⎛<br />

⎜<br />

⎝<br />

⎡<br />

⎢<br />

⎣<br />

xt<br />

yt<br />

zt<br />

1<br />

⎤<br />

⎥<br />

⎦ ↦→<br />

ua 2 uab ub 2 x ′ ¯0<br />

2uac u(ad + bc) 2ubd y ′ ¯0<br />

uc 2 ucd ud 2 z ′ ¯0<br />

0 0 0 1<br />

⎞ ⎡<br />

⎟ ⎢<br />

⎟ ⎢<br />

⎠ ⎣<br />

For the rema<strong>in</strong>der of this section we consider the F.T. under the additional<br />

hypothesis that C = C ′ , or more specifically that At = A ′ t, t ∈ F . Then for<br />

the normalized q-clan C, we def<strong>in</strong>e the follow<strong>in</strong>g groups of coll<strong>in</strong>eations of<br />

GQ(C), where G denotes the group of all coll<strong>in</strong>eations of GQ(C) that fix the<br />

po<strong>in</strong>t ∞ .<br />

(i) G0 = {θ ∈ G : (¯0, 0, ¯0) θ = (¯0, 0, ¯0)}; (13.40)<br />

(ii) H = {θ ∈ G0 : [A(∞)] θ = [A(∞)};<br />

(iii) M = {θ ∈ H : [A(0)] θ = [A(0)]};<br />

(iv) N = {θ = θa ∈ M : θa : (α, c, β) ↦→ (aα, a 2 c, aβ), 0 = a ∈ F }.<br />

x σ t<br />

y σ t<br />

z σ t<br />

1<br />

⎤<br />

⎥<br />

⎦ .<br />

The follow<strong>in</strong>g observation is a trivial consequence of the F.T.<br />

Corollary 13.11.2. M always conta<strong>in</strong>s the follow<strong>in</strong>g subgroup:<br />

M∗ = {θ = θ(a2 , aI, σ, π : t ↦→ tσ ) : (α, c, β) ↦→ (aασ , a2cσ , aβσ ) : 0 = a ∈<br />

F, σ ∈ Aut(F ) with Atσ = Aσ t for t ∈ F }.<br />

Now let θi = θ(µi, Bi, σi, πi), i = 1, 2. We want to compute θ = θ1 ◦ θ2,<br />

where the notation means do θ1 first. Then<br />

(α, c, β) θ1◦θ2 =<br />

(ασ1B1, µ1cσ1 σ1 + α B1A0π1 BT 1 (ασ1 T ) , µ1βσ1 −T<br />

B1 + ασ1B1K0 π1 ) θ2<br />

= ((ασ1B1) σ2B2, µ2[µ1cσ1 σ1 + α B1A0π1 BT 1 (ασ1 T σ2 ) ]<br />

+(ασ1B1) σ2B2A0 π2 BT 2 ((ασ1B1) σ2 T ) , µ2(µ1β σ1 −T<br />

B1 +ασ1B1K0 π1 ) σ2 −T<br />

B2 + (ασ1B1) σ2B2K0 π2 )<br />

= (ασ1◦σ2 σ2 B1 B2, µ σ2<br />

1 µ2C σ1◦σ2 + µ2ασ1◦σ2 σ2 B1 A σ2<br />

0π1 (B σ2<br />

1 ) T (ασ1◦σ2 T )<br />

+ασ1◦σ2 σ2 B1 B2A0π2 (B σ2<br />

1 B1) T (ασ1◦σ2 T σ2<br />

−T<br />

) , µ 1 B2)<br />

+µ2ασ1◦σ2 σ2 B1 Kσ2 0π1 B −T<br />

2<br />

1 µ2β σ1◦σ2 (B σ2<br />

+ ασ1◦σ2 B σ2<br />

1 B2K0 π 2 ).


620 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

S<strong>in</strong>ce θ = θ1 ◦ θ2 = θ(µ, B, σ, π) for some µ, B, σ, <strong>and</strong> π accord<strong>in</strong>g to the<br />

F.T., we can read off µ = µ σ2<br />

1 µ2, B = B σ2<br />

1 B2, σ = σ1 ◦ σ2. So we have at<br />

least<br />

θ(µ1, B1, σ1, π1) ◦ θ(µ2, B2, σ2, π2) = θ(µ σ2<br />

1 µ2, B σ2<br />

1 B2, σ1 ◦ σ2, π), (13.41)<br />

where we say a little more about π. We have now the fact that<br />

θ1 ◦ θ2 : (α, c, β) ↦→<br />

(α σ B, µc σ + µ2α σ B σ2<br />

1 Aσ2 0π1 (B σ2<br />

1 )T (α σ ) T + α σ BA0π2 B T (α σ ) T ,<br />

µβ σ B −T + µ2α σ B σ2<br />

1 Kσ2 0π1 B −T<br />

2 + ασBK0π2 ),<br />

where this image must equal (α σ B, µc σ +α σ BA0 πBT (α σ ) T , µβ σ B −T +α σ BK0 π).<br />

This is equivalent to<br />

(i) α σ [µ2B σ2<br />

1 A σ2<br />

0 π 1 (B σ2<br />

1 ) T + B σ2<br />

1 B2A0 π 2 (B2) T (B σ2<br />

1 ) T ](α σ ) T (13.42)<br />

= α σ (B σ2<br />

1 B2A0 πBT 2 (B σ2<br />

1 ) T )(α σ ) T<br />

(ii) B σ2<br />

σ2<br />

1 B2K0π = µ2B1 Kσ2 0π1 B −T<br />

2<br />

S<strong>in</strong>ce [A(0)] θ1<br />

↦→ [A(0π1 θ2<br />

)]<br />

pothesis µ2B −1<br />

2 A σ2<br />

0π1 B −T<br />

2 + A0π2 + A(0π1 ) π ≡<br />

µ2B −1<br />

2 K σ2<br />

0π1 B −T<br />

2<br />

+ Bσ2<br />

0 0<br />

1 B2K0 π 2 .<br />

↦→ [A((0π1 π2 π π1◦π2 ) )], at least 0<br />

= 0 . So by hy-<br />

0 0<br />

, s<strong>in</strong>ce θ2 ∈ G0, <strong>and</strong> also<br />

= K0 π 2 +K(0 π 1 ) π 2 . The first relationship verifies Eq. 13.42(i);<br />

the latter equality verifies Eq. 13.42(ii). In fact, this gives a direct proof that<br />

the composition <strong>in</strong> Eq. 13.41 is correct. But π is essentially controlled by σ,<br />

B, µ, <strong>and</strong> 0 π accord<strong>in</strong>g to the F.T. (v), which may be written out as follows.<br />

xtπ = µ(a2x σ t + abyσ t + b2z σ t ) + x0π (13.43)<br />

ytπ = µ(2acxσt + (ad + bc)yσ t + 2bdzσ t ) + y0π zt π = µ(c2 x σ t + cdy σ t + d 2 z σ t ) + z0 π<br />

S<strong>in</strong>ce t ↦→ xt <strong>and</strong> t ↦→ zt must be permutations, t π is determ<strong>in</strong>ed (though not<br />

conveniently!) by σ, B, µ, <strong>and</strong> 0 π . This suggests that we make the follow<strong>in</strong>g<br />

additional normaliz<strong>in</strong>g convention: If q is odd, we assume that the members<br />

of C are <strong>in</strong>dexed so that xt = t for all t ∈ F . And if q = 2 e , so that t ↦→ yt<br />

is also a permutation, we assume that the members of C are <strong>in</strong>dexed so that<br />

yt = t for all t ∈ F . This makes it possible to be more explicit with the


13.12. RECOORDINATIZATION: SHIFTS, FLIPS & SCALES 621<br />

description of π.<br />

For θ(σ, B, µ, π) ∈ H with B −1 =<br />

a b<br />

c d<br />

(i) t π = µ(a 2 t σ + aby σ t + b2 z σ t ) + 0π , if q is odd.<br />

(ii) t π = µ(ad + bc)t σ + 0 π , if q is even.<br />

<br />

, (13.44)<br />

Read Theorem 13.11.1(v) as equality with q odd, <strong>and</strong> apply θ1 ◦ θ2 with<br />

π as <strong>in</strong> Eq. 13.41.<br />

At<br />

π = µ2B −1<br />

= µ σ1<br />

1<br />

2<br />

−1<br />

(µ1B1 Aσ1 t B −T<br />

1 + A0π1 ) σ2 −T<br />

B2 + A0π2 (13.45)<br />

1 B2) −1 A σ1◦σ2<br />

t (B σ2<br />

1 B2) −T + µ2B −1<br />

2 Aσ2 0π1 B −T<br />

2 + A0π2 .<br />

µ2((B σ2<br />

And here µ2B −1<br />

2 A σ2<br />

0 π 1 B −T<br />

2 + A0 π 2 = A0 π 1 ◦π 2 , confirm<strong>in</strong>g aga<strong>in</strong> (put t = 0<br />

<strong>in</strong> Eq. 13.45) that 0 π = 0 π1◦π2 .<br />

A relationship similar to Eq. 13.45 holds for q even, <strong>and</strong> it follows that<br />

(use Theorem 13.11.1(vii)):<br />

Theorem 13.11.3. T : θ ↦→ Tθ is a homomorphism from H onto the subgroup<br />

of P ΓL(4, q) leav<strong>in</strong>g <strong>in</strong>variant the cone K <strong>and</strong> the flock F(C). The<br />

kernel of T is N .<br />

We def<strong>in</strong>e N to be the kernel of GQ(C) This def<strong>in</strong>ition of kernel may not<br />

be as satisfactory as that for translation generalized quadrangles (TGQ) studied<br />

<strong>in</strong> [FGQ], but we shall see later that for many nonclassical q-clans C the<br />

kernel of GQ(C) plays a role similar to one played by the multiplicative group<br />

of the kernel of a TGQ. Note that the kernel N is a group of coll<strong>in</strong>eations of<br />

GQ(C) fix<strong>in</strong>g each l<strong>in</strong>e through the po<strong>in</strong>t (∞) for every q-clan C.<br />

13.12 Recoord<strong>in</strong>atization: Shifts, Flips<br />

& Scales<br />

Any automorphism of G replaces one 4-gonal family for G with another. But<br />

<strong>in</strong> general we cannot expect that a 4-gonal family J (C) aris<strong>in</strong>g from a q-clan<br />

C will be replaced with one for which a q-clan is clearly present. In this section<br />

we study three basic automorphisms of G that even replace normalized qclans<br />

with normalized q-clans. One goal is to develop a procedure to use the<br />

F.T. to describe all elements of G0. A second goal is to assign to each l<strong>in</strong>e


622 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

through (∞) <strong>in</strong> some GQ(C) an equivalence class of flocks (or q-clans) <strong>in</strong> such<br />

a way that two l<strong>in</strong>es through (∞) are <strong>in</strong> the same G0-orbit if <strong>and</strong> only if their<br />

flocks (or q-clans) are equivalent. This provides a very concrete algebraic<br />

approach to the concept of derivation first presented <strong>in</strong> [BLT90] when q is<br />

odd <strong>and</strong> <strong>in</strong>cludes the case for q = 2 e first worked out <strong>in</strong> [BLP94] for a<br />

representation of G that works only <strong>in</strong> characteristic 2. That representation<br />

will be considered <strong>in</strong> a later chapter where q is restricted to be a power of 2.<br />

Throughout this section we assume that C is a normalized q-clan with<br />

the specific <strong>in</strong>dex<strong>in</strong>g given <strong>in</strong> Section 13.11. Our first observation is just a<br />

special corollary of the F.T.<br />

Corollary 13.12.1. Let B ∈ GL(2, q) <strong>and</strong> π : F → F : t ↦→ t a permutation.<br />

For each At ∈ C set A ′<br />

t = B−1AtB −T . Then C ′ = {A ′ : t ∈ F } is a q-clan<br />

t<br />

equivalent to C, <strong>and</strong> θ : GQ(C) → GQ(C ′ ) : (α, c, β) ↦→ (αB, c, βB−T ) is an<br />

isomorphism.<br />

Lemma 13.12.2. Shift by s. Fix s ∈ F . Def<strong>in</strong>e τs : G → G : (α, c, β) ↦→<br />

(α, c−αAsα T , β −αKs). For At ∈ C, put A τs<br />

t = At −As, so Aτs x = Ax+s −As.<br />

Then Cτs = {A τs<br />

t : t ∈ F } is a normalized q-clan equivalent to C, <strong>and</strong> τs =<br />

θ(1, I, id, π : t ↦→ t − s) : GQ(C) → GQ(Cτs ) is an isomorphism.<br />

Proof: This is immediate from the F.T. For q odd, xt = t, so x τs<br />

t = (t + s) −<br />

s = t. For q even, yt = t, so y τs<br />

t = (t + s) − s = t. Hence Cτs is normalized<br />

<strong>and</strong> 0 = −s.<br />

Lemma 13.12.3. Scale by a. Let 0 = a ∈ F . Def<strong>in</strong>e σa : G → G :<br />

(α, c, β) ↦→ (α, ac, aβ). For At ∈ C, put A σa<br />

t = aAt, so A σa<br />

at = aAt, or<br />

A σa<br />

t = aAt/a. Then Cσa = {A σa<br />

t : t ∈ F } is a normalized q-clan equivalent to<br />

C, <strong>and</strong> σa = θ(a, I, id, π : t ↦→ at) : GQ(C) → GQ(Cσa ) is an isomorphism.<br />

Before consider<strong>in</strong>g the third type of automorphism of G, we collect some<br />

rather trivial results that are helpful <strong>in</strong> do<strong>in</strong>g computations.<br />

<br />

0 1<br />

Lemma 13.12.4. Put P =<br />

, <strong>and</strong> for B ∈ GL(2, q), put ∆ =<br />

−1 0<br />

det(B).<br />

(i) P T = P −1 = −P .<br />

(ii) P T BP = ∆B −T = P BP T ≡ ∆B −1 .


13.12. RECOORDINATIZATION: SHIFTS, FLIPS & SCALES 623<br />

(iii) B T P B = ∆P ; B T P T B = ∆P T .<br />

(iv) If q is odd <strong>and</strong> A is nons<strong>in</strong>gular <strong>and</strong> symmetric with K = A+A T = 2A,<br />

then P T K −1 AKP = (det(K)) −1 A.<br />

(v) If q = 2 e <strong>and</strong> A is upper triangular with K = A + A T = (det(K)) 1/2 P<br />

nons<strong>in</strong>gular, then P T K −1 AKP = (det(K)) −1 A.<br />

Lemma 13.12.5. The flip. Def<strong>in</strong>e ϕ : G → G : (α, c, β) ↦→ (βP, c −<br />

αβT , αP T ). Then ϕ is an automorphism of G that <strong>in</strong>terchanges A(0) <strong>and</strong><br />

A(∞). It maps a normalized q-clan C = {At : t ∈ F } to a q-clan Cϕ =<br />

{A ϕ<br />

t = −P T K −1<br />

t AtK −1<br />

t P = −(det(Kt)) −1At : t ∈ F }. The permutation<br />

π : t ↦→ t is chosen so that Cϕ will have a normalized <strong>in</strong>dex<strong>in</strong>g. If q is even<br />

with yt = t, clearly π : t ↦→ t = t−1 for all t ∈ ˜ F . For q odd with xt = t, the<br />

permutation π : t ↦→ t depends on the functions t ↦→ yt <strong>and</strong> t ↦→ zt. Explicitly:<br />

π : t ↦→ t = t/(4xtzt − y2 t ).<br />

Proof: It is rout<strong>in</strong>e to check that ϕ is an automorphism of G <strong>in</strong>terchang<strong>in</strong>g<br />

A(0) <strong>and</strong> A(∞). So A ϕ (0) = A(∞), A ϕ (∞) = A(0). And<br />

ϕ : (α, αAtα T , αKt) ↦→ (αKtP, αAtα T − αKtα T , αP T )<br />

= (αKtP, αKtP (−P T K −1<br />

t AtK −1<br />

t P )(αKtP ) T , αKtP (P T K −1<br />

t P T ))<br />

= (γ, γ(−(det(Kt)) −1 At)γ T , −(det(Kt)) −1 γKt),<br />

for γ = αKtP, 0 = t ∈ F.<br />

Shift<strong>in</strong>g by s <strong>and</strong> scal<strong>in</strong>g by a are automorphisms of G that map normalized<br />

q-clans to equivalent normalized q-clans, <strong>and</strong> affect on ˜ F (the <strong>in</strong>dex set<br />

for the l<strong>in</strong>es through (∞)) the permutations t ↦→ t = t − s <strong>and</strong> t ↦→ t = at,<br />

respectively. So the group generated by these permutations stabilizes ∞. On<br />

the other h<strong>and</strong>, the flip ϕ effects a permutation π on ˜ F that <strong>in</strong>terchanges 0<br />

<strong>and</strong> ∞, <strong>and</strong> for q = 2 e π : t ↦→ t −1 for all t ∈ ˜ F . In general for q odd, π is<br />

determ<strong>in</strong>ed by t ↦→ yt <strong>and</strong> t ↦→ zt, <strong>and</strong> C <strong>and</strong> C ϕ are not equivalent!<br />

For s ∈ F def<strong>in</strong>e the shift-flip is by<br />

(i) is = τs ◦ ϕ, s ∈ F. (13.46)<br />

(ii) is : (α, c, β) ↦→ ((β − αKs)P, c − αβ T + αAsα T , αP T )<br />

(iii) i −1<br />

s : (α, c, β) ↦→ (βP, c − αβ T + (βP )As(βP ) T , αP T + βP Ks).<br />

Compute the effect of is on an element of A(t). is : (α, αAtα T , αKt) ↦→<br />

(α(Kt − Ks)P, −α(At − As) T , αP T ). Put γ = α(Kt − Ks)P , so for t = s,


624 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

α = γP (Kt − Ks) −1 . Then the image is<br />

(γ, γ(−P T (Kt − Ks) −1 (At − As)(Kt − Ks) −1 P )γ T , −γP T (Kt − Ks) −1 P )<br />

=<br />

(γ, γ(−(det(Kt − Ks)) −1 (At − As))γ T , γ(−(det(Kt − Ks)) −1 )(Kt − Ks)). So<br />

we note that<br />

(i) is : C → Cis : At ↦→ A is<br />

t = (13.47)<br />

−(det(Kt − Ks)) −1 (At − As),<br />

t = −(t − s)(det(Kt − Ks)) −1 .<br />

(ii) If q = 2 e , t = (t + s) −1 .<br />

Also def<strong>in</strong>e i∞ = id : G → G. Then to each l<strong>in</strong>e of GQ(C) through (∞)<br />

we are go<strong>in</strong>g to assign an equivalence class of q-clans <strong>and</strong> its associated class<br />

of flocks. Start with a normalized q-clan C. For each s ∈ ˜ F , apply<strong>in</strong>g is to<br />

G yields a normalized q-clan C is . We assign to the l<strong>in</strong>e [A(s)] of GQ(C) the<br />

class of q-clans equivalent to C is , <strong>and</strong> also the class of flocks projectively equivalent<br />

to F(C is ). The follow<strong>in</strong>g application of the F.T. makes this assignment<br />

natural <strong>and</strong> useful.<br />

Theorem 13.12.6. Let C be a normalized q-clan. Then for arbitrary s, t ∈<br />

˜F , there is a coll<strong>in</strong>eation (an automorphism) of GQ(C) mapp<strong>in</strong>g [A(s)] to<br />

[A(t)] if <strong>and</strong> only if F(C is ) <strong>and</strong> F(C it ) are projectively equivalent (i.e., if <strong>and</strong><br />

only if C is ∼ C it ).<br />

Proof. S<strong>in</strong>ce τs always effects the permutation t ↦→ t − s <strong>and</strong> ϕ always <strong>in</strong>terchanges<br />

0 <strong>and</strong> ∞, the shift-flip is always maps s to ∞, i.e., is : GQ(C) →<br />

GQ(C is ) : [A(s)] ↦→ [A is (∞)]. Let θ be an automorphism of GQ(C) map-<br />

p<strong>in</strong>g [A(s)] to [A(t)]. Without loss of generality we may assume that θ fixes<br />

(0, 0, 0) (<strong>and</strong> of course (∞)). Then θ = i−1 s ◦ θ ◦ it : GQ(Cis ) → GQ(Cit ) :<br />

[Ais (∞)] ↦→ [Ait (∞)]. S<strong>in</strong>ce clearly θ : (∞) ↦→ (∞) <strong>and</strong> (0, 0, 0) ↦→ (0, 0, 0),<br />

by the F.T. F(C is ) <strong>and</strong> F(C it ) are projectively equivalent. Conversely, given<br />

that F(C is ) <strong>and</strong> F(C it ) are projectively equivalent, there is an appropriate<br />

θ : GQ(Cis ) → GQ(Cit ) : [Ais (∞)] ↦→ [Ait (∞)]. Hence we may put<br />

θ = is ◦ θ ◦ i −1<br />

t : GQ(C) → GQ(C) : [A(s)] ↦→ [A(t)].<br />

13.13 Additive q-Clans <strong>and</strong> Dual TGQ<br />

Recall that a symmetry about a l<strong>in</strong>e L of a GQ S of order (s, t) is a<br />

coll<strong>in</strong>eation of that GQ that fixes each l<strong>in</strong>e concurrent with L. The group


13.13. ADDITIVE Q-CLANS AND DUAL TGQ 625<br />

of symmetries about L has order at most s <strong>and</strong> L is an axis of symmetry<br />

provided there are s symmetries about L. In Chapter 8 of [FGQ] it is shown<br />

that if there is a po<strong>in</strong>t p for which each l<strong>in</strong>e through p is an axis of symmerty,<br />

then the group T generated by the hypothesized symmetries is a maximal<br />

group of elations about the po<strong>in</strong>t p, <strong>and</strong> T is elementary abelian. T is unique<br />

<strong>and</strong> is called the group of translations about p <strong>and</strong> the GQ is said to be a<br />

translation generalized quadrangle (TGQ) with base po<strong>in</strong>t p. If even one<br />

axis of symmetry exists, then s ≤ t. Many more results about T GQ are<br />

obta<strong>in</strong>ed <strong>in</strong> [FGQ], but here we concern ourselves only with determ<strong>in</strong><strong>in</strong>g how<br />

to recognize normalized q-clans whose associated GQ have po<strong>in</strong>t-l<strong>in</strong>e duals<br />

that are TGQ. A much more extensive <strong>and</strong> up-to-date treatment of TGQ is<br />

conta<strong>in</strong>ed <strong>in</strong> the recent book [TTVM06].<br />

First note that start<strong>in</strong>g with any q-clan C, the po<strong>in</strong>t (∞) is a center of<br />

symmetry for GQ(C). Specifically, for each d ∈ F , the map (α, c, β) ↦→<br />

(α, c + d, β) is a symmetry about (∞), <strong>and</strong> there are q = t of them. Also,<br />

the group G of elations about p is transitive on the po<strong>in</strong>ts of [A(∞)] different<br />

from (∞), so that <strong>in</strong> order to determ<strong>in</strong>e when all po<strong>in</strong>ts of [A(∞)] are centers<br />

of symmetry, we need only determ<strong>in</strong>e when A ∗ (∞) is a center of symmetry.<br />

Theorem 13.13.1. The po<strong>in</strong>t A ∗ (∞) is a center of symmetry (i.e., the po<strong>in</strong>tl<strong>in</strong>e<br />

dual of GQ(C) is a TGQ with base “po<strong>in</strong>t” equal to the l<strong>in</strong>e [A(∞)] of<br />

GQ(C)) if <strong>and</strong> only if (after a suitable order<strong>in</strong>g of the members of the q-clan)<br />

the map t ↦→ At is additive, i.e., At + As = At+s for all s, t ∈ F .<br />

Proof. Throughout the proof C denotes a normalized q-clan. First suppose<br />

that the map t ↦→ At is additive. Then it is a rout<strong>in</strong>e exercise to show that<br />

for each x ∈ F , the map<br />

θx : (α, c, β) :↦→ (α, c + αAxα T , β + αKx)<br />

<strong>in</strong>duces a symmetry about A ∗ (∞) mapp<strong>in</strong>g the l<strong>in</strong>e [A(t)] to the l<strong>in</strong>e [A(t+x)]<br />

for each t ∈ F .<br />

For the converse, let θ be a coll<strong>in</strong>eation of GQ(C) that is a symmetry about<br />

A ∗ (∞), i.e., θ fixes each po<strong>in</strong>t coll<strong>in</strong>ear with A ∗ (∞), i.e., it fixes each element<br />

of A ∗ (∞) <strong>and</strong> each po<strong>in</strong>t on the l<strong>in</strong>e [A(∞)]. Hence θ fixes both (¯0, 0, ¯0) <strong>and</strong><br />

(∞) <strong>and</strong> must therefore be <strong>in</strong> G0. Clearly θ must fix the l<strong>in</strong>e [A(∞)], so <strong>in</strong><br />

fact θ ∈ H. Then by the F.T. θ = θ(u, B, σ, π) for appropriate u, B, σ <strong>and</strong> π.<br />

S<strong>in</strong>ce θ must fix each element of A ∗ (∞), we have that for all c ∈ F, β ∈ F 2 ,<br />

(¯0, c, β) = (¯0, uc σ , uβ σ B −T ). This quickly forces u = 1, σ = id, B = I. So it


626 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

rema<strong>in</strong>s only to determ<strong>in</strong>e π : t ↦→ ¯t. Suppose θ : [A(0)] ↦→ [A(x)] for some<br />

x ∈ F , i.e., ¯0 = x. Apply θ to an arbitrary element of A(t), which must give<br />

an element of A(¯t).<br />

θ : (α, αAtα T , αKt) ↦→ (α, αAtα T + αAxα T , αKt + αKx) ∈ A¯t. This<br />

quickly forces α(At+Ax)α T = αA¯tα T for all α ∈ F 2 , t ∈ F . Hence At+Ax ≡<br />

A¯t for all t ∈ F . If q is odd, then At is symmetric with xt = t, <strong>and</strong> if q is<br />

even, then At is upper triangular with yt = t. In either case it now follows<br />

that t + x = ¯t. Hence <strong>in</strong> all cases At+x = At + Ax.<br />

13.14 Property (G) at a second po<strong>in</strong>t of ∞ ⊥<br />

The follow<strong>in</strong>g result appears <strong>in</strong> [PT91].<br />

Theorem 13.14.1. A flock GQ has Property (G) at some po<strong>in</strong>t of (∞) ⊥ \<br />

{(∞)} if <strong>and</strong> only if it is classical, i.e., it is isomorphic to H(3, s 2 ).<br />

Proof. Recall that a grid Γ is said to cover a po<strong>in</strong>t p provided p is on two l<strong>in</strong>es<br />

of Γ. And S = GQ(C) has Property (G) at the po<strong>in</strong>t p provided each 3 × 3<br />

grid that covers p can be extended (uniquely, of course) to a (q + 1) × (q + 1)<br />

grid.<br />

First suppose that S has Property (G) at some po<strong>in</strong>t p not coll<strong>in</strong>ear with<br />

(∞). Then under the action of the elation group G, S has Property (G) at<br />

all po<strong>in</strong>ts not coll<strong>in</strong>ear with (∞). Then if z is any po<strong>in</strong>t coll<strong>in</strong>ear with but<br />

different from (∞), clearly each 3 × 3 grid cover<strong>in</strong>g z must also cover some<br />

po<strong>in</strong>t not coll<strong>in</strong>ear with (∞) <strong>and</strong> hence be extendable to a (q + 1) × (q + 1)<br />

grid, forc<strong>in</strong>g S to have Property (G) at z. Hence it suffices to show that if<br />

S has Property (G) at some po<strong>in</strong>t z ∈ (∞) ⊥ \ {(∞)}, then C is a classical<br />

q-clan. Moreover, s<strong>in</strong>ce we can use a shift-flip to recoord<strong>in</strong>atize C, without<br />

loss of generality we may suppose that z is on the l<strong>in</strong>e [A(∞)].<br />

First, recall that the classical GQ are those associted with a q-clan of<br />

the form C ′ <br />

= A ′ <br />

t at<br />

t =<br />

: t ∈ F . Here a, b are constants for which<br />

0 bt<br />

x 2 + ax + b is irreducible over F . Secondly, by the remarks above, under the<br />

action of G we may assume that z = A ∗ (∞)(¯0, 0, ¯0). F<strong>in</strong>ally, by re<strong>in</strong>dex<strong>in</strong>g<br />

the members of C, we may assume that xt = t for all t ∈ F <strong>and</strong> A0 =<br />

0 0<br />

0 0<br />

<br />

.


13.14. PROPERTY (G) AT A SECOND POINT OF ∞ ⊥ 627<br />

Put α = (−1, 0), γ = (0, −1) ∈ F 2 . For each t ∈ F put βt = (t, zt). Then<br />

{A(∞), A(∞)(α, 0, ¯0), A(∞)(γ, 0¯0)} is a triad of l<strong>in</strong>es with q + 1 transversals<br />

as <strong>in</strong>dicated <strong>in</strong> Figure 13.6.<br />

By Property (G) at z, there must be (q + 1) − 3 = q − 2 values of<br />

δ = (d1, d2) ∈ F 2 \ {(0, 0), α, γ} for which some l<strong>in</strong>e through A ∗ (∞)(δ, 0, ¯0)<br />

meets each of the l<strong>in</strong>es A(t)(¯0, 0, βt), t ∈ F . A(∞)(δ, 0, ¯0) meets A(t)(¯0, 0, βt)<br />

at the po<strong>in</strong>t (δ, δAtδ T , δKt + βt) on the l<strong>in</strong>e<br />

A(∞)(δ, δAtδ T , δKt + βt), which means that for the appropriate δ these l<strong>in</strong>es<br />

are the same for all t ∈ F . A little computation shows that this is the case<br />

if <strong>and</strong> only if<br />

δ(As − At)δ T + δ(β T t ) = 0 (13.48)<br />

for all s, t ∈ F .<br />

Put t = 0, s = 0, <strong>and</strong> recall βt = (t, zt), to obta<strong>in</strong><br />

(d 2 1 + d1)s + d1d2ys + (d 2 2 + d2)zs = 0 (13.49)<br />

for all s ∈ F . For q ≤ 4 all the GQ are classical by Corollary 13.6.9. So we<br />

assume that q ≥ 5. We have d2 1 + d1 = e2 1 + e1 iff d1 = e1 or d1 = −e1 − 1.<br />

If d2 = 0 <strong>in</strong> Eq. 13.49, then (d2 1 + d1)s = 0 for all s ∈ F , so d1 = 0 or<br />

d1 = −1. This says δ ∈ {(0, 0), α}, impossible. Similarly, d1 = 0. S<strong>in</strong>ce there<br />

must be at least three choices of δ (= (0, 0), α, γ) satisfy<strong>in</strong>g Eq. 13.49 for all<br />

s ∈ F , it will follow that ys <strong>and</strong> zs must each be just a constant times s,<br />

complet<strong>in</strong>g the proof. For suppose (d1, d2), (e1, e2), (f1, f2) are three choices<br />

of δ (= (0, 0), α, γ) satisfy<strong>in</strong>g Eq. 13.49 for all s ∈ F . Put<br />

⎛<br />

d<br />

M(d, e, f) = ⎝<br />

2 1 + d1 d1d2 d2 ⎞<br />

2 + d2<br />

+ e2 ⎠ .<br />

e2 1 + e1 e1e2 e2 2<br />

f 2 1 + f1 f1f2 f 2 2 + f2<br />

For each s ∈ F , (s, ys, zs) is <strong>in</strong> the right null space of M(d, e, f). So the rank<br />

rk(M(d, e, f)) is 1 or 2. If rk(M(d, e, f)) = 2, then xt = t, yt = at, zt = bt,<br />

complet<strong>in</strong>g the proof.<br />

Now suppose<br />

rk(M(d, e, f)) = 1 for all choices of three values of δ. (13.50)<br />

If d1 = 0, then d2 ∈ {0, −1} from Eq. 13.49. Similarly, if d2 = 0, then<br />

d1 ∈ {0, −1}. If d1 = −1, then d2 = 0 by Eqs. 13.49 <strong>and</strong> 13.50. From


628 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

Eq. 13.50 it also follows that for the q − 2 elements δ (= (0, 0), α, γ) the d ′ 1s are the q − 2 of F \ {0, −1}.<br />

First let q be odd. then we may choose d1 = 1. But then Eq. 13.50<br />

forces d2 = −2, e1 + e2 = −1, f1 + f2 = −1. Hence always d2 = −d1 − 1.<br />

From Eq. 13.49 it follows that s − ys + zs = 0, so zs = ys − s. Then<br />

y2 s−4xszs = y2 s−4s(ys−s) = (ys−2s) 2 , which is a square <strong>in</strong> F , a contradiction.<br />

Next let q = 2e . Then we may choose e1 = d1 + 1, with d1 arbitrary <strong>in</strong><br />

F \ {0, 1}. But then Eq. 13.50 forces d2 to be d1 + 1. From Eq. 13.49 it<br />

follows that s + ys + zs = 0, so zs = ys + s. Then zsxs/y 2 s = s(ys + s)/y 2 s<br />

. The<br />

equation x 2 + x + s(ys + s)/y 2 s = 0 has the solution x = s/ys, a contradiction.<br />

Hence always rk(M(d, e, f)) = 2 <strong>and</strong> S is classical.<br />

13.15 An additional regular pair of po<strong>in</strong>ts<br />

In study<strong>in</strong>g flock GQ with parameters (q 2 , q) that have subquadrangles of<br />

order q, J. A. Thas <strong>in</strong> [Th01c], <strong>and</strong> J. A.Thas <strong>and</strong> K.Thas <strong>in</strong> [JTKT06] show<br />

that flock GQ hav<strong>in</strong>g a regular po<strong>in</strong>t <strong>in</strong> (∞) ⊥ \ {(∞)} must be classical if<br />

q is even, <strong>and</strong> must be the po<strong>in</strong>t-l<strong>in</strong>e dual of a translation GQ when q is<br />

odd. Their proofs are a bit heavy <strong>and</strong> apparently only work for flock GQ. In<br />

Section 9.17 of this book we give a general construction of STGQ. In [Pa89]<br />

this model is used to study certa<strong>in</strong> families of GQ <strong>and</strong> some computations<br />

are given that could possibly lead to a proof that a flock GQ with a regular<br />

po<strong>in</strong>t <strong>in</strong> (∞) ⊥ \ {(∞)} is the po<strong>in</strong>t-l<strong>in</strong>e dual of a TGQ (so classical when q<br />

is even). This subject is of <strong>in</strong>terest to the author but does not especially fit<br />

with<strong>in</strong> the present book.<br />

13.16 Flocks Whose Planes Conta<strong>in</strong> a Common<br />

Po<strong>in</strong>t<br />

The three theorems of this section are all taken from J. A. Thas [Th87].<br />

The first theorem deals with the case q even <strong>and</strong> depends on Theorem<br />

8.3.6 (D.G. Glynn [Gl84]). (Of course by now we have seen the much<br />

stronger result Theorem 11.6.2 by M. Brown [Br00a] say<strong>in</strong>g that if even one<br />

of the ovals that is a plane section of the ovoid Ω is a conic, then Ω must be<br />

an elliptic quadric.


13.16. FLOCKS WHOSE PLANES CONTAIN A COMMON POINT 629<br />

Theorem 13.16.1. Let q = 2 e <strong>and</strong> let F = {C1, . . . , Cq} be a flock of the<br />

cone K project<strong>in</strong>g an irreducible conic of the plane P G(2, q). If the planes<br />

π1, . . . , πq, with πi ⊃ Ci all conta<strong>in</strong> a common po<strong>in</strong>t, then F is l<strong>in</strong>ear.<br />

Proof. S<strong>in</strong>ce all flocks are l<strong>in</strong>ear if q ≤ 4, we may assume that q > 4. Let the<br />

cone K be embedded <strong>in</strong> the Kle<strong>in</strong> quadric H of P G(5, q). If π∗ i is the polar<br />

plane of πi with respect to H5 <strong>and</strong> if π∗ i ∩ H5 = C∗ i , then C∗ 1 ∪ C∗ 2 ∪ . . . ∪ C∗ q =<br />

O∗ is an ovoid of H5 (see the proof of the Thas-Walker Construction <strong>in</strong><br />

Section 12.11). By the proofs of Lemma 13.6.9 <strong>and</strong> Theorem 13.6.10 the<br />

planes π∗ 1 , . . . , π∗ q conta<strong>in</strong> a common tangent l<strong>in</strong>e L of H5 pass<strong>in</strong>g through<br />

the vertex V of K. By hypothesis the planes π1, . . . , πq conta<strong>in</strong> a common<br />

po<strong>in</strong>t y, so the planes π∗ 1, . . . , π∗ q are conta<strong>in</strong>ed <strong>in</strong> the polar space P G(4, q)<br />

of y with respect to H5. Here y is the nucleus of the parabolic quadric<br />

P4 = P G(4, q) ∩ H5 (because y⊥ = P G(4, q) <strong>and</strong> y ∈ H5), so that no l<strong>in</strong>e<br />

through y conta<strong>in</strong>s two po<strong>in</strong>ts of H5. Clearly the po<strong>in</strong>ts of O∗ all lie <strong>in</strong> P4<br />

<strong>and</strong> hence form an ovoid of P4. So each l<strong>in</strong>e of P4 is on exactly one po<strong>in</strong>t of<br />

O∗ .<br />

Now let z1, z2 be any two po<strong>in</strong>ts of O∗ <strong>and</strong> let C∗ = P4 ∩ 〈y, z1, z2〉. C∗ will meet O∗ <strong>in</strong> at least the two po<strong>in</strong>ts z1, z2, <strong>and</strong>, of course, it meets P4<br />

<strong>in</strong> a conic. Put V ∗ = C∗ ∩ O∗ <strong>and</strong> v = |V ∗ |. Count <strong>in</strong> two different ways<br />

the ordered pairs (u, z) with u ∈ O∗ \ V ∗ , z ∈ C∗ \ V ∗ , <strong>and</strong> uz a l<strong>in</strong>e of P4.<br />

There are q2 + 1 − v choices for u, <strong>and</strong> the perp <strong>in</strong> P4 of u conta<strong>in</strong>s y. Hence<br />

u⊥ ∩ 〈y, z1, z2〉 must be a tangent l<strong>in</strong>e to C∗ so conta<strong>in</strong> a unique po<strong>in</strong>t of C∗ .<br />

But of course this po<strong>in</strong>t of C∗ cannot be <strong>in</strong> O∗ itself. Hence for each u there<br />

is a unique z. On the other h<strong>and</strong> there are q + 1 − v choices for z, each on<br />

q +1l<strong>in</strong>es of P4, each of which must conta<strong>in</strong> a po<strong>in</strong>t of O∗ but cannot conta<strong>in</strong><br />

a po<strong>in</strong>t of C∗ . This implies<br />

q 2 + 1 − v = (q + 1 − v)(q + 1) =⇒ v = 2.<br />

This says that 〈y, z1, z2〉 conta<strong>in</strong>s only the po<strong>in</strong>ts z1, z2 of O ∗ . Now project<br />

O ∗ from y onto a solid P G(3, q) conta<strong>in</strong>ed <strong>in</strong> y ⊥ = P G(4, q). S<strong>in</strong>ce no l<strong>in</strong>e<br />

through y can conta<strong>in</strong> two po<strong>in</strong>ts of O ∗ , the image O ∗∗ is a set of q 2 + 1<br />

po<strong>in</strong>ts of P G(3, q). If there were three po<strong>in</strong>ts of O ∗∗ on a l<strong>in</strong>e m, that would<br />

mean there were three po<strong>in</strong>ts of O ∗ <strong>in</strong> the plane 〈m, y〉, someth<strong>in</strong>g we just<br />

showed was impossible. Hence O ∗∗ is an ovoid of P G(3, q) (s<strong>in</strong>ce q > 2).<br />

Remember that O ∗ is the union of q conics C ∗ 1, . . . , C ∗ q , meet<strong>in</strong>g pairwise<br />

at just the po<strong>in</strong>t V <strong>and</strong> hav<strong>in</strong>g a common tangent l<strong>in</strong>e L there. Under the<br />

, . . . , C∗∗ hav<strong>in</strong>g a<br />

projection to O ∗∗ these conics are mapped to conics C ∗∗<br />

1<br />

q


630 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

common tangent l<strong>in</strong>e, the image of L. (S<strong>in</strong>ce y ∈ πi <strong>and</strong> πi ∩ π ⊥ i<br />

= ∅, y ∈ L.)<br />

Hence O ∗∗ is an ovoid of P G(3, q) with a pencil of conics, so O ∗∗ must be<br />

an elliptic quadric (by Theorem 8.4.1) But the <strong>in</strong>verse projection maps these<br />

conics back to conics, i.e., O ∗ is the union of conics. Fix two of the conics<br />

of O ∗∗ , say C ∗∗ <strong>and</strong> C ′∗∗ , shar<strong>in</strong>g a common secant l<strong>in</strong>e. Their preimages<br />

back <strong>in</strong> P4 span a 3-space Σ that conta<strong>in</strong>s the preimage of any conic of O ∗∗<br />

meet<strong>in</strong>g C ∗∗ <strong>and</strong> C ′∗∗ each <strong>in</strong> two po<strong>in</strong>ts. It is possible to show that each<br />

one of these conics of O ∗ is conta<strong>in</strong>ed <strong>in</strong> that same 3-space Σ. Hence O ∗ is<br />

an ovoid of a 3-space with conics as plane sections <strong>and</strong> therefore must be an<br />

elliptic quadric. Then the perp Σ ⊥ of Σ with respect to H5 must be a l<strong>in</strong>e<br />

conta<strong>in</strong>ed <strong>in</strong> the planes of the orig<strong>in</strong>al flock.<br />

Clearly the same result holds for any cone project<strong>in</strong>g a hyperoval O ∗ which<br />

conta<strong>in</strong>s an irreducible conic, <strong>and</strong> also for any cone project<strong>in</strong>g a po<strong>in</strong>ted conic.<br />

Now let q be odd <strong>and</strong> recall that Segre’s theorem says that each oval of<br />

P G(2, q) is an irreducible conic. So let C be an irreducible conic of P G(2, q)<br />

<strong>and</strong> let K be the cone with vertex V ∈ P G(3, q) \ P G(2, q) <strong>and</strong> base C. Let<br />

F = {π1, . . . , πq} be a flock of K with Ci = πi ∩ K.<br />

Theorem 13.16.2. If the planes π1, . . . , πq conta<strong>in</strong> a common <strong>in</strong>terior po<strong>in</strong>t<br />

x of K, then F is l<strong>in</strong>ear.<br />

Proof. Let x0x1 = x 2 2 be the equation of the cone K, <strong>and</strong> let πi have coord<strong>in</strong>ates<br />

πi = [ai, bi, ci, 1]. Recall that the condition for the planes to form a<br />

flock is that<br />

(ci − cj) 2 − 4(ai − aj)(bi − bj) = ❆ ∈ Fq whenever i = j.<br />

S<strong>in</strong>ce the automorphism group of P G(3, q) leav<strong>in</strong>g K <strong>in</strong>variant is transitive<br />

on the <strong>in</strong>terior po<strong>in</strong>ts of K, we may assume that x = (1, −m, 0, 0), with m a<br />

given nonsquare of Fq. As x is conta<strong>in</strong>ed <strong>in</strong> πi, we have ai = mbi, 1 ≤ i ≤ q.<br />

Let Fq2 be the field obta<strong>in</strong>ed by adjo<strong>in</strong><strong>in</strong>g a root ω of x2 = m to Fq. If<br />

α ∈ Fq2, then the conjugate of α with respect to Fq is denoted by α. To the<br />

q planes πi we let correspond the q elements ci + 2biω = αi of Fq<br />

2. We claim<br />

that αi − αj, i = j, is never a square <strong>in</strong> F q 2. For suppose that with some<br />

dist<strong>in</strong>ct fixed i <strong>and</strong> j αi − αj is a square <strong>in</strong> F q 2, say αi − αj = (r + sω) 2 with


13.16. FLOCKS WHOSE PLANES CONTAIN A COMMON POINT 631<br />

r, s ∈ Fq. Then we have<br />

(ci − cj) 2 − 4(ai − aj)(bi − bj) = (ci − cj) 2 − 4(bi − bj) 2 m<br />

= (ci − cj) 2 − 4(bi − bj) 2 ω 2 =<br />

(ci − cj + 2(bi − bj)ω) × (ci − cj − 2(bi − bj)ω)<br />

= (αi − αj)(αi − αj) = (r + sω) 2 (r − sω) 2 = (r 2 − s 2 m) 2 .<br />

Hence (ci − cj) 2 − 4(ai − aj)(bi − bj) is a square <strong>in</strong> Fq, contradict<strong>in</strong>g the<br />

condition for a flock. So αi − αj is never a nonzero square <strong>in</strong> Fq2. Let v be a given nonsquare of Fq2. The set W consist<strong>in</strong>g of the q elements<br />

v(αi − α1) conta<strong>in</strong>s 0 <strong>and</strong> has the property that δ − γ is a square whenever<br />

δ, γ ∈ W . Thus the theorem (Cor. 20.25.6) of Blokhuis says that W = {dα :<br />

d ∈ Fq} where α is some fixed nonzero square of Fq2. Hence v(αi−α1)/α ∈ Fq<br />

for 1 ≤ i ≤ q. Suppose v/α = u + u ′ ω for u, u ′ ∈ Fq, with (u, u ′ ) = (0, 0).<br />

Then <strong>in</strong> the product (u + u ′ ω)(αi − α1), the coefficient on ω must equal zero.<br />

It follows that u ′ ci + 2biu = u ′ c1 + 2b1u, 1 ≤ i ≤ q. Consequently each plane<br />

πi = [mbi, bi, ci, 1] conta<strong>in</strong>s the po<strong>in</strong>t (0, 2u, u ′ , −u ′ c1 − 2b1u). Thus the q<br />

planes πi all conta<strong>in</strong> the l<strong>in</strong>e 〈(1, −m, 0, 0), (0, 2u, j ′ , −u ′ c1 − 2b1u)〉, i.e., the<br />

flock is l<strong>in</strong>ear.<br />

Theorem 13.16.3. Let F = {π1, π2, . . . , πq} be a flock of the quadratic cone<br />

K <strong>and</strong> suppose that the planes πi all conta<strong>in</strong> a common exterior po<strong>in</strong>t of K.<br />

If m is a given nonsquare of Fq, then the coord<strong>in</strong>ates can be chosen so that K<br />

has equation x0x1 = x 2 2 <strong>and</strong> the plane πi has equation aix0 − ma σ i x1 + x3 = 0,<br />

{a1, . . . , aq} = Fq <strong>and</strong> σ ∈Aut(Fq). Conversely, given a nonsquare m of Fq,<br />

the planes πi with equation aix0 − ma σ i x1 + x3 = 0, {a1, . . . , aq} = Fq <strong>and</strong><br />

σ any automorphism of Fq, def<strong>in</strong>e a flock F of the cone K with equation<br />

x0x1 = x 2 2. Moreover, the planes πi all conta<strong>in</strong> the exterior po<strong>in</strong>t (0, 0, 1, 0)<br />

of K. F<strong>in</strong>ally, the flock is l<strong>in</strong>ear iff σ = 1.<br />

Proof. Consider the cone K with equation x0x1 = x 2 2 <strong>and</strong> the q planes πi =<br />

[ai, −ma σ i , 0, 1] where {a1, . . . , aq} = Fq. Let m be a given nonsquare of Fq<br />

<strong>and</strong> let σ be any automorphism of Fq. All these planes conta<strong>in</strong> the exterior<br />

po<strong>in</strong>t (0, 0, 1, 0) of K. S<strong>in</strong>ce −4(ai − aj)(−ma σ i + maσ j ) = 4m(ai − aj) σ+1 is<br />

a nonsquare whenever i = j, the planes πi def<strong>in</strong>e a flock of K. It is now a<br />

rout<strong>in</strong>e exercise to compute the l<strong>in</strong>e<br />

πi ∩ πj = 〈(0, 0, 1, 0), (m(a σ j − aσ i ), aj − ai, 0, −m(aia σ j − aσ i aj))〉.


632 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES<br />

WLOG we may assume the planes have been <strong>in</strong>dexed so that a1 = 0 <strong>and</strong><br />

a2 = 1. Then let j ∈ {3, 4, . . . , q}. So<br />

π1 ∩ π2 = 〈(0, 0, 1, 0), (m, 1, 0, 0)〉; π1 ∩ πj = 〈(0, 0, 1, 0), (ma σ j , aj, 0, 0)〉.<br />

These are the same l<strong>in</strong>e if <strong>and</strong> only if there is a nonzero λ ∈ Fq for which<br />

λ(m, 1, 0, 0) = (ma σ j , aj, 0, 0) ⇐⇒ a σ j = aj.<br />

Hence the flock is l<strong>in</strong>ear if <strong>and</strong> only if σ = 1.<br />

Conversely, consider any flock F = {π1, . . . , πq} of a quadratic cone K<br />

where the planes of the flock conta<strong>in</strong> a common exterior po<strong>in</strong>t x of K. Coord<strong>in</strong>ates<br />

can be chosen <strong>in</strong> such a way that x = (0, 0, 1, 0), that π1 = [0, 0, 0, 1],<br />

<strong>and</strong> that K has equation x0x1 = x2 2 . Then the plane πi = [ai, bi, 0, 1], with<br />

a1 = b1 = 0. In the section show<strong>in</strong>g that flocks of a quadratic cone <strong>and</strong><br />

q-clans are equivalent objects we showed that i ↦→ ai <strong>and</strong> i ↦→ bi must both<br />

be permutations, so that the map θ : ai ↦→ bi, 1 ≤ i ≤ q, is a permutation of<br />

the elements of Fq (with 0θ = 0). Also, the condition for F to be a flock is<br />

that −(ai − aj)(aθ i − aθj ) be a nonsquare whenever i = j. Putt<strong>in</strong>g aj = 0 <strong>and</strong><br />

ai = 1, we see that −1θ is a nonsquare. Hence ((aθ i /1θ ) − (aθ j/1θ ))/(ai − aj)<br />

is a nonzero square whenever i = j. Let σ : ai ↦→ (aθ i /1θ ), 1 ≤ i ≤ q.<br />

Then σ is a permutation of the elements of Fq for which 0σ = 0 <strong>and</strong> 1σ = 1.<br />

Moreover, (aσ i − aσ j )/(ai − aj) is a nonzero square whenever i = j. By a<br />

theorem of Carlitz [Ca60] (see Theorem 20.26.1) σ is an automorphism of<br />

Fq. Notice that the plane πi = [ai, 1 θ a σ i<br />

, 0, 1]. Now let m be any given<br />

nonsquare of Fq <strong>and</strong> consider the follow<strong>in</strong>g transformation of coord<strong>in</strong>ates:<br />

x0 = x ′ 0 ; x1 = (−m/1 θ )x ′ 1 ; x2 = sx ′ 2 ; x3 = x ′ 3 , with −m/1θ = s 2 . Then K<br />

still has equation x0x1 = x 2 2 <strong>and</strong> πi = [ai, −ma σ i , 0, 1], 1 ≤ i ≤ q, complet<strong>in</strong>g<br />

the proof.


13.16. FLOCKS WHOSE PLANES CONTAIN A COMMON POINT 633<br />

[A(∞)]<br />

✉<br />

A∗ (∞)(γ, 0, ¯0)<br />

✉<br />

A∗ (∞)(α, 0, ¯0)<br />

✉<br />

A∗ (∞)(¯0, 0, ¯0)<br />

A(0)<br />

✉<br />

(γ, 0, ¯0)<br />

✉<br />

(α, 0, ¯0)<br />

✉<br />

(¯0, 0, ¯0)<br />

A ∗ (0)<br />

✉<br />

(γ, γAtγ T , γKt + βt)<br />

✉<br />

(α, αAtαT , αKt + βt)<br />

✉<br />

(¯0, 0, βt)<br />

A(∞)(γ, 0, ¯0)<br />

A(∞)(α, 0, ¯0)<br />

A(∞)<br />

[A(0)]<br />

✉❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵<br />

✉<br />

(∞)<br />

✉ [A(t)]<br />

A<br />

❵<br />

∗ (t)(¯0, 0, βt)<br />

A(t)(¯0, 0, βt)<br />

Figure 13.6: Property (G) at A ∗ (∞)(¯0, 0, ¯0)


634 CHAPTER 13. Q-CLANS AND THEIR GEOMETRIES


Chapter 14<br />

F<strong>in</strong>ite Circle Geometries<br />

14.1 The Circle Geometries<br />

In this chapter we are <strong>in</strong>terested only <strong>in</strong> the f<strong>in</strong>ite circle geometries, <strong>and</strong> then<br />

primarily <strong>in</strong> the f<strong>in</strong>ite circle planes, so we could give axioms for the various<br />

circle geometries <strong>in</strong> terms of their parameters. However, we prefer to give<br />

the basic axioms <strong>and</strong> let the reader choose whether to prove the basic results<br />

on the parameters or take them as the start<strong>in</strong>g po<strong>in</strong>t.<br />

The study of circle planes, sometimes referred to as Benz planes (see<br />

[Be37]), was orig<strong>in</strong>ally motivated by the study of quadrics <strong>in</strong> the projective<br />

space P G(3, q) over a field F . In particular, we will be study<strong>in</strong>g the follow<strong>in</strong>g<br />

three quadrics: the elliptic quadric <strong>in</strong> P G(3, q), the quadratic cone formed<br />

by tak<strong>in</strong>g a cone with vertex V <strong>and</strong> base some conic <strong>in</strong> a plane not conta<strong>in</strong><strong>in</strong>g<br />

V , <strong>and</strong> the hyperbolic quadric. The po<strong>in</strong>ts, l<strong>in</strong>es <strong>and</strong> plane sections of each<br />

of these quadrics yields a geometry that will serve as a prototype for a circle<br />

plane with 0, 1 or 2 parallel classes of l<strong>in</strong>es. First, any three po<strong>in</strong>ts of the<br />

quadric, no two on a l<strong>in</strong>e, span a plane that <strong>in</strong>tersects the quadric <strong>in</strong> an<br />

irreducible plane quadric. Secondly, given an irreducible plane section C of<br />

a quadric Q <strong>and</strong> a po<strong>in</strong>t P ∈ C, there is a unique l<strong>in</strong>e ℓ tangent to C at<br />

P <strong>in</strong> the plane of C. Given any po<strong>in</strong>t Q ∈ Q \ C not coll<strong>in</strong>ear with P , the<br />

plane 〈Q, ℓ〉 meets Q <strong>in</strong> the unique irreducible plane section of Q conta<strong>in</strong><strong>in</strong>g<br />

Q <strong>and</strong> touch<strong>in</strong>g C at P . Thirdly, if the quadric Q conta<strong>in</strong>s l<strong>in</strong>es, then every<br />

l<strong>in</strong>e meets every irreducible plane section of Q <strong>in</strong> a unique po<strong>in</strong>t. Further,<br />

the l<strong>in</strong>es occur <strong>in</strong> rul<strong>in</strong>gs where the l<strong>in</strong>es <strong>in</strong> a rul<strong>in</strong>g partition the po<strong>in</strong>ts of<br />

Q, <strong>and</strong> any two l<strong>in</strong>es <strong>in</strong> dist<strong>in</strong>ct rul<strong>in</strong>gs <strong>in</strong>tersect <strong>in</strong> a unique po<strong>in</strong>t.<br />

635


636 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

These geometric properties of the quadrics are formalized <strong>in</strong> the def<strong>in</strong>ition<br />

of a circle plane, where the concept of a circle takes the place of an irreducible<br />

plane section of a quadric.<br />

Def<strong>in</strong>ition 14.1.1. A circle plane S = (P, L, C) is an <strong>in</strong>cidence structure<br />

of po<strong>in</strong>ts, l<strong>in</strong>es <strong>and</strong> circles, respectively, such that the follow<strong>in</strong>g axioms are<br />

satisfied:<br />

C1 Three pairwise non-coll<strong>in</strong>ear po<strong>in</strong>ts are <strong>in</strong>cident with a unique circle.<br />

C2 (the “touch<strong>in</strong>g axiom”) For any circle C, po<strong>in</strong>t P ∈ C <strong>and</strong> po<strong>in</strong>t Q<br />

not coll<strong>in</strong>ear with P such that Q is not on C, there is a unique circle D<br />

<strong>in</strong>cident with Q <strong>and</strong> touch<strong>in</strong>g C at P (i.e., C <strong>and</strong> D are <strong>in</strong>cident with<br />

exactly one common po<strong>in</strong>t P ).<br />

C3 The l<strong>in</strong>eset L is partitioned <strong>in</strong>to parallel classes. Each po<strong>in</strong>t is <strong>in</strong>cident<br />

with exactly one l<strong>in</strong>e <strong>in</strong> each parallel class, <strong>and</strong> each l<strong>in</strong>e <strong>and</strong> each circle<br />

have a unique po<strong>in</strong>t <strong>in</strong> common.<br />

C4 Two l<strong>in</strong>es <strong>in</strong> different parallel classes <strong>in</strong>tersect <strong>in</strong> a unique po<strong>in</strong>t.<br />

C5 Each circle is <strong>in</strong>cident with at least three po<strong>in</strong>ts, <strong>and</strong> there exist more<br />

than one circle.<br />

The touch<strong>in</strong>g axiom has the follow<strong>in</strong>g <strong>in</strong>terest<strong>in</strong>g consequence. Suppose<br />

that P is a po<strong>in</strong>t of the circle C, <strong>and</strong> that C1 <strong>and</strong> C2 are two circles both<br />

touch<strong>in</strong>g C at P . If there were a po<strong>in</strong>t Q on both C1 <strong>and</strong> C2 with Q = P ,<br />

then the touch<strong>in</strong>g axiom would be violated. Hence the circles touch<strong>in</strong>g C<br />

at P pairwise touch each other at P , so effectively partition the po<strong>in</strong>ts not<br />

coll<strong>in</strong>ear with P . More generally, the circles on a fixed po<strong>in</strong>t P are partitioned<br />

<strong>in</strong>to sets which touch pairwise at P <strong>and</strong> partition the po<strong>in</strong>ts of S not coll<strong>in</strong>ear<br />

with P . Such a set of circles is called a pencil, <strong>and</strong> P is called the base po<strong>in</strong>t<br />

of the pencil.<br />

A circle plane with 0, 1 or 2 parallel classes of l<strong>in</strong>es is called an <strong>in</strong>versive<br />

(or Möbius) plane, a Laguerre plane, or a M<strong>in</strong>kowski plane, respectively.<br />

In addition to the quadrics <strong>in</strong> P G(3, q), there are other sets of po<strong>in</strong>ts that<br />

may be used to def<strong>in</strong>e circle planes. The ma<strong>in</strong> one of <strong>in</strong>terest to us <strong>in</strong> the<br />

next section is the ovoid.<br />

In the quadric models for circles planes there is a local projective structure<br />

<strong>in</strong> the sense that for any po<strong>in</strong>t P on the quadric, the quotient geometry


14.1. THE CIRCLE GEOMETRIES 637<br />

P G(3, q)/P is a projective plane. If we also remove the plane tangent to the<br />

quadric at P , then <strong>in</strong> the quotient space we have an aff<strong>in</strong>e plane. In this<br />

context, a tangent plane meets the quadric <strong>in</strong> just the po<strong>in</strong>t P <strong>in</strong> the elliptic<br />

case, a l<strong>in</strong>e <strong>in</strong> the quadratic cone case <strong>and</strong> two l<strong>in</strong>es <strong>in</strong>tersect<strong>in</strong>g at P <strong>in</strong> the<br />

hyperbolic case. For example, <strong>in</strong> the elliptic quadric case, the “po<strong>in</strong>ts” of<br />

the quotient space, which are <strong>in</strong> general the l<strong>in</strong>es of P G(3, q) through P not<br />

<strong>in</strong> the tangent plane at P , may be identified with the po<strong>in</strong>ts of the quadric<br />

different from P <strong>and</strong> not coll<strong>in</strong>ear with P . The “l<strong>in</strong>es” of the quotient space,<br />

which are <strong>in</strong> general the planes of P G(3, q) pass<strong>in</strong>g through P but different<br />

from the tangent plane at P , may be identified with the circles through P .<br />

Then it is clear that this quotient structure is an aff<strong>in</strong>e plane of order q. This<br />

local or <strong>in</strong>ternal structure may be generalized to arbitrary circle planes.<br />

Def<strong>in</strong>ition 14.1.2. Let S = (P, L, C) be a circle plane. Then the derived<br />

plane at P ∈ P is the po<strong>in</strong>t-l<strong>in</strong>e geometry SP with po<strong>in</strong>ts, l<strong>in</strong>es <strong>and</strong> <strong>in</strong>cidence<br />

as follows:<br />

• Po<strong>in</strong>ts: po<strong>in</strong>ts of S not coll<strong>in</strong>ear with P .<br />

• L<strong>in</strong>es: circles <strong>in</strong>cident with Φ <strong>in</strong> S <strong>and</strong> l<strong>in</strong>es of S not <strong>in</strong>cident with P .<br />

• Incidence: <strong>in</strong>herited from the <strong>in</strong>cidence <strong>in</strong> S.<br />

S<strong>in</strong>ce three pairwise non-coll<strong>in</strong>ear po<strong>in</strong>ts def<strong>in</strong>e a unique circle <strong>in</strong> S we<br />

have that two po<strong>in</strong>ts def<strong>in</strong>e a unique l<strong>in</strong>e <strong>in</strong> SP (whether they be coll<strong>in</strong>ear<br />

or non-coll<strong>in</strong>ear <strong>in</strong> S). The touch<strong>in</strong>g axiom for S implies that the circles<br />

of S <strong>in</strong>cident with P fall <strong>in</strong>to parallel classes as l<strong>in</strong>es of SP . The l<strong>in</strong>es of<br />

S not <strong>in</strong>cident with P form a parallel class of l<strong>in</strong>es <strong>in</strong> SP . Note also that<br />

any circle of S not <strong>in</strong>cident with P meets any circle <strong>in</strong>cident with P <strong>in</strong> at<br />

most two po<strong>in</strong>ts (by Axiom C1). Hence we have the follow<strong>in</strong>g important <strong>and</strong><br />

well-known result:<br />

Theorem 14.1.3. Let S = (P, C, L) be a circle plane <strong>and</strong> P ∈ P.<br />

1. SP is an aff<strong>in</strong>e plane, <strong>and</strong> we denote its projective completion by SP .<br />

2. If C is a circle of S not <strong>in</strong>cident with P , then <strong>in</strong> SP the po<strong>in</strong>ts of<br />

SP <strong>in</strong>cident with C (<strong>and</strong> hence not coll<strong>in</strong>ear with P ) plus the po<strong>in</strong>t of<br />

SP that is the parallel class of SP correspond<strong>in</strong>g to the l<strong>in</strong>es of S not<br />

<strong>in</strong>cident with P , form an oval of SP .


638 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

14.2 F<strong>in</strong>ite Inversive Planes<br />

Recall that a circle plane with no l<strong>in</strong>e was called an <strong>in</strong>versive plane. We<br />

repeat the axioms for such a geometry.<br />

An <strong>in</strong>versive plane or Möbius plane I = (P, C, I) (here “I” denotes the<br />

<strong>in</strong>cidence relation) is a po<strong>in</strong>t-block <strong>in</strong>cidence structure on a set P of po<strong>in</strong>ts<br />

whose blocks, i.e., members of C, are called circles, <strong>and</strong> satisfy<strong>in</strong>g the follow<strong>in</strong>g<br />

conditions:<br />

I(i) Every three dist<strong>in</strong>ct po<strong>in</strong>ts of P are <strong>in</strong>cident with a unique common<br />

circle C ∈ C.<br />

I(ii) For each triple (C, P, Q) where C is a circle, P is a po<strong>in</strong>t <strong>in</strong>cident<br />

with C <strong>and</strong> Q is a po<strong>in</strong>t not <strong>in</strong>cident with C, there is a unique circle D<br />

<strong>in</strong>cident with both P <strong>and</strong> Q, but with no po<strong>in</strong>t <strong>in</strong>cident with C other than<br />

P .<br />

I(iii) There exists a non-<strong>in</strong>cident po<strong>in</strong>t-circle pair, <strong>and</strong> every circle is<br />

<strong>in</strong>cident with at least three po<strong>in</strong>ts.<br />

Two circles are called disjo<strong>in</strong>t, tangent, or secant accord<strong>in</strong>g as they have<br />

0, 1 or 2 common po<strong>in</strong>ts, respectively. Any subset of the po<strong>in</strong>ts of a circle<br />

is called a concircular set. For any two dist<strong>in</strong>ct po<strong>in</strong>ts P <strong>and</strong> Q the set of<br />

all circles through both P <strong>and</strong> Q is called the bundle with carriers P <strong>and</strong><br />

Q. A maximal set of mutually tangent circles through a po<strong>in</strong>t P is called a<br />

pencil with carrier P . Us<strong>in</strong>g (i) <strong>and</strong> (ii) it is easy to show that any bundle<br />

or pencil covers the po<strong>in</strong>ts of I.<br />

A flock F of I is a set of pairwise disjo<strong>in</strong>t circles such that, with the<br />

exception of precisely two po<strong>in</strong>ts, called the carriers of F, every po<strong>in</strong>t of I<br />

lies on a (necessarily unique) circle of F. For a f<strong>in</strong>ite <strong>in</strong>versive plane, i.e., one<br />

with a f<strong>in</strong>ite set of po<strong>in</strong>ts, it is easy to verify that there is a positive <strong>in</strong>teger<br />

q called the order of I, such that<br />

1. Each circle conta<strong>in</strong>s exactly q + 1 po<strong>in</strong>ts.<br />

2. |P| = q 2 + 1.<br />

3. |C| = q(q 2 + 1).<br />

4. Each po<strong>in</strong>t is on exactly q(q + 1) circles.<br />

5. Each pencil conta<strong>in</strong>s exactly q circles.<br />

6. A flock conta<strong>in</strong>s exactly q − 1 circles.


14.2. FINITE INVERSIVE PLANES 639<br />

In the f<strong>in</strong>ite case a circle can be thought of as a subset of q + 1 po<strong>in</strong>ts<br />

of I. Then a def<strong>in</strong>ition equivalent to that just given comes from the idea<br />

of the derived geometry IP of I at the po<strong>in</strong>t P . Here IP is the structure<br />

IP = (P ′ , C ′ , I ′ ) where P ′ = P \ {P }, C ′ = {C ∈ C : P IC}; <strong>and</strong> I ′ is <strong>in</strong>duced<br />

by I. Then I is an <strong>in</strong>versive plane of order q if <strong>and</strong> only if IP is an aff<strong>in</strong>e<br />

plane of order q for each po<strong>in</strong>t P ∈ P.<br />

The most common way to construct an <strong>in</strong>versive plane I is as follows.<br />

Construction 14.2.1. (Ovoidal or egglike <strong>in</strong>versive plane) Let Ω be an ovoid<br />

of P G(3, q). Put P = Ω. Each of the q 3 + q planes of P G(3, q) not tangent<br />

to Ω must meet Ω <strong>in</strong> an oval which we call a circle. These circles are the<br />

circles of I <strong>and</strong> <strong>in</strong>cidence I is just that <strong>in</strong>herited from <strong>in</strong>cidence <strong>in</strong> P G(3, q).<br />

It is clear that any three po<strong>in</strong>ts of Ω lie on a unique circle. So suppose<br />

that P is a po<strong>in</strong>t of Ω conta<strong>in</strong>ed <strong>in</strong> the circle C = π ∩ Ω for some cutt<strong>in</strong>g<br />

plane π. Suppose that Q is a po<strong>in</strong>t of Ω not conta<strong>in</strong>ed <strong>in</strong> C, so not <strong>in</strong> π.<br />

The tangent plane πP at P <strong>in</strong>tersects π <strong>in</strong> a l<strong>in</strong>e L such that L ∩ O = {P }.<br />

Then the plane π ′ = 〈L, Q〉 is not tangent to O <strong>and</strong> hence <strong>in</strong>tersects O <strong>in</strong> a<br />

circle D. S<strong>in</strong>ce π ∩ π ′ = L, C <strong>and</strong> D have no po<strong>in</strong>t <strong>in</strong> common other than<br />

P . If D ′ is any other circle through P <strong>and</strong> Q, tangent to C, then D ′ lies <strong>in</strong> a<br />

plane τ, such that τ ∩ π is a l<strong>in</strong>e <strong>in</strong> π <strong>in</strong>tersect<strong>in</strong>g O <strong>in</strong> {P }, <strong>and</strong> thus ly<strong>in</strong>g<br />

<strong>in</strong> the tangent plane at P . Hence τ ∩ π = L; τ = π ′ , <strong>and</strong> D = D ′ . There is<br />

therefore a unique circle D through P <strong>and</strong> Q <strong>and</strong> tangent to C, establish<strong>in</strong>g<br />

the second axiom for <strong>in</strong>versive planes. The third axiom is clearly satisfied,<br />

so we have an <strong>in</strong>versive plane.<br />

Such an <strong>in</strong>versive plane is called ovoidal or egglike. A celebrated theorem<br />

of Dembowski says that each f<strong>in</strong>ite <strong>in</strong>versive plane with even order must be<br />

ovoidal. Later we will see a proof of this theorem found by J. A. Thas us<strong>in</strong>g<br />

the theory of generalized quadrangles.<br />

There are other models of <strong>in</strong>versive planes equivalent to the one just<br />

given, but which look quite different. In fact, <strong>in</strong> this chapter we will develop<br />

properties of I us<strong>in</strong>g a model presented by W. F. Orr [Or73].<br />

Construction 14.2.2. (Bruck [Br69]) Let S be a regular l<strong>in</strong>e-spread of<br />

P G(3, q). So S is a set of q 2 + 1 pairwise skew l<strong>in</strong>es of P G(3, q) such that<br />

if L0, L1, L2 are any three dist<strong>in</strong>ct l<strong>in</strong>es of S, then the l<strong>in</strong>es of the regulus<br />

R(L0, L1, L2) are all conta<strong>in</strong>ed <strong>in</strong> S. Construct a po<strong>in</strong>t-circle geometry IB<br />

as follows. The po<strong>in</strong>ts of IB are the l<strong>in</strong>es of S. The circles of IB are the<br />

reguli conta<strong>in</strong>ed <strong>in</strong> S. Then it is clear that each three po<strong>in</strong>ts of IB lie <strong>in</strong> a


640 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

unique circle. For a regulus R conta<strong>in</strong>ed <strong>in</strong> S, a l<strong>in</strong>e L of R, <strong>and</strong> a l<strong>in</strong>e M<br />

of S not <strong>in</strong> R, there are q + 1 reguli conta<strong>in</strong><strong>in</strong>g L <strong>and</strong> M, q of which meet R<br />

<strong>in</strong> one further l<strong>in</strong>e. Hence there is a unique regulus conta<strong>in</strong><strong>in</strong>g L <strong>and</strong> M <strong>and</strong><br />

conta<strong>in</strong><strong>in</strong>g no further l<strong>in</strong>e of R. So axioms I(i) <strong>and</strong> I(ii) are both satisfied.<br />

And I(III) is clearly satisfied. Indeed, the properties 1. – 6. listed above are<br />

easily verified.<br />

Construction 14.2.3. (Projective subl<strong>in</strong>es) For this construction of I =<br />

(P, C, I) let the po<strong>in</strong>ts be the elements of Fq2 ∪ {∞}, which may be thought<br />

of as the po<strong>in</strong>ts of the projective l<strong>in</strong>e P G(1, q2 ). Then P G(1, q) = Fq ∪ {∞}<br />

is a projective subl<strong>in</strong>e of order q. The circles of C may be described as all the<br />

images of P G(1, q) under maps of the form x ↦→ ax+b,<br />

where ad − bc = 0.<br />

cx+d<br />

Construction 14.2.4. This model was developed <strong>in</strong> detail <strong>in</strong> the Ph.D. thesis<br />

of W. F. Orr [Or73].<br />

Let F = Fq ⊂ F q 2 = E, q any prime power. Let M ′ be the collection<br />

of all 2 × 2 matrices with entries <strong>in</strong> E. Def<strong>in</strong>e g : M ′ → M ′ : A ↦→ A ′ by<br />

the follow<strong>in</strong>g: If A = (aij), then A ′ = (aij q ). Let A ∗ be the classical adjo<strong>in</strong>t<br />

<br />

a b<br />

matrix of the matrix A. Hence if A =<br />

c d<br />

Note that (A ∗ ) ∗ = A <strong>and</strong> (AB) ∗ = B ∗ A ∗ .<br />

<br />

, then A ∗ =<br />

d −b<br />

−c a<br />

Let M0 be the subset of M ′ consist<strong>in</strong>g of all A <strong>in</strong> M ′ for which A ∗ = −A ′ ,<br />

i.e., d = −a q , b = b q , c = c q , so b, c ∈ F . It follows easily that M0 is a vector<br />

space over the field F , <strong>and</strong><br />

M0 =<br />

x a<br />

b −x q<br />

Fix y ∈ E \ F . Then the set of four matrices<br />

1 0<br />

0 −1<br />

<br />

,<br />

0 0<br />

1 0<br />

<br />

<br />

,<br />

<br />

: a, b ∈ F ; x ∈ E .<br />

0 1<br />

0 0<br />

<br />

;<br />

y 0<br />

0 −y q<br />

is a basis for the vector space M0 over F . Let M denote the correspond<strong>in</strong>g<br />

projective space isomorphic to P G(3, q). For A = 0 <strong>in</strong> M0, let 〈A〉 represent<br />

the element of M conta<strong>in</strong><strong>in</strong>g A. The po<strong>in</strong>ts, l<strong>in</strong>es, <strong>and</strong> planes of M are,<br />

respectively, the 1-, 2- <strong>and</strong> 3-dimensional subspaces of M0.<br />

Def<strong>in</strong>e a mapp<strong>in</strong>g from M0 onto F by<br />

<br />

;<br />

A ↦→ A = det(A) = −x q+1 − ab (14.1)<br />

<br />

.


14.2. FINITE INVERSIVE PLANES 641<br />

So A ↦→ Q(A) = A is a quadratic form on M0 as a vector space over F .<br />

Hence it determ<strong>in</strong>es a quadric surface O <strong>in</strong> M consist<strong>in</strong>g of all elements 〈A〉<br />

of M for which A = 0. Associated with the quadratic form is the bil<strong>in</strong>ear<br />

form<br />

<strong>and</strong> the associated scalar matrix,<br />

h(A, B) = A + B − A − B, (14.2)<br />

h(A, B)I = (A + B)(A + B) ∗ − AA ∗ − BB ∗<br />

where I is the 2 × 2 identity matrix.<br />

= AB ∗ + BA ∗ , (14.3)<br />

Lemma 14.2.5. The quadric O is an elliptic quadric <strong>in</strong> M ∼ = P G(3, q).<br />

Proof. Let R be a nons<strong>in</strong>gular matrix <strong>in</strong> M ′ , <strong>and</strong> consider the map A ↦→<br />

RAR ′∗ for A ∈ M0. Note that A∗ = −A ′ is equivalent to A ′∗ = −A. Then<br />

(RAR ′∗ ) ′∗ = (R ′ A ′ R∗ ) ∗ = RA ′∗R ′∗ = R(−A)R ′∗ = −(RAR ′∗ ), so this map<br />

leaves M0 <strong>in</strong>variant, is a bijection <strong>and</strong> preserves addition <strong>and</strong> scalar multiplication<br />

by elements of F . Hence it is an <strong>in</strong>vertible l<strong>in</strong>ear map on M0<br />

<strong>and</strong> <strong>in</strong>duces an homography φR on M. If A ∈ M0 with A = 0, then<br />

RAR ′∗ <br />

0 0<br />

= 0, so φR leaves <strong>in</strong>ivariant the quadric O. Let P (0) =<br />

1 0<br />

<br />

0 1<br />

<strong>and</strong> P (∞) = . Then P (0) <strong>and</strong> P (∞) are s<strong>in</strong>gular matrices <strong>and</strong><br />

0 0<br />

<br />

x a<br />

any s<strong>in</strong>gular matrix<br />

b −xq <br />

with any one of a, b, x be<strong>in</strong>g zero must be<br />

a scalar times P (0) or times P (∞). Note that if 0 = x ∈ E, then xq+1 ∈ F .<br />

Then it follows that if A is any s<strong>in</strong>gular matrix not a scalar multiple of P (0)<br />

or P (∞) it must be of the form<br />

<br />

q+1 x −x<br />

A = a<br />

1 −xq <br />

Consider the mapp<strong>in</strong>g φR for R =<br />

for 0 = a ∈ F ; 0 = x ∈ E.<br />

1 x<br />

0 1<br />

<br />

.


642 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

RP (0)R ′∗ =<br />

RP (∞)R ′∗ =<br />

x −x q+1<br />

1 −x q<br />

0 1<br />

0 0<br />

<br />

= a −1 A, (14.4)<br />

<br />

= P (∞). (14.5)<br />

Thus φR fixes P (∞) <strong>and</strong> maps P (0) onto A, the general s<strong>in</strong>gular element<br />

of M0.<br />

The homography group of M fix<strong>in</strong>g O <strong>and</strong> 〈P (∞)〉 is thus transitive on<br />

the po<strong>in</strong>ts of O \{P (∞)}. Rul<strong>in</strong>gs of O (if any were to exist) must be carried<br />

<strong>in</strong>to rul<strong>in</strong>gs of O by such coll<strong>in</strong>eations. Therefore, s<strong>in</strong>ce a ruled quadric<br />

conta<strong>in</strong>s <strong>in</strong> P G(3, q) exactly two rul<strong>in</strong>g l<strong>in</strong>es through each of its po<strong>in</strong>ts, any<br />

homography that fixed a po<strong>in</strong>t of O would have to fixe the two rul<strong>in</strong>g l<strong>in</strong>es<br />

through that po<strong>in</strong>t. Hence O cannot be ruled.<br />

We now have a new model of the ovoidal <strong>in</strong>versive plane I. The po<strong>in</strong>ts<br />

of I are the po<strong>in</strong>ts of O. The circles of I are the non-empty <strong>in</strong>tersections of<br />

O with nontangent planes. The <strong>in</strong>cidence relation is just conta<strong>in</strong>ment. As<br />

we saw above for general ovoidal <strong>in</strong>versive planes, I is <strong>in</strong>deed an <strong>in</strong>versive<br />

plane.<br />

Associated with the quadric O is a polarity ⊥ of M. In terms of the polar<br />

form h, for a po<strong>in</strong>t 〈A〉 of M,<br />

〈A〉 ⊥ = {〈B〉 ∈ M : h(A, B) = 0}. (14.6)<br />

S<strong>in</strong>ce h is a nons<strong>in</strong>gular bil<strong>in</strong>ear form, 〈A〉 ⊥ is a subspace of M of projective<br />

dimension 2. Then ⊥ is def<strong>in</strong>ed on planes of M by Eq. 14.6 <strong>and</strong> the<br />

condition that A ⊥⊥ = A. To each s<strong>in</strong>gular matrix P <strong>in</strong> M0 corresponds the<br />

element 〈P 〉 of O, <strong>and</strong> thus a po<strong>in</strong>t of I. To each nons<strong>in</strong>gular matrix C <strong>in</strong><br />

M0 corresponds an element 〈C〉 of M \O <strong>and</strong> thus a plane 〈C〉 ⊥ of M, which<br />

<strong>in</strong>tersects O <strong>in</strong> a circle of I.<br />

If P <strong>and</strong> C are elements of M0 with P s<strong>in</strong>gular <strong>and</strong> C nons<strong>in</strong>gular, then<br />

〈P 〉 <strong>and</strong> 〈C〉 correspond to a po<strong>in</strong>t <strong>and</strong> a circle, respectively, of I. The po<strong>in</strong>t<br />

<strong>and</strong> circle are <strong>in</strong>cident if <strong>and</strong> only if h(P, C) = 0.<br />

A coll<strong>in</strong>eation of an <strong>in</strong>versive plane I is a bijection of the set of po<strong>in</strong>ts of<br />

I onto itself which sends concircular sets onto concircular sets. An <strong>in</strong>volution<br />

is a coll<strong>in</strong>eation of order 2. An <strong>in</strong>volution which fixes every po<strong>in</strong>t of a circle


14.2. FINITE INVERSIVE PLANES 643<br />

〈A〉 is called an <strong>in</strong>version with axis A. If there exists an <strong>in</strong>version with a<br />

given axis A, then it is unique <strong>and</strong> it fixes no po<strong>in</strong>ts other than those of A.<br />

Lemma 14.2.6. Let R be a nons<strong>in</strong>gular matrix of M ′ , <strong>and</strong> consider the two<br />

mapp<strong>in</strong>gs<br />

φR : A ↦→ RAR ′∗ , <strong>and</strong> φ ′ R : A ↦→ RA′ R ′∗ ,<br />

respectively on the ponts <strong>and</strong> circles of I, where A ranges over the elements<br />

of M0. Then<br />

(i) φR <strong>and</strong> φ ′ R are homographies leav<strong>in</strong>g I <strong>in</strong>variant.<br />

(ii) For a circle 〈C〉 of I, the mapp<strong>in</strong>g φ ′ C is <strong>in</strong>version with respect to<br />

〈C〉, <strong>and</strong> 〈A〉 is fixed by φ ′ C , for A <strong>in</strong> M0, exactly when either h(A, C) = 0<br />

or 〈A〉 = 〈C〉 or both.<br />

Proof. S<strong>in</strong>ce RAR ′∗ = R·A·R ′∗, we see that φR preserves s<strong>in</strong>gularity<br />

<strong>and</strong> nons<strong>in</strong>gularity. Moreover, φR <strong>and</strong> φ ′ R are both <strong>in</strong>vertible l<strong>in</strong>ear maps<br />

from M0 onto M0. For 〈P 〉 <strong>in</strong> O <strong>and</strong> 〈C〉 <strong>in</strong> M \ O, we know that 〈P 〉 is<br />

<strong>in</strong>cident with 〈C〉 if <strong>and</strong> only if h(P, C) = 0. Then<br />

h(RP R ′∗ , RCR ′∗ ) = R(P + C)R ′∗ − RP R ′∗ − RCR ′∗ <br />

= R · h(P, C) · R ′∗ <br />

= 0.<br />

Thus φR sends 〈P 〉 <strong>and</strong> 〈C〉 <strong>in</strong>to an <strong>in</strong>cident po<strong>in</strong>t-circle pair. A similar<br />

argument works for φ ′ R , prov<strong>in</strong>g (i).<br />

For C ∈ M0, C ′∗ = −C, so the coll<strong>in</strong>eation φ ′ C is <strong>in</strong>duced by the mapp<strong>in</strong>g<br />

A ↦→ −CA ′ C on M0. If 〈P 〉 is a po<strong>in</strong>t of 〈C〉 ⊥ , then<br />

Thus,<br />

h(P, C)I = P C ∗ + CP ∗<br />

= 0.<br />

P C ∗ = −CP ∗<br />

= CP ′ .<br />

So P ↦→ −CP ′ C = −P C∗C = −CP , imply<strong>in</strong>g φ ′ C : 〈P 〉 ↦→ 〈P 〉.<br />

Also, (φ ′ C )2 is <strong>in</strong>duced by A ↦→ C(CA ′ C) ′ C = CC ′ AC ′ C = C2A, so<br />

(φ ′ C )2 is the identity mapp<strong>in</strong>g on M. Hence φ ′ C is an <strong>in</strong>volution fix<strong>in</strong>g every<br />

po<strong>in</strong>t of the circle 〈C〉, i.e., it is <strong>in</strong>version with respect to 〈C〉.


644 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

In addition, 〈A〉 ∈ M0 is fixed by φ ′ C precisely when CA′ C = aA for some<br />

a ∈ Fq, <strong>in</strong> which case C 2 A ′ = a 2 A, a 2 = C 2 . This leads to<br />

CA ∗ = −CA ′<br />

= (−CA ′ CC ∗ )C −1<br />

= −aAC ∗ C −1<br />

= ±AC ∗ .<br />

Thus either h(A, C)I = AC ∗ + CA ∗ = 0 or h(A, C)I = AC ∗ + AC ∗ . In the<br />

latter case, AC ∗ = kI for some k ∈ Fq, <strong>and</strong> AC ∗ C = kC, i.e., CA = kC,<br />

which implies 〈A〉 = 〈C〉, prov<strong>in</strong>g (ii).<br />

It is <strong>in</strong>terest<strong>in</strong>g to note that when q is odd the two cases of the preced<strong>in</strong>g<br />

Lemma are mutually exclusive, the first correspond<strong>in</strong>g to 〈A〉 ∈ 〈C〉 ⊥ , <strong>and</strong><br />

the second to 〈A〉 = 〈C〉. On the other h<strong>and</strong>, when q is even, h(C, C) = 0<br />

for all C, so that only the first case occurs. If, for a circle 〈D〉, h(C, D) = 0,<br />

we say that D is orthogonal to C. Clearly, “orthogonality” is a symmetric<br />

relation, <strong>and</strong> if q is even, all circles are self-orthogonal. The plane 〈C〉 ⊥ ,<br />

where ⊥ is the polarity with respect to O, is the plane consist<strong>in</strong>g of all<br />

po<strong>in</strong>ts of M which are fixed by φ ′ C <strong>and</strong> is called the orthogonal plane to 〈C〉<br />

<strong>in</strong> M.<br />

Lemma 14.2.7. Let L be a l<strong>in</strong>e <strong>in</strong> M. Then the po<strong>in</strong>ts of L which are not<br />

on O correspond to a bundle, a pencil, or a flock of circles <strong>in</strong> I accord<strong>in</strong>g as<br />

L <strong>in</strong>tersects O <strong>in</strong> 0, 1 or 2 po<strong>in</strong>ts, respectively. When L is tangent to O, the<br />

po<strong>in</strong>t of tangency is the carrier of the pencil. When L is disjo<strong>in</strong>t from O,<br />

then the l<strong>in</strong>e L ⊥ <strong>in</strong>tersects O <strong>in</strong> two po<strong>in</strong>ts, the carriers of the correspond<strong>in</strong>g<br />

bundle. When L is secant to O, its po<strong>in</strong>ts of secancy are <strong>in</strong>terchanged by<br />

<strong>in</strong>version with respect to the circles correspond<strong>in</strong>g to any of its other po<strong>in</strong>ts.<br />

Proof. Under the polarity ⊥, each po<strong>in</strong>t of L is mapped onto a plane through<br />

the l<strong>in</strong>e L ⊥ . A po<strong>in</strong>t 〈P 〉 of L on O is mapped onto a plane through L ⊥<br />

tangent to O at 〈P 〉. Thus L conta<strong>in</strong>s 0, 1 or 2 po<strong>in</strong>ts of O accord<strong>in</strong>g as L ⊥<br />

is <strong>in</strong> 0, 1 or 2 planes tangent to O, accord<strong>in</strong>g as L ⊥ conta<strong>in</strong>s 2, 1 or 0 po<strong>in</strong>ts<br />

of O, respectively. We treat the three cases separately.<br />

If L is disjo<strong>in</strong>t from O, then s<strong>in</strong>ce “elliptic ⊥ hyperbolic = elliptic,” it<br />

must be that L ⊥ meets O <strong>in</strong> two po<strong>in</strong>ts 〈P 〉 <strong>and</strong> 〈Q〉, <strong>and</strong> each plane through<br />

L ⊥ conta<strong>in</strong>s 〈P 〉 <strong>and</strong> 〈Q〉. Therefore the po<strong>in</strong>ts of L correspond to the q + 1<br />

circles of the bundle through 〈P 〉 <strong>and</strong> 〈Q〉.


14.2. FINITE INVERSIVE PLANES 645<br />

If L is tangent to O at 〈P 〉, then L⊥ must also be tangent to O at 〈P 〉,<br />

<strong>and</strong> any two planes through L⊥ have only the po<strong>in</strong>t 〈P 〉 <strong>in</strong> common on O.<br />

Thus the q po<strong>in</strong>ts of L other than 〈P 〉 correspond to a pencil of circles of I<br />

tangent at 〈P 〉.<br />

If L is secant to O at 〈P 〉 <strong>and</strong> 〈Q〉, then L⊥ is disjo<strong>in</strong>t from O <strong>and</strong> is<br />

conta<strong>in</strong>ed <strong>in</strong> the tangent planes to O at 〈P 〉 <strong>and</strong> 〈Q〉. Thus any two planes<br />

through L⊥ have no po<strong>in</strong>t of O <strong>in</strong> common, <strong>and</strong> the q − 1 po<strong>in</strong>ts of L other<br />

than 〈P 〉 <strong>and</strong> 〈Q〉 correspond to a flock of I. We shall call such a flock l<strong>in</strong>ear.<br />

Consider 〈C〉 <strong>in</strong> L \ O. Then φ ′ C fixes the po<strong>in</strong>ts of the orthogonal plane to<br />

〈C〉, which conta<strong>in</strong>s L⊥ . Therefore φ ′ C must fix L, <strong>and</strong> it either fixes 〈P 〉 <strong>and</strong><br />

〈Q〉 or it <strong>in</strong>terchanges them. But s<strong>in</strong>ce 〈P 〉 <strong>and</strong> 〈Q〉 cannot be <strong>in</strong>cident with<br />

〈C〉, they cannot be fixed by φ ′ C . We conclude that φ′ C <strong>in</strong>terchanges 〈P 〉 <strong>and</strong><br />

〈Q〉.<br />

We are now <strong>in</strong> a good position to <strong>in</strong>dicate the close connection between<br />

this model of Orr <strong>and</strong> the model of Construction 14.2.3<br />

Each po<strong>in</strong>t of O can be represented as 〈P1〉 for some P1 ∈ M0 with<br />

det(P1) = 0, i.e.,<br />

P1 =<br />

y a<br />

b −y q<br />

where −ab = y q+1 . S<strong>in</strong>ce P1 = 0, a <strong>and</strong> b cannot both be zero. If b = 0, let<br />

P = b −1 P1. If b = 0 (forc<strong>in</strong>g y = 0), let P = a −1 P1. Then P has one of the<br />

two forms:<br />

or<br />

<br />

q+1 x −x<br />

P (x) =<br />

1 −xq P (∞) =<br />

<br />

,<br />

<br />

, for some x ∈ Fq 2,<br />

0 1<br />

0 0<br />

Thus we have a one-to-one correspondence between po<strong>in</strong>ts of O <strong>and</strong> the<br />

elements of the set Fq2 ∪ {∞}, where ∞ is considered formally as a new<br />

symbol. <br />

a b<br />

Let R =<br />

∈ M<br />

c d<br />

′ be nons<strong>in</strong>gular. The mapp<strong>in</strong>gs φR <strong>and</strong> φ ′ R<br />

def<strong>in</strong>ed above <strong>in</strong>duce the follow<strong>in</strong>g mapp<strong>in</strong>gs on Fq2 ∪ {∞}.<br />

<br />

.


646 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

<strong>and</strong><br />

φR =⇒ x ↦→<br />

ax + b<br />

, (14.7)<br />

cx + d<br />

φ ′ R =⇒ x ↦→ axq + b<br />

cxq , (14.8)<br />

+ d<br />

where we observe the usual conventions ∞/a = ∞; a/∞ = 0; a/0 = ∞;<br />

<strong>and</strong> ∞q = ∞.<br />

Thus, <strong>in</strong> particular <strong>in</strong>version φ ′ C with respect to the circle 〈C〉 of the form<br />

x a<br />

b −xq <br />

<strong>in</strong>duces the map<br />

φ ′ C =⇒ y ↦→ xyq + a<br />

byq . (14.9)<br />

− xq Thus the circles <strong>in</strong> Fq2 ∪ {∞} are the fixed po<strong>in</strong>ts of the mapp<strong>in</strong>gs of the<br />

form <strong>in</strong> Eq. reffcircle2 eq 9. One can show that these are just the images of<br />

Fq ∪ {∞} under the mapp<strong>in</strong>gs of the form Eq. 14.7. (See [Br69].) The group<br />

of mapp<strong>in</strong>gs φR is thus transitive on theordered triples of dist<strong>in</strong>ct po<strong>in</strong>ts of<br />

q+1 y −y<br />

I. To see this, show that (with P (y) =<br />

1 yq <br />

∈ 〈C〉)<br />

φ ′ C : y ↦→ y ⇐⇒ a + xyq = by q+1 − yx q<br />

<br />

x a<br />

⇐⇒ 0 = h<br />

b −xq <br />

q+1 y −y<br />

,<br />

1 yq <br />

= 0.<br />

14.3 Miquelian Inversive Planes of Odd Order<br />

Let q be any power of an odd prime, <strong>and</strong> otherwise cont<strong>in</strong>ue to use the<br />

notation of the preced<strong>in</strong>g section. So I is an <strong>in</strong>versive plane of order q<br />

derived from an elliptic quadric O <strong>in</strong> P G(3, q).<br />

Let t be a fixed solution to t q = −t = 0. So we may th<strong>in</strong>k of 1, t as<br />

a basis of F q 2 over Fq. S<strong>in</strong>ce t 2 = −t q+1 ∈ Fq, it is easy to see that t 2 is a<br />

nonsquare <strong>in</strong> Fq. Recall the bil<strong>in</strong>ear form h from the preced<strong>in</strong>g section <strong>and</strong><br />

def<strong>in</strong>e<br />

A.B = 1<br />

2 h(A, B), for A, B ∈ M0. (14.10)


14.3. MIQUELIAN INVERSIVE PLANES OF ODD ORDER 647<br />

For the associated scalar matrix,<br />

(A.B)I = 1<br />

2 (AB∗ + BA ∗ ), (14.11)<br />

where I is the 2 × 2 identity matrix.<br />

In particular, we have A.A = A = det(A). We also def<strong>in</strong>e the product<br />

A × B = (A.B) 2 − A · B, (14.12)<br />

<strong>and</strong> note that both these products have values <strong>in</strong> Fq.<br />

Lemma 14.3.1. Let 〈C〉 <strong>and</strong> 〈D〉 be dist<strong>in</strong>ct circles of I (as def<strong>in</strong>ed <strong>in</strong> the<br />

preced<strong>in</strong>g section). Then 〈C〉 <strong>and</strong> 〈D〉 are disjo<strong>in</strong>t, tangent, or secant accord<strong>in</strong>g<br />

as C × D is a nonzero square, zero, or a nonsquare <strong>in</strong> Fq, respectively.<br />

Proof. S<strong>in</strong>ce the group of mapp<strong>in</strong>gs φR is transitive on the circles of I, we<br />

assume first that<br />

C =<br />

D =<br />

<br />

t 0<br />

= tI; where t<br />

0 t<br />

q = −t = 0;<br />

<br />

y a<br />

b −yq <br />

.<br />

Note that P (∞) is on 〈D〉 if <strong>and</strong> only if<br />

0 =<br />

<br />

0<br />

0<br />

<br />

1 y<br />

0 b<br />

a<br />

−yq ∗ <br />

y<br />

+<br />

b<br />

a<br />

−yq = −bI.<br />

0 1<br />

0 0<br />

Firstassume that 〈P (∞)〉 is not on 〈D〉, so b = 0. Then the po<strong>in</strong>ts<br />

q+1 x −x<br />

P (x) =<br />

1 −xq <br />

of 〈C〉 are exactly those po<strong>in</strong>ts for which<br />

0 = (P (x).C)I<br />

= 1<br />

2 (P (x)C∗ + CP (x) ∗ =<br />

)<br />

1<br />

2 (P (x) · tI + tI · P (x)∗ =<br />

)<br />

1<br />

2 t · (P (x) + P (x)∗ =<br />

)<br />

1<br />

2 t<br />

<br />

q+1 x −x<br />

1 −xq <br />

q −x<br />

+<br />

−1<br />

q+1 x<br />

x<br />

<br />

.<br />


648 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

Thus x = x q <strong>and</strong> x ∈ Fq.<br />

Similarly, 〈P (x)〉 is on 〈D〉 if <strong>and</strong> only if<br />

0 = (P (x).D)I<br />

<br />

q+1 x −x<br />

=<br />

1 −xq y a<br />

b −y q<br />

∗<br />

= 1<br />

2 (bxq+1 − yx q − y q x − a)I.<br />

+<br />

y a<br />

b −y q<br />

−x q x q+1<br />

−1 x<br />

Thus for 〈P (x)〉 to be on both 〈C〉 <strong>and</strong> 〈D〉 we must have x ∈ Fq <strong>and</strong><br />

bx 2 −(y+y q )x−a = 0. The discrim<strong>in</strong>ant of this equation is d = (y+y q ) 2 +4ab,<br />

which lies <strong>in</strong> Fq. Thus when 〈P (∞)〉 is not on 〈D〉, 〈C〉 <strong>and</strong> 〈D〉 have <strong>in</strong><br />

common 0, 1 or 2 po<strong>in</strong>ts accord<strong>in</strong>g as d is a nonsquare, zero, or a nonzero<br />

square <strong>in</strong> Fq. On the other h<strong>and</strong>, notice that<br />

Hence<br />

(C.D)I = 1<br />

2 t(D + D∗ ),<br />

C.D = 1<br />

2 t(y − yq ).<br />

C × D = 1<br />

4 t2 (y − y q ) 2 − t 2 (−y q+1 − ab)<br />

= 1<br />

4 t2 (y + y q ) 2 + 4ab <br />

= 1<br />

4 t2 d.<br />

S<strong>in</strong>ce t2 is a nonsquare <strong>in</strong> Fq, <strong>and</strong> thus C×D = kd, where k is a nonsquare<br />

<strong>in</strong> Fq, we have 〈C〉 <strong>and</strong> 〈D〉 are disjo<strong>in</strong>t, tangent, or secant exactly as C × D<br />

is a nonzero square, zero, or a nonsquare <strong>in</strong> Fq, respectively.<br />

Now note that 〈P (∞)〉 is on 〈C〉. It is on 〈D〉 if <strong>and</strong> only if D =<br />

y a<br />

0 −yq <br />

. In this case 〈P (x)〉 is on 〈C〉 <strong>and</strong> 〈D〉 if <strong>and</strong> only if x ∈ Fq <strong>and</strong><br />

−a = x(y + yq ).


14.3. MIQUELIAN INVERSIVE PLANES OF ODD ORDER 649<br />

If y + y q = 0, then a = 0 <strong>and</strong> 〈C〉 = 〈D〉. So,<br />

(i) a = 0 =⇒ 〈C〉 = 〈D〉 or 〈C〉 <strong>and</strong> 〈D〉 are secant at P (∞) <strong>and</strong> P (0);<br />

(ii) a = 0; y + yq = 0 =⇒ 〈C〉 <strong>and</strong> 〈D〉 are secant at P (∞) <strong>and</strong> P (x),<br />

x = −a<br />

;<br />

y + yq (iii) a = 0; y + yq = 0 =⇒ 〈C〉 <strong>and</strong> 〈D〉 are tangent atP (∞).<br />

In this case C × D = 1<br />

4t2 (y + yq ) 2 = 0, if y + yq = 0;<br />

❆ , if y + yq = 0.<br />

follow<strong>in</strong>g:<br />

y + y q = 0 ⇐⇒ C × D = ❆ ⇐⇒ 〈C〉 <strong>and</strong> 〈D〉 are secant;<br />

So we have the<br />

y + y q = 0 ⇐⇒ C × D = 0 ⇐⇒ 〈C〉 = 〈D〉 or 〈C〉 <strong>and</strong> 〈D〉<br />

This proves the Lemma for the case C = tI.<br />

are tangent at P (∞).<br />

More generally, suppose we have a l<strong>in</strong>ear fractional mapp<strong>in</strong>g φR tak<strong>in</strong>g<br />

C0 to C <strong>and</strong> D0 to D. Then C = RC0R ′∗ <strong>and</strong> D = RD0R ′∗ , so that<br />

Therefore,<br />

(C.D)I = 1<br />

2 (CD∗ + DC ∗ )<br />

= 1<br />

2 (RC0R ′∗ r ′ D ∗ ) R∗ + RD0R ′∗ C ∗ 0 R∗ )<br />

= R ′ R 1<br />

2 (C0D ∗ 0 + D0C ∗ 0 )R∗<br />

= R · R ′ · (C0.D0)I.<br />

C × D = (C.D) 2 − (C.C)(D.D) =<br />

= R 2 R ′ 2 (C0.C0) 2 = R · R ′∗ · R · R ′∗ · C0 · D0<br />

= R 2 R ′ 2 (C0 × D0)<br />

= (R q+1 ) 2 (C0 × D0).


650 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

S<strong>in</strong>ce (R q+1 ) 2 is the square of a nonzero element of Fq, we see that the<br />

square/nonsquare nature of C × D is preserved under the l<strong>in</strong>ear fractional<br />

transformations φR. S<strong>in</strong>ce this group of transformations is transitive on<br />

circles of I, it follows that the Lemma holds for all pairs of circles.<br />

For two circles <strong>in</strong> I with q = 2 e , tangency <strong>and</strong> orthogonality are equivalent<br />

conditions, so that every two circles have a common tangent circle. However,<br />

<strong>in</strong> the present case (q odd) th<strong>in</strong>gs are different. We may def<strong>in</strong>e the relation<br />

∼ for circles 〈C〉 <strong>and</strong> 〈D〉 of I by:<br />

C ∼ D ⇐⇒ 〈C〉 <strong>and</strong> 〈D〉 have a common tangent circle. (14.13)<br />

Lemma 14.3.2. For each odd prime power q, the relation ∼ satisfies the<br />

follow<strong>in</strong>g:<br />

(i) For all circles 〈C〉 <strong>and</strong> 〈D〉 of I, C ∼ D if <strong>and</strong> only if C · D is a<br />

square <strong>in</strong> Fq. Suppose that CD = = 0. Then if 〈C〉 <strong>and</strong> 〈D〉 are<br />

tangent at a po<strong>in</strong>t 〈P 〉, they have a pencil of common tangent circles at<br />

〈P 〉 <strong>and</strong> one common tangent at each po<strong>in</strong>t of 〈C〉 \ 〈D〉 (respectively,<br />

〈D〉 \ 〈C〉). If 〈C〉 <strong>and</strong> 〈D〉 are not tangent, they have two common<br />

tangents at each po<strong>in</strong>t of 〈C〉 \ 〈D〉 (respectively, 〈D〉 \ 〈C〉).<br />

(ii) The relation ∼ is an equivalence relation, separat<strong>in</strong>g the circles of I<br />

<strong>in</strong>to two equivalence classes.<br />

(iii) For 〈C〉 <strong>and</strong> 〈D〉 dist<strong>in</strong>ct nontangent circles <strong>in</strong> I <strong>and</strong> C ∼ D, the<br />

relation ∼ separates the set of circles orthogonal to both 〈C〉 <strong>and</strong> 〈D〉<br />

<strong>in</strong>to two classes of equal size: (1) Those secant to both 〈C〉 <strong>and</strong> 〈D〉;<br />

<strong>and</strong> (2) those disjo<strong>in</strong>t from both 〈C〉 <strong>and</strong> 〈D〉.<br />

(iv) For 〈C〉 <strong>and</strong> 〈D〉 dist<strong>in</strong>ct nontangent circles <strong>in</strong> I, <strong>and</strong> C ∼ D, the<br />

relation ∼ separates the set of circles orthogonal to both 〈C〉 <strong>and</strong> 〈D〉<br />

<strong>in</strong>to two classes of equal size: (1) those secant to 〈C〉 <strong>and</strong> disjo<strong>in</strong>t from<br />

〈D〉 ; <strong>and</strong> (2) those disjo<strong>in</strong>t from 〈C〉 <strong>and</strong> secant to 〈D〉.<br />

Proof. Suppose C ∼ D, so there is a circle 〈E〉 tangent to both 〈C〉 <strong>and</strong> 〈D〉.<br />

By Lemma 14.3.1 D × E = C × E = 0, i.e.,<br />

(D.E) 2 = D · E; (C.E) 2 = C · E.


14.3. MIQUELIAN INVERSIVE PLANES OF ODD ORDER 651<br />

Multiply<strong>in</strong>g these two equations gives<br />

(D.E) 2 (C.E) 2 = D · C · E 2 ,<br />

so that D · C is a square <strong>in</strong> Fq.<br />

Conversely, suppose that C · D = k 2 for some nonzero k ∈ Fq. Pick<br />

any po<strong>in</strong>t 〈P 〉 of 〈C〉. Then P = P.C = 0. Consider the circle E = C +xP ,<br />

where x is <strong>in</strong> Fq. We have<br />

C.E = C.(C + xP ) = C = 0;<br />

D.E = (D.C) + x(D.P );<br />

P.E = 0;<br />

E = C = 0.<br />

Therefore, C × E = C 2 − CC = 0, which implies by Lemma 14.3.1<br />

that 〈C〉 is tangent to 〈E〉. Further<br />

E × D = (C + xP ) × D<br />

= ((C + xP ).D) 2 − C + xP D<br />

= (C.D + x(P.D)) 2 − CD<br />

= (C.D) 2 + 2x(C.D)(P.D) + x 2 (P.D) 2 − CD<br />

= x 2 (P.D) 2 + 2x(P.D)(C.D) + (C.D) 2 − CD.<br />

The discrim<strong>in</strong>ant of this quadratic expression <strong>in</strong> x is equal to<br />

4CD(P.D) 2 . If 〈P 〉 is not a po<strong>in</strong>t of 〈D〉, then P.D = 0 <strong>and</strong> the discrim<strong>in</strong>ant<br />

is a nonzero square <strong>in</strong> Fq, imply<strong>in</strong>g that the equation E × D = 0<br />

has two dist<strong>in</strong>ct solutions, <strong>and</strong> thus 〈C〉 <strong>and</strong> 〈D〉 have a common tangent<br />

circle. In fact, if 〈C〉 <strong>and</strong> 〈D〉 are not tangent, we have shown that they have<br />

exactly two common tangent circles through each po<strong>in</strong>t of 〈C〉 which is not<br />

on 〈D〉. If they are tangent circles, they have a pencil of common tangent<br />

circles through their po<strong>in</strong>t of tangency, <strong>and</strong> the above quadratic expression<br />

reduces to<br />

E × D = x(x(P.D) 2 + 2(P.D)(C.D)) = 0<br />

⇐⇒<br />

x = 0 or x = −2(C.D)<br />

,<br />

(P.D)


652 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

<strong>and</strong> thus one of the two dist<strong>in</strong>ct solutions is x = 0, E = C, imply<strong>in</strong>g that<br />

〈C〉 <strong>and</strong> 〈D〉 have a unique common tangent circle through each po<strong>in</strong>t of<br />

〈C〉 other than their po<strong>in</strong>t of tangency. In any case, the proof of Part (i) is<br />

complete.<br />

For part (ii), the relation ∼ is clearly symmetric <strong>and</strong> reflexive. Transitivity<br />

follows from the fact that the nonzero squares of Fq form a multiplicative<br />

group. Thus ∼ is an equivalence relation separat<strong>in</strong>g the circles of I <strong>in</strong>to<br />

two equivalence classes, those with nonsquare norm <strong>and</strong> those with nonzero<br />

square norm.<br />

Now suppose 〈C〉 <strong>and</strong> 〈D〉 are disjo<strong>in</strong>t or secant, i.e., C × D = 0. Let 〈E〉<br />

be a common orthogonal circle to 〈C〉 <strong>and</strong> 〈D〉, i.e., C.E = D.E = 0. Then<br />

by def<strong>in</strong>ition of C × E <strong>and</strong> D × E,<br />

C × E = −CE<br />

<strong>and</strong><br />

D × E = −DE.<br />

If C ∼ D, then (C × E)(D × E) is a nonzero square <strong>in</strong> Fq, <strong>and</strong> thus the<br />

quantities C × E <strong>and</strong> D × E are either both squares or both nonsquares <strong>in</strong><br />

Fq. So by Lemma 14.3.1 〈E〉 is either secant to both 〈C〉 <strong>and</strong> 〈D〉 or disjo<strong>in</strong>t<br />

from them both. If C ∼ D, then (C × E)(D × E) is a nonsquare <strong>in</strong> Fq,<br />

<strong>and</strong> thus exactly one of the quantities (C × E), (D × E) is a square, <strong>and</strong><br />

the other is a nonsquare <strong>in</strong> Fq. Aga<strong>in</strong>, by Lemma 14.3.1 this means that E<br />

is secant to exactly one of the two circles 〈C〉, 〈D〉, <strong>and</strong> disjo<strong>in</strong>t from the<br />

other. We can pick two circles from differrent equivalence classes on any<br />

l<strong>in</strong>ear flock or bundle. Then each of their noncommon po<strong>in</strong>ts must be <strong>in</strong> one<br />

of their common orthogonal circles, which must <strong>in</strong>tersect one of them <strong>in</strong> two<br />

po<strong>in</strong>ts. S<strong>in</strong>ce the two circles have the same number of po<strong>in</strong>ts, the two classes<br />

of common orthogonal circles must be equal <strong>in</strong> number. This completes the<br />

proof of parts (iii) <strong>and</strong> (iv), <strong>and</strong> hence of the Lemma.<br />

Recall the mapp<strong>in</strong>g φR <strong>and</strong> φ ′ R def<strong>in</strong>ed above. For a circle 〈C〉,<br />

C φR = |RCR ′∗ <br />

<strong>and</strong><br />

= R q+1 · C<br />

C φ′ R = RC ′ R ′∗ <br />

= R q+1 · C.


14.3. MIQUELIAN INVERSIVE PLANES OF ODD ORDER 653<br />

Thus the two equivalence classes are either fixed or <strong>in</strong>terchanged by φR<br />

<strong>and</strong> φ ′ R , accord<strong>in</strong>g as Rq+1 is a square or a nonsquare <strong>in</strong> Fq, respectively.<br />

That they may <strong>in</strong> fact be <strong>in</strong>terchanged is shown by the matrix<br />

R =<br />

k 0<br />

0 1<br />

where Rq+1 = kq+1 is a nonsquare <strong>in</strong> Fq. The existence of such a k <strong>in</strong> Fq2 is clear, s<strong>in</strong>ce the mapp<strong>in</strong>g x ↦→ xq+1 sends Fq2 onto Fq. Also, note that for<br />

a circle 〈C〉 of I, <strong>in</strong>version φ ′ C with respect to 〈C〉 fixes the two equivalence<br />

classes, s<strong>in</strong>ce C is <strong>in</strong> Fq, <strong>and</strong> Cq+1 = C2 .<br />

Let {Ai} n i=1 be a set of matrices <strong>in</strong> M0. Def<strong>in</strong>e the n × n symmetric<br />

matrix A = (aij) where aij = Ai.Aj, 1 ≤ i, j ≤ n. S<strong>in</strong>ce we may take various<br />

representatives for the circle 〈C〉 or the po<strong>in</strong>t 〈P 〉 by multiply<strong>in</strong>g by nonzero<br />

elements of Fq, we consider A to be equivalent to any matrix obta<strong>in</strong>ed by<br />

multiply<strong>in</strong>g any row of A <strong>and</strong> the correspond<strong>in</strong>g column of A by a nonzero<br />

element of Fq. In particular, the diagonal elements of A will be multiplied<br />

by nonzero squares <strong>in</strong> Fq. In this way we can ”normalize” A <strong>in</strong> the follow<strong>in</strong>g<br />

way. If Ai <strong>and</strong> Aj are nons<strong>in</strong>gular matrices with Ai ∼ Aj, i.e., 〈Ai〉 <strong>and</strong><br />

〈Aj〉 are equivalent circles, so that AiAj = = 0, then aii = Ai<br />

<strong>and</strong> ajj = Aj are both squares or both nonsquares, so we may assume we<br />

have multiplied the appropriate rows <strong>and</strong> columns of A by the appropriate<br />

elements of Fq to arrange it so that aii = ajj.<br />

Transform<strong>in</strong>g I by φR, where R q+1 is a nonsquare <strong>in</strong> Fq produces aij ↦→<br />

R q+1 aij <strong>and</strong> <strong>in</strong>terchanges the two equivalence classes of circles. We may<br />

therefore assume, for any fixed circle 〈Ai〉 of the set, that aii = Ai is a<br />

square <strong>in</strong> Fq. In particular, we may assume that aii = Ai = 1. Any circle<br />

〈Aj〉 not equivalent to 〈Ai〉 would then have that ajj = Aj = ❆ , for some<br />

fixed nonsquare ❆ .<br />

Suppose A is normalized as described above. Then Ai × Aj = (Ai.Aj) 2 −<br />

AiAj = (aij) 2 − aiiajj. Thus our results <strong>in</strong> Lemmas 14.3.1 <strong>and</strong> 14.3.2<br />

for circles 〈Ai〉 <strong>and</strong> 〈Aj〉 translate as:<br />

<br />

,


654 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

(i) Ai ∼ Aj ⇐⇒ aii = ajj;<br />

(ii) Ai <strong>and</strong> Aj are disjo<strong>in</strong>t, tangent, or secant<br />

accord<strong>in</strong>g as the determ<strong>in</strong>ant<br />

<br />

<br />

− <br />

<br />

aii aij<br />

aij ajj<br />

is a nonzero square, zero, or a nonsquare <strong>in</strong> Fq respectively.<br />

The follow<strong>in</strong>g lemma will facilitate the construction of sets of circles <strong>and</strong><br />

po<strong>in</strong>ts <strong>in</strong> I.<br />

Lemma 14.3.3. Let A be a symmetric, nons<strong>in</strong>gular, 4 × 4 matrix with<br />

entries aij <strong>in</strong> Fq, q an odd prime power. Then there exists a quadruple<br />

(A1, A2, A3, A4) of dist<strong>in</strong>ct nonzero matrices of M0 such that Ai.Aj = aij for<br />

1 ≤ i, j ≤ 4, if <strong>and</strong> only if the determ<strong>in</strong>ant of A is a nonsquare <strong>in</strong> Fq.<br />

Proof. As before, let t be a fixed element of F q 2 for which t = −t q = 0, so<br />

that t 2 is a nonsquare <strong>in</strong> Fq. Then the 4-dimensional vector space M0 over<br />

Fq has a basis consist<strong>in</strong>g of the follow<strong>in</strong>g matrices:<br />

E1 =<br />

E3 =<br />

t 0<br />

0 t<br />

0 1<br />

1 0<br />

<br />

1 0<br />

; E2 =<br />

0 −1<br />

<br />

0 −1<br />

; E4 =<br />

1 0<br />

Then the 4 × 4 matrix E with entries eij = Ei.Ej is:<br />

⎛<br />

t<br />

⎜<br />

E = ⎜<br />

⎝<br />

2 0<br />

0<br />

0<br />

−1<br />

0<br />

0<br />

0<br />

−1<br />

⎞<br />

0<br />

0 ⎟<br />

0 ⎠<br />

0 0 0 1<br />

;<br />

<br />

;<br />

<br />

.<br />

(14.14)<br />

<strong>and</strong> we see that det(E) = t 2 is a nonsquare <strong>in</strong> Fq.<br />

Clearly the diagonal of E has either one or three nonsquares, depend<strong>in</strong>g<br />

on whether −1 is a square or nonsquare.<br />

Suppose that (A1, A2, A3, A4) exists as described above, so that Ai =<br />

4<br />

j=1 uijEj, for 1 ≤ i ≤ 4, where the uij are elements of Fq. Let U = (uij).


14.3. MIQUELIAN INVERSIVE PLANES OF ODD ORDER 655<br />

Compute:<br />

which is equivalent to<br />

aij = Ai.Aj<br />

=<br />

4<br />

=<br />

k,m=1<br />

4<br />

k,m=1<br />

uikEk.Emujm<br />

uikekmujm,<br />

A = UEU T .<br />

Thus det(A) = (det(U)) 2 det(E) = 0, <strong>and</strong> hence U is nons<strong>in</strong>gular <strong>and</strong> det(A)<br />

is a nonsquare <strong>in</strong> Fq.<br />

Conversely, suppose we are given a symmetric 4 × 4 matrix A with entries<br />

<strong>in</strong> Fq hav<strong>in</strong>g a nonsquare determ<strong>in</strong>ant. There exists a nons<strong>in</strong>gular 4 × 4<br />

matrix S such that SAS T is a diagonal matrix with determ<strong>in</strong>ant equal to<br />

(det(S)) 2 det(A), i.e., a nonsquare <strong>in</strong> Fq. So the pr<strong>in</strong>cipal diagonal of this<br />

matrix must conta<strong>in</strong> either exactly one or exactly three nonsquares <strong>in</strong> Fq. It<br />

conta<strong>in</strong>s the same number of nonsquares as those <strong>in</strong> E, <strong>and</strong> we may assume<br />

that they occur <strong>in</strong> the same order <strong>and</strong> the matrix can be “normalized”as described<br />

above, by multiply<strong>in</strong>g each row <strong>and</strong> the correspond<strong>in</strong>g column by the<br />

same nonzero element of Fq, which operation is equivalent to multiply<strong>in</strong>g on<br />

the left by a nons<strong>in</strong>gular matrix <strong>and</strong> on the right by its transpose. Therefore,<br />

<strong>in</strong> this case, there is a nons<strong>in</strong>gular 4 × 4 matrix V such that<br />

E = VAV T<br />

or<br />

A = UEU T , U = V −1 .<br />

On the other h<strong>and</strong>, if E <strong>and</strong> SAS T do not conta<strong>in</strong> the same number of<br />

nonsquare diagonal entries, one must conta<strong>in</strong> exactly as many squares as the<br />

other conta<strong>in</strong>s nonsquares. Recall that there is an element R of M with<br />

R q+1 a nonsquare <strong>in</strong> Fq, so that the mapp<strong>in</strong>g φR <strong>in</strong>terchanges the two<br />

equivalence classes of circles under ∼. Specifically, if B <strong>and</strong> C are <strong>in</strong> M0,<br />

then


656 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

(B φR ).(C φR ) = kB.C,<br />

where k is a fixed nonsquare <strong>in</strong> Fq. Let<br />

Then<br />

<strong>and</strong> the e ∗ ij<br />

E ∗ i<br />

= EφR<br />

i<br />

=<br />

e ∗ ij = E∗ i .E∗ j<br />

m,n=1<br />

4<br />

gijEj, 1 ≤ i ≤ 4.<br />

j=1<br />

= keij<br />

4<br />

= gijenmgjm, 1 ≤ i, j ≤ 4,<br />

are the entries of a 4 × 4 matrix<br />

E ∗ = kE = GEG T ,<br />

where G is the (nons<strong>in</strong>gular) 4 × 4 matrix with entries gij. S<strong>in</strong>ce k is a nonsquare,<br />

we see that E ∗ has exactly the same number of nonsquare entries on<br />

its ma<strong>in</strong> diagonal as E has squares. Hence E ∗ has exactly as many nonsquare<br />

entries on its ma<strong>in</strong> diagonal as SAS T has. We proceed as above to order <strong>and</strong><br />

normalize the diagonal entries of E ∗ <strong>and</strong> SAS T , <strong>and</strong> we obta<strong>in</strong> a nons<strong>in</strong>gular<br />

4 × 4 matrix V such that<br />

Hence<br />

Consider the quadruple<br />

VAV T = E ∗ = GEG T .<br />

A = UEU T , with U = V −1 G.<br />

Ai =<br />

4<br />

uijEj; 1 ≤ i ≤ 4.<br />

j=1<br />

We have Ai.Aj = 4<br />

k,m=1 uikekmujm = aij, <strong>and</strong> thus this is the required<br />

quadruple <strong>in</strong> M0, complet<strong>in</strong>g the proof of the Lemma.<br />

Note that s<strong>in</strong>ce G <strong>and</strong> V are <strong>in</strong>vertible, so is U. Then s<strong>in</strong>ce the Ei form<br />

a basis for M0, so do the matrices Ai, 1 ≤ i ≤ 4.


14.3. MIQUELIAN INVERSIVE PLANES OF ODD ORDER 657<br />

Corollary 14.3.4. Let A1, A2, A3 be three dist<strong>in</strong>ct nonzero elements of M0,<br />

<strong>and</strong> let A0 be the 3 × 3 symmetric matrix with entries aij = Ai.Aj, 1 ≤ i, j ≤<br />

3. Assume that A0 is nons<strong>in</strong>gular. If we suppose that A0 can be extended<br />

to a 4 × 4 symmetric matrix A with entries aij, 1 ≤ i, j ≤ 4, <strong>and</strong> whose<br />

determ<strong>in</strong>ant is a nonsquare <strong>in</strong> Fq, then there exists a nonzero element A4 of<br />

M0 such that aij = Ai.Aj for 1 ≤ i, j ≤ 4.<br />

Proof. By Lemma 14.3.3 there must exist a quadruple (B1, B2, B3, B4) of<br />

elements of M0 such that Bi.Bj = aij for 1 ≤ i, j ≤ 4. This implies that<br />

Bi.Bj = Ai.Aj for 1 ≤ i, j ≤ 3. By the proof of Lemma 14.3.3, s<strong>in</strong>ce<br />

E1, E2, E3, E4 form a basis for M0, so must B1, B2, B3, B4 also form a basis.<br />

In M, each of 〈B1〉, 〈B2〉, 〈B3〉 has an orthogonal plane, <strong>and</strong> these three<br />

planes must have at least one po<strong>in</strong>t of <strong>in</strong>tersection <strong>in</strong> projective 3-space.<br />

Suppose 〈D〉 is such a po<strong>in</strong>t, where D = 4<br />

i=1 xiBi. Thus 〈D〉 is orthogonal<br />

to 〈Bj〉 for 1 ≤ j ≤ 3, <strong>and</strong> D.Bj = 0 for j = 1, 2, 3.<br />

If x4 = 0, then D = 3<br />

i=1 xiD.Bi = 0, <strong>and</strong> thus 〈D〉 is a po<strong>in</strong>t of M<br />

<strong>in</strong>cident with the three circles 〈Bj〉, 1 ≤ j ≤ 3. These are three homogeneous<br />

equation <strong>in</strong> three unknowns, x1, x2, x3, which have a nontrivial solution only<br />

when det(A0) = 0, contrary to the assumption of the Corollary.<br />

x4<br />

We may therefore assume that x4 = 0, <strong>and</strong> therefore that D = x4D.B4 =<br />

4<br />

j=1 aj4xj is nonzero, because if it were zero we would have 4<br />

j=1 xjaij =<br />

0 for all i = 1, 2, 3, 4. But this cannot happen because A is nons<strong>in</strong>gular.<br />

Therefore 〈D〉 is a circle <strong>in</strong> M orthogonal to 〈B1〉, 〈B2〉, <strong>and</strong> 〈B3〉.<br />

Similarly, we see that we may extend (A1, A2, A3) to a basis of M0 <strong>and</strong><br />

apply the same process to obta<strong>in</strong> a mutual orthogonal circle 〈C〉 such that<br />

D = 0, <strong>and</strong> C.Ai = D.Bi = 0 for 1 ≤ i ≤ 3. The matrices represent<strong>in</strong>g,<br />

respectively, the quadruple (〈A1〉, 〈A2〉, 〈A3〉, 〈C〉) <strong>and</strong> the quadruple<br />

(〈B1〉, 〈B2〉, 〈B3〉, 〈D〉), are:<br />

⎛<br />

⎜<br />

⎝<br />

0<br />

A0 0<br />

0<br />

0 0 0 C<br />

⎞<br />

⎟<br />

⎠ ,<br />

⎛<br />

⎜<br />

<strong>and</strong> ⎜<br />

⎝<br />

A0<br />

0<br />

0<br />

0<br />

⎞<br />

⎟<br />

⎠<br />

0 0 0 D<br />

.<br />

Lemma 14.3.3 says that the determ<strong>in</strong>ants of these matrices, namely det(A0)C<br />

<strong>and</strong> det(A0)D, must be nonsquares <strong>in</strong> Fq. Thus CD is a square, <strong>and</strong><br />

we may normalize these matrices so that C = D. S<strong>in</strong>ce x4 = 0, we may<br />

write B4 as B4 = 3 i=1 yiBi + zD, where y1, y2, y3, z are <strong>in</strong> Fq.<br />

Put A4 = 3 i=1 yiAi + zC. Then we have for k = 1, 2, 3:


658 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

<strong>and</strong><br />

Ak.A4 =<br />

A4.A4 =<br />

=<br />

3<br />

i=1<br />

yiaik<br />

3<br />

yiBi.Bk<br />

i=1<br />

= Bk.B4<br />

= ak4,<br />

3<br />

yiAi.A4 + zA4.C<br />

i=1<br />

= B4.B4<br />

= a44.<br />

Thus for all i, j = 1, 2, 3, 4 we have Ai.Aj = aij, <strong>and</strong> the Corollary is<br />

proved.<br />

Our goal, of course, is to prove Orr’s theorem that says that each flock of<br />

an elliptic quadric <strong>in</strong> P G(3, q), q odd, must be l<strong>in</strong>ear. The next three lemmas<br />

take us nearly there.<br />

Lemma 14.3.5. Let K be a flock of I, i.e., a flock of O <strong>in</strong> M0, with carriers<br />

〈P 〉 <strong>and</strong> 〈Q〉 (q odd as always). In particular, K is a set {〈C1〉, . . . , 〈Cq−1〉}<br />

of q − 1 pairwise disjo<strong>in</strong>t circles. Then;<br />

(i) K conta<strong>in</strong>s exactly q−1<br />

circles <strong>in</strong> each of the equivalence classes under<br />

2<br />

∼.<br />

(ii) No circle of K has a tangent circle through both 〈P 〉 <strong>and</strong> 〈Q〉.<br />

(iii) No three dist<strong>in</strong>ct circles of K have a common tangent circle.<br />

(iv) No two dist<strong>in</strong>ct circles of K have a common tangent circle through<br />

either 〈P 〉 or 〈Q〉.


14.3. MIQUELIAN INVERSIVE PLANES OF ODD ORDER 659<br />

Proof. If 〈E〉 is a circle through 〈P 〉 but not through 〈Q〉, then 〈E〉 has<br />

q po<strong>in</strong>ts other than 〈P 〉, an odd number, <strong>and</strong> each of these po<strong>in</strong>ts must<br />

be on a circle of K. S<strong>in</strong>ce 〈E〉 passes through 〈P 〉, 〈E〉 is not a circle of<br />

K. Thus it <strong>in</strong>tersects each circle of K <strong>in</strong> at most two po<strong>in</strong>ts. It cannot<br />

<strong>in</strong>tersect each <strong>in</strong> an even number of poitns, hence it is tangent to at least<br />

one circle of K, i.e., it is <strong>in</strong> the same equivalence class under ∼ as at least<br />

one circle of K. We may pick 〈E〉 <strong>in</strong> either equivalence class, <strong>and</strong> thus we<br />

conclude that K conta<strong>in</strong>s at least one circle <strong>in</strong> each class. Suppose that<br />

C1 ∼ C2 ∼ · · · ∼ Cn ∼ Cn+1 ∼ · · · ∼ Cq−1, where 1 ≤ n ≤ q − 2. So there<br />

are n circles <strong>in</strong> one class <strong>and</strong> q − 1 − n <strong>in</strong> the other.<br />

Consider the set of tangent circles to 〈C1〉 at one of its po<strong>in</strong>ts 〈R〉. These<br />

circles, together with 〈C1〉, form a pencil of q circles cover<strong>in</strong>g the po<strong>in</strong>ts of<br />

I. Each of 〈P 〉 must be on a unique circle <strong>in</strong> this pencil, dist<strong>in</strong>ct from 〈C1〉.<br />

Let 〈D〉 be any one of the circles <strong>in</strong> this pencil, other than 〈Cq〉, <strong>and</strong> assume<br />

either that 〈D〉 is disjo<strong>in</strong>t from both 〈P 〉 <strong>and</strong> 〈Q〉 or that it conta<strong>in</strong>s both<br />

〈P 〉 <strong>and</strong> 〈Q〉. Then 〈D〉 conta<strong>in</strong>s an even number, q + 1 of po<strong>in</strong>ts, an odd<br />

number of them dist<strong>in</strong>ct from 〈P 〉, 〈Q〉, <strong>and</strong> 〈R〉. This odd number of po<strong>in</strong>ts<br />

must be covered by the circles of K other 〈C1〉 (K be<strong>in</strong>g a flock). S<strong>in</strong>ce 〈D〉<br />

<strong>in</strong>tersects 〈C1〉, it cannot be <strong>in</strong> K, <strong>and</strong> thus it <strong>in</strong>tersects each circle of K <strong>in</strong><br />

at most two po<strong>in</strong>ts. An odd number of po<strong>in</strong>ts cannot be covered by dist<strong>in</strong>ct<br />

pairs of po<strong>in</strong>ts, <strong>and</strong> therefore 〈D〉 must be tangent to at least one circle 〈Ck〉<br />

of K dist<strong>in</strong>ct from 〈C1〉. Hence C1 ∼ D ∼ Ck, imply<strong>in</strong>g 2 ≤ k ≤ n.<br />

If there is a circle through 〈P 〉 <strong>and</strong> 〈Q〉 <strong>and</strong> tangent to 〈C1〉 at 〈R〉, then<br />

each of the q − 1 tangent circles to 〈C1〉 at 〈R〉 satisfies the above conditions<br />

<strong>and</strong> thus is tangent to some 〈Ck〉, 2 ≤ k ≤ n.<br />

If, on the other h<strong>and</strong>, 〈P 〉 <strong>and</strong> 〈Q〉 lie on dist<strong>in</strong>ct tangent circles to 〈C1〉<br />

through 〈R〉, we can only conclude that each of the rema<strong>in</strong><strong>in</strong>g q − 3 circles of<br />

the pencil has a tangent circle 〈Ck〉, 2 ≤ k ≤ n. We are guaranteed at least<br />

a set of m ≥ q − 3 circles of the pencil, each of which has a tangent circle<br />

among 〈C2〉, · · · , 〈Cn〉, with m = q − 3 if <strong>and</strong> only if 〈C1〉 has no tangent<br />

circle through 〈P 〉, 〈Q〉 <strong>and</strong> 〈R〉.<br />

Recall from the proof of Lemma 14.3.2 that each of the circles 〈C2〉, · · · , 〈Cn〉<br />

has exactly two common tangent circles with 〈C1〉 through 〈R〉. Hence<br />

2(n − 1) ≥ m ≥ q − 3, (14.15)<br />

=⇒ 2n ≥ q − 1. (14.16)<br />

We may pick any one of the q − n − 1 ≥ 1 circles of K <strong>in</strong> the other<br />

equivalence class <strong>and</strong> a po<strong>in</strong>t on that circle, <strong>and</strong> carry through the same


660 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

procedure, which will give us<br />

2(q − n − 1) ≥ q − 1, (14.17)<br />

=⇒ q − 1 ≥ 2n. (14.18)<br />

It follows that n = q−1<br />

, <strong>and</strong> thus part (i) of the Lemma is proved.<br />

2<br />

But it also follows that equality holds <strong>in</strong> Eq. 14.15, which means that<br />

〈C1〉 has no tangent circle through 〈P 〉, 〈Q〉, 〈R〉. S<strong>in</strong>ce 〈C1〉 was chosen<br />

arbitrarily from K, <strong>and</strong> 〈R〉 is an arbitrary po<strong>in</strong>t of 〈C1〉, it must be the case<br />

the part (ii) holds.<br />

Also, s<strong>in</strong>ce equality holds <strong>in</strong> Eq. 14.15 we see that each tangent circle to<br />

〈C1〉 which misses both 〈P 〉 <strong>and</strong> 〈Q〉 has exactly one other tangent circle<br />

<strong>in</strong> K <strong>and</strong> therefore no circle miss<strong>in</strong>g both 〈P 〉 <strong>and</strong> 〈Q〉 has three dist<strong>in</strong>ct<br />

tangent circles <strong>in</strong> K. Similarly, every common tangent circle of 〈C1〉, 〈Ck〉<br />

for 2 ≤ k ≤ n, must miss both 〈P 〉 <strong>and</strong> 〈Q〉. Therefore no circle through<br />

〈P 〉 or 〈Q〉 has two dist<strong>in</strong>ct tangent circles <strong>in</strong> K, <strong>and</strong> no circle of I has three<br />

dist<strong>in</strong>ct tangent circles <strong>in</strong> K. This completes a proof of parts (iii) <strong>and</strong> (iv),<br />

complet<strong>in</strong>g a proof of the lemma.<br />

Lemma 14.3.6. (Common tangent circles)<br />

1. Let 〈R〉 be a po<strong>in</strong>t <strong>in</strong>cident with neither of two disjo<strong>in</strong>t circles 〈C〉 <strong>and</strong><br />

〈D〉. If 〈C〉 <strong>and</strong> 〈D〉 have a common tangent circle through 〈R〉, then<br />

they have exactly 4 common tangent circles through 〈R〉.<br />

2. If a circle 〈C〉 of I has a tangent circle through the dist<strong>in</strong>ct po<strong>in</strong>ts 〈P 〉<br />

<strong>and</strong> 〈Q〉 not on 〈C〉, then it has precisely two such tangent circles.<br />

Proof. First suppose that 〈T 〉 is a circle through 〈R〉 <strong>and</strong> tangent to both 〈C〉<br />

<strong>and</strong> 〈D〉. Then C ∼ D ∼ T , <strong>and</strong> we may assume that C = D = T = 1.<br />

The three conditions on T translate as<br />

T.R = 0; T × C = 0; <strong>and</strong> T × D = 0.<br />

Hence (T.C) 2 = T C = 1 = (T.D) 2 . S<strong>in</strong>ce T.C = ±1, we may assume<br />

that T.C = 1 <strong>and</strong> T.D = ±1. Lett<strong>in</strong>g C, D, R, T equal A1, A2, A3, A4,<br />

respectively, we have the 4 × 4 matrix A with entries aij = Ai.Aj for 1 ≤<br />

i, j ≤ 4, where<br />

A =<br />

⎛<br />

⎜<br />

⎝<br />

1 a c 1<br />

a 1 d e<br />

c d 0 0<br />

1 e 0 1<br />

⎞<br />

⎟<br />

⎠ ;


14.3. MIQUELIAN INVERSIVE PLANES OF ODD ORDER 661<br />

where a, b, c, d, e are given elements of Fq with e = ±1.<br />

We have two matrices, A + <strong>and</strong> A− , depend<strong>in</strong>g on whether e = +1 or<br />

e = −1, respectively. Note: det(A + ) = 2(a − 1)cd <strong>and</strong> det(A− ) = 2(a + 1)cd.<br />

S<strong>in</strong>ce 〈C〉 <strong>and</strong> 〈D〉 are disjo<strong>in</strong>t, by Lemma 14.3.1 C × D = a2 − 1 = (a +<br />

1)(a − 1) is a nonzero square <strong>in</strong> Fq. Thus a = ±1, <strong>and</strong> s<strong>in</strong>ce 〈R〉 is disjo<strong>in</strong>t<br />

from 〈C〉 <strong>and</strong> 〈D〉, c = R.C <strong>and</strong> d = R.D are nonzero. Therefore A + <strong>and</strong> A− are nons<strong>in</strong>gular, <strong>and</strong> Lemma 14.3.3 implies that there exists a quadruple <strong>in</strong><br />

M0 represent<strong>in</strong>g one of them precisely when its determ<strong>in</strong>ant is a nonsquare<br />

<strong>in</strong> Fq. But (det(A + ))(det(A− )) = 4(a2 − 1)c2d2 , <strong>and</strong> a2 − 1 is a nonzero<br />

square <strong>in</strong> Fq. Thus A + corresponds to a quadruple <strong>in</strong> M0 precisely when A− corresponds to a quadruple <strong>in</strong> M0.<br />

If 〈R〉 were a carrier of the l<strong>in</strong>ear flock conta<strong>in</strong><strong>in</strong>g 〈C〉 <strong>and</strong> 〈D〉, they<br />

would have no common tangent circle through 〈R〉 by Lemma 14.3.5(iv).<br />

Hence we may assume that R is not a l<strong>in</strong>ear comb<strong>in</strong>ation of C <strong>and</strong> D <strong>in</strong> M0,<br />

<strong>and</strong> that det(A0) = 0, where A0 is the submatrix of A determ<strong>in</strong>ed by its first<br />

three rows <strong>and</strong> its first three columns.<br />

Assume then that (C, D, R, T ) is represented by A + . Then det(A− ) is<br />

a nonsquare <strong>in</strong> Fq, <strong>and</strong> thus, by Corollary 14.3.4 there exists an element of<br />

S of M0 such that (C, D, R, S) is represented by A− , <strong>and</strong> 〈S〉 is therefore a<br />

circle through 〈R〉 tangent to both 〈C〉 <strong>and</strong> 〈D〉.<br />

Let 〈E〉 be the common circle orthogonal to 〈C〉, 〈D〉 <strong>and</strong> 〈R〉, i.e., 〈E〉<br />

is a circle <strong>in</strong> the bundle orthogonal to 〈C〉 <strong>and</strong> 〈D〉, <strong>and</strong> 〈E〉 conta<strong>in</strong>s 〈R〉.<br />

We claim that 〈T 〉 φ′ E <strong>and</strong> 〈S〉 φ′ E, the <strong>in</strong>verses with respect to 〈E〉 of 〈T 〉 <strong>and</strong><br />

〈S〉, are also tangent to 〈C〉 <strong>and</strong> 〈D〉 <strong>and</strong> pass through 〈R〉. S<strong>in</strong>ce φ ′ E fixes<br />

〈C〉, 〈D〉 <strong>and</strong> 〈R〉, it must send circles tangent to 〈C〉 <strong>in</strong>to circles tangent to<br />

〈C〉, circles tangent to 〈D〉 <strong>in</strong>to circles tangent to 〈D〉, <strong>and</strong> circles through<br />

〈R〉 <strong>in</strong>to circles through 〈R〉.<br />

Now we have four circles satisfy<strong>in</strong>g the required conditions, namely 〈T 〉,<br />

〈S〉, 〈T 〉 φ′ E <strong>and</strong> 〈S〉 φ′ E. That 〈S〉 is dist<strong>in</strong>ct from 〈T 〉 <strong>and</strong> 〈T 〉 φ′ E is clear,<br />

s<strong>in</strong>ce A + cannot be transformed <strong>in</strong>to A− by multiply<strong>in</strong>g each column <strong>and</strong><br />

the correspond<strong>in</strong>g row by the same element of Fq. Similarly, 〈T 〉 is dist<strong>in</strong>ct<br />

from 〈S〉 φ′ E. If 〈T 〉 φ′ E = 〈T 〉, this would imply that the po<strong>in</strong>ts of tangency<br />

of 〈T 〉 with 〈C〉 <strong>and</strong> 〈D〉 were fixed by φ ′ E , i.e., are on 〈E〉. 〈T 〉 would thus<br />

have three dist<strong>in</strong>ct po<strong>in</strong>ts <strong>in</strong> common with 〈E〉, so the two would be equal,<br />

<strong>and</strong> 〈T 〉 could not be tangent to 〈C〉 <strong>and</strong> 〈D〉. Similarly, we can see that 〈S〉<br />

is dist<strong>in</strong>ct from 〈S〉 φ′ E.<br />

We have, therefore, four dist<strong>in</strong>ct circles satisfy<strong>in</strong>g the given requirements.<br />

Now, any such circle 〈U〉 must produce, together with C, D <strong>and</strong> R, either


662 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

A + or A − . Without loss of generality, we assume that (A1, A2, A3, U) is<br />

represented by A + . S<strong>in</strong>ce A1, A2, A3, A4 form a basis for M,<br />

U =<br />

Ak.U =<br />

4<br />

xiAi,<br />

i=1<br />

4<br />

aikxi = ak4, 1 ≤ k ≤ 3.<br />

i=1<br />

If we hold x4 fixed we have three nonhomogeneous equations <strong>in</strong> the unknowns<br />

x1, x2, x3 with matrix A0, which is nons<strong>in</strong>gular. Thus there is a<br />

unique solution, <strong>and</strong> x1, x2, x3 can be written as l<strong>in</strong>ear functions of x4. We<br />

have the additional condition<br />

U =<br />

=<br />

4<br />

xiAi.U<br />

i=1<br />

3<br />

xiai4 +<br />

i=1<br />

= (1 + x4)<br />

3<br />

i=1<br />

4<br />

i=1<br />

x4xiai4<br />

ai4xi + x 2 4a44 = a44,<br />

which is a nontrivial quadratic equation <strong>in</strong> x4. Thus there are at most two<br />

solutions, <strong>and</strong> either U = T or U = T φ′ E. Apply<strong>in</strong>g the same procedure to<br />

A − , we see that 〈T 〉, 〈T 〉 φ′ E, 〈S〉, 〈S〉 φ′ E are the only such circles <strong>in</strong> I. Hence<br />

1. of Lemma 14.3.6 is proved.<br />

Obs. 14.3.7. We may use this part 1. of Lemma 14.3.6 to count the po<strong>in</strong>ts<br />

〈R〉 disjo<strong>in</strong>t from 〈C〉 <strong>and</strong> 〈D〉 through which there are such circles (i.e.,<br />

tangent to 〈C〉 <strong>and</strong> 〈D〉 <strong>and</strong> conta<strong>in</strong><strong>in</strong>g 〈R〉). S<strong>in</strong>ce 〈C〉 <strong>and</strong> 〈D〉 have 2(q+1)<br />

common tangent circles, four of which pass through each such po<strong>in</strong>t 〈R〉, <strong>and</strong><br />

each one of which conta<strong>in</strong>s q − 1 such po<strong>in</strong>ts 〈R〉, we conclude that there<br />

are precisely q2−1 po<strong>in</strong>ts disjo<strong>in</strong>t from 〈C〉 <strong>and</strong> 〈D〉 through which there pass<br />

2<br />

common tangents to 〈C〉 <strong>and</strong> 〈D〉. Thus, s<strong>in</strong>ce q is odd, two disjo<strong>in</strong>t circles<br />

separate the rest of the plane <strong>in</strong>to two classes of po<strong>in</strong>ts: q2−1 po<strong>in</strong>ts “between”<br />

2<br />

the circles, <strong>and</strong> q2−4q+1 others. (If we follow through the same procedure for<br />

2


14.3. MIQUELIAN INVERSIVE PLANES OF ODD ORDER 663<br />

the two secant circles, we will f<strong>in</strong>d that precisely one of the two matrices A +<br />

or A − occurs, <strong>and</strong> thus through every po<strong>in</strong>t disjo<strong>in</strong>t from the given circles<br />

there are precisely two common tangent circles to the given circles.)<br />

To prove part 2. of Lemma 14.3.6 assume that 〈T 〉 is a circle tangent to<br />

the circle 〈C〉 <strong>and</strong> that 〈T 〉 passes through two po<strong>in</strong>ts 〈P 〉 <strong>and</strong> 〈Q〉 not on<br />

〈C〉. Suppose that the quadruple 〈C〉, 〈P 〉, 〈Q〉, 〈T 〉) is represented by the<br />

4 × 4 matrix<br />

B =<br />

⎛<br />

⎜<br />

⎝<br />

1 p q 1<br />

p 0 r 0<br />

q r 0 0<br />

1 0 0 1<br />

⎞<br />

⎟<br />

⎠ ; p, q, r, = 0;<br />

where we let B1, B2, B3, B4 be C, P, Q, T , respectively. This matrix must<br />

have nonsquare determ<strong>in</strong>ant equal to 2pqr, which implies that {C, P, Q, T }<br />

is a basis for M0. Suppose there is another circle U = 4 i=1 xiBi through 〈P 〉<br />

<strong>and</strong> 〈Q〉 <strong>and</strong> tangent to 〈C〉. Then, by the proof of part 1. we see that there<br />

are at most two solutions U. We know T to be one solution. The bundle<br />

through 〈P 〉 <strong>and</strong> 〈Q〉 must cover the q + 1 po<strong>in</strong>ts of 〈C〉, an even number of<br />

po<strong>in</strong>ts. Thus 〈C〉 must have an even number of tangent circles <strong>in</strong> this bundle.<br />

It has, therefore, precisely two, complet<strong>in</strong>g a proof of Lemma 14.3.6.<br />

Lemma 14.3.8. Let J be a bundle with carriers 〈P 〉, 〈Q〉 <strong>in</strong> I, q odd, <strong>and</strong><br />

assume that 〈C〉 is a circle not <strong>in</strong> J such that all the circles 〈D〉 of J which<br />

are not disjo<strong>in</strong>t from 〈C〉 are <strong>in</strong> the same equivalence class under ∼. Then<br />

〈C〉 is <strong>in</strong> the l<strong>in</strong>ear flock K orthogonal to J.<br />

Proof. If 〈C〉 passes through 〈P 〉 or 〈Q〉, then it <strong>in</strong>tersects all the circles of J.<br />

But these circles are not all of the same equivalence class, by Lemma 14.3.2,<br />

<strong>and</strong> thus 〈C〉 must be disjo<strong>in</strong>t from both 〈P 〉 <strong>and</strong> 〈Q〉.<br />

〈C〉 has q + 1 po<strong>in</strong>ts, each of them <strong>in</strong> one circle of J. Through each<br />

of these po<strong>in</strong>ts passes a circle of the l<strong>in</strong>ear flock K. Let J0 <strong>and</strong> K0 be the<br />

subsets of circles of J <strong>and</strong> K, respectively, which are not disjo<strong>in</strong>t from 〈C〉.<br />

Each circle of J0 is then secant to a circle of K0. S<strong>in</strong>ce, by hypothesis, the<br />

circles of J0 all lie <strong>in</strong> the same equivalence class, those of K0 must also lie <strong>in</strong><br />

the same equivalence class, by Lemma 14.3.2. If 〈C〉 is not <strong>in</strong> K, it has at<br />

most two of its q + 1 po<strong>in</strong>ts <strong>in</strong> common with each circle of K0. This would<br />

mean that K0 is a set of at least q+1<br />

circles <strong>in</strong> the l<strong>in</strong>ear flock K, all <strong>in</strong> the<br />

2<br />

same equivalence class. But K conta<strong>in</strong>s exactly q − 1 circles, half of them <strong>in</strong>


664 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

each equivalence class, by Lemma 14.3.2. So we see that 〈C〉 must, <strong>in</strong>deed,<br />

be a circle of K, <strong>and</strong> the Lemma is proved.<br />

We are now ready for the proof of Orr’s theorem.<br />

Theorem 14.3.9. Let I be an egglike <strong>in</strong>versive plane of order q, q an odd<br />

prime power, <strong>and</strong> let K be a flock of I with carriers 〈P 〉 <strong>and</strong> 〈Q〉. Then K<br />

is the l<strong>in</strong>ear flock of circles, <strong>in</strong>version with respect to which <strong>in</strong>terchanges 〈P 〉<br />

<strong>and</strong> 〈Q〉.<br />

Proof. By part (i) of Lemma 14.3.5, we can represent the circles of K as<br />

K1 ∪ K2, where K1 consists of q−1<br />

circles of one equivalence class under ∼,<br />

2<br />

<strong>and</strong> K2 consists of q−1<br />

circles of the other equivalence class. By part (ii) of<br />

2<br />

Lemma 14.3.5 no circle of K has a tangent circle through 〈P 〉 <strong>and</strong> 〈Q〉. We<br />

shall derive an equivalent statement of this condition <strong>in</strong> terms of the bil<strong>in</strong>ear<br />

from on M0.<br />

Consider a quadruple (C, P, Q, T ) of elements of M where 〈P 〉 <strong>and</strong> 〈Q〉<br />

are po<strong>in</strong>ts of I disjo<strong>in</strong>t from the circle 〈C〉, <strong>and</strong> 〈T 〉 is a circle through 〈P 〉<br />

<strong>and</strong> 〈Q〉 tangent to 〈C〉. This quadruple can then be represented by a 4 × 4<br />

matrix of the form:<br />

⎛<br />

⎜<br />

⎝<br />

c p s c<br />

p 0 r 0<br />

s r 0 0<br />

c 0 0 c<br />

where p, r, s, c are nonzero elements of Fq. This matrix has determ<strong>in</strong>ant equal<br />

to 2psrc. By Corollary 14.3.4 such a T exists for a given triple C, P, Q exactly<br />

when this determ<strong>in</strong>ant is a nonsquare <strong>in</strong> Fq. In other words, for 〈C〉 <strong>in</strong> K,<br />

Lemma 14.3.6 part 2. implies:<br />

⎞<br />

⎟<br />

⎠ ,<br />

2C(P.C)(Q.C)(P.Q) is a nonzero square <strong>in</strong>Fq. (14.19)<br />

By the proof Lemma 14.3.6 we see that the condition that the circles<br />

〈C〉 ∼ 〈D〉 have a common tangent circle through the po<strong>in</strong>t 〈R〉, disjo<strong>in</strong>t<br />

from both of them, is equivalent to the condition that the matrix A + have<br />

nonsquare determ<strong>in</strong>ant. If we assume that C = D = 1, this determ<strong>in</strong>ant<br />

equals 2(C.D − 1)(R.C)(R.D).<br />

Now suppose that the sets K1 <strong>and</strong> K2 are chosen such that C = 1 for<br />

all 〈C〉 <strong>in</strong> K1. Then Lemma 14.3.5 part (iv) says that for dist<strong>in</strong>ct circles 〈C〉<br />

<strong>and</strong> 〈D〉 <strong>in</strong> K1


14.3. MIQUELIAN INVERSIVE PLANES OF ODD ORDER 665<br />

2(C.D − 1)(P.C)(P.D) <strong>and</strong> 2(C.D − 1)(Q.C)(Q.D) (14.20)<br />

are nonzero squares <strong>in</strong> Fq.<br />

Now let 〈C〉 ∈ K1 <strong>and</strong> 〈D〉 ∈ K2, <strong>and</strong> let 〈R〉 be an arbitrary po<strong>in</strong>t of<br />

〈D〉, <strong>and</strong> let 〈E〉 the unique circle through 〈P 〉, 〈Q〉 <strong>and</strong> 〈R〉. Consider the<br />

set of circles through 〈R〉 <strong>and</strong> tangent to 〈C〉. There is precisely one such<br />

circle at each po<strong>in</strong>t of 〈C〉, by the def<strong>in</strong>ition of <strong>in</strong>versive plane, <strong>and</strong> thus there<br />

are exactly q +1 of them. A circle 〈T 〉 through 〈R〉 <strong>and</strong> tangent to 〈C〉 which<br />

misses both 〈P 〉 <strong>and</strong> 〈Q〉 has q po<strong>in</strong>ts disjo<strong>in</strong>t from 〈C〉, <strong>and</strong> these po<strong>in</strong>ts<br />

must be covered by the circles of K. S<strong>in</strong>ce this is an odd number of po<strong>in</strong>ts,<br />

<strong>and</strong> 〈T 〉 is not <strong>in</strong> K, it must be tangent to at least one circle of K other<br />

than 〈C〉, i.e., it must be tangent to precisely one circle 〈B〉 of K1 other than<br />

〈C〉, s<strong>in</strong>ce by Lemma 14.3.5 (iii) it could not be tangent to more than two<br />

circles of K. Then by Lemma 14.3.6 〈C〉 <strong>and</strong> 〈B〉 have precisely 4 common<br />

tangent circles through 〈R〉. Thus the circles through 〈R〉 tangent to 〈C〉<br />

<strong>and</strong> disjo<strong>in</strong>t from 〈P 〉 <strong>and</strong> 〈Q〉 are divided <strong>in</strong>to disjo<strong>in</strong>t classes of 4 dist<strong>in</strong>ct<br />

circles, <strong>and</strong> the number of such tangent circles is a multiple of 4, say 4n.<br />

Suppose 〈C〉 has a tangent circle through 〈P 〉 <strong>and</strong> 〈R〉. Then by Lemma 14.3.6<br />

part 2. it has exactly two such tangent circles. Thus the number np of circles<br />

through 〈P 〉 <strong>and</strong> 〈R〉 tangent to 〈C〉 must be either 0 or 2. Similarly, the<br />

number nQ of circles through 〈Q〉 <strong>and</strong> 〈R〉 tangent to 〈C〉 is either 0 or 2.<br />

Count<strong>in</strong>g all the circles through 〈R〉 tangent to 〈C〉, we have<br />

q + 1 = 4n + nP + nQ.<br />

There are two cases depend<strong>in</strong>g on the value of q:<br />

If q ≡ −1 (mod 4), then q +1 is a multiple of 4, <strong>and</strong> thus nP +nQ must be<br />

divisible by 4. This can happen <strong>in</strong> precisely two ways. Either nP = nQ = 0,<br />

so that 〈C〉 has no tangent circle through 〈P 〉 <strong>and</strong> 〈R〉 <strong>and</strong> also no tangent<br />

circle through 〈Q〉 <strong>and</strong> 〈R〉. Or nP = nQ = 2 <strong>and</strong> 〈C〉 has a tangent circle<br />

through 〈P 〉 <strong>and</strong> 〈R〉 <strong>and</strong> a (necessarily dist<strong>in</strong>ct) tangent circle through 〈Q〉<br />

<strong>and</strong> 〈R〉. By Eq. 14.19 either 2(P.C)(R.C)(P.R) <strong>and</strong> 2(Q.C)(R.C)(Q.R) are<br />

both nonzero squares <strong>in</strong> Fq, or they are both nonsquares <strong>in</strong> Fq. In either case,<br />

their product 4(P.C)(Q.C)(R.C) 2 (P.R)((Q.R) is a nonzero square. Hence we<br />

may conclude that<br />

(P.C)(Q.C)(P.R)(Q.R) is a nonzero square <strong>in</strong> Fq. (14.21)


666 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

If q ≡ 1 (mod 4), then q+1 ≡ 2 (mod 4), <strong>and</strong> thus nP = nQ ≡ 2 (mod 4),<br />

i.e., precisely one of nP , nQ is equal to 2 <strong>and</strong> the other is 0. In other words,<br />

〈C〉 has a tangent circle through 〈R〉 <strong>and</strong> through precisely one of 〈P 〉 <strong>and</strong><br />

〈Q〉. Thus one of the quantities 2(P.C)(R.C)(P.R) <strong>and</strong> 2(Q.C)(R.C)(Q.R)<br />

is a nonsquare <strong>and</strong> the other is a nonzero square <strong>in</strong> Fq. Their product must<br />

therefore be a nonsquare, <strong>and</strong> we conclude that for q ≡ 1 (mod 4) the quantity<br />

(P.C)(Q.C)(P.R)(Q.R) is a nonsquare <strong>in</strong> Fq. (14.22)<br />

Return to the circle 〈E〉 through 〈P 〉, 〈Q〉 <strong>and</strong> 〈R〉, <strong>and</strong> ask : In which<br />

equivalence class does 〈E〉 lie? The quadruple (P, Q, R, E) of elements of M0<br />

is represented by the matrix:<br />

⎛<br />

⎜<br />

⎝<br />

0 P.Q P.R 0<br />

P.Q 0 R.Q 0<br />

P.R R.Q 0 0<br />

0 0 0 E<br />

⎞<br />

⎟<br />

⎠ ,<br />

whose determ<strong>in</strong>ant 2E(P.Q)(R.Q)(P.R) must be a nonsquare <strong>in</strong> Fq.<br />

We have shown <strong>in</strong> Eq. 14.20 that, s<strong>in</strong>ce 〈C〉 has no tangent through both<br />

〈P 〉 <strong>and</strong> 〈Q〉, the quantity 2(P.C)(Q.C)(P.Q) is a nonzero square <strong>in</strong> Fq.<br />

Multiply<strong>in</strong>g this by the determ<strong>in</strong>ant of the above matrix gives us that<br />

<strong>and</strong> hence<br />

4E(P.R) 2 (Q.R)(P.C)(Q.C) is a nonsquare <strong>in</strong> Fq,<br />

E(P.Q)(Q.R)(C.P )((Q.C) is a nonsquare <strong>in</strong> Fq. (14.23)<br />

For q ≡ −1 (mod 4), multiply<strong>in</strong>g Eqs. 14.23 <strong>and</strong> 14.21 gives us that E<br />

is a nonsquare <strong>in</strong> Fq. For q ≡ 1 (mod 4), multiply<strong>in</strong>g Eqs. 14.23 <strong>and</strong> 14.22<br />

gives us that E is a nonzero square <strong>in</strong> Fq.<br />

We recall that 〈D〉 was chosen as an arbitrary circle of K2 <strong>and</strong> that 〈R〉<br />

was an arbitrary po<strong>in</strong>t of 〈D〉. Thus we have shown that for all po<strong>in</strong>ts 〈R〉<br />

of 〈D〉 the circles def<strong>in</strong>ed by 〈P 〉, 〈Q〉 <strong>and</strong> 〈R〉 are of the same equivalence<br />

class under ∼. In other words, all circles of the bundle through 〈P 〉 <strong>and</strong> 〈Q〉<br />

which <strong>in</strong>tersect 〈D〉 are of the same equivalence class. By Lemma 14.3.8 〈D〉<br />

must be <strong>in</strong> the l<strong>in</strong>ear flock with carriers 〈P 〉 <strong>and</strong> 〈Q〉. Thus every circle of<br />

K2 is <strong>in</strong> this l<strong>in</strong>ear flock. Clearly we may reverse the roles of K1 <strong>and</strong> K2 by


14.4. DEMBOWSKI’S THEOREM 667<br />

pick<strong>in</strong>g 〈C〉 <strong>in</strong> K2 <strong>and</strong> 〈D〉 <strong>in</strong> K1, <strong>and</strong> thus every circle of K1 is also <strong>in</strong> this<br />

l<strong>in</strong>ear flock. Therefore K itself must be exactly the l<strong>in</strong>ear flock with carriers<br />

〈P 〉 <strong>and</strong> 〈Q〉. This completes a proof of the Theorem.<br />

14.4 Dembowski’s Theorem<br />

The theorem referred to <strong>in</strong> the title of this section is the follow<strong>in</strong>g:<br />

Theorem 14.4.1. Any f<strong>in</strong>ite <strong>in</strong>versive plane I of even order is egglike.<br />

The proof we give here is due to J. A. Thas [Th84]. It uses the theory<br />

of generalized quadrangles <strong>and</strong> is very much shorter than the orig<strong>in</strong>al proof<br />

due to P. Dembowski.<br />

Proof. Let I = (P, B, I) be an <strong>in</strong>versive plane of even order n. We may<br />

assume that I is conta<strong>in</strong>ment ∈. Def<strong>in</strong>e a new <strong>in</strong>cidence structure S =<br />

(P ′ , B ′ , I ′ ) as follows. P ′ = P ∪ B. B ′ is the set of pencils of circles. A pencil<br />

is <strong>in</strong>cident with a po<strong>in</strong>t x ∈ P (the carrier of the pencil) <strong>and</strong> a maximal set<br />

of mutually tangent circles at x. I ′ is the natural <strong>in</strong>cidence. We now show<br />

that S is is a GQ of order n.<br />

Each l<strong>in</strong>e of S is <strong>in</strong>cident with n+1 po<strong>in</strong>ts of S, each po<strong>in</strong>t of S is <strong>in</strong>cident<br />

with n + 1 l<strong>in</strong>es of S, <strong>and</strong> two l<strong>in</strong>es are <strong>in</strong>cident with at most one common<br />

po<strong>in</strong>t.<br />

Let p ∈ P ′ , L ∈ B ′ , p not <strong>in</strong>cident with L <strong>in</strong> S. We must show that there<br />

are unique w ∈ P ′ <strong>and</strong> M ∈ B ′ for which pI ′ MI ′ wI ′ L. Let x be the element<br />

of P <strong>in</strong> L, i.e., L is a pencil of circles pairwise tangent at x. There are three<br />

cases to consider:<br />

Case (1) p ∈ P ;<br />

Case (2) p ∈ B <strong>and</strong> x ∈ p;<br />

Case (3) p ∈ B <strong>and</strong> x ∈ p.<br />

In Case (1), w is the unique circle C of L which conta<strong>in</strong>s p, <strong>and</strong> M is the<br />

element of B ′ def<strong>in</strong>ed by p <strong>and</strong> C.<br />

In Case (2), w = x <strong>and</strong> M is the element of B ′ def<strong>in</strong>ed by p <strong>and</strong> x.<br />

So suppose we are <strong>in</strong> Case (3). So p is a circle of I <strong>and</strong> x is a po<strong>in</strong>t<br />

of I not <strong>in</strong> p. Let πx be the derived structure of I with respect to x. So<br />

πx is an aff<strong>in</strong>e plane of order n whose po<strong>in</strong>ts are the po<strong>in</strong>ts of P \ {x} <strong>and</strong><br />

whose l<strong>in</strong>es are the circles <strong>in</strong> B conta<strong>in</strong><strong>in</strong>g x. If L = {x, C1, . . . , Cn}, then<br />

{C1 \{x}, . . . , Cn \{x}} = P is a parallel class of πx. Let πx be the projective


668 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

completion of πx. In πx, the circle p is an oval. S<strong>in</strong>ce n is even, the oval p<br />

has a nucleus k. Clearly k is not on the l<strong>in</strong>e at <strong>in</strong>f<strong>in</strong>ity of πx, s<strong>in</strong>ce otherwise<br />

p would have one of its po<strong>in</strong>ts at <strong>in</strong>f<strong>in</strong>ity, a contradiction. We are look<strong>in</strong>g for<br />

circles w <strong>in</strong> L which are tangent to p. So <strong>in</strong> πx we are look<strong>in</strong>g for l<strong>in</strong>es <strong>in</strong> P<br />

which are tangent to p. There is just one such l<strong>in</strong>e <strong>in</strong> P, be<strong>in</strong>g the l<strong>in</strong>e of P<br />

which conta<strong>in</strong>s the nucleus k of p. It follows that <strong>in</strong> S there is just one po<strong>in</strong>t<br />

w which is <strong>in</strong>cident with L <strong>and</strong> coll<strong>in</strong>ear with p.<br />

Hence S is a GQ of order n.<br />

Our next goal is to show that the GQ S is classical, i.e., isomorphic<br />

to W (q). To do this we need to show that each po<strong>in</strong>t is regular, which by<br />

Cor 9.3.9 is equivalent to show<strong>in</strong>g that each triad of po<strong>in</strong>ts is centric. Suppose<br />

that {p1, p2, p3} is a triad of po<strong>in</strong>ts of S. There are four cases to consider.<br />

Case 1 p1, p2, p3 ∈ P . Then the element of B which conta<strong>in</strong>s p1, p2, p3 is<br />

a po<strong>in</strong>t of S <strong>in</strong> {p1, p2, p3} ⊥ .<br />

Case 2 p1, p2 ∈ P , p3 ∈ B, {p1, p2} ∩ p3 = ∅. Let πp1 be the derived<br />

structure of I with respect to p1, with πp1 its projective completion. The<br />

circle p3 is an oval <strong>in</strong> πp1. The kernel k of the oval p3 is a po<strong>in</strong>t of πp1 (as<br />

above). With any l<strong>in</strong>e T of πp1 which conta<strong>in</strong>s p2 <strong>and</strong> kthere corresponds a<br />

circle C = T ∪ {p1} of I which conta<strong>in</strong>s p1, p2 <strong>and</strong> is tangent to p3. Clearly<br />

C ∈ {p1, p2, p3} ⊥ .<br />

Case 3 p1 ∈ P , p2, p3 ∈ B, p1 ∈ p2, p1 ∈ p3, <strong>and</strong> p2, p3 nontangent. Let<br />

πp1 be the derived structure of I with respect to p1. In πp1, the kernels of<br />

the ovals p2 <strong>and</strong> p3 are denoted by k2 <strong>and</strong> k3, respectively. With any l<strong>in</strong>e T<br />

of πp1 which conta<strong>in</strong>s k2 <strong>and</strong> k3 there corresponds a circle C = T ∪ {p1} of I<br />

which conta<strong>in</strong>s p1 <strong>and</strong> is tangent to p2 <strong>and</strong> p3. Clearly C ∈ {p1, p2, p3} ⊥ .<br />

Case 4 p1, p2, p3 ∈ B <strong>and</strong> pairwise nontangent. If x ∈ p1 ∩ p2 ∩ p3, then<br />

x ∈ {p1, p2, p3} ⊥ . So assume that p1 ∩ p2 ∩ p3 = ∅. We show that <strong>in</strong> I there<br />

is a circle that is tangent to all of p1, p2, p3.<br />

Let x ∈ p1. First, suppose that x ∈ p2 or x ∈ p3, say x ∈ p2. In the<br />

tangent pencil (of I) at x conta<strong>in</strong><strong>in</strong>g p2, the unique circle Cx conta<strong>in</strong><strong>in</strong>g<br />

the nucleus of p3 considered as an oval <strong>in</strong> πx) is tangent to p3. If x ∈ p2<br />

<strong>and</strong> x ∈ p3, let k2 (respectively, k3) be the nucleus of p2 (respectively, p3)<br />

considered as an oval <strong>in</strong> πx. Any circle Cx of I conta<strong>in</strong><strong>in</strong>g x, k2 <strong>and</strong> k3 is<br />

tangent to p2 <strong>and</strong> p3. If Cx is not uniquely def<strong>in</strong>ed by x, it can only be<br />

because k2 = k3. In that case each circle conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> k2 is tangent to<br />

both p2 <strong>and</strong> p3. Clearly k2 ∈ p1, because then p1 would also be tangent to p2<br />

<strong>and</strong> p3, contradict<strong>in</strong>g our ma<strong>in</strong> hypothesis. In I there is a circle C conta<strong>in</strong><strong>in</strong>g<br />

k2 <strong>and</strong> tangent to p1 at x. Then s<strong>in</strong>ce C is tangent to p1, p2 <strong>and</strong> p3, it must


14.5. FINITE LAGUERRE PLANES 669<br />

be that C ∈ {p1, p2, p3} ⊥ . So we may assume that Cx is uniquely def<strong>in</strong>ed by<br />

x. So we are now <strong>in</strong> the case where for each x ∈ p1 there is a unique circle<br />

Cx conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> tangent to both p2 <strong>and</strong> p3. Then |Cx ∩ p1| = 1 or 2 for<br />

each x ∈ p1. If |Cx ∩ p1| = 2 for all x ∈ p1, then the pairs Cx ∩ p1 def<strong>in</strong>e<br />

a partition of p1, an impossibility s<strong>in</strong>ce |p1| = n + 1 is odd. Hence at least<br />

one of the circles Cx, say C, is tangent to p1. So C is tangent to all three of<br />

p1, p2, p3 <strong>and</strong> C ∈ {p1, p2, p3} ⊥ .<br />

At this po<strong>in</strong>t we know that S is isomorphic to W (n), n = 2 e . So identify<br />

S <strong>and</strong> W (n) <strong>and</strong> denote by P G(3, q) the ambient 3-space around W (n).<br />

In P G(3, n), the set P has exactly one po<strong>in</strong>t <strong>in</strong> common with each l<strong>in</strong>e of<br />

W (n). (Each l<strong>in</strong>e of W (n) is of the form {x, C1, . . . , Cn}, where C1, . . . , Cn<br />

is a pencil of circles pairwise tangent at x.) It follows that P is an ovoid of<br />

the GQ W (n), <strong>and</strong> hence an ovoid of P G(3, q) by Lemma ??. The circleset<br />

B of I is the set of all po<strong>in</strong>ts of P G(3, n) \ P . And <strong>in</strong> I a po<strong>in</strong>t x is <strong>in</strong>cident<br />

with a circle C iff the l<strong>in</strong>e xC of P G(3, n) belongs to W (n), i.e., is tangent<br />

to P . We can now see an isomorphism θ from the <strong>in</strong>versive plane I to the<br />

<strong>in</strong>versive plane def<strong>in</strong>ed by the ovoid P : θ maps each po<strong>in</strong>t of P to itself, <strong>and</strong><br />

if C ∈ B = P G(3, n) \ P , then C θ is the set of all po<strong>in</strong>ts of P on l<strong>in</strong>es of<br />

W (n) through C. Hence I is egglike.<br />

14.5 F<strong>in</strong>ite Laguerre Planes<br />

A f<strong>in</strong>ite circle plane with one parallel class of l<strong>in</strong>es was called a Laguerre<br />

plane. So <strong>in</strong> detail the def<strong>in</strong>ition appears as follows:<br />

A Laguerre plane S = (P, L, C) is an <strong>in</strong>cidence structure of po<strong>in</strong>ts, l<strong>in</strong>es<br />

<strong>and</strong> circles, respectively, such that the follow<strong>in</strong>g axioms are satisfied:<br />

I(i) Three pairwise non-coll<strong>in</strong>ear po<strong>in</strong>ts are <strong>in</strong>cident with a unique circle.<br />

I(ii) For any circle C ∈ C, po<strong>in</strong>t P ∈ P <strong>and</strong> po<strong>in</strong>t Q not <strong>in</strong> C <strong>and</strong> not<br />

coll<strong>in</strong>ear with P there is a unique circle D <strong>in</strong>cident with Q <strong>and</strong> touch<strong>in</strong>g<br />

C at P , i.e., C <strong>and</strong> D have P as their only common po<strong>in</strong>t.<br />

I(iii) Each po<strong>in</strong>t P ∈ P is <strong>in</strong>cident with a unique l<strong>in</strong>e L ∈ L, <strong>and</strong> each l<strong>in</strong>e<br />

meets each circle <strong>in</strong> a unique po<strong>in</strong>t.<br />

I(iv) Every circle is <strong>in</strong>cident with at least three po<strong>in</strong>ts <strong>and</strong> there are at least<br />

two circles.


670 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

Let O be an oval <strong>in</strong> the plane π embedded as a hyperplane <strong>in</strong> Σ =<br />

P G(3, q), <strong>and</strong> let V be a po<strong>in</strong>t of Σ \ π. Then the cone K with vertex<br />

V <strong>and</strong> base O yields a Laguerre plane S = (P, C, L) <strong>in</strong> the follow<strong>in</strong>g way.<br />

P = K \ {V }; L consists of the l<strong>in</strong>es of Σ jo<strong>in</strong><strong>in</strong>g V to po<strong>in</strong>ts of O; C is the<br />

set of plane sections of K by planes of Σ not conta<strong>in</strong><strong>in</strong>g V . Clearly each l<strong>in</strong>e<br />

of S is <strong>in</strong>cident with q po<strong>in</strong>ts.<br />

In general, if a Laguerre plane S has a l<strong>in</strong>e <strong>in</strong>cident with a f<strong>in</strong>ite number<br />

q of po<strong>in</strong>ts, then it is easy to show that each l<strong>in</strong>e is <strong>in</strong>cident with q po<strong>in</strong>ts,<br />

there are q + 1 l<strong>in</strong>es, each circle has q + 1 po<strong>in</strong>ts, there are q 2 + q po<strong>in</strong>ts <strong>in</strong> P,<br />

<strong>and</strong> every derived plane has order q. The number q is called the order of S.<br />

Let S = (P, C, L) be a Laguerre plane of order q. Let L0, L1, . . . , Lq be<br />

the generators (i.e., l<strong>in</strong>es) of S, <strong>and</strong> suppose that P is a po<strong>in</strong>t on L0. The<br />

projective closure SP of the derived plane SP may be described as follows (if<br />

L is a l<strong>in</strong>e of S, then L ∗ is the set of po<strong>in</strong>ts <strong>in</strong>cident with L):<br />

Po<strong>in</strong>ts of SP :<br />

(i) po<strong>in</strong>ts of S not on L0. (So L ∗ 1, . . . , L ∗ q partition these q 2 po<strong>in</strong>ts.)<br />

(ii) the tangent pencils of circles at P<br />

(iii) the symbol (∞)<br />

L<strong>in</strong>es of SP :<br />

(a) generators L1, . . . , Lq of S not <strong>in</strong>cident with P<br />

(b) circles <strong>in</strong>cident with P<br />

(c) the symbol [∞]<br />

A po<strong>in</strong>t of type (i) is <strong>in</strong>cident with the generator of S that conta<strong>in</strong>s it<br />

<strong>and</strong> with the q circles that conta<strong>in</strong> it <strong>and</strong> P . A po<strong>in</strong>t of type (ii) is <strong>in</strong>cident<br />

with the q circles <strong>in</strong> it <strong>and</strong> with the l<strong>in</strong>e [∞]. The po<strong>in</strong>t (∞) is <strong>in</strong>cident with<br />

the q generators <strong>and</strong> with the l<strong>in</strong>e [∞].<br />

Let C be a circle of S not <strong>in</strong>cident with P . It is clear that C is an oval<br />

of SP with nucleus (∞).<br />

The follow<strong>in</strong>g theorem first appeared <strong>in</strong> [PT75]:<br />

Theorem 14.5.1. A Laguerre plane of odd order s (s > 1) is equivalent to<br />

a GQ of order s with a dist<strong>in</strong>guished antiregular po<strong>in</strong>t.


14.5. FINITE LAGUERRE PLANES 671<br />

Proof. Let S = (P, B, I) be a GQ of order s with a fixed antiregular po<strong>in</strong>t<br />

x∞, so s must be odd, imply<strong>in</strong>g s ≥ 3. Let L0, . . . , Ls be the l<strong>in</strong>es of S<br />

<strong>in</strong>cident with x∞. Let<br />

L ∗ i = {y ∈ P : x∞ = yILi}, <strong>and</strong> put P ∗ = x ⊥ ∞ \ {x∞}.<br />

For each y ∈ P \ {x∞} ⊥ put<br />

F<strong>in</strong>ally, put<br />

Cy = {x∞, y} ⊥ , <strong>and</strong> put C = {Cy : y ∈ P \ {x∞}} .<br />

L = {L ∗ i<br />

: 0 ≤ i ≤ s}.<br />

Then we will prove that S ∗ = (P ∗ , C, L) is a Laguerre plane of order s. It<br />

is immediately clear that both I((iii) <strong>and</strong> I(iv) hold. For I(i), let x1, x2, x3<br />

be pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts of P ∗ . Hence {x1, x2, x3} is a triad of po<strong>in</strong>ts<br />

<strong>in</strong> S with center x∞. S<strong>in</strong>ce x∞ is antiregular <strong>in</strong> S, each triad of po<strong>in</strong>ts <strong>in</strong><br />

P ∗ has a unique second center y ∈ P \ {x∞} ⊥ , so the the triad {x1, x2, x3}<br />

belongs to a unique circle Cy, establish<strong>in</strong>g the validity of I(i). Now note that<br />

|P ∗ | = s 2 + s, |L ∗ i | = s for each i = 0, . . . , s, <strong>and</strong> |Cy| = 1 + s for all Cy ∈ C.<br />

A simple count<strong>in</strong>g argument now shows that I(ii) must also hold, prov<strong>in</strong>g<br />

that S ∗ is a Laguerre plane.<br />

Conversely, suppose that S ∗ = (P ∗ , C, L) is a Laguerre plane of odd order<br />

s. We must construct a GQ S = (P, B, I) with an antiregular po<strong>in</strong>t. We<br />

start by describ<strong>in</strong>g the po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of S.<br />

Po<strong>in</strong>ts of S are of three types:<br />

(i) a symbol (∞);<br />

(ii) the po<strong>in</strong>ts of P ∗ ;<br />

(iii) the circles C ∈ C.<br />

L<strong>in</strong>es of S are of two types:<br />

(a) the l<strong>in</strong>es (called generators) <strong>in</strong> L;<br />

(b) the pencils of mutually tangent circles of S ∗ .<br />

Incidence I is then def<strong>in</strong>ed as follows: the po<strong>in</strong>t (∞) is on each l<strong>in</strong>e of type<br />

(a); each po<strong>in</strong>t x ∈ P∗ is <strong>in</strong>cident with the unique generator L∗ i with x ∈ L<br />

<strong>and</strong> with each tangent pencil of circles that consists of circles tangent at x.<br />

A po<strong>in</strong>t x of type (iii) is <strong>in</strong>cident with each pencil conta<strong>in</strong><strong>in</strong>g x, one centered<br />

at each of the s + 1 po<strong>in</strong>ts of P∗ <strong>in</strong> x.


672 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

It is now easy to see that S = (P, B, I) is an <strong>in</strong>cidence structure with<br />

1 + s po<strong>in</strong>ts (respectively, l<strong>in</strong>es) <strong>in</strong>cident with each l<strong>in</strong>e (po<strong>in</strong>t, respectively),<br />

with 1 + s + s2 + s3 po<strong>in</strong>ts <strong>and</strong> also that many l<strong>in</strong>es, <strong>and</strong> with no two po<strong>in</strong>ts<br />

ever <strong>in</strong>cident with the same two l<strong>in</strong>es. A simple count<strong>in</strong>g argument shows<br />

that to prove that S is a GQ it suffices to show that if x ∈ P is a po<strong>in</strong>t not<br />

on a l<strong>in</strong>e L ∈ B, then there is at least one po<strong>in</strong>t <strong>in</strong>cident with L <strong>and</strong> coll<strong>in</strong>ear<br />

with x.<br />

There are several cases to consider, but the only one not really trivial is<br />

when x is of type (iii) (i.e., a circle) <strong>and</strong> L is a pencil of circles tangent at the<br />

po<strong>in</strong>t y. If y ∈ x, then y is the only po<strong>in</strong>t <strong>in</strong>cident with L that is coll<strong>in</strong>ear<br />

<strong>in</strong> S with the po<strong>in</strong>t x (on the l<strong>in</strong>e L). So suppose that y ∈ x. Suppose that<br />

y ∈ L∗ i with L∗i ∩x = {z}. An <strong>in</strong>volution θ of the circle x is def<strong>in</strong>ed as follows:<br />

θ(z) = z; for u ∈ x \ {z}, θ(u) = u if the circle C of L that conta<strong>in</strong>s u is<br />

tangent to x at u; for u ∈ x \ {z}, if the circle C of L that conta<strong>in</strong>s u is not<br />

tangent to x, then θ(u) is def<strong>in</strong>ed by C ∩ x = {u, θ(u)}. As |x| = 1 + s is<br />

even <strong>and</strong> θ(z) = z, θ has at least two fixed po<strong>in</strong>ts. Hence L conta<strong>in</strong>s at least<br />

one circle C that is tangent to x. S<strong>in</strong>ce C <strong>and</strong> x are coll<strong>in</strong>ear po<strong>in</strong>ts of S,<br />

the l<strong>in</strong>e L conta<strong>in</strong>s at least one po<strong>in</strong>t coll<strong>in</strong>ear with x. Hence S is a GQ of<br />

order s.<br />

It rema<strong>in</strong>s only to show that (∞) is an antiregular po<strong>in</strong>t of S. By Theorem<br />

9.8.4, part 1, this is equivalent to show<strong>in</strong>g that each triad conta<strong>in</strong>ed <strong>in</strong><br />

(∞) ⊥ has exactly two centers. One center is the po<strong>in</strong>t (∞). It is fairly easy<br />

to see that the unique other center is the circle conta<strong>in</strong><strong>in</strong>g that triad.<br />

Of course by the Theorem of Bagchi, Brouwer <strong>and</strong> Wilbr<strong>in</strong>k we now know<br />

that each po<strong>in</strong>t of S is antiregular, i.e., each triad of po<strong>in</strong>ts of S has exactly<br />

0 or 2 centers.<br />

We now want to <strong>in</strong>terpret for the Laguerre plane S ∗ several properties<br />

of the GQ S. The next theorem <strong>in</strong>terprets what it means for one of the<br />

generators of the Laguerre plane to be a regular l<strong>in</strong>e <strong>in</strong> the associated GQ.<br />

The result was called the ”tilt property” <strong>in</strong> [PT75].<br />

Theorem 14.5.2. (Tilt Property) Writ<strong>in</strong>g out the property of L0 be<strong>in</strong>g regular<br />

gives the follow<strong>in</strong>g. Let L0, L1, . . . , Ls be the generators of the Laguerre<br />

plane S ∗ . Then L0 is a regular l<strong>in</strong>e <strong>in</strong> the associated GQ S if <strong>and</strong> only if the<br />

follow<strong>in</strong>g holds: Let C be any circle of S ∗ <strong>and</strong> suppose that C ∩ L ∗ 0 = {x0},<br />

C ∩ L ∗ i = {xi}, for arbitrary but fixed i, 1 ≤ i ≤ s. Let C1 be tangent to C at<br />

x1 <strong>and</strong> meet L0 at y0. Let C0 be tangent to C at x0 <strong>and</strong> meet L1 at y1. Then


14.5. FINITE LAGUERRE PLANES 673<br />

the circle C ′ tangent to C1 at y0 <strong>and</strong> conta<strong>in</strong><strong>in</strong>g y1 must be the same circle<br />

that is tangent to C2 at y1 <strong>and</strong> conta<strong>in</strong>s y0.<br />

Another condition equivalent to the regularity of L0 is the fact that each<br />

triad of l<strong>in</strong>es conta<strong>in</strong><strong>in</strong>g L0 must have either 1 or 1 + s transversals, which is<br />

equivalent to each triad of l<strong>in</strong>es conta<strong>in</strong><strong>in</strong>g L0 hav<strong>in</strong>g at least one transversal.<br />

At this po<strong>in</strong>t we leave as an exercise the task of <strong>in</strong>terpret<strong>in</strong>g this property <strong>in</strong><br />

one (or more) of the associated Laguerre planes.<br />

In view of Theorem 14.5.1 the follow<strong>in</strong>g statements are almost trivial.<br />

Theorem 14.5.3. The generalized quadrangle S of order s hav<strong>in</strong>g an antiregular<br />

po<strong>in</strong>t is isomorphic to the system consist<strong>in</strong>g of the po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es<br />

of a nondegenerate hyperquadric <strong>in</strong> P G(4, s) if <strong>and</strong> only if the correspond<strong>in</strong>g<br />

Laguerre plane S ∗ is isomorphic to the classical model aris<strong>in</strong>g from a cone<br />

<strong>in</strong> P G(3, s). If S is a generalized quadrangle hav<strong>in</strong>g an antiregular po<strong>in</strong>t<br />

x∞, then the aff<strong>in</strong>e plane A(x∞, y), y ∼ x∞, y = x∞, is just the <strong>in</strong>ternal<br />

(derived) structure at the po<strong>in</strong>t y of the correspond<strong>in</strong>g Laguerre plane S ∗ .<br />

The follow<strong>in</strong>g theorem appeared <strong>in</strong> [CK73] <strong>and</strong> <strong>in</strong>dependently <strong>in</strong> [PT75].<br />

Theorem 14.5.4. Let S ∗ = (P ∗ , C, L) be a f<strong>in</strong>ite Laguerre plane of odd order<br />

s. If the <strong>in</strong>ternal structure at one of the po<strong>in</strong>ts of S ∗ is desarguesian, then<br />

S ∗ is isomorphic to the classical model aris<strong>in</strong>g from a cone <strong>in</strong> P G(3, s).<br />

Proof. Suppose that the <strong>in</strong>ternal structure S ∗ y = (P ∗ y , B ∗ y, ∈) at the po<strong>in</strong>t y<br />

of the Laguerre plane S ∗ = (P ∗ , C, L) is desarguesian. Here P ∗ y = P∗ \ Ly,<br />

where Ly is the generator of S ∗ through y; B ∗ y = (L\{Ly})∪{C ∈ C : y ∈ C}.<br />

If C ∈ C is a circle that does not conta<strong>in</strong> y, then Cy = C ∩ P ∗ is an s-arc of<br />

the projective completion πy of the aff<strong>in</strong>e plane S ∗ of order s. As each l<strong>in</strong>e<br />

of L \ {Ly} has a unique po<strong>in</strong>t of Cy, they are the tangent l<strong>in</strong>es to Cy <strong>and</strong><br />

they meet <strong>in</strong> πy at the ideal po<strong>in</strong>t (∞). Hence the set Cy ∪ {(∞)} is an oval<br />

of πy. Moreover, the ideal l<strong>in</strong>e [∞]y of πy is tangent to this oval at the po<strong>in</strong>t<br />

(∞). As s is odd, the oval Cy ∪ {(∞)} is an irreducible conic. As there are<br />

s 3 − s 2 circles of the type Cy, we obta<strong>in</strong> <strong>in</strong> this way s 3 − s 2 irreducible conics<br />

<strong>in</strong> πy that are tangent to [∞] at the po<strong>in</strong>t (∞). Now consider two circles C1<br />

<strong>and</strong> C2 that have <strong>in</strong> common a po<strong>in</strong>t z ∈ Ly, z = y, <strong>and</strong> that also have <strong>in</strong><br />

common a second po<strong>in</strong>t u. The correspond<strong>in</strong>g s-arcs of πy have one po<strong>in</strong>t u<br />

<strong>in</strong> common. Suppose that the correspond<strong>in</strong>g conics O1 <strong>and</strong> L2 are tangent<br />

at u. Then with their tangent l<strong>in</strong>e at u there corresponds a circle of S ∗ that<br />

is tangent to C1 <strong>and</strong> C2 at u. Consequently C1 <strong>and</strong> C2 are tangent at u, a


674 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

contradiction. So with the s 2 circles through z there correspond s 2 mutually<br />

osculat<strong>in</strong>g conics of πy. Hence the representation of S ∗ <strong>in</strong> πy is a classical<br />

representation of the Laguerre plane aris<strong>in</strong>g from a cone <strong>in</strong> P G(3, q). See<br />

Observation 6.2.2.<br />

The follow<strong>in</strong>g corollary is just a re<strong>in</strong>terpretation of Theorem 14.5.4.<br />

Corollary 14.5.5. Let S = (P, B, I) be a generalized quadrangle of order s<br />

hav<strong>in</strong>gt an antiregular po<strong>in</strong>t x∞, so that s must be odd. If there is a po<strong>in</strong>t<br />

y ∼ x∞, y = x∞, for which the plane A(x∞, y) is desarguesian, then S<br />

must be isomorphic to the system consist<strong>in</strong>g of the po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of a<br />

nondegenerate hyperquadric <strong>in</strong> P G(4, s).<br />

14.6 F<strong>in</strong>ite M<strong>in</strong>kowski Planes<br />

A f<strong>in</strong>ite circle plane with two parallel class of l<strong>in</strong>es was called a M<strong>in</strong>kowski<br />

plane. So <strong>in</strong> detail the def<strong>in</strong>ition appears as follows:<br />

A M<strong>in</strong>kowski plane S = (P, L, C) is an <strong>in</strong>cidence structure of po<strong>in</strong>ts, l<strong>in</strong>es<br />

<strong>and</strong> circles, respectively, such that the follow<strong>in</strong>g axioms are satisfied:<br />

M(i) Three pairwise non-coll<strong>in</strong>ear po<strong>in</strong>ts are <strong>in</strong>cident with a unique circle.<br />

M(ii) For any circle C ∈ C, po<strong>in</strong>t P ∈ P <strong>and</strong> po<strong>in</strong>t Q not <strong>in</strong> C <strong>and</strong><br />

not coll<strong>in</strong>ear with P there is a unique circle D <strong>in</strong>cident with Q <strong>and</strong><br />

touch<strong>in</strong>g C at P , i.e., C <strong>and</strong> D have P as their only common po<strong>in</strong>t.<br />

M(iii) L = M1 ∪ M2, where M1 <strong>and</strong> M2 are each a parallel class of l<strong>in</strong>es<br />

(i.e., generators). Each po<strong>in</strong>t P ∈ P is <strong>in</strong>cident with a unique l<strong>in</strong>e<br />

<strong>in</strong> M1 <strong>and</strong> with a unique l<strong>in</strong>e <strong>in</strong> M2, <strong>and</strong> each l<strong>in</strong>e meets each circle<br />

<strong>in</strong> a unique po<strong>in</strong>t.<br />

M(iv) Every circle is <strong>in</strong>cident with at least three po<strong>in</strong>ts <strong>and</strong> there are at<br />

least two circles.<br />

The classical M<strong>in</strong>kowski plane S = (P, M1∪M2, C) arises <strong>in</strong> the follow<strong>in</strong>g<br />

fashion. Let H3 be a hyperbolic quadric <strong>in</strong> P G(3, q). Let P be the set of<br />

po<strong>in</strong>ts on H3 <strong>and</strong> let M1 <strong>and</strong> M2 be the two rul<strong>in</strong>gs of H3. The circles of S<br />

are the <strong>in</strong>tersections of H3 with nontangent planes. So each circle is a conic<br />

ly<strong>in</strong>g <strong>in</strong> H3, <strong>and</strong> each three noncoll<strong>in</strong>ear po<strong>in</strong>ts of P lie <strong>in</strong> a unique circle.


14.6. FINITE MINKOWSKI PLANES 675<br />

Each po<strong>in</strong>t P of P lies on one l<strong>in</strong>e L1 ∈ M1 <strong>and</strong> one l<strong>in</strong>e L2 ∈ M2. The<br />

tangent plane to H3 at P is the plane conta<strong>in</strong><strong>in</strong>g L1 <strong>and</strong> L2. Suppose P is<br />

a po<strong>in</strong>t of the circle C which is the <strong>in</strong>tersection of the plane π with H3, <strong>and</strong><br />

suppose that Q is a a po<strong>in</strong>t not coll<strong>in</strong>ear with P <strong>and</strong> not on the circle C. The<br />

plane π <strong>in</strong>tersects the tangent plane at P <strong>in</strong> a l<strong>in</strong>e ℓ, so ℓ is the unique l<strong>in</strong>e of<br />

π tangent to C at P . The plane 〈Q, ℓ〉 meets H3 <strong>in</strong> the unique conic section<br />

of H3 conta<strong>in</strong><strong>in</strong>g Q <strong>and</strong> touch<strong>in</strong>g C at P . It is also clear that the l<strong>in</strong>es <strong>in</strong> a<br />

rul<strong>in</strong>g partition the po<strong>in</strong>ts of P <strong>and</strong> two l<strong>in</strong>es <strong>in</strong> dist<strong>in</strong>ct rul<strong>in</strong>gs <strong>in</strong>tersect <strong>in</strong><br />

a unique po<strong>in</strong>t with the plane spanned by those two l<strong>in</strong>es be<strong>in</strong>g the tangent<br />

plane to H3 at that po<strong>in</strong>t. So S is a M<strong>in</strong>kowski plane (of order q).<br />

In 1974 it was discovered <strong>in</strong>dependently by W. Heise [He74] <strong>and</strong> M. Percsy<br />

[Pe74] that any f<strong>in</strong>ite M<strong>in</strong>kowski plane of even order is classical. We give the<br />

proof of this result found by J. A. Thas [Th84].<br />

Theorem 14.6.1. (Heise-Percsy) Any f<strong>in</strong>ite M<strong>in</strong>kowski plane S = (P, L, C)<br />

of even order s is classical.<br />

Proof. Let S = (P, L, C) be a M<strong>in</strong>kowski plane of even order s. Here<br />

L = M1 ∪ M2 is the family of two parallel classes of generators. We may<br />

assume that <strong>in</strong>cidence <strong>in</strong> S is conta<strong>in</strong>ment ∈. We now def<strong>in</strong>e a new po<strong>in</strong>t-l<strong>in</strong>e<br />

<strong>in</strong>cidence structure S ′ = (P ′ , B ′ , I ′ ). Here P ′ = P ∪ C is the po<strong>in</strong>tset. In the<br />

l<strong>in</strong>eset B ′ there are two types of elements: The elements of type (i) consist<br />

of a po<strong>in</strong>t x ∈ P together with a maximal set of mutually tangent circles at<br />

x (x is called the carrier of this element of B ′ ), <strong>and</strong> the elements of type (ii)<br />

are the generators. The <strong>in</strong>cidence I ′ is the natural <strong>in</strong>cidence. The first ma<strong>in</strong><br />

step is to show that S ′ is a GQ of order s.<br />

A rout<strong>in</strong>e check shows that each l<strong>in</strong>e of S ′ is <strong>in</strong>cident with s + 1 po<strong>in</strong>ts<br />

of S ′ , each po<strong>in</strong>t of S ′ is <strong>in</strong>cident with s + 1 po<strong>in</strong>ts of S ′ , <strong>and</strong> two l<strong>in</strong>es are<br />

<strong>in</strong>cident with at most one common po<strong>in</strong>t. Let p ∈ P ′ . L ∈ B ′ , p I ′ L. We<br />

must show that there are unique w ∈ P ′ <strong>and</strong> M ∈ B ′ for which pI ′ MI ′ wI ′ L.<br />

There are several cases to consider.<br />

Case 1. p ∈ P, L ∈ L, p ∈ L. Assume, for example, that L ∈ M1. Then<br />

w is the unique po<strong>in</strong>t of L which is coll<strong>in</strong>ear with p, <strong>and</strong> M is the generator<br />

<strong>in</strong> M2 which conta<strong>in</strong>s p.<br />

Case 2. p ∈ P <strong>and</strong> L is a l<strong>in</strong>e of type (i) of S ′ . Let x be the element of<br />

P <strong>in</strong> L. If x <strong>and</strong> p are on a generator N , then clearly w = x <strong>and</strong> N = M.<br />

If x <strong>and</strong> p are noncoll<strong>in</strong>ear <strong>in</strong> S, then w is the unique circle C of L through<br />

p <strong>and</strong> M is the l<strong>in</strong>e of type (i) of S ′ def<strong>in</strong>ed by p <strong>and</strong> C.


676 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

Case 3. p ∈ L, L ∈ L. Then w is the common po<strong>in</strong>t of p <strong>and</strong> L <strong>in</strong> S, <strong>and</strong><br />

M is the l<strong>in</strong>e of type (i) of S ′ def<strong>in</strong>ed by w <strong>and</strong> p.<br />

Case 4. p is a circle <strong>and</strong> L is a pencil with carrier x. If x is <strong>in</strong> the<br />

circle p, then w = x <strong>and</strong> M is the l<strong>in</strong>e of type (i) of S ′ def<strong>in</strong>ed by x <strong>and</strong><br />

p, i.e., the tangent pencil with carrier x <strong>and</strong> conta<strong>in</strong><strong>in</strong>g p. Now assume<br />

that x ∈ p. Let πx be the derived structure of S with respect to x. Then<br />

πx is an aff<strong>in</strong>e plane of order s. If C1, . . . , Cs are the circles <strong>in</strong> L, then<br />

{C1 \ {x}, . . . , Cs \ {x}} = P is a parallel class of the aff<strong>in</strong>e plane πx. Also<br />

the generators <strong>in</strong> M1 (respectively, M2) which do not conta<strong>in</strong> x def<strong>in</strong>e a<br />

parallel class P ′ (respectively, P ′′ ) <strong>in</strong> πx. Note that P, P ′ , P ′′ are dist<strong>in</strong>ct.<br />

Let πx be the projective completion of πx. The po<strong>in</strong>ts of πx def<strong>in</strong>ed by P ′<br />

<strong>and</strong> P ′′ are denoted by z ′ <strong>and</strong> z ′′ respectively. If R ′ <strong>and</strong> R ′′ are the l<strong>in</strong>es of S<br />

through x, then (p\(R ′ ∪R ′′ ))∪{z ′ , z ′′ } = O is an oval of πx. S<strong>in</strong>ce s is even,<br />

the oval O has a kernel N. S<strong>in</strong>ce the l<strong>in</strong>e at <strong>in</strong>f<strong>in</strong>ity of πx has two po<strong>in</strong>ts <strong>in</strong><br />

common with O, the kernel N is an aff<strong>in</strong>e po<strong>in</strong>t of πx. We are look<strong>in</strong>g for<br />

circles w <strong>in</strong> L which are tangent to p. So <strong>in</strong> πx we are look<strong>in</strong>g for l<strong>in</strong>es <strong>in</strong> P<br />

which are tangent to O \ {z ′ , z ′′ }. There is just one such l<strong>in</strong>e <strong>in</strong> P , be<strong>in</strong>g the<br />

l<strong>in</strong>e of P which conta<strong>in</strong>s N. It follows that <strong>in</strong> S ′ there is just one po<strong>in</strong>t w<br />

which is <strong>in</strong>cident with L <strong>and</strong> coll<strong>in</strong>ear with p.<br />

Hence S ′ is a GQ of order s. In S ′ we have M ⊥ 1 = M2, so that any two<br />

l<strong>in</strong>es of Mi form a regular pair of l<strong>in</strong>es, i = 1, 2.<br />

The second ma<strong>in</strong> step is to show that the GQ S ′ is classical, i.e., each<br />

po<strong>in</strong>t is regular. To do this we show that each triad of po<strong>in</strong>ts has a center.<br />

Case 1. Let p1, p2, p3 ∈ P be pairwise noncoll<strong>in</strong>ear <strong>in</strong> S. Then the circle<br />

of S that conta<strong>in</strong>s p1, p2, p3 belongs to {p1, p2, p3} ⊥ <strong>in</strong> S ′ .<br />

Case 2. Let p1, p2 ∈ P, p3 ∈ C, with p1 <strong>and</strong> p2 noncoll<strong>in</strong>ear <strong>in</strong> S <strong>and</strong><br />

{p1, p2} ∩ p3 = ∅. Let πp1 be the derived structure of S with respect to p1.<br />

The li<strong>in</strong>es <strong>in</strong> M1 (resp., M2) which do not conta<strong>in</strong>s p1 def<strong>in</strong>e a parallel class<br />

P ′ (resp., P ′′ ) <strong>in</strong> πp1. Let πp1 be the projective completion of πp1. The po<strong>in</strong>ts<br />

of πp1 def<strong>in</strong>ed by P ′ <strong>and</strong> P ′′ are denoted by z ′ <strong>and</strong> z ′′ , respectively. If R ′ <strong>and</strong><br />

R ′′ are the l<strong>in</strong>es of S through p1, then (p3 \ (R ′ ∪ R ′′ )) ∪ {z ′ , z ′′ } = O is an<br />

oval of πp1. First assume that <strong>in</strong> πp1 at least one of the l<strong>in</strong>es p2z ′ , p2z ′′ , say<br />

p2z ′ , conta<strong>in</strong>s the kernel N of O. Then <strong>in</strong> S the circle p3 conta<strong>in</strong>s a po<strong>in</strong>t<br />

x which is coll<strong>in</strong>ear with p1 <strong>and</strong> p2. Clearly x ∈ {p1, p2, p3} ⊥ . Now assume<br />

that N is on no one of the l<strong>in</strong>es p2z ′ , p2z ′′ . Then with the l<strong>in</strong>e p2N of πp1<br />

there corresponds a circle C ∈ {p1, p2, p3} ⊥ .<br />

Case 3. Let p1 ∈ P, p2, p3 ∈ C with p1 ∈ p2 ∪ p3 <strong>and</strong> with p2 <strong>and</strong> p3


14.6. FINITE MINKOWSKI PLANES 677<br />

not tangent. Let πp1 be the derived structure at p1. The ovals of πp1 which<br />

correspond to p2 <strong>and</strong> p3 are denoted by O2 <strong>and</strong> O3, respectively. Let Ni be<br />

the kernel of Oi <strong>in</strong> πp1, i = 1, 2. First suppose that N2 = N3 <strong>and</strong> that the<br />

l<strong>in</strong>e N2N3 belongs to one of the parallel classes P ′ , P ′′ , say P ′ . Then <strong>in</strong> S the<br />

po<strong>in</strong>ts N2 <strong>and</strong> N3 are coll<strong>in</strong>ear <strong>and</strong> the circles p2 <strong>and</strong> p3 have a common po<strong>in</strong>t<br />

which is coll<strong>in</strong>ear with p1. Clearly x ∈ {p1, p2, p3} ⊥ . Suppose now that either<br />

N2 = N3 or that N2 = N3 <strong>and</strong> the l<strong>in</strong>e N2N3 is not <strong>in</strong> P ′ or P ′′ . Then with<br />

any l<strong>in</strong>e T of πp1 which conta<strong>in</strong>s N2 <strong>and</strong> N3 there corresponds a circle C of S<br />

which conta<strong>in</strong>s p1 <strong>and</strong> is tangent to p2 <strong>and</strong> p3. In this case C ∈ {p1, p2, p3}.<br />

Case 4. Suppose p1, p2, p3 ∈ C <strong>and</strong> are pairwise not tangent. If x ∈ p1∩p2∩<br />

p3, then clearly x ∈ {p1, p2, p3} ⊥ . So we may assume that {p1, p2, p3} ⊥ = ∅.<br />

We show that <strong>in</strong> S there is a circle which is tangent to p1, p2, <strong>and</strong> p3. Let<br />

x ∈ p1. First suppose that x ∈ p2 or x ∈ p3, say x ∈ p2. By Case 4. of<br />

the proof that S ′ is a GQ, there is a unique circle Cx <strong>in</strong> S which conta<strong>in</strong>s<br />

x <strong>and</strong> is tangent to p2 <strong>and</strong> p3. So Cx ∈ {p1, p2, p3} ⊥ . Next, suppose that<br />

x ∈ p2 ∪ p3. By Case 3. (the preced<strong>in</strong>g paragraph), there is a circle Cx which<br />

conta<strong>in</strong>s x <strong>and</strong> is tangent to p2 <strong>and</strong> p3, or there is a po<strong>in</strong>t y ∈ p2 ∩ p3 which<br />

is coll<strong>in</strong>ear with x <strong>in</strong> S. If there is a po<strong>in</strong>t y ∈ p2 ∩ p3 which is coll<strong>in</strong>ear<br />

with x <strong>in</strong> S, then the union of the l<strong>in</strong>es of S through y is also denoted by Cx<br />

(here |Cx ∩ p1| = 2). Now suppose that there is a po<strong>in</strong>t x ∈ p1, x ∈ p2 ∪ p3,<br />

for which the element Cx is not uniquely def<strong>in</strong>ed by x. Then <strong>in</strong> the plane<br />

πx the kernels of the ovals O2 <strong>and</strong> O3 which correspond to the circles p2 <strong>and</strong><br />

p3, respectively, co<strong>in</strong>cide. Let this common kernel be N. Hence each circle<br />

conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> N is tangent to p2 <strong>and</strong> p3. If N ∈ p1, then p1 is tangent to<br />

p2 <strong>and</strong> p3, a contradiction. So N ∈ p1. S<strong>in</strong>ce N is a po<strong>in</strong>t of πx, we have that<br />

<strong>in</strong> S, N is not coll<strong>in</strong>ear with x. So <strong>in</strong> S there is a circle C which conta<strong>in</strong>s<br />

N <strong>and</strong> is tangent to p1 at x. S<strong>in</strong>ce C is tangent to each of p1, p2 <strong>and</strong> p3, we<br />

have C ∈ {p1, p2, p3} ⊥ . So we may assume that Cx is uniquely def<strong>in</strong>ed by<br />

any x ∈ p1. If |Cx ∩ p1| = 2 for all x ∈ p1, then the pairs Cx ∩ p1 def<strong>in</strong>e a<br />

partition of p1, a contradiction s<strong>in</strong>ce |p1| = s + 1 is odd. Consequently there<br />

is at least one circle Cx, say C, which is tangent to p1. So C ∈ {p1, p2, p3} ⊥ ,<br />

complet<strong>in</strong>g the proof that each triad of po<strong>in</strong>ts of S ′ is centric.<br />

S<strong>in</strong>ce each triad of po<strong>in</strong>ts of S ′ is centric, we know that all po<strong>in</strong>ts are regular<br />

<strong>and</strong> S ′ is isomorphic to W (s) with s = 2 e . So identify S ′ <strong>and</strong> W (s), <strong>and</strong><br />

let P G(3, s) denote the projective 3-space that conta<strong>in</strong>s W (s). In P G(3, s)<br />

the l<strong>in</strong>esets M1 <strong>and</strong> M2 are the two reguli of a hyperbolic quadric. Hence<br />

<strong>in</strong> P G(3, s) the po<strong>in</strong>tset P is a hyperbolic quadric. the circleset of S is the


678 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

set of all po<strong>in</strong>ts of P G(3, s) \ P. And <strong>in</strong> S a po<strong>in</strong>t x is <strong>in</strong>cident with a circle<br />

C if <strong>and</strong> only if the l<strong>in</strong>e xC of P G(3, s) belongs to W (s), i.e., is tangent to<br />

P. Hence S is isomorphic to the M<strong>in</strong>kowski plane def<strong>in</strong>ed by the quadric P.<br />

This isomorphism θ is explicitly described as follows: θ : x ↦→ x for all x ∈ P;<br />

θ : L ↦→ L for all generators L ∈ L; if C ∈ C = P G(3, s) \ P, then C θ is the<br />

set of all po<strong>in</strong>ts of P on l<strong>in</strong>es of W (s) through C. Hence S is classical.<br />

In the preced<strong>in</strong>g proof a M<strong>in</strong>kowski plane of even order was used to construct<br />

a generalized quadrangle which was shown to be classical, imply<strong>in</strong>g<br />

that the M<strong>in</strong>kowski plane was classical. In the next proof we start with a<br />

generalized quadrangle hav<strong>in</strong>g a regular pair of l<strong>in</strong>es with a certa<strong>in</strong> property<br />

<strong>and</strong> use it to produce a M<strong>in</strong>kowski plane of even order. Then know<strong>in</strong>g that<br />

the M<strong>in</strong>kowski plane must be classical, we show that the GQ must also be<br />

classical.<br />

Theorem 14.6.2. Let S = (P, B, I) be a GQ of order s > 2. Suppose that<br />

S has a regular pair (L0, L1) of nonconcurrent l<strong>in</strong>es with the property that<br />

any triad of po<strong>in</strong>ts ly<strong>in</strong>g on l<strong>in</strong>es of {l0, L1} ⊥ has a center. Then s = 2 e<br />

<strong>and</strong> S is the generalized quadrangle W (s) aris<strong>in</strong>g from a symplectic polarity<br />

π of P G(3, s). Moreover, the po<strong>in</strong>ts ly<strong>in</strong>g on the l<strong>in</strong>es of {L0, L1} ⊥ form a<br />

nons<strong>in</strong>gular ruled quadric of P G(3, s) for which the tangent l<strong>in</strong>es co<strong>in</strong>cide<br />

with the totally isotropic l<strong>in</strong>es of the polarity π.<br />

Proof. Put {L0, L1} ⊥ = {M0, . . . , Ms} <strong>and</strong> {L0, L1} ⊥⊥ = {L0, L1, L2, . . . , Ls}.<br />

We may order the po<strong>in</strong>t V = {xij : 0 ≤ i, j ≤ s} on the l<strong>in</strong>es of {L0, L1} ⊥ so<br />

that Li <strong>and</strong> Mj meet at the po<strong>in</strong>t xij. Assume that each triad of po<strong>in</strong>ts of V<br />

is centric. Us<strong>in</strong>g these hypotheses we now construct an <strong>in</strong>cidence structure<br />

M ∗ = (V, L, C) that will turn out to be a M<strong>in</strong>kowski plane of order s.<br />

The po<strong>in</strong>ts of M ∗ are just the po<strong>in</strong>ts of V . The elements of L1 =<br />

{L0, . . . , Ls} <strong>and</strong> of L2 = {M0, . . . , Ms} are the generators of M ∗ : L =<br />

L1 ∪ L2. For each po<strong>in</strong>t y ∈ P \ V there is a set Cy of s + 1 po<strong>in</strong>ts of<br />

V coll<strong>in</strong>ear <strong>in</strong> S with y. This set Cy will be called a circle <strong>and</strong> we put<br />

C = {Cy : y ∈ P \ V }. So |C| = s 3 − s. Incidence <strong>in</strong> M ∗ is the one naturally<br />

<strong>in</strong>duced by <strong>in</strong>cidence <strong>in</strong> S. The follow<strong>in</strong>g observations are immediate:<br />

• Each po<strong>in</strong>t of V lies on a unique generator <strong>in</strong> L1 <strong>and</strong> on a unique<br />

generator <strong>in</strong> L2, <strong>and</strong> each generator of L1 meets each generator of L2<br />

<strong>in</strong> a unique po<strong>in</strong>t.


14.6. FINITE MINKOWSKI PLANES 679<br />

• Each circle meets each generator <strong>in</strong> a unique po<strong>in</strong>t.<br />

• For each C ∈ C we have |C| >≥ 3, <strong>and</strong> there is a pair (x, C) ∈ V × C<br />

with x ∈ C.<br />

• Each triad of po<strong>in</strong>ts of V (i.e., to two ly<strong>in</strong>g on a generator) is conta<strong>in</strong>ed<br />

<strong>in</strong> a unique circle. This follows easily s<strong>in</strong>ce by hypothesis each triad<br />

of po<strong>in</strong>ts of V is conta<strong>in</strong>ed <strong>in</strong> at least one circle. However, there are<br />

(s+1) 2 s 2 (s−1) 2 ordered triads, with each circle conta<strong>in</strong><strong>in</strong>g (s+1s(s−1)<br />

ordered triads, <strong>and</strong> there are s 3 − s circles. It follows that each triad<br />

must be conta<strong>in</strong>ed <strong>in</strong> a unique circle.<br />

To complete a proof that M ∗ is a M<strong>in</strong>kowski plane we must prove the<br />

follow<strong>in</strong>g: Let x, y be noncoll<strong>in</strong>ear po<strong>in</strong>ts of V <strong>and</strong> let C be a circle conta<strong>in</strong><strong>in</strong>g<br />

x but not y. Then there is a unique circle C ′ conta<strong>in</strong><strong>in</strong>g y for which C ∩C ′ =<br />

{x}.<br />

So suppose that x <strong>and</strong> y are noncoll<strong>in</strong>ear po<strong>in</strong>ts of V , <strong>and</strong> let Cp be a<br />

circle with nucleus p conta<strong>in</strong><strong>in</strong>g x but not y. We must show that there is a<br />

unique circle C ′ conta<strong>in</strong><strong>in</strong>g y <strong>and</strong> tangent to Cp at x. First, the number of<br />

circles conta<strong>in</strong><strong>in</strong>g x is the number s 2 − s of po<strong>in</strong>ts of P \ V coll<strong>in</strong>ear <strong>in</strong> S<br />

with x. Second, if z ∈ Cp, z = x, the number of circles (<strong>in</strong>clud<strong>in</strong>g Cp) that<br />

conta<strong>in</strong> x <strong>and</strong> z is the number s − 1 of po<strong>in</strong>ts <strong>in</strong> {x, z} ⊥ ∩ (P \ V ). Hence the<br />

number of circles conta<strong>in</strong><strong>in</strong>g x <strong>and</strong> <strong>in</strong>tersect<strong>in</strong>g Cp <strong>in</strong> two po<strong>in</strong>ts is s(s − 2),<br />

leav<strong>in</strong>g s − 1 circles C ′ with Cp ∩ C ′ = {x}. We claim that these are precisely<br />

the circles Cq for q on the l<strong>in</strong>e tangent to Cp at x, x = q = p. For if q is<br />

such a po<strong>in</strong>t, <strong>and</strong> if Cq conta<strong>in</strong>s a po<strong>in</strong>t z of Cp, z = x, then (z, q, p) must<br />

be the vertices of a triangle <strong>in</strong> S. Hence if L is the tangent of Cp at x, those<br />

circles C ′ for which Cp ∩ C ′ = {x} are precisely the circles Cq, with q on L,<br />

x = q = p. F<strong>in</strong>ally, y is coll<strong>in</strong>ear with a unique po<strong>in</strong>t q of L, x = q = p, <strong>and</strong><br />

Cq is clearly the unique circle conta<strong>in</strong><strong>in</strong>g y for which Cq ∩ C ′ = {x}. Hence<br />

M ∗ is a M<strong>in</strong>kowski plane.<br />

We now prove that s must be even. Let x <strong>and</strong> y be noncoll<strong>in</strong>ear po<strong>in</strong>ts of<br />

V <strong>and</strong> Cp a circle through x not conta<strong>in</strong><strong>in</strong>g y. Let C ′ p ′ be the unique circle<br />

conta<strong>in</strong><strong>in</strong>g y which is tangent to Cp at x. Hence p ′ is on the tangent l<strong>in</strong>e L<br />

of Cp at x. Let z be any one of the s − 2 po<strong>in</strong>ts of ”Cp for which z = x <strong>and</strong><br />

z is not coll<strong>in</strong>ear with y, <strong>and</strong> let Cp ′′ be the unique circle conta<strong>in</strong><strong>in</strong>g z for<br />

which Cp ′′ is tangent to Cp ′ at y. So p′′ must lie on the tangent l<strong>in</strong>e L ′ to Cp ′<br />

at y. Clearly Cp = Cp ′′ <strong>and</strong> z ∈ Cp ∩ Cp ′′. But p′′ cannot be on the tangent


680 CHAPTER 14. FINITE CIRCLE GEOMETRIES<br />

Lp ′′ to Cp at z without forc<strong>in</strong>g {p, p ′ , p ′′ } to be a triangle <strong>in</strong> S. Hence Cp ′′<br />

cannot be tangent to Cp at z, i.e., |Cp ∩ Cp ′′| = 2. This shows that the s − 2<br />

po<strong>in</strong>ts of Cp different from x <strong>and</strong> not coll<strong>in</strong>ear with y are split <strong>in</strong>to pairs by<br />

the circles C ′′ tangent to Cp ′ at y. Hence s − 2 is even.<br />

S<strong>in</strong>ce any M<strong>in</strong>kowski plane M ∗ of even order is ovoiday, s is of the form<br />

s = 2 e . This means there is a nons<strong>in</strong>gular ruled quadric Q <strong>in</strong> P G(3, 2 e )<br />

<strong>and</strong> a bijection σ of Q onto V , such that each generator of Q is mapped<br />

onto a generator of M ∗ . If W (2 e ) = (P ′ , B ′ , ∈) is the GQ aris<strong>in</strong>g from the<br />

symplectic polarity π def<strong>in</strong>ed by Q, then we def<strong>in</strong>e as follows the bijection φ<br />

of P ′ onto P:<br />

(i) φ : x ↦→ x σ for x ∈ Q.<br />

(ii) For x ∈ P ′ \ Q, let H be the polar plane of x with respect to π.<br />

Then φ maps x to the nucleus of the circle (Q ∩ H) σ of M ∗ . It then follows<br />

readily that φ determ<strong>in</strong>es an isomorphism of W (2 e ) onto S = (P, B, I) with<br />

Q φ = V , <strong>and</strong> the proof is essentially complete.<br />

In a GQ of order s a pair (x, y) of noncoll<strong>in</strong>ear po<strong>in</strong>ts is regular if <strong>and</strong><br />

only if each triad {x, y, z} is centric. Hence if the hypothesis of the preced<strong>in</strong>g<br />

theorem is altered to say that each pair {x, y} of noncoll<strong>in</strong>ear po<strong>in</strong>ts ly<strong>in</strong>g on<br />

l<strong>in</strong>es of the span {L0, L1} ⊥ is regular, then the conclusion rema<strong>in</strong>s valid.


Chapter 15<br />

Property G<br />

In Chapter 13 the concept of Property (G) was <strong>in</strong>troduced <strong>and</strong> it was shown<br />

that flock GQ have this property at the po<strong>in</strong>t (∞). In this chapter we study<br />

Property (G) abstractly <strong>and</strong> eventually show that it characterizes those GQ<br />

aris<strong>in</strong>g from flocks of a quadratic cone. In this chapter, however, we study<br />

the po<strong>in</strong>t-l<strong>in</strong>e dual version.<br />

15.1 Property (G) <strong>in</strong> GQ(s, s 2 )<br />

Throughout this chapter we let S = (P, B, I) be a GQ with parameters<br />

(s, t) = (s, s 2 ). By Theorem 9.3.6 we know that if {x, y, z} is a triad of<br />

po<strong>in</strong>ts (i.e., no two of x, y, z are coll<strong>in</strong>ear), then |{x, y, z}| ⊥ = s + 1. If<br />

{u, v, w} is a triad of po<strong>in</strong>ts conta<strong>in</strong>ed <strong>in</strong> {x, y, z} ⊥ , then {u, v, w} ⊥ is a set<br />

of 1 + s po<strong>in</strong>ts conta<strong>in</strong><strong>in</strong>g x, y, z. If the set {u, v, w} ⊥ is <strong>in</strong>dependent of the<br />

triad {u, v, w} <strong>in</strong> {x, y, z} ⊥ , then {x, y, z} ⊥⊥ = {u, v, w} ⊥ <strong>and</strong> we say that<br />

the triad {x, y, z} is 3-regular.<br />

Theorem 15.1.1. Let {x, y} be a pair of noncoll<strong>in</strong>ear po<strong>in</strong>ts of S for which<br />

each triad of po<strong>in</strong>ts conta<strong>in</strong>ed <strong>in</strong> {x, y} ⊥ is 3-regular. Then the <strong>in</strong>cidence<br />

structure I(x, y) with po<strong>in</strong>tset P = {x, y} ⊥ <strong>and</strong> as circles the sets {z, z ′ , z ′′ } ⊥⊥ ,<br />

where z, z ′ , z ′′ are any dist<strong>in</strong>ct po<strong>in</strong>ts <strong>in</strong> {x, y} ⊥ , is an <strong>in</strong>versive plane of order<br />

s.<br />

Proof. The fact that each triad of po<strong>in</strong>ts conta<strong>in</strong>ed <strong>in</strong> {x, y} ⊥ is 3-regular<br />

means that the circles are well-def<strong>in</strong>ed, i.e., each three po<strong>in</strong>ts lie on a unique<br />

circle. Moreover, an easy count<strong>in</strong>g argument shows that the derived geometry<br />

at any fixed po<strong>in</strong>t of P is an aff<strong>in</strong>e plane.<br />

681


682 CHAPTER 15. PROPERTY G<br />

Theorem 15.1.2. Let T = {x, y, z} be a 3-regular triple. Then each po<strong>in</strong>t<br />

of P \ (T ⊥ ∪ T ⊥⊥ ) is coll<strong>in</strong>ear with precisely two po<strong>in</strong>ts of T ⊥ ∪ T ⊥⊥ .<br />

Proof. Put X = {x, y, z} ⊥⊥ <strong>and</strong> Y = {x, y, z} ⊥ . Then |X| = |Y | = s + 1,<br />

<strong>and</strong> the result follows from Theorem 9.7.5.<br />

Theorem 15.1.3. Let T = {x, y, z} be a 3-regular triple. Let P ′ be the set<br />

of po<strong>in</strong>ts <strong>in</strong>cident with l<strong>in</strong>es of the form uv, u ∈ T ⊥ , v ∈ T ⊥⊥ . If L is a l<strong>in</strong>e<br />

through no po<strong>in</strong>t of T ⊥ ∪ T ⊥⊥ , <strong>and</strong> if L is <strong>in</strong>cident with k po<strong>in</strong>ts of P ′ , then<br />

(i) k ∈ {0, 2} if s is odd;<br />

(ii) k ∈ {1, s + 1}, if s is even.<br />

(iii) If s is even <strong>and</strong> B ′ is the set of l<strong>in</strong>es <strong>in</strong>cident with at least two po<strong>in</strong>ts<br />

of P ′ , then S ′ = (P ′ , B ′ , I ′ ) is a subquadrangle of order s. (Clearly I ′ is the<br />

<strong>in</strong>cidence I restricted to P ′ × B ′ .) Moreover, {x, y} is a regular pair of S ′<br />

with {x, y} ⊥′ = {x, y, z} ⊥ <strong>and</strong> {x, y} ⊥′ ⊥ ′<br />

= {x, yu, z} ⊥⊥ .<br />

Proof. Let L be a l<strong>in</strong>e which is <strong>in</strong>cident with no po<strong>in</strong>t of T ⊥ ∪T ⊥⊥ . If w ∈ T ⊥<br />

with wIMImIL, <strong>and</strong> if M is not a l<strong>in</strong>e of the form uv with u ∈ T ⊥ , v ∈ T ⊥⊥ ,<br />

there is just one po<strong>in</strong>t w ′ ∈ T ⊥ \ {w} which is coll<strong>in</strong>ear with m. Hence the<br />

number r of l<strong>in</strong>es uv, u ∈ T ⊥ , v ∈ T ⊥⊥ , which are concurrent with L, has<br />

the parity of |T ⊥ |s + 1. Clearly r is also the number of po<strong>in</strong>ts <strong>in</strong> P ′ which<br />

are <strong>in</strong>cident with L.<br />

Let {L1, L2, . . . , } = L be the set of all l<strong>in</strong>es which are <strong>in</strong>cident with no<br />

po<strong>in</strong>t of T ⊥ ∪T ⊥⊥ , <strong>and</strong> let ri be the number of po<strong>in</strong>ts of P ′ which are <strong>in</strong>cident<br />

with Li. We have |L| = s 3 (s 2 − 1) <strong>and</strong> |P ′ \ (T ⊥ ∪ T ⊥⊥ | = (s + 1) 2 (s − 1).<br />

Clearly <br />

i ri = (s + 1) 2 (s − 1)s 2 , <strong>and</strong> <br />

i ri(ri − 1) is the number of ordered<br />

triples (uv, u ′ v ′ , Li), with u, u ′ dist<strong>in</strong>ct po<strong>in</strong>ts of T ⊥ , with v, v ′ dist<strong>in</strong>ct po<strong>in</strong>ts<br />

of T ⊥⊥ , <strong>and</strong> with uv ∼ Li ∼ u ′ v ′ , where u, v, u ′ , v ′ are not <strong>in</strong>cident with Li.<br />

Hence <br />

i ri(ri − 1) = (s + 1) 2 s 2 (s − 1).<br />

Let s be odd. Then ri is even, so <br />

i ri(ri−2) ≥ 0 with equality if <strong>and</strong> only<br />

if ri ∈ {0, 2} for all i. S<strong>in</strong>ce <br />

i ri(ri−2) = (s+1) 2 s 2 (s−1)−(s+1) 2 (s−1)s 2 =<br />

0, we have <strong>in</strong>deed ri ∈ {0.2} for all i.<br />

Now let s be even. Then ri is odd, imply<strong>in</strong>g <br />

i (ri−1)(ri−(s+1)) ≤ 0 with<br />

equality if <strong>and</strong> only if ri ∈ {1, s + 1} for all i. S<strong>in</strong>ce <br />

i (ri − 1)(ri − (s + 1)) =<br />

(s + 1) 2 s 2 (s − 1) − (s + 1)(s + 1) 2 (s − 1)s 2 + (s + 1)s 3 (s 2 − 1) = 0, we have<br />

<strong>in</strong>deed ri ∈ {1, s + 1} for all i for all i.<br />

This completes the proof of parts (i) <strong>and</strong> (ii). For proof of part (iii) let s<br />

be even. We have |P ′ | = (s + 1)(s − 1) + 2(s + 1) = (s + 1)(s 2 + 1).


15.1. PROPERTY (G) IN GQ(S, S 2 ) 683<br />

Let L be a l<strong>in</strong>e of B ′ . If L is <strong>in</strong>cident with some po<strong>in</strong>t of T ⊥ ∪ T ⊥⊥ , then<br />

clearly L is of type uv, with u ∈ T ⊥ <strong>and</strong> v ∈ T ⊥⊥ . Then all po<strong>in</strong>ts <strong>in</strong>cident<br />

with L are <strong>in</strong> P ′ . If L is <strong>in</strong>cident with no po<strong>in</strong>t of T ⊥ ∪T ⊥⊥ , then by parts (i)<br />

<strong>and</strong> (ii) L is aga<strong>in</strong> <strong>in</strong>cident with s + 1 po<strong>in</strong>ts of P ′ . Now by Theorem 9.10.3<br />

S ′ = (P ′ , B ′ , I ′ ) is a subquadrangle of order (s, t ′ ). S<strong>in</strong>ce |P ′ | = (s+1)(st ′ +1)<br />

we have t ′ = s. Hence S ′ is a subquadrangle of order s. S<strong>in</strong>ce T ⊥ ∪T ⊥⊥ ⊂ P ′ ,<br />

<strong>and</strong> |T ⊥ | = |T ⊥⊥ | = s + 1, <strong>and</strong> each po<strong>in</strong>t of T ⊥ is coll<strong>in</strong>ear with each po<strong>in</strong>t<br />

of T ⊥⊥ , we have {x, y} ⊥′ = {x, y, z} ⊥ <strong>and</strong> {x, y} ⊥′ ⊥ ′<br />

= {x, y, z} ⊥⊥ .<br />

This theorem shows that if T = {x, y, z} is a 3-regular triad of po<strong>in</strong>ts,<br />

then each po<strong>in</strong>t of P \ (T ⊥ ∪ T ⊥⊥ ) is coll<strong>in</strong>ear with precisely two po<strong>in</strong>ts of<br />

(T ⊥ ∪ T ⊥⊥ ). This means that if p ∈ (T ⊥ ∪ T ⊥⊥ ) <strong>and</strong> if p is not on a l<strong>in</strong>e from<br />

(T ⊥ to T ⊥⊥ ), then either p is coll<strong>in</strong>ear with two po<strong>in</strong>ts of T ⊥ ( <strong>and</strong> no po<strong>in</strong>t<br />

of T ⊥⊥ , or p is coll<strong>in</strong>ear with two po<strong>in</strong>ts of T ⊥⊥ <strong>and</strong> no po<strong>in</strong>t of T ⊥ .<br />

We want to weaken the notion of 3-regularity to a property that will characterize<br />

the flock GQ. The correct property turns out to be a slightly generalized<br />

po<strong>in</strong>t-l<strong>in</strong>e dual of the concept of Property (G) <strong>in</strong>troduced <strong>in</strong> Chapter 13.<br />

In that chapter, we showed (<strong>in</strong> our present context) that the po<strong>in</strong>t-l<strong>in</strong>e dual<br />

of a flock GQ has Property (G) at a l<strong>in</strong>e that is the dual of the po<strong>in</strong>t (∞).<br />

Def<strong>in</strong>ition: Property (G) for a GQ S of order (s, s 2 ), s > 1. Let x, y<br />

be dist<strong>in</strong>ct po<strong>in</strong>ts <strong>in</strong>cident with a l<strong>in</strong>e L. Then S has property (G) at {x, y}<br />

provided each triad T with x ∈ T ⊆ y ⊥ is 3-regular, which is if <strong>and</strong> only if<br />

each triad T ′ with y ∈ T ′ ⊆ x ⊥ is 3-regular. If S has property (G) at each<br />

pair {x, y} of dist<strong>in</strong>ct po<strong>in</strong>ts of the l<strong>in</strong>e L, we say that S has property (G)<br />

at L. Similarly, S has property (G) at a flag (x, L) provided it has property<br />

(G) at (x, y) whenever x = yIL.<br />

Lemma 15.1.4. Suppose that (x, y) has Prop.(G), x = y ∼ x with L0 = xy.<br />

Suppose u3 ∈ {y, u1, u2} ⊥⊥ \ {y, u1, u2} for a triad T = {y, u1, u2} ∈ x ⊥ . Put<br />

Li = xui, i = 1, 2, 3. Now choose v2 ∈ L2, x = v2 = u2. Then {y, u1, v2} ⊥⊥<br />

conta<strong>in</strong>s a po<strong>in</strong>t of L3.<br />

Proof. Suppose that this is not the case. Put T0 = {y, u1, v2}.<br />

We know u3 is coll<strong>in</strong>ear with x ∈ T ⊥ 0 on a l<strong>in</strong>e not jo<strong>in</strong><strong>in</strong>g x to T ⊥⊥<br />

0 . So by<br />

Theorem 15.1.3 there must be a unique second po<strong>in</strong>t x ′ ∈ T ⊥ 0 with u3 ∼ x ′ .<br />

Then x ′ ∈ {y, u1, u3} ⊥ = {y, u1, u2} ⊥ , which forces x ′ ∼ u2. So x ′ ∼ v2 <strong>and</strong><br />

x ′ ∼ u2 forces v2u2, an impossibility. Hence it must be true that {y, u1, v2} ⊥⊥<br />

conta<strong>in</strong>s a po<strong>in</strong>t of L3.


684 CHAPTER 15. PROPERTY G<br />

Corollary 15.1.5. With exactly the same setup as <strong>in</strong> Lemma 15.1.4 suppose<br />

also that v1IL1 with x = v1 = u1. Then {y, v1, v2} ⊥⊥ has a po<strong>in</strong>t v3 of L3.<br />

Proof. Apply the lemma first to {y, v1, u2} ⊥⊥ <strong>and</strong> then to {y, v1, v2} ⊥⊥ .<br />

Corollary 15.1.6. Let L1, . . . , Ls be the l<strong>in</strong>es through x (different from L0 =<br />

xy) conta<strong>in</strong><strong>in</strong>g po<strong>in</strong>ts of {y, u1, u2} ⊥⊥ . Then the set P ′ of po<strong>in</strong>ts different<br />

from x on L1, . . . , Ls form an aff<strong>in</strong>e plane A ′ of order s. If u, v are dist<strong>in</strong>ct<br />

po<strong>in</strong>ts of P ′ , then the l<strong>in</strong>e of A ′ through u, v is the l<strong>in</strong>e xu = xv if u ∼ v <strong>in</strong><br />

S, <strong>and</strong> otherwise is the set {y, u, v} ⊥⊥ \ {y}.<br />

We now want to construct an aff<strong>in</strong>e space Sx,y = (Pxy, Bxy, Hxy, IXY ) on<br />

the po<strong>in</strong>ts of Pxy = x ⊥ \ y ⊥ . First note that<br />

1. The po<strong>in</strong>ts of Sxy are the elements of Pxy, <strong>and</strong> |Pxy| = s 3 .<br />

2. The l<strong>in</strong>es of Sxy, i.e., the elements of Bxy, come <strong>in</strong> two types:<br />

(a). T ⊥⊥ \ {y}, where T is a triad with y ∈ T ⊆ x ⊥ .<br />

(b) the l<strong>in</strong>es xw of S, where w ∈ x ⊥ \ y ⊥ .<br />

3. The planes of S, i.e., the elements of Hxy, also come <strong>in</strong> two types:<br />

(a) {x, z} ⊥ \ {y}, where z ∈ y ⊥ \ x ⊥ .<br />

(b) The union of all “l<strong>in</strong>es” of type (b) conta<strong>in</strong><strong>in</strong>g a po<strong>in</strong>t of some “l<strong>in</strong>e”<br />

T ⊥⊥ \ {y} of type (a).<br />

Clearly the “l<strong>in</strong>es” of a “plane” of type (a) are the “l<strong>in</strong>es” of type (a) conta<strong>in</strong>ed<br />

<strong>in</strong> it. The “planes” of type (b) are those constructed <strong>in</strong> the Cor. 15.1.6.<br />

Property (G) implies that “planes” of type (a) are aff<strong>in</strong>e planes. Hxy conta<strong>in</strong>s<br />

s3 “planes” of type (a) <strong>and</strong> s2 (s2−1) s(s−1) = s2 + s “planes” of type (b).<br />

4. Incidence IXY is just conta<strong>in</strong>ment.<br />

Theorem 15.1.7. Sxy = (Pxy, Bxy, Hxy) is an aff<strong>in</strong>e space AG(3, q), with<br />

q = s a prime power, where Pxy, Bxy, Hxy are the po<strong>in</strong>ts, l<strong>in</strong>es <strong>and</strong> planes,<br />

respectively.<br />

Proof. The uniqueness of S for s = 2, 3 essentially allows us to concentrate<br />

on s > 3.<br />

Let u, v, w be three dist<strong>in</strong>ct po<strong>in</strong>ts of Pxy not on a “l<strong>in</strong>e” of Bxy <strong>and</strong> not<br />

<strong>in</strong> a “plane” of type (b) of Hxy. Then no two of u, v, w are coll<strong>in</strong>ear <strong>in</strong> S<br />

(i.e., no two lie on a common l<strong>in</strong>e of S through x, <strong>and</strong> {y, u, v} ⊥⊥ conta<strong>in</strong>s no<br />

po<strong>in</strong>t of xw. S<strong>in</strong>ce w ∼ x ∈ {y, u, v} ⊥ <strong>and</strong> w ⊥ ∩ {y, u, v} ⊥⊥ = ∅, w must be<br />

coll<strong>in</strong>ear with a unique second po<strong>in</strong>t x ′ of {y, u, v} ⊥ . Then {x, x ′ } ⊥ conta<strong>in</strong>s


15.2. PROPERTY (G) AND SUBQUADRANGLES 685<br />

y, u, v, w, so u, v, w are conta<strong>in</strong>ed <strong>in</strong> a “plane” of type (a) of Hxy. S<strong>in</strong>ce s > 3,<br />

we may <strong>in</strong>voke the theorem of Buekenhout (see Section 1.5).<br />

Corollary 15.1.8. If one pair of dist<strong>in</strong>ct coll<strong>in</strong>ear po<strong>in</strong>ts has Property (G),<br />

then s = q is a prime power.<br />

15.2 Property (G) <strong>and</strong> Subquadrangles<br />

From now on S is a GQ with parameters (q, q 2 ) <strong>and</strong> with a pair (x, y) of<br />

dist<strong>in</strong>ct po<strong>in</strong>ts on a l<strong>in</strong>e L0 hav<strong>in</strong>g Property (G). For our first lemma q may<br />

be either odd or even.<br />

Lemma 15.2.1. Let Mi = {y, ui, zi} ⊥⊥ , i = 1, 2, be two parallel “l<strong>in</strong>es”<br />

of some “plane” of type (b) of AG(3, q), with u1 ∼ u2, z1 ∼ z2. Clearly<br />

{y, u1, z1} ⊥ ∩ {y, u2, z2} ⊥ = {x}. Let r ∈ {y, u2, z2} ⊥ . Then r must lie on<br />

some l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g a po<strong>in</strong>t (i.e., the po<strong>in</strong>t y) of M1 to a po<strong>in</strong>t of M ⊥ 1 .<br />

Proof. We know that if r is not on such a l<strong>in</strong>e, then s<strong>in</strong>ce r is coll<strong>in</strong>ear with<br />

one po<strong>in</strong>t y of {y, u1, z1} ⊥⊥ , it must be coll<strong>in</strong>ear with a second po<strong>in</strong>t y ′ of<br />

{y, u1, z1} ⊥⊥ . Let y ′′ be the po<strong>in</strong>t of M2 = {y, u2, z2} ⊥⊥ on xy ′ . S<strong>in</strong>ce r<br />

must be coll<strong>in</strong>ear with y ′′ , clearly y ′′ = y, <strong>and</strong> M1, M2 are not parallel, a<br />

contradiction. So the l<strong>in</strong>e yr conta<strong>in</strong>s a po<strong>in</strong>t r ′ of {y, u1, z1} ⊥ .<br />

In the above it is clear that as r runs over the q po<strong>in</strong>ts of {y, u2, z2} ⊥ \{x},<br />

also r ′ runs over the q po<strong>in</strong>ts of {y, u1, z1} ⊥ \ {x}. Hence {y, u1, z1} ⊥ \ {x} =<br />

N1 <strong>and</strong> {y, u2, z2} ⊥ \ {x} = N2 are parallel l<strong>in</strong>es <strong>in</strong> the aff<strong>in</strong>e plane def<strong>in</strong>ed<br />

by y <strong>and</strong> N1.<br />

For the next theorem we need q to be even so we can use part (iii) of<br />

Theorem 15.1.3.<br />

Theorem 15.2.2. Let S = (P, B, I) be a GQ of order (q, q 2 ), q even, for<br />

which at least one pair {x, y} of dist<strong>in</strong>ct coll<strong>in</strong>ear po<strong>in</strong>ts has Property (G).<br />

Each “l<strong>in</strong>e” {y, u, v} ⊥⊥ of type (a) of Bxy def<strong>in</strong>es a subquadrangle S ′ of order<br />

q of S. In this way there arise q 3 + q 2 subquadrangles of order q of S. Also,<br />

<strong>in</strong> any such subquadrnalge, each pair {y, u} with x ∈ {y, u} ⊥ (<strong>and</strong> so each<br />

pair {x, z} with y ∈ {x, z} ⊥ ) is regular.<br />

Proof. Assume that the two dist<strong>in</strong>ct “l<strong>in</strong>es” M1, M2 of type (a) def<strong>in</strong>e the<br />

same subquadrangle S ′ of order q. Met Mi ∪ {y} = {y, ui, zi} ⊥⊥ , i = 1, 2.


686 CHAPTER 15. PROPERTY G<br />

We know {y, ui} is regular <strong>in</strong> S ′ , i = 1, 2, <strong>and</strong> {y, ui} ⊥′ ⊥ ′<br />

= Mi ∪ {}, i = 1, 2.<br />

S<strong>in</strong>ce {y, ui} ⊥′ ⊥ ′<br />

= {vi, wi} ⊥⊥ for any two po<strong>in</strong>ts vi, wi ∈ {y, ui} ⊥′ ⊥ ′<br />

, i = 1, 2,<br />

it is clear that {y, u1} ⊥′ ⊥ ′<br />

∩{y, u2} ⊥′ ⊥ ′<br />

= {y}. Also, as x ∈ {y, ui} ⊥′ , i = 1, 2,<br />

any “l<strong>in</strong>e” of type (b) of Bxy conta<strong>in</strong><strong>in</strong>g a po<strong>in</strong>t of M1 also conta<strong>in</strong>s a po<strong>in</strong>t<br />

of M2. Hence M1 <strong>and</strong> M2 are parallel“l<strong>in</strong>es” <strong>in</strong> the aff<strong>in</strong>e “plane” of type (b)<br />

of AG(3, q)) def<strong>in</strong>ed by M1.<br />

Conversely, suppose M1 <strong>and</strong> M2 are dist<strong>in</strong>ct parallel “l<strong>in</strong>es” of type (a)<br />

of an aff<strong>in</strong>e “plane” of type (b) of AG(3, q). Just above we have a proof that<br />

if r ∈ M ⊥ 2 , then r is <strong>in</strong> the subquadrangle S ′ of order q def<strong>in</strong>ed by M1. So<br />

M ⊥ 2 ⊆ S′ . S<strong>in</strong>ce M2 is a “l<strong>in</strong>e” of the aff<strong>in</strong>e “plane” of type (b) def<strong>in</strong>ed by<br />

M1, also M2 is conta<strong>in</strong>ed <strong>in</strong> S ′ . Hence S ′ must also be the subquadrangle<br />

determ<strong>in</strong>ed by M2. Hence the “l<strong>in</strong>es” of type (a) determ<strong>in</strong>e q4 +q3 q = q3 + q2 subquadrangles of order q.<br />

Now consider a po<strong>in</strong>t u of the subquadrangle S ′ def<strong>in</strong>ed by M1, with<br />

y ∼ u <strong>and</strong> x ∈ {y, u} ⊥ . As xu has a po<strong>in</strong>t <strong>in</strong> common with M1, the po<strong>in</strong>t u<br />

belongs to the plane π def<strong>in</strong>ed by M1 <strong>and</strong> x. Let M2 be the l<strong>in</strong>e of π parallel<br />

to M1 <strong>and</strong> pass<strong>in</strong>g through u. Then M2 also def<strong>in</strong>es the subquadrangle S ′ ,<br />

<strong>and</strong> it follows that {y, u} is regular <strong>in</strong> S ′ .<br />

For the next theorem let S have Property (G) at the flag (x, L), L = xy,<br />

<strong>and</strong> suppose that s is even. Let T = {y, z, u} be a triad with y ∈ T ⊆ x ⊥ .<br />

Let S ′ be the subquadrangle with order q conta<strong>in</strong><strong>in</strong>g T ⊥ ∪ T ⊥⊥ .<br />

Theorem 15.2.3. With the above notation, the po<strong>in</strong>t x is regular <strong>in</strong> S ′ . If<br />

L has Property (G), then all po<strong>in</strong>ts of L are regular <strong>in</strong> S ′ , L is regular <strong>in</strong> S ′<br />

<strong>and</strong> L is regular <strong>in</strong> S.<br />

Proof. Let w be a po<strong>in</strong>t of S ′ with x ∼ x, w ∼ y. Further, let r, r ′ , r ′′ be<br />

dist<strong>in</strong>ct po<strong>in</strong>ts of {x, w} ⊥′ , with rIL. Then {r, r ′ , r ′′ } ⊥ <strong>and</strong> {r, r ′ , r ′′ } ⊥⊥ are<br />

conta<strong>in</strong>ed <strong>in</strong> a subquadrangle S ′′ of order q. Clearly the l<strong>in</strong>es xr, xr ′ , xr ′′ ,<br />

wr, wr ′ , wr ′′ are common l<strong>in</strong>e of S ′ <strong>and</strong> S ′′ . And S ′ ∩ S ′′ is a subquadrangle<br />

with parameters (q, t ′ ), t > 1. By Theorem 9.10.2 we have S ′ = S ′′ . It<br />

follows that {r, r ′ } ⊥′ ⊥ ′<br />

= {r, r ′ , r ′′ } ⊥⊥ , {r, r ′ } ⊥′ = (r, r ′ , r ′′ } ⊥ . So {r, r ′ } <strong>and</strong><br />

{x, w} are regular <strong>in</strong> S ′ . This shows that x is regular <strong>in</strong> S ′ . Hence if L has<br />

Property (G), each po<strong>in</strong>t of L is regular <strong>in</strong> S ′ . S<strong>in</strong>ce q is even, L is regular<br />

<strong>in</strong> S ′ .<br />

Now consider a l<strong>in</strong>e M of S, M ∼ L. Let y ∼ x ′ IM, x ∼ y ′ IM, x ′′ ∈<br />

{y, y ′ } ⊥ \{x, x ′ }. The subquadrangle S of order q def<strong>in</strong>ed by x, x ′ , x ′′ conta<strong>in</strong>s


15.2. PROPERTY (G) AND SUBQUADRANGLES 687<br />

L <strong>and</strong> M. S<strong>in</strong>ce L is regular <strong>in</strong> S, the span {L, M} ⊥′ ⊥ ′<br />

= {L, M} ⊥⊥ has size<br />

q + 1. Hence L is regular <strong>in</strong> S.<br />

Still with the hypothesis that S has Property (G) at the flag (x, L), fix u,<br />

x = uIL. Let R = {u, u1, u2} ⊥⊥ = {u, u1, . . . , uq}, with {u, u1, u2} a triad <strong>in</strong><br />

x ⊥ . Put Li = xui, 1 ≤ i ≤ q. Let PxR be the set of all po<strong>in</strong>ts different from<br />

x <strong>and</strong> ly<strong>in</strong>g on the l<strong>in</strong>es L, L1, . . . , Lq <strong>and</strong> L. Put BxR = {L, L1, L2, . . . , Lq},<br />

<strong>and</strong> let CsR be the set of spans {w, w1, w2} ⊥⊥ , wIL, w1IL1, w2IL2, <strong>and</strong><br />

x ∈ {w, w1, w2}. Incidence IxR is the natural one.<br />

Theorem 15.2.4. L = (PxR, BxR, CxR, IxR) is a Laguerre plane of order q.<br />

For each po<strong>in</strong>t yIL, y = x, the derived or <strong>in</strong>ternal aff<strong>in</strong>e plane Ly of L at<br />

y is the aff<strong>in</strong>e plane AG(2, q). Hence for q odd, L is the classical Laguerre<br />

plane aris<strong>in</strong>g from a quadratic cone <strong>in</strong> P G(3, q).<br />

Proof. Clearly |PxR| = q 2 + q, |BxR| = q + 1, |CxR| = q 3 . Each l<strong>in</strong>e of L is<br />

<strong>in</strong>cident with q po<strong>in</strong>ts of O. (We will soon show that each circle is <strong>in</strong>cident<br />

with q + 1 po<strong>in</strong>ts of L, one on each l<strong>in</strong>e of L.)<br />

Let C = {w, w1, w2} ⊥⊥ , C ′ = {w ′ , w1, w2} ⊥⊥ be circles of CxR. Consider<br />

w ′′ ∈ {w, w1, w2} ⊥⊥ \ {w, w1, w2}. Suppose that xw ′′ has no po<strong>in</strong>t of<br />

{w ′ , w1, w2} ⊥⊥ . So w ′′ is coll<strong>in</strong>ear with no po<strong>in</strong>t of {w ′ , w1, w2} ⊥⊥ . Hence w ′′<br />

is coll<strong>in</strong>ear with two po<strong>in</strong>ts x, r of {w ′ , w1, w2} ⊥ . So r ∈ {w1, w2, w ′′ } ⊥ =<br />

{w, w1, w2} ⊥ , which implies r ∼ w. But r, w, w ′ would be a triangle, impossible.<br />

Hence xw ′′ has a po<strong>in</strong>t <strong>in</strong> common with {w ′ , w1, w2} ⊥⊥<br />

If w = u, then {w, w1, w2} ⊥⊥ } has a po<strong>in</strong>t <strong>in</strong> common with each Li<br />

by an earlier lemma. The preced<strong>in</strong>g argument shows that {w, w1, w2} ⊥⊥<br />

<strong>and</strong> {u, w1, w2} ⊥⊥ lie on the same l<strong>in</strong>es L, L1, . . . , Lq through x. It follows<br />

that each l<strong>in</strong>e of L <strong>and</strong> each circle of L have exactly one po<strong>in</strong>t <strong>in</strong> common.<br />

Each triad of po<strong>in</strong>ts of L is on at most one circle, so there are at most<br />

(q 2 +q)(a 2 (q 2 −q)<br />

(q+1)q(q−1) = q3 circles. But there are exactly q 3 circles, imply<strong>in</strong>g that<br />

each triad of po<strong>in</strong>ts of L is on a unique circle of L. Consequently L is a<br />

Laguerre plane of order q. Let x = yIL. The <strong>in</strong>ternal aff<strong>in</strong>e plane Ly of<br />

L at y is the aff<strong>in</strong>e plane of type (b) <strong>in</strong> AG(3, q), so must be isomorphic to<br />

AG(2, q). So if q is odd, L is classical.<br />

Let O be an oval <strong>in</strong> some P G(2, q) embedded <strong>in</strong> P G(3, q), <strong>and</strong> let V ∈<br />

P G(3, q)\P G(2, q). Then let K be the cone obta<strong>in</strong>ed by project<strong>in</strong>g O from V .<br />

And let L(O) be the correspond<strong>in</strong>g Laguerre plane. Every known Laguerre<br />

plane is some L(O), <strong>and</strong> if q is odd, each L(O) is classical, i.e., O is a conic.


688 CHAPTER 15. PROPERTY G<br />

Theorem 15.2.5. Assume q is even <strong>and</strong> the Laguerre plane L obta<strong>in</strong>ed by<br />

Property (G) at (x, L) is isomorphic to some L(O). Let C be a circle of L<br />

<strong>and</strong> let S ′ be the subquadrangle of order q conta<strong>in</strong><strong>in</strong>g C <strong>and</strong> C ⊥ . The plane<br />

πx from the regularity of the po<strong>in</strong>t x is Desarguesian<br />

Proof. The l<strong>in</strong>es of the plane πx not conta<strong>in</strong><strong>in</strong>g x are circles of L. Any two of<br />

these l<strong>in</strong>es have exactly one po<strong>in</strong>t <strong>in</strong> common. So we have q2 circles of L that<br />

are pairwise mutually tangent. Let C1, . . . , Cq2 be the correspond<strong>in</strong>g circles<br />

of L(O). S<strong>in</strong>ce q is even, the q + 1 tangent planes of the cone K def<strong>in</strong><strong>in</strong>g<br />

L(O) conta<strong>in</strong> a common l<strong>in</strong>e - the nucleus l<strong>in</strong>e N of K.<br />

The nucleus of the ovals Ci is the <strong>in</strong>tersection of N with any tangent<br />

l<strong>in</strong>e of Ci. S<strong>in</strong>ce any two ovals of {C1, . . . , Cq2} are mutually tangent, they<br />

have a common tangent l<strong>in</strong>e, hence have the same nucleus. Consequently<br />

C1, . . . , Cq2 have a common nucleus n on N. Project<strong>in</strong>g K \ {x} from n, the<br />

<strong>in</strong>cidence structure formed by the po<strong>in</strong>ts of K \ {x} <strong>and</strong> circles C1, . . . , Cq2 is isomorphic to a dual aff<strong>in</strong>e plane whose po<strong>in</strong>ts are the l<strong>in</strong>es of P G(3, q)<br />

jo<strong>in</strong><strong>in</strong>g n to po<strong>in</strong>ts of K \ {x}, <strong>and</strong> whose l<strong>in</strong>es are the planes of P G(3, q)<br />

conta<strong>in</strong><strong>in</strong>g n but not x. This dual aff<strong>in</strong>e plane is Desarguesian, hence the<br />

dual aff<strong>in</strong>e plane obta<strong>in</strong>ed from πx by delet<strong>in</strong>g x <strong>and</strong> the l<strong>in</strong>es through x is<br />

Desarguesian. It follows that the projective plane πx is Desarguesian.<br />

Theorem 15.2.6. (J. A. Thas <strong>and</strong> H. Van Maldeghem [TVM97]) Let S =<br />

(P, B, I) be a GQ of order (q 2 , q), q even, satisfy<strong>in</strong>g Property (G) at the po<strong>in</strong>t<br />

x. Then x is regular <strong>in</strong> S <strong>and</strong> the dual net N ∗ x satisfies the Axiom of Veblen.<br />

Consequently, N ∗ x ∼ = H 3 q .<br />

Proof. By Theorem 15.2.3 the po<strong>in</strong>t x is regular. Let y be a po<strong>in</strong>t of the dual<br />

net (i.e., y ∈ x⊥ \ {x}). Let A1 <strong>and</strong> A2 be dist<strong>in</strong>ct l<strong>in</strong>es of N ∗ x conta<strong>in</strong><strong>in</strong>g<br />

y, <strong>and</strong> let B1 <strong>and</strong> B2 be dist<strong>in</strong>ct l<strong>in</strong>es of N ∗ x not conta<strong>in</strong><strong>in</strong>g y. Suppose<br />

Ai ∩ Bj = ∅ for all i, j ∈ {1, 2}. Let z = A1 ∩ B1 <strong>and</strong> let zIM, x not <strong>in</strong>cident<br />

with M. Let xIL with z not on L; let u = A1 ∩ L; v = B1 ∩ L. Put C<br />

equal to the l<strong>in</strong>e of S through u meet<strong>in</strong>g M; D equal to the l<strong>in</strong>e of S through<br />

v meet<strong>in</strong>g M. Let N be the l<strong>in</strong>e of S through x <strong>and</strong> z. S<strong>in</strong>ce S satisfies<br />

Property (G) at x, the triple {C, D, N} is 3-regular. By Theorem 15.1.3 the<br />

l<strong>in</strong>es through the po<strong>in</strong>ts on the grid determ<strong>in</strong>ed by {C, D, N} ⊥∪{C, D, N} ⊥⊥<br />

form the l<strong>in</strong>eset of a subquadrangle S ′ of order (q, q) of S. As x is regular for<br />

S, it is also regular for S ′ . Hence the po<strong>in</strong>t x def<strong>in</strong>es a projective plane πx of<br />

order q. Clearly A1, A2, B1, B2 are l<strong>in</strong>es of pix. Hence B1 <strong>and</strong> B2 <strong>in</strong>tersect <strong>in</strong><br />

πx. Consequently N ∗ x satisfies the Axiom of Veblen. By the result of Thas<br />

<strong>and</strong> De Clerck [TDC77] (Theorem 2.7.4), N ∗ x ∼ = H3 q .


15.3. TETRADIC SETS 689<br />

15.3 Tetradic Sets<br />

Let (∞, π∞) be an <strong>in</strong>cident po<strong>in</strong>t-plane pair of Σ = P G(3, q). If X, Y, Z, W<br />

are four dist<strong>in</strong>ct po<strong>in</strong>ts of Σ \ π∞, then we say that {X, Y, Z, W } is a tetrad<br />

with respect to (∞, π∞) provided {∞, X, Y, Z, W } is a cap of Σ such that<br />

there exists a plane of Σ conta<strong>in</strong><strong>in</strong>g ∞ <strong>and</strong> exactly three of X, Y, Z, W . If<br />

∞ <strong>and</strong> π∞ are understood, then we will refer to {X, Y, Z, W } simply as a<br />

tetrad.<br />

A tetradic set of ovoids with respect to (∞, π∞) is a set of ovoids of Σ,<br />

each element of which conta<strong>in</strong>s ∞, has tangent plane π∞ at ∞ <strong>and</strong> such that<br />

every tetrad with respect to (∞, π∞) is conta<strong>in</strong>ed <strong>in</strong> a unique ovoid of the<br />

set. If all the ovoids are elliptic quadrics, then we call the set a tetradic set of<br />

elliptic quadrics. In this chapter we will be concerned primarily with tetradic<br />

sets of elliptic quadrics.<br />

Lemma 15.3.1. The number of tetrads with respect to (∞, π∞) is<br />

q6 (q − 1) 3 (q − 2)(q + 1)<br />

.<br />

6<br />

Proof. There are q + 1 l<strong>in</strong>es ℓ <strong>in</strong> π∞ through ∞. Then there are q planes π<br />

through ℓ <strong>and</strong> different from π∞. Then there are q<br />

(unordered) triples of<br />

3<br />

l<strong>in</strong>es through ∞ <strong>in</strong> π \ π∞. Once the three l<strong>in</strong>es have been fixed, there are<br />

q2 (q − 1) triples (X, Y, Z) of po<strong>in</strong>ts, one on each of the three l<strong>in</strong>es, such that<br />

(∞, X, Y, Z) is a cap. Then there are (q3 +q 2 +q +1−2(q2 +q +1)+(q +1) =<br />

q3 − q2 choices for a po<strong>in</strong>t W ∈ Σ \ (π ∪ π∞) such that (∞, X, Y, Z, W ) is a<br />

cap. Multiply<strong>in</strong>g these numbers together gives the desired result.<br />

Let Θ be a tetradic set of ovoids with respect to the <strong>in</strong>cident po<strong>in</strong>t-plane<br />

pair (∞, π∞).<br />

Lemma 15.3.2. The size of Θ is q 3 (q − 1).<br />

Proof. If π∞ is tangent to the ovoid Ω at the po<strong>in</strong>t ∞, there are q2 + q<br />

secant<br />

<br />

planes through ∞. In each secant plane π through ∞, there are<br />

q<br />

(unordered) triples {X, Y, Z} of Ω \ {∞}. There are q + 1 ovoid po<strong>in</strong>ts<br />

3<br />

of π <strong>and</strong> (q2 + 1) − (q + 1) = q2 − q po<strong>in</strong>ts W of Ω \ π. Thus there are<br />

(q2 + q) q 2 q<br />

(q − q) = 3<br />

3 (q+1)(q−1) 2 (q−2)<br />

tetrads with respect to (∞, π∞) <strong>in</strong> Ω.<br />

6<br />

As each tetrad with respect to (∞, π∞) is conta<strong>in</strong>ed<br />

<strong>in</strong> a unique ovoid <strong>in</strong> Θ,<br />

q6 (q−1) 3 (q+1)(q−2) q3 (q−1) 2 (q+1)(q−2)<br />

it must be that there are<br />

/<br />

= q 6<br />

6<br />

3 (q − 1)<br />

ovoids <strong>in</strong> a tetradic set of ovoids.


690 CHAPTER 15. PROPERTY G<br />

We leave a proof of the follow<strong>in</strong>g lemma to the reader.<br />

Lemma 15.3.3. The homographies that are central coll<strong>in</strong>eations of P G(3, q)<br />

with center ∞ = (1, 0, 0, 0) are those with matrices of the form<br />

⎛<br />

1<br />

⎜ a21<br />

A = ⎜<br />

⎝ a31<br />

0<br />

λ<br />

0<br />

0<br />

0<br />

λ<br />

⎞<br />

0<br />

0 ⎟<br />

0 ⎠<br />

a41 0 0 λ<br />

.<br />

It is easy to check that<br />

⎛<br />

A −1 =<br />

⎜<br />

⎝<br />

1 0 0 0<br />

−a21λ −1 λ −1 0 0<br />

−a31λ −1 0 λ −1 0<br />

−a41λ −1 0 0 λ −1<br />

⎞<br />

⎟<br />

⎠ .<br />

Suppose such a coll<strong>in</strong>eation θ fixes each po<strong>in</strong>t of a tetrad (w.r.t. (∞, π∞))<br />

where π is the plane different from π∞ conta<strong>in</strong><strong>in</strong>g three of the po<strong>in</strong>ts of the<br />

tetrad different from ∞. S<strong>in</strong>ce θ fixes each po<strong>in</strong>t of a 4-arc of π it must fix<br />

all po<strong>in</strong>ts of π. So θ must be an elation with axis π <strong>and</strong> center ∞. But<br />

then if it fixes the fourth po<strong>in</strong>t of the tetrad, a po<strong>in</strong>t not <strong>in</strong> π, it must be<br />

the identity map. Hence each tetrad belongs to an orbit of size q 3 (q − 1).<br />

Moreover, if we let G∞ be the group of all central coll<strong>in</strong>eations with center<br />

∞, for each θ ∈ G∞ <strong>and</strong> each po<strong>in</strong>t R different from ∞, the po<strong>in</strong>ts ∞, R<br />

<strong>and</strong> R θ are coll<strong>in</strong>ear. Hence if T is a tetrad conta<strong>in</strong>ed <strong>in</strong> an ovoid Ω hav<strong>in</strong>g<br />

π∞ as a tangent plane at ∞, then Ω <strong>and</strong> Ω θ <strong>in</strong>tersect <strong>in</strong> just the po<strong>in</strong>t ∞,<br />

so that each po<strong>in</strong>t of T is <strong>in</strong> just one of the ovoids Ω θ , θ ∈ G∞. Hence the<br />

q 3 (q + 1)(q − 1) 2 (q − 2)/6 tetrads conta<strong>in</strong>ed <strong>in</strong> Ω give rise under the action<br />

of G∞ to q 3 (q − 1) × q 3 (q + 1)(q − 1) 2 (q − 2)/6 = q 6 (q − 1) 3 (q + 1)(q − 2)<br />

tetrads. S<strong>in</strong>ce this is the total number of tetrads of the appropriate k<strong>in</strong>d, the<br />

follow<strong>in</strong>g lemma has been proved.<br />

Lemma 15.3.4. Let Ω be an ovoid hav<strong>in</strong>g π∞ as its tangent plane at the po<strong>in</strong>t<br />

∞, <strong>and</strong> let G∞ be the group of all homographies that are central coll<strong>in</strong>eations<br />

with ∞ as center. Then<br />

is a tetradic set of ovoids.<br />

Θ = {Ω θ : θ ∈ G∞}


15.3. TETRADIC SETS 691<br />

Until further notice let (∞, π∞) be an <strong>in</strong>cident po<strong>in</strong>t-plane pair of P G(3, q),<br />

<strong>and</strong> let Θ be a tetradic set of ovoids with respect to (∞, π∞).<br />

Lemma 15.3.5. Let X, Y, Z ∈ P G(3, q)\π∞ be such that ∞ ∈ 〈X, Y, Z〉 = π<br />

<strong>and</strong> {X, Y, Z, ∞} is a 4-arc <strong>in</strong> π. Then there are q elements Ω1, . . . , Ωq of Θ<br />

conta<strong>in</strong><strong>in</strong>g X, Y, Z <strong>and</strong> |Ωi ∩ Ωj| ≤ q + 1, for i, j ∈ {1, . . . , q}, i = j.<br />

Proof. If W is any po<strong>in</strong>t of P G(3, q)\(π ∪π∞), then {X, Y, Z, W } is a tetrad<br />

with respect to (∞, π∞). Hence the ovoids of Θ conta<strong>in</strong><strong>in</strong>g X, Y, Z must<br />

partition the po<strong>in</strong>ts of P G(3, q) \ (π ∪ π∞) <strong>in</strong>to sets of size q 2 − q. It follows<br />

that there are q such ovoids Ω1, . . . , Ωq, <strong>and</strong> |Ωi ∩ Ωj| ≤ q + 1 for i = j s<strong>in</strong>ce<br />

the <strong>in</strong>tersection |Ωi ∩ Ωj| ≤ q + 1 must be conta<strong>in</strong>ed <strong>in</strong> π.<br />

Lemma 15.3.6. Two dist<strong>in</strong>ct elements of Θ <strong>in</strong>tersect <strong>in</strong> at most q+3 po<strong>in</strong>ts.<br />

If q is odd, this is at most q + 2 po<strong>in</strong>ts.<br />

Proof. Let Ω, Ω ′ ∈ Θ, Ω = Ω ′ . If Ω ∩ Ω ′ conta<strong>in</strong>s three po<strong>in</strong>ts def<strong>in</strong><strong>in</strong>g a<br />

plane conta<strong>in</strong><strong>in</strong>g ∞, then by the previous lemma |Ω∩Ω ′ | ≤ q +1. So suppose<br />

that each plane of P G(3, q) on ∞ meets Ω ∩ Ω ′ <strong>in</strong> at most two po<strong>in</strong>ts. Hence<br />

the l<strong>in</strong>es jo<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t ∞ with the po<strong>in</strong>ts of (Ω ∩ Ω ′ ) \ {∞} form an arc<br />

<strong>in</strong> the quotient space P G(3, q)/∞. Thus |(Ω ∩ Ω ′ ) \ {∞}| ≤ q + 2, imply<strong>in</strong>g<br />

that |(Ω ∩ Ω ′ )| ≤ q + 3. It is clear that this bound can be improved by 1<br />

when q is odd.<br />

Lemma 15.3.7. Let q be even. If Ω, Ω ′ ∈ Θ, Ω = Ω ′ are such that Ω ∩ Ω ′<br />

conta<strong>in</strong>s three po<strong>in</strong>ts X, Y, Z spann<strong>in</strong>g a plane π conta<strong>in</strong><strong>in</strong>g ∞, then Ω∩Ω ′ =<br />

π ∩ Ω, imply<strong>in</strong>g |Ω ∩ Ω ′ | = q + 1.<br />

Proof. Let X, Y, Z ∈ P G(3, q) \ π∞ be such that ∞ ∈ π = 〈X, Y, Z〉 <strong>and</strong><br />

such that {X, Y, Z, ∞} is a 4-arc <strong>in</strong> π. By Lemma 15.3.3 there are q ovoids<br />

Ω1, . . . , Ωq of Θ conta<strong>in</strong><strong>in</strong>g X, Y, Z, <strong>and</strong> for i = j, Ωi ∩ Ωj ⊆ π ∪ π∞, i.e.,<br />

Ωi ∩ Ωj ⊆ Ωi ∩ π, so |Ωi ∩ Ωj| ≤ q + 1. What we want to show is that<br />

Ωi ∩ π = Ωj ∩ π for all i, j. So by way of look<strong>in</strong>g for a contradiction, we<br />

assume that this is not the case. We may label the Ωi so that WOLG we<br />

have O1 = Ω1 ∩ π = Ω2 ∩ π = O2. Then let X ′ ∈ O2 \ O1, i.e., X ′ ∈ Ω2 \ Ω1,<br />

but X ′ ∈ π, hence also π = 〈X ′ , Y, Z〉. Aga<strong>in</strong> by Lemma 15.3.3 there are q<br />

elements Ω1, . . . , Ωq of Θ that each conta<strong>in</strong> X ′ , Y, Z (<strong>and</strong> are tangent to π∞<br />

at ∞). Clearly Ω2 is one of these ovoids, <strong>and</strong> without loss of generality we<br />

may assume that Ω2 = Ω2. We know that Ω1 \π, Ω2 \π, . . . , Ωq \π partitions<br />

the po<strong>in</strong>ts of P G(3, q)\(π ∪π∞), <strong>and</strong> also that Ω1 \π, Ω2 \π = Ω2 \π, Ω3 \π,


692 CHAPTER 15. PROPERTY G<br />

. . . , Ωq \ π partition the po<strong>in</strong>ts of P G(3, q) \ (π ∪ π∞). S<strong>in</strong>ce X ′ ∈ Ωj for all<br />

j <strong>and</strong> X ′ ∈ Ω1, clearly Ω1 = Ωi for all i. Consequently for some i, Ωi is not<br />

any Ωj. Without loss of generality we may suppose that Ω1 = Ωi for all i.<br />

Now consider Ω1∩Ωi, i ∈ {1, . . . , q}. S<strong>in</strong>ce {X, Y, Z} ⊂ Ω1∩Ω2, it follows<br />

that |Ω1∩Ω2| ≤ q+1 <strong>and</strong> |(Ω1∩Ω2)\π| = 0 s<strong>in</strong>ce Ω1∩Ω2 = Ω1∩Ω2 ⊆ π. Also<br />

|Ω1 ∩ Ωi| ≤ q + 3 <strong>and</strong> |(Ω1 ∩ Ωi) \ π| ≤ q for i = 2, s<strong>in</strong>ce Y, Z, ∞ ∈ Ω1 ∩ Ωi ∩ π<br />

for i = 2. However, Ω1 \ π, Ω3 \ π, . . . , Ωq \ π partitions the q 2 − q po<strong>in</strong>ts<br />

of Ω1 \ π, from which it follows that |(Ω1 ∩ Ωi) \ π| = q for i = 2. This<br />

implies that |Ω1 ∩ Ωi| = q + 3 for i = 2. This forces Ω1 ∩ Ωi ∩ π = {Y, Z, ∞},<br />

so that X ∈ Ωi for i = 2. Also for i = 2 the l<strong>in</strong>es spanned by ∞ <strong>and</strong><br />

the po<strong>in</strong>ts of (Ωi ∩ Ω1) \ {∞} correspond to an hyperoval <strong>in</strong> the quotient<br />

space P G(3, q)/∞, imply<strong>in</strong>g that each plane on ∞ conta<strong>in</strong>s two po<strong>in</strong>ts of<br />

(Ωi ∩ Ω1 \ {∞} or no po<strong>in</strong>ts of (Ωi ∩ Ω1) \ {∞}. However, let π ′ be any plane<br />

through the l<strong>in</strong>e 〈∞, X〉 different from the plane π (so <strong>in</strong> particular π ′ = π∞).<br />

Then the ovoids Ωi with i = 2 partition the q −1 po<strong>in</strong>ts of (Ω1 ∩π ′ )\〈∞, X〉.<br />

This forces q − 1 to be even, which is a contradiction. Hence we know that<br />

Ωi ∩ π = Ωj ∩ π for all i, j, forc<strong>in</strong>g |Ωi ∩ Ωj| = q + 1 for all i = j.<br />

15.4 Tetradic Sets of Elliptic Quadrics<br />

In this section let Θ be a tetradic set of q 3 (q−1) elliptic quadrics with respect<br />

to the <strong>in</strong>cident po<strong>in</strong>t-plane pair (∞, π∞).<br />

Let {X, Y, Z, ∞} be a 4-cap of Σ with ∞ ∈ π = 〈X, Y, Z〉 = π∞. There<br />

must be a unique conic C of π conta<strong>in</strong><strong>in</strong>g X, Y, Z, ∞ <strong>and</strong> with tangent l<strong>in</strong>e<br />

ℓ∞ = π ∩ π∞. Hence any elliptic quadric of Θ conta<strong>in</strong><strong>in</strong>g X, Y, Z must also<br />

conta<strong>in</strong> C. Moreover, if W is any po<strong>in</strong>t of Σ \ (π ∪ π∞), then {X, Y, Z, W }<br />

is a tetrad. Hence the elliptic quadrics of Θ conta<strong>in</strong><strong>in</strong>g C must partitio<strong>in</strong><br />

the po<strong>in</strong>ts of Σ \ (π ∪ π∞). It follows that there are exactly q such elliptic<br />

quadrics, <strong>and</strong> they meet pairwise exactly <strong>in</strong> C. From Section felliptic 5 we<br />

see that these q quadrics are an orbit of the group of elations with center ∞<br />

<strong>and</strong> axis π∞. More generally, by apply<strong>in</strong>g that section to any oval of Θ we<br />

have the follow<strong>in</strong>g theorem.<br />

Theorem 15.4.1. Let Θ be a tetradic set of q 3 (q − 1) elliptic quadrics with<br />

respect to the pair (∞, π∞). Let G1 be the group of q 3 elations of P G(3, q)<br />

hav<strong>in</strong>g ∞ as center. G1 acts on Θ with q − 1 orbits, each of size q 3 . This<br />

permits us to def<strong>in</strong>e an equivalence relation ˆ⊲⊳ on Θ by O1 ˆ⊲⊳O2 if <strong>and</strong> only


15.4. TETRADIC SETS OF ELLIPTIC QUADRICS 693<br />

if there is a g ∈ G1 for which O2 = O g<br />

1 . Moreover, if O ∈ Θ, let [O] denote<br />

the equivalence class of O. There is a unique rosette of elliptic quadrics<br />

conta<strong>in</strong>ed <strong>in</strong> [O] with base po<strong>in</strong>t ∞, base plane π∞ <strong>and</strong> conta<strong>in</strong><strong>in</strong>g O. The<br />

rosette is generated by the action of the elations with center ∞ <strong>and</strong> axis π∞.<br />

The rema<strong>in</strong><strong>in</strong>g q3 − q elliptic quadrics <strong>in</strong> [O] share a common conic with<br />

O. Hence two elliptic quadrics <strong>in</strong> [O] either <strong>in</strong>tersect <strong>in</strong> the po<strong>in</strong>t ∞ or <strong>in</strong><br />

a conic conta<strong>in</strong><strong>in</strong>g ∞. We also note that the q3 elliptic quadrics <strong>in</strong> [O] are<br />

partitioned <strong>in</strong>to q2 disjo<strong>in</strong>t rosettes with base po<strong>in</strong>t ∞.<br />

Even more is true. Let G2 be the group of q3 elations of Σ with axis π∞.<br />

Then the orbits of G2 on the elements of Θ are the same as those of G1, <strong>and</strong><br />

hence the same as those of the group G = 〈G1, G2〉 of order q5 .<br />

Lemma 15.4.2. Let X, Y, Z be three dist<strong>in</strong>ct, non-coll<strong>in</strong>ear po<strong>in</strong>ts of P G(3, q)\<br />

π∞ not coplanar with ∞. Then there are exactly q − 1 elliptic quadrics of Θ<br />

conta<strong>in</strong><strong>in</strong>g {X, Y, Z}, one from each equivalence class.<br />

Proof. Let π = 〈X, Y, ∞〉 <strong>and</strong> let ℓ be a l<strong>in</strong>e of π <strong>in</strong>cident with ∞ but not<br />

with X nor Y . Let W = ℓ∩〈X, Y 〉. If A ∈ ℓ\{W, ∞}, then there is a unique<br />

elliptic quadric of Θ conta<strong>in</strong><strong>in</strong>g the tetrad {X, Y, Z, A}. There are q − 1 such<br />

po<strong>in</strong>ts A <strong>and</strong> hence q − 1 such elliptic quadrics, s<strong>in</strong>ce any elliptic quadric of<br />

Θ must conta<strong>in</strong> a po<strong>in</strong>t of ℓ \ {∞}. As two equivalent elliptic quadrics must<br />

<strong>in</strong>tersect <strong>in</strong> either the s<strong>in</strong>gle po<strong>in</strong>t ∞ or <strong>in</strong> a conta<strong>in</strong><strong>in</strong>g ∞, it follows that the<br />

q − 1 elliptic quadrics on {X, Y, Z, ∞} are <strong>in</strong> dist<strong>in</strong>ct equivalence classes.<br />

Lemma 15.4.3. Let O1 <strong>and</strong> O2 be two <strong>in</strong>equivalent elliptic quadrics of Θ.<br />

Then |O1 ∩ O2| ≤ q + 2.<br />

Proof. The elliptic quadrics O1 <strong>and</strong> O2 may not <strong>in</strong>tersect <strong>in</strong> a conic conta<strong>in</strong><strong>in</strong>g<br />

∞ <strong>and</strong> hence no plane on ∞ conta<strong>in</strong>s more than two po<strong>in</strong>ts of<br />

(O1 ∩ O2) \ {∞}. Thus the l<strong>in</strong>es of P G(3, q) spanned by ∞ <strong>and</strong> po<strong>in</strong>ts<br />

of (O1 ∩ O2) \ {∞} form an arc <strong>in</strong> the quotient space P G(3, q)/∞ with tangent<br />

l<strong>in</strong>e π∞/∞. We now show that such an arc has size at most q + 1,<br />

forc<strong>in</strong>g |O1 ∩ O2| ≤ q + 2. So suppose that there is such an arc with size<br />

q + 2. This means that each plane (not π∞) through ∞ must conta<strong>in</strong> 1 or<br />

three po<strong>in</strong>ts of the <strong>in</strong>tersection of the two elliptic quadrics. By Lemma 6.5.1<br />

there is a plane π conta<strong>in</strong><strong>in</strong>g one of the l<strong>in</strong>es <strong>in</strong> the arc of the quotient space<br />

for which the pole N of π is the same for both O1 <strong>and</strong> O2, <strong>and</strong> hence π conta<strong>in</strong>s<br />

three po<strong>in</strong>ts of (O1 ∩ O2), say ∞, X, Y . So π ∩ Oi is a conic Ci, i = 1, 2,<br />

conta<strong>in</strong><strong>in</strong>g ∞, X <strong>and</strong> Y , <strong>and</strong> with both conics hav<strong>in</strong>g the same nucleus, i.e.,


694 CHAPTER 15. PROPERTY G<br />

tangents at these three po<strong>in</strong>ts. Hence C1 = C2. But the rema<strong>in</strong><strong>in</strong>g q po<strong>in</strong>ts of<br />

(O1 ∩O2) outside the plane π mean that there are 2q +1 > q +3 po<strong>in</strong>ts <strong>in</strong> the<br />

<strong>in</strong>tersection of the quadrics, an impossibility. Hence |(O1 ∩ O2)| ≤ q + 2.<br />

Lemma 15.4.4. Let O1 <strong>and</strong> O2 be <strong>in</strong>equivalent elliptic quadrics of Θ with<br />

|O1 ∩ O2| ≥ 3. Then |O1 ∩ O2| = q + 2.<br />

Proof. Consider fixed X, Y ∈ (O1 ∩ O2) \ {∞}, X = Y , <strong>and</strong> let [O2] be<br />

the equivalence class of O2. There are q2 − q triples {X, Y, Z} such that<br />

X, Y, Z ⊂ O1 <strong>and</strong> ∞ ∈ 〈X, Y, Z〉. By Lemma 15.4.2 each such triple is<br />

conta<strong>in</strong>ed <strong>in</strong> a unique element of [O2].<br />

We know that X, Y ∈ O2 <strong>and</strong> that any other elliptic quadric O ′ 2<br />

∈ [O2]<br />

with X, Y ∈ O ′ 2 meets O2 <strong>in</strong> po<strong>in</strong>ts conta<strong>in</strong>ed <strong>in</strong> a plane on ∞, which must<br />

be 〈X, Y, ∞〉. Further, it must be that O2 ∩ O ′ 2 = O2 ∩ 〈X, Y, ∞〉. There are<br />

exactly q elliptic quadrics of [O2] conta<strong>in</strong><strong>in</strong>g O2 ∩ 〈X, Y, ∞〉.<br />

Now count pairs (O ′ 2, {X, Y, Z}) where O ′ 2 ∈ [O2] <strong>and</strong> X, Y, Z are dist<strong>in</strong>ct<br />

po<strong>in</strong>ts of O ′ 2 . From above we know that the count is <strong>in</strong> fact q2 − q. However,<br />

we also have that |O1 ∩O2| ≤ q +2 <strong>and</strong> so there are at most q −1 such triples<br />

{X, Y, Z} <strong>and</strong> q such O ′ 2 . Hence the count is bounded above by q(q − 1) =<br />

q2 − q. It follows that |O1 ∩ O ′ 2 | = q + 2 <strong>and</strong> certa<strong>in</strong>ly |O1 ∩ O2| = q + 2.<br />

Corollary 15.4.5. If O1 <strong>and</strong> O2 are <strong>in</strong>equivalent elliptic quadrics of Θ, then<br />

|O1 ∩ O2| = 2 or q + 2.<br />

Proof. We show that |O1 ∩ O2| = 1 is impossible. Consider the rosette R<br />

of elliptic quadrics <strong>in</strong> [O2] conta<strong>in</strong><strong>in</strong>g O2. The elliptic quadric O1 <strong>in</strong>tersects<br />

each of the q elliptic quadrics of the rosette <strong>in</strong> 1, 2, or q + 2 po<strong>in</strong>ts. The<br />

elements of R also partition the po<strong>in</strong>ts of P G(3, q)\π∞ . Hence the q 2 po<strong>in</strong>ts<br />

of O1 \ {∞} are partitioned <strong>in</strong>to q sets of size 0, 1, or q + 1. This can only<br />

be done with one set of size 1 <strong>and</strong> q − 1 of size q + 1.<br />

Lemma 15.4.6. Let O be an elliptic quadric of Θ <strong>and</strong> E an equivalence<br />

class of Θ such that O ∈ E. If X ∈ O \ {∞}, then there is a unique O ′ ∈ E<br />

such that O ∩ O ′ = {X, ∞}.<br />

Proof. For fixed X ∈ O \ {∞} the number of pairs (Y, Z) with Y, Z ∈ O <strong>and</strong><br />

Y = Z such that ∞ ∈ 〈X, Y, X〉 is (q 2 − 1)(q 2 − q). By Lemma 15.4.2 each<br />

triple {X, Y, Z} is conta<strong>in</strong>ed <strong>in</strong> a unique element of E. Further, each of the<br />

q 2 rosettes of E conta<strong>in</strong>s a unique elliptic quadric on the po<strong>in</strong>t X. If such an<br />

elliptic quadric O ′ <strong>in</strong>tersects O <strong>in</strong> q + 2 po<strong>in</strong>ts, then we have q(q − 1) pairs


15.4. TETRADIC SETS OF ELLIPTIC QUADRICS 695<br />

(Y, Z) with Y, Z ∈ O ∩ O ′ <strong>and</strong> Y = Z such that ∞ ∈ 〈X, Y, Z〉. If on the<br />

other h<strong>and</strong>, |O ∩ O ′ | = 2, then there are no such pairs (Y, Z).<br />

Hence it follows that there are q 2 − 1 elliptic quadrics of E conta<strong>in</strong><strong>in</strong>g X<br />

<strong>and</strong> meet<strong>in</strong>g O <strong>in</strong> q + 2 po<strong>in</strong>ts <strong>and</strong> a unique elliptic quadric of E conta<strong>in</strong><strong>in</strong>g<br />

X <strong>and</strong> meet<strong>in</strong>g O <strong>in</strong> 2 po<strong>in</strong>ts.<br />

Let T be a set of q − 1 ovoids of P G(3, q) meet<strong>in</strong>g pairwise <strong>in</strong> exactly<br />

two fixed po<strong>in</strong>ts <strong>and</strong> shar<strong>in</strong>g the tangent planes at those two fixed po<strong>in</strong>ts.<br />

Such a set T is called a transversal of ovoids. These two common po<strong>in</strong>ts are<br />

called the base po<strong>in</strong>ts of the transversal <strong>and</strong> the two common tangent planes<br />

are called the base planes of the transversal.<br />

Lemma 15.4.7. Let O be an elliptic quadric of Θ <strong>and</strong> X ∈ O \ {∞}. The<br />

q − 2 elliptic quadrics meet<strong>in</strong>g O <strong>in</strong> exactly {X, ∞} also meet pairwise <strong>in</strong><br />

exactly {X, ∞} <strong>and</strong> have a common tangent plane at X, thus together with<br />

O form<strong>in</strong>g a transversal.<br />

Proof. Let πX be the tangent plane to O at X. For Y ∈ P G(3, q) \ (π∞ ∪<br />

πX ∪ 〈∞, X〉 ∪ O) count pairs (Z, O ′ ) with Z ∈ O \ {X, ∞}, O ′ ∈ Θ <strong>and</strong><br />

{X, Y, Z, ∞} ⊂ O ′ . Suppose that Z ∈ O \ 〈X, Y, ∞〉. Then there are q 2 − q<br />

chooices for Z <strong>and</strong> {X, Y, Z} is conta<strong>in</strong>ed <strong>in</strong> q − 1 elliptic quadrics, giv<strong>in</strong>g<br />

(q 2 − q)(q − 1) pairs.<br />

Now suppose thqt Z ∈ O ∩ 〈X, Y, ∞〉 <strong>and</strong> let C = O ∩ 〈X, Y, ∞〉. Note<br />

that Y ∈ C. S<strong>in</strong>ce Y ∈ πX it follows that 〈X, Y 〉 is not tangent to C <strong>and</strong><br />

hence meets C <strong>in</strong> a po<strong>in</strong>t of C \ {X}. Similarly, 〈Y, ∞〉 meets C <strong>in</strong> a second<br />

poitn, leav<strong>in</strong>g q − 3 possible choices for Z. For each such choice of Z the<br />

po<strong>in</strong>ts X, Y, Z def<strong>in</strong>e a unique conic C ′ <strong>in</strong> ∠X, Y, ∞〉 conta<strong>in</strong><strong>in</strong>g ∞ <strong>and</strong> with<br />

tangent π∞ ∩ 〈X, Y, ∞〉. There are q elliptic quadrics of Θ conta<strong>in</strong><strong>in</strong>g C ′<br />

giv<strong>in</strong>g q(q − 3) pairs (Z, O ′ ) with Z ∈ O ∩ 〈X, Y, ∞〉. ] So <strong>in</strong> total we have<br />

(q 2 − q)(q − 1) + q(q − 3) = q(q − 2)(q + 1) pairs (Z, O ′ ).<br />

Count<strong>in</strong>g these pairs <strong>in</strong> a second way we consider the number of elliptic<br />

quadrics of Θ conta<strong>in</strong><strong>in</strong>g {X, Y }. In 〈∞, X, Y 〉 there are q − 1 conics on<br />

X, Y, ∞ with tangent 〈∞, X, Y 〉∩π∞, which means there are q(q −1) elliptic<br />

quadrics conta<strong>in</strong><strong>in</strong>g {X, Y }, q <strong>in</strong> each class. If such an elliptic quadric is <strong>in</strong><br />

the same class as O, then we know that the possible <strong>in</strong>tersection sizes with<br />

O are 1 <strong>and</strong> q + 1, so they must all be q + 1, s<strong>in</strong>ce the <strong>in</strong>tersection is at<br />

least {∞, X}. This gives q(q − 1) pairs (Z, O ′ ). there are q(q − 2) elliptic<br />

quadrics conta<strong>in</strong><strong>in</strong>g {X, ∞} which are <strong>in</strong>equivalent to O, <strong>and</strong> by the earlier


696 CHAPTER 15. PROPERTY G<br />

counts there are exactly q(q − 2)(q + 1) − q(q − 1) = q(q 2 − 2q − 1) pairs<br />

(Z, O ′ ) where O ′ is of this type. In this case |O ∩ O ′ | = 2 or q + 2, so each<br />

O ′ gives rise to 0 or q pairs (Z, O ′ ), respectively. From this it follows that<br />

there must be q 2 − 2q − 1 elliptic quadrics <strong>in</strong>tersect<strong>in</strong>g O <strong>in</strong> q + 2 po<strong>in</strong>ts <strong>and</strong><br />

(q 2 − 2q) − (q 2 − 2q − 1) = 1 <strong>in</strong>tersect<strong>in</strong>g O <strong>in</strong> the two po<strong>in</strong>ts X, ∞.<br />

Hence there is a unique elliptic quadric of Θ meet<strong>in</strong>g O <strong>in</strong> exactly {X, ∞}<br />

<strong>and</strong> conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t Y ∈ P G(3, q) \ (π∞ ∪ πX ∪ 〈∞, X〉 ∪ O).<br />

In Lemma 15.4.6 we saw that there are q−2 elliptic quadrics of Θ meet<strong>in</strong>g<br />

O <strong>in</strong> exactly {X, ∞}. By the above, these q −2 elliptic quadrics plus O cover<br />

the q 3 − a 2 − q + 1 = (q 2 − 1)(q − 1) po<strong>in</strong>ts of P G(3, q) \ (π∞ ∪ πX ∪ 〈∞, X〉).<br />

It follows that these elliptic quadrics partition the po<strong>in</strong>tset <strong>in</strong>to q − 2 sets<br />

of size q 2 − 1. Hence the elliptic quadrics meet pairwise <strong>in</strong> exactly {X, ∞}<br />

<strong>and</strong> have πX as tangent plane at X, thus form<strong>in</strong>g a transversal of elliptic<br />

quadrics.<br />

Lemma 15.4.8. Let (X, π) be an <strong>in</strong>cident po<strong>in</strong>t-plane pair of P G(3, q) such<br />

that X ∈ π∞ <strong>and</strong> ∞ ∈ π. Then there are exactly q − 1 elliptic quadrics of<br />

Θ conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> with tangent plane π at X. Further, these q − 1 elliptic<br />

quadrics form a transversal with one elliptic quadric from each equivalence<br />

class of Θ.<br />

Proof. S<strong>in</strong>ce each rosette of elliptic quadrics conta<strong>in</strong>ed <strong>in</strong> Θ is generated by<br />

the action on one elliptic quadric of the elations of P G(3, q) with center ∞<br />

<strong>and</strong> axis π∞, it follows that each plane not on ∞ is tangent to exactly one<br />

elliptic quadric of a given rosette.<br />

There are (q − 1)q2 rosettes of elliptic quadrics <strong>in</strong> Θ, so (q − 1)q2 elliptic<br />

quadrics of Θ with π as a tangent plane at one of the po<strong>in</strong>s of π \ π∞. By<br />

Lemma 15.4.7 if π is tangent to one elliptic quadric of Θ at a po<strong>in</strong>t, then it<br />

is tangent to the q − 1 elliptic quadrics of a transversal of Θ at that po<strong>in</strong>t.<br />

S<strong>in</strong>ce two elliptic quadrics <strong>in</strong> the same equivalence class have <strong>in</strong>tersection<br />

size 1 or q + 1, it follows that the elliptic quadrics of the transversal are one<br />

from each equivalence of class of Θ.<br />

Suppose that for X ∈ π \ π∞ there are two transversals O1, . . . Oq−1 <strong>and</strong><br />

O ′ 1 , . . . , O′ q−1<br />

conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> with tangent plane π. We <strong>in</strong>vestigate how<br />

O ′ 1 <strong>in</strong>tersects O1, . . . , Oq−1. In fact O1, . . . , O partition the q 2 − 1po<strong>in</strong>ts of<br />

O ′ 1 \ {X, ∞} <strong>in</strong>to q − 1 sets of size q or q − 1, which is a contradiction.<br />

Hence there can be only one transversal of elliptic quadrics of Θ with<br />

X as a base po<strong>in</strong>t <strong>and</strong> π as the correspond<strong>in</strong>g base plane. S<strong>in</strong>ce there are


15.5. FLOCKS AND TETRADIC SETS 697<br />

q 2 (q − 1) elliptic quadrics with tangent plane π, there are q 2 transversals of<br />

Θ with base plane π <strong>and</strong> a unique such transversal with base po<strong>in</strong>t X for<br />

each X ∈ π \ π∞.<br />

Lemma 15.4.9. Let T = {O1, . . . , Oq−1} be a transversal of elliptic quadrics<br />

of Θ with base po<strong>in</strong>t X <strong>and</strong> base plane π, X ∈ π∞ <strong>and</strong> ∞ ∈ π. Then every<br />

plane π ′ such that X, ∞, π∞ ∩ π ⊂ π ′ is tangent to a unique element of<br />

T . Further, any two elements of T have only π <strong>and</strong> π∞ as common tangent<br />

planes.<br />

Proof. Let π ′ be a plane such that X, ∞, π∞ ∩ π ⊂ π ′ . The elements of<br />

T partition the q 2 − q − 1 po<strong>in</strong>ts of π ′ \ (π∞ ∪ π ∪ 〈∞, X〉), which can only<br />

be <strong>in</strong>to q − 2 conics <strong>and</strong> one s<strong>in</strong>gle po<strong>in</strong>t. That is, π ′ is tangent to a unique<br />

element of T .<br />

There are (q 2 − 1)(q − 1) such planes, which is the same as the number of<br />

pairs (Oi, π ′′ ) where π ′′ is tangent to Oi ∈ T at a po<strong>in</strong>t not ∞ nor X. Hence<br />

no two elements of T have a common tangent not at ∞ or X. S<strong>in</strong>ce a plane<br />

of P G(3, q) (dist<strong>in</strong>ct from π∞ <strong>and</strong> π) on π∞ ∩ π or on ∞ cannot be a tangent<br />

plane to an elliptic quadric of T , the lemma is proved.<br />

15.5 Flocks <strong>and</strong> Tetradic Sets<br />

Before read<strong>in</strong>g the next two sections it would be wise to review Sections 6.5<br />

<strong>and</strong> 6.6.<br />

Theorem 15.5.1. Let F be a flock of a quadratic cone <strong>in</strong> P G(3, q). Then<br />

F gives rise to a tetradic set of elliptic quadrics of P G(3, q).<br />

Proof. Let F be a flock of the quadratic cone K of P G(3, q). Let V be the<br />

vertex of K, P a po<strong>in</strong>t of K \ {V } <strong>and</strong> π a plane of P G(3, q) such that<br />

P, V ∈ π. If we project the elements of F from P onto π we obta<strong>in</strong> a set<br />

{C1, . . . , Cq−1, m} where C1, . . . , Cq−1 are q − 1 conics <strong>and</strong> m is a l<strong>in</strong>e of π.<br />

The conics C1, . . . , Cq−1 meet pairwise <strong>in</strong> the po<strong>in</strong>t ∞ = 〈V, P 〉 ∩ π <strong>and</strong> with<br />

common tangent ℓ where 〈ℓ, V 〉 is the plane meet<strong>in</strong>g K <strong>in</strong> the l<strong>in</strong>e 〈V, P 〉.<br />

The l<strong>in</strong>e m is the <strong>in</strong>tersection of π with the plane conta<strong>in</strong><strong>in</strong>g the element of<br />

F conta<strong>in</strong><strong>in</strong>g P . Hence the po<strong>in</strong>ts of m are disjo<strong>in</strong>t from all the Ci. (Review<br />

Section 6.2.)<br />

Now let π∞ be a plane of P G(3, q) conta<strong>in</strong><strong>in</strong>g ℓ <strong>and</strong> dist<strong>in</strong>ct from π. Let<br />

R be any po<strong>in</strong>t of P G(3, q) \ (π ∪ π∞) <strong>and</strong> πR the plane 〈m, R〉. Then by


698 CHAPTER 15. PROPERTY G<br />

Theorem 6.6.1 there is a unique set of elliptic quadrics T = {O1, . . . , Oq−1}<br />

such that Oi ∩ π = Ci, 1 ≤ i ≤ q − 1, R is conta<strong>in</strong>ed <strong>in</strong> all of the Oi <strong>and</strong><br />

π∞ <strong>and</strong> πR are tangent planes to all of the Oi. Further, O1, . . . , Oq−1 is a<br />

transversal of elliptic quadrics.<br />

Let G be the group of q 3 elations of P G(3, q) with center ∞, <strong>and</strong> def<strong>in</strong>e<br />

Θ = {O g : g ∈ G, O ∈ T }. We show that Θ is a tetradic set of elliptic<br />

quadrics. S<strong>in</strong>ce no elliptic quadric of T may be fixed by an element of G,<br />

it follows that |Θ| = q 3 (q − 1), <strong>and</strong> it suffices to show that each tetrad of<br />

P G(3, q) with respect to (∞, π∞) is conta<strong>in</strong>ed <strong>in</strong> at least one elliptic quadric<br />

of Θ.<br />

Now let π ′ be a plane conta<strong>in</strong><strong>in</strong>g ∞ <strong>and</strong> dist<strong>in</strong>ct from from π∞. Let<br />

Oi ∩ π ′ = C ′ i , 1 ≤ i ≤ q − 1, <strong>and</strong> m′ = πR ∩ π ′ . Any element of G fixes<br />

the plane π ′ <strong>and</strong> <strong>in</strong>duces an elation with center ∞ <strong>in</strong> π ′ . No such elation <strong>in</strong><br />

π ′ fixes a C ′ i <strong>and</strong> also cannot map C ′ i to C ′ j for 1 ≤ i = j ≤ q − 1. Hence<br />

{(C ′ i )g : 1 ≤ i ≤ q − 1, g ∈ G} is a set of q 2 (q − 1) conics <strong>in</strong> π ′ conta<strong>in</strong><strong>in</strong>g<br />

∞ <strong>and</strong> with π∞ ∩ π ′ as tangent l<strong>in</strong>e. Hence every conic <strong>in</strong> π ′ conta<strong>in</strong><strong>in</strong>g ∞<br />

<strong>and</strong> with π∞ ∩ π ′ as tangent is conta<strong>in</strong>ed <strong>in</strong> an element of Θ. In fact, tak<strong>in</strong>g<br />

images under the group of elations with center ∞ <strong>and</strong> axis π ′ we get a set of<br />

q elliptic quadrics partition<strong>in</strong>g the po<strong>in</strong>ts of P G(3, q) \ (π∞ ∩ π ′ . It follows<br />

from this that every tetrad of P G(3, q) with respect to (∞, π∞) is conta<strong>in</strong>ed<br />

<strong>in</strong> an element of Θ, imply<strong>in</strong>g that Θ is a tetradic set of elliptic quadrics with<br />

respect to (∞, π∞).<br />

Theorem 15.5.2. Every tetradic set of elliptic quadrics of P G(3, q) arises<br />

from a flock of a quadratic cone of P G(3, q).<br />

Proof. Suppose that Θ is a tetradic set of elliptic quadrics of P G(3, q) with<br />

respect to (∞, π∞). Let T = {O1, . . . , Oq−1} be a transversal of elliptic<br />

quadrics of Θ with base po<strong>in</strong>t R <strong>and</strong> base plane πR. Let π be any plane<br />

conta<strong>in</strong><strong>in</strong>g ∞, but not conta<strong>in</strong><strong>in</strong>g R <strong>and</strong> dist<strong>in</strong>ct from π∞. Consider the set<br />

{C1, . . . , Cq−1, m} where Ci = Oi ∩ π, 1 ≤ i ≤ q − 1, <strong>and</strong> m = π ∩ πR. By<br />

Obs. 6.2.1 <strong>and</strong> Lemma 15.4.8 there is no pair (Ci, Cj), i, j ∈ {1, . . . , q − 1},<br />

i = j, such that Ci is the image of Cj under an elation of π with center ∞.<br />

Hence {C1, . . . , Cq−1, m} is a flock <strong>in</strong> the planar model of the quadratic cone<br />

of P G(3, q).<br />

At this po<strong>in</strong>t we want to view the planar representation of a flock of a<br />

quadratic cone us<strong>in</strong>g coord<strong>in</strong>ates. So first suppose that K is the cone <strong>in</strong>


15.5. FLOCKS AND TETRADIC SETS 699<br />

P G(3, q) with equation x0x2 = x2 1<br />

<br />

xt yt<br />

C =<br />

At =<br />

<strong>and</strong> vertex V = (0, 0, 0, 1). Let<br />

<br />

0 zt<br />

: t ∈ Fq<br />

be a q-clan with associated flock F of K with planes<br />

F = {πt = [xt, yt, zt, 1] : t ∈ Fq}.<br />

Let P = (0, 0, 1, 0) <strong>and</strong> Pλ = (0, 0, 1, λ). We are go<strong>in</strong>g to project the<br />

planes of the flock from P onto the plane [0, 0, 1, 0] through the vertex V .<br />

For λ = 1, the plane πλ meets the cone K <strong>in</strong> the conic<br />

Cλ = {(1, t, t 2 , −gv(1, t)) : t ∈ Fq} ∪ {(0, 0, 1, λ)},<br />

where gλ(1, t) = xλ + tyλ + t 2 zλ.<br />

Project<strong>in</strong>g Cλ to [0, 0, 1, 0] (for λ = 1) from P gives the conic<br />

Cλ = {(1, t, 0, −gv(1, t)) : t ∈ Fq} ∪ {(0, 0, 0, 1)}.<br />

The plane π1 maps to a l<strong>in</strong>e n disjo<strong>in</strong>t from all the Cλ, λ = 1.<br />

The homography (x0, x1, x2, x3) ↦→ (x0, x1, x3, x2 + x0) maps the conics<br />

Cλ to the conics<br />

C ′ λ = {(1, t, −gv(1, t), 1) : t ∈ Fq} ∪ {(0, 0, 0, 1)},<br />

<strong>and</strong> maps the l<strong>in</strong>e n to the l<strong>in</strong>e n ′ = [1, 0, 0, 0] ∩ [0, 0, 0, 1]. These are conics<br />

that pairwise meet <strong>in</strong> the po<strong>in</strong>t (0, 0, 1, 0) with common tangent n ′ at<br />

(0, 0, 1, 0). S<strong>in</strong>ce they are projections from the conics of a flock, it also follows<br />

that no two of them are <strong>in</strong> the same orbit of the elations of [0, 0, 1, 0]<br />

with center (0, 0, 1, 0) <strong>and</strong> axis n. (See ??) This completes a proof of the<br />

follow<strong>in</strong>g.<br />

Lemma 15.5.3. Let F ′ be the follow<strong>in</strong>g set of q − 1 conics <strong>and</strong> one l<strong>in</strong>e n ′<br />

<strong>in</strong> the plane [1, 0, 0, −1]:<br />

<strong>and</strong><br />

F ′ = {C ′ λ = {(1, t, −gv(1, t), 1) : t ∈ Fq} ∪ {(0, 0, 1, 0)} : 1 = λ ∈ Fq}<br />

n ′ = [1, 0, 0, 0] ∩ [0, 0, 0, 1].<br />

This is projectively equivalent to a planar representation of the flock Fof<br />

the cone K : x0x2 = x 2 1 whose planes are of the form<br />

πt = [xt, yt, zt, 1], t ∈ Fq.


700 CHAPTER 15. PROPERTY G<br />

15.6 Coord<strong>in</strong>ates for the AG(3, q) from Flock<br />

GQ<br />

Let G be the group with elements (α, c, β), α, β ∈ F 2 q , c ∈ Fq <strong>and</strong> b<strong>in</strong>ary<br />

operation<br />

(α, c, β) · (α ′ , c ′ , β ′ ) = (α + α ′ , c + c ′ + β ◦ α ′ , β + β ′ ),<br />

where (a1, a2) ◦ (b1, b2) = a1b1 + a2b2. The center of G is the group<br />

Z = {(0, c, 0) : c ∈ Fq}.<br />

Start with a normalized q-clan C = {At : t ∈ Fq} (i.e., A0 is the zero<br />

matrix, <strong>and</strong> put Kt = At + A T t . Construct subgroups<br />

<strong>and</strong><br />

A(t) = {(α, gt(α), αKt) : α ∈ F 2 q }, t ∈ Fq,<br />

A(∞) = {(0, 0, β) : β ∈ F q 2}.<br />

For each t ∈ ˜ Fq put A ∗ (t) = A(t)Z.<br />

Proceed as <strong>in</strong> Chapter 13 to construct a GQ S with parameters (s, t) =<br />

(q 2 , q) <strong>and</strong> recall that S has Property (G) at the po<strong>in</strong>t (∞). Then consider<br />

the po<strong>in</strong>t-l<strong>in</strong>e dual ˜ S of S.<br />

So (∞) is a l<strong>in</strong>e with po<strong>in</strong>ts [A(t)]for each t ∈ ˜ Fq. For each t ∈ ˜ Fq <strong>and</strong><br />

each g ∈ G, the coset A ∗ (t)g is a l<strong>in</strong>e through the po<strong>in</strong>t [A(t)] <strong>and</strong> <strong>in</strong>cident<br />

with the po<strong>in</strong>ts A(t)hg, h ∈ A ∗ (t). Also, each g ∈ G is a l<strong>in</strong>e <strong>in</strong>cident with<br />

po<strong>in</strong>ts A(t)g. S<strong>in</strong>ce ˜ S has Property (G) at the l<strong>in</strong>e (∞), <strong>in</strong> particular it has<br />

Property (G) at the two flags (X = [A(∞)], (∞)) <strong>and</strong> (Y = [A(0)], (∞)).<br />

Before proceed<strong>in</strong>g we rem<strong>in</strong>d the reader that<br />

A(∞)(α, c, β) = A(∞)(α, c − α ◦ β, 0) (15.1)<br />

A(0)(α, c, β) = A(0)(0, c, β). (15.2)<br />

Construct the aff<strong>in</strong>e space ˜ SXY ∼ = AG(3, q). The po<strong>in</strong>ts of AG(3, q) are<br />

the po<strong>in</strong>ts of ˜ S coll<strong>in</strong>ear with X but not on the l<strong>in</strong>e XY = (∞). These<br />

are the po<strong>in</strong>ts that are of the form A(∞)(α, c, β) = A(∞)(α, c − α ◦ β, 0).


15.6. COORDINATES FOR THE AG(3, Q) FROM FLOCK GQ 701<br />

So the po<strong>in</strong>ts of AG(3, q) have the form A(∞)(α, c, 0). Give the po<strong>in</strong>t<br />

A(∞)((a1, a2, c, 0) the coord<strong>in</strong>ates (a1, a2, c).<br />

The planes of type (a) of AG(3, q) are the sets {X, Z} ⊥ \{Y }, where X ∼<br />

Z ∼ Y . Such a po<strong>in</strong>t Z looks like A(0)g = A(0)(α, c, β) = A(0)(0, c, b1, b2),<br />

where β = (b1, b2). So if we write Z = A(∞)(0, c, b1, b2), then<br />

{X, Z} ⊥ \ {Y } = {A(∞)(α, c, β) : α ∈ F q 2}<br />

= {(a1, a2, c − a1b1 − a2b2) : a1, a2 ∈ Fq}. (15.3)<br />

Embed the aff<strong>in</strong>e space AG(3, q) <strong>in</strong> P G(3, q) by<br />

(a1, a2, c) ↩→ (a1, a2, c, 1),<br />

which is never on the plane π∞ = [0, 0, 0, 1]. Then the plane {X, Z} ⊥ \ {Y }<br />

of type (a) becomes the plane [b1, b2, 1, −c].<br />

The l<strong>in</strong>e A ∗ (∞)g = A ∗ (∞)(α, c, β) = A ∗ (∞)(α, 0, 0) of type (b) is mapped<br />

to the l<strong>in</strong>e<br />

[1, 0, 0, −a1] ∩ [0, 1, 0, −a2] = {A(∞)(α, c, 0) : c ∈ Fq}.<br />

Each such l<strong>in</strong>e of type (b) conta<strong>in</strong>s the po<strong>in</strong>t ∞ = (0, 0, 1, 0) <strong>and</strong> is not<br />

conta<strong>in</strong>ed <strong>in</strong> the plane [0, 0, 0, 1].<br />

A l<strong>in</strong>e of type (a) is the <strong>in</strong>tersection of two planes of type (a) <strong>and</strong> never<br />

conta<strong>in</strong>s the po<strong>in</strong>t (0, 0, 1, 0). We ask: can two planes of type (a) meet <strong>in</strong> a<br />

l<strong>in</strong>e of π∞?<br />

(x, y, z, 0) ∈ [b1, b2, 1, −c] ∩ [b ′ 1 , b′ 2 , 1, −c′ ] iff x(b1 − b ′ 1 ) + y(b2 − b ′ 2 ) = 0.<br />

If even one of b1 − b ′ 1 , b2 − b ′ 2 is nonzero, then we get a s<strong>in</strong>gle po<strong>in</strong>t (x, y, z, 0)<br />

<strong>in</strong> the <strong>in</strong>tersection of the three planes. So suppose that b1 = b ′ 1 <strong>and</strong> b2 = b ′ 2 .<br />

If c = c ′ , then [b1, b2, 1, −c] ∩ [b1, b2, 1, −c ′ ] is a l<strong>in</strong>e of π∞ = [0, 0, 0, 1].<br />

The l<strong>in</strong>e A∗ (0)(0, 0, β)of ˜ S conta<strong>in</strong>s the po<strong>in</strong>ts A(0)(0, c, β) for all c ∈ Fq.<br />

These po<strong>in</strong>ts represent parallel planes of type (a) <strong>in</strong> AG(3, q).<br />

If g is any l<strong>in</strong>e of ˜ S not meet<strong>in</strong>g the l<strong>in</strong>e (∞), <strong>and</strong> g ′ is any other such<br />

l<strong>in</strong>e, there is a coll<strong>in</strong>eation of ˜ S fix<strong>in</strong>g all po<strong>in</strong>ts of the l<strong>in</strong>e (∞) <strong>and</strong> mapp<strong>in</strong>g<br />

g ′ to g. This <strong>in</strong>duces a coll<strong>in</strong>eation of the aff<strong>in</strong>e space AG(3, q) <strong>and</strong> hence<br />

of the correspond<strong>in</strong>g projective space P G(3, q) (fix<strong>in</strong>g the po<strong>in</strong>t (0, 0, 1, 0)<br />

s<strong>in</strong>ce the l<strong>in</strong>es of type (b) are permuted among themselves). Hence we may


702 CHAPTER 15. PROPERTY G<br />

assume that g = (0, 0, 0), s<strong>in</strong>ce g ∼ XY = (∞). The po<strong>in</strong>t U on g coll<strong>in</strong>ear<br />

with Y = [A(0)] is the po<strong>in</strong>t A(0)(0, 0, 0) = A(0). This po<strong>in</strong>t corresponds<br />

to the plane [0, 0, 1, 0]. The po<strong>in</strong>t r = A(∞) is the po<strong>in</strong>t on g coll<strong>in</strong>ear with<br />

X = [A(∞)], <strong>and</strong> r corresponds to the po<strong>in</strong>t (0, 0, 0, 1). Now for 0 = v ∈ Fq<br />

we want to compute po<strong>in</strong>ts of the ovoid OZ where Z = A(v). So we need to<br />

determ<strong>in</strong>e which po<strong>in</strong>ts of the form A(∞)(α ∗ , c ∗ , β ∗ ) are coll<strong>in</strong>ear with<br />

A(v) = {((a1, a2), a 2 1 xv+a1a2yv+a 2 2 zv, 2a1xv+a2yv, a1yv+2a2zv) : a1, a2 ∈ Fq}.<br />

A(∞)(α ∗ , c ∗ , β ∗ ) ∼ A(v) if <strong>and</strong> only if<br />

A(∞)(α ∗ , c ∗ − α ∗ ◦ β ∗ , 0) ∩ A(v) = ∅.<br />

It is easy to see that we need α ∗ = (a1, a2). Us<strong>in</strong>g the two other equalities<br />

imposed on the system by this condition we f<strong>in</strong>d the po<strong>in</strong>ts of OZ are those<br />

po<strong>in</strong>ts of the form<br />

A(∞)((a1, a2), −a 2 1 xv − a1a2yv − a 2 2 zv, 0)<br />

↩→ (a1, a2, −)a1, a2, −(a1, a2)Av<br />

a1<br />

a2<br />

<br />

, 1).<br />

It is then rout<strong>in</strong>e to work out the fact that the upper triangular matrix<br />

giv<strong>in</strong>g OZ is the matrix<br />

⎛<br />

⎞<br />

.<br />

Rewrit<strong>in</strong>g,<br />

A = AOZ =<br />

⎜<br />

⎝<br />

xv yv 0 0<br />

0 zv 0 0<br />

0 0 0 1<br />

0 0 0 0<br />

⎟<br />

⎠ .<br />

OZv = {(x, t, −gv(s, t), 1) : s, t ∈ Fq} ∪ {(0, 0, 1, 0)}.<br />

Here OZv ∩ π∞ = {(0, 0, 1, 0)} precisely because Av is anisotropic. Here<br />

⎛<br />

⎞<br />

A + A T = ⎝<br />

Kv<br />

0<br />

0<br />

0 1<br />

1 0<br />

For each nonzero v, the tangent plane at ∞ = (0, 0, 1, 0) is π∞ = [0, 0, 0, 1],<br />

<strong>and</strong> the tangent plane at (0, 0, 0, 1) is [0, 0, 1, 0]. So the po<strong>in</strong>ts A(t), 0 = t ∈<br />

⎠ .


15.7. PROP.(G) & TETRADIC SETS OF QUADRICS 703<br />

Fq, correspond to ovoids giv<strong>in</strong>g a transversal with base po<strong>in</strong>t - base plane<br />

pairs ((0, 0, 1, 0), [0, 0, 0, 1]) <strong>and</strong> ((0, 0, 0, 1), [0, 0, 1, 0]).<br />

Now<br />

OZv ∩ [1, 0, 0, −1] = {(1, t, −gv(1, t), 1) : t ∈ Fq} ∪ {(0, 0, 1, 0)}.<br />

By Lemma 15.5.3 we see that this set of conics is equivalent to the planar<br />

representation of the flock we started with. Moreover, the ovoids OZv<br />

completely determ<strong>in</strong>e the GQ, s<strong>in</strong>ce any tetradic set of elliptic quadrics conta<strong>in</strong><strong>in</strong>g<br />

this transversal must consist precisely of the orbits of G1 (elations<br />

with center ∞ = (0, 0, 1, 0)) conta<strong>in</strong><strong>in</strong>g these q − 1 elliptic quadrics.<br />

15.7 Prop.(G) & Tetradic Sets of Quadrics<br />

The goal of this section is to use a tetradic set of elliptic quadrics of P G(3, q)<br />

to construct a GQ of order (q, q 2 ) that is the po<strong>in</strong>t-l<strong>in</strong>e dual of a flock GQ.<br />

We follow the treatment of [BBP04] with <strong>in</strong>spiration from [Th99].<br />

Theorem 15.7.1. Let Θ be a tetradic set of elliptic quadrics of P G(3, q)<br />

with respect to the <strong>in</strong>cident po<strong>in</strong>t-plane pair (∞, π∞). Consider the follow<strong>in</strong>g<br />

<strong>in</strong>cidence structure GQ(Θ):


704 CHAPTER 15. PROPERTY G<br />

Po<strong>in</strong>ts : (i) ∞<br />

(ii) π∞.<br />

(iii) Equivalence classes of Θ under the action of elations with<br />

center ∞.<br />

(iv) Po<strong>in</strong>ts of P G(3, q) \ π∞.<br />

(v) Planes of P G(3, q)not <strong>in</strong>cident with ∞.<br />

(vi) Elements of Θ.<br />

L<strong>in</strong>es : (a) [∞].<br />

(b) L<strong>in</strong>es of P G(3, q) not <strong>in</strong> π∞ but <strong>in</strong>cident with ∞.<br />

(c) L<strong>in</strong>es of π∞ not <strong>in</strong>cident with ∞.<br />

(d) Rosetts of elliptic quadrics <strong>in</strong> Θ.<br />

(e) Triples (T , π, X), where T is a transversal of elliptic quadrics<br />

with base po<strong>in</strong>t-base plane pairs (∞, π∞) <strong>and</strong> (X, π).<br />

Incidence (i) : The po<strong>in</strong>t ∞ is <strong>in</strong>cident with [∞] <strong>and</strong> all l<strong>in</strong>es of type (b).<br />

(ii) : The po<strong>in</strong>t π∞is <strong>in</strong>cident with [∞]<strong>and</strong> all l<strong>in</strong>es of type (c).<br />

(iii) : An equivalence class E is <strong>in</strong>cident with [∞]<strong>and</strong> all rosettes<br />

conta<strong>in</strong>ed <strong>in</strong> E.<br />

(iv) : The po<strong>in</strong>t X ∈ P G(3, q) \ π∞ is <strong>in</strong>cident with the l<strong>in</strong>e<br />

〈X, ∞〉 of P G(3, q), <strong>and</strong> triples (T , π, X) where T<br />

is a transversal of ovoids <strong>in</strong> Θ with some base plane π = π∞<br />

<strong>and</strong> correspond<strong>in</strong>g base po<strong>in</strong>t X.<br />

(v) : The plane π, not <strong>in</strong>cident with ∞, is <strong>in</strong>cident with π ∩ π∞<br />

<strong>and</strong> with triples (T , π, X) where T is a transversal of elliptic<br />

quadrics <strong>in</strong> Θ, <strong>and</strong> (X, π) = (∞, π∞) is a base po<strong>in</strong>t-base plane<br />

pair of T .<br />

(vi) : the elliptic quadric O ∈ Θ is <strong>in</strong>cident with the rosette <strong>in</strong> Θ<br />

conta<strong>in</strong><strong>in</strong>g it <strong>and</strong> each triple (T , π, X) with O ∈ T .<br />

Then GQ(Θ) is a GQ of order (q, q 2 ).


15.7. PROP.(G) & TETRADIC SETS OF QUADRICS 705<br />

Proof. First we check the order of the <strong>in</strong>cidence structure of GQ(Θ). First<br />

we check that each l<strong>in</strong>e of GQ(Θ) is <strong>in</strong>cident with q + 1 po<strong>in</strong>ts of GQ(Θ).<br />

The l<strong>in</strong>es are as follows. The l<strong>in</strong>e [∞] conta<strong>in</strong>s the po<strong>in</strong>ts ∞, pi∞ <strong>and</strong> the<br />

q − 1 equivalence classes. A l<strong>in</strong>e ℓ of P G(3, q), not <strong>in</strong> pi∞, <strong>in</strong>cident with ∞<br />

conta<strong>in</strong>s the po<strong>in</strong>t ∞ <strong>and</strong> the q aff<strong>in</strong>e po<strong>in</strong>ts <strong>in</strong>cident with ℓ. A l<strong>in</strong>e m of π∞<br />

not <strong>in</strong>cident with ∞ conta<strong>in</strong>s the po<strong>in</strong>ts π∞ <strong>and</strong> the q planes through m. A<br />

l<strong>in</strong>e R, a rosette of elliptic quadrics, has po<strong>in</strong>ts the q ovoids <strong>in</strong> R, <strong>and</strong> the<br />

equivalence class E conta<strong>in</strong><strong>in</strong>g R. A l<strong>in</strong>e (T , π, X) has po<strong>in</strong>ts X, π <strong>and</strong> the<br />

q − 1 ovoids <strong>in</strong> the transversal T .<br />

The po<strong>in</strong>ts ∞ <strong>and</strong> π∞ are both clearly <strong>in</strong>cident with q 2 + 1 l<strong>in</strong>es. Each<br />

equivalence class E of Θ conta<strong>in</strong>s q 3 elliptic quadrics partitioned <strong>in</strong>to q 2<br />

rosettes. Together with [∞]this gives q 2 + 1 l<strong>in</strong>es <strong>in</strong>cident with E. If X ∈<br />

P G(3, q) \ π∞, then for each plane π, ∞ ∈ π <strong>and</strong> X ∈ π, there is a unique<br />

triple (T , π, X), where T is a transversal of elliptic quadrics <strong>in</strong> T . Together<br />

with the l<strong>in</strong>e 〈∞, X〉 this gives q 2 + 1 <strong>in</strong>cident l<strong>in</strong>es. A similar argument<br />

shows that a plane π with ∞ ∈ π is <strong>in</strong>cident with q 2 + 1 l<strong>in</strong>es. If O ∈ Θ,<br />

then for each X ∈ O \ {∞} there is a transversal of elliptic quadrics <strong>in</strong> Θ<br />

conta<strong>in</strong><strong>in</strong>g O <strong>and</strong> with base po<strong>in</strong>t X. Together with the unique rosette of<br />

elliptic quadrics <strong>in</strong> Θ conta<strong>in</strong><strong>in</strong>g O this gives q 2 + 1 <strong>in</strong>cident l<strong>in</strong>es.<br />

We now check those cases of the ma<strong>in</strong> theorem for f<strong>in</strong>ite GQ which are<br />

not straightforward. Suppose that E is an equivalence class of Θ <strong>and</strong> T a<br />

transversal of Θ. Then there is a unique elliptic quadric of T <strong>in</strong> E.<br />

Suppose that X is a po<strong>in</strong>t of P G(3, q) \ π∞. If R is a rosette of Θ not<br />

<strong>in</strong>cident with X <strong>in</strong> GQ(Θ), then s<strong>in</strong>ce the ovfoids of R partition the po<strong>in</strong>ts of<br />

P G(3, q)\π∞ there is an ovoid O ∈ R such that X ∈ O. We know that there<br />

is a unique transversal T conta<strong>in</strong><strong>in</strong>g O <strong>and</strong> with base po<strong>in</strong>t X, <strong>and</strong> if πS is<br />

the tangent plane of O at X, then (T , πX, X) is the unique l<strong>in</strong>e of GQ(Θ)<br />

<strong>in</strong>cident with X <strong>and</strong> meet<strong>in</strong>g R. Next suppose that (T , π ′ , X ′ ) is not <strong>in</strong>cident<br />

with X <strong>in</strong> GQ(Θ). If X ∈ π ′ , then there is a unique transversal with base<br />

po<strong>in</strong>t X <strong>and</strong> base plane π ′ . If X ∈ 〈X ′ , ∞〉, then this is the unique l<strong>in</strong>e of<br />

GQ(Θ) <strong>in</strong>cident with X <strong>and</strong> meet<strong>in</strong>g (T , π ′ , X ′ ). F<strong>in</strong>ally, if X ∈ π ′ ∪ 〈X ′ , ∞〉<br />

we know that the elements of T partition the set of such po<strong>in</strong>ts, so X is<br />

conta<strong>in</strong>ed <strong>in</strong> a unique element of T , <strong>and</strong> hence must be the base po<strong>in</strong>t of a<br />

unique transversal conta<strong>in</strong><strong>in</strong>g an element of T .<br />

Suppose that π is a plane of P G(3, q) not <strong>in</strong>cident with ∞. Let R be a<br />

rosette of ovoids of Θ. Then R is generated by the action of elations with<br />

center ∞ <strong>and</strong> axis π∞ on any of the elliptic quadrics of R. It follows that<br />

π is tangent to a unique element of R <strong>and</strong> so is the base plane of a unique


706 CHAPTER 15. PROPERTY G<br />

transversal with an elliptic quadric <strong>in</strong> R. Next suppose that (T , π ′ , X) is<br />

not <strong>in</strong>cident <strong>in</strong> GQ(Θ) with π. If X ∈ π, then there is a unique transversal<br />

with base plane π <strong>and</strong> base po<strong>in</strong>t X. If π ∩ π ′ ⊂ π∞, then this is the unique<br />

l<strong>in</strong>e of GQ(Θ) <strong>in</strong>cident with π <strong>and</strong> meet<strong>in</strong>g (T , π ′ , X). F<strong>in</strong>ally, if X ∈ π <strong>and</strong><br />

π ∩ π ′ ⊂ π∞, then π is tangent to a unique elliptic quadric of T <strong>and</strong> hence<br />

there is a unique transversal with base plane π <strong>and</strong> conta<strong>in</strong><strong>in</strong>g an elliptic<br />

quadric of T .<br />

Now suppose that O ∈ Θ. Let R be a rosette of Θ not conta<strong>in</strong><strong>in</strong>g O.<br />

If O is <strong>in</strong> the same equivalence class as the elliptic quadrics of R, then the<br />

unique rosette conta<strong>in</strong><strong>in</strong>g O is the unique l<strong>in</strong>e of GQ(Θ) <strong>in</strong>cident with O<br />

<strong>and</strong> meet<strong>in</strong>g R. If O is <strong>in</strong>equivalent to to ovoids <strong>in</strong> R, then by the proof<br />

of Cor. 15.4.5 there is a unique elliptic quadric of R meet<strong>in</strong>g O <strong>in</strong> exactly<br />

two po<strong>in</strong>ts <strong>and</strong> hence by Lemma 15.4.7 conta<strong>in</strong>ed <strong>in</strong> a transversal with O.<br />

Next suppose (T , π, X) is not <strong>in</strong>cident with O <strong>in</strong> GQ(Θ). If X ∈ O, then<br />

O is conta<strong>in</strong>ed <strong>in</strong> a unique transversal with base po<strong>in</strong>t X <strong>and</strong> base plane<br />

dist<strong>in</strong>ct from π. Similarly, if π is a tangent plane to O, then O is conta<strong>in</strong>ed<br />

<strong>in</strong> a unique transversal with base po<strong>in</strong>t π <strong>and</strong> base po<strong>in</strong>t dist<strong>in</strong>ct from X.<br />

F<strong>in</strong>ally, suppose that X ∈ O <strong>and</strong> that π is not a tangent plane to O. Now<br />

π ∩ O is a conic C not conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> the l<strong>in</strong>e 〈X, ∞〉 of P G(3, q) conta<strong>in</strong>s<br />

a unique po<strong>in</strong>t Y of O \ {∞} with Y = X. By Cor. 15.4.5 the q − 1 elliptic<br />

quadrics of T partition the q 2 − q − 2 po<strong>in</strong>ts of O \ (C ∪ {Y, ∞}) <strong>in</strong>to sets<br />

of size 0, 1, q or q + 1. There are only two ways <strong>in</strong> which this may be done.<br />

First, with one set of size 0 <strong>and</strong> q − 2 sets of size q + 1, <strong>in</strong> other words O<br />

is <strong>in</strong> a rosette with a unique element of T <strong>and</strong> <strong>in</strong> a transversal with none.<br />

Secondly, with one set of size 1, one set of size q <strong>and</strong> q − 3 sets of size q + 1,<br />

<strong>in</strong> other words O is <strong>in</strong> a transversal with a unique element of T <strong>and</strong> <strong>in</strong> a<br />

rosette with none. In either case there is a unique l<strong>in</strong>e of GQ(Θ) <strong>in</strong>cident<br />

with O <strong>and</strong> meet<strong>in</strong>g (T , π, X).<br />

Corollary 15.7.2. Let Θ be a tetradic set of elliptic quadrics of P G(3, q)<br />

<strong>and</strong> GQ(Θ) the associated GQ of order (q, q 2 ). Then GQ(Θ) is a dual flock<br />

GQ.<br />

Corollary 15.7.3. Let Θ be a tetradic set of elliptic quadrics of P G(3, q)<br />

with respect to (∞, π∞) <strong>and</strong> let GQ(Θ) ∗ the correspond<strong>in</strong>g flock GQ. Then<br />

GQ(Θ) ∗ is an EGQ with base po<strong>in</strong>t [∞] ∗ <strong>and</strong> the elation group about [∞] ∗<br />

is <strong>in</strong>duced by the group of P G(3, q) of order q 5 generated by all elations with<br />

center ∞ <strong>and</strong> all elations with axis π∞.


15.7. PROP.(G) & TETRADIC SETS OF QUADRICS 707<br />

Proof. Any coll<strong>in</strong>eation of P G(3, q) fix<strong>in</strong>g the set Θ <strong>in</strong>duces a coll<strong>in</strong>eation of<br />

GQ(Θ) <strong>and</strong> by Lemma 6.5.9 the group G of coll<strong>in</strong>eations of P G(3, q) of order<br />

q 5 generated by all elations with center ∞ <strong>and</strong> all elations with axis π∞ fixes<br />

Θ. Calculation shows that this group fixes the equivalence classes of Θ <strong>and</strong><br />

that for O ∈ Θ the group GO acts regularly on the po<strong>in</strong>ts of O \ {∞}. Hence<br />

the <strong>in</strong>duced coll<strong>in</strong>eation group of GQ(Θ) ∗ fixes [∞] ∗ po<strong>in</strong>twise <strong>and</strong> fixes no<br />

po<strong>in</strong>t not coll<strong>in</strong>ear with [∞] ∗ , <strong>and</strong> is thus an elation group about [∞] ∗ .<br />

Theorem 15.7.4. Let S = (P, B, I) be a GQ of order (s, s 2 ) satisfy<strong>in</strong>g<br />

Property (G) at a pair of coll<strong>in</strong>ear po<strong>in</strong>ts (X, Y ). If s is odd, then S is the<br />

dual of a flock GQ. If s is even <strong>and</strong> all ovoids Oz of SXY for Z ∈ P\(X ⊥ ∪Y ⊥ )<br />

are elliptic quadrics, then we have the same conclusion.<br />

Proof. Let SXY be the projective three-space constructed from the pair (X, Y ).<br />

Hence s is a prime power q. Let Θ be the set of ovoids <strong>in</strong> SXY ∼ = P G(3, q)<br />

associated with S. If q is odd, then Θ is a set of elliptic quadrics. If q is even,<br />

then this is also the case by hypothesis. WE will show that Θ is a tetradic<br />

set of elliptic quadrics <strong>in</strong> P G(3, q).<br />

The po<strong>in</strong>ts of XY \ {X, Y } divide the elliptic quadrics of Θ <strong>in</strong>to q −<br />

1 equivalence classes. Two elliptic quadrics <strong>in</strong> the same equivalence class<br />

<strong>in</strong>tersect <strong>in</strong> either 1 or q +1 po<strong>in</strong>ts, while two elliptic quadrics of Θ <strong>in</strong> dist<strong>in</strong>ct<br />

equivalence classes <strong>in</strong>tersect <strong>in</strong> either 2 or q+2 po<strong>in</strong>ts. We will show that two<br />

elliptic quadrics <strong>in</strong> different equivalence classes cannot have an <strong>in</strong>tersection<br />

conta<strong>in</strong><strong>in</strong>g a conic.<br />

Without loss of generality suppose that the elliptic quadrics of Θ have<br />

common po<strong>in</strong>t ∞ = (0, 1, 0, 0) <strong>and</strong> common tangent plane [1, 0, 0, 0]. If q is<br />

odd, let O ∈ Θ with O = {(1, s 2 − ηt 2 , s, t) : s, t ∈ Fq} ∪ {(0, 1, 0, 0)}, where<br />

η is a fixed non-square <strong>in</strong> Fq. let C ⊂ O be the conic C = {(1, s 2 , s, 0) :<br />

s ∈ Fq} ∪ {(0, 1, 0, 0)}. Let O ′ be a second elliptic quadric conta<strong>in</strong><strong>in</strong>g C.<br />

By the proof of Lemma (giv<strong>in</strong>g bowtie relation) we may assume that O ′ =<br />

{(1, s 2 −ηt 2 +bt, s+ct, dt) : s, t ∈ Fq}∪{∞} for b, c, d ∈ Fq, d = 0. It follows<br />

that |O ∩ O ′ | = k + 1 where k is the number of solution pairs (s, t) to<br />

2cst = ηd 2 t 2 − c 2 t 2 − ηt 2 + bt. (15.4)<br />

Any (s, 0) is a solution pair correspond<strong>in</strong>g to the po<strong>in</strong>ts C \ {(0, 1, 0, 0)}.<br />

If O ′ ∈ Θ <strong>and</strong> is <strong>in</strong>equivalent to O, then it must be that |O ∩ O ′ | = q + 2<br />

<strong>and</strong> there is a unique solution to Eq. 15.4 with t = 0. Under the assumption<br />

that t = 0, Eq. 15.4 becomes 2cs = ηd 2 t − c 2 t − ηt + b. If c = 0 we have


708 CHAPTER 15. PROPERTY G<br />

ηd 2 t − ηt + b = 0, to which there are either no solutios, or a unique solutio<strong>in</strong><br />

for t <strong>and</strong> q solution pairs (s, t), so we may suppose that c = 0. Hence we<br />

may write<br />

s = ηd2t − c2t − ηt + b<br />

,<br />

2c<br />

which yields a solution <strong>in</strong> s for each choice of t, that is q solution pairs <strong>in</strong><br />

total.<br />

If q is even, let O = {(1, s 2 +st+ρt 2 , s, t) : s, t ∈ Fq}∪{∞} with ρ a fixed<br />

element of Fq such that tr(ρ) = 1. let C ⊂ O be the conic {(1, s 2 , s, 0) : s ∈<br />

Fq} ∪ {∞}. Let O ′ be a second elliptic quadric conta<strong>in</strong><strong>in</strong>g C which, by the<br />

proof of Theorem (two part theorem) we may assume is O ′ = {(1, s 2 + st +<br />

ρt 2 +bt, s+ct, dt) : s, t ∈ Fq}∪{∞} for b, c, d ∈ Fq, d = 0. For |O∩O ′ | = q+2<br />

we need a unique solution to (ρ + c 2 + cd + ρd 2 )t + (d + 1)s + b = 0 with<br />

t = 0. However, the existence of one such solution implies the existence of<br />

at least q such solutions.<br />

Now the group of an elliptic quadric is transitive on pairs (P, C) where C<br />

isa conic section of the elliptic quadric <strong>and</strong> P ∈ C. Hence we may conclude<br />

that if two elliptic quadrics of Θ conta<strong>in</strong> a common conic, then they are <strong>in</strong><br />

the same equivalence class.<br />

Let C be a conic <strong>in</strong> the plane π conta<strong>in</strong><strong>in</strong>g ∞ such that π = π∞ <strong>and</strong><br />

π ∩ π∞ is a tangent to C. Then C is conta<strong>in</strong>ed <strong>in</strong> at most q elements of Θ<br />

s<strong>in</strong>ce <strong>in</strong> S the set of po<strong>in</strong>ts C \ {X} conta<strong>in</strong>s a triad <strong>and</strong> so has at most q + 1<br />

centers, one of which is X. Count<strong>in</strong>g the number of such conics <strong>and</strong> not<strong>in</strong>g<br />

that |Θ| = q 3 (q − 1) we conclude that each such conic is conta<strong>in</strong>ed <strong>in</strong> exactly<br />

q elliptic quadrics of Θ.<br />

Now let {A, B, C, ∞} be a 4-arc <strong>in</strong> a plane π of P G(3, q) such that π =<br />

π∞. The conic C is conta<strong>in</strong>ed <strong>in</strong> q elliptic quadrics O1, . . . , Oq of Θ all of<br />

which must be <strong>in</strong> the same equivalence class. Hence O1, . . . , Oq <strong>in</strong>tersect <strong>in</strong><br />

exactly C <strong>and</strong> partition the po<strong>in</strong>ts of P G(3, q)4 \ (π∞ ∪ π). thus for any<br />

5-cap {A, B, C, Z, ∞} of P G(3, q) with A, B, C, Z ∈ π∞, ∞ ∈ 〈A, B, C〉 <strong>and</strong><br />

Z ∈ 〈A, B, C〉, there is a unique elliptic quadric on {A, B, C, Z}. Hence Θ<br />

is a tetradic set of elliptic quadrics of P G(3, q) with respect to (∞, π∞) <strong>and</strong><br />

by Cor. 15.7.2 S is the correspond<strong>in</strong>g dual flock GQ.


15.8. THE ⊲⊳ EQUIVALENCE RELATION 709<br />

15.8 The ⊲⊳ Equivalence Relation<br />

Until further notice we assume that q = 2 e .<br />

Recall the follow<strong>in</strong>g. If a = (a01, a23, a02, a31, a03, a12) is a po<strong>in</strong>t of P G(5, q),<br />

we have ϖ(a) = a01a23 + a02a31 + a03a12. Then if ϖ(a) = 0, (i.e., a ∈ H5) we<br />

know that [a] ∩ H5 = [a01, a23, a02, a31, a03, a12] ∩ H5 is a nons<strong>in</strong>gular quadric<br />

isomorphic to Q(4, q). Hence it is a GQ of order (q, q). If we put<br />

⎛<br />

⎞<br />

Ca =<br />

so C −1<br />

a<br />

⎜<br />

⎝<br />

= 1<br />

ϖ(a)<br />

0 a01 a02 a03<br />

−a01 0 a12 −a31<br />

−a02 −a12 0 a23<br />

−a03 a31 −a23 0<br />

⎛<br />

⎜<br />

⎝<br />

⎟<br />

⎠ ,<br />

0 −a23 −a31 −a12<br />

a23 0 −a03 a02<br />

a31 a03 0 −a01<br />

a12 −a02 a01 0<br />

⎞<br />

⎟<br />

⎠ ,<br />

then Ca is skew-symmetric <strong>and</strong> determ<strong>in</strong>es a symplectic polarity whose absolute<br />

l<strong>in</strong>es are exactly the l<strong>in</strong>es of P G(3, q) that Kle<strong>in</strong>-correspond to the<br />

po<strong>in</strong>ts of the GQ [a] ∩ H5. Hence these l<strong>in</strong>es of P G(3, q) are the l<strong>in</strong>es of the<br />

l<strong>in</strong>ear complex<br />

Aa = {ℓ ∈ P G(3, q) : [a] · G(ℓ) T = 0}.<br />

Let ((∞), π∞) be an <strong>in</strong>cident po<strong>in</strong>t-plane pair. To help us study tetradic<br />

sets of elliptic quadrics (<strong>and</strong> more generally, tetradic sets of ovoids), we<br />

<strong>in</strong>troduce an equivalence relation ⊲⊳ on the set of symplectic polarities that<br />

<strong>in</strong>terchange (∞) <strong>and</strong> π∞. The l<strong>in</strong>es through (∞) ly<strong>in</strong>g <strong>in</strong> the plane π∞<br />

Kle<strong>in</strong>-correspond to the po<strong>in</strong>ts of a l<strong>in</strong>e α ly<strong>in</strong>g <strong>in</strong> H5. So def<strong>in</strong><strong>in</strong>g ⊲⊳ on the<br />

symplectic polarities <strong>in</strong>terchang<strong>in</strong>g (∞) <strong>and</strong> π∞ is equivalent to def<strong>in</strong><strong>in</strong>g an<br />

equivalence relation ⊲⊳ on the set of nons<strong>in</strong>gular hyperplane <strong>in</strong>tersections of<br />

H5 that conta<strong>in</strong> the l<strong>in</strong>e α. For two such GQ(4, q) L1 <strong>and</strong> L2 we say L1 ⊲⊳ L2<br />

provided L1 <strong>and</strong> L2 conta<strong>in</strong> a quadratic cone with vertex be<strong>in</strong>g some po<strong>in</strong>t<br />

of α.<br />

Theorem 15.8.1. The relation ⊲⊳ def<strong>in</strong>ed on nons<strong>in</strong>gular hyperplane sections<br />

of H5 that conta<strong>in</strong> the l<strong>in</strong>e α is an equivalence relation.<br />

Proof. It is clear that ⊲⊳ is reflexive <strong>and</strong> symmetric, so the proof amounts to<br />

show<strong>in</strong>g that it is transitive. This is equivalent to the follow<strong>in</strong>g: If L1 <strong>and</strong> L2


710 CHAPTER 15. PROPERTY G<br />

share a cone at the po<strong>in</strong>t p of α, <strong>and</strong> L2 <strong>and</strong> L3 share a cone at the po<strong>in</strong>t q of α,<br />

then there is some po<strong>in</strong>t r of α for which L1 <strong>and</strong> L3 share a cone at r. Without<br />

loss of generality we may assume that (∞) = (1, 0, 0, 0) <strong>and</strong> π∞ = [0, 1, 0, 0].<br />

So the l<strong>in</strong>es of π∞ through (∞) are of the form ℓ = 〈(1, 0, 0, 0), (0, 0, z, w)〉,<br />

<strong>and</strong> they Kle<strong>in</strong> correspond to the po<strong>in</strong>ts of the form (0, 0, z, 0, w, 0), which<br />

constitute the l<strong>in</strong>e α = 〈(0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0)〉.<br />

The group of homographies leav<strong>in</strong>g both H5 <strong>and</strong> α <strong>in</strong>variant is doubly<br />

transitive on the po<strong>in</strong>ts of α. Hence we may suppose L1 <strong>and</strong> L2 share a cone<br />

at p = (0, 0, 0, 0, 1, 0), <strong>and</strong> L2 <strong>and</strong> L3 share a cone at ℓλ = (0, 0, 1, 0, −λ, 0).<br />

We need to show that L1 <strong>and</strong> L3 share a cone at some po<strong>in</strong>t ℓµ.<br />

By hypothesis (1, 0, 0, 0) · Ca is a constant times [0, 1, 0, 0], so a01 = 0 <strong>and</strong><br />

a02 = a03 = 0. Dually, C −1<br />

a · [0, 1, 0, 0] T = (1, 0, 0, 0) T , so a23 = 0. Without<br />

loss of generality we may put a01 = 1, a23 = a = 0, a31 = b, a12 = c. Hence<br />

a = (1, a, 0, b, 0, c) with a = 0. These a give all the symplectic polarities that<br />

<strong>in</strong>terchange (∞) <strong>and</strong> π∞.<br />

Next we want to determ<strong>in</strong>e the set of all a for which [a] ∩ H5 conta<strong>in</strong>s<br />

a specific cone centered at (0, 0, 0, 0, 1, 0) <strong>and</strong> conta<strong>in</strong><strong>in</strong>g α. All such cones<br />

are projectively equivalent, so we pick a particular one. Actually, we pick<br />

a = (1, −1, 0, 0, 0, 0) <strong>and</strong> see which cone at (0, 0, 0, 0, 1, 0) it has.<br />

First, what cone does [1, −1, 0, 0, 0, 0]∩H5 have centered at (0, 0, 0, 0, 1, 0)?<br />

This is the set of po<strong>in</strong>ts <strong>in</strong> [1, −1, 0, 0, 0, 0] ∩ H5 that are orthogonal to<br />

(0, 0, 0, 0, 1, 0), i.e., <strong>in</strong> (0, 0, 0, 0, 1, 0) ⊥ = [0, 0, 0, 0, 0, 1]. The po<strong>in</strong>t y =<br />

(y0, . . . , y5) ∈ [0, 0, 0, 0, 0, 1] ∩ [1, −1, 0, 0, 0, 0] if <strong>and</strong> only if y =<br />

(y1, y1, y2, y3, y4, 0). And this y is <strong>in</strong> H5 if <strong>and</strong> only if y2 1 +y2y3 = 0. If y3 = 0,<br />

we get the l<strong>in</strong>e α, so without loss of generality we may put y3 = −1. Then<br />

we get the cone generators (all but α):<br />

ℓt = 〈(0, 0, 0, 0, 1, 0), (t, t, t 2 , −1, 0, 0)〉, t ∈ Fq.<br />

Next we ask: given q = (0, 0, 1, 0, −λ, 0) ∈ α \ {p = (0, 0, 0, 0, 1, 0)}, what<br />

cone does [1, −1, 0, 0, 0, 0]∩H5 have that is centered at (0, 0, 1, 0, −λ, 0)? This<br />

is the set of po<strong>in</strong>ts of the form y = (y1, y1, y2, λy5, y4, y5) with y 2 1 + λy2y5 +<br />

y4y5 = 0. If y5 = 0, then y1 = 0 <strong>and</strong> we get the l<strong>in</strong>e α aga<strong>in</strong>. So we may<br />

assume that y5 = −1. Then add −y2(0, 0, 1, 0, −λ, 0) to (y1, y1, y2, −λ, y4, −1)<br />

to get the cone generators (all but α):<br />

mλ(t) = 〈(0, 0, 1, 0, −λ, 0), (t, t, 0, −λ, t 2 , −1)〉, t ∈ Fq.<br />

Now we know what cone [1, −1, 0, 0, 0, 0] ∩ H5 has at each po<strong>in</strong>t of α.


15.8. THE ⊲⊳ EQUIVALENCE RELATION 711<br />

Next we determ<strong>in</strong>e which [1, a, 0, b, 0, c] ∩ H5 conta<strong>in</strong> the cone with generators<br />

ℓt. Then (t, t, t 2 , −1, 0, 0) ∈ [1, a, 0, b, 0, c] for all t ∈ Fq if <strong>and</strong> only if<br />

a = −1 <strong>and</strong> b = 0. This says<br />

{[1, −1, 0, 0, 0, c] : c ∈ Fq}<br />

is the complete set of hyperplanes whose <strong>in</strong>tersection with H5 conta<strong>in</strong>s the<br />

cone conta<strong>in</strong>ed by [1, −1, 0, 0, 0, 0] ∩ H5 at the po<strong>in</strong>t (0, 0, 0, 0, 1, 0).<br />

The next step is to determ<strong>in</strong>e the hyperplanes [1, a, 0, b, 0, c] that conta<strong>in</strong><br />

the cone with po<strong>in</strong>ts (t, t, 0, −λ, t 2 , −1), t ∈ Fq. It is easy to check that<br />

{[1, −1, 0, b, 0, −λb] : b ∈ Fq}<br />

is the set of hyperplanes whose <strong>in</strong>tersections conta<strong>in</strong> the cone shared with<br />

[1, −1, 0, 0, 0, 0] ∩ H5 at the po<strong>in</strong>t (0, 0, 1, 0, −λ, 0).<br />

F<strong>in</strong>ally, suppose we have L1 = [1, −1, 0, 0, 0, c]∩H5, c = 0, shar<strong>in</strong>g a cone<br />

with [1, −1, 0, 0, 0, 0]∩H5 at (0, 0, 0, 0, 1, 0), <strong>and</strong> L2 = [1, −1, 0, b, 0, −λb]∩H5<br />

shar<strong>in</strong>g a cone with [1, −1, 0, 0, 0, 0]∩H5 at (0, 0, 1, 0, −λ, 0). Do [1, −1, 0, 0, 0, c]∩<br />

H5 <strong>and</strong> [1, −1, 0, b, 0, −λb] ∩ H5 share a cone at some po<strong>in</strong>t (0, 0, 1, 0, −µ, 0)?<br />

Calculat<strong>in</strong>g po<strong>in</strong>ts of<br />

[1, −1, 0, 0, 0, 0] ∩ [1, −1, 0, b, 0, λb] ∩ [0, 0, 0, 1, 0, −µ] ∩ H5<br />

leads to µ = λ + cb −1 . Now it is easy to check that<br />

[1, −1, 0, 0, 0, 0] ∩ [1, −1, 0, b, 0, −λb] ∩ [0, 0, 0, 1, 0, −µ] ∩ H5<br />

is a conical cone. This completes a proof that ⊲⊳ is an equivalence relation<br />

on the set of q 2 (q − 1) nons<strong>in</strong>gular hyperplane sections of H5 that conta<strong>in</strong><br />

the l<strong>in</strong>e α. Given one such hyperplane section L1, at each of the q + 1 po<strong>in</strong>ts<br />

of α it shares its cone there with q − 1 other hyperplane sections. So each<br />

equivalence class conta<strong>in</strong>s q 2 members <strong>and</strong> there are q −1 equivalence classes.<br />

For example, the class conta<strong>in</strong><strong>in</strong>g [1, −1, 0, 0, 0, 0]∩H5 consists of all sections<br />

of the form [1, −1, 0, b, 0, c]. The complete set of all nons<strong>in</strong>gular hyperplane<br />

sections conta<strong>in</strong><strong>in</strong>g α consists of those of the form [1, a, 0, b, 0, c] ∩ H5 with<br />

a, b, c ∈ Fq, a = 0.<br />

We shall also use ⊲⊳ to denote the correspond<strong>in</strong>g equivalence relation on<br />

the set of symplectic polarities <strong>in</strong>terchang<strong>in</strong>g ∞ <strong>and</strong> π∞. Consequently the<br />

equivalence relation ⊲⊳ partitions the symplectic polarities of P G(3, q) that


712 CHAPTER 15. PROPERTY G<br />

<strong>in</strong>terchange ∞ <strong>and</strong> π∞ <strong>in</strong>to q − 1 equivalence classes of q 2 elements each. We<br />

now explore this equivalence relation on the polarities.<br />

With a little more care we can show that<br />

[1, a, 0, b1, 0, c1]∩H5 ⊲⊳ [1, a, 0, b2, 0, c2]∩H5 at the po<strong>in</strong>t (0, 0, b1−b2, 0, c1−<br />

c2, 0). Let ℓ = 〈(1, 0, 0, 0), (0, 0, b1 − b2, c1 − c2)〉. Then G(ℓ) = (0, 0, b1 −<br />

b2, 0, c1 −c2, 0). Let φi be the symplectic polarity of P G(3, q) associated with<br />

ai = (1, a, 0, bi, 0, ci), i = 1, 2. Let Ci = Cai be the correspond<strong>in</strong>g skewsymmetric<br />

matrix. Then φ1 ◦ φ2 (do φ1 first) maps a po<strong>in</strong>t x to the plane<br />

(xC1) T ≡ C1xT , then maps this to the po<strong>in</strong>t xC1 · C −1<br />

2 . Here we have<br />

⎛<br />

⎞<br />

⎛<br />

⎞<br />

0 1 0 0<br />

0 −1 −b2/a −c2/a<br />

⎜<br />

C1 = ⎜ −1 0 c1 −b1 ⎟<br />

⎜<br />

⎟<br />

⎝ 0 −c1 0 a ⎠ , <strong>and</strong> C−1 2 = ⎜ 1 0 0 0 ⎟<br />

⎝ b2/a 0 0 −1/a ⎠<br />

0 b1 −a 0<br />

c2/a 0 1 0<br />

.<br />

Hence<br />

C1 · C −1<br />

2 =<br />

⎛<br />

⎜<br />

⎝<br />

1 0 0 0<br />

c1b2−c2b1 1 a b2−b1<br />

a<br />

c2−c1<br />

a<br />

c2 − c1 0 1 0<br />

b1 − b2 0 0 1<br />

⎞<br />

⎟<br />

⎠ ,<br />

from which C1 · C −1<br />

−1 2 is obta<strong>in</strong>ed by <strong>in</strong>terchang<strong>in</strong>g the subscripts 1 <strong>and</strong><br />

2.<br />

It is now easy to check that φ1 ◦ φ2 fixes each po<strong>in</strong>t on ℓ (<strong>and</strong> only those<br />

po<strong>in</strong>ts) as well as each plane conta<strong>in</strong><strong>in</strong>g ℓ (<strong>and</strong> only those planes). We say<br />

that φ1 <strong>and</strong> φ2 are equivalent about ℓ.<br />

Now let ℓ be a l<strong>in</strong>e through (∞) but not ly<strong>in</strong>g <strong>in</strong> π∞. Without loss<br />

of generality we have ℓ = 〈(1, 0, 0, 0), (0, 1, z, w)〉. Let φ1 <strong>and</strong> φ2 be <strong>in</strong>equivalent<br />

symplectic polarities <strong>in</strong>terchang<strong>in</strong>g (∞) <strong>and</strong> π∞ associated with<br />

a1 = (1, a1, 0, b1, 0, c1) <strong>and</strong> a2 = (1, a2, 0, b2, 0, c2), respectively, where a1 = a2.<br />

S<strong>in</strong>ce ℓ passes through (∞), ℓφi ⊂ π∞. We want to f<strong>in</strong>d ℓ so that ℓφ1 φ2 = ℓ is<br />

some l<strong>in</strong>e m ⊂ π∞. It is rout<strong>in</strong>e to determ<strong>in</strong>e<br />

φi : (0, 1, z, w) ↦→ [−1, −ciz + biw, ci − aiw, −bi + aiz],<br />

from which it is easy to solve for unique z <strong>and</strong> w, <strong>and</strong> we f<strong>in</strong>d<br />

ℓ = 〈(1, 0, 0, 0), (0, a1 − a2, b1 − b2, c1 − c2)〉.


15.8. THE ⊲⊳ EQUIVALENCE RELATION 713<br />

A rout<strong>in</strong>e computation shows that<br />

m = π∞ ∩ ℓ φi = 〈(a1c2 − a2c1, 0, a1 − a2, 0), (a2b1 − a1b2, 0, 0, a1 − a2)〉.<br />

Compute<br />

⎛<br />

Ca1 · C −1<br />

a2 =<br />

⎜<br />

⎝<br />

1 0 0 0<br />

a2<br />

a2<br />

1<br />

0<br />

0<br />

a1<br />

0<br />

a2<br />

0<br />

0<br />

c1b2−b1c2<br />

a1c2−a2c1<br />

b1a2−b2a1<br />

a2<br />

c2−c1<br />

a2<br />

a1<br />

a2<br />

⎞<br />

⎟<br />

⎠ .<br />

It is now easy to check that φ1 ◦ φ2 fixes each po<strong>in</strong>t on ℓ, each plane<br />

conta<strong>in</strong><strong>in</strong>g ℓ, each po<strong>in</strong>t on m <strong>and</strong> each plane conta<strong>in</strong><strong>in</strong>g m. Moreover, a<br />

little more work shows that these are the only po<strong>in</strong>ts <strong>and</strong> planes fixed by<br />

φ1 ◦ φ2.<br />

This completes a proof of the follow<strong>in</strong>g lemma.<br />

Lemma 15.8.2. Let φ1, φ2 be two (of the q 2 (q − 1)) dist<strong>in</strong>ct symplectic<br />

polarities <strong>in</strong>terchang<strong>in</strong>g (∞) <strong>and</strong> π∞ as above. If φ1 <strong>and</strong> φ2 are equivalent,<br />

then φ1 ◦ φ2 fixes the po<strong>in</strong>ts <strong>and</strong> planes <strong>in</strong>cident with a unique l<strong>in</strong>e ℓ for<br />

which (∞) ∈ ℓ ⊂ π∞. The two polarities are said to be equivalent about<br />

ℓ. Moreover, if ℓ is any l<strong>in</strong>e of π∞ through the po<strong>in</strong>g ∞, there are exactly q<br />

dist<strong>in</strong>ct symplectic polarities <strong>in</strong>terchang<strong>in</strong>g ∞ <strong>and</strong> π∞ <strong>and</strong> pairwise equivalent<br />

about ℓ.<br />

If φ1 <strong>and</strong> φ2 are not equivalent, then there exist skew l<strong>in</strong>es ℓ <strong>and</strong> m with<br />

(∞) ∈ ℓ ⊂ π∞ <strong>and</strong> (∞) ∈ m ⊂ π∞ such that φ1 ◦ φ2 fixes all the po<strong>in</strong>ts <strong>and</strong><br />

planes <strong>in</strong>cident with either ℓ or m, <strong>and</strong> ℓ φ1 = ℓ φ2 = m.<br />

Lemma 15.8.3. Let Ω, Ω ′ ∈ Θ be such that {X, Y, Z} ⊂ Ω ∩ Ω ′ <strong>and</strong> ∞ ∈<br />

〈X, Y, Z〉 = π. Then Ω <strong>and</strong> Ω ′ def<strong>in</strong>e dist<strong>in</strong>ct polarities equivalent about the<br />

l<strong>in</strong>e ℓ = π ∩ π∞. Moreover, Ω ∩ Ω ′ is an oval.<br />

Proof. By Lemma 15.3.7 there are q elements Ω = Ω1, Ω ′ = Ω2, . . . , Ωq of Θ<br />

that conta<strong>in</strong> {X, Y, Z} <strong>and</strong> meet pairwise <strong>in</strong> O = Ω ∩ π. We also know that<br />

the Ωi partition the po<strong>in</strong>ts of P G(3, q) \ (π ∪ π∞).<br />

Consider a plane π ′ such that ∞ ∈ π ′ , m = π ′ ∩ π∞ = ℓ <strong>and</strong> X, Y ∈ π ′ .<br />

The sets O − i = (π′ ∩ Ωi) \ π partition the q 2 − q po<strong>in</strong>ts of π ′ \ (π ∪ π∞) <strong>in</strong>to<br />

q sets of size q − 1. Let P be the po<strong>in</strong>t 〈X, Y 〉 ∩ π ′ . Let n be any l<strong>in</strong>e of<br />

π ′ through P but different from 〈P, ∞〉. Then n conta<strong>in</strong>s P , a po<strong>in</strong>t of m,<br />

<strong>and</strong> q − 1 other po<strong>in</strong>ts of π ′ partitioned by the O −<br />

i <strong>in</strong>to sets of size 0, 1 or 2.<br />

S<strong>in</strong>ce q − 1 is odd, the l<strong>in</strong>e n is a tangent to at least one of the O −<br />

i . S<strong>in</strong>ce


714 CHAPTER 15. PROPERTY G<br />

m must also be a tangent to the oval Ωi ∩ π ′ , the <strong>in</strong>tersection n ∩ µ must be<br />

the nucleus of the oval Ωi ∩ π ′ . Consider<strong>in</strong>g the q l<strong>in</strong>es on P different from<br />

π ′ ∩ π, we see that the ovals Ωi ∩ π ′ , i = 1, . . . , q have dist<strong>in</strong>ct nuclei on m.<br />

This is true for any l<strong>in</strong>e m = ℓ with ∞ ∈ m ⊂ π∞. Fix such an m. Let o<br />

be a l<strong>in</strong>e through ∞ <strong>in</strong> the plane π but different form ℓ. Then o is a secant<br />

to O, but we may suppose that X, Y, Z are labeled so that X, Y are not <strong>in</strong> o.<br />

Let π ′ be the plane conta<strong>in</strong><strong>in</strong>g o <strong>and</strong> m. Let P = 〈X, Y 〉 ∩ o. Let M1, . . . , Mq<br />

be the dist<strong>in</strong>ct po<strong>in</strong>ts of π∞ \ {∞} on m labeled so that Mi is the nucleus of<br />

Ωi ∩π ′ . Let φi be the polarity def<strong>in</strong>ed by Ωi. It follows that Mi is mapped by<br />

φi to the plane π ′ , which is then mapped by φj to Mj. Hence φi ◦ φj cannot<br />

fix any po<strong>in</strong>t of π∞ not on ℓ. It follows by Lemma 15.8.2 that no two of the<br />

polarities φi can be <strong>in</strong>equivalent <strong>and</strong> further must be dist<strong>in</strong>ct <strong>and</strong> equivalent<br />

about ℓ.<br />

Lemma 15.8.4. Let X, Y ∈ Σ \ π∞, <strong>and</strong> let π be the plane 〈∞, X, Y 〉.<br />

Suppose that X, Y ∈ Ω, Ω ′ ∈ Θ. Then either Ω ∩ Ω ′ = π ∩ Ω or Ω ∩ π <strong>and</strong><br />

Ω ′ ∩ π have dist<strong>in</strong>ct nuclei. In particular this means that Ω <strong>and</strong> Ω ′ must<br />

def<strong>in</strong>e dist<strong>in</strong>ct polarities not equivalent about the l<strong>in</strong>e ℓ.<br />

Proof. Suppose that Ω∩Ω ′ = Ω∩π. By Lemma 15.3.7 Ω∩Ω ′ must be exactly<br />

{X, Y, ∞}. It follows that there are exactly q − 1 ovoids Ω = Ω1, Ω ′ =<br />

Ω2, . . . , Ωq−1 of Θ meet<strong>in</strong>g π <strong>in</strong> ovals O1, . . . , Oq−1 which <strong>in</strong>tersect pairwise<br />

<strong>in</strong> exactly {X, Y, ∞} <strong>and</strong> partition the po<strong>in</strong>ts of π not on the l<strong>in</strong>es π∞ ∩ π,<br />

〈∞, X〉, 〈∞, Y 〉 <strong>and</strong> 〈X, Y 〉. Let Z = 〈X, Y 〉 ∩ π ∩ π∞ <strong>and</strong> let P be any<br />

po<strong>in</strong>t of (π ∩ π∞ \ {∞, Z}. If ℓ is a l<strong>in</strong>e through P meet<strong>in</strong>g 〈X, Y 〉 <strong>in</strong> a po<strong>in</strong>t<br />

different from all of X, Y, Z, then the Oi partition the q − 3 (odd) po<strong>in</strong>ts of<br />

ℓ \ {P, 〈∞, X〉, 〈∞, Y 〉, 〈X, Y 〉}, <strong>and</strong> hence ℓ is tangent to at least one of the<br />

Oi (s<strong>in</strong>ce each <strong>in</strong>tersection of ℓ with an oval has 0, 1 or 2 po<strong>in</strong>ts). But s<strong>in</strong>ce<br />

π ∩ π∞ is a tangent <strong>and</strong> ℓ is tangent to Oi, their <strong>in</strong>tersection P must be the<br />

nucleus. It follows that each of the q − 1 po<strong>in</strong>ts P must be the nucleus of<br />

exactly one of the Oi so they all have different nuclei all on the l<strong>in</strong>e ℓ. (So at<br />

least the two associated polarities are not equivalent about the l<strong>in</strong>e ℓ.)<br />

Lemma 15.8.5. If Ω, Ω ′ ∈ Θ are such that Ω <strong>and</strong> Ω ′ def<strong>in</strong>e the same polarity<br />

of Σ, then |Ω ∩ Ω ′ | ≤ 2.<br />

Proof. By Lemma 15.8.3, Ω∩Ω ′ may not conta<strong>in</strong> an oval. Then by Lemma 15.8.4,<br />

Ω ∩ Ω ′ may have at most two po<strong>in</strong>ts, one of which is ∞, of course.<br />

Lemma 15.8.6. If Ω, Ω ′ def<strong>in</strong>e equivalent, dist<strong>in</strong>ct polarities, then |Ω∩Ω ′ | ≤<br />

q + 1.


15.8. THE ⊲⊳ EQUIVALENCE RELATION 715<br />

Proof. Let ℓ be a l<strong>in</strong>e of π∞ <strong>in</strong>cident with ∞ such that the polarities def<strong>in</strong>ed<br />

by Ω <strong>and</strong> Ω ′ are equivalent about ℓ. Then either Ω ∩ Ω ′ is an oval <strong>in</strong> a plane<br />

about ℓ, <strong>in</strong> which case by Lemma 15.8.3 we know there is a set of q ovoids<br />

Ω = Ω1, Ω ′ = Ω2, . . . , Ωq meet<strong>in</strong>g pairwise <strong>in</strong> that oval, or by Lemma 15.8.4<br />

each plane about ℓ, not π∞, conta<strong>in</strong>s at most one po<strong>in</strong>t of (Ω ∩ Ω ′ ) \ {∞}.<br />

In either case |Ω ∩ Ω ′ | ≤ q + 1.<br />

Lemma 15.8.7. Let Ω ∈ Θ, let π b e a plane <strong>in</strong>cident with ∞ dist<strong>in</strong>ct from<br />

π∞, <strong>and</strong> put O = π ∩ Ω. Let Ω = Ω1, Ω2, . . . , Ωq be the q elements of Θ<br />

conta<strong>in</strong><strong>in</strong>g O, <strong>and</strong> for π ′ a plane conta<strong>in</strong><strong>in</strong>g π ∩ π∞, dist<strong>in</strong>ct from π <strong>and</strong> π∞<br />

let Oi = Ωi∩π ′ . Let the q elements of Θ conta<strong>in</strong><strong>in</strong>g Oi be Ω1 i = Ωi, Ω2 i , . . . , Ωqi<br />

<strong>and</strong> let E = {Ω j<br />

i : i, j ∈ {1, 2, . . . , q}}. Then E has the follow<strong>in</strong>g properties.<br />

(1) The set of polarities def<strong>in</strong>ed by elements of E is the set of q dist<strong>in</strong>ct<br />

polarities equivalent with the polarity def<strong>in</strong>ed by Ω about the l<strong>in</strong>e Π∩π∞, <strong>and</strong><br />

each polarity is def<strong>in</strong>ed by q elements of E.<br />

(2) Let π ′′ be any plane on π ∩ π∞, not π∞, then the elements of E<br />

<strong>in</strong>tersect π ′′ <strong>in</strong> q dist<strong>in</strong>ct ovals which meet pairwise <strong>in</strong> ∞ <strong>and</strong> <strong>and</strong> with q<br />

elements of E conta<strong>in</strong><strong>in</strong>g each of these ovals.<br />

(3) Elements of E def<strong>in</strong><strong>in</strong>g a fixed polarity meet pairwise <strong>in</strong> ∞ <strong>and</strong> hence<br />

def<strong>in</strong>e a rosette with base po<strong>in</strong>t ∞ <strong>and</strong> base plane π∞.<br />

Proof. Let Ω ∈ Θ, <strong>and</strong> let π be any plane conta<strong>in</strong><strong>in</strong>g ∞ but dist<strong>in</strong>ct from<br />

π∞. If Ω = Ω1, Ω2, . . . , Ωq are the q elements of Θ conta<strong>in</strong><strong>in</strong>g O = π ∩Ω, then<br />

by Lemma 15.8.3 Ω1, . . . , Ωq def<strong>in</strong>e q dist<strong>in</strong>ct polarities all equivalent about<br />

the l<strong>in</strong>e π ∩ π∞. Now let π ′ be any plane conta<strong>in</strong><strong>in</strong>g π ∩ π∞ but different<br />

from π <strong>and</strong> π∞, <strong>and</strong> let Oi = Ωi ∩ π ′ . Let the q elements of Θ conta<strong>in</strong><strong>in</strong>g Oi<br />

be Ω1 i = Ωi, Ω2 i , . . . , Ω q<br />

i <strong>and</strong> put E = {Ωji<br />

: 1 ≤ i, j ≤ q}. So for each fixed i<br />

the polarities def<strong>in</strong>ed by all q Ω j<br />

i are dist<strong>in</strong>ct but equivalent about π ∩ π∞.<br />

But the Ω1 i , 1 ≤ i ≤ q are all equivalent about the l<strong>in</strong>e π ∩ π∞. Hence the<br />

polarities def<strong>in</strong>ed by the Ω j<br />

i <strong>in</strong> E are all equivalent about the l<strong>in</strong>e π ∩ π∞ <strong>and</strong><br />

thus must be the q dist<strong>in</strong>ct polarities equivalent with the polarity def<strong>in</strong>ed by<br />

Ω about the l<strong>in</strong>e π ∩ π∞, <strong>and</strong> each polarity is def<strong>in</strong>ed by q elements of E.<br />

This completes a proof of part (1).<br />

Consider a plane π ′′ on π ′ ∩ π∞, not π∞ nor π ′ . for fixed i ∈ {1, . . . , q}<br />

we have Ω j<br />

i ∩ Ωki = Oi ⊂ π ′ for j, k ∈ {1, . . . , q}, j = k, so the ovoids Ω j<br />

i ,<br />

j ∈ {1, . . . , q}, <strong>in</strong>tesect π ′′ <strong>in</strong> ovals (O j<br />

i )′′ meet<strong>in</strong>g pairwise <strong>in</strong> ∞. Consider<br />

two such sets {(O j<br />

1) ′′ : j = 1, 2, . . . , q} <strong>and</strong> {(O j<br />

i )′′ : j = 1, 2, . . . , q}, for i = 1,<br />

whose elements each partition the po<strong>in</strong>ts of π ′′ \π∞. Without loss of generality<br />

are labelled such that (by Lemma 15.8.4) we have<br />

we may suppose that the O j<br />

i


716 CHAPTER 15. PROPERTY G<br />

that either (a) (O j<br />

1 )′′ = (O j<br />

i )′′ for 1 ≤ j ≤ q, or (b) |((O j<br />

1 )′′ ∩(Ok i )′′ )\{∞}| = 1<br />

for all j, k ∈ {1, . . . , q}. Now suppose that π ′′ = π. In π we have that<br />

(O 1 1 )′′ = (O 1 i<br />

)) = Ω ∩ π for i ∈ {1, . . . , q}. Hence we must have case (a). If<br />

π ′′ = π, then s<strong>in</strong>ce Ω 1 i ∩ Ω1 j = Ω ∩ π for i = j, it follows that the ovoids Ω1 i ,<br />

k = 1, 2, . . . , q, <strong>in</strong>tersect pairwise on π ′′ <strong>in</strong> only ∞, so we aga<strong>in</strong> have case (a),<br />

complet<strong>in</strong>g a proof of part (2).<br />

At this po<strong>in</strong>t we know that two elements of E must meet <strong>in</strong> either 1 or<br />

q + 1 po<strong>in</strong>ts, so by Lemma 15.8.5 the q elements of E def<strong>in</strong><strong>in</strong>g the same<br />

polarity must meet pairwise <strong>in</strong> ∞ <strong>and</strong> form a rosette with base po<strong>in</strong>t ∞ <strong>and</strong><br />

base plane π∞.<br />

Lemma 15.8.8. Let φ be a polarity of P G(3, q) such that φ <strong>in</strong>terchanges ∞<br />

<strong>and</strong> π∞. Then φ is <strong>in</strong>duced by exactly q element of Θ which form a rosette<br />

with base po<strong>in</strong>t ∞ <strong>and</strong> base plane π∞.<br />

Proof. If φ is <strong>in</strong>duced by one element of Θ, then by Lemma 15.8.7 <strong>and</strong><br />

Lemma 15.8.5 it is <strong>in</strong>duced by exactly q elements of Θ form<strong>in</strong>g a rosette.<br />

S<strong>in</strong>ce |Θ|/q is the number of polarities <strong>in</strong>terchang<strong>in</strong>g ∞ <strong>and</strong> π∞ every such<br />

polarity is <strong>in</strong>duced by an element of Θ.<br />

Theorem 15.8.9. Let Ω, Ω ′ ∈ Θ <strong>and</strong> let φ(Ω), φ(Ω ′ ) be the polarities def<strong>in</strong>ed<br />

by Ω <strong>and</strong> Ω ′ , respectively. If, abus<strong>in</strong>g notation, we def<strong>in</strong>e Ω ⊲⊳ Ω ′ provided<br />

φ(Ω) ⊲⊳ φ(Ω ′ ), then ⊲⊳ def<strong>in</strong>es an equivalence relation on Θ with the follow<strong>in</strong>g<br />

properties.<br />

(1) The set Θ is partitioned by ⊲⊳ <strong>in</strong>to q − 1 equivalence classes each of<br />

size q 3 .<br />

(2) Each equivalence class is partitioned <strong>in</strong>to q 2 rosettes.<br />

(3) If Ω ⊲⊳ Ω ′ , then Ω ∩ Ω ′ is either {∞} or an oval.<br />

(4) Let π be a plane, not π∞, conta<strong>in</strong><strong>in</strong>g ∞, <strong>and</strong> E an equivalence class<br />

of Θ under ⊲⊳. The elements of E <strong>in</strong>tersect π <strong>in</strong> a set L of q 2 ovals such that<br />

the <strong>in</strong>cidence structure with po<strong>in</strong>t set π \ π∞, l<strong>in</strong>es the ovals <strong>in</strong> L plus the<br />

l<strong>in</strong>es of π <strong>in</strong>cident with ∞, not π ∩ π∞, <strong>and</strong> natural <strong>in</strong>cidence, is an aff<strong>in</strong>e<br />

plane of order q.<br />

Proof. (1) <strong>and</strong> (2) follow from Lemmas 15.8.7 <strong>and</strong> 15.8.8.<br />

(3) Suppose that Ω ⊲⊳ Ω ′ <strong>and</strong> Ω ∩ Ω ′ = {∞}. The polarities φ(Ω) <strong>and</strong><br />

φ(Ω ′ ) are equivalent about some l<strong>in</strong>e ℓ with ∞ ∈ ℓ ⊂ π∞. S<strong>in</strong>ce there are<br />

q polarities equivalent with φ(Ω) <strong>and</strong> φ(Ω ′ ) about ℓ there are exactly q 2<br />

elements of the equivalence class of Θ def<strong>in</strong>ed by Ω def<strong>in</strong><strong>in</strong>g one of these<br />

polarities, <strong>and</strong> we apply Lemma 15.8.7.


15.8. THE ⊲⊳ EQUIVALENCE RELATION 717<br />

(4) From Lemma 15.8.7 we know that the elements of an equivlence class<br />

of Θ <strong>in</strong>tersect π <strong>in</strong> exactly q 2 ovals. (There are q 3 elements of Θ, each of the<br />

oval <strong>in</strong>tersections <strong>in</strong> at least q elements of Θ - but also at most q of them<br />

from earlier - so exactly q.) Let O = Ω ∩ π <strong>and</strong> O ′ = Ω ′ ∩ π for Ω, Ω ′ ∈ E<br />

be two such dist<strong>in</strong>ct ovals. If φ(Ω) <strong>and</strong> φ(Ω ′ ) are equivalent about π ∩ π∞,<br />

then by Lemma 15.8.7 it follows that O ∩ O ′ = {∞}. If φ(Ω) <strong>and</strong> φ(Ω ′ )<br />

are equivalent about some l<strong>in</strong>e m = π ∩ π∞, then by Lemma 15.8.7 the set<br />

Ω ∩ Ω ′ is an oval <strong>in</strong> a plane π ′ on m. It follows that O ∩ O ′ = π ′ ∩ π ∩ O<br />

so |(O ∩ O ′ ) \ {∞}| = 1. Also, each l<strong>in</strong>e of π <strong>in</strong>cident with ∞, not π ∩ π∞,<br />

<strong>in</strong>tersects each oval Ω ∩ π, Ω ∈ E, <strong>in</strong> exactly one po<strong>in</strong>t other than ∞. From<br />

the above it follows that the <strong>in</strong>cidence structure <strong>in</strong> (4) is an aff<strong>in</strong>e plane of<br />

order q.<br />

Theorem 15.8.10. Let Ω, Ω ′ ∈ Θ. Then |Ω ∩ Ω ′ | ≤ q + 2.<br />

Proof. In view of Lemma 15.3.6 we need only prove that |Ω ∩ Ω ′ | = q + 3. So<br />

suppose |Ω∩Ω ′ | = q +3. By Lemma 15.3.5 the q +2 l<strong>in</strong>es jo<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t ∞<br />

to the q + 2 other po<strong>in</strong>ts of Ω∩Ω ′ must form a q + 2-arc <strong>in</strong> the quotient space<br />

P G(3, q)/∞. This means that each plane <strong>in</strong>cident with ∞ conta<strong>in</strong>s either 0<br />

or 2 po<strong>in</strong>ts of (Ω ∩ Ω ′ ) \ {∞}, <strong>and</strong> Ω <strong>and</strong> Ω ′ def<strong>in</strong>e <strong>in</strong>equivalent polarities by<br />

Lemma 15.8.6.<br />

Let R be the rosette of ovoids of Θ conta<strong>in</strong><strong>in</strong>g Ω. Let π be a plane<br />

<strong>in</strong>cident with ∞, not π∞. By Theorem 15.8.9 the equivalence class of Ω<br />

def<strong>in</strong>es an aff<strong>in</strong>e plane A on the po<strong>in</strong>t set π \ π∞ with the <strong>in</strong>tersection of the<br />

elements of R with π form<strong>in</strong>g a parallel class of A. Lemma 15.8.3 implies<br />

that (Ω ′ ∩ π) \ {∞} is a q-arc <strong>in</strong> A. Moreover, with the addition of the<br />

parallel class of A consist<strong>in</strong>g of the l<strong>in</strong>es of π, not π ∩ π∞, on ∞, we obta<strong>in</strong><br />

an oval <strong>in</strong> A, the projective completion of A. Further, the parallel class of<br />

A correspond<strong>in</strong>g to R is not the nucleus of the oval <strong>in</strong> A. Hence for each<br />

Ω ∈ R we have that |(π ∩Ω ∩Ω ′ )\{∞}| is either 0 or 2, <strong>and</strong> (Ω∩Ω ′ )\{∞} is<br />

a hyperoval <strong>in</strong> P G(3, q)/∞. Hence |Ω ∩ Ω ′ | = q + 3. The elements of R must<br />

partition the po<strong>in</strong>ts of Ω ′ \ {∞}, forc<strong>in</strong>g |Ω ′ | = 1 + q(q + 2) = q 2 + 2q + 1, a<br />

contradiction.<br />

Lemma 15.8.11. Let X, Y, Z be three dist<strong>in</strong>ct, non-coll<strong>in</strong>ear po<strong>in</strong>ts of P G(3, q)\<br />

π∞ not coplanar with ∞. Then there are exactly q −1 ovoids of Θ conta<strong>in</strong><strong>in</strong>g<br />

{X, Y, Z}, one from each equivalence class.<br />

Proof. Let π = 〈X, Y, ∞〉 <strong>and</strong> let ℓ be a l<strong>in</strong>e of π <strong>in</strong>cident with ∞ but not<br />

with X nor Y . Let W = ℓ ∩ 〈X, Y 〉. If A ∈ ℓ \ {W, ∞}, then there is


718 CHAPTER 15. PROPERTY G<br />

a unique element of Θ conta<strong>in</strong><strong>in</strong>g the tetrad {X, Y, Z, A}. Hence there are<br />

q − 1 ovoids of Θ conta<strong>in</strong><strong>in</strong>g X, Y, Z, which, by Theorem 15.8.9 (3), are <strong>in</strong><br />

dist<strong>in</strong>ct equivalence classes.<br />

Lemma 15.8.12. Let Ω1 <strong>and</strong> Ω2 be <strong>in</strong>equivalent ovoids of Θ with |Ω1 ∩Ω2| ≥<br />

3. Then |Ω1 ∩ Ω2| = q + 2.<br />

Proof. Consider fixed X, Y ∈ (Ω1∩Ω2)\{∞}, X = y. There are q2 −q triples<br />

{X, Y, Z} such that X, Y, Z ⊂ Ω1 <strong>and</strong> ∞ ∈ 〈X, Y, Z〉. By Lemma 15.8.11<br />

each such triple is conta<strong>in</strong>ed <strong>in</strong> a unique element of the equivalence class of<br />

Ω2.<br />

We know that X, Y ∈ Ω2 <strong>and</strong> that any other ovoid Ω ′ 2 ∈ [Ω2] with<br />

X, Y ∈ Ω ′ 2 meets Ω2 <strong>in</strong> po<strong>in</strong>ts conta<strong>in</strong>ed <strong>in</strong> a plane on ∞ which must be<br />

〈X, Y, ∞〉. Further, it must be that Ω2 ∩ Ω ′ 2 = Ω2 ∩ 〈X, Y, ∞〉. There are<br />

exactly q elements of [Ω2] conta<strong>in</strong><strong>in</strong>g Ω2 ∩ 〈X, Y, ∞〉.<br />

Now count pairs (Ω ′ 2, {X, Y, Z}) where Ω ′ 2 ∈ [Ω2] <strong>and</strong> X, Y, Z are dist<strong>in</strong>ct<br />

po<strong>in</strong>ts of Ω ′ 2 . From above we know that the count is <strong>in</strong> act q2 − q. However,<br />

we also have that |Ω1 ∩ Ω ′ 2 | ≤ q + 2, <strong>and</strong> hence there are at most q − 1<br />

such triples {X, Y, Z} <strong>and</strong> q such Ω ′ 2. Hence the count is bounded above<br />

by q(q − 1) = q2 − q. It follows that |W1 ∩ Ω ′ 2 | = q + 2 <strong>and</strong> certa<strong>in</strong>ly<br />

|W1 ∩ Ω2| = q + 2.<br />

Corollary 15.8.13. If Ω1 <strong>and</strong> Ω2 are <strong>in</strong>equivalent ovoids of Θ, then |Ω1 ∩<br />

Ω2| = 2 or q + 2.<br />

Proof. We show that |Ω1 ∩ Ω2| = 1 is impossible. Consider the rosette R of<br />

ovoids <strong>in</strong> the equivalence class [Ω2] conta<strong>in</strong><strong>in</strong>g Ω2. The ovoid Ω1 <strong>in</strong>tersects<br />

each of the q ovoids of the rosette R <strong>in</strong> 1, 2 or q + 2 po<strong>in</strong>ts. The elements of<br />

R also partition the po<strong>in</strong>ts of P G(3, q)\π∞. Hence the q 2 po<strong>in</strong>ts of Ω1 \{∞}<br />

are partitioned <strong>in</strong>to q sets of size 0, 1, or q + 1. Suppose there are a, b <strong>and</strong><br />

c, respectively, of these k<strong>in</strong>ds of sets, so a, b, c are non-negative <strong>in</strong>tegers for<br />

which a + b + c = q <strong>and</strong> a · 0 + b · 1 + c · (q + 1) = q 2 . From the second<br />

equation subtract q times the first to get c = a · q + b(q − 1). S<strong>in</strong>ce a, b, c ≤ q,<br />

clearly a = 0. Then b = 1 <strong>and</strong> c = q − 1. This says there are q − 1 elements<br />

of R meet<strong>in</strong>g Ω1 <strong>in</strong> q + 2 po<strong>in</strong>ts <strong>and</strong> a unique one meet<strong>in</strong>g Ω1 <strong>in</strong> exactly 2<br />

po<strong>in</strong>ts.<br />

Lemma 15.8.14. Let Ω ∈ Θ <strong>and</strong> let E be an equivalence class of Θ such<br />

that Ω ∈ E. If X ∈ Ω \ {∞}, then there is a unique Ω ′ ∈ E such that<br />

Ω ∩ Ω ′ = {X, ∞}.


15.8. THE ⊲⊳ EQUIVALENCE RELATION 719<br />

Proof. For fixed X ∈ Ω \ {∞} the number of pairs (Y, Z) with Y, Z ∈ Ω<br />

<strong>and</strong> Y = Z such that ∞ ∈ 〈X, Y, Z〉 is (q 2 − q)(q 2 − q). By Lemma 15.8.11<br />

each triple {X, Y, Z} is conta<strong>in</strong>ed <strong>in</strong> a unique element of E. Further, each<br />

of the q 2 rosettes of E conta<strong>in</strong>s a unique ovoid on the po<strong>in</strong>t X. If such an<br />

ovoid Ω ′ <strong>in</strong>tersects Ω <strong>in</strong> q + 2 po<strong>in</strong>ts, then we have (q(q − 1) pairs (Y, Z) with<br />

Y, Z ∈ Ω ∩ Ω ′ <strong>and</strong> Y = Z such that ∞ ∈ 〈X, Y, Z〉. If on the other h<strong>and</strong>,<br />

|Ω ∩ Ω ′ | = 2, then there are no such pairs (Y, Z).<br />

Hence it followsthat there are q 2 −1 ovoids <strong>in</strong> E conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> meet<strong>in</strong>g<br />

Ω <strong>in</strong> q + 2 po<strong>in</strong>ts <strong>and</strong> a unique ovoid <strong>in</strong> E conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> meet<strong>in</strong>g Ω <strong>in</strong> 2<br />

po<strong>in</strong>ts.<br />

Lemma 15.8.15. Let Ω ∈ Θ <strong>and</strong> X ∈ Ω \ {∞}. The q − 2 ovoids meet<strong>in</strong>g Ω<br />

<strong>in</strong> exactly {X, ∞} also meet pairwise <strong>in</strong> exactly {X, ∞} <strong>and</strong> have a common<br />

tangent plane at X. Thus together with Ω they form a transversal.<br />

Proof. Let πX be the tangent plane to Ω at X. For Y ∈ P G(3, q) \ (π∞ ∪<br />

πX ∪ 〈∞, X〉 ∪ Ω) count pairs (Z, Ω ′ ) with Z ∈ Ω \ {X, ∞},Ω ′ ∈ Θ <strong>and</strong><br />

{X, Y, Z, ∞} ⊂ Ω ′ . Suppose that Z ∈ Ω \ 〈X, Y, ∞〉. Then there are q 2 − q<br />

choices for Z <strong>and</strong> {X, Y, Z} is conta<strong>in</strong>ed <strong>in</strong> q −1 ovoids, giv<strong>in</strong>g (q 2 −q)(q −1)<br />

pairs.<br />

Now suppose thqt Z ∈ Ω ∩ 〈X, Y, ∞〉 <strong>and</strong> let O = Ω ∩ 〈X, Y, ∞〉. Note<br />

that Y ∈ O. S<strong>in</strong>ce Y ∈ πX it follows that 〈X, Y 〉 is not tangent to O <strong>and</strong><br />

hence meets O <strong>in</strong> a po<strong>in</strong>t of O \ {X}. Similarly, 〈Y, ∞〉 meets O <strong>in</strong> a second<br />

po<strong>in</strong>t, leav<strong>in</strong>g q − 3 possible choices for Z. For each such choice of Z the<br />

po<strong>in</strong>ts X, Y, Z def<strong>in</strong>e a unique oval O ′ <strong>in</strong> ∠X, Y, ∞〉 conta<strong>in</strong><strong>in</strong>g ∞ <strong>and</strong> with<br />

tangent π∞ ∩〈X, Y, ∞〉. There are q ovoids of Θ conta<strong>in</strong><strong>in</strong>g O ′ giv<strong>in</strong>g q(q −3)<br />

pairs (Z, Ω ′ ) withZ ∈ Ω ∩ 〈X, Y, ∞〉.<br />

So <strong>in</strong> total we have (q 2 − q)(q − 1) + q(q − 3) = q(q − 2)(q + 1) pairs<br />

(Z, O ′ ).<br />

Count<strong>in</strong>g these pairs <strong>in</strong> a second way we consider the number of ovoids<br />

of Θ conta<strong>in</strong><strong>in</strong>g {X, Y }. In 〈∞, X, Y 〉 there are q − 1 ovals on X, Y, ∞ with<br />

tangent 〈∞, X, Y 〉 ∩ π∞, which means there are q(q − 1) ovoids conta<strong>in</strong><strong>in</strong>g<br />

{X, Y }, q <strong>in</strong> each class. If such an ovoid is <strong>in</strong> the same class as Ω, then we<br />

know that the possible <strong>in</strong>tersection sizes with Ω are 1 <strong>and</strong> q +1, so they must<br />

all be q +1, s<strong>in</strong>ce the <strong>in</strong>tersection is at least {∞, X}. This gives q(q −1) pairs<br />

(Z, Ω ′ ). There are q(q − 2) ovoids conta<strong>in</strong><strong>in</strong>g {X, ∞} which are <strong>in</strong>equivalent<br />

to Ω, <strong>and</strong> by the earlier counts there are exactly q(q − 2)(q + 1) − q(q − 1) =<br />

q(q 2 − 2q − 1) pairs (Z, Ω ′ ) where Ω ′ is of this type. In this case |Ω ∩ Ω ′ | = 2


720 CHAPTER 15. PROPERTY G<br />

or q + 2, so each Ω ′ gives rise to 0 or q pairs (Z, Ω ′ ), respectively. From this<br />

it follows that there must be q 2 − 2q − 1 ovoids <strong>in</strong>tersect<strong>in</strong>g Ω <strong>in</strong> q + 2 po<strong>in</strong>ts<br />

<strong>and</strong> (q 2 − 2q) − (q 2 − 2q − 1) = 1 <strong>in</strong>tersect<strong>in</strong>g Ω <strong>in</strong> the two po<strong>in</strong>ts X, ∞.<br />

Hence there is a unique ovoid of Θ meet<strong>in</strong>g Ω <strong>in</strong> exactly {X, ∞} <strong>and</strong><br />

conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t Y ∈ P G(3, q) \ (π∞ ∪ πX ∪ 〈∞, X〉 ∪ O).<br />

In the proof of Lemma 15.8.14 we saw that there are q − 2 ovoids of Θ<br />

meet<strong>in</strong>g Ω <strong>in</strong> exactly {X, ∞}. By the above, these q − 2 ovoids plus Ω cover<br />

the q 3 − a 2 − q + 1 = (q 2 − 1)(q − 1) po<strong>in</strong>ts of P G(3, q) \ (π∞ ∪ πX ∪ 〈∞, X〉).<br />

It follows that these ovoids partition the po<strong>in</strong>tset <strong>in</strong>to q −2 sets of size q 2 −1.<br />

Hence the ovoids meet pairwise <strong>in</strong> exactly {X, ∞} <strong>and</strong> have πX as tangent<br />

plane at X, thus form<strong>in</strong>g a transversal of ovoids.<br />

Lemma 15.8.16. Let (X, π) be an <strong>in</strong>cident po<strong>in</strong>t-plane pair of P G(3, q)<br />

such that X ∈ π∞ <strong>and</strong> ∞ ∈ π. Then there are exactly q − 1 ovoids of Θ<br />

conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> with tangent plane π at X. Further, these q − 1 ovoids<br />

form a transversal with one ovoid from each equivalence class of Θ.<br />

Proof. S<strong>in</strong>ce each rosette of ovoids conta<strong>in</strong>ed <strong>in</strong> Θ is generated by the action<br />

on one ovoid of the elations of P G(3, q) with center ∞ <strong>and</strong> axis π∞, it follows<br />

that each plane not on ∞ is tangent to exactly one ovoid of a given rosette.<br />

There are (q − 1)q2 rosettes of ovoids <strong>in</strong> Θ, so (q − 1)q2 ovoids of Θ with<br />

π as a tangent plane at one of the po<strong>in</strong>s of π \ π∞. By Lemma 15.8.15 if π is<br />

tangent to one ovoid of Θ at a po<strong>in</strong>t, then it is tangent to the q −1 ovoids of a<br />

transversal of Θ at that po<strong>in</strong>t. S<strong>in</strong>ce two ovoids <strong>in</strong> the same equivalence class<br />

have <strong>in</strong>tersection size 1 or q + 1, it follows that the ovoids of the transversal<br />

are one from each equivalence of class of Θ.<br />

Suppose that for X ∈ π \ π∞ there are two transversals Ω1, . . . Ωq−1 <strong>and</strong><br />

Ω ′ 1 , . . . , Ω′ q−1<br />

conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> with tangent plane π. We <strong>in</strong>vestigate how<br />

Ω ′ 1 <strong>in</strong>tersects Ω1, . . . , Ωq−1. In fact Ω1, . . . , Ωq−1 partition the q 2 − 1po<strong>in</strong>ts of<br />

Ω ′ 1 \ {X, ∞} <strong>in</strong>to q − 1 sets of size q or q − 1, which is a contradiction.<br />

Hence there can be only one transversal of ovoids of Θ with X as a base<br />

po<strong>in</strong>t <strong>and</strong> π as the correspond<strong>in</strong>g base plane. S<strong>in</strong>ce there are q 2 (q − 1) ovoids<br />

with tangent plane π, there are q 2 transversals of Θ with base plane π <strong>and</strong> a<br />

unique such transversal with base po<strong>in</strong>t X for each X ∈ π \ π∞.<br />

Lemma 15.8.17. Let T = {Ω1, . . . , Ωq−1} be a transversal of ovoids of Θ<br />

with base po<strong>in</strong>t X <strong>and</strong> base plane π, X ∈ π∞ <strong>and</strong> ∞ ∈ π. Then every plane<br />

π ′ such that X, ∞, π∞∩π ⊂ π ′ is tangent to a unique element of Θ. Further,<br />

any two elements of T have only π <strong>and</strong> π∞ as common tangent planes.


15.9. PROP.(G) & TETRADIC SETS OF OVOIDS 721<br />

Proof. Let π ′ be a plane such that X, ∞, π∞ ∩ π ⊂ π ′ . The elements of<br />

Θ partition the q 2 − q − 1 po<strong>in</strong>ts of π ′ \ (π∞ ∪ π ∪ 〈∞, X〉), which can only<br />

be <strong>in</strong>to q − 2 conics <strong>and</strong> one s<strong>in</strong>gle po<strong>in</strong>t. That is, π ′ is tangent to a unique<br />

element of Θ.<br />

There are (q 2 − 1)(q − 1) such planes, which is the same as the number of<br />

pairs (Ωi, π ′′ ) where π ′′ is tangent to Ωi ∈ Θ at a po<strong>in</strong>t not ∞ nor X. Hence<br />

no two elements of Θ have a common tangent not at ∞ or X. S<strong>in</strong>ce a plane<br />

of P G(3, q) (dist<strong>in</strong>ct from π∞ <strong>and</strong> π) on π∞ ∩ π or on ∞ cannot be a tangent<br />

plane to an elliptic quadric of Θ, the lemma is proved.<br />

15.9 Prop.(G) & Tetradic Sets of <strong>Ovoids</strong><br />

In this section we use the properties of a tetradic set of ovoids of P G(3, q)<br />

to prove the existence of a GQ of order (q, q 2 ) with Property (G) at a flag.<br />

The construction of the GQ follows Barwick, Brown <strong>and</strong> Penttila [BBP04]<br />

<strong>and</strong> J. A. Thas [Th99] to prove the existence of a GQ of order (q, q 2 ) with<br />

Property (G) at a flag. The construction of the GQ follows Barwick, Brown<br />

<strong>and</strong> Penttila [BBP04] <strong>and</strong> J. A. Thas [Th99].<br />

Theorem 15.9.1. Let Θ be a tetradic set of ovoids of P G(3, q) with respect<br />

to the <strong>in</strong>cident po<strong>in</strong>t-plane pair (∞, π∞). Then let GQ(Θ) be the follow<strong>in</strong>g<br />

<strong>in</strong>cidence structure.


722 CHAPTER 15. PROPERTY G<br />

Po<strong>in</strong>ts : (i) ∞<br />

(ii) π∞.<br />

(iii) Equivalence classes of Θ<br />

(iv) Po<strong>in</strong>ts of P G(3, q) \ π∞.<br />

(v) Planes of P G(3, q)not <strong>in</strong>cident with ∞.<br />

(vi) Elements of Θ.<br />

L<strong>in</strong>es : (a) [∞].<br />

(b) L<strong>in</strong>es of P G(3, q) not <strong>in</strong> π∞ but <strong>in</strong>cident with ∞.<br />

(c) L<strong>in</strong>es of π∞ not <strong>in</strong>cident with ∞.<br />

(d) Rosettes of Θ.<br />

(e) Transversals of Θ.<br />

Incidence (i) : The po<strong>in</strong>t ∞ is <strong>in</strong>cident with [∞] <strong>and</strong> all l<strong>in</strong>es of type (b).<br />

(ii) : The po<strong>in</strong>t π∞is <strong>in</strong>cident with [∞]<strong>and</strong> all l<strong>in</strong>es of type (c).<br />

(iii) : An equivalence class E is <strong>in</strong>cident with [∞]<strong>and</strong> all rosettes<br />

conta<strong>in</strong>ed <strong>in</strong> E.<br />

(iv) : The po<strong>in</strong>t X ∈ P G(3, q) \ π∞ is <strong>in</strong>cident with the l<strong>in</strong>e<br />

〈X, ∞〉 of P G(3, q), <strong>and</strong> transversals T for which X<br />

is a base po<strong>in</strong>t.<br />

(v) : The plane π, not <strong>in</strong>cident with ∞, is <strong>in</strong>cident with π ∩ π∞<br />

<strong>and</strong> with transversals T for which π is a base plane.<br />

(vi) An ovoid of T is <strong>in</strong>cident with each rosette <strong>and</strong><br />

transversal conta<strong>in</strong><strong>in</strong>g it.<br />

Then GQ(Θ) is a GQ of order (q, q 2 ).


15.9. PROP.(G) & TETRADIC SETS OF OVOIDS 723<br />

T<br />

[∞]<br />

X π O ∈ T<br />

〈X, ∞〉 π ∩ π∞ Rosette <strong>in</strong> E<br />

conta<strong>in</strong><strong>in</strong>g O<br />

(∞) π∞ E = [O]<br />

Incidence diagram for GQ(Θ)<br />

Proof. We check the order of the <strong>in</strong>cidence structure of GQ(Θ). First we<br />

check that each l<strong>in</strong>e of GQ(Θ) is <strong>in</strong>cident with q + 1 po<strong>in</strong>ts of GQ(Θ). The<br />

l<strong>in</strong>es are as follows. The l<strong>in</strong>e [∞] conta<strong>in</strong>s the po<strong>in</strong>ts ∞, π∞ <strong>and</strong> the q − 1<br />

equivalence classes. A l<strong>in</strong>e ℓ of P G(3, q), not <strong>in</strong> pi∞, <strong>in</strong>cident with ∞ conta<strong>in</strong>s<br />

the po<strong>in</strong>t ∞ <strong>and</strong> the q aff<strong>in</strong>e po<strong>in</strong>ts <strong>in</strong>cident with ℓ. A l<strong>in</strong>e m of π∞ not<br />

<strong>in</strong>cident with ∞ conta<strong>in</strong>s the po<strong>in</strong>ts π∞ <strong>and</strong> the q planes through m. A<br />

l<strong>in</strong>e R, a rosette of ovoids <strong>in</strong> Θ, has as po<strong>in</strong>ts the q ovoids <strong>in</strong> R, <strong>and</strong> the<br />

equivalence class E conta<strong>in</strong><strong>in</strong>g R. A l<strong>in</strong>e T has as po<strong>in</strong>ts its base po<strong>in</strong>t X<br />

<strong>and</strong> base plane π as well as the the q − 1 ovoids <strong>in</strong> the transversal T .<br />

The po<strong>in</strong>ts ∞ <strong>and</strong> π∞ are both clearly <strong>in</strong>cident with q 2 + 1 l<strong>in</strong>es. Each<br />

equivalence class E of Θ conta<strong>in</strong>s q 3 ovoids partitioned <strong>in</strong>to q 2 rosettes. Together<br />

with [∞]this gives q 2 + 1 l<strong>in</strong>es <strong>in</strong>cident with E. If X ∈ P G(3, q) \ π∞,<br />

then for each plane π, ∞ ∈ π <strong>and</strong> X ∈ π, there is a unique triple (T , π, X),<br />

where T is a transversal of ovoids <strong>in</strong> T . Together with the l<strong>in</strong>e 〈∞, X〉 these<br />

q 2 transversals give q 2 + 1 <strong>in</strong>cident l<strong>in</strong>es. A similar argument shows that a<br />

plane π with ∞ ∈ π is <strong>in</strong>cident with q 2 + 1 l<strong>in</strong>es. If Ω ∈ Θ, then for each<br />

X ∈ Ω \ {∞} there is a transversal of ovoids <strong>in</strong> Θ conta<strong>in</strong><strong>in</strong>g Ω <strong>and</strong> with<br />

base po<strong>in</strong>t X. Together with the unique rosette of ovoids <strong>in</strong> Θ conta<strong>in</strong><strong>in</strong>g Ω<br />

this gives q 2 + 1 <strong>in</strong>cident l<strong>in</strong>es.<br />

We now check those cases of the ma<strong>in</strong> theorem for f<strong>in</strong>ite GQ which are<br />

not straightforward. Suppose that E is an equivalence class of Θ <strong>and</strong> T a<br />

transversal of Θ. Then there is a unique ovoid of T <strong>in</strong> E. Suppose that<br />

X is a po<strong>in</strong>t of P G(3, q) \ π∞. If R is a rosette of Θ not <strong>in</strong>cident with X<br />

<strong>in</strong> GQ(Θ), then s<strong>in</strong>ce the ovoids of R partition the po<strong>in</strong>ts of P G(3, q) \ π∞


724 CHAPTER 15. PROPERTY G<br />

there is an ovoid Ω ∈ R such that X ∈ Ω. We know that there is a unique<br />

transversal T conta<strong>in</strong><strong>in</strong>g Ω <strong>and</strong> with base po<strong>in</strong>t X, <strong>and</strong> if πX is the tangent<br />

plane of Ω at X, then T is the unique l<strong>in</strong>e of GQ(Θ) <strong>in</strong>cident with X <strong>and</strong><br />

meet<strong>in</strong>g R. Next suppose that T is not <strong>in</strong>cident with X <strong>in</strong> GQ(Θ). If X ∈ π ′ ,<br />

then there is a unique transversal with base po<strong>in</strong>t X <strong>and</strong> base plane π ′ . If<br />

X ∈ 〈X ′ , ∞〉, then this is the unique l<strong>in</strong>e of GQ(Θ) <strong>in</strong>cident with X <strong>and</strong><br />

meet<strong>in</strong>g T . F<strong>in</strong>ally, if X ∈ π ′ ∪ 〈X ′ , ∞〉 we know that the elements of T<br />

partition the set of such po<strong>in</strong>ts, so X is conta<strong>in</strong>ed <strong>in</strong> a unique element of<br />

T , <strong>and</strong> hence must be the base po<strong>in</strong>t of a unique transversal conta<strong>in</strong><strong>in</strong>g an<br />

element of T .<br />

Suppose that π is a plane of P G(3, q) not <strong>in</strong>cident with ∞. Let R be a<br />

rosette of ovoids of Θ. Then R is generated by the action of elations with<br />

center ∞ <strong>and</strong> axis π∞ on any of the elliptic quadrics of R. It follows that<br />

π is tangent to a unique element of R <strong>and</strong> so is the base plane of a unique<br />

transversal with an ovoid <strong>in</strong> R. Next suppose that T is not <strong>in</strong>cident <strong>in</strong><br />

GQ(Θ) with π. If X ∈ π, then there is a unique transversal with base plane<br />

π <strong>and</strong> base po<strong>in</strong>t X. If π ∩ π ′ ⊂ π∞, then this is the unique l<strong>in</strong>e of GQ(Θ)<br />

<strong>in</strong>cident with π <strong>and</strong> meet<strong>in</strong>g T . F<strong>in</strong>ally, if X ∈ π <strong>and</strong> π ∩ π ′ ⊂ π∞, then π is<br />

tangent to a unique ovoid of T <strong>and</strong> hence there is a unique transversal with<br />

base plane π <strong>and</strong> conta<strong>in</strong><strong>in</strong>g an ovoid of T .<br />

Now suppose that Ω ∈ Θ. Let R be a rosette of Θ not conta<strong>in</strong><strong>in</strong>g Ω. If Ω<br />

is <strong>in</strong> the same equivalence class as the ovoids of R, then the unique rosette<br />

conta<strong>in</strong><strong>in</strong>g Ω is the unique l<strong>in</strong>e of GQ(Θ) <strong>in</strong>cident with Ω <strong>and</strong> meet<strong>in</strong>g R.<br />

If Ω is <strong>in</strong>equivalent to to ovoids <strong>in</strong> R, then by the proof of Cor. 15.8.13<br />

there is a unique ovoid of R meet<strong>in</strong>g Ω <strong>in</strong> exactly two po<strong>in</strong>ts <strong>and</strong> hence<br />

by Lemma 15.8.15 conta<strong>in</strong>ed <strong>in</strong> a transversal with Ω. Next suppose T , is<br />

not <strong>in</strong>cident with Ω <strong>in</strong> GQ(Θ). If X ∈ Ω, then Ω is conta<strong>in</strong>ed <strong>in</strong> a unique<br />

transversal with base po<strong>in</strong>t X <strong>and</strong> base plane dist<strong>in</strong>ct from π. Similarly, if π<br />

is a tangent plane to Ω, then Ω is conta<strong>in</strong>ed <strong>in</strong> a unique transversal with base<br />

po<strong>in</strong>t π <strong>and</strong> base po<strong>in</strong>t dist<strong>in</strong>ct from X. F<strong>in</strong>ally, suppose that X ∈ Ω <strong>and</strong><br />

that π is not a tangent plane to Ω. Now π ∩ Ω is an oval O not conta<strong>in</strong><strong>in</strong>g<br />

X <strong>and</strong> the l<strong>in</strong>e 〈X, ∞〉 of P G(3, q) conta<strong>in</strong>s a unique po<strong>in</strong>t Y of Ω \ {∞}<br />

with Y = X. By Cor. 15.8.13 the q − 1 ovoids of T partition the q 2 − q − 2<br />

po<strong>in</strong>ts of Ω \ (O ∪ {Y, ∞}) <strong>in</strong>to sets of size 0, 1, q or q + 1. There are only<br />

two ways <strong>in</strong> which this may be done. First, with one set of size 0 <strong>and</strong> q − 2<br />

sets of size q + 1, <strong>in</strong> other words Ω is <strong>in</strong> a rosette with a unique element of<br />

T <strong>and</strong> <strong>in</strong> a transversal with none. Secondly, with one set of size 1, one set<br />

of size q <strong>and</strong> q − 3 sets of size q + 1, <strong>in</strong> other words Ω is <strong>in</strong> a transversal with


15.9. PROP.(G) & TETRADIC SETS OF OVOIDS 725<br />

a unique element of T <strong>and</strong> <strong>in</strong> a rosette with none. In either case there is a<br />

unique l<strong>in</strong>e of GQ(Θ) <strong>in</strong>cident with Ω <strong>and</strong> meet<strong>in</strong>g T .<br />

Theorem 15.9.2. Let Θ be a tetradic set of ovoids of P G(3, q). Then GQ(Θ)<br />

satisfies Property (G) at the flag (∞, [∞]).<br />

Proof. First show that GQ(Θ) satisfies Property (G) at the pair (∞, π∞).<br />

Let E be an equivalence class of Θ <strong>and</strong> let {∞, Ω1, Ω2} be a triad of<br />

GQ(Θ) conta<strong>in</strong>ed <strong>in</strong> E ⊥ . Then Ω1, Ω2 ∈ Θ are equivalent ovoids such that<br />

Ω1 ∩ Ω2 is an oval O conta<strong>in</strong><strong>in</strong>g ∞. In fact, by Lemma 15.8.7 there are<br />

q pairwise equivalent ovoids Ω1, . . . , Ωq ∈ Θ such that O ⊂ Ωi, 1 ≤ i ≤<br />

q. Hence <strong>in</strong> GQ(Θ) we have that {∞, Ω1, Ω2} ⊥⊥ = {∞, Ω1, Ω2, . . . , Σq}.<br />

Thus GQ(Θ) has Property (G) at the pairs {∞, E} <strong>and</strong> also at the flag<br />

(∞, [∞]).<br />

There is also a converse.<br />

Theorem 15.9.3. Let S = (P, B, I) be a GQ of order (q, q 2 ) satisfy<strong>in</strong>g<br />

Property (G) at the flag (X, ℓ). Let Y ∈ ℓ \ {X}, SXY the AG(3, q) def<strong>in</strong>ed<br />

from X <strong>and</strong> Y <strong>and</strong> SXY = P G(3, q) the projective completion of SXY with<br />

plane at <strong>in</strong>f<strong>in</strong>ity π∞ <strong>and</strong> the q 2 parallel l<strong>in</strong>es of SXY correspond<strong>in</strong>g to the l<strong>in</strong>es<br />

of S on X, meet<strong>in</strong>g <strong>in</strong> the po<strong>in</strong>t ∞ of π∞. Then Θ = {({X, Z} ⊥ \ ℓ) ∪ {∞} :<br />

Z ∈ ℓ <strong>and</strong> Z ∼ X, Y } is a tetradic set of ovoids with respect to (∞, π∞).<br />

Proof. Consider A1, A2, A3 ∈ X⊥ \ ℓ such that {∞, A1, A2, A3} is a cap<br />

<strong>in</strong> P G(3, q), so {A1, A2, A3} has at most one center <strong>in</strong> Y ⊥ . The triad<br />

{A1, A2, A3} has q + 1 centers <strong>in</strong> S: X <strong>and</strong> q others V1, . . . , Vq with Vi ∼<br />

Ui ∈ ℓ, i = 1, . . . , q. Supppose that the Ui, 1 ≤ i ≤ q are dist<strong>in</strong>ct. Then<br />

without loss of generality we may suppose that V1 ∈ Y ⊥ <strong>and</strong> A1, A2, A3<br />

span a plane of P G(3, q) not conta<strong>in</strong><strong>in</strong>g ∞. So if A1, A2, A3 span a plane<br />

π of P G(3, q) conta<strong>in</strong><strong>in</strong>g ∞, then the Ui are not all dist<strong>in</strong>ct, so we may<br />

suppose that U1 = U2 = Y . S<strong>in</strong>ce S satisfies Property (G) at the pair<br />

{X, U1} it follows that {A1, A2, A3} are coll<strong>in</strong>ear <strong>in</strong> SXU1 <strong>and</strong> {A1, A2, A3} ⊥ =<br />

{V1, V2, ∞} ⊥⊥ ⊂ U ⊥ 1 . If {A1, A2, A3} ⊥⊥ = {A1, A2, A3, . . . , Aq, U1}, then<br />

{A1, A2, Ai} ⊥ = {A1, A2, A3} ⊥ has no po<strong>in</strong>t of Y ⊥ for i = 4, . . . , q, imply<strong>in</strong>g<br />

that A1, A2, Ai span a plane on ∞ which must be 〈A1, A2, ∞〉 = π. Hence<br />

{Vi, Vj} ⊥ ⊂ π <strong>and</strong> V1, . . . , Vq must partition the po<strong>in</strong>ts of P G(3, q)\(π ∪π∞).<br />

Thus any tetrad with respect to (∞, π∞) conta<strong>in</strong><strong>in</strong>g A1, A2, A3 is conta<strong>in</strong>ed<br />

<strong>in</strong> a unique V ⊥<br />

i <strong>and</strong> hence a unique ovoid of Θ.


726 CHAPTER 15. PROPERTY G<br />

15.10 Us<strong>in</strong>g Tetradic Sets to Characterize GQ<br />

If S is a GQ(s, s 2 ), then a 3-regular po<strong>in</strong>t X of S is a po<strong>in</strong>t with the property<br />

that for each triad T conta<strong>in</strong><strong>in</strong>g X, |T ⊥⊥ | = s + 1. The existence of such a<br />

po<strong>in</strong>t characterizes the GQs T3(Ω).<br />

Theorem 15.10.1. Let Θ be a tetradic set of ovoids of P G(3, q) with respect<br />

to (P, πP ) <strong>and</strong> let GQ(Θ) be the associated GQ of order (q, q 2 ). Then the<br />

follow<strong>in</strong>g are equivalent:<br />

(i) GQ(Θ) is isomorphic to T3(Ω) with 3-regular po<strong>in</strong>t ∞.<br />

(ii) Ω ∈ Θ <strong>and</strong> the group of coll<strong>in</strong>eations of P G(3, q) with center P acts<br />

regularly on Θ.<br />

(iii) Ω ∈ Θ <strong>and</strong> Θ is a tetradic set with respect to (P, πP ) with the property<br />

that if Ω1, Ω2 ∈ Θ <strong>and</strong> |Ω1 ∩ Ω2| = q + 2, then Ω1 ∩ Ω2 is P plus an<br />

oval <strong>in</strong> a plane not conta<strong>in</strong><strong>in</strong>g P .<br />

Proof. Let H be a hyperplane of P G(4, q) conta<strong>in</strong><strong>in</strong>g the ovoid Ω, <strong>and</strong> let<br />

T3(Ω) be constructed from Ω ⊂ H ⊂ P G(4, q). The GQ T3(Ω) satisfies<br />

Property (G) at any flag ((∞), P ), where (∞) is the 3-regular po<strong>in</strong>t of type<br />

(iii) (<strong>in</strong> the usual description of T3(Ω)) <strong>and</strong> P ∈ Ω. In T3(Ω) the po<strong>in</strong>t P of<br />

Ω plays the role of a l<strong>in</strong>e. Let Σ ∈ P be a po<strong>in</strong>t of T3(Ω) <strong>in</strong>cident with the<br />

l<strong>in</strong>e P different from the po<strong>in</strong>t (∞), i.e., Σ is a P G(3, q) meet<strong>in</strong>g H <strong>in</strong> the<br />

tangent plane πP to Ω at P . The aff<strong>in</strong>e three-space SΣ(∞) is Σ \ πP . The<br />

group of coll<strong>in</strong>eations of P G(4, q) with axis H <strong>and</strong> center <strong>in</strong> Σ <strong>in</strong>duces the<br />

required group of T3(Ω). Suppose that Ω is an element of the tetradic set Θ<br />

with respect to (P, πP ) <strong>and</strong> that the coll<strong>in</strong>eations with center P act regularly<br />

on Θ. This tetradic set is then the same as associated with T3(Ω) <strong>and</strong> any<br />

pair {(∞), Σ} <strong>in</strong>cident with the lien P of T3(Ω). This shows that (i) <strong>and</strong> (ii)<br />

are equivalent.<br />

Now let Θ be a tetradic set of ovoids with respect to (P, πp) such that if<br />

Ω1, Ω2 ∈ Θ <strong>and</strong> |Ω1 ∩ Ω2| = q + 2, then Ω1 ∩ Ω2 is P plus an oval O <strong>in</strong> a<br />

plane not conta<strong>in</strong><strong>in</strong>g P . Let X, Y, Z be three dist<strong>in</strong>ct, non-coll<strong>in</strong>ear po<strong>in</strong>ts<br />

of P G(3, q) \ πp with P ∈ 〈X, Y, Z〉 = π. By Lemma 15.8.11 there are q − 1<br />

elements Ω1, . . . , Ωq−1 of Θ conta<strong>in</strong><strong>in</strong>g {X, Y, Z}. By our hypothesis Ω1 ∩ Ωi,<br />

2 ≤ i ≤ q − 1, is the po<strong>in</strong>t P plus an oval Oi. S<strong>in</strong>ce X, Y, Z ∈ Oi for<br />

2 ≤ i ≤ q − 1, it follows that Oi = π ∩ Ω1, for 2 ≤ i ≤ q − 1, <strong>and</strong> <strong>in</strong> GQ(Θ we<br />

have that {X, Y, Z} ⊥ = {Ω1, . . . , Ωq−1, P, π} <strong>and</strong> |{S, Y, Z} ⊥⊥ | = |O| = q +1.


15.11. DUAL TETRADIC SETS WITH Q = 2 E 727<br />

Now if {X, Y, U} ⊂ P ⊥ is a triad of GQ(Θ) with UI[P ], then by Property<br />

(G) at {P, U} it follows that |{X, Y, U} ⊥⊥ = q + 1, forc<strong>in</strong>g P to be 3-regular.<br />

By a theorem of J. A. Thas (??) GQ(Θ) must be T3(Ω).<br />

Conversely, if T3(Ω) has tetradic set Θ with respect to (p, πP ), then the<br />

group action we saw earlier <strong>in</strong> this chapter gives the result.<br />

15.11 Dual Tetradic Sets with q = 2 e<br />

Let Θ be a tetradic set of ovoids of P G(3, q) with respect to (∞, π∞). For<br />

Ω ∈ Θ, let φ(Ω) be the polarity def<strong>in</strong>ed by Ω. Let ∗ be a fixed duality<br />

of P G(3, q) <strong>in</strong>terchang<strong>in</strong>g ∞ <strong>and</strong> π∞. for Ω ∈ Θ let ˆ Ω = Ω φ(Ω)∗ <strong>and</strong> let<br />

ˆΘ = { ˆ Ω : Ω ∈ Θ}. If ˆ Θ is a tetradic set of ovoids with respect to (∞, π∞),<br />

then we say that the set Θ is dual tetradic <strong>and</strong> ˆ Θ is the dual tetradic set.<br />

Our present goal is to prove that if a tetradic set is also dual tetradic, then<br />

every element of the tetradic set is an elliptic quadric.<br />

Let Θ be a set of ovoids that is both tetradic <strong>and</strong> dual tetradic with<br />

respect to (∞, π∞).<br />

Lemma 15.11.1. The equivalence classes of Θ def<strong>in</strong>ed by bei<strong>in</strong>g a tetradic<br />

set are precisely those def<strong>in</strong>ed by Θ be<strong>in</strong>g a dual tetradic set.<br />

Proof. This follows from the fact that if R = {Ω1, . . . , Ωq} is a rosette of Θ<br />

<strong>and</strong> T = {Ω ′ 1, . . . , Ω ′ q−1} is a transversal of Θ, then ˆ R = { ˆ Ω1, . . . , ˆ Ωq} is a<br />

rosette of Θ (should it be ˆ Θ?) <strong>and</strong> ˆ T = { ˆ Ω ′ 1, . . . , ˆ Ω ′ q−1} is a transversal of<br />

Θ (or ˆ Θ?).<br />

Lemma 15.11.2. Let Ω <strong>and</strong> Ω ′ be two equivalent ovoids of Θ. Then there<br />

are two possibilities:<br />

(1) Ω <strong>and</strong> Ω ′ lie <strong>in</strong> a common rosette; or<br />

(2) There exists a po<strong>in</strong>t-plane pair (P, π) such that 〈∞, P 〉 = π ∩ π∞,<br />

Ω ∩ Ω ′ = π ∩ Ω, <strong>and</strong> also Ω <strong>and</strong> Ω ′ have the same tangent planes <strong>in</strong>cident<br />

with P .<br />

Proof. Suppose that Ω <strong>and</strong> Ω ′ are not <strong>in</strong> a common rosette. then Ω ∩ Ω ′ =<br />

O = π∩Ω for some plane π conta<strong>in</strong><strong>in</strong>g ∞. Let {W1 = Ω, Ω2 = Ω ′ , Ω3, . . . , Ωq}<br />

be the set of equivalent ovoids of Θ meet<strong>in</strong>g pairwise <strong>in</strong> O. S<strong>in</strong>ce ˆ Θ is a<br />

tetradic set <strong>and</strong> has the same equivalence classes as Θl, it follows that the<br />

ovoids Ωi <strong>and</strong> Ωj, i = j, share q + 1 common tangent planes with a common<br />

po<strong>in</strong>t, Pij, say. It also follows that Pij ∈ π∞.


728 CHAPTER 15. PROPERTY G<br />

Now consider a plane π such that O has empty <strong>in</strong>tersection with π. The<br />

ovoids Ω1, . . . , Ωq partition the q 2 − q po<strong>in</strong>ts of π \ (π∞ ∪ π) <strong>in</strong>to q sets of<br />

size 1 or q + 1. Hence π must be tangent to exactly two ovoids of the set<br />

{Ω1, . . . , Ωq}. So each tangent plane to Ω1, not on the nucleus N of O, is<br />

tangent to exactly one other ovoid Ωi, i = 1.<br />

Consider the set {P1i : i = 2, . . . , q}. If ℓ is a l<strong>in</strong>e of π∞ not <strong>in</strong>cident with<br />

∞ nor with N, then there is a tangent plane π ′ = π∞ to Ω1 conta<strong>in</strong><strong>in</strong>g ℓ.<br />

Therefore there exists an i ∈ {2, . . . , q} such that P1i ∈ ℓ. It follows that the<br />

set {P1i : i = 2, . . . , q} blocks the l<strong>in</strong>es of π∞ not <strong>in</strong>cident with ∞ nor with<br />

N <strong>and</strong> hence {P1i : i = 2, . . . , q} = 〈∞, N〉 \ {∞, N}.<br />

Lemma 15.11.3. Let Ω, Ω ′ ∈ Θ be equivalent ovoids <strong>in</strong>tersect<strong>in</strong>g <strong>in</strong> an oval<br />

O with nucleus N conta<strong>in</strong>ed <strong>in</strong> the plane π <strong>and</strong> such that Ω, Ω ′ share tangent<br />

planes on the po<strong>in</strong>t P ∈ (π ∩ π∞) \ {∞, N}. If φ is the polarity def<strong>in</strong>ed by<br />

W , then the oval P φ ∩ Ω is equivalent to P φ ∩ Ω ′ under a coll<strong>in</strong>eation of P φ<br />

that is an elation with center P <strong>and</strong> axis P φ ∩ π∞ = π ∩ π∞.<br />

Proof. ****************************************************************************<br />

By Lemma 15.8.14 we know that the polarities φ <strong>and</strong> φ ′ def<strong>in</strong>ed by Ω <strong>and</strong><br />

Ω ′ , respectively, are equivalent about the l<strong>in</strong>e π ∩ π∞. Let T be the set of<br />

tangent planes common to Ω <strong>and</strong> Ω ′ on P . Then T φ <strong>and</strong> T φ′ are equivalent<br />

ovals <strong>in</strong> P φ = P φ′ <strong>and</strong> (T φ′ ) φ′ φ φ ′ = T where φ φ is a coll<strong>in</strong>eatio<strong>in</strong> of P G(3, q).<br />

Both φ ′ <strong>and</strong> φ fix the l<strong>in</strong>es of P φ on P , so φ ′ φ <strong>in</strong>duces <strong>in</strong> P φ an elation with<br />

axis 〈∞, P 〉 <strong>and</strong> center P .<br />

Lemma 15.11.4. Let Ω, Ω ′ ∈ Θ be such that Ω <strong>and</strong> Ω ′ are conta<strong>in</strong>ed <strong>in</strong> a<br />

common rosette R. Let φ be the common polarity def<strong>in</strong>ed by the elements of<br />

R. If π is a plane such that ∞ ∈ P , π = π∞, then π ∩ Ω is equivalent to<br />

π ∩ Ω ′ under an elation of π with axis π ∩ π∞ <strong>and</strong> center π φ .<br />

Proof. Consider a l<strong>in</strong>e ℓ ⊂ π∞, ∞ ∈ ℓ. We know that by the proof of<br />

Lemma 15.8.1 there are q 2 elements of Θ whose polarity shares with φ (at<br />

least) the po<strong>in</strong>t-polar plane pairs (P, P φ ) for P ∈ ℓ. In each plane π on ℓ,<br />

π = π∞, these q 2 ovoids <strong>in</strong>tersect <strong>in</strong> q ovals <strong>in</strong>tersect<strong>in</strong>g pairwise <strong>in</strong> ∞ <strong>and</strong><br />

partition<strong>in</strong>g the po<strong>in</strong>ts of π \ π∞. By Lemma ?? <strong>and</strong> Lemma 6.5.9 this set<br />

of ovals is generated by the action on one element of the set by the group of<br />

elations with center π φ <strong>and</strong> axis π ∩ π∞. In particular, this is true for the<br />

ovals π ∩ Ω <strong>and</strong> π ∩ Ω ′ . S<strong>in</strong>ce Ω <strong>and</strong> Ω ′ def<strong>in</strong>e the same polarity, the above<br />

is true for any l<strong>in</strong>e ℓ of π∞ <strong>in</strong>cident with ∞.


15.11. DUAL TETRADIC SETS WITH Q = 2 E 729<br />

Lemma 15.11.5. Let R = {Ω1, Ω2, . . . , Ωq} be a rosette of ovoids <strong>in</strong> Θ<br />

def<strong>in</strong><strong>in</strong>g the polarity φ, <strong>and</strong> let π be a plane, not π∞, <strong>in</strong>cident with ∞, Oi =<br />

Ωi ∩ π for i = 1, 2, . . . , q <strong>and</strong> N = πφ . If Ai P , i = 1, . . . , q, denotes the l<strong>in</strong>es<br />

<strong>in</strong>cident with the po<strong>in</strong>t P ∈ (π ∩ π∞) \ {N, ∞} that are secant to Oi, then<br />

for i, j ∈ {1, 2, . . . , q}, i = j, either Ai P = Aj<br />

P or AiP ∩ Aj<br />

P = ∅.<br />

Proof. Let P ∈ π∞ ∩ π \ {∞, N} <strong>and</strong> let E be the set of q 2 ovoids of Θ whose<br />

polarities are equivalent with φ about ℓ = π ∩ π∞. By Lemma ?? applied<br />

to ˆ Θ there exist q elements of Ω ′ 1, . . . , Ω ′ q of E that share the same q + 1<br />

tangent planes <strong>in</strong>cident with P . These q + 1 tangent planes <strong>in</strong>tersect π <strong>in</strong><br />

the l<strong>in</strong>e ℓ <strong>and</strong> q/2 l<strong>in</strong>es which are external to the ovals Ω ′ i ∩ π, i = 1, 2, . . . , q,<br />

leav<strong>in</strong>g a set of q/2 common secants to the ovals <strong>in</strong>cident with P , which we<br />

denote by AP . By the proof of Lemma ?? three elements of Θ which share a<br />

common oval on ∞ may not share tangent planes at a common po<strong>in</strong>t. Hence<br />

{Ωi ∩ π : i = 1, 2, . . . , q}, has size q/2 <strong>and</strong> is a subset of {O1, . . . , Oq} with<br />

the same secants <strong>in</strong>cident with P . The result follows.<br />

In the preced<strong>in</strong>g Lemma (5.6) let π = P G(2, q) <strong>and</strong> {O1, O2, . . . , Oq}<br />

have common po<strong>in</strong>t (0, 0, 1), common nucleus (0, 1, 0) acted on regular by<br />

the group of elations with center (0, 1, 0) <strong>and</strong> axis ℓ : x0 = 0. Consider<br />

the po<strong>in</strong>t (0, s, l1), s = 0, of ℓ \ {(0, 0, 1), (0, 1, 0)}. The l<strong>in</strong>es <strong>in</strong>cident with<br />

(0, s, 1), not ℓ, are (us<strong>in</strong>g l<strong>in</strong>e coord<strong>in</strong>ates) [a, 1, s], a ∈ Fq. Let As = {a ∈<br />

Fq : [a, 1, s] is a secant to O1} (As is called the local secant parameter set of<br />

O1 at (0, s, 1)). By the action of the elations (x0, x1, x2) ↦→ (x0, x1 + bx0, x2)<br />

we have that As + b = As or the complement of As <strong>in</strong> Fq, for all b ∈ Fq.<br />

Hence As is an additive group.<br />

Theorem 15.11.6. (SEE IF WE PROVED THIS ELSEWHERE) Let O be<br />

an oval of P G(2, q), q even, conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t (0, 0, 1) <strong>and</strong> with nucleus<br />

(0, 1, 0). Let As be the local secant parameter set of O at (0, s, 1) <strong>and</strong> suppose<br />

that for s ∈ Fq \ {0} the set As is either a subgroup of Fq of order q/2 or<br />

the other coset of such a subgroup. Then O is a translation oval with axis<br />

x0 = 0.<br />

Proof. By the action of P GL(3, q) we may assume that (1, 0, 0), (1, 1, 1) ∈ O.<br />

Thus 0 ∈ As <strong>and</strong> As is a group for all s ∈ Fq\{0}. Also, 〈(1, 1, 1), (0, s, 1)〉 is a<br />

secant, from which it follows that s+1 ∈ As for all s ∈ Fq \{0}. Consider the<br />

map ψ : (x0, x1, x2) ↦→ (x0, x0 + x1, x0 + x2), so ψ : [a, , 1, s] ↦→ [a + 1 + s, 1, s].<br />

S<strong>in</strong>ce As is a group <strong>and</strong> 1+s ∈ As, it follows that ψ fixes the set of secants to


730 CHAPTER 15. PROPERTY G<br />

O <strong>in</strong>cident with (0, s, 1). Hence ψ fixes O, that is mO is fixed by an elation<br />

with axis x0 = 0 <strong>in</strong>terchang<strong>in</strong>g (1, 0, 0) <strong>and</strong> (1, 1, 1).<br />

It now follows, from the above discussion, that if π is any plane, not<br />

π∞, <strong>in</strong>cident with ∞, <strong>and</strong> if Ω ∈ Θ, then π ∩ Ω is a translation oval with<br />

axis π ∩ π∞. By Penttila <strong>and</strong> Praeger [PP97] (see ???) any ovoid with an<br />

axial pencil of translation ovals is either a Tits ovoid or an elliptic quadric.<br />

However, if Ω is a Tits ovoid <strong>and</strong> P ∈ Ω, then there is a unique l<strong>in</strong>e ℓ on<br />

P tangent to Ω such that the pencil about ℓ is an axial pencil of translation<br />

ovals (this is the element of the associated Lüneburg spread that is <strong>in</strong>cident<br />

with P ). Hence if Ω ∈ Θ it follows that Ω must be an elliptic quadric ovoid.<br />

The above discussion established the follow<strong>in</strong>g result.<br />

Theorem 15.11.7. Let Θ be a tetradic set of ovoids of P G(3, q) with respect<br />

to (∞, π∞) that is also dual tetradic. Then Θ is comprised entirely of elliptic<br />

quadrics.<br />

There is an <strong>in</strong>terest<strong>in</strong>g corollary about GQ <strong>and</strong> flocks.<br />

Theorem 15.11.8. Let S = (P, B, I) be a GQ of order (q, q 2 ) <strong>and</strong> assume<br />

that S satisfies Property (G) at two dist<strong>in</strong>ct flags (X, ℓ) <strong>and</strong> (Y, ℓ) for some<br />

l<strong>in</strong>e ℓ. Then S is the dual of a flock GQ.<br />

Proof. The set of ovoids of SXY associated with S is a tetradic set by Theorem<br />

??. However, S also satisfies Property (G) at the flag (Y, ℓ). So the<br />

associated set of ovoids <strong>in</strong> SY X is tetradic. Hence we have a set of ovoids that<br />

is both tetradic <strong>and</strong> dual tetradic, <strong>and</strong> hence comprised of elliptic quadrics.<br />

By the ma<strong>in</strong> theorem of Thas [Th99] we now have that S is the dual of a<br />

flock GQ. (THIS SHOULD BE PROVED IN THIS BOOK ALSO.)<br />

Theorem 15.11.9. Let Ω be an ovoid of P G(3, q). Then the GQ T3(Ω)<br />

satisfies Property (G) at some l<strong>in</strong>e if <strong>and</strong> only if Ω is an elliptic quadric <strong>and</strong><br />

T3(Ω) is isomorphic to the classical GQ Q(5, q).<br />

Proof. Suppose that T3(Ω) ∼ = (P, B, I) satisfies Property (G) at a l<strong>in</strong>e ℓ.<br />

by Theorem ??, for any pair (X, Y ) of po<strong>in</strong>ts <strong>in</strong>cident with ℓ we have<br />

that the ovoids of SXY <strong>in</strong>duced by po<strong>in</strong>ts of P \ (X ⊥ ∪ Y ⊥ ) are elliptic<br />

quadrics. If (∞)Iℓ, then by Theorem ?? Ω is an elliptic quadric <strong>and</strong> hence<br />

T3(Ω) ∼ = Q(5, q) (SEE FGQ, 3.2.4). If (∞ is not on ℓ, then ℓ is a regular l<strong>in</strong>e<br />

(somewhere <strong>in</strong> chapter 13 - from Thas III). Hence by FGQ, 5.3.3(ii)(b), we<br />

know T3(Ω) ∼ = Q(5, q).


Chapter 16<br />

Laguerre Geometries <strong>and</strong> GQ<br />

16.1 Laguerre po<strong>in</strong>ts<br />

This chapter conta<strong>in</strong>s material from [Br06] that extends <strong>in</strong> a significant way<br />

the material <strong>in</strong> Chapter 15. Most likely it would be possible to rewrite the two<br />

chapters as one with some of the computations omitted, but we deliberately<br />

chose to <strong>in</strong>clude it all. We th<strong>in</strong>k that the notion of Laguerre geometry might<br />

lead to some <strong>in</strong>terest<strong>in</strong>g new research.<br />

Let Q = (P, B, I) be a GQ with parameters (s, t), s > 1, t > 1. Suppose<br />

that Q has a po<strong>in</strong>t p ∈ P such that each triad of po<strong>in</strong>ts <strong>in</strong> p ⊥ has a constant<br />

number of centers. Such a po<strong>in</strong>t will be called a Laguerre po<strong>in</strong>t. By Theorem<br />

9.6.6 this constant number of centers is 1 + t/s, <strong>and</strong> each triad of po<strong>in</strong>ts<br />

which conta<strong>in</strong>s p has 0 or 1 + t/s centers. Put s = t/s.<br />

We are aware of the follow<strong>in</strong>g GQ that admit Laguerre po<strong>in</strong>ts:<br />

Case 1. If s = t, i.e., s = 1, then p is antiregular <strong>and</strong> s is odd. The only<br />

known example is Q(4, q) with q = s odd.<br />

Case 2. If s 2 = t, then each triad of po<strong>in</strong>ts has 1 + s centers. Po<strong>in</strong>t-l<strong>in</strong>e<br />

duals of flock GQ have this property.<br />

Case 3. A particular k<strong>in</strong>d of elation GQ (those with abelian elation<br />

group) are called translation GQ. Either they have s = t = q, a prime power,<br />

or they have parameters of the form (s, t) = (q a , q a+1 ) where q is a prime<br />

power <strong>and</strong> a is odd. The only known examples with s < t have a = 1, <strong>and</strong><br />

when q = 2 e it is known that this must be the case. The known examples<br />

<strong>in</strong>clude T2(O) (for O an oval <strong>in</strong> P G(2, q), T3(Ω) (for Ω an ovoid <strong>in</strong> P G(3, q)),<br />

731


732 CHAPTER 16. LAGUERRE GEOMETRIES AND GQ<br />

<strong>and</strong> the po<strong>in</strong>t-l<strong>in</strong>e duals of certa<strong>in</strong> flock GQ, as well as their translation<br />

duals. (See [PT84] for the concept of translation dual <strong>and</strong> [Pa89] for an<br />

<strong>in</strong>f<strong>in</strong>ite family of examples known as the Roman GQ. One additional pair of<br />

examples is known, but, sadly, we have have had to ignore this topic <strong>in</strong> this<br />

book.)<br />

Note: It seems to be a very difficult problem to determ<strong>in</strong>e whether or<br />

not there is a translation GQ with parameters (s, t) where 1 < s < t < s 2 .<br />

Consider the <strong>in</strong>cidence geometry S = (P, L, C) constructed start<strong>in</strong>g with<br />

Q (<strong>and</strong> Laguerre po<strong>in</strong>t p) as follows.<br />

P = p ⊥ \ {p} is the po<strong>in</strong>tset of S. The l<strong>in</strong>eset L of S consists of the l<strong>in</strong>es<br />

of Q through p. F<strong>in</strong>ally, C = {p, y} ⊥ : y ∈ P \ {p} ⊥ , <strong>and</strong> the elements of<br />

C are called circles.<br />

The follow<strong>in</strong>g counts are completely elementary:<br />

Lemma 16.1.1. (i) |P| = s(1 + t).<br />

(ii) |L| = 1 + t <strong>and</strong> for ℓ ∈ L, |ℓ| = s.<br />

(iii) |C| = s 2 t <strong>and</strong> for C ∈ C, |C| = 1 + t.<br />

Put s = t/s.<br />

Let w1 <strong>and</strong> w2 be dist<strong>in</strong>ct po<strong>in</strong>ts of P \ p ⊥ <strong>and</strong> suppose that the circles<br />

Ci = {p, wi} ⊥ , i = 1, 2, have a po<strong>in</strong>t x <strong>in</strong> common. There are two possibilities.<br />

If {p, w1, w2} is a triad, then s<strong>in</strong>ce it has one center x it must have 1 + t/s<br />

centers. So |C1 ∩ C2| = 1 + s. On the other h<strong>and</strong>, if {p, w1, w2} is not a<br />

triad, it must be that x, w1, <strong>and</strong> w2 lie on a l<strong>in</strong>e ℓ. In this case the s circles<br />

{p, w} ⊥ with x = w ∈ ℓ are pairwise tangent at x. This set of circles will be<br />

called a tangent pencil of circles tangent at x. In any case, different po<strong>in</strong>ts of<br />

P \ p ⊥ determ<strong>in</strong>e different circles, so there really are s 2 t circles. Because p is<br />

a Laguerre po<strong>in</strong>t, it is clear that each triple of pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts of<br />

P is conta<strong>in</strong>ed <strong>in</strong> exactly s circles. We notice that each po<strong>in</strong>t is on a unique<br />

l<strong>in</strong>e, each l<strong>in</strong>e meets each circle <strong>in</strong> exactly one po<strong>in</strong>t, each circle conta<strong>in</strong>s at<br />

least three po<strong>in</strong>ts, <strong>and</strong> there is more than one circle. F<strong>in</strong>ally, suppose that<br />

C = {p, w} ⊥ is a circle conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t x but not the po<strong>in</strong>t y. The<br />

circles tangent to C at x are determ<strong>in</strong>ed by the po<strong>in</strong>ts of x ⊥ \ p ⊥ on the l<strong>in</strong>e<br />

xw. The unique one that conta<strong>in</strong>s y is {p, w ′ } ⊥ where w ′ is the po<strong>in</strong>t of xw<br />

coll<strong>in</strong>ear with y.<br />

These observations show that S = (P, L, C) satisfies the follow<strong>in</strong>g axioms<br />

given for a f<strong>in</strong>ite Laguerre geometry.


16.1. LAGUERRE POINTS 733<br />

A f<strong>in</strong>ite Laguerre geometry S = (P, L, C) is an <strong>in</strong>cidence structure of<br />

po<strong>in</strong>ts, l<strong>in</strong>es <strong>and</strong> circles, respectively, that satisfies the follow<strong>in</strong>g properties:<br />

L1. Three pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts are <strong>in</strong>cident with a (f<strong>in</strong>ite) constant<br />

number s > 0 of circles.<br />

L2. (The touch<strong>in</strong>g axiom.) If x <strong>and</strong> y are noncoll<strong>in</strong>ear po<strong>in</strong>ts <strong>and</strong> C is<br />

a circle conta<strong>in</strong><strong>in</strong>g x but not conta<strong>in</strong><strong>in</strong>g y, then there is a unique circle D<br />

conta<strong>in</strong><strong>in</strong>g y <strong>and</strong> tangent to C at x, (i.e., C ∩ D = {x}).<br />

L3. Each po<strong>in</strong>t is <strong>in</strong>cident with a unique l<strong>in</strong>e, each l<strong>in</strong>e meets each circle<br />

<strong>in</strong> a unique po<strong>in</strong>t, <strong>and</strong> |P| < ∞.<br />

L4. Every circle is <strong>in</strong>cident with at least three po<strong>in</strong>ts <strong>and</strong> there is more<br />

than one circle.<br />

So let S = (P, L, C) be a f<strong>in</strong>ite Laguerre geometry. The parameters of<br />

S are def<strong>in</strong>ed as follows. If some l<strong>in</strong>e of S is <strong>in</strong>cident with n po<strong>in</strong>ts, then<br />

all l<strong>in</strong>es are <strong>in</strong>cident with n po<strong>in</strong>ts. We let s be the number of circles of<br />

S on three pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts. F<strong>in</strong>ally, let ℓ = |L|. Given these<br />

parameters (n, s, ℓ), it is rout<strong>in</strong>e to make the follow<strong>in</strong>g counts.<br />

Lemma 16.1.2. .<br />

(i) |P| = nℓ.<br />

(ii) |C| = ℓ for C ∈ C, <strong>and</strong> |C| = n 3 s.<br />

(iii) There are ns circles <strong>in</strong>cident with two given noncoll<strong>in</strong>ear po<strong>in</strong>ts.<br />

(iv) There are n 2 s circles <strong>in</strong>cident with a given po<strong>in</strong>t.<br />

A Laguerre geometry S with parameters (n, s, ℓ) where s = 1 is exactly a<br />

Laguerre plane, which implies that ℓ = n + 1. Moreover, <strong>in</strong> this case there is<br />

a derived plane SP at P ∈ P whose po<strong>in</strong>ts are the po<strong>in</strong>ts of S not coll<strong>in</strong>ear<br />

with P , whose l<strong>in</strong>es are the circles of S which are <strong>in</strong>cident with P <strong>and</strong> the<br />

l<strong>in</strong>es of S not <strong>in</strong>cident with P . Incidence is just that <strong>in</strong>herited from S. S<strong>in</strong>ce<br />

three pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts def<strong>in</strong>e a unique circle <strong>in</strong> S, it must be that<br />

two po<strong>in</strong>ts <strong>in</strong> SP def<strong>in</strong>e a unique l<strong>in</strong>e <strong>in</strong> SP (whether they are coll<strong>in</strong>ear or<br />

noncoll<strong>in</strong>ear <strong>in</strong> S). The touch<strong>in</strong>g axiom for S implies that the circles of S<br />

<strong>in</strong>cident with P fall <strong>in</strong>to parallel classes as l<strong>in</strong>es of SP (correspond<strong>in</strong>g to the<br />

tangent pencils). The l<strong>in</strong>es of S not <strong>in</strong>cident with P form another parallel


734 CHAPTER 16. LAGUERRE GEOMETRIES AND GQ<br />

class of l<strong>in</strong>es. Also, note that any circle of S not <strong>in</strong>cident with P meets any<br />

circle <strong>in</strong>cident with P <strong>in</strong> at most two po<strong>in</strong>ts. All this leads to the follow<strong>in</strong>g<br />

well known result.<br />

Theorem 16.1.3. Let S = (P, L, C) be a Laguerre plane <strong>and</strong> fix P ∈ P.<br />

(i) SP is an aff<strong>in</strong>e plane, <strong>and</strong> we denote its projective completion by SP .<br />

(ii) If C is a circle of S not <strong>in</strong>cident with P , then <strong>in</strong> SP the po<strong>in</strong>ts of SP<br />

<strong>in</strong>cident with C plus the po<strong>in</strong>t of SP that is the parallel class of SP<br />

correspond<strong>in</strong>g to the l<strong>in</strong>es of S not <strong>in</strong>cident with P form an oval of SP .<br />

It was proved by Chen <strong>and</strong> Kaerle<strong>in</strong> <strong>in</strong> [CK73] (<strong>and</strong> <strong>in</strong>dependently by S.<br />

E. Payne <strong>and</strong> J. A. Thas <strong>in</strong> [PT75]) that if even one of the derived planes<br />

is Desarguesian then the Laguerre plane must be the classical one aris<strong>in</strong>g<br />

from a cone over a conic (<strong>and</strong> the associated GQ is classical) (see Theorem<br />

14.5.4). Payne <strong>and</strong> Thas showed that a f<strong>in</strong>ite GQ with a dist<strong>in</strong>guished<br />

antiregular po<strong>in</strong>t is equivalent to a f<strong>in</strong>ite Laguerre plane of the same order<br />

(see Theorem 14.5.1).<br />

16.2 <strong>Ovoids</strong> <strong>and</strong> Laguerre Geometries<br />

The material <strong>in</strong> this section is taken from M. R. Brown [Br06]. The st<strong>and</strong>ard<br />

model of a Laguerre plane arises from a cone over an oval. We want to see if<br />

we can construct a Laguerre geometry from a cone over an ovoid <strong>in</strong> P G(3, q).<br />

Let Ω be an ovoid <strong>in</strong> P G(3, q) embedded as a hyperplane <strong>in</strong> P G(4, q).<br />

So |Ω| = 1 + q 2 <strong>and</strong> no three po<strong>in</strong>ts of Ω are coll<strong>in</strong>ear. Let V be a po<strong>in</strong>t<br />

of P G(4, q) \ P G(3, q), <strong>and</strong> let K be the cone over Ω with vertex V . Each<br />

l<strong>in</strong>e through V <strong>and</strong> through a po<strong>in</strong>t x of Ω cannot be <strong>in</strong>cident with a second<br />

po<strong>in</strong>t of Ω, s<strong>in</strong>ce that would force it to be conta<strong>in</strong>ed <strong>in</strong> P G(3, q). If Π3 is a<br />

hyperplane of P G(4, q) not conta<strong>in</strong><strong>in</strong>g V , then K ∩ Π3 is an ovoid of Π3. To<br />

see this, first note that each of the 1 + q 2 l<strong>in</strong>es (generators) of K (through<br />

V ) must meet Π3 <strong>in</strong> a unique po<strong>in</strong>t. Suppose that po<strong>in</strong>ts x, y <strong>and</strong> z are on<br />

dist<strong>in</strong>ct generators <strong>and</strong> lie <strong>in</strong> K ∩ Π3. If x, y <strong>and</strong> z are coll<strong>in</strong>ear, the three<br />

generators V x, V y <strong>and</strong> V z lie <strong>in</strong> a plane π, <strong>and</strong> π ∩ P G(3, q) must be a<br />

l<strong>in</strong>e which conta<strong>in</strong>s the three po<strong>in</strong>ts at which these three generators meet Ω.<br />

S<strong>in</strong>ce this is impossible, it is clear that K ∩ Π3 is an ovoid.<br />

It is clear that there is a unique l<strong>in</strong>e of K on each po<strong>in</strong>t of K different<br />

from V . Secondly, let x, y <strong>and</strong> z be three pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts of K,


16.3. INTERNAL STRUCTURE AT A POINT 735<br />

i.e., no two on the same generator. Then 〈x, y, z〉 is a plane π of P G(4, q)<br />

which must <strong>in</strong>tersect K <strong>in</strong> an oval. Let ℓ be a l<strong>in</strong>e through V disjo<strong>in</strong>t from<br />

π. Let V = V0, V1, . . . , Vq be the po<strong>in</strong>ts of ℓ. Then 〈π, Vi〉, for 0 ≤ i ≤ q<br />

are the q + 1 hyperplane solids <strong>in</strong>tersect<strong>in</strong>g pairwise <strong>in</strong> the plane π. So<br />

there are q hyperplanes conta<strong>in</strong><strong>in</strong>g π <strong>and</strong> not conta<strong>in</strong><strong>in</strong>g V . So the three<br />

po<strong>in</strong>ts x, y <strong>and</strong> z are conta<strong>in</strong>ed <strong>in</strong> s = q ovoidal hyperplane sections, <strong>and</strong><br />

there are ℓ = 1 + q 2 generators. F<strong>in</strong>ally, any ovoidal hyperplane section has<br />

a unique tangent plane at each po<strong>in</strong>t. The hyperplanes about this tangent<br />

plane, not conta<strong>in</strong><strong>in</strong>g V , give a set of q ovoidal hyperplane sections that meet<br />

pairwise <strong>in</strong> the common po<strong>in</strong>t of tangency. This says that if we let the ovoidal<br />

hyperplane sections be the circles of C, the po<strong>in</strong>ts of K \ {V } be the po<strong>in</strong>ts<br />

of P, <strong>and</strong> the generators of K be the l<strong>in</strong>es of L, this tangent plane property<br />

of the ovoids means that the geometry of K satisfies the touch<strong>in</strong>g axiom for<br />

Laguerre geometries. So we have a Laguerre geometry S = (P, L, C) with<br />

parameters (n, s, ℓ) = (q, q, 1 + q 2 ).<br />

16.3 Internal Structure at a Po<strong>in</strong>t<br />

Let S = (P, L, C) be a Laguerre geometry <strong>and</strong> fix a po<strong>in</strong>t P ∈ P. Def<strong>in</strong>e the<br />

<strong>in</strong>ternal structure S P of S at P to be the <strong>in</strong>cidence geometry with<br />

Po<strong>in</strong>ts: po<strong>in</strong>ts of S not coll<strong>in</strong>ear with P ;<br />

Hyperplanes: circles of S <strong>in</strong>cident with P ;<br />

<strong>and</strong><br />

Incidence: <strong>in</strong>herited from S.<br />

In the case of a Laguerre plane S we compare this structure with the<br />

derived plane SP <strong>and</strong> its projective closure SP . Let (∞) be the “<strong>in</strong>f<strong>in</strong>ite”<br />

po<strong>in</strong>t determ<strong>in</strong>ed by the parallel class consist<strong>in</strong>g of the orig<strong>in</strong>al generators of<br />

the Laguerre plane. If [∞] denotes the l<strong>in</strong>e of “<strong>in</strong>f<strong>in</strong>ite” po<strong>in</strong>ts, then we have<br />

the follow<strong>in</strong>g. The l<strong>in</strong>e [∞] <strong>and</strong> its po<strong>in</strong>ts are removed from SP to obta<strong>in</strong><br />

SP , <strong>and</strong> then the l<strong>in</strong>es through the (former) po<strong>in</strong>t (∞) are removed. So to<br />

get S P we start with a projective plane SP <strong>and</strong> an <strong>in</strong>cident po<strong>in</strong>t-l<strong>in</strong>e pair<br />

((∞), [∞]). Then we remove the po<strong>in</strong>t-l<strong>in</strong>e pair, all the po<strong>in</strong>ts on the l<strong>in</strong>e<br />

<strong>and</strong> all the l<strong>in</strong>es through the po<strong>in</strong>t, to obta<strong>in</strong> S P .<br />

Before discuss<strong>in</strong>g the <strong>in</strong>ternal structure of a Laguerre geometry S aris<strong>in</strong>g<br />

from a cone whose base is an ovoid <strong>in</strong> P G(3, q) <strong>and</strong> whose vertex is a po<strong>in</strong>t<br />

V ∈ P G(4, q) \ P G(3, q) we review some comb<strong>in</strong>atorics of the geometry<br />

P G(4, q).


736 CHAPTER 16. LAGUERRE GEOMETRIES AND GQ<br />

Lemma 16.3.1. There are<br />

(i) 1 + q + 2q 2 + 2q 3 + 2q 4 + q 5 + q 6 l<strong>in</strong>es of P G(4, q);<br />

(ii) 1 + q + 2q 2 + 2q 3 + q 4 l<strong>in</strong>es <strong>in</strong> P G(4, q) equal to or meet<strong>in</strong>g a fixed l<strong>in</strong>e<br />

ℓ;<br />

(iii) q 4 + q 5 + q 6 l<strong>in</strong>es skew to a fixed l<strong>in</strong>e of P G(4, q);<br />

(iv) Two skew l<strong>in</strong>es span a solid (i.e., a 3-dimensional subspace).<br />

(v) In a solid Σ conta<strong>in</strong><strong>in</strong>g a l<strong>in</strong>e ℓ there are 1 + q + 2q 2 + q 3 + q 4 l<strong>in</strong>es, q 4<br />

of them skew to ℓ.<br />

(vi) A l<strong>in</strong>e ℓ <strong>in</strong> P G(4, q) is conta<strong>in</strong>ed <strong>in</strong> (q 4 + q 5 + q 6 )/q 4 = 1 + q + q 2 solids.<br />

(vii) A plane is conta<strong>in</strong>ed <strong>in</strong> 1 + q solids.<br />

(viii) A l<strong>in</strong>e is on (q 2 + q 3 + q 4 )/q 2 = 1 + q + q 2 planes.<br />

(ix) A po<strong>in</strong>t is on 1 + q + q 2 + q 3 solids.<br />

Now consider the cone K with vertex V as above. If P V is a generator of<br />

K, it is on q2 planes conta<strong>in</strong><strong>in</strong>g a second generator <strong>and</strong> 1 + q planes meet<strong>in</strong>g<br />

K <strong>in</strong> just the l<strong>in</strong>e P V . Those q + 1 planes must form the unique solid on P V<br />

meet<strong>in</strong>g K <strong>in</strong> exactly the l<strong>in</strong>e P V . We see this as follows. Given any two<br />

generators QV <strong>and</strong> RV different from P V , the three generators are conta<strong>in</strong>ed<br />

<strong>in</strong> a unique solid meet<strong>in</strong>g K <strong>in</strong> 1 + q generators <strong>in</strong>clud<strong>in</strong>g P V . So there are<br />

q2 q 2 / = q + q solids on P V meet<strong>in</strong>g K <strong>in</strong> 1 + q generators. This leaves a<br />

2 2<br />

unique solid Σ on P V meet<strong>in</strong>g K <strong>in</strong> precisely P V , i.e., tangent to K at P V .<br />

We are ready to consider the <strong>in</strong>ternal structure at a po<strong>in</strong>t of the Laguerre<br />

geometry S aris<strong>in</strong>g from K. The po<strong>in</strong>ts of S are the po<strong>in</strong>ts of P G(4, q)<br />

different from V ly<strong>in</strong>g on the l<strong>in</strong>es jo<strong>in</strong><strong>in</strong>g V to po<strong>in</strong>ts of the ovoid Ω of<br />

P G(3, q). Let P be a po<strong>in</strong>t of S. So P is on 1 + q + q 2 + q 3 solids while<br />

the l<strong>in</strong>e P V is on 1 + q + q 2 solids, leav<strong>in</strong>g q 3 solids conta<strong>in</strong><strong>in</strong>g P but not V<br />

<strong>and</strong> meet<strong>in</strong>g K <strong>in</strong> q 2 po<strong>in</strong>ts, one po<strong>in</strong>t on each generator different from P V .<br />

These sets of q 2 po<strong>in</strong>ts are the circles through P <strong>and</strong> are the hyperplanes of<br />

S P .<br />

We want to <strong>in</strong>terpret the <strong>in</strong>ternal structure S P <strong>in</strong> the 3-dimensional quotient<br />

geometry P G(4, q)/P . It is basically the geometry of P G(4, q)/P with


16.3. INTERNAL STRUCTURE AT A POINT 737<br />

the po<strong>in</strong>t P V/P <strong>and</strong> the plane Σ/P removed. (Here Σ is the solid tangent<br />

to K at P V .)<br />

Each po<strong>in</strong>t of S not coll<strong>in</strong>ear with P spans a dist<strong>in</strong>ct l<strong>in</strong>e with P (<strong>in</strong><br />

P G(4, q), giv<strong>in</strong>g q 3 l<strong>in</strong>es through P each meet<strong>in</strong>g K <strong>in</strong> one po<strong>in</strong>t. There are<br />

1+q+q 2 l<strong>in</strong>es through P <strong>in</strong> the tangent solid Σ. So basically the l<strong>in</strong>es through<br />

P <strong>in</strong> Σ, considered as po<strong>in</strong>ts of P G(4, q)/P , are removed from P G(4, q)/P<br />

to form S P , i.e., the po<strong>in</strong>ts of Σ/P are removed. This means that the po<strong>in</strong>ts<br />

of S P are identified with the l<strong>in</strong>es of P G(4, q) through P not ly<strong>in</strong>g <strong>in</strong> Σ.<br />

The l<strong>in</strong>es of P G(4, q)/P correspond to planes of P G(4, q) on P . So a<br />

l<strong>in</strong>e on the po<strong>in</strong>t P V/P is a plane of P G(4, q) conta<strong>in</strong><strong>in</strong>g the l<strong>in</strong>e P V , i.<br />

e., a plane ly<strong>in</strong>g <strong>in</strong> Σ or a plane meet<strong>in</strong>g K <strong>in</strong> the union of two generators.<br />

In both cases it plays no role <strong>in</strong> the <strong>in</strong>ternal structure S P . On the other<br />

h<strong>and</strong>, the other planes conta<strong>in</strong><strong>in</strong>g P meet K <strong>in</strong> the q + 1 po<strong>in</strong>ts of an oval.<br />

If π is a plane of P G(4, q) conta<strong>in</strong><strong>in</strong>g P <strong>and</strong> meet<strong>in</strong>g K <strong>in</strong> an oval Ω, then<br />

Ω \ {P } is the pairwise <strong>in</strong>tersection of q solids each meet<strong>in</strong>g K <strong>in</strong> a circle<br />

m<strong>in</strong>us the po<strong>in</strong>t P . We can now view the <strong>in</strong>ternal structure S P as that<br />

obta<strong>in</strong>ed as follows. In P G(4, q)/P we start with the <strong>in</strong>cident po<strong>in</strong>t-plane<br />

pair (P V/P, Σ/P ), delete all po<strong>in</strong>ts <strong>in</strong> the plane Σ/P , <strong>and</strong> delete all planes<br />

through P V/P . The result<strong>in</strong>g structure is an aff<strong>in</strong>e space (described as a<br />

po<strong>in</strong>t-plane <strong>in</strong>cident structure) with some additional planes miss<strong>in</strong>g.<br />

The preced<strong>in</strong>g examples suggest the follow<strong>in</strong>g def<strong>in</strong>ition.<br />

A Laguerre geometry S = (P, L, C) has classical <strong>in</strong>ternal structure at<br />

P ∈ P if S P is a projective space with an <strong>in</strong>cident po<strong>in</strong>t-hyperplane pair<br />

removed.<br />

We now seek to determ<strong>in</strong>e what relationship might exist between the<br />

parameters n, s <strong>and</strong> ℓ. So let S = (P, L, C) be a Laguerre geometry with<br />

n po<strong>in</strong>ts on each l<strong>in</strong>e, s circles on three pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts <strong>and</strong><br />

hav<strong>in</strong>g ℓ l<strong>in</strong>es. It is easy to see that there are nℓ po<strong>in</strong>ts <strong>in</strong> total, ℓ po<strong>in</strong>ts<br />

<strong>in</strong>cident with a circle, n 3 s circles <strong>in</strong> total, ns circles <strong>in</strong>cident with two given<br />

noncoll<strong>in</strong>ear po<strong>in</strong>ts <strong>and</strong> n 2 s circles <strong>in</strong>cident with a given po<strong>in</strong>t.<br />

If s = 1 the Laguerre geometry is exactly a Laguerre plane. This implies<br />

that ℓ = n + 1 <strong>and</strong> the geometry SP is an aff<strong>in</strong>e plane. But what if s > 1?<br />

We first show that n <strong>and</strong> s do not necessarily determ<strong>in</strong>e ℓ.<br />

Let Ω be an ovoid of P G(3, q) <strong>and</strong> let Ω ⊂ Ω be such that there is a unique<br />

tangent plane to Ω at each po<strong>in</strong>t of Ω. For example, Ω could be Ω with any<br />

po<strong>in</strong>t removed. So at any po<strong>in</strong>t P of Ω there is the plane πP tangent to Ω<br />

at P , which clearly meets Ω only at P . If π ′ is any other plane conta<strong>in</strong><strong>in</strong>g


738 CHAPTER 16. LAGUERRE GEOMETRIES AND GQ<br />

P , it conta<strong>in</strong>s q po<strong>in</strong>ts of Ω, so is not tangent to Ω. It is easy to see how to<br />

obta<strong>in</strong> such Ω with fewer po<strong>in</strong>ts. If we now form the cone <strong>in</strong> P G(4, q) with<br />

a po<strong>in</strong>t V not <strong>in</strong> P G(3, q) <strong>and</strong> base Ω, then the geometry of (non-vertex)<br />

po<strong>in</strong>ts, l<strong>in</strong>es <strong>and</strong> hyperplane sections of this cone not conta<strong>in</strong><strong>in</strong>g V , we get a<br />

Laguerre geometry with n = s = q <strong>and</strong> ℓ = |Ω|. The unique tangent plane<br />

at every po<strong>in</strong>t of Ω ensures that the touch<strong>in</strong>g axiom is still valid. So we see<br />

that there are Laguerre geometries with fixed n <strong>and</strong> s <strong>and</strong> vary<strong>in</strong>g values for<br />

ℓ. In fact, if Ω is any set of po<strong>in</strong>ts <strong>in</strong> P G(n, q), n ≥ 3 such that no three are<br />

coll<strong>in</strong>ear <strong>and</strong> there is a unique tangent plane at each po<strong>in</strong>t, the cone over Ω<br />

will give such a Laguerre geometry. However, the next theorem shows that<br />

there is a relationship between n, s <strong>and</strong> ℓ.<br />

Theorem 16.3.2. Let S be a f<strong>in</strong>ite Laguerre geometry with parameters n, s<br />

<strong>and</strong> ℓ. Then n + 1 ≤ ℓ ≤ ns + 1. If ℓ = n + 1, then s = 1, ℓ = n + 1 <strong>and</strong> S is<br />

a Laguerre plane, which is equivalent to S hav<strong>in</strong>g <strong>in</strong>tersection sizes between<br />

two circles be<strong>in</strong>g 0,1,2. In the case ℓ = ns + 1 we have (s + 1)|(n 3 − n), n ≥ s<br />

<strong>and</strong> the possible <strong>in</strong>tersection sizes for two circles are 0, 1 <strong>and</strong> s + 1. Further,<br />

if ℓ = ns + 1, there exist disjo<strong>in</strong>t circles if <strong>and</strong> only if n > s.<br />

Proof. It is easy to see that the total number of po<strong>in</strong>ts is nℓ, the total number<br />

of circles is n 3 s, the number of circles on a pair of non-coll<strong>in</strong>ear po<strong>in</strong>ts is ns<br />

<strong>and</strong> the number of circles on a given po<strong>in</strong>t is n 2 s.<br />

Let C be a fixed circle of S <strong>and</strong> P a fixed po<strong>in</strong>t of C. there are exactly<br />

n − 1 circles meet<strong>in</strong>g C <strong>in</strong> exactly P <strong>and</strong> hence n 2 s − n circles dist<strong>in</strong>ct from<br />

C meet<strong>in</strong>g C <strong>in</strong> P <strong>and</strong> at least one other po<strong>in</strong>t. For any po<strong>in</strong>t Q ∈ C \ {P }<br />

there are ns−1 circles dist<strong>in</strong>ct from C meet<strong>in</strong>g C <strong>in</strong> at least P <strong>and</strong> Q. Hence<br />

there are at most (ns−1)(ℓ−1) circles meet<strong>in</strong>g C <strong>in</strong> P <strong>and</strong> at least one other<br />

po<strong>in</strong>t. Hence, n 2 s − n ≤ (ns − 1)(ℓ − 1), which is equivalent to ℓ ≥ n + 1.<br />

Equality holds if <strong>and</strong> only if the circles just counted are dist<strong>in</strong>ct, that is if<br />

the <strong>in</strong>tersection size of two circles is at most 2. Hence ℓ = n + 1 if <strong>and</strong> only<br />

if s = 1, <strong>in</strong> which case S is a Laguerre plane. This proves the first part of<br />

the theorem.<br />

Now let the set of circles meet<strong>in</strong>g C <strong>in</strong> P <strong>and</strong> at least one other po<strong>in</strong>t<br />

be {C1, . . . , Cn 2 s−n}. For 1 ≤ i ≤ n 2 s − n, put ti = |(Ci ∩ C) \ {P }|. Then<br />

n2s−n i=1<br />

ti = (ℓ − 1)(ns − 1), <strong>and</strong> the average value of the ti is<br />

t = (ℓ − 1)(ns − 1)/(n 2 s − n) =<br />

ℓ − 1<br />

n .


16.3. INTERNAL STRUCTURE AT A POINT 739<br />

Count the ordered triples (Q, R, C ′ ) such that P ,Q, R are dist<strong>in</strong>ct, pairwise<br />

noncoll<strong>in</strong>ear po<strong>in</strong>ts, C ′ = C <strong>and</strong> {P, Q, R} ⊂ C ∩ C ′ . On the one h<strong>and</strong> this<br />

number is n2s−n i=1 ti(ti − 1). On the other h<strong>and</strong> (choos<strong>in</strong>g first the po<strong>in</strong>ts<br />

Q <strong>and</strong> R <strong>in</strong> C) this number is (ℓ − 1)(ℓ − 2)(s − 1). So n2s−n i=1 ti(ti − 1) =<br />

(ℓ − 1)(ℓ − 2)(s − 1). Add<strong>in</strong>g the sums on ti <strong>and</strong> on ti(ti − 1) we obta<strong>in</strong><br />

<br />

2<br />

ti = (ℓ − 1)((ℓ − 1)(s − 1) + (ns − 1)).<br />

We now have<br />

0 ≤ (ti − t) 2 = t 2 i − 2t ti + t 2 (n 2 s − n)<br />

= (ℓ − 1)[(ℓ − 1)(s − 1) + ns − 1] − (ℓ − 1)2 (ns − 1)<br />

n<br />

= (ℓ − 1)<br />

(n − 1)(ns + 1 − ℓ).<br />

n<br />

From this it follows that ℓ ≤ ns + 1, with equality if <strong>and</strong> only if each<br />

ti = t =<br />

ℓ − 1<br />

n<br />

= s.<br />

So if ℓ = ns+1 then any two circles that <strong>in</strong>tersect <strong>in</strong> at least two po<strong>in</strong>ts must<br />

actually <strong>in</strong>tersect <strong>in</strong> exactly t+1 = s+1 po<strong>in</strong>ts. Moreover, if for a fixed circle<br />

C we count the ordered triples (P, Q, C ′ ) with P = Q <strong>and</strong> P, Q ∈ C ∩ C ′ ,<br />

then we see that the number of circles dist<strong>in</strong>ct from C, meet<strong>in</strong>g C <strong>in</strong> at least<br />

two (<strong>and</strong> hence <strong>in</strong> exactly s + 1) po<strong>in</strong>ts is (ns + 1)ns(ns − 1)/(s 2 + s). S<strong>in</strong>ce<br />

this must be an <strong>in</strong>teger it follows easily that (s + 1)|(n 3 − n). The total<br />

number of circles is n 3 s <strong>and</strong> the number tangent to C is ℓ(n − 1). This leaves<br />

n 3 s − ℓ(n − 1) − 1 circles available to meet C <strong>in</strong> s + 1 po<strong>in</strong>ts. Hence<br />

(ns + 1)(ns − 1)n<br />

s + 1<br />

After some simplification this leads to<br />

≤ n 3 s − ℓ(n − 1) − 1 = n 3 s − (ns + 1)(n − 1).<br />

(n − 1)ns(n − s) ≥ 0, which is equivalent to s ≤ n.<br />

If n = s there are no circles disjo<strong>in</strong>t from C, <strong>and</strong> the possible <strong>in</strong>tersection<br />

sizes between circles are 1 <strong>and</strong> s + 1.


740 CHAPTER 16. LAGUERRE GEOMETRIES AND GQ<br />

Corollary 16.3.3. Let S = (P, L, C) be a f<strong>in</strong>ite Laguerre geometry with<br />

parameters n, s, ℓ. If S has a classical <strong>in</strong>ternal structure at some po<strong>in</strong>t P ,<br />

then either<br />

(i) s = 1, ℓ = n+1 <strong>and</strong> S P arises from a projective plane with an <strong>in</strong>cident<br />

po<strong>in</strong>t-l<strong>in</strong>e pair removed; or<br />

(ii) s = n, ℓ = n 2 + 1 <strong>and</strong> S P arises from a projective 3-space with an<br />

<strong>in</strong>cident po<strong>in</strong>t-plane pair removed.<br />

Proof. S<strong>in</strong>ce S P is assumed to be classical, it follows that any two dist<strong>in</strong>ct<br />

circles of S on P touch at P or <strong>in</strong>tersect <strong>in</strong> a constant number of po<strong>in</strong>ts.<br />

By the proof of Theorem 16.3.2 we know that ti = t for all i if <strong>and</strong> only if<br />

ℓ = ns + 1 <strong>and</strong> then t = (ℓ − 1)/n = s. The projective space giv<strong>in</strong>g rise<br />

to S P has order n, imply<strong>in</strong>g that s = n k for some <strong>in</strong>teger k. We also know<br />

that n ≥ s, so the only possibilities are s = 1 (<strong>and</strong> k = 0), or s = n (<strong>and</strong><br />

k = 1).<br />

16.4 Laguerre Geometries <strong>and</strong> GQ<br />

Lemma 16.4.1. Let S = (P, B, ∈) be a generalized quadrangle with parameters<br />

(s, t). Suppose that S has a po<strong>in</strong>t (∞) with the property that each triad<br />

of po<strong>in</strong>ts of S hav<strong>in</strong>g (∞) as a center has exactly 1 + s centers (so we know<br />

s = t/s). Then construct a circle geometry S ′ = (P ′ , L, C) as follows:<br />

(i) P ′ = (∞) ⊥ \ {(∞)}.<br />

(ii) L = {m ∈ B : (∞) ∈ m}.<br />

(iii) C = {X ⊥ ∩ (∞) ⊥ : X ∈ P \ (∞) ⊥ }.<br />

Incidence is that <strong>in</strong>duced by <strong>in</strong>cidence <strong>in</strong> S. Then S ′ is a Laguerre geometry<br />

with parameters (n, s, ℓ) = (s, t/s, t + 1).<br />

Proof. It is clear that each l<strong>in</strong>e of S ′ has n = s po<strong>in</strong>ts, there are ℓ = t + 1<br />

l<strong>in</strong>es (generators), <strong>and</strong> each triple of pairwise noncoll<strong>in</strong>ear po<strong>in</strong>ts of S ′ lies <strong>in</strong><br />

s = t/s circles. (If s = t then (∞) is antiregular <strong>and</strong> s must be odd.) This<br />

essentially completes the proof.<br />

S<strong>in</strong>ce the circles of S ′ are po<strong>in</strong>ts of the GQ S <strong>and</strong> no triangles are allowed,<br />

we see that the circles of S ′ must also satisfy the follow<strong>in</strong>g:


16.4. LAGUERRE GEOMETRIES AND GQ 741<br />

L5 = [GQ]: Three pairwise tangent circles are <strong>in</strong>cident with a common<br />

po<strong>in</strong>t (of contact).<br />

We now want to start with a Laguerre geometry satisfy<strong>in</strong>g [GQ] <strong>and</strong> see<br />

just when we can construct a GQ from it.<br />

Theorem 16.4.2. Let S = (P, L, C) be a f<strong>in</strong>ite Laguerre geometry with<br />

parameters n, s <strong>and</strong> ℓ <strong>and</strong> satisfy<strong>in</strong>g axiom [GQ]. Construct the follow<strong>in</strong>g<br />

<strong>in</strong>cidence structure GQ(S) = (P ′ , B ′ , I).<br />

Po<strong>in</strong>ts of P ′ are of three types:<br />

(i) Po<strong>in</strong>ts of S.<br />

(ii) Circles of S.<br />

(iii) A po<strong>in</strong>t (∞).<br />

L<strong>in</strong>es of B ′ are of two types:<br />

(a) L<strong>in</strong>es of S.<br />

(b) Pencils of circles.<br />

Incidence is that <strong>in</strong>herited from S, plus (∞) is <strong>in</strong>cident with all l<strong>in</strong>es<br />

of type (a) <strong>and</strong> a po<strong>in</strong>t of S is <strong>in</strong>cident with all pencils for which it is the<br />

common po<strong>in</strong>t of contact. This <strong>in</strong>cident structure, denoted GQ(S), is a GQ<br />

if <strong>and</strong> only if S satisfies [GQ] <strong>and</strong> ℓ = ns + 1, <strong>in</strong> which case the GQ has<br />

order (n, ns).<br />

Proof. If m is a pencil of circles touch<strong>in</strong>g at the po<strong>in</strong>t Y , so it is a l<strong>in</strong>e not<br />

<strong>in</strong>cident with (∞), then the generator V Y is the unique l<strong>in</strong>e through (∞)<br />

meet<strong>in</strong>g m at the po<strong>in</strong>t Y . If Y is a po<strong>in</strong>t of S not on a generator m, then<br />

(∞) is the unique po<strong>in</strong>t on m coll<strong>in</strong>ear with Y . Suppose that X is a po<strong>in</strong>t<br />

on a generator m ′ <strong>and</strong> m is a pencil of circles centered at the po<strong>in</strong>t Y on a<br />

generator different from m ′ . Let C be the circle of m conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t<br />

X. Then the unique pencil of circles centered at X <strong>and</strong> conta<strong>in</strong><strong>in</strong>g C is the<br />

unique l<strong>in</strong>e through X meet<strong>in</strong>g m at the po<strong>in</strong>t C. If X <strong>and</strong> Y are dist<strong>in</strong>ct<br />

po<strong>in</strong>ts of the generator m ′ <strong>and</strong> m is a pencil of circles centered at Y , then<br />

m ′ is the unique l<strong>in</strong>e through X meet<strong>in</strong>g m at Y . Suppose that C is a circle<br />

<strong>and</strong> m is a generator. Let Y be the po<strong>in</strong>t of m on C. Then the pencil of<br />

circles centered at Y <strong>and</strong> conta<strong>in</strong><strong>in</strong>g C is the unique l<strong>in</strong>e through C meet<strong>in</strong>g


742 CHAPTER 16. LAGUERRE GEOMETRIES AND GQ<br />

m at the po<strong>in</strong>t Y . So f<strong>in</strong>ally, let C be a circle not on a pencil m of circles<br />

centered at the po<strong>in</strong>t Y . First suppose that the po<strong>in</strong>t Y is conta<strong>in</strong>ed <strong>in</strong> C.<br />

Let m ′ be the pencil of circles centered at Y <strong>and</strong> conta<strong>in</strong><strong>in</strong>g C. Then m ′ is<br />

the unique l<strong>in</strong>e through C meet<strong>in</strong>g m (at the po<strong>in</strong>t Y ).<br />

Now suppose that C is a circle not on a pencil m of circles centered at<br />

the po<strong>in</strong>t Y , where Y is not on C. What we want is to show that there is a<br />

pencil of circles conta<strong>in</strong><strong>in</strong>g C <strong>and</strong> centered at Y .<br />

There are n − 1 circles tangent to C at each of its ℓ po<strong>in</strong>ts, so (n − 1)ℓ<br />

circles tangent to C. S<strong>in</strong>ce a po<strong>in</strong>t of S is on n 2 s circles, <strong>and</strong> each pencil has<br />

n circles, there are ns circles on a given po<strong>in</strong>t, so there are (n − 1)ℓns pencils<br />

centered at po<strong>in</strong>ts not on C. Also, each circle touch<strong>in</strong>g C is conta<strong>in</strong>ed <strong>in</strong><br />

ℓ − 1 pencils whose base po<strong>in</strong>t is not on C, account<strong>in</strong>g for ℓ(n − 1)(ℓ − 1)<br />

pencils centered at po<strong>in</strong>ts not on C <strong>and</strong> conta<strong>in</strong><strong>in</strong>g circles tangent to C. To<br />

get a GQ we need these to be all of the pencils centered at po<strong>in</strong>ts not on C,<br />

i.e.,<br />

ℓ(n − 1)(ℓ − 1) = ℓ(n − 1)ns, which is equivalent to ℓ = ns + 1.<br />

Theorem 16.4.3. Let S be a Laguerre geometry with parameters n, s <strong>and</strong><br />

ℓ such that ℓ = ns + 1.<br />

(i) If S satisfies [GQ], then (s + 1)|(n + 1); hence if s = 1, then n is odd.<br />

(ii) If n = s, then S satisfies [GQ].<br />

Proof. By the proof of Theorem 16.3.2 we see that s<strong>in</strong>ce ℓ = ns + 1 the<br />

possible <strong>in</strong>tersection numbers for circles are 0, 1, s + 1. Let C <strong>and</strong> C ′ be two<br />

circles of S touch<strong>in</strong>g at the po<strong>in</strong>t P . Let Q be any po<strong>in</strong>t of C ′ \ {P }, let<br />

R be the po<strong>in</strong>t of C coll<strong>in</strong>ear with Q, <strong>and</strong> consider the circles touch<strong>in</strong>g C ′<br />

at Q. Each of these n − 1 circles meets C \ {P, R} <strong>in</strong> either 0, 1 or s + 1<br />

po<strong>in</strong>ts, <strong>and</strong> each of the ℓ − 2 po<strong>in</strong>ts of C \ {P, R} is conta<strong>in</strong>ed <strong>in</strong> a unique<br />

such circle, i.e., a unique circle tangent to C ′ at Q (by axiom L2). Let a, b, c<br />

(respectively) be the number of circles tangent to C ′ at Q <strong>and</strong> meet<strong>in</strong>g C <strong>in</strong><br />

1 + s, 1, 0 po<strong>in</strong>ts (respectively).<br />

Then<br />

a + b + c = n − 1.<br />

a(s + 1) + b · 1 + c · 0 = (ℓ − 2) · 1 = ns − 1.


16.5. PROPERTY (G) 743<br />

Here a, b <strong>and</strong> c are nonnegative <strong>in</strong>tegers. Moreover, if there is a circle C ′′<br />

tangent to C ′ at Q <strong>and</strong> tangent to C at some po<strong>in</strong>t, then the three circles<br />

C, C ′ , C ′′ violate [GQ]. So if S satisfies [GQ], then b = 0. In this case<br />

a(s + 1) = ns − 1 = n(s + 1) − n − 1, imply<strong>in</strong>g that (s + 1)|(n + 1).<br />

If n = s, then a(s + 1) + b = s 2 − 1, i.e., (s + 1)(s − 1 − a) = b ≤ s − 1,<br />

<strong>and</strong> this forces s − 1 − a = 0 = b. But b = 0 says that S satisfies [GQ].<br />

So, we see that a Laguerre geometry with n = s <strong>and</strong> ℓ = ns + 1 always<br />

gives rise to a GQ of order (s, s 2 ). Conversely, every GQ of order (s, s 2 ) has<br />

the property that every triad of po<strong>in</strong>ts has s + 1 centers, so from every po<strong>in</strong>t<br />

of such a GQ there arises a Laguerre geometry with parameters n = s = s<br />

<strong>and</strong> ℓ = s 2 + 1. So we have many constructions of Laguerre geometries, most<br />

of which will not be classical at any po<strong>in</strong>t.<br />

16.5 Property (G)<br />

Let S be a GQ with parameters (s 2 , s) for s ≥ 2. Let L0, L1, L2 be three<br />

pairwise noncurrent l<strong>in</strong>es. Then we know that there are exactly s+1 transversals<br />

M0, M1, . . . , Ms, i.e., l<strong>in</strong>es that meet all three of the Li, i = 0, 1, 2. If<br />

each three of the transversals Mj, Mk, Mℓ, 0 ≤ j < k < ℓ ≤ s meet the same<br />

S +1 l<strong>in</strong>es L0, L1, L2, L3, . . . , Ls, we say the orig<strong>in</strong>al triad of l<strong>in</strong>es is 3-regular.<br />

In the Essay [Pa89], Payne proved the follow<strong>in</strong>g (see Theorem 13.9.1). If S<br />

is a flock GQ viewed as an elation GQ with the usual base po<strong>in</strong>t (∞), <strong>and</strong><br />

if {L0, L1, L2, L3} <strong>and</strong> {M0, M1, M2, M3} are two sets of pairwise nonconcurrent<br />

l<strong>in</strong>es such that L0 meets M0 at the po<strong>in</strong>t (∞), <strong>and</strong> such that Li meets<br />

Mj if 0 ≤ i + j ≤ 5, then also L3 meets M3. This is the same as say<strong>in</strong>g<br />

that if {L0, L1, L2} is a triad of l<strong>in</strong>es with (∞) on L0 <strong>and</strong> some transversal<br />

M0 of the triad meets L0 at (∞), then the orig<strong>in</strong>al triad must be 3-regular.<br />

This means that the orig<strong>in</strong>al triad of l<strong>in</strong>es is conta<strong>in</strong>ed <strong>in</strong> a (1 + q) × (1 + q)<br />

grid. In the Essay we described this property by say<strong>in</strong>g that the GQ S has<br />

Property (G) (for grid) at the po<strong>in</strong>t (∞). It turned out later that it was<br />

more helpful to discuss an even more localized version of this property <strong>and</strong><br />

from the po<strong>in</strong>t-l<strong>in</strong>e dual po<strong>in</strong>t of view.<br />

Let S be a GQ with parameters (q, q 2 ), q > 1. Let X <strong>and</strong> Y be dist<strong>in</strong>ct<br />

coll<strong>in</strong>ear po<strong>in</strong>ts. We say that the GQ S has Property (G) at the (unordered)<br />

pair {X, Y } (or that the pair {X, Y } has Property (G)) if each triad of po<strong>in</strong>ts<br />

<strong>in</strong>clud<strong>in</strong>g X <strong>and</strong> conta<strong>in</strong>ed <strong>in</strong> Y ⊥ is 3-regular. This is equivalent to say<strong>in</strong>g


744 CHAPTER 16. LAGUERRE GEOMETRIES AND GQ<br />

that each triad of po<strong>in</strong>ts <strong>in</strong>clud<strong>in</strong>g Y <strong>and</strong> conta<strong>in</strong>ed <strong>in</strong> X ⊥ is 3-regular. This<br />

notion of is extended to the follow<strong>in</strong>g. If (X, m) is a flag (i.e., an <strong>in</strong>cident<br />

po<strong>in</strong>t-l<strong>in</strong>e pair), then (X, m) has Property (G) (or S has Property (G) at<br />

the flag (X, m)) provided {X, Y } has Property (G) for each po<strong>in</strong>t Y on m<br />

with X = Y . Similarly, S has Property (G) at the l<strong>in</strong>e m provided it has<br />

Property (G) at the flag (X, m) for each po<strong>in</strong>t X on m.<br />

Start with a GQ S = (P, B, I) of order (q, q 2 ) satisfy<strong>in</strong>g Property (G) at<br />

the pair of dist<strong>in</strong>ct coll<strong>in</strong>ear po<strong>in</strong>ts X <strong>and</strong> Y . We now <strong>in</strong>troduce a po<strong>in</strong>tl<strong>in</strong>e<br />

<strong>in</strong>cidence geometry SXY = (PXY , BXY , IXY ) that will turn out to be<br />

isomorphic to the aff<strong>in</strong>e space AG(3, q).<br />

(i) PXY = X ⊥ \ {X, Y } ⊥ .<br />

(ii) Elements of BXY are of two types:<br />

(a) the sets {Y, Z, U} ⊥⊥ , where {Y, Z, U} is a triad with X ∈ {Y, Z, U} ⊥ ,<br />

<strong>and</strong><br />

(b) the sets {X, W } ⊥ \ {X}, with X ∼ W ∼ Y . .<br />

(iii) Incidence is given by conta<strong>in</strong>ment.<br />

By the chapter on Property (G) <strong>in</strong> this book, we know that the <strong>in</strong>cidence<br />

structure SXY is the deisgn of po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es of the aff<strong>in</strong>e space AG(3, q).<br />

In particular, q is a prime power. (See Theorem 15.1.7.)<br />

The planes of the aff<strong>in</strong>e space SXY = AG(3, q) are of two types:<br />

(a) The sets {X, Z} ⊥ \ {Y }, with X ∼ Z <strong>and</strong> Y ∈ {X, Z} ⊥ , <strong>and</strong><br />

(b) Each set which is the union of all elements of type (b) of BXY conta<strong>in</strong><strong>in</strong>g<br />

a po<strong>in</strong>t of some l<strong>in</strong>e m of type (a) of BXY .<br />

Let SXY be the projective completion of SXY with plane at <strong>in</strong>f<strong>in</strong>ity π∞.<br />

The GQ S has the follow<strong>in</strong>g <strong>in</strong>terpretation of the GQ S <strong>in</strong> SXY . The q 2 l<strong>in</strong>es<br />

of type (b) of SXY are parallel, so they def<strong>in</strong>e a po<strong>in</strong>t ∞ of SXY . Let Z ∈ P<br />

be a po<strong>in</strong>t with X ∼ Z ∼ Y <strong>and</strong> let U be the po<strong>in</strong>t of ℓ = 〈XY 〉 such that<br />

Z s<strong>in</strong> U. Then V = {X, Z} ⊥ \ {U} is a set of q 2 po<strong>in</strong>ts. Clearly each l<strong>in</strong>e of<br />

SXY on ∞ meets V <strong>in</strong> exactly one po<strong>in</strong>t. Further, if U1, U2, U3 are po<strong>in</strong>ts<br />

of V coll<strong>in</strong>ear <strong>in</strong> SXY , then it must be that Y ∈ {U1, U2, U3} ⊥⊥ , imply<strong>in</strong>g


16.5. PROPERTY (G) 745<br />

that Z ∼ Y = U, an impossibility. Hence ΩZ = V ∪ {∞} is an ovoid of SXY<br />

with tangent plane π∞ at ∞. Here π∞ is the “plane at <strong>in</strong>f<strong>in</strong>ity.” If we start<br />

with SXY <strong>and</strong> delete the po<strong>in</strong>t ∞ <strong>and</strong> all planes on it (i.e., π∞ <strong>and</strong> all planes<br />

of type (b)) as well as π∞ <strong>and</strong> all the po<strong>in</strong>ts on it, we obta<strong>in</strong> a po<strong>in</strong>t-plane<br />

geometry with po<strong>in</strong>ts X ⊥ \ 〈X, Y 〉 <strong>and</strong> planes Y ⊥ \ 〈X, Y 〉.<br />

This construction leads to an equivalent formulation of Property(G) at a<br />

pair of coll<strong>in</strong>ear po<strong>in</strong>ts.<br />

Theorem 16.5.1. Let S = (P, B, I) be a GQ with parameters (s, s 2 ), s > 1,<br />

<strong>and</strong> let X, Y ∈ P with X ∼ Y , X = Y . Then S has Property (G) at<br />

{X, Y } provided the po<strong>in</strong>t-plane <strong>in</strong>cidence structure SXY = (PXY , HXY , IXY )<br />

described below is the po<strong>in</strong>t-plane <strong>in</strong>cidence structure of P G(3, s) with an<br />

<strong>in</strong>cident po<strong>in</strong>t-plane pair removed.<br />

• Po<strong>in</strong>t-set PXY = X ⊥ \ 〈X, Y 〉;<br />

• Plane-set HXY = Y ⊥ \ 〈X, Y 〉;<br />

• Incidence IXY is just that <strong>in</strong>herited from <strong>in</strong>cidence <strong>in</strong> S.<br />

Corollary 16.5.2. Let S = (P, B, I) be a GQ with parameters (s, s 2 ), x > 1,<br />

<strong>and</strong> let X, Y ∈ P with X ∼ Y , X = Y . Then S has Property (G) at the pair<br />

{X, Y } provided the Laguerre geometry SX has classical <strong>in</strong>ternal structure at<br />

the po<strong>in</strong>t Y .<br />

The <strong>in</strong>tersections of the ovoids ΩZ are determ<strong>in</strong>ed as follows.<br />

First suppose that Z1 ∼ Z2 on a l<strong>in</strong>e that meets 〈X, Y 〉 at a po<strong>in</strong>t U with<br />

X = U = Y . Then ΩZ1 ∩ ΩZ2 = {∞}, s<strong>in</strong>ce any larger <strong>in</strong>tersection would<br />

result <strong>in</strong> a triangle <strong>in</strong> S.<br />

Second, let m be a l<strong>in</strong>e of the GQ S as above not concurrent with the l<strong>in</strong>e<br />

〈X, Y 〉. There will be po<strong>in</strong>ts R <strong>and</strong> W on m with R ∼ X <strong>and</strong> W ∼ Y . If<br />

Z1 <strong>and</strong> Z2 are any dist<strong>in</strong>ct po<strong>in</strong>ts of m \ {R, W }, then ΩZ1 ∩ ΩZ2 = {∞, R}.<br />

Further, the po<strong>in</strong>t W corresponds to a plane <strong>in</strong> SXY which is tangent at R<br />

to both ΩZ1 <strong>and</strong> ΩZ2. This gives rise to a set T of q − 1 ovoids that <strong>in</strong>tersect<br />

pairwise at the two po<strong>in</strong>ts R <strong>and</strong> ∞ <strong>and</strong> have the same tangent plane at<br />

R (i.e., W ⊥ ∩ X ⊥ ) <strong>and</strong> the same tangent plane at ∞ (i.e., π∞). Such a<br />

set of ovoids is called a transversal of ovoids. The two common po<strong>in</strong>ts are<br />

called base po<strong>in</strong>ts <strong>and</strong> the two common planes are called base planes of the<br />

transversal. In the Laguerre geometry SX the ovoids <strong>in</strong> the transversal T of


746 CHAPTER 16. LAGUERRE GEOMETRIES AND GQ<br />

correspond to the circles not <strong>in</strong>cident with Y <strong>in</strong> a pencil of ovoids, <strong>and</strong> the<br />

base plane of T at the po<strong>in</strong>t R corresponds to the circle <strong>in</strong> the pencil which<br />

is <strong>in</strong>cident with Y .<br />

Next, suppose that Z1 ∼ Z2 but that there is a po<strong>in</strong>t U on 〈X, Y 〉 with<br />

X = U = Y , Z1 ∼ U ∼ Z2. In this case ΩZ1 ∩ ΩZ2 = ({X, Z1, Z2} ⊥ \ {U}) ∪<br />

{∞}, an <strong>in</strong>tersection of size q + 1.<br />

For the last case, suppose that Z1 ∼ U1 = U2 ∼ Z2 with U1, U2 ∈ 〈X, Y 〉<br />

but different from X <strong>and</strong> Y . In this case ΩZ1 ∩ ΩZ2 = {X, Z1, Z2} ⊥ ∪ {∞},<br />

an <strong>in</strong>tersection of size q + 2.<br />

We have previously seen <strong>in</strong> Theorem 15.7.4 that if S is a GQ of order<br />

(s, s 2 ), s > 1, s odd, satisfy<strong>in</strong>g Property (G) at a pair of coll<strong>in</strong>ear po<strong>in</strong>ts,<br />

then S is the dual of a flock GQ. Consequently, <strong>in</strong> the s odd case we know<br />

that a Laguerre geometry with a classical <strong>in</strong>ternal structure at a po<strong>in</strong>t arises<br />

from a dual flock GQ. Hence from now on we turn our attention the the case<br />

s = 2 e .<br />

16.6 Laguerre Sets of <strong>Ovoids</strong> with q even<br />

A 4-cap is a set of four po<strong>in</strong>ts, no three of which are coll<strong>in</strong>ear. Let (∞, π∞)<br />

be an <strong>in</strong>cident po<strong>in</strong>t-plane pair of P G(3, q). Then a Laguerre set Θ of ovoids<br />

of P G(3, q) with respect to (∞, π∞) is a set of ovoids each of which conta<strong>in</strong>s<br />

∞, has tangent plane π∞ at ∞ <strong>and</strong> is such that if X, Y , Z are three dist<strong>in</strong>ct<br />

po<strong>in</strong>ts of P G(3, q) \ π∞ with {∞, X, Y, Z} a 4-cap <strong>in</strong> P G(3, q), then:<br />

A1 If ∞ ∈ 〈X, Y, Z〉, then |{Ω ∈ Θ : {X, Y, Z} ⊂ Ω}| = q; <strong>and</strong><br />

A2 If ∞ ∈ 〈X, Y, Z〉, then |{Ω ∈ Θ : {X, Y, Z} ⊂ Ω}| = q − 1.<br />

Recall (Lemma 15.3.5) that if Θ is a tetradic set of ovoids, then Θ satisfies<br />

A1, <strong>and</strong> (Lemma 15.4.2) if Θ is a tetradic set of elliptic quadrics then Θ<br />

satisfies A2. Hence any tetradic set of elliptic quadrics is automatically a<br />

Laguerre set of elliptic quadrics.<br />

Our goal is to show that start<strong>in</strong>g with a Laguerre set Θ we can construct<br />

a Laguerre geometry with classical <strong>in</strong>ternal structure at a po<strong>in</strong>t.<br />

So until further notice we suppose we are given a Laguerre set Θ of ovoids<br />

of P G(3, q), q = 2 e .


16.6. LAGUERRE SETS OF OVOIDS WITH Q EVEN 747<br />

Lemma 16.6.1. |Θ| = q 3 (q − 1).<br />

Proof. There are q 2 +q planes π through ∞ different from π∞, then q 2 po<strong>in</strong>ts<br />

X of π \ π∞, followed by q 2 − q po<strong>in</strong>ts Y of π \ π∞ not on the l<strong>in</strong>e 〈∞, X〉,<br />

<strong>and</strong> f<strong>in</strong>ally (q 2 − 31 + 2 po<strong>in</strong>ts Z ∈ π \ π∞ for which ∞ ∈ 〈X, Y, Z〉 = π <strong>and</strong><br />

{∞, X, Y, Z} is a 4-cap <strong>in</strong> π. This gives (q 2 +q)q 2 (q 2 −q)(q 2 −3q +2) ordered<br />

triples (X, Y, Z) of po<strong>in</strong>ts <strong>in</strong> P G(3, q) \ π∞ of the type just described. On<br />

the other h<strong>and</strong>, if Ω is an ovoid with tangent plane π∞ at ∞, then there are<br />

q 2 · (q 2 − 1)(q − 2) = (q 2 + q)q(q − 1)(q − 2) such ordered triples (X, Y, Z)<br />

conta<strong>in</strong>ed <strong>in</strong> Ω. Hence |Θ| = q 3 (q − 1).<br />

Lemma 16.6.2. Let X ∈ P G(3, q) \ π∞, then X is conta<strong>in</strong>ed <strong>in</strong> q 2 (q − 1)<br />

elements of Θ.<br />

Proof. Let π be a plane on the l<strong>in</strong>e m = 〈∞, X〉. There are (q 2 −q)(q 2 −3q+2)<br />

triples (X, Y, Z) of po<strong>in</strong>ts <strong>in</strong> π \ π∞ such that {∞, X, Y, Z} is a 4-arc. Thus<br />

there are (q + 1)(q 2 − q)(q 2 − 3q + 2) triples, consider<strong>in</strong>g all planes on m.<br />

By A1 there are q(q + 1)(q 2 − q)(q 2 − 3q + 2) elements of Θ on these triples.<br />

However, each element of Θ conta<strong>in</strong><strong>in</strong>g X also conta<strong>in</strong>s (q 2 − q)(q − 2) =<br />

(q + 1)(q − 1)(q − 2) triples (X, Y, Z) with ∞ ∈ 〈X, Y, Z〉. Hence the number<br />

of elements of Θ conta<strong>in</strong><strong>in</strong>g X is q 2 (q − 1).<br />

Lemma 16.6.3. Let X, Y ∈ P G(3, q) \ π∞ be such that ∞ ∈ 〈X, Y 〉. Then<br />

there are exactly q 2 − q elements of Θ conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> Y .<br />

Proof. Any element of Θ conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> Y meets π = 〈∞, X, Y 〉 <strong>in</strong> an<br />

oval. Hence there are q −2 triples (X, Y, Z), with Z ∈ π, which are conta<strong>in</strong>ed<br />

<strong>in</strong> such an ovoid. In total there are q 2 − 3q + 2 triples (X, Y, Z) <strong>in</strong> π such<br />

that {∞, X, Y, Z} is a 4-arc <strong>and</strong> thus conta<strong>in</strong>ed <strong>in</strong> q elements of Θ. Hence<br />

there are q(q 2 − 3q + 2)/(q − 2) = q 2 − q elements of Θ conta<strong>in</strong><strong>in</strong>g X <strong>and</strong><br />

Y .<br />

Lemma 16.6.4. Let X ∈ P G(3, q) \ π∞ <strong>and</strong> π a plane such that X ∈ π but<br />

∞ ∈ π. Then there are exactly q − 1 elements of Θ conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> with<br />

tangent plane π at X.<br />

Proof. We count how many elements of Θ conta<strong>in</strong> X with π not a tangent<br />

plane, that is, meet π <strong>in</strong> an oval. There are q 2 − 1 choices for a po<strong>in</strong>t Y ∈<br />

π\(π∞∪{X}), <strong>and</strong> hence (q 2 −q)(q 2 −1) elements of Θ on X <strong>and</strong> Y . For each<br />

element Θ conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> with π not a tangent plane there are q choices for


748 CHAPTER 16. LAGUERRE GEOMETRIES AND GQ<br />

Y . Hence the number of elements of Θ conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> with π not tangent<br />

is (q − 1)(q 2 − 1). It follows that the number of elements of Θ conta<strong>in</strong><strong>in</strong>g X<br />

<strong>and</strong> with π a tangent plane is q 2 (q − 1) − (q − 1)(q 2 − 1) = q − 1.<br />

Recall that when q = 2 e each ovoid Ω determ<strong>in</strong>es a symplectic polarity<br />

⊥ of P G(3, q) as follows. Each plane π of P G(3, q) tangent to Ω at a po<strong>in</strong>t<br />

X is paired with X by ⊥. Each plane π not tangent to Ω meets Ω <strong>in</strong> an oval<br />

with nucleus N; π <strong>and</strong> N are paired by ⊥.<br />

Lemma 16.6.5. Let X ∈ P G(3, q)\π∞ <strong>and</strong> let π be a plane such that X ∈ π<br />

but ∞ ∈ π. Then there are exactly (q −1) 2 elements Ω of Θ whose associated<br />

polarity <strong>in</strong>terchanges X <strong>and</strong> π <strong>and</strong> such that X ∈ Ω, i.e., X is the nucleus<br />

of π ∩ Ω.<br />

Proof. If Ω ∈ Θ, then ⊥Ω denotes the symplectic polarity def<strong>in</strong>ed by Ω. So<br />

let X be a fixed po<strong>in</strong>t not <strong>in</strong> π∞ <strong>and</strong> let π be a fixed plane conta<strong>in</strong><strong>in</strong>g X but<br />

not ∞.<br />

We start by count<strong>in</strong>g the ovoids Ω ∈ Θ for which π is not tangent to Ω.<br />

Each such Ω meets π <strong>in</strong> an oval for which q/2 l<strong>in</strong>es of π through X meet<br />

Ω <strong>in</strong> two po<strong>in</strong>ts. Let N be the set of ordered triples (Y, Z, Ω) such that<br />

X, Y, Z are coll<strong>in</strong>ear <strong>in</strong> π <strong>and</strong> Y, Z ∈ Ω ∈ Θ. There are q + 1 l<strong>in</strong>es of π<br />

through X, each with q − 1 po<strong>in</strong>ts different from X <strong>and</strong> not on π∞. This<br />

gives (q+1)(q−1)(q−2) ordered pairs (Y, Z) with X, Y, Z coll<strong>in</strong>ear <strong>in</strong> π\π∞.<br />

By Lemm ?? there are q 2 − q elements of Θ conta<strong>in</strong><strong>in</strong>g Y <strong>and</strong> Z (<strong>and</strong> hence<br />

not conta<strong>in</strong><strong>in</strong>g X). So |N | = q(q + 1)(q − 1) 2 (q − 2). Of course, s<strong>in</strong>ce X, Y, Z<br />

is a secant to Ω ly<strong>in</strong>g <strong>in</strong> π if (Y, Z, Ω) ∈ N , clearly for such an Ω we have<br />

X ⊥Ω = π. On the other h<strong>and</strong>, suppose that Ω ∈ Θ with X ∈ Ω <strong>and</strong> with<br />

X ⊥Ω = π, Let πX be the plane through X with X ⊥Ω = πX. Then π ∩ πX<br />

is a l<strong>in</strong>e meet<strong>in</strong>g Ω <strong>in</strong> just one po<strong>in</strong>t. The q other l<strong>in</strong>es of π through X are<br />

split <strong>in</strong>to two sets of size q/2, those <strong>in</strong> one set hav<strong>in</strong>g no po<strong>in</strong>t of Ω, those<br />

<strong>in</strong> the other set each meet<strong>in</strong>g Ω <strong>in</strong> two po<strong>in</strong>ts. Those that meet Ω <strong>in</strong> two<br />

po<strong>in</strong>ts give exactly q ordered pairs (Y, Z) such that (Y, Z, Ω) ∈ N . Hence the<br />

number of Ω ∈ Θ with X ∈ Ω, X ⊥Ω = π, <strong>and</strong> π is not tangent to Ω equals<br />

|N |/q = (q + 1)(q − 1) 2 (q − 2).<br />

Clearly π has q 2 −1 po<strong>in</strong>ts different from X <strong>and</strong> not on π∞. By Lemma 16.6.4<br />

there are q − 1 elements Ω ∈ Θ tangent to π at each of these po<strong>in</strong>ts. Hence<br />

there are (q 2 − 1)(q − 1) ovoids Ω ∈ Θ such that X ∈ Ω, X ⊥Ω = π <strong>and</strong> π is<br />

a tangent plane to Ω.<br />

Hence the number of Ω ∈ Θ with X ∈ Ω <strong>and</strong> for which X ⊥Ω = π is


16.6. LAGUERRE SETS OF OVOIDS WITH Q EVEN 749<br />

(q 3 (q − 1) − q 2 (q − 1)) the total number of Ω ∈ Θ with X ∈ Ω<br />

−(q + 1)(q − 1) 2 (q − 2) m<strong>in</strong>us the number of Ω with X ∈ Ω<br />

π not tangent to Ω <strong>and</strong> X ⊥Ω = π<br />

−(q 2 − 1)(q − 1) m<strong>in</strong>us the number of Ω with X ∈ Ω<br />

π is a tangent plane to Ω <strong>and</strong> X ⊥Ω = π<br />

= (q − 1) 2 . equals the number of Ω with X ∈ Ω<br />

<strong>and</strong> X ⊥Ω = π.<br />

Add<strong>in</strong>g the two results from Lemmas 16.6.4 <strong>and</strong> 16.6.5 we obta<strong>in</strong><br />

Corollary 16.6.6. Let X ∈ P G(3, q) \ π∞ <strong>and</strong> let π be a plane such that<br />

X ∈ π but ∞ ∈ π. There are exactly q(q − 1) elements of Θ with associated<br />

polarity that <strong>in</strong>terchanges X <strong>and</strong> π.<br />

Lemma 16.6.7. Let ∞ = X ∈ π∞ <strong>and</strong> let π be a plane dist<strong>in</strong>ct from π∞<br />

such that X, ∞ ∈ π. There are exactly q 2 (q−1) elements of Θ with associated<br />

polarity <strong>in</strong>terchang<strong>in</strong>g X <strong>and</strong> π.<br />

Proof. There are q 2 (q − 1) ordered pairs of po<strong>in</strong>ts <strong>in</strong> π \ π∞ whose span<br />

conta<strong>in</strong>s X, <strong>and</strong> each such pair is conta<strong>in</strong>ed <strong>in</strong> q 2 − q elements of Θ by<br />

Lemma ??.Each such element of Θ conta<strong>in</strong>s q such ordered pairs (on the<br />

q/2 l<strong>in</strong>es of π through X secant to the oval π ∩ Ω). Hence there are q 2 (q −<br />

1)(q 2 − q)/q = q 2 (q − 1) 2 elements of Θ meet<strong>in</strong>g a l<strong>in</strong>e through X <strong>in</strong> two<br />

po<strong>in</strong>ts (different from X), i.e., whose polarity does not <strong>in</strong>terchange X <strong>and</strong> π.<br />

Hence this leaves q 3 (q − 1) − q 2 (q − 1) 2 = q 2 (q − 1) elements Ω of Θ whose<br />

polarity does <strong>in</strong>terchange X <strong>and</strong> π, i.e., for which X is the nucleus of the<br />

oval Ω ∩ π.<br />

In Section 15.8 we have established an equivalence relation ⊲⊳ on the<br />

set of q 2 (q − 1) symplectic polarities that <strong>in</strong>terchange ∞ <strong>and</strong> π∞. Two<br />

such polarities ⊥1 <strong>and</strong> ⊥2 are equivalent if <strong>and</strong> only if ⊥1 ◦ ⊥2 acts as the<br />

identity on some l<strong>in</strong>e m <strong>in</strong>cident with ∞ <strong>and</strong> conta<strong>in</strong>ed <strong>in</strong> π∞. The two<br />

polarities are said to be equivalent about m. It was established <strong>in</strong> the proof<br />

of Theorem 15.8.1 that there are q − 1 equivalence classes with q 2 polarities<br />

<strong>in</strong> each class. Morever, (see Lemma 15.8.2) for each l<strong>in</strong>e ℓ of π∞ through


750 CHAPTER 16. LAGUERRE GEOMETRIES AND GQ<br />

∞ there are q symplectic polarities <strong>in</strong>terchang<strong>in</strong>g ∞ <strong>and</strong> π∞ <strong>and</strong> equivalent<br />

about ℓ. Let ⊥ be such a fixed polarity. For each of the q + 1 l<strong>in</strong>es of π∞<br />

there are q − 1 other such polarities equivalent to ⊥ about that l<strong>in</strong>e, giv<strong>in</strong>g<br />

at least 1 + (q + 1)(q − 1) = q 2 polarities <strong>in</strong> each class. S<strong>in</strong>ce there are q − 1<br />

classes <strong>and</strong> q 2 (q − 1) such polarities, we have exactly q 2 polarities <strong>in</strong> each<br />

class.<br />

If φ1 <strong>and</strong> φ2 are <strong>in</strong>equivalent polarities, then there exist skew l<strong>in</strong>es m1<br />

<strong>and</strong> m2 with ∞ ∈ m1 ⊂ π∞ <strong>and</strong> ∞ ∈ m2 ⊂ π∞ such that φ1 ◦ φ2 fixes the<br />

po<strong>in</strong>ts <strong>and</strong> planes <strong>in</strong>cident with m1 or m2, <strong>and</strong> both φ1 <strong>and</strong> φ2 <strong>in</strong>terchange<br />

m1 <strong>and</strong> m2. The polarities are said to be <strong>in</strong>equivalent about {m1, m2}.<br />

We extend this equivalence relation to the elements of Θ <strong>and</strong> speak of<br />

ovoids be<strong>in</strong>g equivalent (about a l<strong>in</strong>e) or <strong>in</strong>equivalent (about a pair of skew<br />

l<strong>in</strong>es). (See Theorem 15.8.9.)<br />

Lemma 16.6.8. Among the symplectic polarities of P G(3, q) <strong>in</strong>terchang<strong>in</strong>g<br />

∞ <strong>and</strong> π∞ two equivalent polarities are <strong>in</strong>duced by the same number of elements<br />

of Θ. Furthermore, the number of elements of Θ with <strong>in</strong>duced polarity<br />

<strong>in</strong> a fixed class is a multiple of q 2 .<br />

Proof. Let ⊥ be a fixed symplectic polarity <strong>in</strong>terchang<strong>in</strong>g ∞ <strong>and</strong> π∞. For<br />

this polarity def<strong>in</strong>e the follow<strong>in</strong>g three <strong>in</strong>tegers:<br />

a = number of elements of Θ <strong>in</strong>duc<strong>in</strong>g ⊥;<br />

b = number of elements of Θ <strong>in</strong>duc<strong>in</strong>g a polarity dist<strong>in</strong>ct but equivalent to ⊥;<br />

c = number of elements of Θ <strong>in</strong>duc<strong>in</strong>g a polarity <strong>in</strong>equivalent to ⊥ .<br />

We have the follow<strong>in</strong>g:<br />

a + b + c = q 3 (q − 1). (16.1)<br />

Now we count pairs (X, Ω) where X ∈ P G(3, q) \ π∞, Ω ∈ Θ, <strong>and</strong> X ⊥ =<br />

X ⊥Ω . There are q 3 po<strong>in</strong>ts X not <strong>in</strong> π∞. Fix one <strong>and</strong> Let π = X ⊥ , so π is a<br />

plane conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> different from π∞. By Cor 16.6.6 there are q(q − 1)<br />

elements Ω of Θ with associated polarity that <strong>in</strong>terchanges X <strong>and</strong> π, i.e.,<br />

with X ⊥ = X ⊥Ω . This gives q 4 (q − 1) ordered pairs (X, Ω) of the type we<br />

are count<strong>in</strong>g.<br />

On the other h<strong>and</strong>, if X ⊥ = X ⊥Ω , then s<strong>in</strong>ce X ∈ π∞, either ⊥Ω=⊥,<br />

or ⊥ <strong>and</strong> ⊥Ω are <strong>in</strong>equivalent. To see this, suppose that ⊥=⊥Ω <strong>and</strong> put


16.6. LAGUERRE SETS OF OVOIDS WITH Q EVEN 751<br />

m = ∞ ⊥ ∩ X ⊥ = π ∩ π∞ = 〈∞, X〉 ⊥ = 〈∞, X〉 ⊥Ω . Clearly both ⊥ <strong>and</strong><br />

⊥Ω <strong>in</strong>terchange m <strong>and</strong> 〈∞, X〉. If R is any po<strong>in</strong>t of m, then R ⊥ conta<strong>in</strong>s<br />

R, ∞ <strong>and</strong> X, so each po<strong>in</strong>t of m is <strong>in</strong>terchanged with the plane conta<strong>in</strong><strong>in</strong>g<br />

it <strong>and</strong> the po<strong>in</strong>ts ∞ <strong>and</strong> X. So ⊥ ◦ ⊥Ω fixes each po<strong>in</strong>t on m <strong>and</strong> each<br />

plane through 〈∞, X〉. Interchang<strong>in</strong>g the roles of m <strong>and</strong> 〈∞, X〉 we see that,<br />

similarly, ⊥ ◦ ⊥Ω fixes each po<strong>in</strong>t of 〈∞, X〉 <strong>and</strong> each plane through m. So<br />

⊥ <strong>and</strong> ⊥Ω are <strong>in</strong>equivalent about the pair (m, 〈∞, X〉).<br />

If ⊥=⊥Ω, then X ⊥ = X ⊥Ω for all X ∈ P G(3, q) \ π∞, add<strong>in</strong>g q 3 a to the<br />

count of the pairs (X, Ω). On the other h<strong>and</strong>, if ⊥ <strong>and</strong> ⊥Ω are <strong>in</strong>equivalent,<br />

say about the pair (m, ℓ) with ∞ ∈ m ⊂ π∞ <strong>and</strong> ∞ ∈ ℓ ⊂ π∞, there are<br />

exactly q po<strong>in</strong>ts X (of ℓ\{∞}) such that X ⊥ = X ⊥Ω , add<strong>in</strong>g cq to the count.<br />

Hence q 4 (q − 1) = q 3 a + cq, or<br />

q 2 a + c = q 3 (q − 1). (16.2)<br />

From Eqs. 16.1 <strong>and</strong> 16.2 we have b = (q 2 − 1)a. S<strong>in</strong>ce a (<strong>and</strong> hence<br />

also b) is determ<strong>in</strong>ed by c, the number of elements of Θ <strong>in</strong>duc<strong>in</strong>g a polarity<br />

<strong>in</strong>equivalent to ⊥, it follows that a is <strong>in</strong>dependent of which polarity <strong>in</strong> the<br />

equivalence class of ⊥ we use.<br />

Also, the number of elements of Θ <strong>in</strong>duc<strong>in</strong>g a polarity <strong>in</strong> the class of ⊥<br />

is a + b = q 2 a.<br />

Note: Up to this po<strong>in</strong>t we have used only condition A1 of the def<strong>in</strong>ition<br />

of Θ.<br />

Theorem 16.6.9. Let X ∈ P G(3, q)\π∞ <strong>and</strong> let π be a plane such that X ∈<br />

π <strong>and</strong> ∞ ∈ π. The q−1 elements of Θ (guaranteed to exist by Lemma 16.6.4)<br />

conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> with tangent plane π at X form a transversal, that is,<br />

<strong>in</strong>tersect pairwise <strong>in</strong> {∞, X} <strong>and</strong> (hence) partition the po<strong>in</strong>ts of P G(3, q) \<br />

(π∞ ∪ π ∪ 〈∞, X〉). Furthermore, the q − 1 ovoids are pairwise <strong>in</strong>equivalent<br />

about the l<strong>in</strong>es π ∩ π∞ <strong>and</strong> 〈∞, X〉. This means that each equivalence class<br />

is represented.<br />

Proof. We show that if Y ∈ P G(3, q) \ (π∞ ∪ π ∪ 〈∞, X〉), then there is a<br />

unique element of Θ conta<strong>in</strong><strong>in</strong>g X with tangent plane π that also conta<strong>in</strong>s<br />

Y .<br />

Let π ′ = 〈∞, X, Y 〉 <strong>and</strong> m = π∩π ′ . First count the number of elements of<br />

Θ conta<strong>in</strong><strong>in</strong>g X, Y with m a tangent l<strong>in</strong>e. In total there are q(q −1) elements<br />

of Θ conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> Y (by Lemma ??), <strong>and</strong> to have m not a tangent the


752 CHAPTER 16. LAGUERRE GEOMETRIES AND GQ<br />

ovoid must conta<strong>in</strong> some po<strong>in</strong>t Z ∈ m \ (X ∪ π∞ ∪ 〈∞, Y 〉). S<strong>in</strong>ce 〈∞, Y 〉<br />

<strong>and</strong> m both lie <strong>in</strong> π ′ they meet <strong>in</strong> a po<strong>in</strong>t of m different from X <strong>and</strong> not on<br />

π∞, so there are q − 2 choices for Z. Then s<strong>in</strong>ce ∞ ∈ 〈X, Y, Z〉, by A1 we<br />

have q(q −2) ovoids <strong>in</strong> Θ with m not tangent (<strong>and</strong> conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> Y ), <strong>and</strong><br />

hence q(q − 1) − q(q − 2) = q elements of Θ conta<strong>in</strong><strong>in</strong>g X, Y with m tangent.<br />

So we have q(q − 2) ovoids of Θ conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> Y with m not tangent,<br />

each of which meets π <strong>in</strong> an oval with q − 1 po<strong>in</strong>ts not on m <strong>and</strong> not <strong>in</strong><br />

π∞. This gives (q − 1)q(q − 2) pairs (Z ′ , Ω) where Z ′ ∈ π \ (π∞ ∪ m),<br />

X, Y, Z ′ ∈ Ω ∈ Θ <strong>and</strong> m is not tangent to Ω. By A2 the number of pairs<br />

(Z ′ , Ω) with Z ′ ∈ π \ (π∞ ∪ m) <strong>and</strong> X, Y, Z ′ ∈ Ω ∈ Θ is (q 2 − q)(q − 1).<br />

It follows that the number of pairs (Z ′ , Ω) with Z ′ ∈ π \ (π∞ ∪ m), X, Y ,<br />

Z ′ ∈ Ω ∈ Θ <strong>and</strong> m a tangent to Ω is (q 2 −q)(q−1)−(q−1)q(q−2) = q(q−1).<br />

Each Ω gives q of these pairs, so there must be q − 1 Ω ∈ Θ conta<strong>in</strong><strong>in</strong>g X, Y<br />

with π not tangent (X, Z ′ ∈ π means π is not tangent). This leaves one<br />

Ω ∈ Θ conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> Y with π tangent to Ω at X. We restate this for<br />

emphasis:<br />

For each Y ∈ P G(3, q) \ (π∞ ∪ π ∪ 〈∞, X〉) there is a unique ovoid Ω ∈ Θ<br />

conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> Y with π tangent to Ω at X.<br />

There are (q 3 +q 2 +q+1)−(2q 2 +q+1+q−1) = q 3 −q 2 −q+1 = (q−1)(q 2 −1)<br />

po<strong>in</strong>ts of P G(3, q)\(π∞ ∪π ∪〈∞, X〉), exactly partitioned by the q −1 ovoids<br />

Ω ∈ Θ conta<strong>in</strong><strong>in</strong>g X <strong>and</strong> with tangent plane π. Hence these q − 1 ovoids<br />

form a transversal with base po<strong>in</strong>ts ∞ <strong>and</strong> X <strong>and</strong> base planes π∞ <strong>and</strong> π.<br />

Let the transversal be T = {Ω1, Ω2, . . . , Ωq−1}. S<strong>in</strong>ce all ovoids <strong>in</strong> the<br />

transversal have tangent plane π at X <strong>and</strong> tangent plane π∞ at ∞, it must<br />

be that either any two ovoids <strong>in</strong> the transversal are <strong>in</strong>equivalent about the<br />

skew l<strong>in</strong>es π ∩ π∞ <strong>and</strong> 〈∞, X〉, or def<strong>in</strong>e the same polarity. We show that the<br />

latter possibility cannot occur. Consider a plane π ′ such that ∞ ∈ π ′ <strong>and</strong><br />

X ∈ π ′ . Let {P } = π ′ ∩ π ∩ π∞. Then Ωi ∩ π ′ = Ci is an oval. Now consider<br />

any l<strong>in</strong>e m of π ′ such that P, ∞ ∈ m. The q − 1 po<strong>in</strong>ts of m \ (π ∪ π∞)<br />

are partitioned by the Ci. In particular, s<strong>in</strong>ce q − 1 is odd, it must be that<br />

m is tangent to at least one of the Ci <strong>and</strong> the po<strong>in</strong>t m ∩ π∞ is the nucleus<br />

of this oval. Hence the nuclei of the Ci are the q − 1 dist<strong>in</strong>ct po<strong>in</strong>ts of<br />

(π ′ ∩ π∞) \ {∞, P }. Hence the polarities of the Ωi are pairwise dist<strong>in</strong>ct.<br />

Corollary 16.6.10. Each symplectic polarity of P G(3, q) <strong>in</strong>terchang<strong>in</strong>g ∞<br />

<strong>and</strong> π∞ is <strong>in</strong>duced by q elements of Θ. Further, each equivalence class of Θ<br />

conta<strong>in</strong>s exactly q 3 elements.


16.6. LAGUERRE SETS OF OVOIDS WITH Q EVEN 753<br />

Proof. There are q 3 po<strong>in</strong>ts X ∈ P G(3, q) \ π∞ <strong>and</strong> then q 2 planes π <strong>in</strong>cident<br />

with X but not with ∞. There is one ovoid <strong>in</strong> each equivalence class<br />

<strong>in</strong>terchang<strong>in</strong>g X <strong>and</strong> π. Each such ovoid gets counted q 2 times - once for<br />

each of its po<strong>in</strong>ts other than ∞. Then the number of elements of Θ <strong>in</strong> a<br />

given equivalence class is q 3 q 2 /q 2 = q 3 . Us<strong>in</strong>g the equations <strong>in</strong> the proof of<br />

Lemma 16.6.8 we have that a + b = q 3 , <strong>and</strong> hence a = q.<br />

We now have enough <strong>in</strong>formation to construct a Laguerre geometry from<br />

a Laguerre set.<br />

Theorem 16.6.11. Let Θ be a Laguerre set of ovoids of P G(3, q), q even,<br />

with respect to the <strong>in</strong>cident po<strong>in</strong>t-plane pair (∞, π∞). Let S be the <strong>in</strong>cident<br />

structure with<br />

Po<strong>in</strong>ts of three types:<br />

(i) po<strong>in</strong>ts of P G(3, q) \ π∞;<br />

(ii) equivalence classes of Θ; <strong>and</strong>,<br />

(iii) π∞.<br />

L<strong>in</strong>es of two types:<br />

(a) the l<strong>in</strong>es of P G(3, q) \ π∞ <strong>in</strong>cident with ∞; <strong>and</strong><br />

(b) a formal l<strong>in</strong>e [∞].<br />

Circles are of two types:<br />

(α) the elements of Θ; <strong>and</strong><br />

(β) the planes of P G(3, q) not <strong>in</strong>cident with ∞.<br />

Incidence is natural, plus the l<strong>in</strong>e [∞] is <strong>in</strong>cident with all po<strong>in</strong>ts of type<br />

(ii) <strong>and</strong> (iii), while π∞ is <strong>in</strong>cident with all circles of type (β).<br />

Then S is a Laguerre geometry with parameters n = s = q, ℓ = q 2 + 1 <strong>and</strong><br />

with classical <strong>in</strong>ternal structure at the po<strong>in</strong>t π∞.


754 CHAPTER 16. LAGUERRE GEOMETRIES AND GQ<br />

Proof. Axioms A1 <strong>and</strong> A2 of a Laguerre set ensure that three non-coll<strong>in</strong>ear<br />

po<strong>in</strong>ts of S of type (i) are <strong>in</strong>cident with q common circles. Two non-coll<strong>in</strong>ear<br />

po<strong>in</strong>ts of type (i) <strong>and</strong> π∞ are <strong>in</strong>cident with q common circles of type (β).<br />

If X, Y are two, dist<strong>in</strong>ct non-coll<strong>in</strong>ear po<strong>in</strong>ts of type (i), then let π be<br />

any plane with X, Y ∈ π <strong>and</strong> ∞ ∈ π <strong>and</strong> let P = 〈X, Y 〉 ∩ π∞. for<br />

N ∈ (π ∩ π∞) \ {P }, choos<strong>in</strong>g Z ∈ 〈X, N〉 \ {X, N} we have q − 1 elements of<br />

Θ conta<strong>in</strong><strong>in</strong>g {X, Y, Z} by A2. Hence <strong>in</strong> total there are (q − 1) 2 elements of<br />

Θ whose <strong>in</strong>tersection with π does not have nucleus N. Thus by Lemma ??<br />

there are exactly q − 1 elements of Θ whose <strong>in</strong>tersection with π does have<br />

nucleus N. These ovoids are hence pairwise <strong>in</strong>equivalent. Fix<strong>in</strong>g any one of<br />

these ovoids we see that for each such plane π the ovoid is <strong>in</strong>equivalent to<br />

q − 2 dist<strong>in</strong>ct elements of Θ that conta<strong>in</strong> X <strong>and</strong> Y , <strong>and</strong> hence is <strong>in</strong>equivalent<br />

to at most q(q − 1) − q(q − 2) = q. S<strong>in</strong>ce there are q(q − 1) elements of<br />

Θ conta<strong>in</strong><strong>in</strong>g X, Y <strong>and</strong> q − 1 equivalence classes, this means that there are<br />

exactly q <strong>in</strong> each equivalence class. Hence <strong>in</strong> S the po<strong>in</strong>ts X <strong>and</strong> Y <strong>and</strong> a<br />

po<strong>in</strong>t of type (ii) are <strong>in</strong>cident with exactly q circles. Hence s = q for S.<br />

Theorem 16.6.9 demonstrates the touch<strong>in</strong>g axiom for S except <strong>in</strong> the case<br />

of touch<strong>in</strong>g at a po<strong>in</strong>t of type (ii) or (iii). (The case for (iii) is supposed to<br />

be easy. So we consider the case for (ii).) First note that by Cor. 16.6.10 a<br />

fixed polarity <strong>in</strong>terchang<strong>in</strong>g ∞ <strong>and</strong> π∞ is <strong>in</strong>duced by q elements of Θ, say<br />

Ω1, . . . , Ωq. WOLG suppose that X is an element of (Ω1 ∩ Ω2) \ {∞}. Then<br />

Ω1 <strong>and</strong> Ω2 have the same tangent plane at X <strong>and</strong> so def<strong>in</strong>e <strong>in</strong>equivalent<br />

polarities by Theorem 16.6.9, a contradiction. Hence Ω1, . . . , Ωq <strong>in</strong>tersect<br />

pairwise <strong>in</strong> ∞ <strong>and</strong> as circles <strong>in</strong> S <strong>in</strong>tersect pairwise <strong>in</strong> the equivalence class<br />

of their polarity. Now we show that no other element of Θ def<strong>in</strong><strong>in</strong>g a polarity<br />

equivalent to that of Ω1 <strong>in</strong>tersects Ω1 <strong>in</strong> exactly ∞. For the q 2 − q elements<br />

of Θ equivalent to Ω1 <strong>and</strong> def<strong>in</strong><strong>in</strong>g a different polarity from that of Ω1, let<br />

t1, . . . , t q 3 −q be the <strong>in</strong>tersection sizes of these ovoids with Ω1 \ {∞}. Then we<br />

have<br />

q3−q <br />

i=1<br />

ti = q 2 (q 2 − 1); ti(ti − 1) = q 2 (q 2 − 1)(q − 1);<br />

<strong>and</strong> the average value of the ti is t = q. Calculat<strong>in</strong>g (ti − t) 2 = 0, we see<br />

ti = t for all i. So the only elements of Θ equivalent to Ω1 that <strong>in</strong>tersect Ω1<br />

<strong>in</strong> exactly ∞ are Ω2, . . . , Ωq. Hence we have the touch<strong>in</strong>g axiom for S.<br />

F<strong>in</strong>ally, the <strong>in</strong>ternal structure of S at π∞ consists of the po<strong>in</strong>ts <strong>and</strong> hyperplanes<br />

of P G(3, q) with (∞, π∞) removed.


16.6. LAGUERRE SETS OF OVOIDS WITH Q EVEN 755<br />

As an exercise verify that the converse of this theorem also holds.


756 CHAPTER 16. LAGUERRE GEOMETRIES AND GQ


Chapter 17<br />

Translation Oval Cones<br />

The material <strong>in</strong> this chapter is adapted primarily from the work of W.E.<br />

Cherowitzo [Ch98] Throughout the chapter we assume q = 2 e .<br />

17.1 Representations of Flocks<br />

Let π = P G(2, q) be embedded <strong>in</strong> P G(3, q) as the hyperplane [0, 0, 0, 1]. Let<br />

A be any set of po<strong>in</strong>ts of π <strong>and</strong> put<br />

KA = {(x, y, z, w) : (x, y, z, 0) ∈ A} ∪ {(0, 0, 0, 1)}.<br />

Then KA is the cone over A with vertex V = (0, 0, 0, 1). In this chapter we<br />

primarily treat the case where the base A is an oval <strong>in</strong> π <strong>and</strong> is called the<br />

base oval or carrier. If ℓ is a l<strong>in</strong>e all of whose po<strong>in</strong>ts lie <strong>in</strong> the cone, then ℓ<br />

must be a l<strong>in</strong>e jo<strong>in</strong><strong>in</strong>g the vertex with some po<strong>in</strong>t of the carrier. Such a l<strong>in</strong>e<br />

is called a generator of the cone.<br />

The ma<strong>in</strong> results deal with the case where A is a monomial oval. The<br />

special case where A is a translation oval plays an especially important role<br />

<strong>in</strong> the theory of spreads of the GQ T2(O), so these cones will be studied<br />

<strong>in</strong> detail. The so-called flock quadrangles, a major topic of <strong>in</strong>vestigation <strong>in</strong><br />

other chapters, all arise from quadratic cones, i.e., KA where A is a conic.<br />

Let k be an <strong>in</strong>teger satisfy<strong>in</strong>g<br />

(k, q − 1) = (k − 1, q − 1) = 1. (17.1)<br />

Recall from Chapter 4 that M denotes the set of such <strong>in</strong>tegers <strong>and</strong> that I is<br />

the set of such <strong>in</strong>tegers k for which x ↦→ x k is an o-polynomial.<br />

757


758 CHAPTER 17. TRANSLATION OVAL CONES<br />

Def<strong>in</strong>e a monomial oval cone <strong>in</strong> PG(3,q) to be the set of po<strong>in</strong>ts given by<br />

Kk = {(x, y, z, w) ∈ P G(3, q) : y k = xz k−1 }, for k ∈ I.<br />

So Kk is a cone with vertex V = (0, 0, 0, 1) <strong>and</strong> base oval Ok = {(x, y, z, 0) ∈<br />

[0, 0, 0, 1] : y k = xz k−1 }. A flock of Kk is a set of q planes of P G(3, q) not<br />

pass<strong>in</strong>g through the vertex which do not <strong>in</strong>tersect each other at any po<strong>in</strong>t<br />

of Kk. So the plane sections of Kk by the q planes of a flock partition the<br />

po<strong>in</strong>ts of Kk \ {V } <strong>in</strong>to projectively equivalent ovals. The po<strong>in</strong>t (0, 1, 0, 0) of<br />

π is the nucleus of the base oval. Suppose that π1 <strong>and</strong> π2 are two planes<br />

not through V that conta<strong>in</strong> the same po<strong>in</strong>t Y on the nuclear generator<br />

〈(0, 1, 0, 0), (0, 0, 0, 1)〉. Let ℓ = π1 ∩ π2. So ℓ is a l<strong>in</strong>e of πi through the<br />

nucleus of the oval Oi = πi ∩Kk, hence must conta<strong>in</strong> a unique po<strong>in</strong>t Pi of Oi,<br />

i = 1, 2. It is clear that P1 = P2, which implies that π1 <strong>and</strong> π2 must meet at<br />

a po<strong>in</strong>t of Kk. This proves the follow<strong>in</strong>g<br />

Lemma 17.1.1. A flock of the cone Kk rema<strong>in</strong>s a flock of the extended cone<br />

def<strong>in</strong>ed by<br />

K +<br />

k = Kk ∪ {(0, 1, 0, w) : w ∈ Fq}.<br />

Let ℓ1 = 〈(1, 0, 0, 0), (0, 0, 0, 1)〉, ℓ2 = 〈(0, 1, 0, 0), (0, 0, 0, 1)〉, <strong>and</strong> ℓ3 =<br />

〈(0, 0, 1, 0), (0, 0, 0, 1)〉. Note that the plane [a, b, c, 1] meets the l<strong>in</strong>es ℓ1, ℓ2, ℓ3,<br />

<strong>in</strong> the po<strong>in</strong>ts (1, 0, 0, a), (0, 1, 0, b), (0, 0, 1, c), respectively. This proves the<br />

follow<strong>in</strong>g<br />

Lemma 17.1.2. If F = {πt = [at, bt, ct, 1] : t ∈ Fq} is a flock of the monomial<br />

oval cone Kk where the planes of the flock are <strong>in</strong>dexed by the elements<br />

of Fq, then the three functions<br />

t ↦→ at, t ↦→ bt, t ↦→ ct,<br />

are permutations of the elements of Fq.<br />

Suppose that for some 0 = t ∈ Fq <strong>and</strong> dist<strong>in</strong>ct r, s ∈ Fq the po<strong>in</strong>t<br />

(t k , t, 1, w) ∈ πr ∩ πs = [ar, br, cr, 1] ∩ [as, bs, cs, 1]. It follows that if we put<br />

a = ar + as = 0, b = br + bs = 0, c = cr + cs = 0, then<br />

Multiply by<br />

1<br />

a k−1<br />

b k<br />

k−1<br />

to obta<strong>in</strong><br />

T k + T +<br />

at k + bt + c = 0.<br />

a 1<br />

k−1 c<br />

b k<br />

k−1<br />

, where T =<br />

a 1<br />

k−1<br />

b 1<br />

k−1<br />

t.


17.2. NORMALIZED α-CONES 759<br />

This proves the follow<strong>in</strong>g:<br />

Theorem 17.1.3. F = {πt = [at, bt, ct, 1] : t ∈ Fq} is a flock of the cone Kk<br />

if <strong>and</strong> only if<br />

(ar + as) 1<br />

k−1 (cr + cs)<br />

(br + bs) k<br />

k−1<br />

where D 0 k = {tk + t : t ∈ Fq} <strong>and</strong> D 1 k = Fq \ D 0 k .<br />

∈ D 1 k , ∀ r = s, (17.2)<br />

Let ℓ be a l<strong>in</strong>e disjo<strong>in</strong>t from the cone Kk. The set of q planes through ℓ<br />

but not through V form a l<strong>in</strong>ear flock of Kk. If the oval Ok is a translation<br />

oval (for example, a conic), any two l<strong>in</strong>ear flocks are projectively equivalent,<br />

but for a general monomial oval cone this will not be the case.<br />

We should make it clear what we mean by say<strong>in</strong>g that two flocks are<br />

projectively equivalent. Two flocks F1 <strong>and</strong> F2 of a cone K are projectively<br />

equivalent provided there is a semi-l<strong>in</strong>ear transformation of P G(3, q) leav<strong>in</strong>g<br />

the cone <strong>in</strong>variant <strong>and</strong> mapp<strong>in</strong>g F1 to F2. For a given representation of a<br />

flock, a re-order<strong>in</strong>g of the planes may be necessary.<br />

17.2 Normalized α-Cones<br />

Let α = 2 i , with (i, e) = 1, so α is an automorphism of Fq of maximal order,<br />

i.e., a generator of Aut(Fq). Put k = α above, <strong>and</strong> call the result<strong>in</strong>g cone Kα<br />

an α-cone. . The po<strong>in</strong>t V = (0, 0, 0, 1) is the vertex; each l<strong>in</strong>e of Kα is called<br />

a generator, <strong>and</strong> the l<strong>in</strong>e 〈(0, 0, 0, 1), (0, 1, 0, 0)〉 is the nuclear generator. If<br />

π is any plane of P G(3, q) not conta<strong>in</strong><strong>in</strong>g the vertex, it meets Kα <strong>in</strong> an oval<br />

O isomorphic to Oα, <strong>and</strong> with the property that the l<strong>in</strong>e of π tangent to O<br />

at its po<strong>in</strong>t on 〈(0, 0, 0, 1), (1, 0, 0, 0)〉 is an axis of the translation oval O, the<br />

unique axis if α = 2. Hence we call 〈(0, 0, 0, 1), (1, 0, 0, 0)〉 an axial generator.<br />

Start<strong>in</strong>g with a knowledge of the coll<strong>in</strong>eation group leav<strong>in</strong>g a translation<br />

oval <strong>in</strong>variant, it is a worthwhile exercise to prove the follow<strong>in</strong>g:<br />

Theorem 17.2.1. The subgroup of P ΓL(4, q) leav<strong>in</strong>g <strong>in</strong>variant the cone Kα<br />

consists of the follow<strong>in</strong>g coll<strong>in</strong>eations:<br />

θ : (x0, x1, x2, x3) ↦→ (x σ 0 , xσ1 , xσ2 , xσ3 )M, M =<br />

⎛<br />

⎜<br />

⎝<br />

a ασ 0 0 x<br />

0 a σ 0 y<br />

(as) ασ (as) σ 1 z<br />

0 0 0 w<br />

⎞<br />

⎟<br />

⎠ .


760 CHAPTER 17. TRANSLATION OVAL CONES<br />

Here a, s, x, y, z, w are elements of Fq with a <strong>and</strong> w not zero, <strong>and</strong> σ any<br />

automorphisms of Fq.<br />

For convenience <strong>in</strong> comput<strong>in</strong>g the images of planes we give the <strong>in</strong>verse of<br />

M.<br />

M −1 =<br />

⎛<br />

⎜<br />

⎝<br />

a −ασ 0 0 xa ασ w −1<br />

0 a −σ 0 ya −σ w −1<br />

s ασ s σ 1 xs ασ w −1 + ys σ w −1 + zw −1<br />

0 0 0 w −1<br />

⎞<br />

⎟<br />

⎠ . (17.3)<br />

Suppose that a <strong>and</strong> s have been fixed with a = 0, <strong>and</strong> that [r, v, t, 1] is<br />

any plane not on the vertex V (0, 0, 0, 1). Let w be any non-zero element of<br />

Fq <strong>and</strong> put x = rw, y = vw, z = tw. Then θ maps the plane [r, v, t, 1] to<br />

[0, 0, 0, 1]. Hence we may move any plane not on the vertex V (0, 0, 0, 1) to the<br />

plane [0, 0, 0, 1] without mov<strong>in</strong>g the cone or its axial generator or its nuclear<br />

generator. And the coll<strong>in</strong>eations fix<strong>in</strong>g the cone <strong>and</strong> the plane [0, 0, 0, 1] are<br />

given by σ ∈ Aut(Fq), a, w, s ∈ Fq, a = 0 = w, with<br />

M =<br />

⎛<br />

⎜<br />

⎝<br />

a ασ 0 0 0<br />

0 a σ 0 0<br />

(as) ασ (as) σ 1 0<br />

0 0 0 w<br />

⎞<br />

⎟<br />

⎠ , <strong>and</strong> M −1 =<br />

⎛<br />

⎜<br />

⎝<br />

a ασ 0 0 0<br />

0 a σ 0 0<br />

(as) ασ (as) σ 1 0<br />

0 0 0 w −1<br />

⎞<br />

⎟<br />

⎠ .<br />

(17.4)<br />

If α = 2, then the unique axial generator of Kα is the l<strong>in</strong>e<br />

〈V (0, 0, 0, 1), Y (1, 0, 0, 0)〉. The general plane through the axial generator is<br />

[0, x, y, 0]. We name the plane [0, 0, 1, 0] as P G(2, q) = [0, 0, 1, 0]. It is fixed<br />

by the coll<strong>in</strong>eations <strong>in</strong>dicated <strong>in</strong> Eq. 17.4. The plane [0, 1, ay, 0], y ∈ Fq,<br />

is mapped to [0, 1, (s + y) σ , 0]. If we pick s = y, then the plane [0, 1, ay, 0]<br />

is mapped to [0, 1, 0, 0] without mov<strong>in</strong>g the cone, its axial generator, or the<br />

plane P G(2, q).<br />

At this po<strong>in</strong>t we are still free to pick nonzero a <strong>and</strong> w <strong>and</strong> an automorphism<br />

σ <strong>and</strong> leave <strong>in</strong>variant the cone <strong>and</strong> its vertex <strong>and</strong> both its axial<br />

<strong>and</strong> nuclear generators, the planes ζ = [0, 1, 0, 0], P G(2, q) = [0, 0, 1, 0] <strong>and</strong><br />

π = [0, 0, 0, 1]. Suppose a is fixed <strong>and</strong> 0 = λ ∈ Fq. If (1, 0, 0, λ α ), λ = 0,<br />

is an arbitrary po<strong>in</strong>t of the axial generator different from V (0, 0, 0, 1) <strong>and</strong><br />

Y (1, 0, 0, 0), put w = (aλ −1 ) σα . Then (1, 0, 0, λ σ ) is mapped to (1, 0, 0, 1)<br />

without mov<strong>in</strong>g any of the structures so carefully arranged above. At this


17.3. α-FLOCKS 761<br />

po<strong>in</strong>t we can still choose nonzero a. The cone meets the plane π : x3 = 0 <strong>in</strong><br />

the oval xα 1 + x0x α−1<br />

2 = x3 = 0 with nucleus (0, 1, 0, 0), conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>t<br />

Y (1, 0, 0, 0) <strong>and</strong> with the l<strong>in</strong>e 〈Y (1, 0, 0, 0), (0, 1, 0, 0)〉 as an axis (unique if<br />

α = 2). For arbitrary nonzero a ∈ Fq, the coll<strong>in</strong>eation<br />

(x0, x1, x2, x3) ↦→ (x0, x1, x2, x3) σ<br />

⎛<br />

⎜<br />

⎝<br />

a σα 0 0 0<br />

0 a σ 0 0<br />

0 0 1 0<br />

0 0 0 a σα<br />

fixes the structure set up above <strong>and</strong> maps (1, 1, 0, 0) to (a σα , a σ , 0, 0) ≡<br />

(1, (a σ ) 1−α , 0, 0). S<strong>in</strong>ce a ↦→ a 1−α is a permutation of the nonzero elements of<br />

Fq, we may map (1, 1, 0, 0) to any po<strong>in</strong>t of the axis 〈Y (1, 0, 0, 0), (0, 1, 0, 0)〉<br />

other than Y (1, 0, 0, 0) or (0, 1, 0, 0). So far we have not used the field automorphism<br />

σ. Hence we have proved the follow<strong>in</strong>g theorem.<br />

Theorem 17.2.2. Let Kα be an α-cone <strong>in</strong> P G(3, q) with vertex V , with axial<br />

generator L1 <strong>and</strong> nuclear generator L2. (This means that for any plane π<br />

not conta<strong>in</strong><strong>in</strong>g the vertex, the oval O = π ∩ Kα has nucleus N = L2 ∩ π,<br />

conta<strong>in</strong>s the po<strong>in</strong>t Q = L1 ∩π, <strong>and</strong> the l<strong>in</strong>e 〈, Q, N〉 is an axis of O. Let π(3)<br />

be an arbitrary but fixed plane not conta<strong>in</strong><strong>in</strong>g the vertex V . Let π(2) be the<br />

plane conta<strong>in</strong><strong>in</strong>g the axial generator <strong>and</strong> the nuclear generator of Kα. Let<br />

π(1) be any other plane conta<strong>in</strong><strong>in</strong>g the axial generator. Let Y be the po<strong>in</strong>t<br />

of π(3) on the axial generator, <strong>and</strong> let U be any po<strong>in</strong>t of the axial generator<br />

different from V <strong>and</strong> from Y (i.e., not <strong>in</strong> π(3)). F<strong>in</strong>ally, let P be any po<strong>in</strong>t<br />

of π(2) ∩ π(3) not on the axial generator or nuclear generator of Kα. Then<br />

coord<strong>in</strong>ates for P G(3, q) may be chosen so that the follow<strong>in</strong>g hold:<br />

V = (0, 0, 0, 1), π(3) = [0, 0, 0, 1], π(2) = [0, 0, 1, 0], π(1) = [0, 1, 0, 0],<br />

Y = (1, 0, 0, 0), U = (1, 0, 0, 1), P = (1, 1, 0, 0), L2 ∩ π(3) = (0, 1, 0, 0).<br />

17.3 α-Flocks<br />

A flock of Kα will be called an α-flock. By part 10. of Theorem 4.13.1, we<br />

have the follow<strong>in</strong>g:<br />

⎞<br />

⎟<br />


762 CHAPTER 17. TRANSLATION OVAL CONES<br />

Corollary 17.3.1. F = {πt = [at, bt, ct, 1] : t ∈ Fq} is an α-flock if <strong>and</strong> only<br />

if<br />

tr<br />

<br />

(at + as) 1<br />

α−1 (ct + cs)<br />

(bt + bs) α<br />

<br />

= 1 ∀ t = s.<br />

α−1<br />

Corollary 17.3.2. F = {πt = [at, bt, ct, 1] : t ∈ Fq} is an α-flock if <strong>and</strong> only<br />

if F ′ = {π ′ t = [bt, at, ct, 1] : t ∈ Fq} is a 1<br />

α -flock.<br />

Proof. The corollary follows immediately from the follow<strong>in</strong>g observation:<br />

b<br />

1<br />

α−1−1 a α−1<br />

α −1 −1<br />

= a 1<br />

α−1<br />

b α<br />

α−1<br />

The geometric explanation for this last result is that it is equivalent to<br />

the fact that if we take the α-cone Kα, remove the l<strong>in</strong>e 〈(0, 0, 0, 1), (1, 0, 0, 0)〉<br />

<strong>and</strong> add the nuclear l<strong>in</strong>e 〈(0, 0, 0, 1), (0, 1, 0, 0)〉, we obta<strong>in</strong> a cone equivalent<br />

to K1/α, <strong>and</strong> that any flock of Kα is also a flock of this new cone. Note: This<br />

last observation really means that there is essentially no difference between<br />

an α-flock <strong>and</strong> a 1<br />

α -flock.<br />

We now want to f<strong>in</strong>d a convenient canonical form for α-flocks. Suppose<br />

F = {πt : t ∈ Fq} is such an α-flock. Then π0 (0 ∈ Fq) may play the role of<br />

π(3) <strong>in</strong> the preced<strong>in</strong>g theorem, i.e., we may assume that π0 = [0, 0, 0, 1], so<br />

a0 = b0 = c0 = 0. Also, we may re<strong>in</strong>dex the planes of the α-flock so that any<br />

one of the three functions is any permutation fix<strong>in</strong>g 0 that we choose. Hence<br />

we choose to have bt = t 1/α . At this time we also adopt a st<strong>and</strong>ard notation:<br />

write at = f(t) <strong>and</strong> ct = g(t). Here we know f(t) <strong>and</strong> g(t) may be assumed<br />

to be permutations of the elements of Fq for which f(0) = g(0) = 0. Then<br />

Corollary 17.3.1 reads<br />

Corollary 17.3.3. Let f(t) <strong>and</strong> g(t) be permutations for which f(0) =<br />

g(0) = 0. Then F = {πt = [f(t), t 1<br />

<strong>and</strong> only if<br />

α , g(t), 1] : t ∈ Fq} is an α-flock if<br />

f(t) <br />

1<br />

α−1 + f(s)<br />

(g(t) + g(s)) = 1 ∀ t = s.<br />

tr<br />

t + s<br />

And each α-flock may be described <strong>in</strong> this form.<br />

.


17.3. α-FLOCKS 763<br />

Lemma 17.3.4. Let F = {πt = [f(t), t 1<br />

α , g(t), 1] : t ∈ Fq} be a flock as<br />

above. Let d be any nonzero element of Fq. Write<br />

κ =<br />

<br />

f(d)<br />

g(d)<br />

d<br />

¯f(t) = f(dt)<br />

f(d) ;<br />

¯g(t) = g(dt)<br />

g(d) .<br />

1<br />

α−1<br />

;<br />

Then ¯ F = {¯πt = [ ¯ f(t), t 1<br />

α , κ¯g(t), 1] : t ∈ Fq} is an α-flock equivalent to F<br />

<strong>and</strong> with ¯ f <strong>and</strong> ¯g permutations of the elements of Fq for which<br />

(i) ¯ f(0) = ¯g(0) = 0;<br />

(ii) ¯ f(1) = ¯g(1) = 1;<br />

(iii) tr(κ) = 1.<br />

Moreover, each α-flock is projectively equivalent to one <strong>in</strong> this form. An<br />

α-flock given <strong>in</strong> this form is said to be normalized.<br />

Proof. To start with f <strong>and</strong> g are permutations with f(0) = g(0) = 0. Hence<br />

for d = 0, both f(d) = 0 <strong>and</strong> g(d) = 0. And for all t = s we have (replac<strong>in</strong>g<br />

t with dt <strong>and</strong> s with ds <strong>in</strong> Cor. 17.3.3):<br />

1 = tr<br />

= tr<br />

f(dt) + f(ds)<br />

dt + ds<br />

¯f(t) + ¯ f(s)<br />

t + s<br />

<br />

1<br />

α−1<br />

κ(g(dt) + g(ds))<br />

1<br />

α−1<br />

<br />

κ(¯g(t) + ¯g(s)) .<br />

Putt<strong>in</strong>g t = d <strong>and</strong> s = 0 <strong>in</strong> Corollary 17.3.3 yields tr(κ) = 1. Parts (i)<br />

<strong>and</strong> (ii) of the Lemma are clearly true.<br />

To see that F <strong>and</strong> ¯ F are projectively equivalent, put<br />

⎛<br />

⎜<br />

M = ⎜<br />

⎝<br />

1<br />

f(d)<br />

1<br />

d 1 α<br />

1<br />

f(d) α−1<br />

d<br />

1<br />

⎞<br />

⎟<br />

⎠ .


764 CHAPTER 17. TRANSLATION OVAL CONES<br />

Now let θ be the homography of P G(3, q) def<strong>in</strong>ed as a permutation of planes<br />

by<br />

⎡ ⎤ ⎡ ⎤<br />

a<br />

a<br />

⎢<br />

θ : ⎢ b ⎥ ⎢<br />

⎥<br />

⎣ c ⎦ ↦→ M · ⎢ b ⎥<br />

⎣ c ⎦<br />

d<br />

d<br />

.<br />

When θ is followed by the permutation t ↦→ dt, the plane [f(t), t 1<br />

α , g(t), 1]<br />

is mapped to the plane [ ¯ f(t), t 1<br />

α , κ¯g(t), 1], where<br />

κ =<br />

f(d)<br />

d<br />

1<br />

α−1<br />

g(d) has trace 1.<br />

Each plane of an α-flock meets the associated α-cone <strong>in</strong> a translation oval<br />

isomorphic to Oα. The next result connects the theory of α-flocks with that<br />

of ovals <strong>in</strong> a different way.<br />

Theorem 17.3.5. If F = {πt = [f(t), t 1<br />

α , κg(t), 1] : t ∈ Fq} is a normalized<br />

α-flock, then f(t) is an o-polynomial.<br />

Proof. We already know that f(t) is a permutation polynomial with f(0) = 0<br />

<strong>and</strong> f(1) = 1. Hence we have only to verify the slope condition. So suppose<br />

that for three dist<strong>in</strong>ct values of s, t, u ∈ Fq we have<br />

f(u) + f(t)<br />

u + t<br />

= f(s) + f(t)<br />

s + t<br />

By the additivity of the trace function we have<br />

0 = 1 +<br />

<br />

1<br />

<br />

f(s) + f(t)<br />

= tr κ<br />

s + t<br />

<br />

f(t) + f(u)<br />

+tr κ<br />

t + u<br />

<br />

f(s) + f(t)<br />

= tr κ<br />

s + t<br />

<br />

f(s) + f(u)<br />

= tr κ<br />

s + u<br />

= 1.<br />

= f(s) + f(u)<br />

1<br />

α−1<br />

<br />

(g(s) + g(t)) +<br />

<br />

1<br />

α−1<br />

(g(t) + g(u))<br />

. (17.5)<br />

s + u<br />

<br />

1<br />

α−1<br />

(g(s) + g(t) + g(t) + g(u))<br />

<br />

1<br />

α−1<br />

(g(s) + g(u))


17.4. α-CLANS 765<br />

This contradiction gives the desired result.<br />

An <strong>in</strong>terest<strong>in</strong>g special case is when α = 2.<br />

Corollary 17.3.6. Let α = 2 <strong>and</strong> κ be an element of Fq with tr(κ) = 1. If<br />

F = {πt = [f(t), t 1<br />

2 , κg(t), 1] : t ∈ Fq} is a normalized 2-flock, then g(t) is<br />

also an o-polynomial.<br />

Proof. Suppose F = {πt = [f(t), t 1<br />

2 , κg(t), 1] : t ∈ Fq} is a normalized 2-flock,<br />

so<br />

<br />

(f(s) + f(t))κ(g(s) + g(t))<br />

(g(s) + g(t))κ(f(s) + f(t))<br />

tr<br />

= 1 = tr<br />

,<br />

s + t<br />

s + t<br />

which implies that F = {πt = [g(t), t 1<br />

2 , κf(t), 1] : t ∈ Fq} is a normalized<br />

2-flock, which implies that g(t) is an o-polynomial.<br />

17.4 α-Clans<br />

The notion of α-clan turns out to be a useful notational device for general<br />

α, <strong>and</strong> we have already seen that it is especially helpful when α = 2.<br />

An α-clan is a set C of q upper triangular matrices<br />

<br />

at bt<br />

C = {At =<br />

: t ∈ Fq},<br />

0 ct<br />

with the property that there is some constant κ ∈ Fq for which tr(κ) = 1<br />

<strong>and</strong><br />

<br />

<br />

tr<br />

κ (as + at) 1<br />

α−1 (cs + ct)<br />

(bs + bt) α<br />

α−1<br />

= 1, ∀ s = t.<br />

It is then clear from the def<strong>in</strong>ition <strong>and</strong> Corollary 17.3.1 that<br />

<br />

at bt<br />

Obs. 17.4.1.<br />

0 ct t∈Fq<br />

0, t ∈ Fq, is an α-flock.<br />

is an α-clan if <strong>and</strong> only if atx+bty+κctz+w =<br />

Obs. 17.4.2.<br />

<br />

at<br />

0<br />

bt<br />

ct<br />

<br />

is an α-clan if <strong>and</strong> only if<br />

<br />

bt<br />

0<br />

at<br />

ct<br />

<br />

is a<br />

1<br />

α-clan. t∈Fq<br />

t∈Fq


766 CHAPTER 17. TRANSLATION OVAL CONES<br />

It is also immediate that<br />

Obs. 17.4.3. Each α-clan is equivalent to one <strong>in</strong> which each matrix of the<br />

clan has the form<br />

At =<br />

f(t) t 1<br />

α<br />

0 g(t)<br />

<br />

, t ∈ Fq.<br />

Here f(t) <strong>and</strong> g(t) are permutation polynomials fix<strong>in</strong>g 0 <strong>and</strong> 1 <strong>and</strong> there is<br />

some constant κ with tr(κ) = 1 for which the equation of Corollary 17.3.1<br />

holds. Moreover, by Theorem 17.3.5 f(t) is an o-polynomial.<br />

Similarly,<br />

Obs. 17.4.4.<br />

If<br />

<br />

1<br />

f(t) t α<br />

0 g(t)<br />

t∈Fq<br />

<br />

f(dt)<br />

f(d)<br />

0<br />

is an α − clan, then for any nonzero d ∈ Fq,<br />

t 1<br />

α<br />

g(dt)<br />

g(d)<br />

<br />

t∈Fq<br />

is also an α − clan.<br />

17.5 Some Families of α-Clans<br />

Theorem 17.5.1.<br />

Fq with maximal order.<br />

t 1<br />

α t 1<br />

α<br />

0 t 1<br />

α<br />

<br />

t∈Fq<br />

is an α-clan for each automorphism α of<br />

Proof. Let κ be any element of Fq with tr(κ) = 1. Then we have<br />

⎡<br />

⎤<br />

tr ⎣κ<br />

<br />

t 1<br />

α + s 1 1<br />

α−1<br />

α<br />

(t<br />

t + s<br />

1<br />

α + s 1<br />

α ) ⎦ = tr(κ) = 1.<br />

This α-clan corresponds to a l<strong>in</strong>ear α-flock, so-called because all of the<br />

planes of the flock meet <strong>in</strong> a common l<strong>in</strong>e 〈(1, 1, 0, 0), (0, κ, 1, 0)〉.<br />

<br />

<br />

Theorem 17.5.2. If q = 2 e with e odd, then<br />

α-clan for any automorphism α of maximal order.<br />

t 1<br />

α2 t 1<br />

α<br />

0 t 1 1<br />

+ α α2 t∈Fq<br />

is an


17.5. SOME FAMILIES OF α-CLANS 767<br />

Proof. S<strong>in</strong>ce e is odd we may take κ = 1, because tr(1) = 1 <strong>in</strong> these fields.<br />

Then<br />

<br />

t 1<br />

α 2 + s 1<br />

α 2<br />

t + s<br />

1<br />

α−1 <br />

t 1<br />

α<br />

1<br />

+<br />

α2 + s 1 1<br />

+ α α2 <br />

= t 1<br />

<strong>and</strong> we have by Lemma 4.13.4(b) that<br />

⎡<br />

tr ⎣<br />

1<br />

+ α<br />

α2 + s 1 1<br />

+ α α2 (t + s) 1 1<br />

+ α α2 t 1<br />

α2 + s 1<br />

α2 1<br />

α−1 <br />

t<br />

t + s<br />

1 1<br />

+ α α2 + s 1 1<br />

+ α α2 ⎤<br />

⎦ = 1.<br />

=<br />

<br />

t 1<br />

α +1 + s 1<br />

α +1<br />

(t + s) 1<br />

α +1<br />

1<br />

α<br />

,<br />

Theorem 17.5.3. When q = 2 2h−1 the automorphism σ = 2 h satisfies σ 2 = 2<br />

<strong>and</strong> t 1− 1<br />

σ t 1<br />

σ<br />

1<br />

1+ 0 t σ<br />

<br />

t∈Fq<br />

is a σ − clan.<br />

Proof. As 2h − 1 is odd, we may take κ = 1. It will be convenient to re-<br />

σ−1 x x<br />

normalize this form to<br />

0 xσ+1 <br />

by putt<strong>in</strong>g t = xσ . Now consider,<br />

(x σ−1 + y σ−1 ) 1<br />

σ−1 (x σ+1 + y σ+1 )<br />

(x σ + y σ ) 1<br />

σ−1<br />

= (xσ−1 + y σ−1 ) σ+1 (x σ+1 + y σ+1 )<br />

(x + y) σ+2<br />

= (x + y + xσ−1 y 2−σ + x 2−σ y σ−1 )(x σ+1 + y σ+1 )<br />

(x + y) σ+2<br />

= (x + y)((x + y)σ+1 + x σ y + xy σ ) + (x σ+1 + y σ+1 )(x σ−1 y 2−σ + x 2−σ y σ−1 )<br />

(x + y) σ+2<br />

= 1 + (xσy + xyσ )<br />

(x + y) σ+1 + (xσ+1 + yσ+1 )((xσ−1 + yσ−1 )(x2−σ + y2−σ ) + x + y)<br />

(x + y) σ+2<br />

= 1 + (xσy + xyσ )<br />

+<br />

(x + y) σ+1


768 CHAPTER 17. TRANSLATION OVAL CONES<br />

+ (xσ−1 + y σ−1 )((x 3 + y 3 ) + x σ+1 y 2−σ + x 2−σ y σ+1 ) + (x + y)(x σ+1 + y σ+1 )<br />

(x + y) σ+2<br />

= 1 + xy(xσ−1 + y σ−1 )<br />

(x + y) σ+1<br />

+ (x3 + y 3 )(x σ−1 + y σ−1 ) + (x 2σ + y 2σ )(x 2−σ + y 2−σ )<br />

(x + y) σ+2<br />

= 1 + xy(xσ−1 + y σ−1 )<br />

(x + y) σ+1<br />

+ (x2 + y 2 )(x σ−1 + y σ−1 )<br />

(x + y) σ+1<br />

= 1 + (x2 + y 2 )(x σ−1 + y σ−1 )<br />

(x + y) σ+1<br />

+ xy(xσ−1 + yσ−1 )<br />

(x + y) σ+1 +<br />

+ (x2σ + y 2σ )(x 2−σ + y 2−σ )<br />

(x + y) σ+2<br />

2 2 σ−1 σ−1 (x + y )(x + y )<br />

+<br />

(x + y) σ+1<br />

As the trace of the sum of the last two terms is 0, we see that the trace of<br />

our expression is equal to tr(1) = 1.<br />

Theorem 17.5.4. If q = 2 2h−1 , then for the automorphism σ = 2 h we have<br />

that t 3<br />

σ −2 t 1<br />

σ<br />

is a σ-clan.<br />

0 t 3<br />

σ<br />

Proof. We aga<strong>in</strong> take κ = 1 put put t = xσ to renormalize the form to<br />

3−2σ x x<br />

0 x3 <br />

. Now,<br />

t∈Fq<br />

<br />

t∈Fq<br />

(x 3−σ + y 3−2σ ) σ+1 (x 3 + y 3 )<br />

(x + y) σ+2<br />

= (xσ−1 + y σ−1 + x 3σ−4 y 3−2σ + x 3−2σ y 3σ−4 )(x 3 + y 3 )<br />

(x + y) σ+2<br />

= xσ+2 + y σ+2 + x 3 y σ−1 + x σ−1 y 3 + x 3σ−1 y 3−2σ + y 3σ−1 x 3−2σ<br />

(x + y) σ+2<br />

+ x3σ−4 y 6−2σ + y 3σ−4 x 6−2σ<br />

(x + y) σ+2<br />

= xσ+2 + y σ+2 + x 3 y σ−1 + x σ−1 y 3 + x 3σ−1 y 3−2σ + y 3σ−1 x 3−2σ<br />

(x + y) σ+2<br />

3−2σ 3σ−2 3−2σ 3σ−2<br />

x y + y x<br />

+<br />

(x + y) σ+1<br />

σ<br />

σ<br />

.


17.5. SOME FAMILIES OF α-CLANS 769<br />

= xσ+2 + y σ+2 + x 3 y σ−1 + x σ−1 y 3 + x 3σ−1 y 3−2σ + y 3σ−1 x 3−2σ<br />

(x + y) σ+2<br />

+ x3−2σ y 3σ−2 + y 3−2σ x 3σ−2<br />

(x + y) σ+1<br />

+ Z.<br />

Here, Z, be<strong>in</strong>g of the form w + w σ is an element whose trace is 0. The rest<br />

of the computation consists of several repetitions of the last two steps. We<br />

will recomb<strong>in</strong>e terms, f<strong>in</strong>d a new term which is a σ power <strong>and</strong> replace it with<br />

its σ root plus a term whose trace is 0 <strong>and</strong> accumulate the trace 0 terms <strong>in</strong><br />

the Z expressions. First put the two fractions over a common denom<strong>in</strong>ator:<br />

= xσ+2 + y σ+2 + x 3 y σ−1 + x σ−1 y 3 + x 4−2σ y 3σ−2 + x 3σ−2 y 4−2σ<br />

(x + y) σ+2<br />

= xσ+2 + y σ+2 + x 3 y σ−1 + x σ−1 y 3<br />

(x + y) σ+2<br />

+ x2σ−2 y 3−σ + x 3−σ y 2σ−2<br />

(x + y) σ+1<br />

= xσ+2 + y σ+2 + x 3 y σ−1 + x σ−1 y 3 + x 2σ−1 y 3−σ + x 3−σ y 2σ−1<br />

(x + y) σ+2<br />

+ x2−σ y 2σ−1 + x 2σ−1 y 2−σ<br />

(x + y) σ+1<br />

= xσ+2 + y σ+2 + x 3 y σ−1 + x σ−1 y 3<br />

(x + y) σ+2<br />

= xσ+2 + y σ+2 + x σ y 2 + x 2 y σ<br />

(x + y) σ+2<br />

= (x + y)σ+2<br />

+ Z ′′<br />

+ xσ−1 y 2 + x σ−1 y 2<br />

(x + y) σ+1<br />

+ Z ′′′<br />

(x + y) σ+2 + Z′′′ = 1 + Z ′′′ .<br />

+ Z ′′′<br />

+ Z<br />

+ Z ′<br />

As the terms Z, Z ′ , Z ′′ <strong>and</strong> Z ′′′ all have trace 0, the proof is complete.<br />

We now have an easy proof that one of Glynn’s families of hyperovals<br />

exists.<br />

Corollary 17.5.5. (Glynn [Gl83]) For the automorphism σ as above, f(t) =<br />

t 3σ+4 is an o-polynomial.


770 CHAPTER 17. TRANSLATION OVAL CONES<br />

Proof. Apply Obs. 17.4.2 to the σ-clan of Theorem 17.5.3 <strong>and</strong> put the result<strong>in</strong>g<br />

1<br />

<br />

3σ+4 t t<br />

-clan <strong>in</strong> st<strong>and</strong>ard form, thus obta<strong>in</strong><strong>in</strong>g<br />

σ σ<br />

0 t9σ+12 <br />

. Hence by<br />

t∈Fq<br />

Theorem 17.3.5 <strong>and</strong> Obs. 17.4.1 we have that over the field Fq with q = 22h−1 ,<br />

f(t) = t3σ+4 is an o-polynomial.<br />

Theorem 17.5.6. If q = 22h−1 , then for the automorphism σ = 2h we have<br />

that <br />

<br />

is a σ-clan.<br />

t 3(σ−1)<br />

σ t 1<br />

σ<br />

0 t σ−1<br />

σ<br />

t∈Fq<br />

Proof. We aga<strong>in</strong> take κ = 1 <strong>and</strong> renormalize the form to<br />

Compute<br />

(x 3σ−3 + y 3σ−3 ) σ+1 (x σ−1 + y σ−1 )<br />

(x + y) σ+2<br />

= (x3 + y 3 + x 6−3σ y 3σ−3 + x 3σ−3 y 6−3σ )(x σ−1 + y σ−1 )<br />

(x + y) σ+2<br />

= xσ+2 + yσ+2 +<br />

(x + y) σ+2<br />

x 3(σ−1) x<br />

0 x σ−1<br />

+ x3 y σ−1 + x σ−1 y 3 + x 3σ−3 y 5−2σ + x 5−2σ y 3σ−3 + x 4σ−4 y 6−3σ + x 6−3σ y 4σ−4<br />

(x + y) σ+2<br />

= xσ+2 + yσ+2 (x + y) σ+2 + x3yσ−1 + xσ−1y3 + x3σ−2y4−2σ + x4−2σy 3σ−2<br />

(x + y) σ+2<br />

+ Z<br />

= xσ+2 + yσ+2 +<br />

(x + y) σ+2<br />

+ x3 y σ−1 + x σ−1 y 3 + x 2σ−1 y 3−σ + x 3−σ y 2σ−1 + x 2σ−2 y 4−σ + x 4−σ y 2σ−2<br />

(x + y) σ+2<br />

= xσ+2 + yσ+2 (x + y) σ+2 + x3yσ−1 + xσ−1y 3 + x2σy 2σ−2 + x2−σy2σ (x + y) σ+2<br />

= xσ+2 + yσ+2 (x + y) σ+2 + x2yσ + xσy2 + Z′′′<br />

(x + y) σ+2<br />

= 1 + Z ′′′ .<br />

As Z, Z ′ , Z ′′ <strong>and</strong> Z ′′′ all have trace 0, the proof is complete.<br />

+ Z ′′<br />

+ Z ′<br />

<br />

.


17.6. HERDS 771<br />

17.6 Herds<br />

The def<strong>in</strong>ition of herd has varied a bit <strong>in</strong> the literature, but the def<strong>in</strong>ition we<br />

choose here is that of [Ch98] <strong>and</strong> is a natural generalization of the orig<strong>in</strong>al<br />

def<strong>in</strong>ition given <strong>in</strong> [CPPR96]. For an <strong>in</strong>-depth study of the general concept,<br />

see [CP02].<br />

Let f(t) <strong>and</strong> g(t) be permutation polynomials over Fq with f(0) = g(0) =<br />

0 <strong>and</strong> f(1) = g(1) = 1. If there exists an automorphism α of Fq <strong>and</strong> an<br />

element κ ∈ Fq with trace 1 such that for each s ∈ Fq the function<br />

is a permutation, then the set<br />

t ↦→ hs(t) = κg(t) + sf(t) + s 1<br />

α t 1<br />

α<br />

H(f, g, α, κ) = {f(t)} ∪ {hs(t)}<br />

is called a herd.<br />

If each of the functions <strong>in</strong> a herd is divided by its value at 1, the result<strong>in</strong>g<br />

set of functions will be called a normalized herd. If all of the functions <strong>in</strong> a<br />

herd represent ovals <strong>in</strong> the plane, i.e., if {(hs(t), t, 1) : t ∈ Fq} ∪ {(1, 0, 0)}<br />

is an oval for each s ∈ Fq, then the herd will be called a herd of ovals or an<br />

oval herd. In a normalized oval herd all the functions are o-polynomials.<br />

Our <strong>in</strong>terest <strong>in</strong> herds arises from the fact that herds <strong>and</strong> α-clans are<br />

equivalent objects.<br />

Theorem 17.6.1. H(f, g, α, κ) is a herd if <strong>and</strong> only if<br />

an α-clan with respect to κ.<br />

Proof. First suppose that<br />

f(t) t 1<br />

α<br />

0 g(t)<br />

<br />

t∈Fq<br />

f(t) t 1<br />

α<br />

0 g(t)<br />

<br />

t∈Fq<br />

is<br />

is an α-clan with respect to κ<br />

<strong>and</strong> fix s ∈ Fq. Put κ ′ = κ + s + s 1<br />

α , so clearly tr(κ ′ ) = 1. We are go<strong>in</strong>g to<br />

show that for each s ∈ Fq<br />

<br />

1<br />

f(t) t α<br />

0<br />

κg(t)+sf(t)+s 1/α t 1/α<br />

κ+s+s 1/α<br />

is an α-clan (with respect to the trace 1 element κ ′ ).<br />

So compute<br />

t∈Fq


772 CHAPTER 17. TRANSLATION OVAL CONES<br />

<br />

tr κ ′<br />

<br />

f(t) + f(u)<br />

t + u<br />

1<br />

α−1 κ(g(t) + g(u)) + s(f(t) + f(u)) + s 1<br />

α (t 1<br />

α + u 1<br />

α<br />

<br />

f(t) + f(u)<br />

= tr κ<br />

t + u<br />

<br />

+tr<br />

⎡<br />

= 1 + tr ⎣s<br />

s<br />

(f(t) + f(u)) α<br />

α−1<br />

(t + u) 1<br />

α−1<br />

(f(t) + f(u)) α<br />

α−1<br />

(t + u) 1<br />

α−1<br />

This shows that for each s ∈ Fq,<br />

<br />

f(t) t 1<br />

α<br />

0<br />

+<br />

κ ′<br />

1<br />

α−1<br />

<br />

(g(t) + g(u)) +<br />

) 1<br />

α + s 1<br />

α<br />

<br />

s<br />

hs(t)<br />

hs(1)<br />

<br />

(f(t) + f(u)<br />

(t + u)<br />

1<br />

α(α−1)<br />

(f(t) + f(u)) α<br />

α−1<br />

<br />

(t + u) 1<br />

α−1<br />

1<br />

α<br />

⎤<br />

⎦ = 1.<br />

t∈Fq<br />

is an α-clan, which <strong>in</strong> particular forces hs(t) to be a permutation, i.e.,<br />

H(f, g, α, κ) is a herd.<br />

Conversely, suppose that H(f, g, α, κ) is a herd. Fix s ∈ Fq. By hypothesis<br />

hs is a permutation, so that if t = u, then hs(t) = hs(u), i.e.,<br />

hs(x) + hs(y) = 0 ∀ x = y. Then<br />

hs(x) + hs(y) = κ(g(x) + g(y)) + s(f(x) + f(y)) + s 1<br />

α (x 1<br />

α + y 1<br />

α ) = 0<br />

for all x = y. By permitt<strong>in</strong>g s to vary <strong>and</strong> writ<strong>in</strong>g Z = s 1<br />

α , we see that<br />

Z α (f(x) + f(y)) + Z(x 1<br />

α + y 1<br />

α ) + κ(g(x) + g(y)) = 0 ∀ x = y.<br />

From this it follows that<br />

<br />

f(x) + f(y)<br />

tr κ<br />

x + y<br />

<br />

Hence<br />

is an α-clan, complet<strong>in</strong>g the proof.<br />

f(t) t 1<br />

α<br />

0 g(t)<br />

t∈Fq<br />

1<br />

α−1<br />

<br />

(g(x) + g(y)) = 1, ∀ x = y.<br />

Corollary 17.6.2. If H(f, g, α, κ) is a herd, then f is an o-polynomial.


17.7. FLIPPABLE α-CLANS 773<br />

17.7 Flippable α-Clans<br />

Let<br />

f(t t 1<br />

α<br />

0 g(t)<br />

<br />

t∈Fq<br />

be an α-clan with respect κ, <strong>and</strong> let ρ(t)be a permu-<br />

tation polynomial with ρ(0) = 0. This α-clan is said to be ρ(t)-flippable<br />

provided<br />

<br />

0<br />

0<br />

⎧<br />

<br />

⎨ f(t)<br />

0<br />

∪ ρ(t)<br />

0 ⎩<br />

t 1 0<br />

α<br />

ρ(t)<br />

⎫<br />

⎬<br />

⎭<br />

g(t)<br />

ρ(t)<br />

0=t∈Fq<br />

is also an α-clan with respect to the same trace 1 element κ. This new αclan<br />

is called the ρ(t)-flip of the orig<strong>in</strong>al. The first known <strong>in</strong>stance of this<br />

phenomenon is the follow<strong>in</strong>g:<br />

Theorem 17.7.1. ([BLP94], [PT91]) Each 2-clan<br />

flippable.<br />

f(t) t 1<br />

2<br />

0 g(t)<br />

Proof. By hypothesis there is a κ ∈ Fq with tr(κ) = 1 such that<br />

<br />

t∈Fq<br />

is t-<br />

<br />

<br />

(f(t) + f(s))(g(t) + g(s))<br />

tr κ = 1, ∀ t = s. (17.6)<br />

t + s<br />

Replace x with x −1 <strong>in</strong> the t-flip to obta<strong>in</strong><br />

<br />

1 xf x<br />

x 1<br />

2<br />

0 xg 1<br />

x<br />

<br />

<br />

x∈Fq<br />

. Then,<br />

us<strong>in</strong>g the same κ, consider<br />

<br />

(xf(1/x) + yf(1/y))(xg(1/x) + yg(1/y))<br />

κ<br />

x + y<br />

<br />

2 2 x f(1/x)g(1/x) + y f(1/y)g(1/y) + xy(f(1/x)g(1/y) + f(1/y)g(1/x))<br />

= κ<br />

x + y<br />

⎡<br />

= κ ⎣ (x2 + xy)f ⎤<br />

1 1 2 1 1<br />

g + (y + xy)f g<br />

x x<br />

y y<br />

⎦ +<br />

x + y<br />

+κ<br />

⎡<br />

⎣ (f <br />

1 + f x<br />

<br />

1<br />

y<br />

)(g 1<br />

x<br />

1/x + 1/y<br />

+ g<br />

⎤<br />

1 ) y<br />


774 CHAPTER 17. TRANSLATION OVAL CONES<br />

= κ f(1/x)g(1/x)<br />

1/x<br />

+κ f(1/y)g(1/y)<br />

+κ<br />

1/y<br />

(f(1/x) + f(1/y))(g(1/x) + g(1/y))<br />

1/x + 1/y<br />

Each of these three terms has trace 1, be<strong>in</strong>g a special case of Eq. 17.6, so the<br />

sum has trace 1.<br />

Theorem 17.7.2. If the herd H(f, g, α, κ) is an oval herd, then the correspond<strong>in</strong>g<br />

α-clan is t-flippable.<br />

Proof. S<strong>in</strong>ce H(f, g, α, κ) is an oval herd, the q + 1 functions of this herd are<br />

all o-polynomials. Specifically, for each s ∈ Fq,<br />

hs(x) =<br />

κg(x) + sf(x) + s 1<br />

α x 1<br />

α<br />

κ + s + s 1<br />

α<br />

is an o-polynomial.<br />

We have seen (chapter on ovals) that if k(x) is an o-polynomial, then k(x)/x<br />

is a permutation polynomial. Hence we may put f ∗ (x) =<br />

g(x 1<br />

1−α )<br />

x 1<br />

1−α<br />

<br />

.<br />

1<br />

f(x 1−α )<br />

x 1 <strong>and</strong> g<br />

1−α<br />

∗ (x) =<br />

. It follows that f ∗ <strong>and</strong> g ∗ are permutation polynomials fix<strong>in</strong>g 0. Then<br />

Hence we have<br />

h ∗ s (x) = κg∗ (x) + sf ∗ (x) + s 1<br />

α x 1<br />

α<br />

κ + s + s 1 .<br />

α<br />

h ∗ s(x) =<br />

κg(x 1<br />

1−α )<br />

x 1 +<br />

1−α<br />

sf(x 1<br />

1−α )<br />

x 1 + s<br />

1−α<br />

1<br />

α x 1<br />

α<br />

κ + s + s 1<br />

α<br />

This gives a herd whose correspond<strong>in</strong>g α-clan is<br />

⎛<br />

⎞<br />

⎜<br />

⎝<br />

f(x 1<br />

1−α )<br />

x 1<br />

1−α<br />

0<br />

x 1<br />

α<br />

g(x 1<br />

1−α )<br />

x 1<br />

1−α<br />

⎟<br />

⎠ ,<br />

which is the x-flip of the orig<strong>in</strong>al α-clan. To see this start with:<br />

f(x) x 1<br />

α<br />

0 g(x)<br />

x−flip<br />

↦→<br />

f(x)<br />

x<br />

0<br />

(x1−α ) 1<br />

α<br />

g(x)<br />

x<br />

<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

.<br />

f(t 1<br />

1−α )<br />

t 1<br />

1−α<br />

0<br />

t 1<br />

α<br />

g(t 1<br />

1−α )<br />

t 1<br />

1−α<br />

⎞<br />

⎟<br />

⎠ .


17.7. FLIPPABLE α-CLANS 775<br />

There is a converse to the preced<strong>in</strong>g theorem, but before we can even<br />

state it we need to <strong>in</strong>troduce a new concept. Suppose that F = {[xt, yt, zt, 1] :<br />

t ∈ Fq} is an α-flock of the α-cone. Then the shift by s, denoted by τs, s ∈ Fq,<br />

of F is the α-flock F τs = {[x ′ t , y′ t , z′ t , 1] : t ∈ Fq}, where<br />

x ′ t = xt + xs<br />

y ′ t = yt + ys<br />

z ′ t = zt + zs.<br />

Now suppose F = {[f(t), t 1/α , κg(t), 1] : t ∈ Fq}, tr(κ) = 1, is a normalized<br />

α-flock. Let φ denote the t-flip on F, so<br />

F φ = {[f(t)/t, t 1<br />

α −1 , κg(t)/t, 1] : t ∈ Fq}.<br />

For s ∈ Fq, the α-flock F is called (t; s)-shift flippable if <strong>and</strong> only if F τsφ<br />

is still an α-flock with respect to the same trace 1 element κ. The converse<br />

to Theorem 17.7.2 is <strong>in</strong>cluded <strong>in</strong> the follow<strong>in</strong>g theorem, which also conta<strong>in</strong>s<br />

Theorem 17.7.2 itself.<br />

Theorem 17.7.3. The α-flock F = {[f(t), t 1<br />

α , κg(t), 1] : t ∈ Fq} of the αcone<br />

Kα : y α = xz α−1 corresponds to an oval herd H(f, g, α, κ) if <strong>and</strong> only if<br />

F is (t; s)-shift flippable for all s ∈ Fq.<br />

Proof. First, H(f, g, α, κ) def<strong>in</strong>es an oval herd if <strong>and</strong> only if f(t) <strong>and</strong> the<br />

polynomials hu(t) = κg(t) + uf(t) + (ut) 1<br />

α , u ∈ Fq, def<strong>in</strong>e q + 1 oval polynomials.<br />

This is if <strong>and</strong> only if (see Theorem 4.5.2 <strong>and</strong> its proof),for all s ∈ Fq,<br />

the polynomials fs(t) = (f(t) + f(s))/(s + t) <strong>and</strong><br />

hu,s(t) = hu(t) + hu(s)<br />

t + s<br />

= κ(g(t) + g(s)) + u(f(t) + f(s)) + (u(t + s)) 1<br />

α<br />

t + s<br />

are all permutation polynomials satisfy<strong>in</strong>g fs(0) = hu,s(0) = 0. KEEP THIS<br />

IN MIND!<br />

If we make the substitution t ′′ = (t + s) 1−α , we obta<strong>in</strong><br />

hu,s(t) = κ(g(t′′1/(1−α) + s) + g(s))<br />

t ′′1/(1−α)<br />

Also, fs(t), ∀ s ∈ Fq may be rewritten similarly.<br />

+ u f(t′′1/(1−α) + s) + f(s)<br />

t ′′1/(1−α)<br />

+ (ut ′′ ) 1/α .


776 CHAPTER 17. TRANSLATION OVAL CONES<br />

Now apply the shift-flip (τsφ) to F. First apply<strong>in</strong>g the shift by s maps<br />

F onto the α-flock {π ′ t = [(f(t) + f(s)), (t + s) 1/α , κ(g(t) + g(s)), 1] : t ∈ Fq}.<br />

By <strong>in</strong>troduc<strong>in</strong>g the parameter t ′ = t + s, this is the set of planes<br />

{π ′ t ′ = [(f(t′ + s) + f(s)), t ′1/α , κ(g(t ′ + s) + g(s)), 1] : t ′ ∈ Fq}.<br />

Note that with t ′ = 0 we have the plane π ′ 0 = [0, 0, 0, 1]. Apply<strong>in</strong>g the<br />

t ′ -flip gives the set of planes<br />

{π ′′<br />

{π ′′<br />

t ′ = [f(t′ + s) + f(s)<br />

t ′<br />

1<br />

′<br />

, t α −1 , κ (g(t′ + s) + g(s)<br />

t ′<br />

, 1] : t ′ ∈ Fq}.<br />

S<strong>in</strong>ce t ′ = t ′′1/(1−α) , this set of planes is given by<br />

t ′′ = [f(t′′1/(1−α) + s) + f(s)<br />

t ′′1/(1−α)<br />

, t ′′1/α , κ g(t′′1/(1−α) + s) + g(s)<br />

t ′′1/(1−α)<br />

, 1] : t ′′ ∈ Fq},<br />

where π ′′<br />

0 = [0, 0, 0, 1].<br />

On the one h<strong>and</strong> these planes form an α-flock if <strong>and</strong> only if F is shiftflippable.<br />

On the other h<strong>and</strong> these planes form an α-flock if <strong>and</strong> only if (by<br />

Obs. 17.4.1 α-flocks are equivalent to α-clans; by Theorem 17.6.1 α-clans are<br />

equivalent to herds) the polynomials fs(t), hu,s(t), with<br />

hu,s(t) = k(g(t′′1/(1−α) + s) + g(s))<br />

t ′′1/(1−α)<br />

fs(t) = f(t′′1/(1−α) + s) + f(s)<br />

t ′′1/(1−α)<br />

,<br />

+ u f(t′′1/(1−α) + s) + f(s)<br />

t ′′1/(1−α)<br />

+ (ut) 1/α ,<br />

are permutation polynomials for all s ∈ Fq, satisfy<strong>in</strong>g fs(0) = hu,s(0) = 0.<br />

So by the first paragraph of this proof, we see that the herd correspond<strong>in</strong>g<br />

to an α-flock is an oval herd if <strong>and</strong> only if the α-flock is (t; s)-shift flippable<br />

for all s ∈ Fq.<br />

17.8 A Special α-Clan<br />

In this section we study the α-clan of Theorem 17.5.2.


17.8. A SPECIAL α-CLAN 777<br />

Theorem 17.8.1. Let q = 2 e with e odd, <strong>and</strong> let α be any automorphism of<br />

Fq of maximal order (to force x ↦→ x 1−α to be a permutation). Then<br />

At =<br />

<br />

t 1<br />

α2 t 1<br />

α<br />

0 t 1 1<br />

+ α α2 <br />

t∈Fq<br />

is a t-flippable α-clan if <strong>and</strong> only if t 1 1<br />

+ α α2 is an o-polynomial.<br />

Proof. By Theorem 17.5.2 At is an α-clan with respect to κ = 1. First<br />

suppose that At is t-flippable. Then its t-flip (after renormaliz<strong>in</strong>g) is<br />

<br />

1 1<br />

+<br />

x α α2 x 1<br />

α<br />

0 x 1+α−α2<br />

α 2 (1−α)<br />

By Theorem 17.3.5 <strong>and</strong> Obs. 17.4.1, x 1 1<br />

+ α α2 is an o-polynomial.<br />

Conversely, suppose that f(t) = t 1<br />

α<br />

image of Of under the homography θ : x ↦→ xA where<br />

⎛<br />

1 1<br />

⎞<br />

1<br />

A = ⎝ 0 1 0 ⎠ .<br />

0 0 1<br />

.<br />

+ 1<br />

α 2 is an o-polynomial. Consider the<br />

Clearly θ fixes (0, 1, 0) <strong>and</strong> (0, 0, 1) <strong>and</strong> <strong>in</strong>terchanges (1, 0, 0) <strong>and</strong> (1, 1, 1).<br />

And it maps (1, t, f(t)) ↦→ (1, 1 + t, 1 + f(t), i.e., k(t) = f(1 + t) + 1 is an<br />

o-polynomial. But<br />

k(t) = (1 + t) 1 1<br />

+ α α2 + 1 = (1 + t 1<br />

α )(1 + t 1<br />

α2 ) + 1 = t 1<br />

α + t 1<br />

α2 + t 1 1<br />

+ α α2 ,<br />

which must also be an o-polynomial.<br />

Similarly,<br />

⎛<br />

if 0 = d ∈ Fq, then k(dt)/k(d) is also an o-polynomial (use<br />

1 0 0<br />

A = ⎝ 0 1<br />

⎞<br />

0 ⎠). Now put d = s−α <strong>and</strong> note that<br />

d<br />

1 0 0 k(d)<br />

hs(t) = k(s−α t)<br />

k(s −α ) =<br />

t 1 α<br />

s<br />

1<br />

s<br />

+ t 1<br />

α 2<br />

s 1 α<br />

+ 1<br />

s 1 α<br />

+ t 1 α<br />

+<br />

1<br />

α2 s 1+ 1 α<br />

+ 1<br />

s 1+ 1 α<br />

= s 1<br />

α t 1<br />

α + st 1<br />

α2 + t 1 1<br />

+ α α2 s 1<br />

α + s + 1<br />

which must be an o-polynomial for each s ∈ Fq. Thus H(t 1<br />

an oval herd. Hence by Theorem 17.7.2, At is t-flippable.<br />

α2 , t 1 1<br />

+ α α2 , α, 1) is<br />

,


778 CHAPTER 17. TRANSLATION OVAL CONES<br />

Example 17.8.1.1. Each l<strong>in</strong>ear α-flock is t-flippable. The proof of this is<br />

almost trivial.<br />

Example 17.8.1.2. The α-clan with α = 1/σ <strong>in</strong> Theorem 17.5.2 is tflippable.<br />

With the help of Obs. 17.4.2, its t-flip gives the 1/σ-clan of Theorem<br />

17.5.3. In fact, we can say more: Theorem 17.7.3 provides a new proof<br />

of Theorem 17.5.3.<br />

Proof. Let α = σ−1 <br />

2 t<br />

<strong>in</strong> Theorem 17.8.1, so At =<br />

tσ 0 tσ+2 <br />

. S<strong>in</strong>ce σ + 2 =<br />

σ(σ + 1) = σ is known to be an o-polynomial, we see that the t-flip (put<br />

σ−1<br />

t = x σ<br />

σ−1 = xσ+2 )<br />

is a 1<br />

σ<br />

t t σ−1<br />

0 t σ+1<br />

σ+2 x x<br />

=<br />

σ<br />

0 x σ+2<br />

σ−1<br />

-clan. F<strong>in</strong>ally, by Obs. 17.4.2 we see that<br />

<br />

σ σ+2 x x<br />

0 x σ+2<br />

x−1<br />

is a σ-clan. So we may renormalize <strong>and</strong> get that<br />

t 1− 1<br />

σ t 1<br />

σ<br />

1<br />

1+ 0 t σ<br />

<br />

<br />

is a σ − clan.<br />

This provides another proof of Theorem 17.5.3<br />

1<br />

2− Example 17.8.1.3. The α-clan with α = 1/σ <strong>in</strong> Theorem 17.5.2 is t σ -<br />

flippable, lead<strong>in</strong>g to the 1/σ-clan of Theorem 17.5.4. It is also tσ+3-flippable, lead<strong>in</strong>g to the 1/σ-clan of Theorem 17.5.6.<br />

Theorem 17.8.1 makes it quite <strong>in</strong>terest<strong>in</strong>g to know for which automor-<br />

phisms α of Fq with maximal order the polynomial t 1<br />

α<br />

+ 1<br />

α 2 is an o-polynomial.<br />

Fortunately, Cherowitzo <strong>and</strong> Storme [CS98] have provided the answer. They<br />

prove a more general result, but we content ourselves here with the follow<strong>in</strong>g.<br />

Theorem 17.8.2. Let q = 2e with e odd <strong>and</strong> let α be an automorphism of Fq<br />

with maximal order, i.e., α = 2i with (i, e) = 1. Then tk is an o-polynomial<br />

where k = 1 1 + α α2 if <strong>and</strong> only if k is one of the follow<strong>in</strong>g:<br />

(i) k = 2 + 22 = 6;<br />

(ii) k = σ + 2 with σ2 = 2;<br />

(iii) k = γ + γ2 = γ + σ, where γ2 = σ <strong>and</strong> σ2 = 2;<br />

(iv) k = q/4 + q/2 = 3q/4.


17.8. A SPECIAL α-CLAN 779<br />

Proof. In the follow<strong>in</strong>g we use α <strong>in</strong> place of 1<br />

α . So suppose k = α+α2 = 2 i +2 2i<br />

def<strong>in</strong>es a monomial hyperoval Ok <strong>in</strong> P G(2, q). S<strong>in</strong>ce (i, h) = 1, there is a<br />

smallest positive power r for which α r = 2. The proof is divided <strong>in</strong>to four<br />

cases depend<strong>in</strong>g on the value of r. Also, the proof <strong>in</strong> each case amounts to<br />

an application of Glynn’s criterion Theorem 4.5.15. For the convenience of<br />

the reader we recall this theorem.<br />

Theorem 17.8.3. For nonzero k <strong>in</strong> the <strong>in</strong>tegers modulo q − 1, assume that<br />

(k, q − 1) = (k − 1, q − 1) = 1. Then D(x k ) is a hyperoval of P G(2, q) if <strong>and</strong><br />

only if for each nonzero d <strong>in</strong> the <strong>in</strong>tegers modulo q − 1 it is NOT the case<br />

that d ≪ kd.<br />

This theorem of Glynn can be stated more generally. Let q = 2 e <strong>and</strong><br />

let α = 2 r , (r, e) = 1. Then it is possible to write each <strong>in</strong>teger d with<br />

0 ≤ d < q − 1 uniquely as d ≡ e−1<br />

i=0 aiα i (mod q − 1) with 0 ≤ di ≤ 1,<br />

i = 0, . . . , e − 1. Then ≪ can be extended to this α-ary expansion. Namely<br />

a ≪ b if <strong>and</strong> only if ai ≤ bi, i = 0, . . . , e − 1, with a ≡ e−1<br />

i=0 aiα i (mod q − 1),<br />

b ≡ e−1<br />

i=0 biα i (mod q − 1), ai, bi ∈ {0, 1}.<br />

Then Glynn’s theorem is also valid for all of these α-ary expansions be-<br />

cause writ<strong>in</strong>g an <strong>in</strong>teger n <strong>in</strong> b<strong>in</strong>ary expansion n = e−1<br />

i=0 bi2 i , 0 ≤ bi ≤ 1,<br />

i = 0, . . . , e − 1, or <strong>in</strong> α-ary expansion n ≡ e−1<br />

i=0 diα i (mod q − 1), with<br />

0 ≤ di ≤ 1, i = 0, . . . , e − 1, simply amounts to a permutation of the b<strong>in</strong>ary<br />

digits bi.<br />

We are now ready for the cases:<br />

Case 1. r odd <strong>and</strong> 3 ≤ r ≤ e − 2.<br />

(e−r−4)<br />

2<br />

t=0<br />

Let d = α2t + αe−r−2 + αe−r−1 if r ≤ e − 4, <strong>and</strong> d = 1 + α when<br />

r = e − 2. Keep <strong>in</strong> m<strong>in</strong>d k = α + α2 .<br />

Then for 3 ≤ r ≤ e − 4, dk = e−r−1 t=1<br />

αt + 2αe−r + αe−r+1 . S<strong>in</strong>ce 2 = αr ,<br />

this says dk ≡ e−r−1 t=0<br />

αt + αe−r+1 (mod q − 1). So d ≪ dk.<br />

For r = e−2, dk = α+2α 2 +α3 ≡ 1+α+α 3 (mod q −1). Aga<strong>in</strong> d ≪ dk.<br />

So <strong>in</strong> Case 1 no examples arise.<br />

Case 2. r even <strong>and</strong> 6 ≤ r ≤ e − 7.<br />

(e−r−5)<br />

2<br />

t=0<br />

Let d = α2t + αe−r−4 + αe−r−2 + αe−r−1 . Then dk = e−r−5 t=1<br />

αt +<br />

αe−r−4 + 2αe−r−3 + αe−r−2 + αe−r−1 + 2αe−r + αe−r+1 .<br />

Us<strong>in</strong>g αr = 2 we can simplify this to dk ≡ e−r−4 t=0<br />

αt + αe−r−2 + αe−r−1 +<br />

αe−r+1 + αe−3 (mod q − 1).


780 CHAPTER 17. TRANSLATION OVAL CONES<br />

Aga<strong>in</strong> d ≪ dk, <strong>and</strong> no example arises.<br />

Case 3. r = e − 5 (r ≥ 6).<br />

Let d = 1 + α + α 3 + α 4 . Then dk = α + 2α 2 + α 3 + α 4 + 2α 5 + α 6 ≡<br />

1 + α + a 3 + α 4 + α 6 + α e−3 (mod q − 1), s<strong>in</strong>ce 2 = α e−5 . Aga<strong>in</strong> d ≪ dk, <strong>and</strong><br />

no example arises.<br />

Case 4. r = e − 3 (r ≥ 6).<br />

Let d = 1 + α 2 + α 4 + α 5 . Then dk = α + α 2 + α 3 + α 4 + α 5 + 2α 6 + α 7 ≡<br />

α + α 2 + 2α 3 + α 4 + α 5 + α 7 ≡ 1 + α + α 2 + α 4 + α 5 + α 7 (mod q − 1), s<strong>in</strong>ce<br />

2 = α e−3 . Once more, d ≪ dk <strong>and</strong> no examples arise.<br />

The above four cases show that if x k is an o-polynomial with k = α + α 2 ,<br />

then r ∈ {1, 2, 4, e − 1}. Let α = 2 i .<br />

For r = 1, k = 2 + 2 2 = 6, which def<strong>in</strong>es the Segre hyperoval. For r = 2,<br />

2i ≡ 1 (mod e). Equivalently, i = (e + 1)/2, <strong>and</strong> k = σ + 2, where D(k) is a<br />

translation hyperoval, s<strong>in</strong>ce σ ∗ = σ/(σ − 1) = σ(σ + 1) = σ + 2.<br />

For r = 4, then 4i ≡ 1 (mod e). So i = (e + 1)/4 if e ≡ 3 (mod 4), <strong>and</strong><br />

i = (3e + 1)/4 when e ≡ 1 )mod 4). Hence k = σ + γ, with σ 2 = 2 <strong>and</strong><br />

γ 2 = σ. As we shall see <strong>in</strong> the next section, this def<strong>in</strong>es one of the Glynn<br />

hyperovals.<br />

F<strong>in</strong>ally, for r = e − 1, also i = e − 1. So k = 2 −1 + 2 −2 ≡ 3q/4, which<br />

def<strong>in</strong>es a translation hyperoval snce k ≡ 1 − 1<br />

4 .<br />

Corollary 17.8.4. Let q = 2 e , e odd, <strong>and</strong> let α be an automorphism of Fq<br />

with maximal order e. The q planes πt = [t 1<br />

α 2 , t 1<br />

α , t 1 1<br />

+ α α2 , 1], t ∈ Fq, def<strong>in</strong>e an<br />

α-flock F of the α-cone y α = xz α−1 . The α-flock F is t-flippable if <strong>and</strong> only<br />

if the correspond<strong>in</strong>g herd is an oval herd if <strong>and</strong> only if one of the follow<strong>in</strong>g<br />

holds:<br />

(i) α = 1/2;<br />

(ii) α = 1/σ with σ 2 = 2;<br />

(iii) α = 1/γ with γ 4 = 2;<br />

(iv) α = 2.<br />

17.9 The ovals σ + γ of Glynn<br />

The next lemma gives a result of Glynn [Gl83] with a rather different proof<br />

found by Cherowitzo.


17.9. THE OVALS σ + γ OF GLYNN 781<br />

Lemma 17.9.1. Let q = 2e , e odd, <strong>and</strong> let γ be the automorphism of Fq for<br />

which γ2 = σ where σ2 <br />

γ+σ t t<br />

= 2. Then<br />

γ<br />

<br />

is a 1<br />

γ -clan.<br />

0 t σγ+σ−γ<br />

γ−1<br />

Proof. The orig<strong>in</strong>al proof by Glynn[Gl83], although perhaps amaz<strong>in</strong>g, is<br />

rather unpleasantly technical. The proof we give here is from Cherowitzo<br />

[Ch98]. It is probably just as technical, but may be a little clearer<br />

conceptually.<br />

S<strong>in</strong>ce e is odd we may put κ = 1. Then the lemma is equivalent to the<br />

trace of the follow<strong>in</strong>g expression be<strong>in</strong>g equal to 1:<br />

Note that<br />

W := (tγ+σ + sγ+σ 1<br />

) γ−1−1 (t σγ+σ−γ<br />

γ−1 + s σγ+σ−γ<br />

γ−1 )<br />

1<br />

γ−1<br />

(t γ + s γ ) γ−1<br />

γ −1 −1<br />

= (tγ + sγ ) 1<br />

γ−1 (t σγ+σ−γ<br />

γ−1 + s σγ+σ−γ<br />

γ−1 )<br />

(tγ+1 + sγ+1 ) σ<br />

γ−1<br />

= (γ + 1)(σ + 1) <strong>and</strong> use this to compute<br />

w :=<br />

σγ + σ − γ<br />

γ − 1<br />

= σγ + 2σ + 3γ + 2.<br />

Also, put T = (t γ + s γ ) 1<br />

γ−1 = (t γ + s γ ) σγ+σ+γ+1 , so<br />

W = T (tw + sw )<br />

(tγ+1 + sγ+1 ) σ .<br />

γ−1<br />

Put X = {σγ, σ, γ, 1}. For each subset U ⊆ X write Ū = X \ U <strong>and</strong> ΣU<br />

to denote the sum of the elements of U. Then<br />

T = <br />

t ΣU Σ<br />

s Ū .<br />

U⊆X<br />

Then with a little persistence we can write the numerator as T (t w +s w ) =<br />

.


782 CHAPTER 17. TRANSLATION OVAL CONES<br />

A + B + C + D + E + F + G where<br />

A = t w (t σγ+σ+γ+2 + t γ+2 s σγ+σ + t γ+σ s σγ+2 )<br />

+ s w (s σγ+σ+γ+2 + s γ+2 t σγ+σ + s γ+σ t σγ+2 );<br />

B = t w (t σγ+γ+2 s σ + t σγ+σ+γ s 2 + t σγ+γ s σ+2 )<br />

+ s w (s σγ+γ+2 t σ + s σγ+σ+γ t 2 + s σγ+γ t σ+2 );<br />

C = t w (t σγ+σ+2 s γ + t σ+γ+2 s σγ + t 2 s σγ+σ+γ + t σ+2 s σγ+γ )<br />

+ s w (s σγ+σ+2 t γ + s σ+γ+2 t σγ + s 2 t σγ+σ+γ + s σ+2 t σγ+γ );<br />

D = t w (t σγ+σ s γ+2 + t σγ s σ+γ+2 ) + s w (s σγ+σ t γ+2 + s σγ t σ+γ+2 );<br />

E = t w (t σ s σγ+γ+2 ) + s w (s σ t σγ+γ+2 );<br />

F = t w (t γ s σγ+σ+2 + s σγ+σ+γ+2 ) + s w (s γ t σγ+σ+2 + t σγ+σ+γ+2 );<br />

G = t w (t σγ+2 s σ+γ ) + s w (s σγ+2 t σ+γ ).<br />

To show that tr(W ) = 1 whenever s = t, we aga<strong>in</strong> want to elim<strong>in</strong>ate<br />

from W terms with trace 0. We want to view this as replac<strong>in</strong>g certa<strong>in</strong> terms<br />

from the numerator with someth<strong>in</strong>g simpler, but the ‘trick’ appears more<br />

complicated than before because the denom<strong>in</strong>ator is more complicated.<br />

, <strong>and</strong><br />

From γ<br />

γ−1<br />

+ γ = σ<br />

γ−1 we see 1<br />

x γ<br />

γ−1<br />

<br />

y 1<br />

γ<br />

x γ<br />

γ−1<br />

γ<br />

+ y 1<br />

= xγ<br />

x σ<br />

γ−1<br />

γ<br />

x γ<br />

γ−1<br />

= y + xγy 1<br />

γ<br />

x σ ,<br />

γ−1<br />

which must have trace 0. If we th<strong>in</strong>k of x be<strong>in</strong>g <strong>in</strong> the form x = t γ+1 + s γ+1 ,<br />

then x γ = t σ+γ + s σ+γ . Choose any two terms u <strong>and</strong> y of the numerator. Put<br />

H = u + (t σ+γ + s σ+γ )y 1<br />

γ <strong>and</strong> Z = y + (t σ+γ + s σ+γ )y 1<br />

γ .<br />

Then u + y = H + Z, <strong>and</strong> Z may be discarded,i.e., u + y may be replaced<br />

with H.<br />

First choose C = u <strong>and</strong> y = B, so<br />

H = C + (t σ+γ + s σ+γ )B 1<br />

γ<br />

= t 2σγ+2σ+2γ+4 s σ+2γ + t σγ+2σ+2γ+4 s σγ+σ+2γ<br />

+ s 2σγ+2σ+2γ+4 t σ+2γ + s σγ+2σ+2γ+4 t σγ+σ+2γ .


17.9. THE OVALS σ + γ OF GLYNN 783<br />

So replace B + C with H. Next choose y = H <strong>and</strong> u = D. Put<br />

I = D + (t σ+γ + s σ+γ )H 1<br />

γ<br />

= t 2σγ+2σ+2γ+2 s σ+2γ+2 + t 2σγ+σ+2γ+2 s 2σ+2γ+2<br />

+ s 2σγ+2σ+2γ+2 t σ+2γ+2 + s 2σγ+σ+2γ+2 t 2σ+2γ+2 .<br />

So H +D is replaced by I <strong>and</strong> the numerator of T (tw +sw ) has been replaced<br />

by A + I + E + F + G.<br />

Now put u = E <strong>and</strong> y = I, <strong>and</strong> def<strong>in</strong>e J <strong>and</strong> K by J + K = E + (tσ+γ +<br />

sσ+γ )I 1<br />

γ where<br />

J := E + K + (t σ+γ + s σ+γ )I 1<br />

γ<br />

= t σγ+2σ+2γ+2 s σγ+σ+2γ+2 + t σγ+3σ+2γ+2 s σγ+2γ+2<br />

+ s σγ+2σ+2γ+2 t σγ+σ+2γ+2 + s σγ+3σ+2γ+2 t σγ+2γ+2 .<br />

It follows that K = t σγ+σ+2γ+2 s σγ+2σ+2γ+2 +s σγ+2σ+2γ+2 . So replace I +E<br />

with J + K.<br />

Next, put u = F + K <strong>and</strong> y = J, <strong>and</strong><br />

L := F + K + (t σ+γ + s σ+γ )J 1<br />

γ<br />

= t σγ+σ+2γ+2 s σγ+2σ+2γ+2 + s σγ+σ+2γ+2 t σγ+2σ+2γ+2 .<br />

Replace F + K + J with L, so that the numerator of T (t w + s w ) has now<br />

been replaced by A + L + G. Now notice that<br />

G = (t σ+γ +s σ+γ )(t 2σγ+3σ+4γ+4 +s 2σγ+3σ+4γ+4 ) 1<br />

γ +t 2σγ+3σ+4γ+4 +s 2σγ+3σ+4γ+4 ,<br />

so G can be removed. The rema<strong>in</strong><strong>in</strong>g complete expression has numerator<br />

A + L where (aga<strong>in</strong> use “ · · · ” to <strong>in</strong>dicate the undisplayed mates)<br />

<strong>and</strong><br />

A = t 2σγ+3σ+4γ+4 + t σγ+2σ+4γ+4 s σγ+σ + t σγ+3σ+4γ+2 s σγ+2 + · · ·<br />

L = t σγ+σ+2θ+2 s σγ+2σ+2γ+2 + · · · .


784 CHAPTER 17. TRANSLATION OVAL CONES<br />

But now it is straightforward to show that<br />

where<br />

<strong>and</strong><br />

A + L<br />

(t γ+1 + s γ+1 ) σ<br />

γ−1<br />

= 1 +<br />

M + N<br />

(tγ+1 + sγ+1 ) σ ,<br />

γ−1<br />

M = t 2σγ+σ+2γ+4 s 2σ+2γ + t σγ+3σ+2γ s σγ+2γ+4 + · · · ,<br />

N = t 2σγ+3σ+2γ+2 s 2γ+2 + t 2σ+4γ+2 s 2σγ+σ+2 + · · · .<br />

But now it is easy to check that N = (t σ+γ + s σ+γ )M 1<br />

γ , complet<strong>in</strong>g the<br />

proof.<br />

Example 17.9.1.1. Put α = 1 <strong>in</strong> Theorem 17.7.3 to obta<strong>in</strong> the α-clan<br />

γ<br />

σ t tγ 0 tγ+σ <br />

<br />

σ−1 t t<br />

. The t-flip of this clan is<br />

γ−1<br />

0 tγ+σ−1 <br />

, which after renormalization<br />

gives <br />

γ+σ x xγ <br />

.<br />

0 x σ+γσ−γ<br />

γ−1<br />

S<strong>in</strong>ce this is an α-clan by Lemma 17.9.1, by Theorem 17.3.5 <strong>and</strong> Obs. 17.4.1<br />

we see that x γ+σ is an o-polynomial.<br />

This establishes the existence of this <strong>in</strong>f<strong>in</strong>ite family of ovals found by<br />

Glynn [Gl83] by means of Cherowitzo’s theory of α-clans, a proof very different<br />

from that of Glynn.<br />

Example 17.9.1.2. It is an easy exercise to show that if the α-clan<br />

is ρ(t)-flippable, then so is the 1<br />

α-clan f(t) t 1<br />

α<br />

0 g(t)<br />

t∈Fq<br />

t 1<br />

α f(t)<br />

0 g(t)<br />

In particular, Theorem 17.7.1 implies that all 1-clans<br />

are t-flippable. Hence<br />

2<br />

we may put α = 1<br />

2 <strong>in</strong>to Theorem 17.7.3 to see that the Segre polynomial t6 is<br />

an o-polynomial.<br />

The concept of ρ(t)-flippability of an α-clan has a natural geometric <strong>in</strong>-<br />

at bt<br />

terpretation. If the α-clan<br />

with associated α-flock atx + bty +<br />

0 ct t∈Fq<br />

κctz + w = 0 is ρ(t)-flippable, then the α-flock associated with the ρ(t)-flip<br />

is given by atx + bty + κctz + ρ(t)w = 0. For each t = 0, the correspond<strong>in</strong>g<br />

planes of the two α-flocks meet <strong>in</strong> the l<strong>in</strong>e atx + bty + κctz = 0 <strong>in</strong> the<br />

<br />

t∈Fq<br />

.


17.10. CHEROWITZO HYPEROVALS 785<br />

plane w = 0. It is now a trivial matter to see that any l<strong>in</strong>ear α-flock is<br />

ρ(t)-flippable for any permutation ρ(t), <strong>and</strong> its ρ(t)-flip is itself. However, <strong>in</strong><br />

general a ρ(t)-flippable α-clan need not be equivalent to its ρ(t)-flip.<br />

Lemma 17.9.2. An α-clan<br />

1 + f(t + 1) t 1<br />

α<br />

0 1 + g(t + 1)<br />

f(t) t 1<br />

α<br />

<br />

.<br />

0 g(t)<br />

<br />

is equivalent to the α-clan<br />

Proof. Re-order the matrices of the α-clan with the permutation t ↦→ t + 1,<br />

1 1<br />

<strong>and</strong> then add the constant matrix to each matrix of the α-clan.<br />

0 1<br />

17.10 Cherowitzo Hyperovals<br />

Let q = 2 e , e odd, <strong>and</strong> let σ be the automorphism of Fq for which σ 2 = 2.<br />

Def<strong>in</strong>e the polynomial function<br />

ch(t) = x σ + x σ+2 + x 3σ+4 .<br />

W. E. Cherowitzo [Ch88] discovered with the help of a computer that for<br />

several values of q, ch(t) is an o-polynomial. He conjectured at that time that<br />

this formula always gives an o-polynomial, but the proof was quite elusive.<br />

F<strong>in</strong>ally <strong>in</strong> [Ch98] he was able to show that <strong>in</strong>deed these “Cherowitzo ovals”<br />

always exist. We devote this section to the surpris<strong>in</strong>gly technical proof.<br />

Lemma 17.10.1. If f(x) = x + x σ−1 + x σ+1 , then<br />

(i) f −1 (x) = xσ+1<br />

1+x 2 +x σ ,<br />

<strong>and</strong><br />

(ii) f σ+2 (x)+xf 3 (x)+x σ f 2σ (x)<br />

x<br />

Proof. Put g(x) = xσ+1<br />

1+x 2 +x σ . Then<br />

= 1+(1+x)3σ+4<br />

. x<br />

<br />

f(g(x)) = f<br />

x σ+1<br />

1 + x 2 + x σ<br />

<br />

=


786 CHAPTER 17. TRANSLATION OVAL CONES<br />

=<br />

xσ+1 1 + x2 <br />

+<br />

+ xσ x σ+1<br />

1 + x 2 + x σ<br />

σ−1<br />

<br />

+<br />

x σ+1<br />

1 + x 2 + x σ<br />

= xσ+1 (1 + x 2 + x σ ) σ + x(1 + x 2 + x σ ) 2 + (x σ+1 ) σ+1<br />

(1 + x 2 + x σ ) σ+1<br />

= x [xσ (1 + x 2 + x σ ) σ + 1 + x 4 + x 2σ + x 2σ+2 ]<br />

(1 + x 2 + x σ ) σ+1<br />

σ+1<br />

= x [xσ (1 + x 2 + x σ ) σ + 1 + x 2 + x 2σ + x 2 + x 4 + x 2σ+2 ]<br />

(1 + x 2 + x σ ) σ+1<br />

= x [xσ (1 + x 2 + x σ ) σ + (1 + x 2 + x σ ) σ + x 2 (1 + x 2 + x σ ) σ ]<br />

(1 + x 2 + x σ ) σ+1<br />

= x((1 + x2 + x σ ) σ ((1 + x 2 + x σ )<br />

(1 + x 2 + x σ ) σ+1<br />

= x.<br />

On the other h<strong>and</strong>,<br />

g(f(x)) =<br />

(x + x σ−1 + x σ+1 ) σ+1<br />

1 + (x + x σ−1 + x σ+1 ) 2 + (x + x σ−1 + x σ+1 ) σ<br />

= x + x3 + x 2σ−1 + x 2σ+3 + x σ+1 + x 3−σ + x σ+3<br />

1 + x 2 + x 2σ−2 + x 2σ+2 + x σ + x 2−σ + x σ+2<br />

= x.<br />

This proves part (i). For (ii),<br />

f σ+2 (x) + xf 3 (x) + x σ f 2σ (x)<br />

x<br />

= (x + xσ−1 + x σ+1 ) σ+2 + x(x + x σ−1 + x σ+1 ) 3 + x σ (x + x σ−1 + x σ+1 ) 2σ<br />

x<br />

= (x2 + x 2σ−2 + x 2σ+2 )(x 2 + x 2−σ ) + x 3σ + x 4−σ + x 3σ+4<br />

x<br />

= xσ + x 2σ + x 3σ + x 4 + x σ+4 + x 2σ+4 + x 3σ+4<br />

x<br />

= 1 + (1 + x)4 (1 + x + x 2 + x 3 ) σ<br />

x<br />

= 1 + (1 + x)4 (1 + x) 3σ<br />

x<br />

= 1 + (1 + x)3σ+4<br />

.<br />

x


17.10. CHEROWITZO HYPEROVALS 787<br />

Theorem 17.10.2. With σ2 <br />

σ+2 1 + (1 + t)<br />

= 2 as usual,<br />

tσ 0 1 + (1 + t) 3σ+4<br />

is a t-flippable 1/σ-clan.<br />

<br />

t 1− 1<br />

σ t 1<br />

σ<br />

<br />

Proof. By Theorem 17.5.3,<br />

1 is a σ-clan. Then by Obs. 17.4.2,<br />

1+ 0 t σ<br />

1 1 <br />

1− t σ t σ<br />

1 is a 1+ 0 t σ<br />

1<br />

1−σ<br />

-clan, <strong>and</strong> it is equivalent to (replace t σ<br />

σ 2 <br />

σ+2 t t<br />

with t)<br />

σ<br />

0 t3σ+4 <br />

,<br />

which by Lemma 17.9.2 is equivalent to the 1<br />

σ-clan <br />

σ+2 1 + (1 + t) tσ 0 1 + (1 + t) 3σ+4<br />

<br />

=<br />

<br />

2 σ σ+2 t + t + t tσ 0 1 + (1 + t) 3σ+4<br />

<br />

. This clan is t-flippable if <strong>and</strong> only if (by<br />

<br />

σ t t<br />

Example 17.9.1.2) the σ-clan<br />

2 + tσ + tσ+2 0 1 + (1 + t) 3σ+4<br />

<br />

is t-flippable. So the<br />

σ−1 t t + t<br />

proof of the theorem amounts to show<strong>in</strong>g that<br />

σ−1 + tσ+1 <br />

0<br />

1+(1+t) 3σ+4<br />

is a σ-clan.<br />

t<br />

Now put x = f(t) = t + tσ−1 + tσ+1 , so by Lemma 17.10.1<br />

t = h(x) = xσ+1<br />

1+x2 +xσ , <strong>and</strong> what we must show is that<br />

x(1 + x 2 + x σ ) 1−σ x<br />

0 x(1 + x 2 + x σ ) + x 3 + x 2σ+1 (1 + x 2 + x σ ) 1−σ<br />

is a σ-clan. To do this, we must show that for dist<strong>in</strong>ct x <strong>and</strong> y the follow<strong>in</strong>g<br />

expression must have trace 1, where we have put k(x) = 1 + x2 + xσ <strong>and</strong> use<br />

1 = σ + 1:<br />

σ−1<br />

(xk(x) 1−σ + yh(y) 1−σ ) σ+1 (xk(x) + x3 + x2σ+1k(x) 1−σ + yk(y) + y3 + y2σ+1k(y) 1−σ )<br />

(x + y) σ+2<br />

.<br />

At this po<strong>in</strong>t th<strong>in</strong>gs really beg<strong>in</strong> to get messy. In order to keep the<br />

account somewhat readable, we adopt (follow<strong>in</strong>g Cherowitzo) the follow<strong>in</strong>g<br />

two conventions. First, only the terms of the numerator will be displayed,<br />

<strong>and</strong> second, we shall exploit the symmetry <strong>in</strong> x <strong>and</strong> y. If one term appears, it<br />

is to be understood that the correspond<strong>in</strong>g term with x <strong>and</strong> y <strong>in</strong>terchanged<br />

(the mate of the first mentioned term) is also present but not written. We<br />

use the ellipsis to rem<strong>in</strong>d the reader of this.<br />

<br />

t∈Fq


788 CHAPTER 17. TRANSLATION OVAL CONES<br />

<br />

We these conventions <strong>in</strong> m<strong>in</strong>d, exp<strong>and</strong> the numerator. First exp<strong>and</strong><br />

x<br />

k(x) σ−1 σ+1 + · · · <strong>in</strong>to the sum of four terms<br />

σ+1 x<br />

k(x) + xσyk(x) σ−2<br />

k(y) σ−1<br />

<br />

+ · · · .<br />

Then multiply the four terms on the left times the six terms on the right <strong>and</strong><br />

add them together.There are two terms of the form xσ+1yA for some A that<br />

k(x)<br />

comb<strong>in</strong>e to give the second term below, but the others are the simple result<br />

of multiplication term by term. The result is<br />

x σ+2 + xσ+1y(1 + yσ )<br />

k(x)<br />

+ xσ+1yk(x) σ−1<br />

k(y) σ−1<br />

+ x3σ+2<br />

k(x) σ + yσx2k(y) σ−2<br />

k(x) σ−2<br />

+<br />

+ yσ x 4 k(y) σ−2<br />

k(x) σ−1<br />

+ xσ+1y 2σ+1<br />

xσ+4<br />

+<br />

k(x)k(y) σ−1 k(x) +<br />

+ xσ+3yk(x) σ−2<br />

k(y) σ−1 + x3σ+1y +<br />

k(x)k(y) σ−1<br />

+ yσ x 2σ+2 k(y) σ−2<br />

k(x) 2σ−2<br />

+ · · ·<br />

These terms, <strong>in</strong> the order <strong>in</strong> which they appear will be rererred to as<br />

terms a, b, . . . , k.<br />

The follow<strong>in</strong>g observation will be referred to as the trick:<br />

A<br />

=<br />

(x + y) σ+2<br />

A 1<br />

σ<br />

(x + y)<br />

σ+1 + Z = (x + y)A 1<br />

α<br />

+ Z,<br />

(x + y) σ+2<br />

where tr(Z ) = 0. Specifically, s<strong>in</strong>ce we are only <strong>in</strong>terested <strong>in</strong> show<strong>in</strong>g that<br />

the entire sum has trace 1, we may replace each term A of the numerator<br />

with the term (x + y)A 1<br />

σ , plus a term with trace 0. Apply the trick to the<br />

last four displayed terms <strong>and</strong> their undisplayed mates. The result (after some<br />

simplification) is (comb<strong>in</strong><strong>in</strong>g terms i + e, d + h, f + k, j + g, <strong>and</strong> rework<strong>in</strong>g<br />

part of b)<br />

x σ+2 + xσ=1 y(1 + y σ )<br />

k(x)<br />

+ xσ+1 y 2σ=1<br />

k(x)k(y) σ−1<br />

+ xσ+3y k(x) + xσy2k(x) σ−1<br />

k(y( σ−1<br />

+ xσ+2y 2k(x) σ−2<br />

k(y) σ−1


17.10. CHEROWITZO HYPEROVALS 789<br />

+ yx2σ+1 (1 + x) + y 2 x 2σ (1 + x + x σ )<br />

k(x)k(y) σ−1<br />

+ · · · + Z,<br />

where Z (not <strong>in</strong> the numerator) is an element of trace 0.<br />

At this po<strong>in</strong>t by putt<strong>in</strong>g every term over a common denom<strong>in</strong>ator k(x)k(y) σ ,<br />

it is possible to show that this expression is equal to the follow<strong>in</strong>g:<br />

x σ+2 + x σ y 2 + x σ+1 y + xσ+1 y σ+1 + x 2σ+1 y<br />

k(x)<br />

+ xσ y 2 (1 + y σ )<br />

k(y) σ<br />

+ xσ+2 y 2 k(x) σ−2<br />

k(y) σ−1<br />

+ xσ+1 y 2σ+1 + yx 2σ+1 (1 + x) + y 2 x 2σ+1<br />

k(x)k(y) σ−1<br />

+ · · · + Z.<br />

Now apply the ‘trick’ to the second term of the second l<strong>in</strong>e <strong>and</strong> then swap<br />

the result with its undisplayed mate <strong>and</strong> simplify to get<br />

x σ+2 + x σ y 2 + x σ+1 y + xσ+1 y σ+1 + x 2σ+1 y<br />

k(x)<br />

+ xσyσ+4 k(y) σ + xσ+1y σ+2 (1 + x) + xσ+1y σ+1 (1 + x + xσ )<br />

k(x)k(y) σ−1<br />

+ xσ+1 y 2σ+1 + yx 2σ+1 (1 + x) + y 2 x 2σ+1<br />

k(x)k(y) σ−1<br />

+ · · · + Z ′ ,<br />

with Z ′ of trace 0.<br />

Putt<strong>in</strong>g the rational terms over a common denom<strong>in</strong>ator <strong>and</strong> simplify<strong>in</strong>g<br />

the numerator gives<br />

x σ+2 + x σ y 2 + x σ+1 y + xσ+1 yk(y)(x + y) σ+1<br />

k(x)k(y) σ<br />

+ xσ y σ+2 (x 2 + y 2 + x σ y 2 + x 2 y σ + x σ+1 y + xy σ+1<br />

k(x)k(y) σ<br />

+ · · · + Z ′ .<br />

Start with the first of the rational expressions <strong>and</strong> <strong>in</strong>clude the denom<strong>in</strong>ator<br />

(x + y) σ+2 . First cancel one factor of (x + y) from both the numerator<br />

<strong>and</strong> denom<strong>in</strong>ator to get<br />

xσ+1y(x + y) σ<br />

k(x)k(y) σ−1 .<br />

(x + y) σ+1


790 CHAPTER 17. TRANSLATION OVAL CONES<br />

Then replace this term with its image under σ plus a term Z ∗ of trace 0, to<br />

get<br />

Swap this term with its mate to get<br />

x σ+2 y σ (x + y) 2<br />

k(x) σ k(y) 2−σ (x + y) σ+2 + Z∗ .<br />

x σ+2 + x σ y 2 + x σ+1 y + xσ y σ+2 k(x) σ (x + y) 2<br />

k(x) 2 k(y) σ<br />

+ xσ y σ+2 (x 2 + y 2 + x σ y 2 + x 2 y σ + x σ+1 y + xy σ+1<br />

k(x)k(y) σ<br />

+ · · · + Z ′′ .<br />

Straightforward (but tedious) algebraic manipulation shows that this is<br />

the same as<br />

x σ+2 + x σ y 2 + x σ+1 y + x2σ+2 y σ+2 (x + y) 2<br />

k(x) 2 k(y) σ<br />

+ xσ+1 y σ+2 (x + y) σ+1<br />

k(x)k(y) σ<br />

+ · · · + Z ′′ .<br />

(Here we put all the rational expressions over the common denom<strong>in</strong>ator<br />

k(x) 2 k(y) σ <strong>and</strong> multiply out all the terms to see that equality holds.)<br />

Now replace the second rational term with its image under σ to get<br />

x σ+2 + x σ y 2 + x σ+1 y + x2σ+2 y σ+2 (x + y) 2<br />

k(x) 2 k(y) σ<br />

+ y2σ+2 x σ+2 (x + y) 2<br />

k(y) 2 k(x) σ<br />

+ · · · + Z ′′′ .<br />

At this po<strong>in</strong>t it is clear that the two rational terms are mates <strong>and</strong> hence<br />

cancel with their undisplayed counterparts. Now our expression written out<br />

<strong>in</strong> full (i.e., with mates <strong>in</strong>cluded <strong>and</strong> the denom<strong>in</strong>ator (x + y) σ+2 <strong>in</strong>cluded)<br />

(<strong>and</strong> reorganized a bit) is<br />

x σ+2 + x σ y 2 + x 2 y σ + y σ+2 + x σ+1 y + xy σ+1<br />

(x + y) σ+2<br />

= 1 + xσ+1 y + xy σ+1<br />

(x + y) σ+2<br />

+ Z′′′ .<br />

+ Z ′′′


17.10. CHEROWITZO HYPEROVALS 791<br />

The rational expression here has trace 0 by Lemma 4.12.4(c). Hence the<br />

full expression has trace equal to tr(1) = 1for all x = y, complet<strong>in</strong>g the<br />

proof.<br />

Corollary 17.10.3. f(x) = x σ + x σ+2 + x 3σ+4 is an o-polynomial over Fq<br />

for all q = 2 e with e odd.<br />

Proof. The 1/σ-clan of the Theorem is<br />

t 2 + t σ + t σ+2 t σ<br />

0 t 4 + t σ + t σ+4 + t 2σ + t 2σ+4 + t 3σ + t 3σ+4<br />

So its t-flip is<br />

t + t σ−1 + t σ+1 t σ−1<br />

0 t 3 + t σ−1 + t σ+3 + t 2σ−1 + t 2σ+3 + t 3σ−1 + t 3σ+3<br />

Now put t σ−1 = x σ , i.e., t = x σ<br />

σ−1 = x σ+2 , to get the 1/σ-clan<br />

x σ+2 + x σ + x 3σ+4 x σ<br />

0 x 3σ+6 + x σ + x 5σ+8 + x 3σ+3 + x 7σ+10 + x 5σ+4 + x 9σ+12<br />

By Obs. 17.4.3, f(x) is an o-polynomial.<br />

<br />

.<br />

<br />

.<br />

<br />

.


792 CHAPTER 17. TRANSLATION OVAL CONES


Chapter 18<br />

<strong>Generalized</strong> Fans <strong>and</strong> Spreads<br />

of T2(O))<br />

Throughout this chapter q = 2 e . The material <strong>in</strong> this chapter is adapted<br />

primarily from the two papers [BOPPR04] <strong>and</strong> [BOPPR??].<br />

In Section 7.6 we <strong>in</strong>troduced the notion of fan of ovals <strong>in</strong> P G(2, q) to<br />

prove the Plane Representation Theorem. In this chapter we generalize the<br />

notion of fan to that of generalized f-fan of ovals <strong>in</strong> order to study spreads<br />

of T2(O) where f is an o-polynomial <strong>and</strong><br />

O = Of = {((1, x, f(x)) : x ∈ Fq} ∪ {(0, 0, 1)} with nucleus N = (0, 1, 0).<br />

18.1 <strong>Generalized</strong> f-Fans<br />

We first review the notions of compatibility <strong>and</strong> match<strong>in</strong>g for ovals. Let O1<br />

<strong>and</strong> O2 be ovals of P G(2, q) with nuclei N1 <strong>and</strong> N2, respectively, <strong>and</strong> hav<strong>in</strong>g<br />

a po<strong>in</strong>t Q <strong>in</strong> common such that QN1 = QN2. Let P be a po<strong>in</strong>t of QNi not<br />

on either of the ovals <strong>and</strong> dist<strong>in</strong>ct from their nuclei. We say that O1 <strong>and</strong><br />

O2 are compatible at the po<strong>in</strong>t P provided that each secant to O1 through<br />

P is external to O2 (so that each l<strong>in</strong>e through P external to O1 is secant to<br />

O2. We need to generalized this a bit. Let O1 <strong>and</strong> O2 be ovals with nuclei<br />

N1 <strong>and</strong> N2, respectively, <strong>and</strong> let P1 <strong>and</strong> P2 be po<strong>in</strong>ts of P G(2, q) such that<br />

P1 ∈ O1 ∪ {N1} <strong>and</strong> P2 ∈ O2 ∪ {N2}. We say that (P1, O1) matches with<br />

(P2, O2) provided there is a coll<strong>in</strong>eation g such that g(P1) = P2 <strong>and</strong> g(O1)<br />

<strong>and</strong> O2 are compatible at P2.<br />

793


794 CHAPTER 18. GENERALIZED FANS AND SPREADS OF T2(O))<br />

Let f be an o-polynomial over Fq. A generalized f-fan <strong>in</strong> P G(2, q) is a<br />

family F = {Os : s ∈ Fq} of ovals such that<br />

Os has nucleus (0, 1, 0) for all s ∈ Fq; (18.1)<br />

Os ∩ Ot = (0, 0, 1) for all s = t ∈ Fq; (18.2)<br />

<br />

<br />

f(s) + f(t)<br />

Os <strong>and</strong> Ot are compatible at Pst = 0, 1, for all s = t.<br />

s + t<br />

(18.3)<br />

The l<strong>in</strong>e with coord<strong>in</strong>ates [1, 0, 0] T is called the common tangent of F.<br />

If F is a generalized f-fan for some o-polynomial f where f is not stated<br />

explicitly, then we shall refer to F as a generalized fan.<br />

In the case where the o-polynomial f is f(x) = x2 (so the correspond<strong>in</strong>g<br />

oval is a conic), a generalized f-fan is called merely a fan (as <strong>in</strong> Section 7.6).<br />

Let α be a generator of the automorphism group of Fq. Def<strong>in</strong>e Kα to be<br />

the set of po<strong>in</strong>ts<br />

α−1<br />

= x0x2 }<br />

= {(t α , t, 1, x3) : t, x3 ∈ Fq} ∪ {(1, 0, 0, x3) : x3 ∈ Fq}.<br />

Kα = {(x0, x1, x2, x3) : x α 1<br />

Then Kα is the cone studied <strong>in</strong> Chapter 17 with nuclear generator<br />

〈(0, 0, 0, 1), (0, 1, 0, 0)〉.<br />

18.2 Spreads of T2(Of)<br />

Let f be an o-polynomial over Fq, <strong>and</strong> use the follow<strong>in</strong>g notation for certa<strong>in</strong><br />

planes <strong>in</strong> P G(3, q):<br />

π∞ = [1, 0, 0, 0] T ;<br />

π = [0, 1, 0, 0] T .<br />

Of = {(0, 1, t, f(t)) : t ∈ Fq} ∪ {(0, 0, 0, 1)} is an oval <strong>in</strong> π∞ with nucleus<br />

N = (0, 0, 1, 0). Note that the l<strong>in</strong>e ℓ = π∞ ∩ π = {(0, 0, z, w) ∈ P G(3, q) :<br />

z, w ∈ Fq} is a tangent to Of at the po<strong>in</strong>t Q = (0, 0, 0, 1). Recall the<br />

construction of the GQ T2(Of) <strong>in</strong> P G(3, q).<br />

The po<strong>in</strong>ts of T2(Of) are of two types:<br />

(i) The po<strong>in</strong>ts of Σ = P G(3, q) \ π∞;


18.2. SPREADS OF T2(OF ) 795<br />

(ii) The planes of Σ conta<strong>in</strong><strong>in</strong>g the nucleus N = (0, 0, 1, 0).<br />

The l<strong>in</strong>es of T2(Of) are the l<strong>in</strong>es of Σ meet<strong>in</strong>g Of <strong>in</strong> a unique po<strong>in</strong>t.<br />

Incidence <strong>in</strong> T2(Of) is just that <strong>in</strong>herited from Σ.<br />

The follow<strong>in</strong>g theorem is a ma<strong>in</strong> reason that we are so <strong>in</strong>terested <strong>in</strong> generalized<br />

f-fans.<br />

Theorem 18.2.1. Let Γ be a spread of T2(Of) conta<strong>in</strong><strong>in</strong>g the l<strong>in</strong>e ℓ =<br />

〈Q, N〉. For s ∈ Fq let Ks be the set of l<strong>in</strong>es of Γ conta<strong>in</strong><strong>in</strong>g (0, 1, s, f(s)),<br />

<strong>and</strong> let<br />

Os = {π ∩ m : m ∈ Ks} ∪ {Q}.<br />

Then {Os : s ∈ Fq} is a generalized f-fan F of ovals <strong>in</strong> π <strong>and</strong> hav<strong>in</strong>g ℓ as<br />

common tangent. Conversely, if {Os : s ∈ Fq} is a generalized f-fan F of<br />

ovals of π hav<strong>in</strong>g ℓ as common tangent, then<br />

Γ(F) = {〈Q, N〉} ∪ {〈X, (0, 1, s, f(s))〉 : s ∈ Fq <strong>and</strong> X ∈ Os \ {Q}}<br />

is a spread of T2(Of) conta<strong>in</strong><strong>in</strong>g the l<strong>in</strong>e ℓ.<br />

Proof. Let Γ be a spread of T2(Of) conta<strong>in</strong><strong>in</strong>g the l<strong>in</strong>e ℓ = 〈Q, N〉. So<br />

ℓ is the unique l<strong>in</strong>e of Γ <strong>in</strong>cident with the “po<strong>in</strong>t” π∞. Consider a po<strong>in</strong>t<br />

P ∈ Of \ {Q}. Each plane of P G(3, q) meet<strong>in</strong>g π∞ <strong>in</strong> the l<strong>in</strong>e 〈P, Q〉, the<br />

tangent to Of at P , is a po<strong>in</strong>t of T2(Of) <strong>and</strong> is <strong>in</strong>cident with a unique l<strong>in</strong>e<br />

of Γ. S<strong>in</strong>ce 〈P, N〉 ∈ Γ, the l<strong>in</strong>e of Γ <strong>in</strong>cident with this plane must be a l<strong>in</strong>e<br />

of P G(3, q) meet<strong>in</strong>g π∞ <strong>in</strong> P . Hence each po<strong>in</strong>t of Of \ {Q} has q l<strong>in</strong>es of Γ<br />

through it.<br />

Let P <strong>and</strong> R be dist<strong>in</strong>ct po<strong>in</strong>ts of Of \ {Q} <strong>and</strong> π ′ a plane of P G(3, q)<br />

meet<strong>in</strong>g π∞ <strong>in</strong> the l<strong>in</strong>e 〈P, R〉. Each of the q − 2 po<strong>in</strong>ts of Of \ {P, Q, R}<br />

has q l<strong>in</strong>es of Γ on it. These q 2 − 2q l<strong>in</strong>es meet π ′ \ 〈P, R〉 <strong>in</strong> dist<strong>in</strong>ct po<strong>in</strong>ts.<br />

This leaves 2q po<strong>in</strong>ts of π ′ \ 〈P, R〉, each of which must be <strong>in</strong>cident with an<br />

element of Γ that is either a l<strong>in</strong>e of P G(3, q) on P or a l<strong>in</strong>e of P G(3, q) on<br />

R. S<strong>in</strong>ce these 2q po<strong>in</strong>ts are <strong>in</strong> the same plane π ′ of P G(3, q) they must be<br />

the po<strong>in</strong>ts of two l<strong>in</strong>es on P or two l<strong>in</strong>es on R.<br />

Now suppose that P ∈ Of \{Q} <strong>and</strong> that π ′ is a plane of P G(3, q) meet<strong>in</strong>g<br />

π∞ <strong>in</strong> the l<strong>in</strong>e 〈P, Q〉. The q 2 − q l<strong>in</strong>es of Γ that are l<strong>in</strong>es of P G(3, q) meet<strong>in</strong>g<br />

π∞ <strong>in</strong> a po<strong>in</strong>t of Of \ {P, Q} meet π ′ \ π∞ <strong>in</strong> dist<strong>in</strong>ct po<strong>in</strong>ts, leav<strong>in</strong>g q po<strong>in</strong>ts<br />

that must be the po<strong>in</strong>ts of a l<strong>in</strong>e on P that is an element of Γ.<br />

Hav<strong>in</strong>g considered the planes of P G(3, q) on a po<strong>in</strong>t P of Of \ {Q} we<br />

see that Ks, the set of l<strong>in</strong>es of Γ on P <strong>and</strong> the l<strong>in</strong>e ℓ form an oval cone <strong>in</strong>


796 CHAPTER 18. GENERALIZED FANS AND SPREADS OF T2(O))<br />

P G(3, q) with nuclear l<strong>in</strong>e 〈P, N〉. Thus Os = {π ∩ m : m ∈ Ks} is an oval<br />

of π with nucleus N.<br />

To prove compatibility of the ovals Os <strong>and</strong> Ot, s = t, at the po<strong>in</strong>t<br />

(0, 0, 1, f(s)+f(t)<br />

), consider a plane different form π∞ <strong>and</strong> conta<strong>in</strong><strong>in</strong>g the po<strong>in</strong>ts<br />

s+t<br />

(0, 1, s, f(s)) <strong>and</strong> (0, 1, t, f(t)). By the above we know that such a plane<br />

conta<strong>in</strong>s two l<strong>in</strong>es of Γ, either both through (0, 1, s, f(s)) or both through<br />

(0, 1, t, f(t)). Thus if we <strong>in</strong>tersect this plane with π we obta<strong>in</strong> a l<strong>in</strong>e of π<br />

on (0, 0, 1, f(s)+f(t)<br />

) with is either secant to Os <strong>and</strong> external to Ot, or vice<br />

s+t<br />

versa. By consider<strong>in</strong>g all planes of P G(3, q) not π∞ <strong>and</strong> conta<strong>in</strong><strong>in</strong>g the l<strong>in</strong>e<br />

〈(0, 1, s, f(s)), (0, 1, t, f(t))〉, we see that the ovals Os <strong>and</strong> Ot are comatible<br />

at the po<strong>in</strong>t (0, 0, 1, f(s)+f(t)<br />

). Hence {Os : s ∈ Fq} is a generalized f-fan of<br />

s+t<br />

ovals of P G(2, q).<br />

Now suppose that F = {Os : s ∈ Fq} is a generalized f-fan of π. Let<br />

Γ(F) be the set {ℓ}∪{〈X, (0, 1, s, f(s)〉 : s ∈ Fq <strong>and</strong> X ∈ Os \{Q} of l<strong>in</strong>es of<br />

T2(Of). Suppose, aim<strong>in</strong>g for a contradiction, that two l<strong>in</strong>es m <strong>and</strong> n of Γ(F)<br />

are concurrent. Without loss of generality we may assume that neither m or<br />

n is ℓ, <strong>and</strong> that as l<strong>in</strong>es of P G(3, q), m <strong>and</strong> n are <strong>in</strong>cident with the po<strong>in</strong>ts<br />

(0, 1, s, f(s)) <strong>and</strong> (0, 1, t, f(t)), respectively, with s = t. S<strong>in</strong>ce m <strong>and</strong> n are<br />

concurrent, they span a plane 〈m, n〉 of P G(3, q). The <strong>in</strong>tersection of 〈m, n〉<br />

<strong>and</strong> π is a l<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g (0, 0, 1, f(s)+f(t)<br />

). this l<strong>in</strong>e also conta<strong>in</strong>s a po<strong>in</strong>t Pm<br />

s+t<br />

of m <strong>and</strong> a po<strong>in</strong>t Pn of n. Now Φm ∈ Os <strong>and</strong> Pn ∈ Ot, <strong>and</strong> s<strong>in</strong>ce Os ∩ Ot =<br />

{Q} it follows that Pm = Pn. However, (0, 0, 1, f(s)+f(t)<br />

) ∈ 〈Pm, Pn〉, which<br />

s+t<br />

contradicts the compatibility of Os <strong>and</strong> Ot at (0, 0, 1, f(s)+f(t)<br />

). Hence no two<br />

s+t<br />

liones <strong>in</strong> Γ(F) <strong>in</strong>tersect, so Γ(F) is a spread of T2(Of).<br />

The benefit of us<strong>in</strong>g the canonical forms <strong>in</strong> Theorem 18.2.1 is that a<br />

generalized f-fan F corresponds to a unique spread of T2(Of) conta<strong>in</strong><strong>in</strong>g the<br />

l<strong>in</strong>e ℓ, <strong>and</strong> conversely. From this po<strong>in</strong>t on Γ(F) will denote the spread of<br />

T2(Of) constructed from a generalized f-fan as <strong>in</strong> Theorem 18.2.1.


Chapter 19<br />

Appendix 1: Some Elementary<br />

Number Theory<br />

The most basic results of elementary number theory are frequently helpful <strong>in</strong><br />

f<strong>in</strong>ite geometry. In this Appendix we have given really more than is necessary<br />

for most applications. Indeed, Sections 19.1 <strong>and</strong> 19.2 conta<strong>in</strong> all that will<br />

be needed most the time, except for the very important Law of Quadratic<br />

Reciprocity which appears <strong>in</strong> Appendix 2.<br />

19.1 Basic Facts about Congruences<br />

If n is a positive <strong>in</strong>teger <strong>and</strong> a, b ∈ Z are any <strong>in</strong>tegers, we write a ≡ b (mod n)<br />

provided n|(a − b), i.e., provided n divides a − b. It is easy to show that “≡”<br />

is an equivalence relation on the set Z of <strong>in</strong>tegers. We assume that the<br />

reader is quite familiar with the most basic facts of arithmetic modulo n, so<br />

we merely recall several of them without proof. However, proofs are given<br />

for some of the results that might not have been proved <strong>in</strong> a first course <strong>in</strong><br />

abstract algebra.<br />

Result 19.1.1. If a ≡ b (mod n) <strong>and</strong> c ≡ d (mod n), then<br />

(i) a + c ≡ b + d (mod n), <strong>and</strong><br />

(ii) ac ≡ bd (mod n).<br />

This makes it possible to def<strong>in</strong>e addition <strong>and</strong> multiplication modulo n <strong>and</strong><br />

to obta<strong>in</strong> a commutative r<strong>in</strong>g with 1. This r<strong>in</strong>g will sometimes be denoted<br />

by Zn(+n, ·n).<br />

797


798CHAPTER 19. APPENDIX 1: SOME ELEMENTARY NUMBER THEORY<br />

Let a, m ∈ Z, m > 0, <strong>and</strong> put d = (a, m), the greatest common divisor<br />

of a <strong>and</strong> m. Also let φ(m) be the number of <strong>in</strong>tegers i for which 1 ≤ i ≤ m<br />

<strong>and</strong> (i, m) = 1.<br />

Result 19.1.2. For b ∈ Z, ax ≡ b (mod m) has a solution if <strong>and</strong> only if d|b.<br />

If d|b <strong>and</strong> x0 is one solution, there are d dist<strong>in</strong>ct solutions mod m given by<br />

x0, x0 + <br />

m , x0 + 2 d<br />

<br />

m , . . . , x0 + (d − 1) d<br />

<br />

m . d<br />

Result 19.1.3. a φ(m) ≡ 1 (mod m). (Euler’s Theorem).<br />

Result 19.1.4. If (m, n) = 1, then φ(m · n) = φ(m) · φ(n).<br />

Result 19.1.5. If p is prime, φ(p a ) = p a − p a−1 .<br />

The order of a modulo m is def<strong>in</strong>ed by:<br />

|a|m = m<strong>in</strong> t : t > 0 <strong>and</strong> a t ≡ 1 ( mod m) .<br />

This is def<strong>in</strong>ed only when d = (a, m) = 1.<br />

From here on suppose that (a, m) = 1, <strong>and</strong> put h = |a|m.<br />

Result 19.1.6. a i ≡ a j (mod m) iff i ≡ j (mod h). Hence {a, a 2 , . . . , a h ≡<br />

1} is a complete list<strong>in</strong>g of all the dist<strong>in</strong>ct powers of a modulo m.<br />

Result 19.1.7. |a j |m = h<br />

(j,h) . Hence |aj |m = h iff (j, h) = 1, <strong>and</strong><br />

φ(h) = |{dist<strong>in</strong>ct a j mod m : |a j |m = h}|.<br />

Result 19.1.8. |a|m divides φ(m).<br />

Result 19.1.9. If |a|m = h, |b|m = k <strong>and</strong> (h, k) = 1, then |ab|m = hk.<br />

Proof. Let r = |ab|m. Clearly r divides hk. But b rh ≡ (ab) rh ≡ 1 (mod m),<br />

imply<strong>in</strong>g that k divides rh. Similarly, consider<strong>in</strong>g a rk modulo m leads to the<br />

fact that h divides rh. S<strong>in</strong>ce h <strong>and</strong> k are relatively prime, kh divides r, so<br />

r = kh.


19.2. A THEOREM OF LUCAS 799<br />

Def<strong>in</strong>ition: If |a|m = φ(m), then a is said to be a primitive root modulo<br />

m.<br />

IMPORTANT: If |a|m = φ(m), then {a, a 2 , a 3 , . . . , a φ(m) } is a reduced<br />

residue system (r.r.s) modulo m. Hence, if (b, m) = 1, then b ≡ a j (mod m)<br />

for a unique j <strong>in</strong> the range 1 ≤ j ≤ φ(m).<br />

Problem: For which positive <strong>in</strong>tegers m does m have a primitive root?<br />

(We will solve this problem.)<br />

Result 19.1.10. If |a|m = h <strong>and</strong> d|h, there are φ(d) elements b ∈ {a, a 2 , . . . , a h }<br />

with |b|m = d.<br />

This can be generalized to cyclic groups.<br />

Result 19.1.11. Let G be a cyclic group (written multiplicatively) of order<br />

m generated by the element g. Then for each d that divides m, G conta<strong>in</strong>s<br />

exactly φ(d) elements of order d. This shows that<br />

<br />

φ(d) = m.<br />

d|m<br />

19.2 A Theorem of Lucas<br />

Result 19.2.1. (Theorem of Lucas) Let p be a prime, <strong>and</strong> let a = a0 + a1p +<br />

a2p2 + · · · <strong>and</strong> b = b0 + b1p + b2p2 + · · · be the expansions of <strong>in</strong>tegers a <strong>and</strong><br />

b to the base p with b ≥ 0, a > 0. The b<strong>in</strong>omial coefficient a<br />

satisfies the<br />

b<br />

follow<strong>in</strong>g:<br />

<br />

a<br />

≡<br />

b<br />

<br />

a0 a1 a2<br />

b0<br />

b1<br />

b2<br />

<br />

· · · ( mod p). (19.1)<br />

Proof. The coefficient of xb <strong>in</strong> the expansion of (1 + x) a is a<br />

, <strong>and</strong> modulo<br />

b<br />

p we have<br />

(1 + x) a ≡ (1 + x) a0+a1p+a2p 2 +··· ≡ (1 + x) a0 (1 + x p ) a1 (1 + x p 2<br />

) a2 · · · (mod p).<br />

Now just compute the coefficient of x b on both sides of the above equation.


800CHAPTER 19. APPENDIX 1: SOME ELEMENTARY NUMBER THEORY<br />

The theorem of Lucas has an <strong>in</strong>terest<strong>in</strong>g corollary that will be useful <strong>in</strong><br />

prov<strong>in</strong>g a theorem of Carlitz <strong>in</strong> the next chapter.<br />

Corollary 19.2.2. Let q = p n where p is an odd prime <strong>and</strong> q = 2m + 1. Put<br />

M = {a0 + a1p + · · · + an−1p n−1 ; 0 ≤ aj ≤ (p − 1)/2.<br />

Then for any <strong>in</strong>teger t, 0 ≤ t ≤ m, the b<strong>in</strong>omial coefficient m<br />

is prime to<br />

t<br />

p if <strong>and</strong> only if t ∈ M.<br />

Proof. In the theorem of Lucas put a = p−1<br />

<br />

2<br />

= m. Then suppose t = n−1 i=0 bipi . So<br />

p−1<br />

2<br />

S<strong>in</strong>ce<br />

p n −1<br />

p−1<br />

p−1<br />

2<br />

bi<br />

<br />

m<br />

≡<br />

t<br />

p−1<br />

2<br />

b0<br />

p−1<br />

2<br />

b1<br />

p−1 p−1<br />

+ p + 2 2 p2 + · · ·+ p−1<br />

2 pn−1 =<br />

p−1 <br />

· · · 2<br />

bn−1<br />

(mod p).<br />

<br />

≡ 0 (mod p) if <strong>and</strong> only if bi > p−1<br />

, the proof is complete.<br />

2<br />

Essentially the same proof gives a slight generalization that is also often<br />

useful.<br />

Corollary 19.2.3. Let λ = n−1<br />

i=0 αip i , where 0 ≤ αi < p, <strong>and</strong><br />

n−1<br />

Mλ = {r = βip i : 0 ≤ βi ≤ αi}. (19.2)<br />

i=0<br />

Then λ<br />

is relatively prime to p exactly when r ∈ Mλ by the Theorem of<br />

r<br />

Lucas, i.e., λ<br />

= 0 <strong>in</strong> GF (q) if <strong>and</strong> only if r ∈ Mλ.<br />

r<br />

19.3 The Ch<strong>in</strong>ese Rema<strong>in</strong>der Theorem<br />

We beg<strong>in</strong> by stat<strong>in</strong>g the Ch<strong>in</strong>ese Rema<strong>in</strong>der Theorem (CRT) <strong>in</strong> a little more<br />

generality than is often given <strong>in</strong> beg<strong>in</strong>n<strong>in</strong>g courses.<br />

Theorem 19.3.1. The CRT for Z: Let a1, . . . , an be any <strong>in</strong>tegers, <strong>and</strong><br />

let m1, . . . , mn be positive <strong>in</strong>tegers, n ≥ 2. Then there is an <strong>in</strong>teger x<br />

for which x ≡ ai (mod mi) for all i, 1 ≤ i ≤ n, if <strong>and</strong> only if ai ≡<br />

aj (mod gcd(mi, mj)) for all i, j with 1 ≤ i < j ≤ n. Moreover, x is unique<br />

modulo lcm[m1, . . . , mn].


19.3. THE CHINESE REMAINDER THEOREM 801<br />

In order to prove this theorem we first establish the follow<strong>in</strong>g lemma<br />

relat<strong>in</strong>g gcd’s <strong>and</strong> lcm’s.<br />

Lemma 19.3.2. Let m1, . . . , mk+1 be positive <strong>in</strong>tegers, k + 1 ≥ 3. Then<br />

gcd(lcm[m1, . . . , mk], mk+1) = lcm[gcd(m1, mk+1), . . . , gcd(mk, mk+1)].<br />

Proof. We want to <strong>in</strong>voke a general pr<strong>in</strong>ciple. Suppose we have two <strong>in</strong>tegers<br />

m <strong>and</strong> n <strong>and</strong> we want to show that they are equal. The idea is to show that<br />

for any prime p, p r ||m iff p r ||n. Because unique factorization holds <strong>in</strong> the<br />

r<strong>in</strong>g Z, this shows that m = n. So let p be any prime. Note that if p r ||m<br />

<strong>and</strong> p s ||n, then p m<strong>in</strong>(r,s) ||gcd(m, n) <strong>and</strong> p max(r,s) ||lcm[m, n].<br />

The proof will be by <strong>in</strong>duction on k, so we start with the case k = 2.<br />

Here we would like to show that<br />

gcd(lcm[m1, m2], m3) = lcm[gcd(m1, m3), gcd(m2, m3)]. (19.3)<br />

Note that m1 <strong>and</strong> m2 play symmetric roles. So if p a ||m1 <strong>and</strong> p b ||m2,<br />

without loss of generality we may assume that a ≤ b. Also let p c ||m3. Then<br />

p b ||lcm[m1, m2], <strong>and</strong> on the left h<strong>and</strong> side we have<br />

p m<strong>in</strong>(b,c) ||gcd(lcm[m1, m2], m3).<br />

On the right h<strong>and</strong> side, s<strong>in</strong>ce m<strong>in</strong>(a, c) ≤ m<strong>in</strong>(b, c), we have<br />

p m<strong>in</strong>(a,c) ||gcd(m1, m3) <strong>and</strong> p m<strong>in</strong>(b,c) ||gcd(m2, m3) imply that<br />

p m<strong>in</strong>(b,c) ||lcm[gcd(m1, m3), gcd(m2, m3)].<br />

This establishes Eq. 19.3. To h<strong>and</strong>le the <strong>in</strong>ductive step, it will be convenient<br />

to use the st<strong>and</strong>ard notation: lcm(A, B) = [A, B], <strong>and</strong> gcd(A, B) =<br />

(A, B). It is easy to see that<br />

[[m1, . . . , mn], mn+1] = [m1, . . . , mn, mn+1]. (19.4)<br />

Let k ≥ 3. The <strong>in</strong>ductive hypothesis may be stated as:<br />

([m1, . . . , mt], mt+1) = [(m1, mt+1), . . . , (mt, mt+1)] (19.5)<br />

for all t with 2 ≤ t < k. Now we use the <strong>in</strong>ductive hypothesis to show that<br />

Eq. 19.5 holds with t = k. Start with


802CHAPTER 19. APPENDIX 1: SOME ELEMENTARY NUMBER THEORY<br />

([m1, . . . , mk], mk+1) = ([[m1, . . . , mk−1], mk], mk+1) by Eq. 19.4<br />

= [([m1, . . . , mk−1], mk+1), (mk, mk+1)] by Eq. 19.5 with t = 2<br />

= [[(m1, mk+1), . . . , (mk−1, mk+1)], (mk, mk+1)]Eq. 19.5, t = k − 1<br />

= [(m1, mk+1), . . . , (mk, mk+1)]. (19.6)<br />

We are now ready for the proof of the CRT.<br />

Proof. Let m1, m2 be positive <strong>in</strong>tegers <strong>and</strong> a1, a2 any <strong>in</strong>tegers. We show that<br />

there is a solution x to x ≡ ai (mod mi) if <strong>and</strong> only if a1 ≡ a2 (mod gcd(m1, m2)).<br />

First suppose that there is such a solution x. Let d = gcd(m1, m2). Then<br />

x ≡ ai (mod mi) implies that x ≡ ai (mod d), <strong>and</strong> we can subtract one of<br />

these congruences from the other to obta<strong>in</strong>: a1 ≡ a2 (mod d).<br />

For the converse, suppose that x ≡ ai (mod d), where d = gcd(m1, m2).<br />

This means that we can write a1 − a2 = td for some <strong>in</strong>teger t, <strong>and</strong> d =<br />

ym1 + zm2 for some <strong>in</strong>tegers y <strong>and</strong> z. So a1 − a2 = t(ym1 + zm2), imply<strong>in</strong>g<br />

that we may put<br />

x = a1 − tym1 = a2 + tzm2.<br />

Clearly x ≡ ai (mod mi) for this choice of x, i = 1, 2.<br />

The idea is to use <strong>in</strong>duction on n where we have already done the case<br />

for n = 2. Suppose that x has been found so that x ≡ ai (mod mi) for<br />

all i, 1 ≤ i ≤ n, as <strong>in</strong> the statement of the CRT. Fix two <strong>in</strong>dices i, j,<br />

with 1 ≤ i < j ≤ n, <strong>and</strong> put dij = gcd(mi, mj). Then x ≡ ai (mod mi)<br />

implies x ≡ ai (mod dij). Similarly, x ≡ aj (mod dij). Hence subtract<strong>in</strong>g<br />

one congruence from the other, we see that ai ≡ aj (mod dij). So the<br />

condition of the CRT is satisfied. And of course, if x ≡ ai (mod mi) for<br />

some i, then the same congruence holds modulo any divisor of mi. Hence<br />

x ≡ ai (mod gcd(mi, mk+1)).<br />

Conversely, suppose that n ≥ 2 <strong>and</strong> that ai ≡ aj (mod gcd(mi, mj)) for<br />

all i, j with 1 ≤ i < j ≤ n. Suppose the CRT has been established for<br />

2 ≤ k ≤ n − 1. We want to establish it for k + 1 = n. To get started,<br />

put M = [m1, . . . , mk]. By the <strong>in</strong>duction hypothesis, we may suppose that<br />

x = x0 has been found such that x0 ≡ ai (mod mi) for all i, 1 ≤ i ≤ k.<br />

Hence we also know that x0 ≡ ai (mod gcd(mi, mk+1)), for 1 ≤ i ≤ k.


19.4. SOLVING CONGRUENCES: THE CASE OF A PRIME MODULUS803<br />

We also know that the congruence x = x0 +tM ≡ ak+1 (mod mk+1) has a<br />

solution t if <strong>and</strong> only if x0 ≡ ak+1 (mod gcd(M, mk+1)). But we have proved<br />

above that<br />

(M, mk+1) = ([m1, . . . , mk], mk+1) = [(m1, mk+1), . . . , (mk, mk+1)].<br />

S<strong>in</strong>ce x0 ≡ ai (mod gcd(mi, mk+1)), for 1 ≤ i ≤ k, clearly<br />

x0 ≡ ai (mod [(m1, mk+1), . . . , (mk, mk+1)]). This shows that there is a solution<br />

t, <strong>and</strong> we now put x = x0 +tM. Hence x ≡ ak+1 (mod mk+1). And s<strong>in</strong>ce<br />

M ≡ 0 (mod mi), for 1 ≤ i ≤ k, we have x ≡ x0 + tM ≡ x0 ≡ ai (mod mi)<br />

for all i, 1 ≤ i ≤ k. So x ≡ x0 + tM solves the system of congruences for all<br />

i, 1 ≤ i ≤ k + 1 = n.<br />

If x0 <strong>and</strong> x1 are both solutions to the system of congruences, then for each<br />

i with 1 ≤ i ≤ n, x0 ≡ x1 (mod mi). Hence x0 ≡ x1 (mod lcm[m1, . . . , mn]),<br />

which is what was meant by the claim that the solution x is unique modulo<br />

lcm[m1, . . . , mn]. This completes the proof of the theorem.<br />

19.4 Solv<strong>in</strong>g Congruences: The Case of a Prime<br />

Modulus<br />

Note: From now on until further notice m = p is a prime.<br />

Result 19.4.1. If f(x) ∈ Z[x] has degree n when its coefficients are reduced<br />

modulo p, then f(x) ≡ 0 (mod p) has at most n solutions.<br />

Proof. This is easily proved by consider<strong>in</strong>g the division algorithm to obta<strong>in</strong><br />

f(x) = (x − a)q(x) + f(a). It follows that x − a divides f(x) modulo p if<br />

<strong>and</strong> only if f(a) ≡ 0 (mod p). So a1, . . . , ar are roots of f(x) ≡ 0 (mod p)<br />

if <strong>and</strong> only if (x − a1) · · · (x − ar) divides f(x) modulo p. A degree argument<br />

shows that r ≤ n.<br />

This allows us to prove the next result.<br />

Result 19.4.2. Let d|(p − 1). Then x d − 1 ≡ 0 (mod p) has d solutions mod<br />

p. If |b|p = d, then {b, b 2 , . . . , b d } = {a mod p : a d ≡ 1 (mod p)}.<br />

Proof. S<strong>in</strong>ce d|(p − 1), write p − 1 = de. Then x d − 1 divides x p−1 − 1,<br />

so we may write x p − x = x(x p−1 − 1) = x(x d − 1)(x d(e−1) + · · · + x d + 1).


804CHAPTER 19. APPENDIX 1: SOME ELEMENTARY NUMBER THEORY<br />

By Fermat’s little theorem, x p − x ≡ 0 (mod p) has p solutions modulo p.<br />

Hence the right side also has p solutions mod p. It is easy to see that each<br />

of the three factors must have a number of zeros equal to its degree, so that<br />

x d − 1 ≡ 0 (mod p) must have d solutions.<br />

Result 19.4.3. Let q be a prime with q α ||(p − 1), α ≥ 1. Then there are<br />

φ(q α ) = q α − q α−1 residues a mod p with |a|p = q α .<br />

Proof. Put S = {a : aqα ≡ 1 (mod p)} = {a : |a|p divides qα }. Clearly<br />

d|qα <strong>and</strong> d < qα if <strong>and</strong> only if d = qβ with 0 ≤ β ≤ α − 1. Put S ′ =<br />

{a mod p : aqα−1 ≡ 1 (mod p)} ⊆ S. Then |S| = qα <strong>and</strong> |S ′ | = qα−1 imply<br />

that |S \ S ′ | = qα − qα−1 . Clearly |a|p = qα if <strong>and</strong> only if a ∈ S \ S ′ , so there<br />

are qα − qα−1 elements with order qα mod p.<br />

Result 19.4.4. If p − 1 = q α1<br />

1 · · · q αr<br />

r , qi prime, αi ≥ 1, let ai satisfy<br />

|ai|p = q αi<br />

i , 1 ≤ i ≤ r. (By Result 19.4.3 there are such ai.) Then by a<br />

straightforward generalization of Result 19.1.9, |a1 · a2 · a3 · · · ar|p = p − 1.<br />

Hence there is a primitive root modulo p, which implies there are φ(p − 1)<br />

primitive roots modulo p. And for each d such that d|(p − 1), there are φ(d)<br />

elements b mod p with |b|p = d.<br />

Result 19.4.5. If (a, p) = 1 <strong>and</strong> d = (n, p − 1), then xn ≡ a (mod p) has d<br />

solutio<strong>in</strong>s or no solution accord<strong>in</strong>g as a p−1<br />

d ≡ 1 (mod p) or not.<br />

Proof. Let g be a primitive root mod p, so there is an i with g i ≡ a (mod p).<br />

Then x ≡ g j (mod p) satisfies x n ≡ a (mod p) iff g jn ≡ g i (mod p) iff<br />

jn ≡ i (mod p − 1). This has d solutions if d|i <strong>and</strong> no solution if d does not<br />

divide i. But a p−1<br />

d ≡ g<br />

x n ≡ a (mod p) has d solutions.<br />

i( p−1<br />

d ) ≡ 1 (mod p) iff i(p−1)<br />

d<br />

≡ 0 (mod p − 1) iff d|i iff<br />

As an <strong>in</strong>terest<strong>in</strong>g special case we have the follow<strong>in</strong>g: x 2 ≡ a (mod p) has<br />

2 or 0 solutions accord<strong>in</strong>g as a p−1<br />

2 ≡ 1 (mod p) or a p−1<br />

2 ≡ −1 (mod p).<br />

Example: How many solutions does x5 ≡ 6 (mod 101) have?<br />

First note that p = 101 is prime, <strong>and</strong> d = (5, 100) = 5, so p−1<br />

= 20. So<br />

d<br />

x5 ≡ 6 (mod 101) has 5 solutions if 620 ≡ 1 (mod 101) <strong>and</strong> no solution if


19.5. THE CASE OF A PRIME POWER MODULUS, ETC. 805<br />

6 20 ≡ 1 (mod 101). Rout<strong>in</strong>e computations show that 6 20 ≡ 1 (mod 101), so<br />

that x 5 ≡ 6 (mod 101) has 5 solutions.<br />

Exercise: How many solutions does x 45 ≡ 2 (mod 101) have?<br />

Result 19.4.6. Euler’s Criterion: If p is an odd prime <strong>and</strong> (a, p) = 1, then<br />

x 2 ≡ a (mod p) has 2 solutions or no solution accord<strong>in</strong>g as a p−1<br />

2 ≡ 1 or<br />

≡ −1 (mod p).<br />

Proof. d = (n, p − 1) = (2, p − 1) = 2. Consider b = a p−1<br />

d = a p−1<br />

2 . S<strong>in</strong>ce<br />

b 2 ≡ a p−1 ≡ 1 (mod p), 0 ≡ b 2 −1 ≡ (b+1)(b−1), clearly b ≡ ±1 (mod p). By<br />

Result ?? there are 2 solutions if b ≡ 1 <strong>and</strong> no solution if b ≡ −1 (mod p).<br />

Result 19.4.7. x 2 ≡ −1 (mod p) has 1 solution if p = 2, two solutions if<br />

p ≡ 1 (mod 4), <strong>and</strong> no solution if p ≡ 3 (mod 4).<br />

Proof. If p = 2, x ≡ 1 is the unique solution. If p is odd, use Result 19.4.4:<br />

x 2 ≡ −1 (mod p) has 2 solutions if <strong>and</strong> only if (−1) p−1<br />

2 ≡ 1 (mod p) iff p−1<br />

2<br />

is even iff 4|(p − 1) iff p = 1 + 4k.<br />

19.5 The Case of a Prime Power Modulus,<br />

etc.<br />

Result 19.5.1. If p is any prime, there exist φ(φ(p 2 )) = φ(p 2 −p) = φ(p(p−<br />

1)) = (p − 1) · φ(p − 1) primitive roots modulo p 2 .<br />

Proof. The first goal is to f<strong>in</strong>d one primitive root modulo p 2 . Choose a<br />

primitive root g modulo p, i.e., |g|p = p − 1. We ask: When is g + tp<br />

(0 ≤ t ≤ p − 1) a primitive root mod p 2 ? Put h = |g + tp| p 2. Then<br />

g + tp) h ≡ 1 (mod p 2 ), so that 1 ≡ (g + tp) h ≡ g h (mod p), imply<strong>in</strong>g that<br />

(p − 1)|h. Also, h|φ(p 2 ), hence h|(p 2 − p). So we have (p − 1)|h|p(p − 1),<br />

<strong>and</strong> p is prime, so h = p − 1 or h = p(p − 1). If h = p − 1, then g is<br />

not a primitive root modulo p 2 . If h = p(p − 1), then g is a primitive<br />

root modulo p 2 . We ask: For how many t is |g + tp| p 2 = h = p − 1?<br />

This is the same as: For how many t is (g + tp) p−1 ≡ 1(mod p 2 )? Put<br />

f(x) = x p−1 − 1. So f(g) = g p−1 − 1 ≡ 0 (mod p) <strong>and</strong> f ′ (x) = (p − 1)x p−2 ,<br />

<strong>and</strong> f ′ (g) = (p − 1)g p−2 ≡ −g p−2 ≡ 0 (mod p). So the question becomes: For<br />

which t is


806CHAPTER 19. APPENDIX 1: SOME ELEMENTARY NUMBER THEORY<br />

which is the same as<br />

0 ≡ f(g + tp) ≡ f(g) + f ′ (g)tp (mod p 2 ),<br />

0 ≡ f(g)<br />

p + f ′ (g)t (mod p).<br />

Hence there is a unique t mod p for which f(g + tp) ≡ 0 (mod p 2 ). This<br />

implies that there are p − 1 values of t modulo p for which (g + tp) p−1 ≡<br />

1 (mod p 2 ), i.e., |g + tp| p 2 = p(p − 1) = φ(p 2 ), i.e., g + tp is a primitive root<br />

mod p 2 .<br />

Now let b be one of the primitive roots mod p 2 . Then {b, b 2 , . . . , b φ(p2 ) } is<br />

a r. r. s. modulo p 2 . And |b j | p 2 = φ(p 2 ) iff 1 = (j, φ(p 2 )). Hence the number<br />

of primitive roots modulo p 2 is φ(φ(p 2 )) = φ(p(p − 1)) = (p − 1)φ(p − 1).<br />

Result 19.5.2. If p is an odd prime <strong>and</strong> g is a primitive root mod p 2 , then<br />

g is a primitive root mod p α for all α ≥ 2.<br />

Proof. Let g be a primitive root mod p 2 , <strong>and</strong> suppose that we have shown<br />

that g is also a primitive root modulo p 3 , p 4 , · · · , p α for some α ≥ 2. We want<br />

to show that g is a primitive root modulo p α+1 . So we know the follow<strong>in</strong>g:<br />

Cont<strong>in</strong>ue this down to:<br />

g p−1 ≡ 1 (mod p); (by Fermat)<br />

g p(p−1) ≡ 1 (mod p 2 ), g p−1 ≡ 1(mod p 2 ),<br />

g p2 (p−1) ≡ 1 (mod p 3 ), g p(p−1) ≡ 1 (mod p 3 );<br />

g pα−2 (p−1) ≡ 1 (mod p α−1 ), g p α−3 (p−1) ≡ 1 (mod p α−1 );<br />

g pα−1 (p−1) ≡ 1 (mod p α ), g p α−2 (p−1) ≡ 1 (mod p α ).<br />

Hence gpα−2 (p−1) α−1 p = 1 + tp , where p does not divide t. So g α−1 (p−1) =<br />

(1 + tpα−1 ) p = 1 + p · tpα−1 + p(p−1)<br />

(tp 2<br />

α−1 ) 2 + · · · ≡ 1 + tpα (mod pα+1 ),<br />

s<strong>in</strong>ce 1 + 2(α − 1) = α + 1 + α − 2 ≥ α + 1. S<strong>in</strong>ce p does not divide t,<br />

gpα−1 (p−1) α+1 ≡ 1 (mod p ).<br />

Suppose |g| pα+1 = h. We know h|φ(pα+1 ) = pα (p − 1). And gh ≡<br />

1 (mod pα+1 ), imply<strong>in</strong>g gh ≡ 1 (mod pα ), forc<strong>in</strong>g pα−1 (p − 1)|h, s<strong>in</strong>ce g


19.6. POWER RESIDUES 807<br />

is a primitive root mod p α . Hence |g| p α+1 = p α−1 (p − 1) or p α (p − 1). But<br />

we just showed that g pα−1 (p−1) ≡ 1 (mod p α+1 ), hence |g|p α+1 = p α (p − 1), as<br />

desired.<br />

Result 19.5.3. If p is an odd prime <strong>and</strong> g is a primitive root modulo p α with<br />

g odd (one of g, g + p α must be odd), then g is a primitive root modulo 2p α .<br />

Result 19.5.4. For α ≥ 3, 2α |(a2α−2 − 1), but φ(2α ) = 2α−1 . So there is no<br />

primitive root modulo 2α .<br />

Proof. We have noticed earlier that 8|(a2−1) for all odd a. Then 2α |(a2α−2−1) <strong>and</strong> 2|a2a−2 + 1 imply that 2α+1 |(a2α−1 − 1). But φ(2α+1 ) = 2α > 2α−1 .<br />

Result 19.5.5. Suppose m is not a prime power or twice a prime power.<br />

Then there is no primitive root modulo m.<br />

Proof. Under the given hypothesis, m = m1 · m2, with m1 > 2, m2 > 2,<br />

(m1, m2) = 1. So φ(m) = φ(m1)φ(m2), <strong>and</strong> φ(m1) ≡ φ(m2) ≡ 0 (mod 2),<br />

imply<strong>in</strong>g that a φ(m)<br />

2 ≡ 1 (mod m) for all a with (a, m) = 1.<br />

Result 19.5.6. Recapitulation: There is a primitive root modulo m iff m =<br />

1, 2, 4, p α , or 2p α , p an odd prime.<br />

19.6 Power Residues<br />

If (a, m) = 1, we ask how many solutions does x n ≡ a (mod m) have?<br />

Result 19.4.5 gave an answer when m is prime. What about general m?<br />

Result 19.6.1. Suppose m = 1, 2, 4, p α or 2p α , p an odd prime. If (a, m) = 1,<br />

then x n ≡ a (mod m) has<br />

d = (n, φ(m)) solutions if a φ(m)<br />

d ≡ 1 (mod m),<br />

NO solution if a φ(m)<br />

d ≡ 1(mod m).


808CHAPTER 19. APPENDIX 1: SOME ELEMENTARY NUMBER THEORY<br />

Proof. The hypothesis implies that there is a primitive root g modulo m.<br />

So if (a, m) = 1, we have a ≡ g i (mod m) for some i. Then there is an<br />

x ≡ g j (mod m) satisfy<strong>in</strong>g x n ≡ a (mod m) if <strong>and</strong> only if g jn ≡ g i (mod m)<br />

iff jn ≡ i (mod φ(m)) iff d = (n, φ(m)) divides i. If d divides i, there are d<br />

solutions.<br />

Also, a φ(m)<br />

d ≡ g iφ(m)<br />

d ≡ 1 (mod m) iff φ(m)| iφ(m)<br />

d<br />

a (mod m) has d solutions.<br />

iff d|i, which is iff x n ≡<br />

So when m = 2 α , α ≥ 3, the multiplicative group of <strong>in</strong>tegers prime to m<br />

is not cyclic. However, it is as close to be<strong>in</strong>g cyclic as it could be without<br />

actually be<strong>in</strong>g cyclic, as is shown by the next result.<br />

Result 19.6.2. Suppose α ≥ 3. Then |5|2 α = 2α−2 <strong>and</strong><br />

{±5, ±5 2 , . . . , ±5 2α−2<br />

} is a r.r.s (mod 2 α ).<br />

Proof. First note that 2α ||(52α−2 − 1) for α = 2, 3. Also, if a ≡ 1 (mod 4),<br />

then 2||(a + 1), <strong>and</strong> we claim that 2||(5j + 1) for all j ≥ 1. To see this, use<br />

<strong>in</strong>duction, start<strong>in</strong>g with 2α ||(52α−2 − 1) for α ≥ 2, <strong>and</strong> 2||(52α−2 + 1),<br />

Then 2α+1 ||(52α−2 − 1)(52α−2 + 1) = (52α−1 + 1). Now suppose α ≥ 3.<br />

Let h = |5|2α. φ(2α ) = 2α−1 . And 52α−2 ≡ 1 (mod 2α ) implies that<br />

h|2α−2 . If h < 2α−2 , then 52α−3 ≡ 1 (mod 2α ). But 2α−1 ||(52α−3 − 1), so<br />

52α−3 ≡ 1 (mod 2α implies h = 2α−2 = |5|2α. At least this says that the elements<br />

of {5, 52 , 53 , . . . , 52α−2} are pairwise not congruent modulo 2α . Then<br />

clearly {−5, −52 , . . . , −52α−2} are pairwise not congruent modulo 2α . If 5i ≡<br />

−5j (mod 2α ) with α ≥ 3, then 5i ≡ −5j (mod 4), so 1 ≡ −1 (mod 4), an<br />

impossibility. So {5, −5, 52 , −52 , . . . , 52α−2, −52α−2} is a set of φ(2α ) = 2α−1 pairwise <strong>in</strong>congruent elements modulo 2 α , each of which is relatively prime<br />

to 2 α .<br />

Result 19.6.3. Suppose α ≥ 3 <strong>and</strong> a is odd.<br />

(i) If n is odd, then x n ≡ a (mod 2 α ) has a unique solution.<br />

(ii) If n is even with (n, 2 α−2 ) = 2 β , then x n ≡ a (mod 2 α ) has<br />

2 β+1 solutions if a ≡ 1 (mod 2 β+2 , <strong>and</strong><br />

NO solution if a ≡ 1 (mod 2 β+2 ).<br />

Example: x 2 ≡ a (mod 2 α ), α ≥ 3, has four solutions iff a ≡ 1 (mod 8).


19.7. THE 4-SQUARE THEOREM OF LAGRANGE 809<br />

Proof. S<strong>in</strong>ce a is odd, a ≡ (−1) i 5 j (mod 2 α ) for some i, j. Then x n ≡ a<br />

implies x is odd, so x ≡ (−1) u 5 v (mod 2 α ). So x n ≡ a becomes (−1) nu 5 nv ≡<br />

(−1) i 5 j (mod 2 α ), which is equivalent to nu ≡ i (mod 2) <strong>and</strong> nv ≡ j (mod 2 α−2 ).<br />

Case 1. n is odd. So u ≡ i (mod 1) <strong>and</strong> there is a unique v modulot 2 α−2<br />

with nv ≡ j (mod 2 α−2 ). Hence x n ≡ a (mod 2 α ) has a unique solution.<br />

Case 2. n is even. Here nu ≡ i (mod 2) has 2 solutions if i is even,<br />

none if i is odd. S<strong>in</strong>ce 2 β = (n, 2 α−2 ), nv ≡ j (mod 2 α−2 ) has 2 β solutions<br />

if j ≡ 0 (mod 2 β ) <strong>and</strong> NO solution otherwise. So x n ≡ a (mod 2 α ) has<br />

a solution iff i ≡ 0 (mod 2) <strong>and</strong> j ≡ 0 (mod 2 β ), <strong>in</strong> which case it has<br />

2 · 2 β = 2 β+1 solutions. This says a ≡ 5 j (mod 2 α ) with j ≡ 0 (mod 2 β ).<br />

But |5| 2 β+2 = 2 β . So 5 j ≡ 1 (mod 2 β+2 ) if <strong>and</strong> only if 2 β |j which is iff<br />

a ≡ 1 (mod 2 β+2 ).<br />

19.7 The 4-Square Theorem of Lagrange<br />

The famous theorem of Lagrange referred to here says that each positive<br />

<strong>in</strong>teger is the sum of four squares.<br />

Theorem 19.7.1. (Lagrange) Let m be a positive <strong>in</strong>teger. Then there are<br />

<strong>in</strong>tegers a1, a2, a3, a4 such that m = 4<br />

1 a2 i .<br />

For example, 2 = 1 2 + 1 2 + 0 2 + 0 2 . Basically the proof preceeds by<br />

establish<strong>in</strong>g that each odd prime is the sum of four squares, <strong>and</strong> the product<br />

of any two sums of four squares is aga<strong>in</strong> a sum of four squares.<br />

Lemma 19.7.2. Let p be an odd prime. then there is an m ∈ Z for which<br />

1 ≤ m < p <strong>and</strong> mp = x 2 1 + x 2 2 + x 2 3 + x 2 4 for some <strong>in</strong>tegers x1, x2, x3, x4 ∈ Z.<br />

Proof. Put S1 = {i2 : 0 ≤ i ≤ p−1<br />

2 }. Put S2 = {−i2 − 1 : 0 ≤ i ≤ p−1<br />

}. Note:<br />

2<br />

|S1| = |S2| = p+1<br />

2 . S<strong>in</strong>ce |S1|+|S2| > p, there must be i, j with 0 ≤ i, j ≤ p−1<br />

2<br />

<strong>and</strong> i2 = −j2 − 1 (mod p), i.e., i2 + j2 + 1 = mp for some m ∈ Z, where<br />

1 ≤ m = 1<br />

p (i2 + j2 + 1) ≤ 1<br />

p−1 2 <br />

p−1 2<br />

+ + 1 = p 2<br />

2<br />

1<br />

<br />

p2−2p+1 + 1 <<br />

p 2<br />

<br />

p2 + 1 < p.<br />

1<br />

p<br />

2<br />

Lemma 19.7.3. The smallest <strong>in</strong>teger m satisfy<strong>in</strong>g Lemma 19.7.2 is m = 1.


810CHAPTER 19. APPENDIX 1: SOME ELEMENTARY NUMBER THEORY<br />

Proof. Let m be the least <strong>in</strong>teger satisfy<strong>in</strong>g the conditions of Lemma 1. First<br />

suppose m is ev en. The number of x ′ is which are even is 0, 2 or 4, s<strong>in</strong>ce<br />

mp is even. Hence we may order the xi so that x1 ≡ x2 (mod 2) <strong>and</strong> x3 ≡<br />

x4 (mod 2). Then<br />

x2 + x2<br />

2<br />

2<br />

<br />

x1 − x2<br />

+<br />

2<br />

2<br />

<br />

x3 + x4<br />

+<br />

2<br />

= x2 1 + 2x1x2 + x 2 2 + x2 1 − 2x1x2 + x 2 2<br />

4<br />

2<br />

<br />

x3 − x4<br />

+<br />

2<br />

+ 2x2 3 + 2x2 4<br />

4<br />

= mp<br />

2 .<br />

So m ′ = m/2 satisfies Lemma 19.7.2, contradict<strong>in</strong>g the m<strong>in</strong>imality of m.<br />

Hence we know that m must be odd, <strong>and</strong> we assume that 1 < m < p.<br />

Then {i : − <br />

m−1<br />

m−1<br />

≤ i ≤ } is a complete residue system modulo<br />

2<br />

2<br />

m. Def<strong>in</strong>e yi by: yi ≡ xi (mod m), − <br />

m−1 ≤ yi ≤ 2<br />

m−1<br />

2 . Then 4 1 y2 i ≡<br />

4 1 x2i = mp ≡ 0 (mod m). Hence mn = 4 1 y2 i for some n ∈ Z. Here<br />

0 ≤ n = 1<br />

4 m 1 y2 <br />

4 m−1 2 m<br />

i ≤ = m 2<br />

2−2m+1 < m, i.e, 0 ≤ n < m. If<br />

m<br />

n = 0, then yi = 0, imply<strong>in</strong>g xi ≡ 0 (mod m); so 4 1 x2i ≡ 0 (mod m2 ),<br />

<strong>and</strong> mp ≡ 0 (mod m2 ), forc<strong>in</strong>g p ≡ 0 (mod m). This is impossible s<strong>in</strong>ce p is<br />

prime <strong>and</strong> 1 < m < p. So <strong>in</strong> fact 0 < n < m. Now<br />

m 2 <br />

4<br />

2 2<br />

np = mp · mn = xi yi =<br />

<br />

x1<br />

+<br />

y1<br />

x2<br />

y2<br />

<br />

<br />

<br />

+<br />

<br />

x1<br />

+<br />

y1<br />

x4<br />

y4<br />

<br />

<br />

<br />

x3 x4<br />

y3 y4<br />

<br />

<br />

<br />

+<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

x2 x3<br />

y2 y3<br />

<br />

x1<br />

+<br />

y1<br />

x3<br />

y3<br />

<br />

<br />

<br />

+<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

1<br />

xiyi<br />

2<br />

x4 x2<br />

y4 y2<br />

= A 2 1 + A2 2 + A2 3 + A2 4 .<br />

S<strong>in</strong>ce yi ≡ xi (mod m), each of A2, A3, A4 is clearly congruent to 0 modulo<br />

m, <strong>and</strong> A1 ≡ 4 1 x2 <br />

2<br />

i = (mp) ≡ 0 (mod m). Divid<strong>in</strong>g by m we have<br />

np = 4 <br />

Ai 2,<br />

1 with 1 ≤ n < m. So the proof is easily by the method of<br />

m<br />

“<strong>in</strong>f<strong>in</strong>ite descent.”<br />

We are now <strong>in</strong> a good position to complete the proof of the Four-Square<br />

Theorem. Lemma 19.7.3 shows that any odd prime is the sum of four squares;<br />

2<br />

<br />

<br />

<br />

<br />

2


19.8. CONGRUENCE OF SYMMETRIC MATRICES 811<br />

clearly 2 is the sum of four squares; <strong>and</strong> the proof of Lemma 19.7.3 <strong>in</strong>cludes<br />

a proof that the product of two sums of four squares is aga<strong>in</strong> a sum of four<br />

squares. This completes the proof.<br />

19.8 Congruence of Symmetric Matrices<br />

The only known theorem restrict<strong>in</strong>g the orders of f<strong>in</strong>ite projective planes<br />

without any additional hypotheses is the famous Bruck-Ryser Theorem. The<br />

proof of this theorem uses the 4-square theorem of Lagrange <strong>and</strong> the theory<br />

of congruent symmetric matrices.<br />

Def. Let S, S ′ be two symmetric matrices over a field F . We say S is<br />

congruent to S ′ (over F ) provided there is an <strong>in</strong>vertible matrix P over F<br />

with S ′ = P T SP . (Note: P T SP is symmetric iff S is symmetric.) It is<br />

rather trivial to show that Congruence over F (denoted c =) is an equivalence<br />

relation.<br />

If x1, . . . , xn are variables over F , the quadratic form over F associated<br />

with a symmetric matrix S is:<br />

⎛ ⎞<br />

f(x1, . . . , xn) = (x1, . . . , xn)S<br />

⎜<br />

⎝<br />

x1<br />

.<br />

xn<br />

⎟<br />

⎠ =<br />

n<br />

i,j=1<br />

xisijxj.<br />

If S ′ c = S, say S ′ = P T SP , P <strong>in</strong>vertible, def<strong>in</strong>e new variables y1, . . . , yn<br />

by ¯y T = P −1 ¯x T , so ¯x T = P ¯y T . Then f(x1, . . . , xn) = ¯xS¯x T = ¯yP T ·S ·P ¯y T =<br />

¯yS ′ ¯y T = g(y1, . . . , yn) is the quadratic form associated with S ′ . The po<strong>in</strong>t<br />

here is that if S c = S ′ , then {¯xS¯x T : ¯x ∈ F n } = {¯yS ′ ¯y T : ¯y ∈ F }. (This<br />

seems more obvious when written as ¯xS¯x T = ¯yS ′ ¯y T when S ′ = P T SP .)<br />

Lemma 19.8.1. Let S1<br />

S1<br />

·<br />

+ S2<br />

c<br />

= S ′ 1<br />

·<br />

+ S ′ 2.<br />

·<br />

+ S2 =<br />

Proof. Easy exercise for the reader.<br />

S1 0<br />

0 S2<br />

<br />

, S1<br />

c<br />

= S ′ 1 , <strong>and</strong> S2<br />

Let m be any <strong>in</strong>teger. Write m = a2 1 + a2 2 + a2 3 + a2 4, ai ⎛<br />

⎞<br />

∈ Q.<br />

Put H =<br />

⎜<br />

⎝<br />

a1 a2 a3 a4<br />

a2 −a1 a4 −a3<br />

a3 −a4 −a1 a2<br />

a4 a3 −a2 −a1<br />

⎟<br />

⎠ , so that<br />

c<br />

= S ′ 2 . Then


812CHAPTER 19. APPENDIX 1: SOME ELEMENTARY NUMBER THEORY<br />

c<br />

HH T = a 2 i I4 = mI4,<br />

i.e. I4 = mI4. So it is clear (by Lemma 19.8.1 that if n ≡ 0 ( mod4) <strong>and</strong><br />

m = 4 1 a2i , then<br />

This proves:<br />

In = I4<br />

·<br />

+ + · · · + ·<br />

I4<br />

c<br />

= mI4<br />

·<br />

+ · · · ·<br />

+ mI4 = mIn.<br />

Lemma 19.8.2. For all <strong>in</strong>geters m > 0, <strong>and</strong> for all n = 4w, 0 < w ∈ Z, we<br />

have<br />

c<br />

mIn = In over Q.<br />

19.9 The Bruck-Ryser Theorem<br />

The only known theorem restrict<strong>in</strong>g the orders of f<strong>in</strong>ite projective planes<br />

without any additional hypotheses is the famous Bruck-Ryser Theorem. The<br />

proof of this theorem uses the 4-square theorem of Lagrange <strong>and</strong> the theory<br />

of congruent symmetric matrices.<br />

Let π be a projective plane of order n with po<strong>in</strong>tset P = {x1, . . . , xv} <strong>and</strong><br />

l<strong>in</strong>eset B = {l1, . . . , lv}, v = 1+n+n 2 . The <strong>in</strong>cidence matrix of π (associated<br />

with this order<strong>in</strong>g of po<strong>in</strong>ts <strong>and</strong> l<strong>in</strong>es) is A = (ai,j) 1≤i,j≤v , where<br />

ai,j =<br />

0, xj ∈ li; (columns labeled by po<strong>in</strong>ts; )<br />

1, xj ∈ li, (rows labeled by l<strong>in</strong>es.)<br />

Lemma 19.9.1. S<strong>in</strong>ce π has n + 1 po<strong>in</strong>ts on each l<strong>in</strong>e <strong>and</strong> each two l<strong>in</strong>es<br />

meet <strong>in</strong> a unique po<strong>in</strong>t (resp., n + 1 l<strong>in</strong>es on each po<strong>in</strong>t <strong>and</strong> two po<strong>in</strong>ts are<br />

on a unique l<strong>in</strong>e),<br />

This says that Iv<br />

B = AA T = nI + J = A T A, where J is the all 1’s matrix.<br />

c<br />

= B = nI + J over Q.<br />

The next lemma is a simple exercise.<br />

Lemma 19.9.2. Let n ≡ 1, 2 (mod 4). Then v = 1 + n + n 2 ≡ 3 (mod 4).


19.9. THE BRUCK-RYSER THEOREM 813<br />

We have B ·<br />

+ I1<br />

c<br />

= Iv<br />

·<br />

+ I1 = Iv+1<br />

c<br />

= nIv+1. Hence there is a matrix P<br />

<strong>in</strong>vertible over Q for which nIv+1 = P T (B ·<br />

+ I1)P . So with x <strong>and</strong> y related<br />

by x T = Py T , we have<br />

x(B ·<br />

+ I1)x T = x(nI +J ·<br />

+ I1)x T = n(x2 1 +· · · x2 v)+(x1 +· · ·+xv) 2 +x2 v+1<br />

<strong>and</strong> y · nIv+1y T = n(y2 1 + · · · + y2 v+1 ). Hence for any x <strong>and</strong> y related by<br />

x T = Py T , we have<br />

n(x 2 1 + · · · + x2v ) + (x1 + · · · + xv) 2 + x 2 v+1 = n(y2 1 + · · · + y2 v+1 ). (19.7)<br />

The ma<strong>in</strong> technical details rema<strong>in</strong><strong>in</strong>g are designed to produce specific<br />

rational vectors x <strong>and</strong> y with x T = Py T <strong>and</strong> satisfy<strong>in</strong>g x2 i = y2 i for 1 ≤ i ≤ v.<br />

Suppose first that this has been accomplished. Then (x1 +· · ·+xv) 2 +x2 v+1 =<br />

ny2 v+1 . From this it follows that n is the sum of two rational squares, say<br />

n = <br />

a 2 <br />

c 2,<br />

+ where a, b, c, d are <strong>in</strong>tegers, nonnegative with bd = 0, <strong>and</strong><br />

b d<br />

we may assume that 1 = (a, b) = (c, d).<br />

If a = 0 or c = 0, then n is a square. Suppose ac = 0, say a, b, c, d are all<br />

positive <strong>in</strong>tegers. Then nb2d2 = a2d2 + b2c2 . Consider<strong>in</strong>g this modulo b2 , we<br />

have that b divides d. Consider<strong>in</strong>g this modulo d2 , we have that d divides b.<br />

So b = d, i.e., nb2 = a2 + c2 .<br />

Let p be an odd prime divid<strong>in</strong>g n but for which p2 does not divide n. If<br />

p divides c, then nb2 = a2 + c2 considered modulo p <strong>and</strong> p2 implies that p2 divides nb2 , so p divides a <strong>and</strong> p divides b, an impossibility. Hence p does not<br />

divide c. So a2 + c2 = nb2 ≡ 0 (mod p) pimplies (ac−1 ) 2 ≡ −1 (mod p). But<br />

it is well known that −1 is a square mod p if <strong>and</strong> only if p ≡ 1 (mod 4). (See<br />

Section ??.) So this shows that each prime divid<strong>in</strong>g the square-free part of<br />

n (when n ≡ 1, 2 (mod 4)) must be congruent to 1 modulo 4. (This assumes<br />

we can f<strong>in</strong>d the x <strong>and</strong> y.)<br />

The theorem we will end up with is the follow<strong>in</strong>g:<br />

Theorem 19.9.3. If there is a projective plane π of order n with n ≡ 1 or<br />

2 modulo 4, then no prime divid<strong>in</strong>g the square-free part of n is congruent to<br />

3 modulo 4.<br />

Proof. Recall that the matrix P = (pij) is given <strong>and</strong> we seek x <strong>and</strong> y with<br />

x T = Py T . If p11 = 1, <strong>in</strong> x1 = v+1 j=1 p1jyj, set x1 = y1, <strong>and</strong> if p11 = 1, then<br />

set x1 = −y1.<br />

If p11 = 1, we have x1 = y1 = p11y1 + p12y2 + · · · p1,v+1yv+1 <strong>and</strong> y1 =<br />

e2y2 + · · · ev+1yv+1, ei = p1i<br />

1−p11 ∈ Q, i = 2, 3, . . . , v + 1. If p11 = 1, then<br />

x1 = −y1 = y1 + p12y2 + · · · + p1vyv + p1,v+1yv+1, which implies that


814CHAPTER 19. APPENDIX 1: SOME ELEMENTARY NUMBER THEORY<br />

y1 = e2y2 + e3y3 + · · · + ev+1yv+1, where ei = P1i ∈ Q, i = 2, 3, . . . , v + 1.<br />

−2<br />

Now x2 = p21y1 + · · · + p2,v+1yv+1. Substitut<strong>in</strong>g for y1 (as given above),<br />

x2 = p2y2 + · · · + pv+yv+1, where pi is rational for i = 2, . . . , v + 1.<br />

Cont<strong>in</strong>ue this process, putt<strong>in</strong>g xi = ±yi <strong>and</strong> obta<strong>in</strong><strong>in</strong>g y1, . . . , yi as rational<br />

l<strong>in</strong>ear comb<strong>in</strong>ations of yi+1, . . . , yv+1. Eventually, x1 = ±y1, . . . , xv−1 =<br />

±yv−1, yv−1 = gvyv + gv+1yv+1, gv, gv+1 ∈ Q; <strong>and</strong> Exv = qvyv + qv+1yv+1,<br />

qv, qv+1 ∈ Q. Set xv = yv or −yv to obta<strong>in</strong> yv = hv+1yv+1 <strong>and</strong> xv+1 =<br />

sv+1yv+1, where hv+1, sv+1 ∈ Q. Now put yv+1 equal to any nonzero rational<br />

number. Then y1, . . . , yv <strong>and</strong> x1, . . . , xv+1 are uniquely determ<strong>in</strong>ed so that<br />

x2 i = y2 i , i = 1, 2, . . . , v <strong>and</strong> x T = Py T . This is just what we needed to<br />

complete the proof.<br />

RECAP: We redo the above proof <strong>in</strong> matrix notation. First write the<br />

matrix P <strong>in</strong> block form:<br />

,<br />

or<br />

so x T = Py T has the form<br />

Put xi = ±yi, so<br />

⎛⎛<br />

⎜⎜<br />

⎜⎜<br />

⎜⎜<br />

⎜⎜<br />

⎝⎝<br />

⎛<br />

⎜<br />

⎝<br />

⎛<br />

⎜<br />

⎝<br />

x1<br />

.<br />

xv<br />

xv+1<br />

±y1<br />

.<br />

±yv<br />

⎞<br />

P =<br />

⎟<br />

⎠ =<br />

⎞<br />

P1<br />

P1<br />

⎟ ⎜<br />

⎠ = P1 ⎝<br />

±1 0 0<br />

0 ±1 0<br />

·<br />

·<br />

0 ±1<br />

¯R T<br />

¯S t<br />

¯R T<br />

¯S t<br />

⎛<br />

⎞<br />

⎟<br />

⎠<br />

y1<br />

.<br />

yv<br />

− P1<br />

<br />

⎛<br />

⎜<br />

⎝<br />

⎞<br />

y1<br />

.<br />

yv<br />

vv+1<br />

⎞<br />

⎟<br />

⎠ .<br />

⎟<br />

⎠ + ¯ R T yv+1,<br />

⎞<br />

⎛<br />

⎟ ⎜<br />

⎟ ⎝<br />

⎠<br />

y1<br />

.<br />

yv<br />

⎞<br />

⎟<br />

⎠ = ¯ R T yv+1.


19.10. NUMBER THEORETIC FUNCTIONS 815<br />

Now pick ±1’s so that<br />

⎛<br />

⎜<br />

⎝<br />

±1<br />

. ..<br />

±1<br />

solve for y1, . . . , yv, <strong>and</strong> x1, . . . , xv, then xv+1 = ¯ S<br />

⎞<br />

⎟<br />

⎠−P1 is <strong>in</strong>vertible. Put yv+1 = 1,<br />

19.10 Number Theoretic Functions<br />

⎛<br />

⎜<br />

⎝<br />

y1<br />

.<br />

yv<br />

⎞<br />

⎟<br />

⎠ + t · yv+1.<br />

An arithmetic function (sometimes called a number theoretic function) is a<br />

function whose doma<strong>in</strong> is the set P of positive <strong>in</strong>tegers <strong>and</strong> whose range is a<br />

subset of the complex numbers C. Hence C P is just the set of all arithmetic<br />

functions. If f is an arithmetic function not the zero function, f is said to<br />

be multiplicative provided f(mn) = f(m)f(n) whenever (m, n) = 1, <strong>and</strong> to<br />

be totally multiplicative provided f(mn) = f(m)f(n) for all m, n ∈ P. The<br />

follow<strong>in</strong>g examples will be of special <strong>in</strong>terest to us here.<br />

Example 19.10.0.1. I(1) = 1 <strong>and</strong> I(n) = 0 if n > 1.<br />

Example 19.10.0.2. U(n) = 1 for all n ∈ P.<br />

Example 19.10.0.3. E(n) = n for all n ∈ P.<br />

Example 19.10.0.4. The omega function: ω(n) is the number of dist<strong>in</strong>ct<br />

primes divid<strong>in</strong>g n.<br />

Example 19.10.0.5. The mu function: µ(n) = (−1) ω(n) , if n is square-free,<br />

<strong>and</strong> µ(n) = 0 otherwise.<br />

Example 19.10.0.6. Euler’s phi-function: φ(n) is the number of <strong>in</strong>tegers<br />

k, 1 ≤ k ≤ n, with (k, n) = 1.<br />

The follow<strong>in</strong>g additional examples often arise <strong>in</strong> practice.<br />

Example 19.10.0.7. The Omega function: Ω(n) is the number of primes<br />

divid<strong>in</strong>g n count<strong>in</strong>g multiplicity. So ω(n) = Ω(n) iff n is square-free.<br />

Example 19.10.0.8. The tau function: τ(n) is the number of positive divisors<br />

of n.


816CHAPTER 19. APPENDIX 1: SOME ELEMENTARY NUMBER THEORY<br />

Example 19.10.0.9. The sigma function: σ(n) is the sum of the positive<br />

divisors of n.<br />

Example 19.10.0.10. A generalization of the sigma function: σk(n) is the<br />

sum of the kth powers of the positive divisors of n.<br />

Dirichlet (convolution) Product of Arithmetic Functions.<br />

Def. If f <strong>and</strong> g are arithmetic functions, def<strong>in</strong>e the Dirichlet product<br />

f ∗ g by:<br />

(f ∗ g)(n) = <br />

f(d)g(n/d) = <br />

d|n<br />

Obs. 19.10.1. f ∗ g = g ∗ f.<br />

d1d2=n<br />

f(d1)g(d2).<br />

Obs. 19.10.2. If f, g, h are arithmetic functions, (f ∗ g) ∗ h = f ∗ (g ∗ h),<br />

<strong>and</strong> [(f ∗ g) ∗ h)](n) = <br />

d1d2d3=n f(d1)g(d2)h(d3).<br />

Obs. 19.10.3. I ∗f = f ∗I = f for all f. And I is the unique multiplicative<br />

identity.<br />

Obs. 19.10.4. An arithmetic function f has a (necessarily unique) multiplicative<br />

<strong>in</strong>verse f −1 iff f(1) = 0.<br />

Proof. If f ∗f −1 = I, then f(1)f −1 (1) = (f ∗f −1 )(1) = I(1) = 1, so f(1) = 0.<br />

Conversely, if f(1) = 0, then f −1 (1) = (f(1)) −1 . Use <strong>in</strong>duction on n. For<br />

n > 1, if f −1 (1), f −1 (2), . . . , f −1 (n − 1) are known, f −1 (n) may be obta<strong>in</strong>ed<br />

from 0 = I(n) = (f ∗ f −1 )(n) = <br />

d|n f(d)f −1 (n/d) for n > 1.<br />

The follow<strong>in</strong>g theorem has essentially been proved.<br />

Theorem 19.10.5. The set of all arithmetic functions f with f(1) = 0 forms<br />

a group under Dirichlet multiplication.<br />

Theorem 19.10.6. The set of all multiplicative functions is a subgroup.<br />

Proof. f(1) = 0 = g(1) implies (f ∗ g)(1) = 0. Associativity holds by<br />

Obs. 19.10.2. The identity I is clearly multiplicative. So suppose f, g are<br />

multiplicative. Let (m, n) = 1. Then


19.10. NUMBER THEORETIC FUNCTIONS 817<br />

(f ∗ g)(mn) = <br />

d|mn f(d)g <br />

mn<br />

d<br />

= <br />

d1|m d2|n f(d1d2)g<br />

<br />

mn<br />

d1d2<br />

= <br />

d1|m d2|n f(d1)f(d2)g(m/d1)g(n/d2)<br />

= <br />

d1|m f(d1)g(m/d1) · <br />

d2|n f(d2)g(n/d2)<br />

= (f ∗ g)(m)(f ∗ g)(n).<br />

F<strong>in</strong>ally, we need to show that if f is multiplicative, <strong>in</strong> which case f −1<br />

exists, then also f −1 is multiplicative. Def<strong>in</strong>e g as follows. Put g(1) = 1,<br />

<strong>and</strong> for every prime p <strong>and</strong> every j > 0 put g(pj ) = f −1 (pj ). Then extend<br />

g multiplicatively for all n ∈ P. S<strong>in</strong>ce f <strong>and</strong> g are both multiplicative, so<br />

is f ∗ g. Then for any prime power p k , (f ∗ g)(p k ) = <br />

d1d2=p k f(d1)g(d2) =<br />

<br />

d1d2=p k f(d1)f −1 (d2) = (f ∗ f −1 )(p k ) = I(p k ). So f ∗ g <strong>and</strong> I co<strong>in</strong>cide on<br />

prime powers <strong>and</strong> are multiplicative. Hence f ∗ g = I, imply<strong>in</strong>g g = f −1 , i.e.,<br />

f −1 is multiplicative.<br />

Clearly µ is multiplicative, <strong>and</strong> <br />

d|n µ(d) = 1 if n = 1. For n = pe ,<br />

<br />

d|n µ(d) = e<br />

j=0 µ(pj ) = 1 + (−1) + 0 · · · + 0 = 0. Hence µ ∗ U = I <strong>and</strong> we<br />

have proved the follow<strong>in</strong>g:<br />

Obs. 19.10.7. µ −1 = U; U −1 = µ.<br />

Theorem 19.10.8. Möbius Inversion: F = U ∗ f iff f = µ ∗ F .<br />

This follows from µ −1 = U <strong>and</strong> associativity. In its more usual form it<br />

appears as:<br />

F (n) = <br />

f(d) ∀n ∈ P iff f(n) = <br />

µ(d)F (n/d) ∀n ∈ P.<br />

d|n<br />

NOTE: Here we sometimes say F is the sum function of f. When F<br />

<strong>and</strong> f are related this way it is <strong>in</strong>terest<strong>in</strong>g to note that F is multiplicative if<br />

<strong>and</strong> only if f is multiplicative. For if f is multiplicative, then F = U ∗ f is<br />

multiplicative. Conversely, if F = U ∗ f is multiplicative, then µ ∗ F = f is<br />

also multiplicative.<br />

Exercise 19.10.8.1. 1. τ = U∗U is multiplicative, <strong>and</strong> τ(n) = <br />

pα ||n (α+<br />

1).<br />

2. φ = µ ∗ E is multiplicative. (First show E = φ ∗ U.)<br />

d|n


818CHAPTER 19. APPENDIX 1: SOME ELEMENTARY NUMBER THEORY<br />

3. σ = U ∗ E is multiplicative <strong>and</strong> σ(n) = <br />

p α ||n<br />

4. φ ∗ τ = σ.<br />

5. σ ∗ φ = E ∗ E.<br />

6. E −1 (n) = nµ(n).<br />

<br />

pα+1−1 . p−1<br />

Sometimes it is useful to have even more structure on C P . For f, g ∈ C P ,<br />

def<strong>in</strong>e the sum of f <strong>and</strong> g as follows:<br />

(f + g)(n) = f(n) + g(n)<br />

Then a large part of the follow<strong>in</strong>g theorem has already been proved <strong>and</strong><br />

the rema<strong>in</strong>der is left as an exercise.<br />

Theorem 19.10.9. With the above def<strong>in</strong>itions of addition <strong>and</strong> convolution<br />

product, (C P , +, ∗) is a commutative r<strong>in</strong>g with unity I, <strong>and</strong> f ∈ C P is a unit<br />

iff f(1) = 0.<br />

Exercise 19.10.9.1. For g ∈ CP , def<strong>in</strong>e ˆg ∈ CP by ˆg(n) = ng(n). Show that<br />

g ↦→ ˆg is a r<strong>in</strong>g automorphism. In particular, ˆ g−1 = (ˆg) −1 .<br />

At this po<strong>in</strong>t we have completed our basic review of elementary number<br />

theory except for the Law of Quadratic Reciprocity. This famous result will<br />

be dealt with <strong>in</strong> the next chapter.


Chapter 20<br />

Appendix 2: Algebra <strong>in</strong> Fq[x]<br />

The projective planes that play a major role <strong>in</strong> this work are the f<strong>in</strong>ite desarguesian<br />

planes isomorphic to P G(2, q) coord<strong>in</strong>atized by a f<strong>in</strong>ite field, i.e.,<br />

a Galois field GF (q) = Fq. We assume that the reader is somewhat familiar<br />

with f<strong>in</strong>ite fields, so we review only the most basic concepts <strong>and</strong> notations.<br />

20.1 The Galois Field GF (q) = Fq<br />

If q = p e , e ≥ 1, with p a prime, there is a Galois field Fq = GF (q) with q<br />

elements. Moreover, each f<strong>in</strong>ite field is isomorphic to some Galois field. We<br />

know that Fq conta<strong>in</strong>s Fp = GF (p) ∼ = Z/pZ as its prime subfield. If f(x) is<br />

an irreducible polynomial of degree e over Fp, then<br />

Fq ∼ = Fp[x]/(f(x)) = {a0+a1t+· · ·+ae−1t e−1 : ai ∈ Fp <strong>and</strong> f(t) = 0}. (20.1)<br />

If Fr is a Galois field for some prime power r, then Fr conta<strong>in</strong>s an isomorphic<br />

copy of Fq as a subfield if <strong>and</strong> only if r = p h where e divides h. If<br />

Fq also denotes this subfield, then<br />

Fq = {a ∈ Fr : a q = a}. (20.2)<br />

We know that F ∗ q = Fq \ {0} is a cyclic group whose b<strong>in</strong>ary operation<br />

is just multiplication of Fq restricted to F ∗ q . A generator of F ∗ q is called a<br />

primitive element or primitive root for Fq.<br />

The group Aut(Fq) of automorphisms of Fq is cyclic of order e <strong>and</strong> generated<br />

by the automorphism<br />

819


820 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

It follows that φi : x ↦→ xpi. p : Fq → Fq : x ↦→ x p . (20.3)<br />

If p is a prime <strong>and</strong> n is a positive <strong>in</strong>teger, then consider<strong>in</strong>g f(x) = xpn −x<br />

as a polynomial <strong>in</strong> Fp[x], the splitt<strong>in</strong>g field of f(x) is Fpn. Moreover Fpn consists of precisely the roots of xpn = 0. More generally, if q = pn <strong>and</strong> m is<br />

a positive <strong>in</strong>teger, then<br />

has splitt<strong>in</strong>g field Fqm.<br />

g(x) = x qm<br />

− x = x pmn<br />

− x ∈ Fq[x]<br />

Let N (m, q) be the set of monic irreducible polynomials of degree m over<br />

Fq, q = pn , <strong>and</strong> put N(m, q) = |N (m, q)|.<br />

Suppose that f(x) ∈ N (m, q). the roots of f(x) = 0 each belong to Fqm. If f(α) = 0, then Fq(α) = Fqm. In particular, αqm −α = 0, so that αqm−1 = 1.<br />

Then f(x)|(xqm −1 q − 1), s<strong>in</strong>ce f(x) <strong>and</strong> x m−1 − 1 each have no repeated roots<br />

<strong>and</strong> each root of f(x) = 0 is a root of xqm−1 − 1 = 0. The exponent e of f(x)<br />

is the smallest positive <strong>in</strong>teger k for which f(x)|(xk − 1). So each α with<br />

f(α) = 0 satisfies αe = 1. S<strong>in</strong>ce the roots α1, . . . , αm of f(x) = 0 all have<br />

f(x) as their m<strong>in</strong>imum polynomial over Fq, αe i = αe j = 1 iff f(x)|(xe − 1),<br />

<strong>and</strong> we see that if e is the m<strong>in</strong>imal positive <strong>in</strong>teger for which f(x)|(xe − 1),<br />

then each root α of f(x) = 0 has multiplicative order e. So e|(qm − 1). If<br />

e = qm −1, then f(x) is a primitive polynomial <strong>and</strong> each root α is a primitive<br />

element of Fqm. Put<br />

θ(n) = (q n+1 − 1)/(q − 1) = q n + q n−1 + · · · + q + 1.<br />

Let α be a primitive element of Fq m, so α has multiplicative order qm − 1.<br />

Then β = α θ(m−1) has multiplicative order q − 1, so is a primitive element of<br />

Fq.<br />

Suppose that r|m, from which we have (q r −1)|(q m −1), which implies that<br />

θ(r − 1)|θ(m − 1). Thus δ = α θ(m−1)<br />

θ(r−1) has multiplicative order qm −1)·θ(r−1)<br />

θ(m−1)<br />

=<br />

(q − 1)θ(r − 1) = qr − 1, so is a primitive element of Fqr, a subfield of Fqm. For each e divid<strong>in</strong>g qm − 1 put<br />

N e (m, q) = {f(x) ∈ N (m, q) : f(x) has exponent e}.


20.1. THE GALOIS FIELD GF (Q) = FQ 821<br />

Then<br />

N (m, q) = ∪ {N e (m, q) : e|(q m − 1) but e | (q r − 1) for 0 < r < m} .<br />

For an e as <strong>in</strong> the set described just above, if f(x) ∈ N e (m, q), then f(x) = 0<br />

has m roots, each of whose elements has multiplicative order e <strong>and</strong> generates<br />

Fq m. In general, if d|(qm − 1), the number of elements of order d is φ(d), <strong>and</strong><br />

then |N e (m, q)| = φ(e)/m.<br />

The map t ↦→ t θ(m−1) is a multiplicative homomorphism from F ∗ q m <strong>in</strong>to F ∗ q<br />

with kernel K = {t ∈ F ∗ q m : tθ(m−1) = 1} of size θ(m − 1) <strong>and</strong> image of size<br />

(q m − 1)/(θ(m − 1) = q − 1, i.e., it is onto F ∗ q . Hence each element c ∈ F ∗ q<br />

is the image of θ(m − 1) elements t ∈ F ∗ q m, <strong>and</strong> no element of F ∗ q m \ F ∗ q is<br />

such an image. But for some t ∈ F ∗ qm it may be that there is some smaller<br />

exponent e < θ(m − 1) for which te = c ∈ Fq. Note that for f(x) ∈ N (m, q),<br />

if f(t) = 0, then te = c ∈ Fq if <strong>and</strong> only if f(x)|(xe − c).<br />

Let f(x) ∈ N (m, q). We say that f(x) has subexponent e provided e is the<br />

smallest positive <strong>in</strong>teger k for which f(x) divides xk − c for some c ∈ Fq. Let<br />

α be a primitive element for Fqm <strong>and</strong> suppose t = αr is a root of f(x) = 0.<br />

Put d = gcd(θ(m − 1), r). Then we have<br />

Lemma 20.1.1. e = θ(m−1)<br />

d<br />

is the subexponent of f(x).<br />

Proof. Clearly t e = α re ∈ Fq if <strong>and</strong> only if (α re ) q−1 = 1 if <strong>and</strong> only if<br />

(q m −1)|(re(q−1)) if <strong>and</strong> only if θ(m−1)|re. Write r = du <strong>and</strong> θ(m−1) = dv,<br />

where gcd(u, v) = 1. Then dv|due if <strong>and</strong> only if v|ue if <strong>and</strong> only if v|e. Hence<br />

the smallest positive <strong>in</strong>teger e for which t e ∈ Fq is e = v = θ(m − 1)/d.<br />

If f(x) ∈ N (m, q) has subexponent e = θ(m−1), we say f(x) is subprimitive,<br />

<strong>and</strong> its roots are subprimitive for Fqm (or m-subprimitive).<br />

If α is a root of a subprimitive polynomial f(x), then θ(m−1) is the smallest<br />

positive <strong>in</strong>teger e such that αe ∈ Fq. Hence if a subprimitive polynomial<br />

has a primitive root, it must be a primitive polynomial for Fqm. For e = qm − 1,<br />

P (m, q) = |N e (m, q)| = φ(e)<br />

= number of primitive polynomials for Fqm; m<br />

R(m, q) = the number of subprimitive polynomials <strong>in</strong> N (m, q);<br />

N(m, q) = |N (m, q)|.


822 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

Lemma 20.1.2. The follow<strong>in</strong>g equalities hold:<br />

(i) P (m, q) = φ(qm−1) m .<br />

(ii) N(m, q) = 1 <br />

m<br />

m d|m µ(d)q d .<br />

(iii) R(m, q) = (q−1)φ(θ(m−1))<br />

. m<br />

Proof. Part (i) should be clear. For part (ii) we have that the product of<br />

all monic irreducible polynomials of degree divid<strong>in</strong>g m is xqm − x. Hence,<br />

comput<strong>in</strong>g the degree of this product we f<strong>in</strong>d<br />

Let m = p k1<br />

1<br />

<strong>in</strong>version gives<br />

· · · pks<br />

s<br />

q m = <br />

dN(d, q).<br />

d|m<br />

be the prime decomposition of m. Then Möbius<br />

m · N(m, q) = <br />

d|m<br />

µ(d)q m<br />

d ,<br />

which proves part (ii)<br />

S<strong>in</strong>ce µ(d) = 0 if the square of some prime divides ”d, we have<br />

m · N(m, q) = q m −<br />

s<br />

i=1<br />

q m<br />

p i + <br />

1≤i


20.2. RELATIVE TRACE AND NORM 823<br />

TF/K(a) = a + a q + a q2<br />

+ · · · + a qn−1<br />

.<br />

Clearly TF/K(a) ∈ K; TF/K(a + b) = TF/K(a) + TF/K(b) for all a, b ∈ F ;<br />

<strong>and</strong> for c ∈ K, a ∈ F , TF/K(ca) = cTF/K(a). If e = 1, so q is prime, then<br />

TF/K is the absolute trace function. If a ∈ K, then TF/K(a) = na = 0 if<br />

n ≡ 0 (mod p). Note that TF/K is a K-l<strong>in</strong>ear transformation of the field F<br />

thought of as an n-dimensional vector space over K.<br />

For the rest of this section let us write tr(a) = TF/K(a) for a ∈ F . And<br />

for σ ∈ Gal(F/K), def<strong>in</strong>e Tσ ∈ HomK(F, F ) by Tσ(a) = a σ − a for all a ∈ F .<br />

It is easy to check that tr(Tσ(a)) = 0 for all a ∈ F . So Im(Tσ) ⊆ ker(tr).<br />

First suppose that σ generates Gal(F/K), so that K is the subfield fixed<br />

by σ. In this case K is exactly the kernel of Tσ, so that the image of Tσ<br />

has q n /q = q n−1 elements. This is a vector subspace of F of codimension 1<br />

over K. S<strong>in</strong>ce tr is not the zero map (a polynomial of degree q n−1 cannot<br />

have more than q n−1 roots <strong>in</strong> F ), it must be that tr(b) = 0 if <strong>and</strong> only if<br />

b = Tσ(a) for some a ∈ F . This holds for each σ that generates the Galois<br />

group Gal(F/K). Now suppose that σ ∈ Gal(F/K) has fixed field larger<br />

than K, so that the kernel of Tσ is larger than K, say it is GF (q j ) with<br />

1 < j ≤ n. Then the image of Tσ has only q n−j elements <strong>in</strong> it, so that it is<br />

a proper subset of the kernel of tr = TF/K. We have proved the follow<strong>in</strong>g<br />

result.<br />

Theorem 20.2.1. Let σ be a generator of the Galois group Gal(F/K). Then<br />

tr(b) = TF/K(b) = 0 if <strong>and</strong> only if b = Tσ(a) = a σ − a.<br />

The relative norm NF/K of an element a ∈ F is def<strong>in</strong>ed by<br />

NF/K(a) = a 1+q+q2 +···+q n−1<br />

= a qn −1<br />

q−1 .<br />

Clearly NF/K(a) ∈ K, <strong>and</strong> if a = b q−1 then NF/K(a) = 1. The kernel of<br />

x ↦→ x q−1 <strong>in</strong> F ∗ is K ∗ , so the size of the image I of the map x ↦→ x q−1 is<br />

qn−1 q−1 , <strong>and</strong> I is a subset of the kernel of the map x ↦→ x qn−1 qn−1 . Hence we have proved<br />

q−1<br />

q−1 which has size<br />

Theorem 20.2.2. NF/K(a) = 1 if <strong>and</strong> only if a = b q−1 for some b ∈ F .


824 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

20.3 Polynomials over Fq<br />

If q = 2, then x q + x = x(x + 1) = x 2 + (0 + 1)x, <strong>and</strong> <br />

a = 1. For the<br />

a∈F2<br />

rema<strong>in</strong>der of this section let q > 2, so that xq , xq−1 , x are dist<strong>in</strong>ct monomials.<br />

from which it follows that<br />

x q−1 − 1 = <br />

(x − a) = x q−1 − ( <br />

a∈F ∗ q<br />

x q − x = <br />

(x − a), (20.4)<br />

a∈F ∗ q<br />

a∈Fq<br />

a)x (q−2) <br />

q−1<br />

+ · · · + (−1)<br />

a∈F ∗ q<br />

a. (20.5)<br />

From Eq 20.5 we see immediately that<br />

<br />

a = <br />

a = 0; <br />

a = (−1) q = −1. (20.6)<br />

a∈F ∗ q<br />

a∈Fq<br />

a∈F ∗ q<br />

Note: For fixed a ∈ Fq,<br />

<br />

(a − b) = <br />

b = (−1) q = −1. (20.7)<br />

b∈Fq<br />

b=a<br />

b∈F ∗ q<br />

Put Γ[x] = Fq[x]/(x q −x) <strong>and</strong> G(x) = {f(x) ∈ Fq[x] : deg(f(x)) ≤ q −1}.<br />

Then for each g(x) ∈ Fq[x] there is a unique g(x) ∈ G(x) for which f(x) ≡<br />

g(x) (mod x q − x). Moreover, if g(x) ∈ Fq[x] <strong>and</strong> f(x) ∈ G(x), then<br />

Put<br />

f(a) = g(a) for all a ∈ Fq iff f(x) ≡ g(x) (mod x q − x). (20.8)<br />

δa,b =<br />

1, if a = b;<br />

0, if a = b.<br />

Recall Lagrange <strong>in</strong>terpolation. For a ∈ Fq, put<br />

x<br />

fa(x) =<br />

q <br />

b∈Fq(x<br />

− b)<br />

− x<br />

b=a<br />

=<br />

. (20.9)<br />

(x − a)(−1) q (a − b)<br />

b∈Fq<br />

b=a<br />

Then fa(b) = δa,b for all a, b ∈ Fq. Let h : Fq → Fq be any function. Put


20.3. POLYNOMIALS OVER FQ 825<br />

Then<br />

f(x) = <br />

h(a)fa(x). (20.10)<br />

a∈Fq<br />

f(b) = <br />

h(a)fa(b) = h(b), for all b ∈ Fq. (20.11)<br />

a∈Fq<br />

This shows that each function h : Fq → Fq is a polynomial function<br />

f. But we want to write f(x) = q−1 r=0 arxr where ar is given <strong>in</strong> terms of<br />

functional values.<br />

Theorem 20.3.1. Let h : Fq → Fq be any function. Then there is a polynomial<br />

f(x) = q−1<br />

r=0 arx r for which f(b) = h(b) for all b ∈ Fq. Moreover,<br />

(i) a0 = f(0) = h(0);<br />

(ii) aq−1 = − <br />

a∈Fq h(a);<br />

(iii) For 0 < r < q − 1, ar = − <br />

a∈F ∗ q h(a)a−r .<br />

Proof. Put x = 0 <strong>in</strong> Eq. 20.10 to see that h(0) = f(0) = a0. Next, the<br />

coefficient on xq−1 <strong>in</strong> fa(x) is (−1) q = −1 (for q odd or even). Hence from<br />

Eq. 20.10, aq−1 = − <br />

h(a). Now suppose 0 < r < q − 1. If a = 0, the<br />

a∈Fq<br />

coefficient on xr <strong>in</strong> xq−x x−a = xq−1 − 1 is zero. If a = 0, put b(x) = xq−x x−a =<br />

b0 + b1x + · · · + bq−1x q−1 = 0 + b1x + · · · + bq−2x q−2 + x q−1 . So<br />

x q − x = (x − a)(b1x + · · · bq−2x q−2 + x q−1 )<br />

= (−ab1)x + (b1 − ab2)x 2 + (b2 − ab3)x 3 + · · · + (bq−2 − abq−1)x q−1 + x q .<br />

This implies ab1 = 1, or b1 = a −1 . And 1 < r < q−1 forces br−1 −abr = 0,<br />

or br = a −r . So b1 = a −1 ; b2 = b1a −1 = a −2 ; b3 = b2a −1 = a −3 , . . . , <strong>and</strong><br />

br = a −r . So the coefficient of x r <strong>in</strong> fa(x) is 0 if a = 0 <strong>and</strong> −a −r if a = 0. By<br />

Eq. 20.10, the coefficient on x r is ar = − <br />

a∈F ∗ q h(a)a−r .<br />

Lemma 20.3.2. Assume q > 2 <strong>and</strong> suppose f(x) ∈ G(x). If a ↦→ f(a) is a<br />

bijection, then deg(f)x) ≤ q − 2.<br />

Proof. By assumption, <br />

<br />

f(a) = a = 0, s<strong>in</strong>ce q > 2. So the<br />

a∈Fq a∈Fq<br />

coefficient on xq−1 is − <br />

f(a), which is 0.<br />

a∈Fq


826 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

Lemma 20.3.3. Let q > 2 <strong>and</strong> let f(x) permute the nonzero elements of Fq.<br />

If deg(f(x)) ≤ q − 2, it must be that f(0) = 0 <strong>and</strong> a ↦→ f(a) is a bijection on<br />

Fq.<br />

Proof. From Eq. 20.10 we have f(x) = − <br />

a∈Fa f(a) xq <br />

−x<br />

q−1 = −f(0)(x −<br />

x−a<br />

1) − <br />

a∈F ∗ q f(a) xq <br />

−x<br />

q−1 . The coefficient of x , which must be 0, is −f(0) −<br />

<br />

x−a<br />

a∈F ∗ <br />

f(a) = −f(0) −<br />

q a∈F ∗ a = −f(0). Hence f(0) = 0 <strong>and</strong> a ↦→ f(a) is<br />

q<br />

a bijection.<br />

20.4 Symmetric Polynomials<br />

Let R be a commutative r<strong>in</strong>g, <strong>and</strong> let R[x1, . . . , xn] be the r<strong>in</strong>g of polynomials<br />

over R <strong>in</strong> n <strong>in</strong>determ<strong>in</strong>ates. If π : i ↦→ i ′ is a permutation of<br />

[n] = {1, . . . , n}, then π determ<strong>in</strong>es an automorphism ζ(π) of R[x1, . . . , xn]<br />

such that ζ(π) : a ↦→ a, a ∈ R, xi ↦→ xi ′, 1 ≤ i ≤ n. A polynomial<br />

f(x1, . . . , xn) ∈ R[x1, . . . , xn] is said to be symmetric <strong>in</strong> the x’s if<br />

f(x1, . . . , xn) is fixed under ζ(π) for every π <strong>in</strong> the symmetric group Sn.<br />

The set Σ of symmetric polynomials is a subr<strong>in</strong>g of R[x1, . . . , xn] conta<strong>in</strong><strong>in</strong>g<br />

R. The coefficients of z <strong>in</strong> the polynomial<br />

are symmetric. That is,<br />

g(z) = (z − x1)(z − x2) · · · (z − xn) (20.12)<br />

g(z) = z n − σ1z n−1 + σ2z n−2 + · · · + (−1) n σn, (20.13)<br />

where σi = x1 ′ · · · xi ′ (i.e., σi is the sum over all products of i dist<strong>in</strong>ct<br />

xi’s) is homogeneous of degree i <strong>and</strong> is called the i th elementary symmetric<br />

polynomial <strong>in</strong> x1, . . . , xn. Also put σ0 = 1.<br />

When the general polynomial<br />

P (z) = anz n + an−1z n−1 + · · · + a0<br />

is written <strong>in</strong> factored form, on compar<strong>in</strong>g the two expressions we f<strong>in</strong>d that<br />

σk = (−1) k an−k/an. (20.14)<br />

Theorem 20.4.1. (The Fundamental Theorem of Symmetric Polynomials)<br />

Σ = R[σ1, . . . , σn]. We make this more specific as follows. Let f(x1, . . . , xn)


20.4. SYMMETRIC POLYNOMIALS 827<br />

be a symmetric polynomial <strong>in</strong> the <strong>in</strong>determ<strong>in</strong>ates x1, . . . , xn. Then there is a<br />

polynomial P (x1, . . . , xn) such that<br />

f(x1, . . . , xn) = P (σ1, . . . , σn).<br />

The coefficients of P can be expressed as l<strong>in</strong>ear comb<strong>in</strong>ations, with <strong>in</strong>tegral<br />

coefficients, of the coefficients of f. The degree of P is equal to the<br />

highest power of x1 occurr<strong>in</strong>g <strong>in</strong> f. The elementary symmetric polynomials<br />

σ1, . . . , σn <strong>in</strong> the <strong>in</strong>determ<strong>in</strong>ates x1, . . . , xn are algebraically <strong>in</strong>dependent over<br />

R. F<strong>in</strong>ally, each xi is algebraic over R[σ1, . . . , σn].<br />

Proof. For the equality Σ = R[σ1, . . . , σn] we need to show that any symmetric<br />

polynomial <strong>in</strong> x1, . . . , xn can be expressed as a polynomial <strong>in</strong> the<br />

elementary symmetric polynomials. It suffices to show this for homogeneous<br />

symmetric polynomials, i.e., those <strong>in</strong> which all of the terms ax k1<br />

1 · · · x kn<br />

n which<br />

occur have the same (total) degree k1 + k2 + · · · + kn. Any polynomial can<br />

be written <strong>in</strong> precisely one way as a sum of homogeneous polynomials of different<br />

degrees. Moreover, as permutations preserve degrees, if f(x1, . . . , xn)<br />

is symmetric, so are its homogeneous components.<br />

Suppose that f(x1, . . . , xn) is homogeneous, symmetric, <strong>and</strong> of degree m.<br />

Introduce the lexicographic order<strong>in</strong>g <strong>in</strong> the set of monomials of degree m:<br />

x k1<br />

1 · · · xkn n > xl1 1 · · · xln n provided that if k1 = l1, k2 = l2, . . . , ks = ls, but<br />

ks+1 > ls+1, s ≥ 0. For example, x2 1x2x3 > x1x3 2 > x1x2 2x3. Let x k1<br />

1 · · · xkn n<br />

be the highest monomial occurr<strong>in</strong>g <strong>in</strong> f (with nonzero coefficient). S<strong>in</strong>ce<br />

f is symmetric, it conta<strong>in</strong>s all the monomials obta<strong>in</strong>ed from x k1<br />

1<br />

· · · xkn<br />

n by<br />

permut<strong>in</strong>g the xi’s. Hence k1 ≥ k2 ≥ · · · ≥ kn.<br />

Note that if M1 <strong>and</strong> M2 are monomials of degree r, <strong>and</strong> N is a monomial<br />

of degree k, then M1 > M2 implies NM1 > NM2. And if also N1 > N2, then<br />

M1N1 > M2N2. It is also clear that x1 · · · xi is the highest monomial <strong>in</strong> σi.<br />

It follows that the highest monomial <strong>in</strong> σ d1<br />

1<br />

· · · σdn<br />

n is<br />

x d1<br />

1 (x1x2) d2 (x1x2x3) d3 · · · (x1 · · · xn) dn<br />

= x d1+···dn<br />

1 x d2+···dn<br />

2 · · · x dn<br />

n .<br />

Hence the highest monomial <strong>in</strong> σ k1−k2<br />

1<br />

σ k2−k3<br />

2<br />

· · · σ kn−1−kn<br />

n−1<br />

σ kn<br />

n<br />

is xk1<br />

1 x k2<br />

2 · · · x kn<br />

n ,<br />

the same as the highest monomial <strong>in</strong> f. If this monomial has coefficient a<br />

<strong>in</strong> f, then the highest monomial <strong>in</strong> f1 = f − aσ k1−k2<br />

1<br />

σ k2−k3<br />

2<br />

· · · σ kn−1−kn<br />

n−1<br />

is less than that of f. Repeat the process with f1, etc. A f<strong>in</strong>ite number of<br />

applications yields a representation of f as a polynomial <strong>in</strong> σ1, . . . , σn with<br />

σ kn<br />

n


828 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

each monomial hav<strong>in</strong>g degree m <strong>in</strong> the x’s <strong>and</strong> weight (k1 − k2) + 2(k2 − k3) +<br />

· · · + (n − 1)(kn−1 − kn) + nkn = k1 + k2 + · · · + kn = m <strong>in</strong> σ1, . . . , σn. As f<br />

is be<strong>in</strong>g decreased by subtract<strong>in</strong>g polynomials <strong>in</strong> the elementary symmetric<br />

functions, the rema<strong>in</strong><strong>in</strong>g monomials are strictly smaller <strong>in</strong> the lexicographic<br />

order<strong>in</strong>g, but always of the same degree m. So clearly the process term<strong>in</strong>ates<br />

<strong>in</strong> a f<strong>in</strong>ite number of steps.<br />

Note that if ax k1<br />

1 · · · x kn<br />

n is the highest monomial <strong>in</strong> f, then f1 = f −<br />

aσ k1−k2<br />

1 σ k2−k3<br />

2 · · · σ kn−1−kn<br />

n−1 σkn n where aσk1−k2 1 σ k2−k3<br />

2 · · · σ kn−1−kn<br />

n−1 σkn n has degree<br />

k1 <strong>in</strong> the elementary symmetric functions.<br />

We next show that the σi <br />

are algebraically <strong>in</strong>dependent. Suppose<br />

d1<br />

(d)<br />

ad1···dnσ1 · · · σdn n = 0 where this is summed over a f<strong>in</strong>ite set of dist<strong>in</strong>ct<br />

(d) = (d1, . . . , dn), di ∈ Z + . If the relation is nontrivial, we have ad1···dn = 0<br />

for some (d). For any (d) def<strong>in</strong>e (k) = (k1, . . . , kn) by ki = di +di+1 +· · ·+dn.<br />

then the degree of σ d1<br />

1 · · · σdn n <strong>in</strong> the x’s is m = n 1 ki = n 1 idi, <strong>and</strong> the<br />

highest monomial of this degree occurr<strong>in</strong>g <strong>in</strong> σ d1<br />

1 · · · σdn n is x k1<br />

1 x k2<br />

2 · · · xkn n . If<br />

(d ′ ) = d ′ 1 , . . . , d′ n ) <strong>and</strong> k′ i = d′ i + · · · d′ n for 1 ≤ i ≤ n, then d′ i = di, 1 ≤ i ≤ n.<br />

thus dist<strong>in</strong>ct monomials σ d1<br />

1 · · · σdn n <strong>in</strong> the σ’s have dist<strong>in</strong>ct highest monomials<br />

<strong>in</strong> the x’s occurr<strong>in</strong>g <strong>in</strong> them. Now among those (d) with ad1···dn = 0, choose<br />

the one for which m = idi is maximal <strong>and</strong> the highest monomial x k1<br />

1 · · · xkn n<br />

is maximal. Then express<strong>in</strong>g our relation <strong>in</strong> the σ’s <strong>in</strong> terms of the x’s, we<br />

get the term x k1<br />

1 · · · x kn<br />

n only once <strong>and</strong> with nonzero coefficient ad1···dn. This<br />

contradicts the algebraic <strong>in</strong>dependence of the xi’s.<br />

x n i<br />

For the last statement of the theorem, 0 = g(xi) = (xi−x1) · · · (xi−xn) =<br />

n−1<br />

− σ1xi + · · · + (−1)nσn. 20.5 Newton’s Formulas<br />

Let sk = n j=1 xkj . So s1 = σ1, s2 = x2 1 + · · · + x2n , etc. Note that we do not<br />

def<strong>in</strong>e s0.<br />

Start with the equation<br />

g(z) = z n − σ1z n−1 + σ2z n−2 + · · · + (−1) n σn. (20.15)<br />

Put z = xi <strong>and</strong> sum over i = 1, . . . , n to obta<strong>in</strong><br />

0 = sn − σ1sn−1 + σ2sn−2 + · · · + (−1) n−1 σn−1s1 + (−1) n nσn.


20.5. NEWTON’S FORMULAS 829<br />

Note that this is Eq 20.20 below with m = n. Differentiate to obta<strong>in</strong><br />

Here we have<br />

g(z)<br />

(z − xi)<br />

Hence<br />

+ (x m i<br />

g ′ (z) = g(z) g(z)<br />

g(z)<br />

+ + · · · + . (20.16)<br />

(z − x1) (z − x2) (z − xn)<br />

= z n−1 + (xi − σ1)z n−2 + (x 2 i − σ1xi + σ2)z n−3 + · · ·<br />

− σ1x m−1<br />

i<br />

+σ2x m−2<br />

i<br />

+ · · · + (−1) m σm)z n−m−1 + · · · . (20.17)<br />

g ′ (z) = nz n−1 + (s1 − nσ1)z n−2 + (s2 − σ1s1 + nσ2)z n−3 + · · ·<br />

+(sm −σ1sm−1 +σ2sm−2 + · · · + (−1) m nσm)z n−m−1 + · · · (20.18)<br />

Also,<br />

g ′ (z) = nz n−1 + · · · + (−1) m (n − m)σmz n−m−1 + · · · . (20.19)<br />

Equat<strong>in</strong>g coefficients on like powers of z, we have<br />

s1 − σ1 = 0<br />

s2 − σ1s1 + 2σ2 = 0<br />

s3 − σ1s2 + σ2s1 − 3σ3 = 0<br />

.<br />

sm − σ1sm−1 + σ2sm−2 + · · · +(−1) m−1 σm−1s1 + (−1) m mσm = 0.<br />

Hence for 1 ≤ m ≤ n, <strong>and</strong> writ<strong>in</strong>g s0 = m, σ0 = 1, we have<br />

m<br />

i=0<br />

This determ<strong>in</strong>es s1, . . . , sn.<br />

s1 = σ1<br />

(−1) i σism−i = 0. (20.20)<br />

s2 = σ1s1 − 2σ2 = σ2 1 − 2σ2<br />

s3 = σ1s2 − σ2s1 + 3σ3 = σ 3 1 − 3σ1σ2 + 3σ3<br />

.<br />

sn = σ1sn−1 − σ2sn−2+ · · · (−1) n+1 nσn<br />

(20.21)


830 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

If m > n, multiply g(z) by z m−n .<br />

z m−n g(z) = z m − σ1z m−1 + · · · + (−1) n σnz m−n = 0.<br />

Replace z by xi, 1 ≤ i ≤ n, <strong>and</strong> add the result<strong>in</strong>g equations to obta<strong>in</strong><br />

sm − σ1sm−1 + σ2sm−2 − · · · + (−1) n σnsm−n = 0,<br />

i.e., n<br />

i=0 (−1)i σism−i = 0.<br />

So <strong>in</strong> general, Newton’s Formulas may be written as:<br />

<br />

m<strong>in</strong>(m,n)<br />

(−1) i σism−i = 0, where s0 = m, σ0 = 1. (20.22)<br />

i=0<br />

Alternatively, we have<br />

sm =<br />

<br />

m<strong>in</strong>(m,n)<br />

i=1<br />

(−1) i+1 σism−i, where s0 = m, σ0 = 1, m ≥ 1. (20.23)<br />

Exercise: s1 = σ1; s2 = σ 2 1 − 2σ2; s3 = σ 3 1 − 3σ1σ2 + 3σ3.<br />

20.6 The Resultant of Two Polynomials<br />

Let F be an arbitrary field, <strong>and</strong> let f, g be two nonzero polynomials ∈ F [x].<br />

Suppose K conta<strong>in</strong>s a splitt<strong>in</strong>g field for fg over F , so that <strong>in</strong> K[x],<br />

<strong>and</strong><br />

f(x) = a(x − α1)(x − α2) · · · (x − αn),<br />

g(x) = b(x − β1)(x − β2) · · · (x − βm)<br />

for some α1, . . . , αn, β1, . . . , βm ∈ K <strong>and</strong> some nonzero a, b ∈ F . We def<strong>in</strong>e<br />

the resultant R(f, g) of f <strong>and</strong> g by<br />

R(f, g) = a m b n<br />

n<br />

i=1 j=1<br />

m<br />

(αi − βj) (n = deg f, m = deg g).<br />

We start with some basic facts concern<strong>in</strong>g resultants.


20.6. THE RESULTANT OF TWO POLYNOMIALS 831<br />

Lemma 20.6.1. R(g, f) = (−1) mn R(f, g).<br />

Proof. Obta<strong>in</strong><strong>in</strong>g R(g, f) from R(f, g) <strong>in</strong>volves mak<strong>in</strong>g mn changes of sign:<br />

(root of g - root of f) = -(root of f - root of g).<br />

Lemma 20.6.2. R(f, g) = 0 iff f <strong>and</strong> g have any common factors (over F ).<br />

Proof. R(f, g) = 0 iff <strong>in</strong> K f <strong>and</strong> g have a common root iff over F they have<br />

a common factor.<br />

Lemma 20.6.3. R(f, g) = adeg g n i=1 g(αi), where a is the lead<strong>in</strong>g coefficient<br />

of f <strong>and</strong> αi are the various roots of f. Similarly, R(f, g) = (−1) mnbdeg f m j=1 f(βj),<br />

where b is the lead<strong>in</strong>g coefficient of g <strong>and</strong> the βj are the various roots of g.<br />

Proof. S<strong>in</strong>ce g(x) = b m j=1 (x−βj), g(αi) = b m j=1 (αi−βj) <strong>and</strong> n i=1 g(αi) =<br />

bn n m i=1 j=1 (αi − βj). Multiply<strong>in</strong>g both sides by am gives the result.<br />

Lemma 20.6.4. If g = fq + r, then R(f, g) = a (deg g−deg r) R(f, r), where a<br />

is the lead<strong>in</strong>g coefficient of f.<br />

Proof. By Lemma 20.6.3, R(f, g) = a deg g n<br />

i=1 g(αi) = a deg g n<br />

i=1 [f(αi)q(αi)+<br />

r(αi)]. S<strong>in</strong>ce the αi are the roots of f, we get R(f, g) = a deg g n<br />

i=1 r(αi). On<br />

the other h<strong>and</strong>, R(f, r) = a deg r n<br />

i=1 r(αi), also by Lemma 20.6.3, complet<strong>in</strong>g<br />

the proof.<br />

Lemma 20.6.5. R(f, b) = b deg f if b is a scalar.<br />

Proof. This follows directly from Lemma 20.6.3 with g(x) = b.<br />

Lemma 20.6.6. If f = f1f2, then R(f, g) = R(f1, g) · R(f2, g). Similarly, if<br />

g = g1g2, then R(f, g) = R(f, g1) · R(f, g2).<br />

Proof. Immediate from the def<strong>in</strong>ition.<br />

Lemma 20.6.7. For 0 = c, d, R(cf, dg) = c deg g d deg f R(f, g).<br />

Note: We <strong>in</strong>terpret an empty product to be equal to 1, so that when g(x)<br />

is the nonzero constant b, i.e., g has no roots, the general resultant R(f, g)<br />

is consistently def<strong>in</strong>ed. If a <strong>and</strong> b are both nonzero, clearly R(a, b) = 1. We<br />

<strong>in</strong>terpret R(a, b) to be 1 if only one of a, b is zero, <strong>and</strong> to be 0 if they both<br />

are zero.


832 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

Lemmas 20.6.1, 20.6.4, <strong>and</strong> 20.6.5 permit the computation of the resultant<br />

of any two polynomials by us<strong>in</strong>g the Euclidean algorithm. It is then easy<br />

to show that the resultant R(f, g) is an element of the field F , even though it<br />

is def<strong>in</strong>ed <strong>in</strong> terms of elements of the bigger field K, s<strong>in</strong>ce the resultant of f<br />

<strong>and</strong> g can be expressed <strong>in</strong> terms of products, sums, differences <strong>and</strong> quotients<br />

of their coefficients. In particular, if f(x) <strong>and</strong> g(x) are polynomials over a<br />

field F , then R(f, g) ∈ F , even if the roots of f(x) <strong>and</strong> g(x) are not <strong>in</strong> F .<br />

Exercise 20.6.7.1. Prove that R(f, g) is <strong>in</strong> F .<br />

20.7 The Discrim<strong>in</strong>ant of a Polynomial<br />

Let f ∈ F [x] have degree n <strong>and</strong> lead<strong>in</strong>g coefficient a, <strong>and</strong> let f ′ denote the<br />

formal derivative of f. Then the discrim<strong>in</strong>ant of f is def<strong>in</strong>ed by aD(f) =<br />

(−1) n(n−1)/2 R(f, f ′ ). By Lemma 20.6.3 this is equivalent to<br />

Lemma 20.7.1. If f(x) = a n i=1 (x − αi), then:<br />

D(f) = a 2n−2<br />

<br />

(αi − αj) 2 .<br />

1≤i


20.7. THE DISCRIMINANT OF A POLYNOMIAL 833<br />

= a 2n−1<br />

<br />

1≤i


834 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

There is an immediate corollary.<br />

Corollary 20.7.5. Let f <strong>and</strong> g be monic polynomials <strong>in</strong> F [x]. Then D(fg) =<br />

D(f)D(g)(R(f, g)) 2 , where R(f, g) ∈ F . An easy <strong>in</strong>duction argument extends<br />

this to the follow<strong>in</strong>g. Let f1, . . . , fr be monic polynomials <strong>in</strong> F [x]. Then<br />

D(f1f2 . . . fr) = D(f1)D(f2) · · · D(fr) · R 2 , for some R ∈ F .<br />

Note that the discrim<strong>in</strong>ant D(f) is a symmetric polynomial <strong>in</strong> the roots<br />

α1, . . . , αn. Hence by the Fundamental Theorem of Symmetric Functions,<br />

there is a polynomial P (z1, . . . , zn) such that D(f) = P (σ1, . . . , σn), where<br />

σ1, . . . , σn are the elementary symmetric functions <strong>in</strong> the αi. It follows that<br />

when f is monic, so the coefficents of f are the elementary symmetric functions,<br />

the discrim<strong>in</strong>ant D(f) can be expressed as a l<strong>in</strong>ear comb<strong>in</strong>ation, with<br />

ord<strong>in</strong>ary <strong>in</strong>tegral coefficients, of the coefficients of f. Also the coefficients of<br />

P can be expressed as l<strong>in</strong>ear comb<strong>in</strong>ations, with <strong>in</strong>tegral coefficients, of the<br />

coefficients of D(f). The degree of P is equal to the highest power of α1<br />

occurr<strong>in</strong>g <strong>in</strong> D(f).<br />

20.8 Reverse Polynomials<br />

Recall that if f(x) = anxn + an−1xn−1 + · · · a1x + a0 is a polynomial over the<br />

field F , its reverse polynomial is given by ˆ f(x) = xnf( 1<br />

x ) = a0xn + a1xn−1 +<br />

· · · an−1x + an. If an = 0 = a0, then f(x) has zeros α1, . . . , αn which are all<br />

nonzero, <strong>and</strong> ˆ f(x) has zeros α −1<br />

1 , . . . , α −1<br />

n .<br />

Let f(x) = a(x − α1)(x − α2) · · · (x − αn) <strong>in</strong> some splitt<strong>in</strong>g field of f(x)<br />

over F . Then<br />

ˆf(x) = x n a( 1 1<br />

− α1)(<br />

x x − α2) · · · ( 1<br />

− αn)<br />

x<br />

= a(1 − α1x) · · · (1 − αnx)<br />

= a(−1) n α1α2 · · · αn(x − 1<br />

) · · · (x − 1<br />

).<br />

This implies that the discrim<strong>in</strong>ant<br />

D( ˆ f(x)) = [a(−1) n α1α2 · · · αn] 2n−2<br />

α1<br />

<br />

1≤i


20.9. ROOTS OF IRREDUCIBLE POLYNOMIALS IN ZP [X] 835<br />

= a 2n−2 (α1α2 · · · αn) 2n−2<br />

= a 2n−2<br />

<br />

1≤i


836 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

20.10 Stickelberger’s theorem<br />

We compute D(f) by us<strong>in</strong>g the Euclidean algorithm on f <strong>and</strong> f ′ . Here are<br />

some examples.<br />

Example 1. Let f(x) = x−a. Then f ′ (x) = 1, so D(f) = (−1) (1·0)/2 R(f, 1) =<br />

R(f, 1) = 1 deg f = 1.<br />

Example 2. Let f(x) = x 2 + ax + b. Then D(f) = −R(f, f ′ ). Now<br />

f ′ (x) = 2x + a, <strong>and</strong><br />

x 2 <br />

x<br />

+ ax + b = (2x + a)<br />

2<br />

Put r = b − a2 . Then<br />

4<br />

D(f) = (−1) 2(1)/2R(f, f ′ ) = (−1)R(f, f ′ )<br />

= −R(f ′ , f)<br />

= 2deg f−deg r (−1)R(f ′ , r)<br />

= −2 (2−0) R(f ′ , b − (a2 /4))<br />

= a2 − 4b.<br />

a<br />

<br />

+ + b −<br />

4<br />

a2<br />

<br />

.<br />

4<br />

Note: If the characteristic of F is different from 2, the roots of f are<br />

− a<br />

2<br />

1√<br />

± a2 − 4b.<br />

2<br />

So f has two irreducible factors iff a 2 − 4b = D(f) is a square <strong>in</strong> F .<br />

The ma<strong>in</strong> goal of this section is to prove a generalization of this result<br />

that is due to Stickelberger.<br />

Theorem 20.10.1. Stickelberger’s Theorem Let p be an odd prime, f(x)<br />

a monic polynomial of degree m with coefficients <strong>in</strong> Zp[x], without repeated<br />

roots <strong>in</strong> any splitt<strong>in</strong>g field, i.e., without multiple factors (so that its discrim<strong>in</strong>ant<br />

D(f) = 0). Let r be the number of irreducible factors of f(x) <strong>in</strong> Zp[x].<br />

Then r ≡ m (mod 2) iff the discrim<strong>in</strong>ant D(f) is a square <strong>in</strong> Zp.<br />

The proof of this theorem will come later. For now we want to try it out<br />

on a few cubic polynomials.<br />

Example 3. Let f(x) = x 3 + qx + r. Then f ′ (x) = 3x 2 + q <strong>and</strong>, do<strong>in</strong>g<br />

Euclid’s algorithm we f<strong>in</strong>d:


20.10. STICKELBERGER’S THEOREM 837<br />

Then<br />

x 3 + qx + r = (3x 2 + q)( x<br />

<br />

2<br />

) + qx + r ,<br />

3 3<br />

3x 2 <br />

2qx 9x 27r<br />

+ q = + r −<br />

3 2q 4q2 <br />

+ q + 27r2<br />

4q2 <br />

.<br />

D(f) = (−1) 3·2<br />

2 R(f, f ′ ) = −R(x3 + qx + r, 3x2 + q)<br />

= (−1)(−1) 3·2R(3x2 + q, x3 + qx + r)<br />

= (−1)33−1R(3x2 + q, 2qx<br />

+ r)<br />

3<br />

= −9(−1) 2·1R( 2<br />

3qx + r, 3x2 + q)<br />

= −9 <br />

2q 2−0 2<br />

27r2<br />

R qx + r, q + 3<br />

3 4q2 <br />

= −4q2 <br />

2<br />

27r2<br />

R qx + r, q + 3 4q2 <br />

= −4q2 <br />

q + 27r2<br />

4q2 1 = −4q3 − 27r2 .<br />

We now try out Stickelberger’s theorem on a few cubic polynomials of<br />

the form <strong>in</strong> Example 3, with F = Z5.<br />

Exercise 20.10.1.1. Verify the entries <strong>in</strong> the follow<strong>in</strong>g table.<br />

Information from Actual factorization<br />

f D(f) Stickelberger’s theorem of f ∈ Z5[x]<br />

x 3 + 3x + 1 0 repeated roots (x − 1)(xr + 3) 2<br />

x 3 + 3x + 2 4 1 or 3 factors irreducible (no roots)<br />

x 3 + x 2 2 factors (x + 2)(x 2 + 3x + 3)<br />

x 3 − x 1 1 or three factors x(x + 1)(x − 1)<br />

x 3 + 2x −2 2 factors x(x 2 + 2)<br />

We are now ready to prove Stickelberger’s theorem. We prove it first for<br />

r = 1. The result for general r will then follow fairly easily.<br />

Proof. Case r = 1. We assume f(x) is irreducible of degree m. Ket K be<br />

a field conta<strong>in</strong><strong>in</strong>g Zp <strong>in</strong> which f(x) splits <strong>in</strong>to l<strong>in</strong>ear factors. Let α be a<br />

root of f. Then the roots of f(x) are α, αp , αp2, . . . , αpm−1. Then D(f) =<br />

(δ(α, αp , αp2, . . . , αpm−1)) 2 ∈ F , so D(f) is a square <strong>in</strong> Zp iff<br />

δ(α, αp , αp2, . . . , αpm−1) is <strong>in</strong> Zp.<br />

We test to see whether δ(α, αp , αp2, . . . , αpm−1) is <strong>in</strong> Zp by exam<strong>in</strong><strong>in</strong>g<br />

φp(δ(α, αp , αp2, . . . , αpm−1)).


838 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

φp(δ(α, αp , αp2, . . . , αpm−1)) = <br />

0≤i


20.12. QUADRATIC RECIPROCITY 839<br />

If α is one root of f1 <strong>in</strong> K, then α, αp , . . . , αpn−1 are the dist<strong>in</strong>ct roots<br />

of f1 <strong>in</strong> K, <strong>and</strong> the roots of f(x) are 1, α, α2 , . . . , αq−1 . Now we may use<br />

Lemma 20.6.3 to calculate the discrim<strong>in</strong>ant D(xq − 1).<br />

Lemma 20.11.1. D(x q − 1) = (−1) (q−1)/2 q q .<br />

Proof. By Lemma 20.6.3 D(x q − 1) = (−1) q(q−1)/2 q<br />

i=1 q(αi ) q−1 =<br />

(−1) (q−1)/2 q q (1·α·α 2 · · · α q−1 ) q−1 = (−1) q(q−1)/2 q q (α q(q−1)/2 ) q−1 = (−1) (q−1)/2 q q .<br />

We now apply Stickelberger’s theorem to x q − 1 <strong>in</strong> Zp[x]. It reads: r =<br />

1 + q−1<br />

n ≡ q (mod 2) iff (−1)(q−1)/2 q q is a square mod p. S<strong>in</strong>ce q is odd, this<br />

yields:<br />

q − 1<br />

2 divides iff (−1)<br />

n<br />

(q−1)/2 q q is a square mod p.<br />

We analyze the left side. 2 divides q−1<br />

q−1<br />

iff n divides . S<strong>in</strong>ce n is the<br />

n 2<br />

order of p modulo q, we have established the follow<strong>in</strong>g:<br />

p (q−1)/2 ≡ 1 (mod q) iff (−1) (q−1)/2 q q is a square mod p.<br />

This completes the difficult part of a proof of the Law of Quadratic Reciprocity,<br />

but we still have a little work to do to be able to state it properly.<br />

20.12 Quadratic Reciprocity<br />

Let p be a prime <strong>and</strong> a an <strong>in</strong>teger. We say a is a quadratic residue mod p<br />

provided there is an <strong>in</strong>teger x for which x2 ≡ a (mod p). Otherwise we say<br />

a is a quadratic nonresidue mod p. If gcd(a, p) = 1, we def<strong>in</strong>e the Legendre<br />

a symbol by p<br />

<br />

a 1 if a is a quadratic residue mod p<br />

= p −1 if a is a quadratic nonresidue mod p<br />

Often we are able to determ<strong>in</strong>e whether or not a is a quadratic residue<br />

mod p just by manipulat<strong>in</strong>g Legendre symbols accord<strong>in</strong>g to the follow<strong>in</strong>g<br />

rules.<br />

Theorem 20.12.1. Let a <strong>and</strong> b be <strong>in</strong>tegers <strong>and</strong> let p <strong>and</strong> q be dist<strong>in</strong>ct odd<br />

primes with gcd(ab, p) = 1. Then<br />

<br />

a2 1. = 1.<br />

p


840 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

2. If a ≡ b (mod p), then<br />

3.<br />

4.<br />

5.<br />

6.<br />

<br />

ab = p<br />

<br />

−1<br />

p<br />

<br />

2<br />

p<br />

p<br />

q<br />

<br />

a<br />

p<br />

<br />

b . p<br />

= (−1) p−1<br />

2 .<br />

= (−1) p2 −1<br />

8 .<br />

<br />

q<br />

p<br />

= (−1) p−1 q−1<br />

2 2 .<br />

<br />

a = p<br />

<br />

b . p<br />

Rule 6. is known as the Law of Quadratic Reciprocity.<br />

Proof. Put F = Zp. Clearly the map σ : F ∗ → F ∗ : a ↦→ a 2 is two-toone,<br />

so exactly half the nonzero residues mod p are quadratic residues, <strong>and</strong><br />

they form a multiplicative subgroup of order (p − 1)/2. Moreover, if b is a<br />

primitive element mod p, then b j is a quadratic residue if <strong>and</strong> only if j is<br />

even. b p−1<br />

2 = −1, so −1 is a quadratic residue if <strong>and</strong> only if p−1<br />

2 is even.<br />

These observations establish parts 1. through 4. of the theorem.<br />

Now suppose br ≡ a (mod p). Then a p−1<br />

2<br />

p−1<br />

r ≡ b 2 ≡ c (mod p). Here<br />

c2 ≡ 1 (mod p), so c ≡ ±1 (mod p). And here the plus sign holds iff p − 1<br />

divides r p−1<br />

<br />

a<br />

iff r is even iff a is a square mod p iff = 1. It follows<br />

2<br />

p<br />

<br />

a<br />

that = a p<br />

p−1<br />

2 , a fact that conta<strong>in</strong>s result 4. <strong>and</strong> is usually called Euler’s<br />

lemma.<br />

<br />

2<br />

By Euler’s lemma, = 2 p<br />

p−1<br />

2 , so to prove 5. it suffices to prove the<br />

follow<strong>in</strong>g:<br />

2 p−1<br />

2 ≡<br />

<br />

1<br />

iff p ≡<br />

−1<br />

<br />

1 or 7<br />

(mod 8).<br />

3 or 5<br />

Start with the identity<br />

2 p−1<br />

p − 1<br />

2 · 1 · 2 · 3 · · ·<br />

= 2 · 4 · 6 · · · (p − 1).<br />

2<br />

We break up the right h<strong>and</strong> side.<br />

Case 1. p ≡ 1 or 5 (mod 8). Here p−1<br />

is an <strong>in</strong>teger. So the right h<strong>and</strong><br />

4<br />

side equals<br />

<br />

p − 1 p + 3 p − 1<br />

2 · 4 · · · 2 · 2 · · · 2<br />

4 4<br />

2


20.13. APPLICATION 841<br />

<br />

p − 1<br />

≡ 2 · 4 · · ·<br />

2<br />

<br />

p − 3<br />

· (−1) · (−3) · · · −<br />

2<br />

p − 1<br />

= 1 · 2 · 3 · · · · (−1)<br />

2<br />

p−1<br />

4 .<br />

Equat<strong>in</strong>g left <strong>and</strong> right sides <strong>and</strong> cancell<strong>in</strong>g gives<br />

2 p−1<br />

2 ≡ (−1) p−1<br />

<br />

1 if p ≡ 1 (mod 8);<br />

4 =<br />

−1 if p ≡ 5 (mod 8).<br />

(mod p)<br />

Case 2. p ≡ 3 or 7 (mod 8). Here p−3<br />

4 is an <strong>in</strong>teger. Then manipulations<br />

similar to those above lead to<br />

2 p−1<br />

p − 1<br />

p − 1<br />

2 · 1 · 2 · 3 · · · ≡ 1 · 2 · 3 · · · · (−1)<br />

2 2<br />

p+1<br />

4 (mod p).<br />

From this one gets<br />

2 p−1<br />

2 ≡ (−1) p+1<br />

4 =<br />

1 if p ≡ 3 (mod 8);<br />

−1 if p ≡ 7 (mod 8).<br />

Putt<strong>in</strong>g these two cases together gives 5.<br />

For the proof of 6., recall the last identity of the preced<strong>in</strong>g section but<br />

restated with the help of Euler’s lemma <strong>and</strong> us<strong>in</strong>g the Legendre symbol:<br />

<br />

p<br />

(−1)<br />

= 1 iff<br />

q<br />

q−1 <br />

2 q<br />

= 1<br />

p<br />

which says<br />

<br />

p<br />

=<br />

q<br />

This is clearly equivalent to 6.<br />

20.13 Application<br />

(−1) q−1 <br />

2 q<br />

q−1<br />

(<br />

= (−1) 2<br />

p<br />

)<br />

p−1<br />

2<br />

<br />

q<br />

.<br />

p<br />

Exercise: Let F be the f<strong>in</strong>ite field GF (p) for an arbitrary odd prime p, <strong>and</strong><br />

put K = spl(f(x), F ), where f(x) = x 3 −x 2 +1. Determ<strong>in</strong>e for which primes<br />

p, [K : F ] = 2.<br />

Solution: The reverse of f(x) is ˆ f(x) = x 3 −x+1, which has discrim<strong>in</strong>ant<br />

−4(−1) 3 − 27(1) 2 = −23. There are three possibilities for the factorization


842 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

of f(x) over F , but the number of factors is even (different parity from the<br />

degree of f(x)) precisely when it is 2, which by Stickelberger’s theorem must<br />

be exactly when the discrim<strong>in</strong>ant D(f) is a nonsquare. So we need to know<br />

for which odd primes p we have<br />

<br />

−23<br />

−1 =<br />

p<br />

= (−1) p−1<br />

2<br />

<br />

23<br />

= (−1)<br />

p<br />

p−1<br />

2 (−1) p−1<br />

2<br />

23−1<br />

2<br />

<br />

p<br />

<br />

p<br />

<br />

= ,<br />

23 23<br />

by quadratic reciprocity. So [K : GF (p)] = 2 precisely when p is a nonsquare<br />

mod 23, which is if <strong>and</strong> only if p is congruent mod 23 to one of the follow<strong>in</strong>g:<br />

5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22.<br />

20.14 Lift<strong>in</strong>g Roots Modulo Powers of p<br />

In this section we give an application of the discrim<strong>in</strong>ant of a polynomial <strong>in</strong><br />

Z[x] to the solution of a congruence modulo a power of a prime p. Throughout<br />

this section f(x) ∈ Z[x].<br />

The basic idea of this section is to start with a solution a to the polynomial<br />

congruence f(a) ≡ 0 (mod p j ) <strong>and</strong> construct a solution b to f(b) ≡<br />

0 (mod p j+1 ). If b = a + tb j , i.e., b ≡ a (mod p j ), we say a lifts to b or that<br />

b lies over a. But as we shall see, sometimes b is congruent to a modulo a<br />

somewhat lower power of p.<br />

First recall Taylor’s formula.<br />

Theorem 20.14.1.<br />

f(a + x) =<br />

n<br />

i=0<br />

f (i) (a)<br />

i!<br />

· x i .<br />

If a is an <strong>in</strong>teger, then clearly f(a + x) ∈ Z[x] also.<br />

Note: S<strong>in</strong>ce f is a polynomial with <strong>in</strong>teger coefficients, <strong>and</strong> a is an<br />

<strong>in</strong>teger, f (i) (a)<br />

is an <strong>in</strong>teger. The ma<strong>in</strong> key to prov<strong>in</strong>g this is the fact that the<br />

i!<br />

product of k consecutive positive <strong>in</strong>tegers is divisible by k!. So if f(x) = cxm ,<br />

then f (i) (x) = m(m−1)···(m−i+1)<br />

i! cx m−i . Hence the coefficient on x m−i is an<br />

<strong>in</strong>teger. S<strong>in</strong>ce the derivative operator is additive, this result is easily extended<br />

to sums of monomials, i.e., to all polynomials.<br />

From this we see that for any nonnegative <strong>in</strong>teger k,


20.14. LIFTING ROOTS MODULO POWERS OF P 843<br />

f(a + tp k ) =<br />

∞<br />

i=0<br />

(tp k ) i · f (i) (a)<br />

i! ≡ f(a) + tpk f ′ (a) (mod p 2k ). (20.24)<br />

This is a very useful congruence! First suppose k = j ≥ 1 <strong>and</strong> that<br />

f(a) ≡ 0 (mod p j ). Then Eq. 20.24 implies<br />

f(a + tp j ) ≡ f(a) + tp j f ′ (a) (mod p j+1 ). (20.25)<br />

Each term is divisible by p j , <strong>and</strong> s<strong>in</strong>ce a ≡ b (mod p j ) implies f(b) ≡<br />

0 (mod p j ), this congruence is equivalent to<br />

f(a + tp j )<br />

p j<br />

≡ f(a)<br />

p j + tf ′ (a) (mod p). (20.26)<br />

Hence the congruence f(b) ≡ 0 (mod p j+1 ) with b = a + tp j is equivalent<br />

to the congruence<br />

tf ′ (a) ≡ − f(a)<br />

p j<br />

(mod p).<br />

So if f ′ (a) ≡ 0 (mod p) we may put t ≡ − f(a)<br />

pjf ′ (mod p) <strong>and</strong> conclude after a<br />

(a)<br />

small calculation that a+tpj = a+f(a) ¯ f ′ (a), where f ¯ ′ (a)·f ′ (a) ≡ 1 (mod p).<br />

Change notation slightly. Suppose f(a) ≡ 0 (mod p) <strong>and</strong> suppose that<br />

f ′ (a) ≡ 0 (mod p). In this case we say a = a1 is a nons<strong>in</strong>gular solution to<br />

the congruence f(a1) ≡ 0 (mod p). We have seen that there is a unique t<br />

modulo p for which a2 = a1 + tp is a solution to f(a2) ≡ 0 (mod p). Note<br />

that s<strong>in</strong>ce a1 ≡ a2 (mod p), we also have f ′ (a2) ≡ f ′ (a1) ≡ 0 (mod p). Here<br />

a2 = a1 − f(a1) ¯ f ′ (a), where f ¯ ′ (a) · f ′ (a) ≡ 1 (mod p). )<br />

In general, if a1, a2, . . . , aj have been determ<strong>in</strong>ed <strong>in</strong> this way, so that<br />

f(aj) ≡ 0 (mod pj ), <strong>and</strong> f ′ (a1) ≡ 0 (mod p), then aj+1 = aj − f(aj) · f ¯ ′ (a1)<br />

satisfies f(aj+1) ≡ 0 (mod pj+1 ). For each i, 1 ≤ i ≤ j, we also have<br />

ai+1 ≡ ai (mod pi ). This establishes what is usually called Hensel’s Lemma,<br />

but we actually have a bit more:<br />

Theorem 20.14.2. Let a be a solution of the polynomial congruence f(a) ≡<br />

0 (mod p j ).<br />

(i) If f ′ (a) ≡ 0 (mod p) <strong>and</strong> f(a) ≡ 0 (mod p j+1 ), then a does not lift to<br />

a solution modulo p j+1 .


844 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

(ii) If f ′ (a) ≡ 0 (mod p) <strong>and</strong> f(a) ≡ 0 (mod p j+1 ), then a lifts to p<br />

solutions b = a + tp j , t modulo p.<br />

(iii) If f ′ (a) ≡ 0 (mod p), then there is a unique value of t modulo p for<br />

which b = a + tp j is a solution of f(b) ≡ 0 (mod p j+1 ).<br />

Part (iii) of the preced<strong>in</strong>g theorem is usualy called Hensel’s Lemma. We<br />

now give a generalization of it that says that if the power of p divid<strong>in</strong>g f(a)<br />

is sufficiently large compared with the power of p divid<strong>in</strong>g f ′ (a), then the<br />

solution can be “lifted” <strong>in</strong>def<strong>in</strong>itely. In fact, it is not actually “lifted,” s<strong>in</strong>ce<br />

<strong>in</strong> each case the new solution b modulo p j+1 produced from the solution a<br />

modulo p j is congruent to a modulo a somewhat smaller power of p than p j .<br />

Theorem 20.14.3. Let f(x) ∈ Z[x]. Suppose that<br />

(i) f(a) ≡ 0 (mod p j );<br />

(ii) p τ ||f ′ (a);<br />

(iii) j ≥ 2τ + 1.<br />

Then:<br />

(a) If b ≡ a (mod p j−τ ), then f(b) ≡ f(a) (mod p j ) <strong>and</strong> p τ ||f ′ (b).<br />

(b) There is a unique t modulo p for which f(a + tp j−τ ) ≡ 0 (mod p j+1 ).<br />

Moreover, by part (a), this process may be cont<strong>in</strong>ued <strong>in</strong>def<strong>in</strong>itely.<br />

Proof. Write b = a + t · p j−τ , so b ≡ a (mod p j−τ ). By Taylor’s For-<br />

mula, f(b) = f(a + t · p j−τ ) = <br />

i=0<br />

f (i) (a)<br />

i! (t · p j−τ ) i ≡ f(a) + t · p j−τ ·<br />

f ′ (a) (mod p 2(j−τ) ).<br />

Note: 2(j − τ) = j + j − 2τ ≥ j + 1 by (iii), so p j+1 |p 2(j−τ) . Hence<br />

f(b) = f(a + t · p j−τ ) ≡ f(a) + t · p j−τ · f ′ (a) (mod p j+1 ). But p j |f(a) <strong>and</strong><br />

p j |[p j−τ · f ′ (a)], so that p j |f(b). This implies that<br />

S<strong>in</strong>ce f ′ (a)<br />

p τ<br />

f(b)<br />

pj = f(a + t · pj−τ )<br />

pj ≡ f(a)<br />

pj + t · f ′ (a)<br />

pτ (mod p).<br />

≡ 0 (mod p), there exists a unique t modulo p for which<br />

f(b) = f(a + t · pj−τ ) ≡ 0 (mod pj+1 ).<br />

Also, f ′ (x) ∈ Z[x], so f ′ (a+t·pj−τ ) = f<br />

i=0<br />

(i+1) (a)<br />

·t i!<br />

i (pj−τ ) i ≡ f ′ (a) (mod pj−τ )<br />

for any <strong>in</strong>teger t. But j − τ ≥ τ + 1, so f ′ (a + t · pj−τ ) ≡ f ′ (a) (mod pτ+1 ).<br />

S<strong>in</strong>ce pτ ||f ′ (a), it must be that pτ ||f ′ (a + t · pj−τ ), i.e., pτ ||f ′ (b).<br />

So there is a unique t modulo p for which b = a + t · pj−τ solves f(b) ≡<br />

0 (mod pj+1 ). S<strong>in</strong>ce pτ ||f ′ (a) implies pτ ||f ′ (b), the process may be cont<strong>in</strong>ued<br />

<strong>in</strong>def<strong>in</strong>itely.


20.14. LIFTING ROOTS MODULO POWERS OF P 845<br />

Example: Consider the congruence x 2 + x + 7 ≡ 0 (mod 81). (Note<br />

81 = 3 4 .)<br />

First consider the congruence modulo 3: x2 + x + 7 ≡ x2 − 2x + 1 ≡ (x −<br />

1) 2 (mod 3). So a1 = 1 is the unique solution modulo 3. Also, f ′ (x) = 2x+1,<br />

so f ′ (1) ≡ 0 (mod 3) <strong>and</strong> f(1) = 9 ≡ 0 (mod 32 ). So a2 = 1 + t · 3 for all t<br />

modulo 3, i.e., a2 ∈ {1, 4, 7} modulo 9.<br />

Consider a2 ≡ 1 modulo 9. f ′ (1) ≡ 0 but f(1)<br />

9 = 1 ≡ 0 (mod 3), so a2 = 1<br />

does not lift to a solution modulo 27.<br />

Consider a2 ≡ 4 (mod 9). f ′ (4) ≡ f ′ (1) ≡ 0 (mod 3). Then f(4)<br />

9<br />

= 3 ≡<br />

0 (mod 3), so a2 = 4 lifts to 3 roots a3 = 4 + t · 3 2 , for all t modulo 3. Hence<br />

a3 ∈ {4, 13, 22} modulo 27.<br />

Consider a2 ≡ 7 (mod 9). f(7)<br />

9<br />

= 7 ≡ 0 (mod 9), so 7 does not lift to a<br />

solution modulo 27.<br />

At this po<strong>in</strong>t we know that 4, 13 <strong>and</strong> 22 are the only solutions modulo<br />

27. And f ′ (4) ≡ f ′ (13) ≡ f ′ (22) ≡ f ′ (1) ≡ 0 (mod 3). A rout<strong>in</strong>e check now<br />

shows that for each of the values a = 4, 13, 22, f(a)<br />

27 is not congruent to 0<br />

modulo 3. Hence none of these solutions modulo 27 lift to a solution modulo<br />

81, i.e., there is no solution modulo 81.<br />

F<strong>in</strong>ally we are ready to <strong>in</strong>voke the discrim<strong>in</strong>ant.<br />

Theorem 20.14.4. Suppose that p δ ||D(f) <strong>and</strong> p τ ||f ′ (a) where a satisfies<br />

f(a) ≡ 0 (mod p j ) with j > δ. Then j ≥ 2τ + 1.<br />

From this theorem we see that if the prime p does not divide the discrim<strong>in</strong>ant<br />

D(f) <strong>and</strong> f(a) ≡ 0 (mod p), so δ = 0 <strong>and</strong> we may take j = 1, then<br />

f ′ (a) ≡ 0 (mod p).<br />

Proof. Suppose f(a) ≡ 0 (mod p j ). If we divide f(x) by x−a, the rema<strong>in</strong>der<br />

is f(a). Then we may write f(x) = (x − a)g(x) + p j r for some g(x) ∈ Z[x]<br />

<strong>and</strong> some r ∈ Z. We know that the discrim<strong>in</strong>ant D(f) is a polynomial<br />

<strong>in</strong> the coefficients of f. And apply<strong>in</strong>g Taylor’s formula to D(f), we f<strong>in</strong>d<br />

D(f(x)) = D((x−a)g(x)+p j r) ≡ D((x−a)g(x)) (mod p j ). By Lemma 20.7.3<br />

we know that D((x−a)g(x)) = D(g)g(a) 2 . As f ′ (x) = g(x)+(x−a)g ′ (x), we<br />

f<strong>in</strong>d that f ′ (a) = g(a). Hence D(f) ≡ D(g)f ′ (a) 2 (mod p j ). The <strong>in</strong>equality<br />

j > δ is equivalent to the assertion that D(f) ≡ 0 (mod p j ). This implies<br />

that f ′ (a) 2 ≡ 0 (mod p j ), which says that j > 2τ.


846 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

The two preced<strong>in</strong>g theorems have an immediate corollary.<br />

Corollary 20.14.5. Let f(x) be a polynomial with <strong>in</strong>tegral coefficients. Suppose<br />

that p δ ||D(f). Let a be an <strong>in</strong>teger for which f(a) ≡ 0 (mod p j ), that<br />

p τ ||f ′ (a), <strong>and</strong> suppose that j > δ, so by the preced<strong>in</strong>g theorem j > 2τ. If<br />

b ≡ a (mod p j−τ ), so b = a + tp j−τ , then f(b) ≡ f(a) (mod p j ) <strong>and</strong> p τ ||f ′ (b).<br />

Moreover, there is a unique t (mod p) such that f(a + tp j−τ ) ≡ 0 (mod p j+1 ).<br />

In this situation, a collection of p τ solutions (mod p j ) gives rise to p τ<br />

solutions (mod p j+1 ), while the power of p divid<strong>in</strong>g f ′ rema<strong>in</strong>s constant.<br />

S<strong>in</strong>ce the hypotheses of the theorem apply with a replaced by b = a + tp j−τ<br />

<strong>and</strong> (mod p j ) replaced with (mod p j+1 ) but with τ unchanged, the lift<strong>in</strong>g<br />

may be repeated <strong>and</strong> cont<strong>in</strong>ues <strong>in</strong>def<strong>in</strong>itely.<br />

20.15 Resultants as Determ<strong>in</strong>ants<br />

Let K be an <strong>in</strong>tegral doma<strong>in</strong> <strong>and</strong> let<br />

f(x) = n n−i<br />

i=0 aix<br />

(1)<br />

g(x) = n m−i<br />

i=0 bix<br />

We want necessary <strong>and</strong> sufficient conditions that f <strong>and</strong> g have a nonconstant<br />

factor φ(x). Assume a0 = 0, so the degree of f is n.<br />

Lemma 20.15.1. f(x) <strong>and</strong> g(x) have a nonconstant common divisor φ(x)<br />

if <strong>and</strong> only if an equation of the form<br />

(2) h(x)f(x) = k(x)g(x) holds where deg(h(x)) ≤ m − 1, deg(k(x)) ≤<br />

n − 1, <strong>and</strong> both h <strong>and</strong> k are nonzero.<br />

Proof. Assume (2) holds. Factor both sides of (2) over K. All prime factors<br />

of f(x) divide k(x)g(x), but some prime factor of f(x) divides g(x), s<strong>in</strong>ce<br />

deg(f(x)) > deg(k(x)).<br />

Conversely, if φ(x) is a common factor, put h(x) = g(x)/φ(x) <strong>and</strong> k(x) =<br />

f(x)/φ(x).<br />

In the above context, put<br />

(3)<br />

h(x) = m−1<br />

i=0 cix m−1−i ,<br />

k(x) = n−1<br />

i=0 dix n−1−i .


20.15. RESULTANTS AS DETERMINANTS 847<br />

Then the coefficient of x n+m−1−t on the L.H.S. of (2) is t<br />

i=0 aict−i <strong>and</strong><br />

on the R.H.S. it is t<br />

i=0 bidt−i. For t = 0, 1, . . . , m + n − 1, the equations<br />

t<br />

aict−i =<br />

i=0<br />

t<br />

i=0<br />

bidt−i<br />

give m+n homogeneous l<strong>in</strong>ear equations <strong>in</strong> the m+n unknowns c0, . . . , cm−1, d0,<br />

. . . , dn−1. (Here put ai, ci, di, bi = 0 for values of i larger than n, m − 1, n −<br />

1, m, respectively.) There is a nontrivial solution for the coefficients ci, di if<br />

<strong>and</strong> only if the determ<strong>in</strong>ant of the system equals zero. Us<strong>in</strong>g −di <strong>in</strong> place of<br />

di, this determ<strong>in</strong>ant ⎛ (with unknowns ordered c0, . . . , cm−1, −d1, ⎞.<br />

. . , −dn−1)<br />

a0<br />

⎜ a1 a0 b1 b0<br />

⎜ a2 a1 a0 b2 b1 b0<br />

⎜<br />

.<br />

.<br />

⎜<br />

appears as det ⎜ . bm bm−1 . . . b0<br />

⎜ . bm<br />

⎜ an an−1 . . . bm<br />

⎜<br />

⎝ an an−1 bm<br />

It is st<strong>and</strong>ard to take the transpose as the def<strong>in</strong>ition of the resultant of f<br />

<strong>and</strong> g.<br />

⎛<br />

a0 a1 . . . an<br />

⎜ a0 . . . an<br />

⎜ a0 ⎜<br />

. . . . . . an<br />

⎜<br />

.<br />

⎜<br />

..<br />

R(f, g) = det ⎜ b0 b1 . . . bm<br />

⎜ b0 . . . bm<br />

⎜<br />

⎝ b0 . . . . . . bm<br />

. ..<br />

b0<br />

⎞<br />

.. .<br />

⎟ .<br />

⎟<br />

⎠<br />

There are m rows <strong>in</strong> the top part of this matrix <strong>and</strong> n rows <strong>in</strong> the bottom<br />

part, so that the matrix is square of size n + m.<br />

Note: R(f, g) is homogeneous of degree m <strong>in</strong> the ai <strong>and</strong> homogeneous of<br />

degree n <strong>in</strong> the bi <strong>and</strong> conta<strong>in</strong>s the pr<strong>in</strong>cipal term a m 0 bn m .<br />

⎟<br />

⎟.<br />

⎟<br />


848 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

Note: R(f, g) is zero if <strong>and</strong> only if either both a0 = b0 = 0 or f <strong>and</strong> g<br />

have a common factor.<br />

Note: R(f, g) is a rational <strong>in</strong>tegral form of degree m+n <strong>in</strong> the coefficients<br />

of f <strong>and</strong> g.<br />

Exercise. Write out the discrim<strong>in</strong>ant D(f) of f as (−1) n(n−1)/2 R(f, f ′ ),<br />

i.e., plus or m<strong>in</strong>us the determ<strong>in</strong>ant of a 2n − 1 by 2n − 1 matrix. Multiply<br />

each of the first n − 1 rows by 4. For 1 ≤ i ≤ n − 1, subtract row n − 1 + i<br />

from row i. Then the first column has only one nonzero entry. It is nan <strong>and</strong><br />

occurs <strong>in</strong> row n. Exp<strong>and</strong><strong>in</strong>g the determ<strong>in</strong>ant along the first column yields<br />

D(f) = an(−1) (n−2)(n−1)/2 det(∆)<br />

n n−2<br />

where ∆ = (di,j) is a (2n − 2) × (2n − 2) matrix whose entries are as follows:<br />

for 1 ≤ i ≤ n − 1 <strong>and</strong> i ≤ j ≤ i + n − 1,<br />

di,j = (j + 1 − i)an+i−j−1 <strong>and</strong> dn−1+i,j = (n + i − j)an+i−j.<br />

All other entries are zero. Clearly D(f) is a form of degree 2n − 2.<br />

We now place this theory <strong>in</strong> a more general sett<strong>in</strong>g. Let A be a commutative<br />

r<strong>in</strong>g with identity, <strong>and</strong> let v0, . . . , vn, w0, . . . , wm be algebraically<br />

<strong>in</strong>dependent over A. We form two polynomials:<br />

fv(x) = v0x n + · · · + vn,<br />

gw(x) = w0x m + · · · + wm.<br />

Write (v) = (v0, . . . , vn), <strong>and</strong> similarly def<strong>in</strong>e (w). The resultant of<br />

((v), (w)) or of fv, gw is def<strong>in</strong>ed to be the determ<strong>in</strong>ant of the follow<strong>in</strong>g<br />

square matrix of size m + n.<br />

⎛<br />

⎞<br />

v0 v1 . . . vn<br />

⎜ v0 ⎜<br />

. . . vn ⎟<br />

⎜ v0 ⎜<br />

. . . . . . vn ⎟<br />

⎜<br />

.<br />

⎜<br />

.. ⎟<br />

⎜<br />

⎟ .<br />

⎜ w0 w1 . . . wm ⎟<br />

⎜<br />

⎟<br />

⎜ w0 . . . wm ⎟<br />

⎜<br />

⎟<br />

⎝ w0 . . . . . . wm ⎠<br />

. ..


20.15. RESULTANTS AS DETERMINANTS 849<br />

The top part of the matrix has m rows, <strong>and</strong> the bottom part has n rows.<br />

The blank spaces are supposed to be filled with zeros.<br />

If we substitute elements (a) = (a0, . . . , an) <strong>and</strong> (b) = (b0, . . . , bm) <strong>in</strong> A<br />

for (v) <strong>and</strong> (w), respectively, <strong>in</strong> the coefficients of fv <strong>and</strong> gw, then we obta<strong>in</strong><br />

polynomials fa <strong>and</strong> gb with coefficients <strong>in</strong> A, <strong>and</strong> we def<strong>in</strong>e their resultnt to<br />

be the determ<strong>in</strong>ant obta<strong>in</strong>ed by substitut<strong>in</strong>g (a) for (v) <strong>and</strong> (b) for (w) <strong>in</strong> the<br />

determ<strong>in</strong>ant. the resultant of fv, gw is denoted R(fv, gw) or R(v, w). Then<br />

R(fa, gb) is obta<strong>in</strong>ed by substitut<strong>in</strong>g (a) for (v) <strong>and</strong> (b) for (w).<br />

Note: R(v, w) is a polynomial with “<strong>in</strong>teger” coefficients, i.e., we could<br />

assume A = Z.<br />

If z is a variable, R(zv, w) = zmR(v, w) <strong>and</strong> R(v, zw) = znR(v, w). Hence<br />

R is homogeneous of degree m <strong>in</strong> its first set of variables <strong>and</strong> homogeneous<br />

of degree n <strong>in</strong> its second set of variables. Furthermore, R(∗v, w) conta<strong>in</strong>s the<br />

monnomial vm 0 wn m with coefficient 1, when expressed as a sum of monomials.<br />

Note: Substitut<strong>in</strong>g v0 = w0 = 0 yields R = 0 s<strong>in</strong>ce the first column<br />

vanishes.<br />

Consider the follow<strong>in</strong>g system of l<strong>in</strong>ear equations over Z[v, w] with “unknowns”<br />

1, x, . . ., x n+m−1 .<br />

x m−1 fv(x) = v0x n+m−1 +v1x n+m−2 + · · · +vnx m−1<br />

x m−2 fv(x) = v0x n+m−2 + · · · +vnx m−2<br />

.<br />

fv(x) = v0x n + · · · vn<br />

x n−1 gw(x) = w0x n+m−1 +w1x n+m−2 + · · · +wmx n−1<br />

x n−2 gw(x) = w0x n+m−2 + · · · +wmx n−2<br />

.<br />

gw(x) = w0x m + · · · wm<br />

Let C be the column vector on the L.H.S. <strong>and</strong> let Ci be the column<br />

vector of coefficients of xm+n−1−i on the R.H.S. ⎛ So the⎞ above equations may<br />

⎜<br />

be expressed as C = (C0, C1, . . . , Cm+n−1) ⎜<br />

⎝<br />

x m+n−1<br />

x m+n−2<br />

By Cramer’s Rule applied to the last variable, which is 1, we have<br />

1 · R(v, w) = det(C0, . . . , Cm+n−1) = det(C0, . . . , Cm+n−2, C). Exp<strong>and</strong><strong>in</strong>g by<br />

.<br />

x<br />

1<br />

⎟<br />

⎟.<br />

⎟<br />


850 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

the last column, we see that there are polynomials φv,w <strong>and</strong> ψv,w <strong>in</strong> Z[v, w][x]<br />

such that<br />

φv,wfv + ψv,wgw = R(v, w).<br />

Note that R(v, w) ∈ Z[v, w], but φ <strong>and</strong> ψ <strong>in</strong>volve x.<br />

If λ : Z[v, w] → A is a homomorphism <strong>in</strong>to a commutative r<strong>in</strong>g A <strong>and</strong><br />

λ(v) = (a), λ(w) = (b), then<br />

(∗) φa,bfa + ψa,bgb = R(a, b) = R(fa, fb).<br />

Theorem 20.15.2. Let K be a subfield of a field L, <strong>and</strong> let fa, gb be polynomials<br />

<strong>in</strong> K[x] hav<strong>in</strong>g a common root <strong>in</strong> L. Then R(a, b) = 0.<br />

Proof. Use (∗) to obta<strong>in</strong> a new proof.<br />

Lemma 20.15.3. Let h(x1, . . . , xn) be a polynomial <strong>in</strong> n variables over Z.<br />

If h has value 0 when x1 is substituted for x2 <strong>and</strong> the other xi are fixed, then<br />

h(x1, . . . , xn) is divisible by x1 − x2 <strong>in</strong> Z[x1, . . . , xn].<br />

Let v0, t1, . . . , tn, w0, u1, . . . , um be algebraically <strong>in</strong>dependent over Z. Form<br />

the polynomials<br />

fv = v0(x − t1) · · · (x − tn) = v0x n + · · · + vn,<br />

gw = w0(x − u1) · · · (x − um) = w0x m + · · · wm.<br />

Here vi = (−1) i v0si(t) <strong>and</strong> wj = (−1) j w0sj(u), where si denotes the i th<br />

elementary symmetric function: si(t) is the sum of all monomials which are<br />

products of the t ′ s, i at a time.<br />

Exercise: Show that v0, v1, . . . , vn, w0, . . . , wm are algebraically <strong>in</strong>dependent<br />

over Z.<br />

Theorem 20.15.4. With the above notation, R(fv, gw) = vm 0 wn 0<br />

uj).<br />

n m i=1 j=1 (ti−<br />

Proof. Let S be the R.H.S. S<strong>in</strong>ce R(v, w) is homogeneous of degree m <strong>in</strong><br />

its first variables <strong>and</strong> of degree n <strong>in</strong> its second variables, it follows that<br />

R = vm 0 wn 0 h(t, u), where h(t, u) ∈ Z[t, u]. By the preced<strong>in</strong>g theorem <strong>and</strong><br />

lemma (R = 0 if ti is substituted for uj), view<strong>in</strong>g R as an element of Z[t, u],


20.15. RESULTANTS AS DETERMINANTS 851<br />

it follows that R is divisible by ti − uj for each pair (i, j). Hence S divides<br />

R <strong>in</strong> Z[t, u], because ti − uj is clearly prime <strong>in</strong> that r<strong>in</strong>g <strong>and</strong> different pairs<br />

(i, j) give rise to different primes.<br />

S = vm 0 wn n 0 i=1 ( m<br />

j=1 (ti − uj)) = vm n 0 i=1 g(ti)<br />

= wn 0 (−1) mn m j=1 (v0<br />

n i=1 (uj − ti)) = (−1) mnwn m 0 j=1 f(uj).<br />

This shows that S is first homogeneous of degree n <strong>in</strong> (w) <strong>and</strong> secondly,<br />

homogeneous of degree m <strong>in</strong> (v). For example, g(ti) = w0tm m−1<br />

i + w1ti + · · ·+<br />

wm is clearly homogeneous of degree 1 <strong>in</strong> (w). S<strong>in</strong>ce R has exactly the same<br />

homogeneity properties <strong>and</strong> is divisible by W , it follows that R = cS for<br />

some <strong>in</strong>teger c. As both R <strong>and</strong> S have the monomial vm 0 wn m with coefficient<br />

1, it follows that c = 1, as desired.<br />

Corollary 20.15.5. Let fa, gb be polynomials with coefficients <strong>in</strong> a field K<br />

such that a0b0 = 0, <strong>and</strong> such that fa, gb split <strong>in</strong>to factors of degree 1 <strong>in</strong> K[x].<br />

Then R(fa, fb) = 0 if <strong>and</strong> only if fa <strong>and</strong> gb have a root <strong>in</strong> common.<br />

Proof. The “if” has already been established. So assume R = 0 <strong>and</strong> let<br />

<strong>and</strong><br />

fa = a0(x − α1) · · · (x − αn)<br />

gb = b0(x − β1) · · · (x − βm).<br />

Then there is a homomorphism Z[v0, t, w0, u]⊤K such that v0 ↦→ a0, w0 ↦→<br />

b0, ti ↦→ αi, uj ↦→ βj, for all i, j. Then 0 = R(fa, fb) = am 0 bn <br />

0 i j (αi − βj),<br />

imply<strong>in</strong>g fa <strong>and</strong> fb have a root <strong>in</strong> common. (Here we need R(fv, fw) ↦→<br />

R(fa, fb) to show that R(fa, fb) = am 0 bn <br />

0 i j (αi −βj), from which it is clear<br />

that 0 = R(fa, fb). )<br />

We deduce one more special result. As above, let<br />

fv(x) = v0x n + · · · + vn = v0(x − t1) · · · (x − tn).<br />

From R(fv, gw) = vm n 0 i=1 g(ti), we know that if f ′ v is the derivative of<br />

fv, then R(fv, f ′ v ) = vn−1 0<br />

we have<br />

<strong>and</strong><br />

f ′ v<br />

(x) = <br />

n<br />

i=1 f ′ (ti). Us<strong>in</strong>g the product rule for derivation<br />

i<br />

v0(x − t1) · · · ˆ<br />

(x − ti) · · · (x − tn)


852 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

f ′ v(ti) = v0(ti − t1) · · · (ti −ˆ ti) · · · (ti − tn).<br />

Def<strong>in</strong>e the discrim<strong>in</strong>ant of fv to be<br />

D(fv) = D(v) = (−1) n(n−1)/2 v 2n−2<br />

0<br />

<br />

(ti − tj).<br />

Theorem 20.15.6. (−1) n(n−1)/2R(fv, f ′ v ) = (−1)n(n−1)/2v 2n−1 <br />

0 i=j (ti−tj) =<br />

v0D(fv).<br />

Proof. Put f ′ v (ti) = v0<br />

nj=1<br />

j=i<br />

(ti − tj) <strong>in</strong>to R(fv, f ′ v<br />

i=j<br />

n ) = vn−1 0 i=1 f ′ (ti).<br />

F<strong>in</strong>ally, homogenize the polynomials fv(x) <strong>and</strong> gw(x), i.e., put<br />

<strong>and</strong><br />

Fv(x, y) = y n fv(x/y) = v0x n + v1x n−1 y + · · · + vny n<br />

Gw(x, y) = y n gw(x/y) = w0x m + w1x m−1 y + · · · + wmy m .<br />

If v0 = w0 = 0, then Fv <strong>and</strong> Gw have the common solution (x, y) = (1, 0).<br />

If either v0 = 0 or w0 = 0, then Fv <strong>and</strong> Gw have a common solution = (0, 0)<br />

if <strong>and</strong> only if fv, gw have a common solution if <strong>and</strong> only if R(fv, gw) =<br />

R(v, w) = R(Fv, Gw) = 0. Hence <strong>in</strong> any case, Fv <strong>and</strong> Gw have a common<br />

solution = (0, 0) if <strong>and</strong> only if R(Fv, Gw) = 0.<br />

20.16 Bezout’s Theorem<br />

Cont<strong>in</strong>ue with the notation of the previous section. Def<strong>in</strong>e the weight of vi to<br />

be i (vi is homogeneous of degree i <strong>in</strong> the t’s), <strong>and</strong> def<strong>in</strong>e the weight of wj to be<br />

j (wj is homogeneous of degree j <strong>in</strong> the u’s). A nonzero constant has weight<br />

0, <strong>and</strong> 0 has every weight. The weight of a monomial cvi1 . . . viswj1 . . . wjt is<br />

by def<strong>in</strong>ition i1 + · · · is + j1 + · · · jt. the weight of a sum of (unlike) terms<br />

different from zero is the maximum of the weights of the terms. Such a sum<br />

is isobaric of weight m if all the terms have the same weight m.<br />

Theorem 20.16.1. R(v, w) is isobaric of weight mn.


20.16. BEZOUT’S THEOREM 853<br />

Proof. This follows from R(v, w) = vm 0 wn n m 0 i=1 j=1 (ti−uj), s<strong>in</strong>ce the weight<br />

of a monomial <strong>in</strong> v <strong>and</strong> w is the degree of that monomial as a polynomial<br />

<strong>in</strong> the t’s <strong>and</strong> u’s <strong>and</strong> s<strong>in</strong>ce R(v, w) is homogeneous of degree mn <strong>in</strong> the t’s<br />

<strong>and</strong> u’s. Us<strong>in</strong>g a modified version of the proof of the theorem on Symmetric<br />

functions, the isobaricity of R follows. A more direct proof is as follows.<br />

Let vij be the element <strong>in</strong> the ith row <strong>and</strong> jth column of R(v, w), i =<br />

1, . . . , m; vij has weight j − i. Let wst be the element <strong>in</strong> the (m + s) th row<br />

<strong>and</strong> tth column of R(v, w), s = 1, . . . , n; wst has weight t − s. Any term <strong>in</strong><br />

the expansion of the determ<strong>in</strong>ant will have weight m i=1 (j − i) + n s=1 (t − s),<br />

where j, t together cover the set 1, 2, . . . , m + n. Hence the term has weight<br />

= mn.<br />

(m+n)(m+n+1)<br />

2<br />

+ −(m+1)m<br />

2<br />

+ −n(n+1)<br />

2<br />

Theorem 20.16.2. (Bezout’s Theorem) If F = 0 <strong>and</strong> G = 0 are two<br />

projective curves over an algebraically closed field K that <strong>in</strong>tersect <strong>in</strong> only a<br />

f<strong>in</strong>ite number of po<strong>in</strong>ts, then they <strong>in</strong>tersect <strong>in</strong> at least one po<strong>in</strong>t (<strong>in</strong> exactly<br />

mn po<strong>in</strong>ts, count<strong>in</strong>g multiplicities).<br />

Proof. Our proof will be complete only <strong>in</strong> establish<strong>in</strong>g the existence of at<br />

least one po<strong>in</strong>t of <strong>in</strong>tersection.<br />

If both F = 0 <strong>and</strong> G = 0 pass through (0, 0, 1), or if some pair of <strong>in</strong>tersections<br />

of F = 0 <strong>and</strong> G = 0 are coll<strong>in</strong>ear with (0, 0, 1), certa<strong>in</strong>ly F = 0 <strong>and</strong><br />

G = 0 have a po<strong>in</strong>t of <strong>in</strong>tersection. Hence we suppose that neither of these<br />

conditions holds. Then write<br />

F (X, Y, Z) = v0Z n + v1(X, Y )Z n−1 + · · ·+ vn−1(X, Y )Z + vn(X, Y ). (20.27)<br />

G(X, Y, Z) = w0Z m + w1(X, Y )Z m−1 + · · · + wm−1(X, Y )Z + wm(X, Y ).<br />

(20.28)<br />

The resultant of F <strong>and</strong> G with respect to Z is<br />

RZ(F, G) = R(v, w) = P (v0, . . . , vn, w0, . . . , wm).<br />

As at least one of the curves does not pass through (0, 0, 1), v0 = 0 or<br />

w0 = 0. P is isobaric of weight mn, <strong>and</strong> vi is homogeneous of degree i <strong>in</strong> X<br />

<strong>and</strong> Y , wj is homogeneous of degree j <strong>in</strong> X <strong>and</strong> Y . Hence P is homogeneous<br />

of degree mn <strong>in</strong> X <strong>and</strong> Y . We claim that P = H(X, Y ) is not zero as a<br />

polynomial <strong>in</strong> X <strong>and</strong> Y . For if this were the case, then R(v, w) = 0 =


854 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

RZ(F, G) would imply the existence of a Z0 ∈ K for each choice of X0,<br />

Y0 ∈ K such that F (X0, Y0, Z0) = 0 = G(X0, Y0, Z0). This would imply that<br />

F (X, Y, Z) = 0 <strong>and</strong> G(X, Y, Z) = 0 had <strong>in</strong>f<strong>in</strong>itely many po<strong>in</strong>ts <strong>in</strong> common,<br />

contradict<strong>in</strong>g the hypothesis. So H(X, Y ) = 0. But each solution X0 : X0<br />

to H(X0, X0) = 0 gives rise to an <strong>in</strong>tersection (X0, Y0, Z0) of F = 0 <strong>and</strong><br />

G = 0, <strong>and</strong> to only one such solution, s<strong>in</strong>ce two solutions (X0, Y0, Z0) would<br />

be coll<strong>in</strong>ear with (0, 0, 1). S<strong>in</strong>ce 0 = H(X, Y ) = Y mn h(X/Y ) has exactly mn<br />

solutions, count<strong>in</strong>g multiplicities, the theorem follows.<br />

The gap <strong>in</strong> the proof of this theorem concerns the number of <strong>in</strong>tersections<br />

when the curves F = 0 <strong>and</strong> G = 0 do not satisfy the assumptions made at<br />

the beg<strong>in</strong>n<strong>in</strong>g of the proof. The “usual” way around this is to show that<br />

there is a projective transformation simultaneously transform<strong>in</strong>g F = 0 <strong>and</strong><br />

G = 0 to curves <strong>in</strong> an acceptable position, <strong>and</strong> not<strong>in</strong>g that <strong>in</strong>tersections are<br />

preserved by projective transformations.<br />

Theorem 20.16.3. In the notation of the beg<strong>in</strong>n<strong>in</strong>g of this section, R(v, w)<br />

is absolutely irreducible over Z[v0, . . . , vn, w0, . . . , wm], i.e., irreducible <strong>in</strong><br />

F [v0, . . . , wm] for F any field.<br />

Proof. If R were factored <strong>in</strong>to two factors A <strong>and</strong> B (polynomials <strong>in</strong> v0, . . . , wm),<br />

then A <strong>and</strong> B could be written as symmetric functions of the roots t1, . . . , tn<br />

<strong>and</strong> u1, . . . , um. S<strong>in</strong>ce R is divisible by t1 − u1, A or B, say A, has to be<br />

divisible by t1 − u1 as well. But be<strong>in</strong>g symmetric <strong>in</strong> the ti <strong>and</strong> <strong>in</strong> the uj, A<br />

must be divisible by all other ti − uj, <strong>and</strong> therefore by their product<br />

S<strong>in</strong>ce R = v m 0 wn 0<br />

other factor B, namely B = v p<br />

<br />

(ti − uj).<br />

i<br />

j<br />

<br />

i j (ti − uj), there rema<strong>in</strong>s only one possibility for the<br />

0w q<br />

0. But R as a polynomial <strong>in</strong> the v’s <strong>and</strong><br />

w’s is divisible neither by v0 nor by w0. Hence B = 1. So R is absolutely<br />

irreducible.<br />

Now let R = Fq with q = p e , let n = q − 1, <strong>and</strong> replace x1, . . . , xn with<br />

the nonzero elements of Fq. Apply the above to the polynomial equation<br />

g(x) = x q−1 − 1 = <br />

(x − a) = x q−1 − σ1x q−2 + · · ·<br />

a∈F ∗ q


20.17. THE HERMITE-DICKSON CRITERION 855<br />

to f<strong>in</strong>d for the elementary symmetric functions σ1, σ2, . . . , σq−1 <strong>in</strong> the nonzero<br />

elements of Fq that<br />

σ1 = σ2 = · · · = σq−2 = 0; σq−1 = −1, (20.29)<br />

the first <strong>and</strong> last of which we saw earlier. If we now put the results of Eq. 20.29<br />

<strong>in</strong>to Eq. 20.21 (Newton’s formulas), we obta<strong>in</strong> the follow<strong>in</strong>g lemma.<br />

Lemma 20.16.4. We have<br />

<br />

a t = <br />

a t = 0; for 1 ≤ t ≤ q − 2,<br />

a∈Fq<br />

a∈F ∗ q<br />

<strong>and</strong> <br />

a q−1 = <br />

a q−1 = −1.<br />

a∈Fq<br />

a∈F ∗ q<br />

20.17 The Hermite-Dickson Criterion<br />

The next result is a famous set of necessary <strong>and</strong> sufficient conditions for a<br />

polynomial over Fq to be a permutation polynomial.<br />

Theorem 20.17.1. (The Hermite-Dickson Criterion) If f(a) = 0 has a<br />

unique solution a ∈ Fq, then f(t) is a permutation polynomial of Fq if <strong>and</strong><br />

only if [f(t)] r , reduced modulo t q − t, has zero coefficient on t q−1 , for all r<br />

with 1 ≤ r ≤ q − 2 <strong>and</strong> gcd(r, p) = 1.<br />

Proof. Without loss of generality we first assume that f(t) has degree at<br />

most q − 1. Then for any r with 1 ≤ r ≤ q − 2, after reduc<strong>in</strong>g modulo t q − t<br />

suppose that<br />

f(t) r q−1 <br />

≡<br />

i=0<br />

a (r)<br />

i ti .<br />

Replace t <strong>in</strong> the above equation with each element of Fq <strong>and</strong> add the<br />

result<strong>in</strong>g q equalities <strong>and</strong> apply Lemma 20.16.4 to obta<strong>in</strong><br />

<br />

f(b) r = q−1 <br />

b∈Fq<br />

b∈Fq<br />

i=0<br />

<br />

a (r)<br />

i bi q−1<br />

=<br />

i=0<br />

a (r)<br />

i<br />

⎧<br />

⎨<br />

b<br />

⎩<br />

i<br />

⎫<br />

⎬<br />

⎭<br />

b∈Fq<br />

= −a(r) q−1. (20.30)


856 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

If f(t) is really a permutation polynomial, then we have<br />

<br />

f(b) r = <br />

b r = 0 for 1 ≤ r ≤ q − 2.<br />

b∈Fq<br />

b∈Fq<br />

Hence a necessary condition for f(t) to be a permutation polynomial is<br />

that a (r)<br />

q−1 = 0 for 1 ≤ r ≤ q − 2, which says that modulo tq − t, f(t) r has<br />

degree at most q−2 for such r. Clearly f(a) = 0 must have a unique solution.<br />

Conversely, suppose that f(t) satisfies the Hermite-Dickson Criterion.<br />

Note that this means that we are assum<strong>in</strong>g that mod tq − t the polynomial<br />

f(t) r has degree at most q − 2 only for those r that are relatively prime to<br />

p. Put<br />

g(T ) = <br />

q<br />

(T − f(b)) = diT q−i .<br />

b∈Fq<br />

Note that di is the ith elementary symmetric function <strong>in</strong> the f(b), <strong>and</strong><br />

<strong>in</strong> particular d0 = 1. Also, s<strong>in</strong>ce there is a (unique!) value of b for which<br />

f(b) = 0, the constant term of g(t) must be zero, i.e., dq = 0. Clearly<br />

g(f(b)) = 0 for each b ∈ Fq. For 1 ≤ r put sr = <br />

b∈Fq f(b)r . For r ≤ q − 2<br />

we see that sr = −a (r)<br />

q−1. By hypothesis,<br />

sr = −a (r)<br />

q−1 = 0 for 1 ≤ r ≤ q − 2 <strong>and</strong> (r, p) = 1. (20.31)<br />

It is also clear that<br />

i=0<br />

sq−1 = <br />

(f(b)) q−1 = q − 1 ≡ −1,<br />

b∈Fq<br />

s<strong>in</strong>ce by hypothesis all but one of the f(b) are nonzero <strong>and</strong> raised to the<br />

power q − 1 must equal 1.<br />

If (r, p) = 1 <strong>and</strong> rp j ≤ q − 2, then<br />

which implies that<br />

<br />

(f(b)) rpj<br />

⎛<br />

= ⎝ <br />

f(b) r<br />

⎞<br />

⎠<br />

b∈Fq<br />

b∈Fq<br />

p j<br />

, (20.32)<br />

sr = <br />

f(b) r = 0 for 1 ≤ r ≤ q − 2. (20.33)<br />

b∈Fq


20.18. GREATEST COMMON DIVISORS OF A M ± 1 AND A N ± 1 857<br />

Use Newton’s formulas, say <strong>in</strong> the form of Eq. 20.23, with n = q <strong>and</strong> with<br />

di replac<strong>in</strong>g σi, to obta<strong>in</strong><br />

sm = sm−1d1 − sm−2d2 + · · · + (−1) q+1 sm−qdq, for m ≥ q, s0 = m, (20.34)<br />

<strong>and</strong> for 1 ≤ m < q we have<br />

sm = sm−1d1 − sm−2d2 + · · · + (−1) m+1 s0dm. (20.35)<br />

But we know that sm = 0 for 1 ≤ m ≤ q − 2 <strong>and</strong> sq−1 = −1. So for<br />

1 ≤ m ≤ q − 2, Eq. 20.35 becomes<br />

imply<strong>in</strong>g dm = 0 for 1 ≤ m ≤ q − 2.<br />

Put m = q − 1 < q <strong>in</strong> Eq. 20.35 to obta<strong>in</strong><br />

0 = sm = (−1) m+1 s0dm, (20.36)<br />

−1 = sq−1 = sq−2d1 − sq−3d2 + · · · + (−1) q s0dq−1<br />

= (−1) q (q − 1)dq−1 = dq−1. (20.37)<br />

.<br />

At this po<strong>in</strong>t we know that d0 = 1, dq−1 = −1, dq = 0 <strong>and</strong> di = 0 for<br />

1 ≤ i ≤ q − 2. Hence<br />

g(T ) = <br />

(T − f(b)) = T q − T.<br />

b∈Fq<br />

from which it follows that b ↦→ f(b) must be a permutation of the elements<br />

of Fq.<br />

20.18 Greatest Common Divisors of a m ± 1<br />

<strong>and</strong> a n ± 1<br />

20.18.1 Basic Identities<br />

Let m <strong>and</strong> n be arbitrary positive <strong>in</strong>tegers. By the Division Algorithm we<br />

may write<br />

m = qn + r, 0 ≤ r < n, for unique <strong>in</strong>tegers q <strong>and</strong> r.


858 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

Also, let d = gcd(m, n), <strong>and</strong> write m = dm ′ , n = dn ′ . We know that d is the<br />

smallest positive <strong>in</strong>teger that can be written <strong>in</strong> the form d = um + vn for<br />

arbitrary u, v ∈ Z. Suppose that d = u0m + v0n. Then for each <strong>in</strong>teger k we<br />

have<br />

d = u0m + v0n = (u0 + kn ′ )m + (v0 − km ′ )n.<br />

By choos<strong>in</strong>g k positive <strong>and</strong> large enough, we may assure that v0 − km ′ is less<br />

than zero. Hence we may f<strong>in</strong>d <strong>in</strong>tegers u <strong>and</strong> v for which<br />

d = um − vn, u, v > 0, <strong>and</strong> um > vn.<br />

We start with the follow<strong>in</strong>g four basic identities, each of which can be<br />

readily verified. (The symbol x is an <strong>in</strong>determ<strong>in</strong>ate.)<br />

x m ± 1 = (x n − 1)(x m−n + x m−2n + · · · + x m−qn ) + x r ± 1. (20.38)<br />

x m ±1 = (x n +1)(x m−n −x m−2n +· · ·+(−1) q−1 x m−qn )+(−1) q x r ±1. (20.39)<br />

First choose the m<strong>in</strong>us sign <strong>in</strong> Eq. 20.38 to obta<strong>in</strong><br />

x m − 1 = (x n − 1)(x m−n + x m−2n + · · · + x m−qn ) + x r − 1. (20.40)<br />

It is clear that if n|m, i.e., if r = 0, then (x n − 1)|(x m − 1) <strong>in</strong> Z[x].<br />

Conversely, suppose that (x n −1)|(x m −1). Then (x n −1)|(x r −1). But s<strong>in</strong>ce<br />

0 ≤ r < n, this is possible if <strong>and</strong> only if r = 0.<br />

Lemma 20.18.2.<br />

(x n − 1)|(x m − 1) <strong>in</strong> Z[x] iff n|m. (20.41)<br />

If x is replaced by any <strong>in</strong>teger a, 1 < a, we obta<strong>in</strong><br />

a m − 1 = (a n − 1)(a m−n + a m−2n + · · · + a m−qn ) + a r − 1, 0 ≤ a r − 1 < a n − 1.<br />

Here it is clear that (a n − 1)|(a m − 1) if <strong>and</strong> only if (a n − 1)|(a r − 1) which<br />

holds if <strong>and</strong> only if a r − 1 = 0 if <strong>and</strong> only if r = 0 if <strong>and</strong> only if n divides m.<br />

So we have lemma 20.18.2 with x replaced by a.


20.18. GREATEST COMMON DIVISORS OF A M ± 1 AND A N ± 1 859<br />

Lemma 20.18.3. If 1 < a ∈ Z, then (a n − 1)|(a m − 1) iff n|m.<br />

To see what happens when a < 0 we must work a bit harder. It will be<br />

left to the reader to <strong>in</strong>terpret the later results <strong>in</strong> this case. At present it is<br />

clear that the follow<strong>in</strong>g is true.<br />

Lemma 20.18.4. We have half a theorem:<br />

(i) (x d − 1)|gcd(x m − 1, x n − 1),<br />

<strong>and</strong> if 1 < a ∈ Z,<br />

(ii) (a d − 1)|gcd(a m − 1, a n − 1).<br />

Now consider<br />

(x n −1)(−x um−vn −x um−(v−1)n −· · ·−x um−n )+(x m −1)(x m(u−1) +· · · x m +1)<br />

= −x um−(v−1)n − x um−(v−2)n − · · · − x um−n − x um<br />

+x um−vn + x um−(v−1)n + · · · + x um−n + (x um − 1)<br />

= x um−vn − 1 = x d − 1.<br />

So x d − 1 = (x n − 1)A(x) + (x m − 1)B(x), for some A(x), B(x) ∈ Z[x].<br />

Hence gcd(x n − 1, x m − 1)|(x d − 1). We have completed a proof of the<br />

follow<strong>in</strong>g theorem.<br />

Theorem 20.18.5. Our first ma<strong>in</strong> result says:<br />

(i) gcd(x m − 1, x n − 1) = x gcd(m,n) − 1.<br />

Similarly, replac<strong>in</strong>g x by a, 1 < a ∈ Z, we have<br />

(ii) gcd(a m − 1, a n − 1) = a gcd(m,n) − 1.<br />

20.18.6 gcd(a m + 1, a n + 1), a > 1<br />

Now choose the “+” <strong>in</strong> Eq. 20.39<br />

x m + 1 = (x n + 1)(x m−n − · · · + (−1) q−1 x m−qn ) + (20.42)<br />

+(−1) q (x r + (−1) q ) (20.43)<br />

= (x n + 1)A(x) + (−1) q (x r + (−1) q ), for some A(x) ∈ Z[x].<br />

From this equation it is easy to deduce the follow<strong>in</strong>g<br />

(Use |(−1) q (a r + (−1) q )| < a n + 1):


860 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

Lemma 20.18.7. First consider the <strong>in</strong>determ<strong>in</strong>ate x:<br />

(i) (x n + 1)|(x m + 1) if <strong>and</strong> only if n|m <strong>and</strong> m<br />

n<br />

For 1 < a ∈ Z,<br />

(ii) (a n + 1)|(a m + 1) if <strong>and</strong> only if n|m <strong>and</strong> m<br />

n<br />

= q is odd.<br />

= q is odd.<br />

On the one h<strong>and</strong>, (x2m − 1, xn − 1) = x (2m, n) − 1 = xd(2m′ , n ′ )<br />

− 1 =<br />

d ′ n<br />

x − 1, if n = is odd,<br />

d<br />

x2d − 1, if n ′ = n<br />

is even.<br />

d<br />

On the other h<strong>and</strong>,<br />

(x 2m − 1, x n − 1) = (x d m x − 1<br />

− 1)<br />

xd − 1 · (xm + 1), xn − 1<br />

xd <br />

− 1<br />

Hence it follows that<br />

Lemma 20.18.8.<br />

gcd<br />

= (x d <br />

− 1) x m + 1, xn − 1<br />

xd <br />

.<br />

− 1<br />

<br />

x m + 1, xn − 1<br />

xd <br />

1,<br />

=<br />

− 1 xd + 1,<br />

n<br />

d odd,<br />

n<br />

d even.<br />

The same results holds if x is replaced by an <strong>in</strong>teger a > 1.<br />

From now on we consider only the case where x is replaced by<br />

an <strong>in</strong>teger a > 1.<br />

S<strong>in</strong>ce (am +1, ad−1) = (am−1+2, ad−1) = (2, ad <br />

2, a odd,<br />

−1) =<br />

1, a even,<br />

divid<strong>in</strong>g an − 1 by ad − 1 removes at most a factor 2 of gcd(am + 1, an − 1).<br />

Suppose that n<br />

d<br />

is odd. When a is even,<br />

a n + 1<br />

a d + 1 = (ad ) n<br />

d −1 − (a d ) n<br />

d −2 + · · · − a d + 1<br />

is always odd. When a is odd, an +1<br />

a d +1<br />

≡ n<br />

d<br />

This allows us to prove the follow<strong>in</strong>g:<br />

(mod 2).


20.18. GREATEST COMMON DIVISORS OF A M ± 1 AND A N ± 1 861<br />

Lemma 20.18.9. Let n<br />

d be odd. Then gcd(am +1, an <br />

1, if a is even,<br />

−1) =<br />

2, if a is odd.<br />

Proof. S<strong>in</strong>ce n<br />

d<br />

<br />

is odd, gcd<br />

a m + 1, an −1<br />

a d −1<br />

<br />

= 1, <strong>and</strong> divid<strong>in</strong>g by a d − 1 re-<br />

moves at most a factor of 2. Clearly if a is even, then a m + 1 <strong>and</strong> a n − 1 are<br />

both odd, so gcd(a m + 1, a n − 1) = 1. And when a is odd, a m + 1 <strong>and</strong> a n − 1<br />

clearly do have a factor of 2, f<strong>in</strong>ish<strong>in</strong>g the proof.<br />

Now suppose that n<br />

d<br />

m<br />

is even, so necessarily d is odd, so am +1<br />

ad is odd. S<strong>in</strong>ce<br />

+1<br />

(am + 1, ad − 1) = (am − 1 + 2, ad − 1) = (2, ad − 1), by Lemma 20.18.3<br />

(a m + 1, a n − 1) = (a d m a + 1<br />

+ 1)<br />

ad + 1 , an − 1<br />

a2d − 1 · (ad <br />

− 1)<br />

= (a d m a + 1<br />

+ 1)<br />

ad + 1 , an − 1<br />

a2d <br />

= (a<br />

− 1<br />

d + 1).<br />

This holds for a odd or even. We collect these results <strong>in</strong> the follow<strong>in</strong>g general<br />

theorem.<br />

Theorem 20.18.10. Let 1 < a, m, n ∈ Z with d = gcd(m, n). Then<br />

(am + 1, an ⎧<br />

⎨ 1, if<br />

− 1) =<br />

⎩<br />

n is odd <strong>and</strong> a is even,<br />

d<br />

2, if n<br />

is odd <strong>and</strong> a is odd,<br />

d<br />

ad + 1, if n is even.<br />

d<br />

Corollary 20.18.11.<br />

At most one of n<br />

d<br />

may assume that n<br />

d<br />

(a m + 1)|(a n − 1) if <strong>and</strong> only if m|n <strong>and</strong> n<br />

m<br />

is even.<br />

m <strong>and</strong> can be even, so without loss of generality we<br />

d<br />

is odd.<br />

Start with<br />

a 2d −1 = (a 2m −1, a 2n −1) = (a d m a − 1<br />

−1)<br />

ad − 1 · (am + 1), an − 1<br />

ad − 1 · (an <br />

+ 1)<br />

= (a d m a − 1<br />

−1)<br />

ad − 1 · (am + 1), (a n <br />

+ 1) by Theorem 20.18.5(ii) <strong>and</strong> Lemma 20.18.2.


862 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

Case 1. m<br />

d odd. Divide the preced<strong>in</strong>g equation by ad − 1, then multiply<br />

<strong>and</strong> divide by ad + 1 to get:<br />

a d + 1 = (a d m a − 1<br />

+ 1)<br />

ad − 1 · am + 1<br />

ad + 1 , an + 1<br />

ad <br />

.<br />

+ 1<br />

This implies that<br />

which implies that<br />

1 =<br />

(We need m<br />

d odd to have am +1<br />

ad +1<br />

m a + 1<br />

ad + 1 , an + 1<br />

ad <br />

,<br />

+ 1<br />

a d + 1 = (a m + 1, a n + 1).<br />

∈ Z.)<br />

Case 2. m<br />

d even. Divide the equation preced<strong>in</strong>g Case 1 by ad − 1. Then<br />

2d|m, so (a2d−1)|(am−1), <strong>and</strong> n<br />

d is odd, so by Lemma 20.18.2 (ad +1)|(an +1).<br />

So we have<br />

a d m a − 1<br />

+ 1 =<br />

ad − 1 · (am + 1), a n <br />

+ 1 .<br />

This implies that<br />

which implies that<br />

1 =<br />

m a − 1<br />

a2d − 1 · (am + 1), an + 1<br />

ad <br />

,<br />

+ 1<br />

1 =<br />

<br />

a m + 1, an + 1<br />

ad <br />

.<br />

+ 1<br />

In Eq. 20.42 put x = a, n = d, so r = 0, <strong>and</strong> q = m is even by assumption,<br />

d<br />

to get:<br />

Then<br />

a m + 1 = (a d + 1)A + (−1) q (a 0 + (−1) q ) = (a d + 1)A + 2.<br />

(a m + 1, a d + 1) = ((a d + 1)A + 2, a d + 1) = (2, a d + 1).<br />

This means that divid<strong>in</strong>g a d + 1 <strong>in</strong>to a n + 1 removes at most a factor of 2 <strong>in</strong><br />

gcd(a m + 1, a n + 1), from which we see that (a m + 1, a n + 1) divides 2, i.e., it<br />

equals 1 or 2 accord<strong>in</strong>g as a is even or odd. Putt<strong>in</strong>g Cases 1. <strong>and</strong> 2. together<br />

we have proved the follow<strong>in</strong>g theorem.


20.18. GREATEST COMMON DIVISORS OF A M ± 1 AND A N ± 1 863<br />

Theorem 20.18.12. At most one of m n , d d<br />

(a m + 1, a n + 1) =<br />

is even. Then<br />

⎧<br />

⎨ a<br />

⎩<br />

d + 1, if both m n<br />

<strong>and</strong> are odd;<br />

d d<br />

1, if one of m n , is even <strong>and</strong> a is even;<br />

d d<br />

2, if one of m n , is even <strong>and</strong> a is odd.<br />

d d<br />

Theorems 20.18.5, 20.18.10 <strong>and</strong> 20.18.12 tell the whole story.<br />

20.18.13 An Application to F<strong>in</strong>ite Fields of Characteristic<br />

2<br />

Let q = 2 e , F = GF (q) ⊂ E = GF (q 2 ). Let λ be a primitive root for E,<br />

β = λ k(q−1) , 1 ≤ k ≤ q. So 1 < |β| <strong>and</strong> |β| divides q +1. Write ¯ β = β q = β −1 .<br />

Put δ = β + ¯ β. So δ ∈ F , but s<strong>in</strong>ce gcd(q − 1, q + 1) = 1, it follows that<br />

β ∈ F .<br />

Problem: How big is the field GF (2)(δ)?<br />

1. Put r = gcd(k, q + 1), so 1 ≤ r < q + 1. Then |β| = q+1<br />

r .<br />

2. GF (2)(β) is the smallest field GF (2 f ) for which q+1<br />

r divides<br />

2 f − 1.<br />

3. Recall from above: If d = gcd(e, f), then<br />

(2 e + 1, 2 f ⎧<br />

⎨<br />

− 1) =<br />

⎩<br />

1, if f<br />

d<br />

2 d + 1, if f<br />

d<br />

is odd<br />

is even.<br />

4. S<strong>in</strong>ce 1 < q+1<br />

r <strong>and</strong> this must divide 2f − 1, it must be that f<br />

d<br />

so e<br />

d is odd, imply<strong>in</strong>g that 2d + 1 divides 2e + 1.<br />

5. 2e +1<br />

r |(2 f − 1) iff 2e +1<br />

r |(2 e + 1, 2 f − 1) iff 2e +1<br />

r |(2 d + 1) with f<br />

d<br />

is equivalent to 2e +1<br />

2 d +1<br />

This implies<br />

|r with e<br />

d<br />

odd <strong>and</strong> f<br />

d even.<br />

6. f = 2d where d is the smallest <strong>in</strong>teger for which<br />

(i) d|e,<br />

(ii) e<br />

d<br />

is odd,<br />

is even,<br />

even, which


864 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

(iii) 2e +1<br />

2 d +1 |r.<br />

So we now know how big is the field GF (2)(β). S<strong>in</strong>ce β ∈ GF (2e ),<br />

which conta<strong>in</strong>s δ, clearly β ∈ GF (2)(δ). The m<strong>in</strong>imal polynomial for β over<br />

GF (2)(δ) is x2 + δx + 1 = (x + β)(x + ¯ β), so GF (2)(δ) is the subfield of <strong>in</strong>dex<br />

2 <strong>in</strong> GF (2)(β). This solves our problem:<br />

Solution: The field GF (2)(δ) is the field GF (2d ) where d is the smallest<br />

divisor of e for which e<br />

d is odd <strong>and</strong> 2e +1<br />

2d |r. In particular, if k <strong>and</strong> q + 1 are<br />

+1<br />

relatively prime, then GF (2)(δ) = GF (q).<br />

Example: Let e = 6, so q = 64 <strong>and</strong> q + 1 = 65 = 5 · 13, q − 1 = 63 = 9 · 7,<br />

q 2 − 1 = 4095.<br />

e<br />

(i) k = 15. In this case r = 5. odd implies that d = 2 or d = 6. If<br />

d<br />

d = 2, then 26 +1<br />

22 = 13 does not divide r = 5, so it must be that d = 6. Hence<br />

+1<br />

GF (2)(δ) = GF (q).<br />

(ii) k = 39. In this case r = (39, 65) = 13. Then with d = 2 we have<br />

= 13 does divide r = 13. Hence GF (2)(δ) = GF (4).<br />

2 d + 1 = 5 <strong>and</strong> 65<br />

5<br />

20.18.14 Application to F<strong>in</strong>ite Fields of Odd Characteristic<br />

Let p be an odd prime, q = p e , F = GF (q) ⊆ E = GF (q 2 ). Let λ be a<br />

primitive root for E, β = λ k(q−1) , where k is determ<strong>in</strong>ed modulo q + 1. Put<br />

δ = β + ¯ β = β + β q = β + β −1 , s<strong>in</strong>ce β q+1 = 1. Put r = (k, q + 1), so<br />

|γ| = q+1<br />

r .<br />

1. β ∈ F iff |β| divides q − 1 iff q+1<br />

divides q − 1 iff (q + 1)|r(q − 1) iff<br />

r<br />

q+1<br />

2 |r q−1 q+1<br />

iff 2 2 |r, s<strong>in</strong>ce q+1 q−1<br />

q+1<br />

, = 1. So either r = <strong>and</strong> β = −1, or<br />

2 2<br />

2<br />

r = q + 1 <strong>and</strong> β = 1. In either case F = F (δ) = F (β).<br />

Now assume 1 ≤ k ≤ q with k = q+1<br />

2 .<br />

2. S<strong>in</strong>ce δ = β + ¯ β is unchanged if k is replaced with q + 1 − k, if β ∈ F<br />

we may assume WLOG that 1 ≤ r < q+1<br />

q+1<br />

, i.e., 2 < ≤ q + 1. S<strong>in</strong>ce δ ∈ F<br />

2 r<br />

but β ∈ F , x2 = δx + 1 = (ξ − β)(x − ¯ β) is the m<strong>in</strong>imal polynomial for β<br />

over GF (p)(δ).<br />

3. β ∈ GF (p f ) iff q+1<br />

r |(pf − 1). Also,


20.19. LINEAR MAPS 865<br />

(p e − 1, p f ⎧<br />

⎨<br />

− 1) =<br />

⎩<br />

2, if f<br />

d<br />

p d + 1, if f<br />

d<br />

is odd;<br />

is even.<br />

We want q+1<br />

r |(pf − 1) with q+1<br />

f<br />

e<br />

> 2, so must be even <strong>and</strong> must then<br />

r d d<br />

be odd. So pe +1<br />

|(p r f − 1) iff (pe + 1)|r(pf − 1) iff pe +1<br />

pd +1 |r<br />

<br />

pf −1<br />

pd <br />

iff +1<br />

pe +1<br />

pd |r. All<br />

+1<br />

this proves the follow<strong>in</strong>g theorem:<br />

Theorem 20.18.15. GF (p)(δ) = GF (pd ) ⊆ GF (p2d ) = GF (p)(β) iff d is<br />

the smallest positive divisor of e such that e<br />

d is odd (so pd + 1 divides pe + 1),<br />

<strong>and</strong><br />

e p + 1<br />

pd <br />

+ 1<br />

divides r = (k, q + 1).<br />

Note: If (k, q + 1) = 1, then GF (p)(δ) = GF (q).<br />

20.19 L<strong>in</strong>ear Maps<br />

Until further notice F = GF (q n ) <strong>and</strong> K = GF (q), where q = p e is any<br />

power of a prime <strong>and</strong> n is any positive <strong>in</strong>teger. We may view F as a vector<br />

space over K with dimension n. Then V = HomK(F, F ), the vector space<br />

of all K-l<strong>in</strong>ear maps from F to F , is a vector space over K with dimension<br />

n2 , so that |HomK(F, F )| = qn2. On the other h<strong>and</strong>, we can construct<br />

elements of V = HomK(F, F ) <strong>in</strong> the follow<strong>in</strong>g way. Let σ : x ↦→ xq , for<br />

x ∈ F . So σ generates the Galois group Gal(F/K), i.e., σi : x ↦→ xqi, i = 0, 1, 2, . . . , n − 1, gives the dist<strong>in</strong>ct automorphisms of F that are the<br />

identity on K. For each choice of ai ∈ F , 0 ≤ i ≤ n − 1, consider the map f :<br />

x ↦→ f(x) = n−1 i=0 aiσi (x) = n−1 qi<br />

i=0 aix . Clearly f ∈ HomK(F, F ). Because<br />

each such polynomial f(x) has degree at most q n−1 , no two of them can<br />

represent the same function. Hence there are (q n ) n such functions, show<strong>in</strong>g<br />

that each K-l<strong>in</strong>ear function from F to F must be of this form.<br />

This proves the follow<strong>in</strong>g theorem:<br />

Theorem 20.19.1. Each f ∈ HomK(F, F ) is given by a l<strong>in</strong>earized q-polynomial,<br />

i.e.,a polynomial of the form


866 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

n−1<br />

f(x) =<br />

i=0<br />

aix qi<br />

, ai ∈ F. (20.44)<br />

Consequently, if f(x) ∈ F [x] has degree at most q n − 1 <strong>and</strong> has the property<br />

that f(a + b) = f(a) + f(b) for all a, b ∈ F , <strong>and</strong> f(ca) = cf(a) for all c ∈ K<br />

<strong>and</strong> all a ∈ F , then f(x) is a l<strong>in</strong>earized q-polynomial.<br />

For ai ∈ F , 0 ≤ i ≤ n − 1, write<br />

¯α = (a0, a1, . . . , an−1), <strong>and</strong> [¯α] =<br />

For x ∈ F , put<br />

[x] = (x, x q , x q2<br />

, . . . , x qn−1<br />

) T .<br />

<br />

a qi<br />

<br />

[j−i] . (20.45)<br />

(0≤i,j≤n−1)<br />

Then ¯α uniquely determ<strong>in</strong>es an element α of HomK(F, F ) by<br />

It is easy to check that for each j,<br />

It follows that<br />

α : x ↦→ x α n−1<br />

= aix qi<br />

= ¯α[x].<br />

(x α ) qj<br />

n−1<br />

=<br />

i=0<br />

i=0<br />

a qj<br />

i xqi+j<br />

n−1<br />

=<br />

k=0<br />

a qj<br />

[k−j] xqk.<br />

[x α ] = [¯α[x]] = [¯α][x]. (20.46)<br />

Lemma 20.19.2. Let x1, x2, . . . , xr be elements of F . Then {x1, . . . , xr} is<br />

l<strong>in</strong>early <strong>in</strong>dependent over K if <strong>and</strong> only if {[x1], . . . , [xr]} is l<strong>in</strong>early <strong>in</strong>dependent<br />

over F .<br />

Proof.<br />

<br />

First suppose that {x1, . . . , xr} is l<strong>in</strong>early dependent over K, say<br />

r<br />

i=1 cixi = 0, with ci ∈ K <strong>and</strong> at least one of the ci not zero, 1 ≤ i ≤ r. Then<br />

0 = r i=1 cqj i xqj i = r qj<br />

i=1 cixi , from which it follows that (0, 0, . . . , 0)T <br />

=<br />

r<br />

i=1 ci[xi], so that {[x1], . . . , [xr]} is l<strong>in</strong>early dependent over K, <strong>and</strong> hence<br />

over F .


20.19. LINEAR MAPS 867<br />

Now suppose that {[x1], . . . , [x]r} is l<strong>in</strong>early dependent over F , say<br />

(0, 0, . . . , 0) T = r<br />

i=1 ci[xi] with ci ∈ F . The goal is to show that each ci ∈ K,<br />

so that the top row of the equation of the hypothesis says that 0 = r<br />

i=1 cixi<br />

with ci ∈ K. The proof proceeds by <strong>in</strong>duction on r. First note that for<br />

r = 1 the result is clear, <strong>and</strong> suppose that r = 2. Here we may assume that<br />

[x1] = c[x2] with c ∈ F . Then the first row says that x1 = cx2 <strong>and</strong> its image<br />

under x ↦→ x q says that x1 q = c q x2 q . The second row says that x1 q = cx2 q .<br />

Hence c = x1/x2 = x1 q /x2 q = c q , which forces c to be <strong>in</strong> K, i.e., {x1, x2} is<br />

l<strong>in</strong>early dependent over K. This shows that the desired result holds when<br />

r = 2.<br />

Suppose that for 1 ≤ r − 1 whenever {x1, . . . , xr−1} is l<strong>in</strong>early <strong>in</strong>dependent<br />

over K, then {[x1], [x2], . . . , [xr−1]} is l<strong>in</strong>early <strong>in</strong>dependent over F , <strong>and</strong><br />

suppose that {x1, . . . , xr−1, xr} is l<strong>in</strong>early <strong>in</strong>dependent over K. In particular<br />

we know that {[x1], [x2], . . . , [xr−1]} is l<strong>in</strong>early <strong>in</strong>dependent over F , so that if<br />

some vector <strong>in</strong> F n is an F -l<strong>in</strong>ear comb<strong>in</strong>ation of the [xi], 1 ≤ i ≤ r − 1, the<br />

coefficients <strong>in</strong> the l<strong>in</strong>ear comb<strong>in</strong>ation are unique.<br />

Suppose r<br />

i=1 ci[xi] = [0]. If cr = 0, then all the ci’s equal zero. Without<br />

loss of generality we may assume that cr = 1, <strong>and</strong> that [xr] = r−1<br />

i=1 di[xi],<br />

di ∈ F . Look<strong>in</strong>g at the second row of this equality we see xr q = r−1<br />

i=1 dixi q .<br />

But tak<strong>in</strong>g the qth power of the first row we f<strong>in</strong>d xr q = r−1<br />

i=1 di q xi q . S<strong>in</strong>ce the<br />

coefficients are unique when writ<strong>in</strong>g a vector <strong>in</strong> F n as an F -l<strong>in</strong>ear comb<strong>in</strong>ation<br />

of {[x1], . . . , [xr−1]}, it must be that di = di q , i.e., di ∈ K, for 1 ≤ i ≤ r − 1.<br />

Hence the first row says that x1, . . . , xr are l<strong>in</strong>early dependent over K.<br />

Theorem 20.19.3. Let ¯α = (a0, . . . , an−1) ∈ F n be given. The kernel<br />

<br />

U = x ∈ F = GF (q n ) : x α n−1<br />

= aix qi<br />

<br />

= 0; ai ∈ F<br />

is a subspace over K = GF (q). If U has dimension r (i.e., is a projective<br />

(r−1)-dimensional subspace of F ), then the F -rank of the matrix [¯α] = (a qi<br />

j−i ),<br />

where the <strong>in</strong>dices are taken modulo n, is equal to n − r.<br />

Proof. It is easy to see that the set U of zeros of n−1 i=0<br />

<strong>and</strong> any element of U is also a zero of<br />

n−1<br />

j=0<br />

a qi<br />

j xqi+j<br />

n−1<br />

=<br />

j=0<br />

i=0<br />

a qi<br />

[j−i] xqi,<br />

qi aix forms a subspace


868 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

where the <strong>in</strong>dices are taken modulo n. For all x ∈ U, the vector [x] <strong>in</strong><br />

V (n, q n ) is <strong>in</strong> the right null space of [¯α]. There are r elements of U l<strong>in</strong>early<br />

<strong>in</strong>dependent over K, <strong>and</strong> therefore by Lemma 20.19.2 there are r vectors<br />

of the form [x] l<strong>in</strong>early <strong>in</strong>dependent over F <strong>and</strong> <strong>in</strong> the right null space of<br />

[¯α]. Hence the nullspace of [¯α] is a subspace over F of dimension at least r,<br />

imply<strong>in</strong>g that the F -rank of [¯α] is at most n − r.<br />

As before, r is the K-dimension of the kernel of α, so there are n − r<br />

elements x1 α , . . . , xn−r α <strong>in</strong> the image of α that are K-<strong>in</strong>dependent, so that<br />

by Lemma 20.19.2<br />

[x1 α ] = [¯α][x1], . . . , [xn−r α ] = [¯α][xn−r]<br />

are F -l<strong>in</strong>early <strong>in</strong>dependent. This says the F -rank of B is at least n − r.<br />

Hence the F -rank of B must be exactly n − r.<br />

Corollary 20.19.4. The additive map α is one-to-one <strong>and</strong> onto if <strong>and</strong> only<br />

if [¯α] is nons<strong>in</strong>gular, <strong>and</strong> <strong>in</strong> general det[¯α] ∈ K.<br />

Proof. The first part of the Corollary is conta<strong>in</strong>ed <strong>in</strong> the preced<strong>in</strong>g theorem.<br />

Now put ∆ = det[¯α]. Then x ↦→ x q is an automorphism of F fix<strong>in</strong>g K<br />

po<strong>in</strong>twise, so ∆ q = det([¯α] q ) = det(B), where B is obta<strong>in</strong>ed from [¯α] by<br />

shift<strong>in</strong>g rows one place up <strong>and</strong> columns one place left. Hence detB = det[¯α],<br />

i.e., ∆ = ∆ q , imply<strong>in</strong>g that ∆ ∈ K. This completes the proof.<br />

Note:<br />

[α ◦ µ][x] = [x α◦µ ] = [(x α ) µ ] = [¯µ · [x α ]] = [¯µ · [¯α][x]] = [¯µ][¯α][x].<br />

This says ([α ◦ µ] − [¯µ][¯α])[x] = 0 for all x ∈ Fq. Let ¯ρ = (r0, . . . , re−1)<br />

be the ith row of [α ◦ µ] − [¯µ][¯α]. So e−1 pi<br />

i=0 rix = 0 for all x, i.e., the map<br />

ρ : x ↦→ ¯ρ[x] is trivial. This implies ¯ρ = ¯0. Hence it follows that<br />

[α ◦ µ] = [¯µ][¯α]. (20.47)<br />

At this po<strong>in</strong>t we give three lemmas of B. F. Sherman.<br />

Lemma 20.19.5. If f(x) <strong>and</strong> g(x) are l<strong>in</strong>earized q-polynomials <strong>and</strong> f(x)<br />

divides g(x), then there is a l<strong>in</strong>earized q-polynomial r(x) such that g(x) =<br />

r(f(x)).


20.19. LINEAR MAPS 869<br />

Proof. Use <strong>in</strong>duction on the degree of g(x). Suppose that<br />

<strong>and</strong><br />

Then<br />

f(x) = plx ql<br />

+ pl−1x ql−1<br />

+ . . . p1x q + p0x<br />

g(x) = gmx qm<br />

+ gm−1x qm−1<br />

+ · · · g1x q + g0x.<br />

t(x) = g(x) − (gm/(pl) qm−l<br />

)(f(x)) qm−l<br />

is a l<strong>in</strong>earized q-polynomial divisible by f(x), <strong>and</strong> of degree less than the<br />

degree of g(x) (or t(x) is the zero polynomial). Hence by the <strong>in</strong>duction<br />

hypothesis, we can assume that t(x) = w(f(x)), for some q-l<strong>in</strong>earized polynomial<br />

w(x), so that<br />

Put<br />

to give<br />

g(x) = (gm/(pl) qm−l<br />

)(f(x)) qm−l<br />

+ w(f(x)).<br />

r(x) = gm/(pl) qm−l<br />

)x qm−l<br />

+ w(x)<br />

g(x) = r(f(x)).<br />

If, on the other h<strong>and</strong>, t(x) = 0, then g(x) = (gm/(pl) qm−l)(f(x))<br />

qm−l<br />

r(f(x)) with r(x) = (gm/(pl) qm−l).<br />

Lemma 20.19.6. If a l<strong>in</strong>earized q-polynomial p(x) is fully reducible (<strong>in</strong>to<br />

l<strong>in</strong>ear factors) with no repeated roots, then there is a fully reducible l<strong>in</strong>earized<br />

q-polynomial s(x) such that<br />

x qn<br />

− x = s(p(x)) = p(s(x)).<br />

Clearly s(x) is also fully reducible with no repeated roots.<br />

Proof. If p(x) is fully reducible with no repeated roots, then it divides xqn −x,<br />

so Lemma 20.19.5 says there is a l<strong>in</strong>earized q-polynomial s(x) such that<br />

s(p(x)) = xqn − x. If p(x) − a = 0 (a = 0) has one root, then it has the same<br />

number of roots as p(x) = 0, so it is also fully reducible with no repeated<br />

roots. Let {a0 = 0, a1, . . . , ak−1} be the image of the K-l<strong>in</strong>ear map a ↦→ p(a).<br />

Then<br />

x qn<br />

− x = p(x)(p(x) − a1)(p(x) − a2) · · · (p(x) − ak−1).<br />

=


870 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

Put s(x) = x(x−a1)(x−a2) · · · (x−ak−1). So xqn −x = s(p(x)), <strong>and</strong> s(x)<br />

is fully reducible with no repeated roots <strong>and</strong> thus divides xqn −x. Hence there<br />

is a l<strong>in</strong>earized q-polynomial g(x) for which xqn − x = g(s(x)). Then g(x) qn −<br />

g(x) = g(xqn − x) = g(s(p(x)) = p(x) qn − p(x). Put r(x) = g(x) − p(x). The<br />

previous computation shows that r(x) qn = r(x), which forces r(x) = 0, i.e.,<br />

g(x) = p(x). So s(g(x)) = s(p(x)) = xqn − x = g(s(x)) = p(s(x)).<br />

Lemma 20.19.7. If the l<strong>in</strong>earized q-polynomial p(x) is fully reducible with<br />

no repeated roots, <strong>and</strong> of degree q m , then p(x) − ax, a = 0, has at most q n−m<br />

roots.<br />

Proof. As p(x) is of degree qm , by Lemma 20.19.6 there is a fully reducible<br />

l<strong>in</strong>earized q-polynomial s(x) such that xqn − x = s(p(x)). So s(x) has degree<br />

qn /qm , <strong>and</strong> be<strong>in</strong>g fully reducible has exactly qn−m roots. But s(p(x) − ax) =<br />

s(p(x)) − s(ax) = xqn − x − s(ax). Here s(p(x) − ax) = 0 has all the roots of<br />

p(x) − ax = 0 (<strong>and</strong> possibly others) as roots, the right h<strong>and</strong> side has exactly<br />

the qm−n roots of s(ax) as its roots. So p(x) − ax = 0 could not have more<br />

than qn−m roots.<br />

We are go<strong>in</strong>g to determ<strong>in</strong>e those l<strong>in</strong>earized polynomials that give po<strong>in</strong>ts,<br />

l<strong>in</strong>es <strong>and</strong> hyperplanes of P G(n − 1, q).<br />

20.20 K-Subspaces of F as L<strong>in</strong>earized Polynomials<br />

Given a subspace U of F of dimension r over K, the polynomial<br />

<br />

(x − u)<br />

u∈U<br />

is a monic polynomial of degree q r of the form<br />

x qr<br />

r−1<br />

+<br />

j=0<br />

ajx qj<br />

.<br />

We are <strong>in</strong> a position to calculate necessary <strong>and</strong> sufficient conditions on the<br />

coefficients to determ<strong>in</strong>e when such a (l<strong>in</strong>earized) polynomial determ<strong>in</strong>es a<br />

subspace of dimension r. Note: They are precisely the l<strong>in</strong>earized polynomials<br />

which are factors of the polynomial


20.20. K-SUBSPACES OF F AS LINEARIZED POLYNOMIALS 871<br />

x qn<br />

− x = <br />

(x − u).<br />

u∈F<br />

As a first example we consider the case r = 1.<br />

Example 1. Po<strong>in</strong>ts of P G(n − 1, q). Here the l<strong>in</strong>earized polynomial has<br />

the form xq − ax, but xq − ax = 0 might have no solution x = 0. If there is<br />

such an x, clearly all solutions are given by cx for c ∈ K. Moreover, xq−1 = a.<br />

By Theorem 20.2.2 we know that for nonzero a ∈ F , xq−1 = a has a solution<br />

x if <strong>and</strong> only if NF/K(a) = 1, <strong>in</strong> which case it has q − 1 solutions as desired.<br />

Moreover, there are exactly qn−1 solutions a, account<strong>in</strong>g for exactly all the<br />

q−1<br />

po<strong>in</strong>ts of P G(n − 1, q).<br />

Example 2. Hyperplanes of P G(n − 1, q). Here the l<strong>in</strong>earized polynomial<br />

has the form<br />

x qn−1<br />

+ an−2x qn−2<br />

+ · · · + a1x q + a0x.<br />

By Theorem 20.19.3, if ¯α = (a0, a1, . . . , an−2, 1), we want the matrix<br />

⎛<br />

⎜<br />

[¯α] = ⎜<br />

⎝ .<br />

a qn−1<br />

1<br />

a0 a1 a2 · · · an−2 1<br />

1 a q<br />

0<br />

a q<br />

1 · · · a q<br />

n−3 a q<br />

n−2<br />

a q2<br />

n−2 1 a q2<br />

0 · · · a q2<br />

n−4 a q2<br />

n−3<br />

.<br />

a qn−1<br />

2<br />

.<br />

.<br />

a qn−1<br />

3 · · · 1 a qn−1<br />

0<br />

to have rank 1. It is clear that each row is nonzero, so each row spans the row<br />

space. In particular the first row must be a0 times the second row. Writ<strong>in</strong>g<br />

; 1 =<br />

this out leads to a1 = a 1+q<br />

0 ; a2 = a 1+q+q2<br />

0 ; . . . an−2 = a 1+q+...qn−2<br />

0<br />

= a0<br />

. This implies that a0 = bq−1 for some b ∈ F ∗ .<br />

The number of dist<strong>in</strong>ct a0’s of this form is qn−1 , which is also the number of<br />

q−1<br />

hyperplanes. Hence each hyperplane arises from a polynomial of the form<br />

a q<br />

n−2a0 = a 1+q+···+qn−1<br />

0<br />

f(x) = a0x + a 1+q<br />

q n −1<br />

q−1<br />

0 xq + a 1+q+q2<br />

0<br />

x q2<br />

.<br />

.<br />

⎞<br />

⎟<br />

⎠<br />

+ · · · + a 1+q+···+qn−2<br />

0 x qn−2<br />

+ x qn−1<br />

,<br />

where NF/K(a) = 1.<br />

Example 3. L<strong>in</strong>es of P G(n − 1, q). Here the l<strong>in</strong>earized polynomial has<br />

the form


872 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

x q2<br />

+ a1x q + a0x.<br />

By Theorem 20.19.3, if ¯α = (a0, a1, 1, 0, 0, · · · , 0), then the matrix [¯α]<br />

should have rank n − 2 (i.e., nullity 2), where<br />

⎛<br />

⎞<br />

⎜<br />

[¯α] = ⎜<br />

⎝<br />

a0 a1 1 0 0 · · · 0<br />

0 a q<br />

0<br />

0 0 a q2<br />

0<br />

.<br />

.<br />

a q<br />

1 1 0 · · · 0<br />

.<br />

0 · · · 0 0 a qn−3<br />

0<br />

a q2<br />

1 1 · · · 0<br />

.<br />

.<br />

.<br />

a qn−3<br />

1<br />

1 0 · · · 0 0 a qn−2<br />

0<br />

.<br />

1<br />

a qn−2<br />

⎟ .<br />

⎟<br />

1 ⎠<br />

a qn−1<br />

1 1 0 · · · 0 0 a qn−1<br />

0<br />

When n = 3, a l<strong>in</strong>e is just a hyperplane, so Example 2 shows that the<br />

general l<strong>in</strong>e is given by the polynomial f(x) = a0x + a 1+q<br />

0 xq + xq2 where<br />

1 = NF/K(a0) = a 1+q+q2<br />

0 . For this example we just work out the case n = 4.<br />

So to avoid subscripts we write f(x) = ex+cx q +xq2 <strong>and</strong> we want the matrix<br />

[¯α] to have rank 2, where<br />

⎛<br />

e c 1 0<br />

⎜<br />

[¯α] = ⎜<br />

⎝<br />

0 eq cq 1 0 e<br />

1<br />

q2 cq2 cq3 1 0 eq3 ⎞<br />

⎟<br />

⎠ .<br />

It is clear that the first two rows are <strong>in</strong>dependent, so we just need rows 3<br />

<strong>and</strong> 4 to be l<strong>in</strong>ear comb<strong>in</strong>ations of the first two rows. Write<br />

(1, 0, e q2<br />

, c q2<br />

) = λ1(e, c, 1, 0) + λ2(0, e q , c q , 1) = (λ1e, λ1c + λ2e q , λ1 + λ2c q , λ2),<br />

<strong>and</strong><br />

(c q3<br />

, 1, 0, e q3<br />

) = λ3(e, c, 1, 0) + λ4(0, e q , c q , 1) = (λ3e, λ3c + λ4e q , λ3 + λ4c q , λ4).<br />

Us<strong>in</strong>g the first equation we f<strong>in</strong>d that λ1 = e −1 <strong>and</strong> λ2 = c q2<br />

have 0 = e−1c + cq2eq , which is equivalent to<br />

. Then we<br />

e 1+q = −c 1−q2<br />

. (20.48)


20.20. K-SUBSPACES OF F AS LINEARIZED POLYNOMIALS 873<br />

Also, e q2<br />

= e −1 + c q2 +q , which is equivalent to<br />

Us<strong>in</strong>g the second equation we f<strong>in</strong>d λ4 = eq3 + eq3 +q , which is equivalent to<br />

have 1 = e −1 c 1+q3<br />

Similarly, 0 = e −1 c q3<br />

e(e q2<br />

− c q2 +q<br />

) = 1. (20.49)<br />

<strong>and</strong> λ3 = e−1cq3. Then we<br />

e = c 1+q3<br />

+ e q3 +q+1<br />

. (20.50)<br />

+ eq3cq , which is equivalent to<br />

c q3 −q = −e q 3 +1 . (20.51)<br />

It is rout<strong>in</strong>e to check that Eq. 20.51 is equivalent to Eq. 20.48, so we need<br />

only Eqs. 20.48, 20.49 <strong>and</strong> 20.50.<br />

Eq. 20.48 is equivalent to<br />

Eq. 20.49 is equivalent to<br />

And, Eq. 20.50 is equivalent to<br />

e 1+q = −c 1+q)(1−q) .<br />

c q+1 = e q − e −q3<br />

.<br />

c q+1 = e q − e 1+q+q2<br />

.<br />

From the latter two equations we f<strong>in</strong>d that 1 = e q3 +q 2 +q+1 = NF/K(e).<br />

The steps we used to arrive at the f<strong>in</strong>al form are reversible, so that we have<br />

proved the follow<strong>in</strong>g:<br />

Theorem 20.20.1. The l<strong>in</strong>es of P G(3, q) are given by the q-l<strong>in</strong>earized polynomials<br />

of the form f(x) = xq2 + cxq + ex, where eq3 +q2 c<br />

+q+1 = 1 <strong>and</strong><br />

q+1 = eq − eq2 +q+1 .<br />

We note that there are (1+q 2 )(1+q +q 2 ) l<strong>in</strong>es of P G(3, q). If c = 0, then<br />

eq = eq2 +q+1 q is equivalent to 1 = e 2 +1 2 , which has q +1 solutions, account<strong>in</strong>g<br />

for q2 + 1 l<strong>in</strong>es. There are (q3 + q2 + q + 1) − (q2 + 1) = q3 + q values of<br />

e for which NF/K(e) = 1 but eq2 +1 = 0. Consider any e of this class. A<br />

rout<strong>in</strong>e computation shows that (eq − e1+q+q2) (q2 +1)(q−1) 2 = (−1) = 1. This<br />

means that e q − e 1+q+q2<br />

is really a (q + 1)-st power, <strong>in</strong> q + 1 ways. This gives<br />

(q 3 + q)(q + 1) l<strong>in</strong>es, so that we have all q 2 + 1 + (q 2 + 1)(q 2 + q) l<strong>in</strong>es of<br />

P G(3, q).


874 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

20.21 Additive Maps on Fq<br />

Theorem 20.21.1. Let α <strong>and</strong> β be permutations of Fq such that 0 α = 0 = 0 β<br />

<strong>and</strong> such that x ↦→ x α /x β permutes the nonzero elements of Fq. Then p = 2.<br />

Proof. Let ζ be a generator of the multiplicative group F ∗ q , i.e., a primitive<br />

i α<br />

root for Fq. Then α <strong>and</strong> β are given by ζ ↦→ ζ i′ i β<br />

, ζ ↦→ ζ i′′ , where i ↦→ i ′ <strong>and</strong><br />

i ↦→ i ′′ are permutations of the <strong>in</strong>tegers 1, 2, . . . , pe − 1. If pe − 1 = |F ∗ q | = 2k,<br />

then 1 + 2 + · · ·+ 2k = k(2k + 1) ≡ k (mod 2k). Thus 0 = <br />

1≤i≤2k (i′ − i ′′ ) ≡<br />

i ≡ k (mod 2k), an impossibility.<br />

<br />

1≤i≤2k<br />

Corollary 20.21.2. Let α <strong>and</strong> β be additive permutations of the elements of<br />

Fq for which x ↦→ x α /x β permutes the nonzero elements of Fq. Then p = 2.<br />

For the rema<strong>in</strong>der of this section Fq = GF (2 e ).<br />

Theorem 20.21.3. Let α <strong>and</strong> β be additive permutations of the elements of<br />

Fq = GF (2 e ) that fix 1 <strong>and</strong> for which xmapstox α /x β permutes the nonzero<br />

elements of Fq. Then α −1 β is an automorphism of Fq of maximal order e.<br />

Proof. Let α <strong>and</strong> β satisfy the hypotheses of the theorem. Then there are<br />

scalars ai, bi <strong>in</strong> Fq, 0 ≤ i ≤ e − 1, for which<br />

e−1<br />

α : x ↦→<br />

i=0<br />

aix 2i<br />

; β : x ↦→<br />

e−1<br />

i=0<br />

bix 2i<br />

.<br />

Let A = [¯α] = (aij), so aij = a2i−1 [j−i] , <strong>and</strong> B = [ ¯ β] = (bij, so bij = b2i−1 [j−i] ,<br />

1 ≤ i, j ≤ e.<br />

S<strong>in</strong>ce α <strong>and</strong> β are permutations, by Lemma 20.19.4 both A <strong>and</strong> B are<br />

nons<strong>in</strong>gular. S<strong>in</strong>ce x ↦→ xα /xβ is a permutation of the elements of F ∗ q , for<br />

each c ∈ F ∗ q there must a be a (unique) nonzero solution x to xα − cxβ = 0.<br />

Hence e−1 2i<br />

i=0 (ai−λbi)x = 0 has a unique nonzero solution x for each λ ∈ F ∗ q .<br />

By Cor. 20.19.4, the matrix<br />

Cλ = ((a[j−i] − λb[j−i]) 2i−1<br />

), 1 ≤ i, j ≤ e,<br />

has zero determ<strong>in</strong>ant for each λ ∈ F ∗ q . And 0 = detA · detB, so detA =<br />

detB = 1. So det Cλ is a polynomial <strong>in</strong> λ of degree 2e − 1 with constant term<br />

1, lead<strong>in</strong>g term 1, <strong>and</strong> hav<strong>in</strong>g each nonzero element of Fq as a simple root.<br />

This implies


20.21. ADDITIVE MAPS ON FQ 875<br />

detCλ = λ 2e −1 + 1. (20.52)<br />

For 1 ≤ t ≤ 2e − 2, we now calculate the coefficient of λt <strong>in</strong> detCλ <strong>and</strong><br />

set it equal to 0.<br />

Let ti1, ti2, . . . , tir be the nonzero coefficients <strong>in</strong> the b<strong>in</strong>ary expansion of<br />

t = e−1 i=0 ti2i . Then the coefficient of λt <strong>in</strong> detCλ is easily seen to be the determ<strong>in</strong>ant<br />

of the matrix obta<strong>in</strong>ed by replac<strong>in</strong>g rows ti1, . . . , tir of A with rows<br />

ti1, . . . , tir of B Hence we know the follow<strong>in</strong>g: the rows of A are <strong>in</strong>dependent,<br />

the rows of B are <strong>in</strong>dependent, <strong>and</strong> any set of rows formed by tak<strong>in</strong>g some<br />

r rows of A <strong>and</strong> the complementary e − r rows of B is a l<strong>in</strong>early dependent<br />

set, 1 ≤ r ≤ e − 1. In particular, the ith row of B is a l<strong>in</strong>ear comb<strong>in</strong>ation of<br />

rows 1, . . . , i − 1, i + 1, . . . , e of A. Let βi be the ith row of B. Then<br />

βi = (b 2i−1<br />

[1−i], . . . , b 2i−1<br />

[e−i]).<br />

Then there are scalars d1, . . . , di−1, di+1, . . . , de such that<br />

βi = (d1, . . . , di−1, 0, di+1, . . . , de)A. (20.53)<br />

Apply the automorphism x ↦→ x 2 to Eq. 20.53.<br />

(b 2i<br />

[1−i], . . . , b 2i<br />

[e−i]) = (d 2 1, . . . , d 2 i−1, 0d 2 i+1, . . . d 2 <br />

e) a 2k<br />

<br />

j−k] . (20.54)<br />

1≤k,j≤e<br />

In Eq. 20.54 first permute the columns cyclically, mov<strong>in</strong>g column j (on<br />

the left-h<strong>and</strong> side) to position j + 1, then permute rows on the far right<br />

mov<strong>in</strong>g row k to position k + 1. The result is an equation that says:<br />

βi+1 = (d 2 e, d 2 1, . . . , d 2 i−1, 0, d 2 i+1, . . . , d 2 e−1)A. (20.55)<br />

Repeat<strong>in</strong>g this k times we obta<strong>in</strong><br />

βi+k = (d 2k<br />

1−k, d 2k<br />

2−k, . . . , d 2k<br />

e−k)A, (20.56)<br />

where the d ′ j s are unique <strong>and</strong> di = 0. By permut<strong>in</strong>g rows cyclically we may<br />

adopt a new notation:<br />

β1 = (d1, . . . , de)A with d1 = 0, so βi+1 = (d 2i<br />

1−i , . . . , d2i e−i )A. (20.57)


876 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

Let αi denote the i th row of A. For some λ1, λ2 <strong>in</strong> Fq, not both zero, we<br />

have<br />

λ1β1 + λ2β2 =<br />

e<br />

j=3<br />

fjαj = (λ2d 2 e , λ1d2, λ1d3 + λ2d 2 2 , . . . , λ1dj + λ2d 2 j−1 , . . .)A.<br />

(20.58)<br />

Hence as the rows of A are <strong>in</strong>dependent, λ2d 2 e = 0 = λ1d2. If λ1 = 0, then<br />

d2 = 0. If λ2 = 0, then de = 0. S<strong>in</strong>ce d1 = 0, we have either both de <strong>and</strong> d1<br />

are zero, or both d1 <strong>and</strong> d21 are zero, i.e., there is a str<strong>in</strong>g of length two of<br />

consecutive d ′ is (<strong>in</strong>clud<strong>in</strong>g d1) equal to zero. By chang<strong>in</strong>g notation we may<br />

suppose d1 = d2 = 0 <strong>and</strong> complete the rpoof by a f<strong>in</strong>nite <strong>in</strong>duction.<br />

Suppose there is a str<strong>in</strong>g of t zeros, say d1 = · · · = dt = 0, 1 ≤ t ≤ e − 2.<br />

We then wish to show that there is a astr<strong>in</strong>g of t + 1 zeros. This yields the<br />

follow<strong>in</strong>g.<br />

β1 = (0, . . . , 0, dt+1, . . . , de)A;<br />

β2 = (d 2 e , 0, . . . , 0, . . . , d2 e−1 )A;<br />

.<br />

βt = (d2t−1 e+2−t , . . . , d2t−1 e<br />

, 0, . . . , 0, d 2t−1<br />

↑<br />

t<br />

↑<br />

2t − 1<br />

t+1<br />

βt+1 = (d 2t<br />

e+1−t, . . . , d 2t<br />

e , 0, . . . , 0, . . . , d 2t<br />

↑<br />

t + 1<br />

↑<br />

2t<br />

, . . . , d2t−1<br />

e+1−t )A;<br />

e−t)A.<br />

(20.59)<br />

Moreover, there are scalars λ1, . . . , λt+1, not all zero, for which t+1 i=1 λiβi<br />

is some l<strong>in</strong>ear comb<strong>in</strong>ation of αt+2, . . . , αe, s<strong>in</strong>ce 1 < t + 1 < e. Use Eq. 20.53<br />

to calculate the coefficients on α1, . . . , αt+1 (which must be zero) <strong>in</strong> t+1 i=1 λiβi,<br />

start<strong>in</strong>g with column t + 1 of Eq. 20.53 <strong>and</strong> work<strong>in</strong>g backwards to column 1.<br />

0 = λ1dt+1<br />

0 = λt+1d2t 0 =<br />

e<br />

λtd2t−1 0 =<br />

2t<br />

e + λt+1de−1 λt−1d2t−2 .<br />

2t−1<br />

2t<br />

e + λtde−1 + λt+1de−2 0 = λ2d2 22<br />

2t<br />

e + λ3de−1 + · · · + λt+1de−(t−1) (20.60)


20.21. ADDITIVE MAPS ON FQ 877<br />

If λt+1 = 0, then de = 0, giv<strong>in</strong>g a str<strong>in</strong>g of zeros of length t + 1.<br />

If λt+1 = 0, λt = 0, then aga<strong>in</strong> de = 0.<br />

If λt+1 = λt = 0, λt−1 = 0, then aga<strong>in</strong> de = 0.<br />

Cont<strong>in</strong>ue <strong>in</strong> this fashion. . . .<br />

If λt+1 = λt = · · · = λ3 = 0, λ2 = 0, then aga<strong>in</strong> de = 0.<br />

If λt+1 = · · · = λ2 = 0, λ1 = 0, then dt+1 = 0, giv<strong>in</strong>g a str<strong>in</strong>g of zeros of<br />

length t + 1.<br />

It follows that only one di can be nonzero, say d = dt = 0, t = 1. This<br />

says:<br />

b[j] = da 2t−1<br />

[j−(t−1)] , 0 ≤ j ≤ e − 1. (20.61)<br />

Our assumption that 1 = 1 α = 1 β implies that d = 1. Put u = t − 1, so<br />

Eq. 20.55 becomes:<br />

b[j] = a 2u<br />

[j−u] . (20.62)<br />

If x ↦→ x2u is an automorphism of F of order n < e, it is rout<strong>in</strong>e to f<strong>in</strong>d<br />

n rows of B which together with the complementary e − n rows of A form<br />

a l<strong>in</strong>early <strong>in</strong>dependent set. Hence it must be that gcd(u, e) = 1. Moreover,<br />

Eq. 20.56 is equivalent to<br />

This completes the proof.<br />

x β = (x α ) 2u<br />

⇒ β = α · 2 u . (20.63)<br />

Corollary 20.21.4. If β is an additive permutation of the elements of Fq<br />

for which x ↦→ x/xβ permutes the nonzero elements of Fq. Then β has the<br />

form xβ = dx2u for fixed d ∈ F ∗ q , (u, e) = 1.<br />

Let α <strong>and</strong> β b e additive permutations of Fq, q = 2 e . The pair (α, β) is<br />

said to be admissible provided the follow<strong>in</strong>g condition holds:<br />

0 =<br />

3<br />

vi =<br />

i=1<br />

3<br />

vizi =<br />

i=1<br />

3<br />

i=1<br />

v α i zβ<br />

i for dist<strong>in</strong>ct, nonzero vi ∈ Fq implies that<br />

z1 = z2 = z3 = 0.<br />

(20.64)<br />

Theorem 20.21.5. Let (α, β) be a pair of additive permutations of the elements<br />

of Fq fix<strong>in</strong>g 1. Then the follow<strong>in</strong>g are equivalent:


878 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

(i) The pair (α, β) is admissible.<br />

(ii) 0 = 2<br />

1 vizi = 2<br />

1 vα i zβ<br />

i for dist<strong>in</strong>ct, nonzero v1, v2 implies z1 = z2 = 0.<br />

(iii) For each c ∈ F ∗ q , the map µc : v ↦→ v α (c/v) β is a permutation of the<br />

elements of F ∗ q .<br />

(iv) For each c ∈ F ∗ q , the map λc : w ↦→ (cw) α /w β is a permutation of the<br />

elements of F ∗ q .<br />

(v) α <strong>and</strong> β are automorphisms of Fq for which α◦β −1 is an automorphism<br />

of maximal order.<br />

Proof. First let (α, β) be admissible. Add 0 = ( 3 1 vi)z3 to the second summation<br />

of Eq. 20.64 <strong>and</strong> 0 = ( 3 1 vα i )zβ 3 to the third, so that Eq. 20.64<br />

becomes<br />

0 =<br />

2<br />

vi(zi+z3) =<br />

1<br />

2<br />

1<br />

v α i (zβ<br />

i +zβ<br />

3 ) for dist<strong>in</strong>ct nonzero v1, v2 ⇒ z1 = z2 = z3 = 0.<br />

Now put wi = zi + z3, i = 1, 2, so that Eq. 20.65 becomes<br />

0 = v1w1 + v2w2 = v α 1 w β<br />

1 + v α 2 w β<br />

2<br />

(20.65)<br />

(20.66)<br />

for dist<strong>in</strong>ct nonzero v1, v2 implies that w1 = w2 = 0.<br />

This is just part (ii) of the theorem. Put wi = c/vi <strong>in</strong> Eq. 20.66 to obta<strong>in</strong><br />

(iii) of the theorem. Put v1 = cw2, v2 = cw1 <strong>in</strong> Eq. 20.66 to obta<strong>in</strong> (iv) of<br />

the theorem. It follows that (i) – (iv) are equivalent. The crux of the proof<br />

is to show that (iv) implies (v).<br />

So let (α, β) be a pair of additive permutations of the elements of Fq<br />

fix<strong>in</strong>g 1 <strong>and</strong> satisfy<strong>in</strong>g (iv). For 0 = c ∈ Fq, let αc denote the additive<br />

permutation αc : x ↦→ (cx) α for all x ∈ Fq. Then β = αcγc = δcαc for<br />

unique additive permutations γc <strong>and</strong> δc. For λc as <strong>in</strong> (iv), λc = αc ◦ (1 − γc),<br />

imply<strong>in</strong>g that 1 − γc : w ↦→ w/wγc is also a permutation of the elements of<br />

F ∗ q . By Cor. 20.21.4 it follows that γc : x ↦→ dcxβc for some nonzero scalar<br />

dc <strong>and</strong> some automorphism βc : x ↦→ x2tc , (tc, e) = 1, 1 ≤ tc ≤ e − 1. As<br />

1 = 1β = 1αcγc , dc is easily calculated so that<br />

x β = ((cx) α /c α ) 2tc<br />

for x, c ∈ Fq, , c = 0. (20.67)


20.21. ADDITIVE MAPS ON FQ 879<br />

In particular, let t = t1, so Eq. 20.67 implies the follow<strong>in</strong>g:<br />

β = α · 2 t . (20.68)<br />

It is easy to check that (α, β) is an admissible pair of additive permuta-<br />

tions if <strong>and</strong> only if (α −1 , β −1 ) is. Hence β −1 = αc −1 δc −1 implies that δc −1 (<strong>and</strong><br />

hence δc) has the same form as γc, i.e., δc : x ↦→ ¯ dcx2gc for some nonzero scalar<br />

¯dc, <strong>and</strong> (gc, e) = 1, 1 ≤ gc ≤ e − 1. Then 1 = 1β = 1δcαc = ( ¯ dc · 1) αc = (c ¯ dc) α<br />

implies ¯ dc = c−1 , from which it follows that xβ = xδcαc = (c−1x2gc ) αc = x2gc α ,<br />

i.e., βα−1 = 2gc = 2g for all c.<br />

Hence<br />

<strong>and</strong><br />

Then<br />

x β = ((cx) α /c α ) 2tc<br />

β = 2 g · α = α · 2 t , (20.69)<br />

α = 2 g · α · 2 −t . (20.70)<br />

= ((c2gx2g ) α·2−t/(c2g<br />

) α·2−t)2tc<br />

= ((dx2g) α /dα ) 2td · 2−t+tc−td, where d = c2g = (x 2g ·β ) 2 −t+tc−t d .<br />

β = 2 g β2 −t+tc−td (20.71)<br />

Now use Eq. 20.68 <strong>in</strong> Eq. 20.71 along with Eq. 20.69 to get<br />

tc = td if d = c 2g<br />

. (20.72)<br />

S<strong>in</strong>ce x ↦→ x2g is an automorphism of maximal order, it follows that if c<br />

<strong>and</strong> d are nonzero conjugates then tc = td.<br />

Now suppose that c <strong>and</strong> d are dist<strong>in</strong>ct, nonzero elements of Fq for which<br />

= ((dx) α /dα ) 2tc implies<br />

tc = td. We claim tc+d = tc. Then x β = ((cx) α /c α ) 2tc<br />

Then<br />

x β = [((c + d)x) α /(c + d) α ] 2t c+d<br />

(dx) α = d α (cx) α /c α , if tc = td. (20.73)<br />

= [((cx) α + (dx) α /(c + d) α ] 2tc+d =


880 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

for all x ∈ Fq.<br />

= [((cx) α + d α (cx) α /c α )/(c + d) α ] 2t c+d<br />

Compar<strong>in</strong>g this last form of x β with Eq. 20.67 we obta<strong>in</strong><br />

tc+d = tc when tc = td. (20.74)<br />

By the Normal Basis Theorem for cyclic extensions (or for f<strong>in</strong>ite fields)<br />

there is an element c ∈ Fq for which c, c2 , c4 , . . . , c2e−1 form a l<strong>in</strong>ear basis<br />

over the prime subfield {0, 1}. As tc = td for d ∈ {c2 , c22, . . . , c2e−1} <strong>and</strong> for<br />

d equal to any nonzero sum of these elements, it follows that there is only<br />

t : t = tc for all c = 0. Put x = c−1 <strong>in</strong> Eq. 20.73 to obta<strong>in</strong> <br />

d α d<br />

= c<br />

α<br />

cα for<br />

all nonzero c, d ∈ Fq, imply<strong>in</strong>g that α preserves multiplication. Hence a is<br />

an automorphism of Fq. This completes the proof that (iv) implies (v). The<br />

converse is easy.<br />

20.22 The Number of Roots of a Special Polynomial<br />

Let e = dr, i = dj, (r, j) = 1, F = GF (p d ), E = GF (p e ). For b, c ∈ E our<br />

problem is to determ<strong>in</strong>e how many solutions there are to the equation<br />

f(x) = x α − bx − c = 0, where α : x ↦→ x pi<br />

.<br />

Note that α r is the identity on E.<br />

As a first step recall the follow<strong>in</strong>g:<br />

gcd(p m − 1, p n − 1) = p gcd(m,n) − 1. (20.75)<br />

Secondly, put q = p n <strong>and</strong> let N be a positive <strong>in</strong>teger. Then the number<br />

of solutions of x N − 1 = 0 <strong>in</strong> GF (q) is gcd(N, q − 1). If N divides q − 1 <strong>and</strong><br />

s is a primitive root of GF (q), then<br />

The solutions of X N = 1 are powers of s k , where k =<br />

q − 1<br />

. (20.76)<br />

N<br />

For Step 3, consider HomF (E, E). Clearly E is an r-dimensional vector<br />

space over F . Then Lα : E → E : x ↦→ xα − x def<strong>in</strong>es an F -l<strong>in</strong>ear transformation<br />

of E whose kernel is F . If β : x ↦→ xpd, then β generates Gal(E/F )<br />

<strong>and</strong> 〈β〉 = 〈α〉.


20.22. THE NUMBER OF ROOTS OF A SPECIAL POLYNOMIAL 881<br />

Also Dα : E → E : x ↦→ x + xα + xα2 + · · · + xαr−1 def<strong>in</strong>es an element<br />

of HomF (E, E), <strong>and</strong> Dα(xα ) = Dα(x) = trE/F (x). Hence the image of Lα is<br />

conta<strong>in</strong>ed <strong>in</strong> the kernel of Dα. S<strong>in</strong>ce 1 = dim ker(Lα), r − 1 = dim Im(Lα),<br />

so either Dα = 0 (which is impossible s<strong>in</strong>ce 1, α, . . . , αr−1 are l<strong>in</strong>early <strong>in</strong>dependent)<br />

or Im(Lα) = ker(Dα). S<strong>in</strong>ce [Dα(x)] α = Dα(xα ) = Dα(x), Dα(x)<br />

is <strong>in</strong> the fixed field of α, i.e., Im(Dα) ⊆ F . Hence dim Im(Dα) = 1 implies<br />

Im(Dα) = F . If xα − x − δ = 0 = yα − y − δ, then (x − y) α = x − y, so<br />

y = x + t, t ∈ F . Hence we have proved the follow<strong>in</strong>g:<br />

x α − x − δ = 0 has a solution <strong>in</strong> E iff Dα(δ) = 0, (20.77)<br />

<strong>in</strong> which case it has exactly p d = |F | solutions.<br />

For step 4, consider the general equation<br />

<strong>and</strong><br />

Suppose f(t) = 0, so t α = bt + c. Then<br />

t α2<br />

f(x) = x α − bx − c = 0. (20.78)<br />

= b α t α + c α = b α (bt + c) + c α = tb 1+α + cb α + c α ,<br />

t α3<br />

= t α b α+α2<br />

+ c α b α2<br />

+ c α2<br />

=<br />

= tb 1+α+α2<br />

+ cb α+α2<br />

+ c α b α2<br />

Cont<strong>in</strong>u<strong>in</strong>g <strong>in</strong> this fashion we f<strong>in</strong>d t = t αr<br />

= tb 1+α+···+αr−1<br />

+ cb α+···+αr−1<br />

+ c α b α2 +···+αr−1 =<br />

+ c α2<br />

.<br />

+ · · · + c αr−2<br />

b αr−1<br />

+ c αr−1<br />

.<br />

Put tαk where<br />

= bkt+ck, c = c1, b = b1. So t = tbr+cr implies t(1−br)−cr = 0,<br />

br = b 1+α+···+αr−1<br />

= NE/F (b),<br />

<strong>and</strong><br />

cr = cb α+α2 +···αr−1 + c α b α2 +···αr−1 We can now state the general result:<br />

+ · · · + c αr−2<br />

b αr−1<br />

+ c αr−1<br />

.<br />

(i) If NE/F (b) = 1, then t = cr<br />

1−br<br />

is the unique root of f(x) = 0.<br />

(ii) If NE/F (b) = 1 <strong>and</strong> cr = 0, there is no solution.<br />

(iii) If NE/F (b) = 1 <strong>and</strong> cr = 0, then f(x) = 0 has p d dist<strong>in</strong>ct roots.


882 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

It is rout<strong>in</strong>e to show that <strong>in</strong> case (i) t = cr<br />

1−br<br />

clearly (i) <strong>and</strong> (ii) hold.<br />

is <strong>in</strong>deed a root, <strong>and</strong> then<br />

Now suppose that NE/F (b) = 1 <strong>and</strong> cr = 0. Then 1 = b αr −1<br />

α−1 = b N , where<br />

(s<strong>in</strong>ce α = p i <strong>and</strong> i = dj)<br />

N = pdjr − 1<br />

p dj − 1 .<br />

S<strong>in</strong>ce gcd(pdjr − 1, pdr − 1) = pdr − 1 <strong>and</strong> gcd(pdj − 1, pdr − 1) = pd − 1, so<br />

gcd(N, pdr − 1) = pdr−1 pd . In the context of the paragraph preced<strong>in</strong>g Eq. 20.76<br />

−1<br />

k =<br />

(p dr − 1)<br />

(p dr − 1)/p d − 1) = pd − 1.<br />

So by Eq. 20.76 b = spd−1 for some s ∈ E. S<strong>in</strong>ce<br />

map<br />

is a permutation <strong>and</strong> s = t<br />

„<br />

p<br />

dj<br />

−1<br />

pd «<br />

−1<br />

x ↦→ x<br />

„<br />

p<br />

dj<br />

−1<br />

pd «<br />

−1<br />

implies that<br />

b = t pdj −1 = t α−1 = 0.<br />

<br />

pdj −1<br />

pd−1 , pdr <br />

− 1 = 1, the<br />

Solve for g such that c = gt α <strong>and</strong> put x = ty. Then f(x) = x α − bx − c =<br />

t α y α − t α y − gt α = t α (y α − y − g) = 0 iff G(y) = y α − y − g = 0.<br />

Use c = gt α , b = t α−1 <strong>in</strong> the formula for cr:<br />

cr = cb α+···+αr−1<br />

+ c α b α2 +···+αr−1 + · · · + c αr−2<br />

b αr−1<br />

+ c αr−1<br />

= gt α t αr −α + g α t α 2<br />

t (α−1)α2 (1+α+···+α r−3<br />

+ · · ·<br />

= gt αr<br />

+ g α t αr<br />

+ · · · + g αr−1<br />

t αr<br />

= tDα(g).<br />

Hence cr = 0 iff Dα(g) = 0 iff G(y) = 0 has solutions (<strong>and</strong> then p d of<br />

them) iff f(x) = 0 has solutions (<strong>and</strong> then p d of them).<br />

20.23 Equations Involv<strong>in</strong>g Squares<br />

In this section we assume that q = p e with p an odd prime. We adapt some<br />

of the material <strong>in</strong> Dickson [Di58].


20.23. EQUATIONS INVOLVING SQUARES 883<br />

Theorem 20.23.1. Let a, b, k be nonzero elements of Fq.<br />

The number of solutions (x, y) to ax 2 + by 2 = k is<br />

q − 1, if −ab = ;<br />

q + 1, if −ab = ❆ .<br />

Proof. Case 1. −ab = c 2 . Put ax + cy = ρ; ax − cy = σ. So<br />

For σ ∈ F ∗ q<br />

1<br />

(ρ + σ) = ax;<br />

2<br />

1<br />

(ρ − σ) = y.<br />

2c<br />

ρ · σ = a 2 x 2 − c 2 y 2 = a(ax 2 + by 2 ) = ak = 0.<br />

ak put ρ = . Then<br />

σ<br />

x = 1 ak + σ2 1 ak − σ2<br />

(ρ + σ) = ; y = (ρ − σ) =<br />

2a 2aσ 2c 2cσ .<br />

This gives all q − 1 solutions.<br />

Case 2. −ab = ❆ . Choose i ∈ F q 2 such that i 2 = −ab. The roots of<br />

x 2 + ab = 0 are i <strong>and</strong> −i = i q . Then<br />

ak = (ax) 2 + aby 2 = (ax + iy)(ax − iy) = (ax + iy) q+1 .<br />

Put z = ax + iy. Let ζ be a primitive root of Fq2. Then ak = ζ t<strong>in</strong>Fq, so<br />

t ≡ 0 (mod q + 1). Say t = ℓ(q + 1), <strong>and</strong> z = ax + iy = ζ s for some s. Then<br />

zq+1 = ak becomes ζ s(q+1) = ζ ℓ(q+1) , which is equivalent to s ≡ ℓ (mod q −1).<br />

So s = ℓ + r(q − 1), 0 ≤ r ≤ q. This gives q + 1 solutions z to zq+1 = ak.<br />

S<strong>in</strong>ce {a, i} for an Fq-basis for Fq2, each solution z determ<strong>in</strong>es x <strong>and</strong> y such<br />

that z = ax + iy.<br />

Now suppose that a, b, c ∈ F ∗ q <strong>and</strong> △ = b 2 − 4ac = 0. We determ<strong>in</strong>e how<br />

many x there are for which ax 2 + bx + c = (= 0).<br />

First, how many solutions (x, y) are there to ax 2 + bx + c = y 2 ? This<br />

equation is equivalent to<br />

4a 2 x 2 + 4abx + 4ac = 4ay 2<br />

⇐⇒<br />

(2ax + b) 2 − a(2y) 2 = △ = 0.<br />

Put A = 2ax + b <strong>and</strong> B = 2y. By the preced<strong>in</strong>g theorem we have the<br />

follow<strong>in</strong>g:


884 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

Corollary 20.23.2. If a = , there are q−1 solutions (A, B) to A 2 −aB 2 =<br />

△.<br />

If △ = , two of these solutions have B = 0 (i.e., y = 0). But q − 3 of<br />

them have B = 0. In this case we f<strong>in</strong>d q−3<br />

2 values of x with ax 2 + bx + c =<br />

= 0.<br />

If △ = ❆ , then y = 0 <strong>and</strong> for each ±y, 2ax + b = A gives q−1<br />

2 solutions<br />

x with ax 2 + bx + c = , leav<strong>in</strong>g q−1<br />

2 values of x with ax 2 + bx + c = ❆ .<br />

If a = ❆ , there are q + 1 solutions (A, B) to A2 − aB2 = △.<br />

If △ = , two solutions have B = 0, (account<strong>in</strong>g for 2 values of x),<br />

leav<strong>in</strong>g q − 1 solutions with B = 0. Hence we have q−1<br />

2 values of x with<br />

ax 2 + bx + c = = 0, <strong>and</strong> q+1<br />

2 values of x with ax2 + bx + c = ❆ .<br />

If △ = ❆ , then B = 0, so q+1<br />

2 values of x have ax 2 + bx + c = = 0,<br />

leav<strong>in</strong>g q−1<br />

2 values of x with ax2 + bx + c = ❆ .<br />

Now put S = |{σ 2 = 0 : σ 2 + 1 = = 0}|. Note: If −1 = , say<br />

−1 = c 2 , then σ 2 = c 2 = −1 is not counted <strong>in</strong> S.<br />

Put N = |{τ 2 : τ 2 + 1 = ❆ }|.<br />

If −1 = , so q ≡ 1 (mod 4), then S + N = q−1<br />

2<br />

− 1 = q−3<br />

2 .<br />

If −1 = ❆ , so q ≡ 3 )mod 4), then S + N = q−1<br />

2 .<br />

The number of solutions (x, y) to x 2 − y 2 = 1 is q − 1 by Case 1 of<br />

Theorem 20.23.1. The solutions are of three types:<br />

(i) y = 0, x = ±1. (2 solutions)<br />

(ii) y 2 = −1, x = 0. (2 solutions when −1 = ; 0 solutions when<br />

−1 = ❆ .<br />

(iii) y 2 = α, x 2 = α + 1, 4S solutions.<br />

It follows that q − 1 = 2 + 2 + 4S when −1 = ; q − 1 = 2 + 4S when<br />

−1 = ❆ . Putt<strong>in</strong>g this together we obta<strong>in</strong> the follow<strong>in</strong>g corollary.<br />

Corollary 20.23.3. When q ≡ 1 (mod4), S = q−5<br />

4<br />

When q ≡ 3 (mod 4), S = q−3<br />

4<br />

<strong>and</strong> N = q+1<br />

4 .<br />

20.24 V<strong>and</strong>ermonde Determ<strong>in</strong>ant<br />

<strong>and</strong> N = q−1<br />

4 .<br />

Let t1, . . . , tn be commut<strong>in</strong>g <strong>in</strong>determ<strong>in</strong>ants over K, <strong>and</strong> let A be the n × n<br />

matrix whose entries are from the commutative r<strong>in</strong>g K[t1, . . . , tn] def<strong>in</strong>ed by


20.25. A THEOREM OF BLOKHUIS 885<br />

Then<br />

⎛<br />

⎜<br />

A = ⎜<br />

⎝ .<br />

1 t1 t 2 1 · · · t n−1<br />

1<br />

1 t2 t 2 2 · · · t n−1<br />

2<br />

.<br />

.<br />

1 tn t 2 n · · · t n−1<br />

n<br />

det A = <br />

1≤j


886 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

Hence the l<strong>in</strong>es are partitioned <strong>in</strong>to two classes S <strong>and</strong> N (for square <strong>and</strong><br />

nonsquare). Through 0 there are q+1<br />

l<strong>in</strong>es of S <strong>and</strong> 2 q+1<br />

l<strong>in</strong>es of N. Now let<br />

2<br />

ℓ be a l<strong>in</strong>e of S not through 0, so the l<strong>in</strong>e ℓ ′ through 0 parallel to ℓ is also <strong>in</strong><br />

S. Thus the q+1<br />

l<strong>in</strong>es through 0 <strong>in</strong> N meet ℓ <strong>in</strong> nonsquares, <strong>and</strong> the other<br />

2<br />

q−1<br />

l<strong>in</strong>es through 0 meet<strong>in</strong>g ℓ are <strong>in</strong> S <strong>and</strong> meet ℓ <strong>in</strong> squares. So ℓ has 2 q+1<br />

2<br />

nonsquares <strong>and</strong> q−1<br />

squares. Analogously, if ℓ is a l<strong>in</strong>e of N not through 0 it<br />

2<br />

has q+1<br />

squares <strong>and</strong> 2 q−1<br />

2 nonsquares.<br />

A set X ⊆ K is called special provided all differences of elements of X<br />

are squares. So aX is also special if a is a square <strong>and</strong> “anti-special” if a<br />

is a nonsquare. Similarly, X + a is special for all a ∈ K. If 0 ∈ X, put<br />

X0 = X \ {0}.<br />

A set A of q+1<br />

non-squares such that a − b is a square for all a, b ∈ A,<br />

2<br />

a = b, is called extra-special. For example, we observed above that the set of<br />

nonsquares on a l<strong>in</strong>e of S not throgh 0 is extra-special.<br />

Lemma 20.25.1. Let X be an arbitrary special q-set conta<strong>in</strong><strong>in</strong>g 0, <strong>and</strong> let<br />

A be any extra special set. Then A · X0 is the set of all nonsquares of K.<br />

Proof. Clearly A·X0 conta<strong>in</strong>s only nonsquares <strong>and</strong> conta<strong>in</strong>s q+1<br />

2<br />

products. It rema<strong>in</strong>s only to show that these products are all dist<strong>in</strong>ct. So<br />

suppose ax = by, a, b ∈ A x, y ∈ X0. Then (a−b)x = b(y −x), where (a−b)x<br />

is a square, while b(y − x) is a nonsquare unless x = y, forc<strong>in</strong>g a = b.<br />

2 ·(q−1) = q2 −1<br />

Let σk(X) denote the k th elementary symmetric function of the (f<strong>in</strong>ite)<br />

set X, i.e.,<br />

<br />

(1 + xt) =<br />

x∈X<br />

|X| <br />

k=0<br />

σk(X)t k , or <br />

|X| <br />

(t + xb) = σk(X)b k t |X|−k .<br />

Let X be a special q-set through 0 <strong>and</strong> suppose A is extra special. For<br />

a ∈ A, put fa(t) = <br />

x∈X0 (t − ax) = q−1 i=0 (−1)iaiσi(X0)t q−i−1 .<br />

x∈X<br />

Lemma 20.25.2. <br />

a∈A fa(t) = t q2 −1<br />

2 + 1.<br />

Proof. <br />

a∈A fa(t) = a∈A<br />

x∈X0<br />

(t − ax) = n∈K<br />

n= ❆<br />

(t − n) = t q2 −1<br />

2 + 1.<br />

Lemma 20.25.3. Let X be a special q-set through 0. Then σk(X0) = 0 if<br />

0 < k ≤ q−1<br />

2 .<br />

k=0


20.25. A THEOREM OF BLOKHUIS 887<br />

Proof. Suppose otherwise <strong>and</strong> let m ≤ q−1<br />

be the smallest positive <strong>in</strong>teger<br />

2<br />

with the property that σm(X0) = 0. And let A be any extra special set.<br />

Then<br />

fa(t) = <br />

(t−ax) = t q−1 +(−1) m a m σm(X0)t q−m−1 + terms of lower degree <strong>in</strong> t<br />

x∈X0<br />

which implies that<br />

<br />

a∈A<br />

fa(t) = t q2 −1<br />

2 + (−1) m<br />

<br />

<br />

a m<br />

<br />

a∈A<br />

σm(X0)t q2 −1<br />

2 −m + terms of lower degree.<br />

(To see this, when exp<strong>and</strong><strong>in</strong>g the product <br />

a∈A fa(t), choose the term tq−1 exactly q−1<br />

times <strong>and</strong> (−1) 2 mamσm(X0)t q−m−1 once for some a ∈ A, then add<br />

these terms up over all a ∈ A.)<br />

2 +1 <strong>and</strong> σm(X0) = 0, it follows that <br />

S<strong>in</strong>ce <br />

a∈A fa(t) = t q2 −1<br />

a∈A am = 0<br />

for all extra special sets A. Let A [S] = {a s : a ∈ A}. Then it is easy<br />

to check that both A [−1] <strong>and</strong> A [q] are extra special s<strong>in</strong>ce A is. Hence also<br />

<br />

a∈A a−qm = 0. S<strong>in</strong>ce a q2 −1<br />

2 = −1 for any nonsquare a, we f<strong>in</strong>ally have<br />

<br />

a∈A<br />

a q2 −1<br />

2 −qm = 0 for any extra special A.<br />

Now let t ∈ K \ F <strong>and</strong> let A be the set of nonsquares on the l<strong>in</strong>e through<br />

t parallel to the l<strong>in</strong>e through 0 <strong>and</strong> 1, i.e., A = {t + i : i ∈ F, t + 1 = ❆ }.<br />

Then<br />

0 = 2 <br />

i∈F<br />

t+i= ❆<br />

= − <br />

− <br />

i∈F<br />

t+i= ❆<br />

i∈F<br />

(t + i) q2 −1<br />

2 −qm<br />

(t + i) −qm + <br />

i∈F<br />

t+i=<br />

(t + i) −qm − <br />

i∈F<br />

t+i= ❆<br />

t+i=<br />

(t + i) q2−1 2 −qm − <br />

= <br />

i∈F<br />

i∈F<br />

(t + i) −qm<br />

(t + i) −qm<br />

(t + i) q2 −1−qm = F (t).


888 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

The function F (t) vanishes for all t ∈ K \F . But for t ∈ F , t+i is always<br />

a square, so (t + i) q2 −1<br />

2 = (t + i) q2 −1 = 1, imply<strong>in</strong>g F (t) = 0. Hence F (t) is<br />

identically zero.<br />

Consider the coefficient of tq2−qm−q <strong>in</strong> F (t). (Note:<br />

qm − q ⇐⇒ q > 1.) The coefficient is<br />

− <br />

2 q − 1 − am<br />

q<br />

i∈F<br />

2 <br />

i<br />

− qm − q<br />

(q2−1−qm)−(q 2−qm−q) 2 q − 1 − qm <br />

=<br />

i<br />

q − 1<br />

q−1 <br />

2 q − 1 − qm<br />

=<br />

q − 1<br />

i∈F<br />

q 2 −1<br />

2<br />

= (q2 − qm − 1)(q2 − qm − 2) · · · (q2 − qm − (q − 1))<br />

.<br />

(q − 1)!<br />

− qm < q2 −<br />

But pj ||q − i ⇐⇒ pj ||q2 − qm − i, 1 ≤ i ≤ q − 1, for 1 ≤ j ≤ e. Hence<br />

q2 −1−qm<br />

≡ 0 (mod p), contradict<strong>in</strong>g the fact that F (t) ≡ 0, <strong>and</strong> complet<strong>in</strong>g<br />

q−1<br />

the proof of the lemma.<br />

Lemma 20.25.4. With X as <strong>in</strong> the previous lemma, σk(X0) = 0 for 0 <<br />

k < q − 1.<br />

Proof. It is easy to check that X [−1]<br />

0 ∪ {0} is also special, so<br />

<br />

<br />

σq−1−k(X0) = x · σk X0) [−1] = 0, if 0 < k <<br />

x∈X0<br />

Hence σk(X0) = 0 for 0 < k < q − 1.<br />

q − 1<br />

2 .<br />

Theorem 20.25.5. Let X be a special q-set. Then X is a l<strong>in</strong>e <strong>in</strong> S.<br />

Proof. We may assume that 0 ∈ X, s<strong>in</strong>ce otherwise we take a translation of<br />

X.<br />

f(t) = <br />

q−1 <br />

(t − x) = (−1) k σk(X0)t q−1−k = t q−1 + <br />

x.<br />

x∈X0<br />

k=0<br />

x∈X0<br />

So for x, y ∈ X0, 0 = f(x) = f(y) implies x q−1 = y q−1 =⇒ y = ix, i ∈ F .<br />

Hence for fixed x ∈ X0, X = {ix : i ∈ F }, i.e., X is a l<strong>in</strong>e of S.<br />

Corollary 20.25.6. If X is a q-subset of K with the property that the difference<br />

of any two elements of X is always a nonsquare, then X is a l<strong>in</strong>e of<br />

N.<br />

Proof. Apply the theorem to the set aX where a is any nonsquare of K.


20.26. THEOREMS OF BRUEN, LEVINGER AND CARLITZ 889<br />

20.26 Theorems of Bruen, Lev<strong>in</strong>ger <strong>and</strong> Carlitz<br />

Let q = pn where p is an odd prime, <strong>and</strong> put m = (q − 1)/2. It is easy to see<br />

that for a ∈ Fq,<br />

a m ⎧<br />

⎨ = 1, if a = ∈ Fq;<br />

= = −1, if a =<br />

⎩<br />

❆ ∈ Fq;<br />

= 0, if a = 0 ∈ Fq.<br />

In 1960 L. Carlitz [Ca60] proved the follow<strong>in</strong>g theorem.<br />

Theorem 20.26.1. (Theorem of Carlitz [Ca60])<br />

Let f(x) be a permutation polynomial over Fq such that f(0) = 0 <strong>and</strong><br />

f(1) = 1. Suppose that<br />

Then f ∈ Aut(Fq), i.e., f(x) = x pj<br />

(f(a) − f(b)) m = (a − b) m ∀ a, b ∈ Fq.<br />

for for some j with 0 ≤ j ≤ n − 1.<br />

More than a decade later Bruen <strong>and</strong> Lev<strong>in</strong>ger [BL73] proved a more<br />

general theorem from which the theorem of Carlitz is an easy corollary. In<br />

this section we recall a few elements of the theory of group actions on a set,<br />

prove the theorem of Bruen <strong>and</strong> Lev<strong>in</strong>ger, <strong>and</strong> then deduce the theorem of<br />

Carlitz. (See [BL73] for more on the history of this theorem.)<br />

Let X be a nonempty set <strong>and</strong> SX the symmetric group on X, i.e., SX is<br />

the group of all permutations of the elements of X with the group operation<br />

be<strong>in</strong>g the composition of functions. Let G be an arbitrary group. An action<br />

of G on X is a homomorphism µ : G → SX. In other words, µ is a function<br />

from G to SX satisfy<strong>in</strong>g<br />

for all g1, g2 ∈ G.<br />

µ(g1) ◦ µ(g2) = µ(g1 · g2) (20.80)<br />

Often (µ(g))(x) is written as g(x) if only one action is be<strong>in</strong>g considered.<br />

The only difference between th<strong>in</strong>k<strong>in</strong>g of G as act<strong>in</strong>g on X <strong>and</strong> th<strong>in</strong>k<strong>in</strong>g of G<br />

as a group of permutations of the elements of X is that for some g1, g2 ∈ G,<br />

g1 = g2, it might be that µ(g1) <strong>and</strong> µ(g2) are actually the same permutation,<br />

i.e., g1(x) = g2(x) for all x ∈ X. Also, sometimes there are several different<br />

actions of G on X which may be considered <strong>in</strong> the same context.


890 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

Lemma 20.26.2. Let µ be an action of G on X <strong>and</strong> let e be the identity of<br />

G. Then the follow<strong>in</strong>g hold:<br />

(i) µ(e)is the identity permutation on X.<br />

(ii) µ(g −1 ) = [µ(g)] −1 , for each g ∈ G.<br />

(iii) More generally, for each n ∈ Z, µ(g n ) = (µ(g)) n .<br />

Proof. These results are special cases of results usually proved for homomorphisms<br />

<strong>in</strong> general. We leave the easy proofs to the reader.<br />

Let G act on X. For x, y ∈ X, def<strong>in</strong>e x ∼ y iff there is some g ∈ G for<br />

which g(x) = y.<br />

Lemma 20.26.3. The relation “∼” is an equivalence relation on X.<br />

Proof. This is an easy exercise.<br />

The “∼” equivalence classes are called G-orbits <strong>in</strong> X. The orbit conta<strong>in</strong><strong>in</strong>g<br />

x is denoted x G or sometimes just [x] if there is no likelihood of<br />

confusion.<br />

For g ∈ G, put Xg = {x ∈ X : g(x) = x}, so Xg is the set of elements of<br />

X fixed by g. For x ∈ X, put Gx = {g ∈ G : g(x) = x}. Gx is the stabilizer<br />

of x <strong>in</strong> G.<br />

Lemma 20.26.4. For x ∈ X, Gx is a subgroup of G (written Gx ≤ G). If<br />

G is f<strong>in</strong>ite, then |G| = |[x]| · |Gx|.<br />

Proof. It is an easy exercise to show that Gx is a subgroup of G. Hav<strong>in</strong>g<br />

done that, def<strong>in</strong>e a function f from the set of left cosets of Gx <strong>in</strong> G to [x] by:<br />

f(gGx) = g(x).<br />

First we show that f is well-def<strong>in</strong>ed. If g1Gx = g2Gx, then g −1<br />

2 g1 ∈ Gx,<br />

so that (g −1<br />

2 · g1)(x) = x, which implies g1(x) = g2(x). Hence f(g1Gx) =<br />

f(g2Gx). So f is well-def<strong>in</strong>ed. Now we claim f is a bijection. Suppose<br />

f(g1Gx) = f(g2Gx), so by def<strong>in</strong>ition g1(x) = g2(x) <strong>and</strong>


20.26. THEOREMS OF BRUEN, LEVINGER AND CARLITZ 891<br />

(g −1<br />

2 · g1)(x) = x. Hence g −1<br />

2 · g1 ∈ Gx, imply<strong>in</strong>g g1Gx = g2Gx, so f is one-toone.<br />

If y ∈ [x], then there is a g ∈ G with g(x) = y. So f(gGx) = g(x) = y,<br />

imply<strong>in</strong>g f is onto [x].<br />

Hence f is a bijection from the set of left cosets of Gx <strong>in</strong> G to [x], i.e.,<br />

|G|/|Gx| = |[x]| as claimed.<br />

Lemma 20.26.5. For some x, y ∈ X <strong>and</strong> g ∈ G, suppose that g(x) = y.<br />

Then (i) H ≤ Gx iff gHg −1 ≤ Gy; <strong>in</strong> particular,<br />

(ii) Gg(x) = gGxg −1 .<br />

Proof. Easy exercise.<br />

Lemma 20.26.6. The Orbit-Count<strong>in</strong>g Lemma (Not Burnside’s Lemma) Let<br />

k be the number of G-orbits <strong>in</strong> X. Then<br />

k = 1<br />

<br />

<br />

|Xg| .<br />

|G|<br />

g∈G<br />

Proof. Put S = {(x, g) ∈ X × G : g(x) = x}. We determ<strong>in</strong>e |S| <strong>in</strong> two<br />

ways: |S| = <br />

x∈X |Gx| = <br />

g∈G |Xg|. S<strong>in</strong>ce x ∼ y iff [x] = [y], <strong>in</strong> which<br />

<br />

case |[x]| = |[y]|, it must be that |G|/|Gx| = |G|/|Gy| whenever x ∼ y. So<br />

y∈[x] |Gy| = <br />

y∈[x] |Gx| = |[x]| · |Gx| = |G|. Hence <br />

x∈X |Gx| = k · |G| =<br />

<br />

g∈G |Xg|.<br />

And hence k = g∈G |Xg|<br />

<br />

/|G|.<br />

The follow<strong>in</strong>g situation often arises. There is some given action ν of G<br />

on some set X. F is the set of all functions from X <strong>in</strong>to some set Y . Then<br />

there is a natural action µ of G on F def<strong>in</strong>ed by: For each g ∈ G <strong>and</strong> each<br />

f ∈ F = Y X ,<br />

µ(g)(f) = f ◦ ν(g −1 ).<br />

Sometimes this is written as: f g (x) = f (g −1 (x)).<br />

Theorem 20.26.7. µ : G → SF is an action of G on F.


892 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

Proof. First note that µ(g1 · g2)(f) = f ◦ ν((g1 · g2) −1 ) = f ◦ ν(g −1<br />

2 · g −1<br />

1 ) = f ◦<br />

[ν(g −1<br />

2 ) ◦ ν(g −1<br />

1 )] = [f ◦ ν(g −1<br />

2 )]◦ν(g −1<br />

1 ) = µ(g1)(f◦ν(g −1<br />

2 ) = µ(g1)(µ(g2)(f)) =<br />

(µ(g1) ◦ µ(g2))(f). So µ is an action of G on F provided each µ(g) is actually<br />

a permutation of the elements of F.<br />

So suppose µ(g)(f1) = µ(g)(f2), i.e., f1 ◦ ν(g−1 ) = f2 ◦ ν(g−1 ). But s<strong>in</strong>ce<br />

ν(g−1 ) is a permutation of the elements of X, it must be that f1 = f2, so<br />

µ(g) is one-to-one on F. For each g ∈ G <strong>and</strong> f : X → Y , f ◦ ν(g) ∈ Y X <strong>and</strong><br />

µ(g)(f ◦ ν(g)) = (f ◦ ν(g)) ◦ ν(g−1 ) = f, imply<strong>in</strong>g that µ(g) is onto.<br />

To use Not Burnside’s Lemma to count G-orbits <strong>in</strong> F, we need to compute<br />

|Fµ(g)| for each g ∈ G.<br />

Lemma 20.26.8. For g ∈ G, let c be the number of cycles of ν(g) as a<br />

permutation on X. Then |Fµ(g)| = |Y | c .<br />

Proof. For f : X → Y , g ∈ G, we want to know when is f ◦ ν(g −1 ) = f,<br />

i.e., (f ◦ ν(g −1 ))(x) = f(x). This is iff f(ν(g −1 )(x)) = f(x). So f must have<br />

the same value at x, ν(g −1 )(x), ν(g −2 )(x), . . ., etc. This just says that f is<br />

constant on the orbits of ν(g) <strong>in</strong> X. So if c is the number of cycles of ν(g) as<br />

a permutation on X, then |Y | c is the number of functions f : X → Y which<br />

are constant on the orbits of ν(g).<br />

Apply<strong>in</strong>g the orbit-count<strong>in</strong>g Lemma to the action µ of G on F = Y X , we<br />

have:<br />

Theorem 20.26.9. The number of G-orbits <strong>in</strong> F is<br />

1<br />

|G|<br />

<br />

g∈G<br />

|Fµ(g)| = 1<br />

|G|<br />

<br />

|Y | c(g) ,<br />

where c(g) is the number of cycles of ν(g) as a permutation on X.<br />

An action ν of a group G on a set X is called faithful if ν is one-to one,<br />

so ν(g) = id if <strong>and</strong> only if g is the identity element of G. It is transitive<br />

on X provided for any po<strong>in</strong>ts x, y ∈ X there is at least one g ∈ G with<br />

ν(g) : x ↦→ y. Further, ν is said to be k-ply transitive on X provided that if<br />

(x1, . . . , xk) <strong>and</strong> (y1, . . . , yk) are any two ordered k-tuples of dist<strong>in</strong>ct elements<br />

of X, there is some g ∈ G for which νg : xi ↦→ yi for all i = 1, 2, . . . , k.<br />

g∈G


20.26. THEOREMS OF BRUEN, LEVINGER AND CARLITZ 893<br />

We now suppose that Y is replaced by the elements of the Galois field<br />

Fq, q = p n , p a prime. Put<br />

V = {f : X → Fq}<br />

.<br />

If f, g ∈ V , def<strong>in</strong>e f + g by (f + g)(a) = f(a) + g(a) for all a ∈ X. Also,<br />

for f ∈ V <strong>and</strong> a ∈ Fq def<strong>in</strong>e af by (af)(b) = a(f(b)) for all b ∈ X. Then<br />

it is easy to show that V is a vector space over Fq with dimension |X|. One<br />

natural basis for V is given by<br />

B = {fa : a ∈ X} where fa(b) = δa,b = 1 ∈ Fq if a = b <strong>and</strong><br />

fa(b) = 0 ∈ Fq if a = b.<br />

It follows that if f ∈ V , then for each b ∈ X<br />

This just says that<br />

f(b) = <br />

f(a) · fa(b). (20.81)<br />

a∈X<br />

For f ∈ V, f = <br />

f(a)fa. (20.82)<br />

It is easy to check that B is also an <strong>in</strong>dependent set over Fq, so B is <strong>in</strong>deed<br />

a basis for V .<br />

Note that the set of all constant functions a : b ↦→ a for all b ∈ X (<strong>and</strong><br />

fixed a ∈ Fq) is a 1-dimensional subspace of V , <strong>and</strong> a ↦→ a is an isomorphism<br />

from Fq to this subspace, which we also denote by Fq. So the constant<br />

function a is identified with the element a ∈ Fq.<br />

At this po<strong>in</strong>t let ν be a faithful, transitive action of the group G on the<br />

set X. In place of ν(g)(a) we write g(a). So g1(a) = g2(a) for all a ∈ X<br />

implies g1 = g2. And for each pair (a, b) ∈ X × X there is a g ∈ G for which<br />

b = g(a).<br />

Then for f ∈ V , i.e., f : X → Fq, <strong>in</strong> place of µ(g)(f) = f ◦ g −1 , we write<br />

g(f) = f ◦ g −1 . For a ∈ X, Ga denotes the stabilizer <strong>in</strong> G of the element a<br />

under the action ν.<br />

The action (under µ) of g ∈ G on the basis element fa is especially nice:<br />

(g(fa))(b) = fa(g −1 (b)) = δa,g −1 (b) = 1 iff g −1 (b) = a iff g(a) = b, so<br />

a∈X<br />

g(fa) = fg(a). (20.83)


894 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

A map φ : V → V is a G-homomorphism provided φ is an Fq-l<strong>in</strong>ear map<br />

from V <strong>in</strong>to V satisfy<strong>in</strong>g φ(g(f)) = g(φ(f)) for all f ∈ V <strong>and</strong> all g ∈ G. Put<br />

HomG(V, V ) = {φ : V → V : φ is a G − homomorphism}.<br />

We make HomG(V, V ) <strong>in</strong>to a vector space over Fq as follows. For φ1, φ2 ∈<br />

HomG(V, V ) <strong>and</strong> a ∈ Fq, def<strong>in</strong>e φ1 + φ2 by (φ1 + φ2)(f) = φ1(f) + φ2(f)<br />

for all f ∈ V , <strong>and</strong> def<strong>in</strong>e aφ1 by (aφ1)(f) = a · φ1(f). These are just the<br />

st<strong>and</strong>ard vector addition <strong>and</strong> scalar multiplication that make HomFq(V, V )<br />

<strong>in</strong>to a vector space over Fq. But we show that its subset HomG(V, V ) is<br />

closed under this vector addition <strong>and</strong> scalar multiplication.<br />

Let φ1, φ2 ∈ HomG(V, V ), i.e., φi(g(f)) = g(φi(f)), i = 1, 2. Then we<br />

must show that (φ1 + φ2)(g(f)) = g([(φ1 + φ2)(f)]) for all f ∈ V <strong>and</strong> all<br />

g ∈ G.<br />

(φ1 + φ2)(g(f)) = φ1(g(f)) + φ2(g(f)) (Def. of addition <strong>in</strong> HomG(V, V ))<br />

Then<br />

= g(φ1(f)) + g(φ2(f)) (φ1, φ2 ∈ HomG(V, V ))<br />

(g(φ1(f)) + g(φ2(f)))(x) = g(φ1(f))(x) + g(φ2(f))(x) (addition <strong>in</strong> V )<br />

= φ1(f)(g −1 (x)) + φ2(f)(g −1 (x)) (G acts on V )<br />

= (φ1(f) + φ2(f))(g −1 (x)) (addition <strong>in</strong> V )<br />

= (g(φ1(f) + φ2(f)))(x) (G acts on V )<br />

complet<strong>in</strong>g the proof that φ1 + φ2 ∈ HomG(V, V ).<br />

Now start with φ ∈ HomG(V, V ) <strong>and</strong> a ∈ Fq. Then<br />

(g[(aφ)(f)])(x)<br />

= [(aφ)(f)](g −1 (x)) ( Def. of action of G on V )<br />

= [a · φ(f)](g −1 (x)) (Def of scalar multiplication <strong>in</strong> Hom G(V, V ))<br />

= a[φ(f)(g −1 (x))] (Def of scalar multiplication <strong>in</strong> V )<br />

= a[g(φ(f))(x)] (Def. of action of G on V )<br />

= a[φ(g(f))(x)] (Hypothesis that φ ∈ HomG(V, V )<br />

= [a · φ(g −1 (f))](x) (Def. of scalar multiplication <strong>in</strong> V )<br />

= [(aφ)(g −1 (f))](x) (Def. of scalar multiplication <strong>in</strong> Hom G(V, V )


20.26. THEOREMS OF BRUEN, LEVINGER AND CARLITZ 895<br />

This shows that g[(aφ)(f)] = (aφ)(g(f)), so that aφ ∈ HomG(V, V ).<br />

Hence HomG(V, V ) is a vector space over Fq.<br />

Lemma 20.26.10. Let G be a transitive permutation group on the set X.<br />

Fix a ∈ X <strong>and</strong> suppose that the stabilizer Ga has s orbits on X. Then<br />

dimFq(HomG(V, V )) = s.<br />

Hence G is doubly transitive on X if <strong>and</strong> only if dimFq(HomG(V, V )) = 2.<br />

Proof. Recall that V has a basis consist<strong>in</strong>g of the functions fa, a ∈ X. And<br />

by Eq. 20.83 we know that g(fa) = fg(a). Then, s<strong>in</strong>ce G is transitive on X,<br />

<strong>and</strong> s<strong>in</strong>ce φ(fg(a)) = φ(g(fa)) = g(φ(fa)) for φ ∈ HomG(V, V ), it follows that<br />

an element φ of HomG(V, V ) is uniquely determ<strong>in</strong>ed by the image under φ<br />

of fa for some fixed a. (We will show that this forces the dimension over Fq<br />

of HomG(V, V ) to be equal to the number of l<strong>in</strong>early <strong>in</strong>dependent choices for<br />

the image of fa.)<br />

Suppose that g ∈ Ga, so (g(fa))(b) = fa(g−1 (b)) = 1 iff g−1 (b) = a iff<br />

b = a, so that Ga fixes fa. Then for φ ∈ HomG(V, V ) <strong>and</strong> g ∈ Ga, we have<br />

g(φ(fa)) = φ(g(fa)) = φ(fa), so Ga <br />

fixes φ(fa). Suppose that φ(fa) = f =<br />

αbfb with αb ∈ Fq. If the def<strong>in</strong>ition of φ on the other basis elements fb is<br />

to permit φ ∈ homG(V, V ), then for g ∈ Ga we must have g(φ(fa)) = φ(fa),<br />

so<br />

φ(fa) = <br />

<br />

<br />

αbfb = g<br />

= <br />

αbg(fb) =<br />

b∈X<br />

b∈X<br />

αbfb<br />

= <br />

αbfg(b) = <br />

b∈X<br />

b∈X<br />

b∈X<br />

α g −1 (b)fb.<br />

So Ga fixes φ(fa) if <strong>and</strong> only if αb = αc whenever b <strong>and</strong> c are <strong>in</strong> the same<br />

orbit of Ga on X.<br />

Suppose the Ga-orbits on X are O1 = {a}, O2, . . . , Os. Then if φ ∈<br />

HomG(V, V ), we know that φ(fa) = s j=1 αj<br />

b∈Oj fb<br />

<br />

if <strong>and</strong> only if Ga<br />

fixes φ(fa). So choose α1, . . . , αs arbitrarily <strong>in</strong> Fq <strong>and</strong> put<br />

φ(fa) =<br />

s<br />

j=1<br />

αj<br />

⎛<br />

⎝ <br />

b∈Oj<br />

fb<br />

⎞<br />

⎠ .


896 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

Then we need to def<strong>in</strong>e φ(fb) for all b ∈ X \ {a} <strong>in</strong> such a way that if<br />

b = g(a), then<br />

φ(fb)(= φ(fg(a)) = φ(g(fa)) = g(φ(fa)).<br />

But we need this to be well-def<strong>in</strong>ed. So suppose that b = g1(a) = g2(a),<br />

i.e., g −1<br />

2 g1 ∈ Ga. Then φ(fb) = g1(φ(fa)) = g2(φ(fa)) if <strong>and</strong> only if g −1<br />

2 g1 ∈<br />

Ga. Then φ(fb) = g1(φ(fa)) = g2(φ(fa)) if <strong>and</strong> only (g −1<br />

2 g1)(φ(fa)) = φ(fa).<br />

But we saw above that g −1<br />

2 g1 ∈ Ga implies that (g −1<br />

2 g1)(φ(fa)) = φ(fa). So<br />

φ(fb) is well-def<strong>in</strong>ed.<br />

This gives q s dist<strong>in</strong>ct φ ∈ HomG(V, V ) that clearly form a vector subspace<br />

of d<strong>in</strong>emsion s of HomFq(V, V ) <strong>and</strong> gives all the elements of HomG(V, V ).<br />

Now we specialize further. Suppose that <strong>in</strong> the notation used earlier <strong>in</strong><br />

this section X = Y = Fq. Then we can view V = {f : Fq → Fq} as a<br />

vector space over Fq with dimension equal to q as above. Moreover, the basis<br />

functions fa have the follow<strong>in</strong>g appearance:<br />

fa(x) = 1 − (x − a) q−1 .<br />

If S is any subspace of V , then S is a G-module provided that g(f) ∈ S<br />

for all f ∈ S <strong>and</strong> g ∈ G. Suppose that S is a non-trivial G-module (i.e.,<br />

Fq = S = V ), <strong>and</strong> suppose that ɛ ∈ S, where ɛ : a ↦→ a for all a ∈ Fq.<br />

Then (g(ɛ))(a) = ɛ(g −1 (a)) = g −1 (a). This connects the structure of S to<br />

<strong>in</strong>formation about the action of G.<br />

Suppose that q − 1 = de, 1 < d < q − 1. Put K = {a ∈ Fq : a d = 1}. So<br />

K is a subgroup of F ∗ q = Fq \ {0} hav<strong>in</strong>g order d.<br />

Def<strong>in</strong>e two subsets of V as follows:<br />

<strong>and</strong><br />

G = {f ∈ V :<br />

f(x) − f(y)<br />

x − y<br />

∈ K whenever x = y}; (20.84)<br />

H = {f ∈ V : f(x) = a + bx; a ∈ Fq, b ∈ K}. (20.85)<br />

Let G0 be the stabilizer of 0 <strong>in</strong> G, <strong>and</strong> H0 the stabilizer of 0 <strong>in</strong> H. Clearly<br />

H0 = {f ∈ V : f(x) = bx for some b ∈ K}.<br />

Lemma 20.26.11. G is a group of permutations of Fq <strong>and</strong> H ≤ G. The<br />

nontrivial orbits of G0 <strong>and</strong> of H0 are the e = (q − 1)/d cosets of K <strong>in</strong> F ∗ q .


20.26. THEOREMS OF BRUEN, LEVINGER AND CARLITZ 897<br />

Proof. If a+bx ∈ H, then (x−y) −1 [(a+bx)−(a+by)] = b ∈ K, so H ≤ G. If<br />

g ∈ G, then g is a permutation of Fq, s<strong>in</strong>ce, for x = y, (x−y) −1 [g(x)−g(y)] ∈<br />

K implies that g(x) − g(y) = 0. Further, if f, g ∈ G, the quantity<br />

(x − y) −1 [fg(x) − fg(y)] = (x − y) −1 [g(x) − g(y)] ×<br />

× [g(x) − g(y)] −1 [f(g(x)) − f(g(y))]<br />

is a product of two elements of K <strong>and</strong> is thus itself <strong>in</strong> K. Hence fg ∈ G <strong>and</strong><br />

G is a group.<br />

Let G0 <strong>and</strong> H0 be the stabilizers of 0 <strong>in</strong> G, H, respectively. If f ∈ G0, it<br />

follows from the def<strong>in</strong>ition of G that f(x) − f(0) = f(x) = kx ∈ Kx. Hence<br />

G0x ⊂ Kx for each x ∈ Fq. However, Kx = {bx : b ∈ K} = {f(x) : f ∈<br />

H0} ⊂ {f(x) : f ∈ G0} = G0x. Thus G0x = H0x = Kx, <strong>and</strong> the non-trivial<br />

orbits of G0 <strong>and</strong> H0 are the cosets of K <strong>in</strong> F ∗ q , each of which has length d,<br />

imply<strong>in</strong>g that the number of non-trivial orbits is e = (q − 1)/d.<br />

Def<strong>in</strong>e φk ∈ V by φk(x) = x kd , 0 ≤ k ≤ e, <strong>and</strong> for a ∈ Fq def<strong>in</strong>e Ta ∈ H<br />

by Ta(x) = x + a. Then Ta acts on f0 by<br />

(Ta(f0))(x) = f0((Ta) −1 (x)) = f0(x − a) = 1 − (x − a) q−1 = fa(x),<br />

i.e., Ta : f0 ↦→ fa.<br />

Then for f ∈ V we have<br />

f = <br />

f(a)fa = <br />

f(a)Ta(f0). (20.86)<br />

a∈Fq<br />

a∈Fq<br />

Suppose φ ∈ HomG(V, V ), i.e., φ(g(f)) = g(φ(f)) for all g ∈ G. Then<br />

⎛<br />

φ(f) = φ ⎝ <br />

⎞<br />

f(a)Ta(f0) ⎠ = <br />

f(a)φ(Ta(f0)) = <br />

f(a)Ta(φ(f0)).<br />

a∈Fq<br />

a∈Fq<br />

a∈Fq<br />

This says that φ is completely determ<strong>in</strong>ed by the image of f0 under φ.<br />

Suppose that φ(f0)(x) = q−1<br />

i=0 λix i . Let f ∈ H0, so f(x) = b −1 x for<br />

some b ∈ K. Then f(f0) = f0(bx) = 1 − (bx) q−1 = 1 − x q−1 = f0(x), i.e.,


898 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

f(f0) = f0, <strong>and</strong> for this f<br />

q−1<br />

λix i = φ(f0)(x) = φ(f(f0))(x) = [f(φ(f0))](x)<br />

i=0<br />

This implies that<br />

<strong>and</strong> hence<br />

= φ(f0) ◦ f −1 q−1 <br />

(x) = φ(f0)(bx) = λib i x i .<br />

q−1 <br />

λi(1 − b i )x i = 0 ∀x ∈ Fq<br />

i=0<br />

λi(1 − b i ) = 0 ∀i = 0, 1, . . . , q − 1.<br />

Suppose that K = 〈b〉, so b i = 1 iff i ≡ 0 (mod d). It follows that λi = 0<br />

if i ≡ 0 (mod d), which implies<br />

so<br />

φ(f0)(x) =<br />

φ(f0) =<br />

e<br />

k=0<br />

λkdx kd ,<br />

i=0<br />

e<br />

λkdφk, (20.87)<br />

k=0<br />

where φk(x) = x kd , 0 ≤ k ≤ e. We have completed most the proof of the<br />

follow<strong>in</strong>g theorem.<br />

Theorem 20.26.12. If φ ∈ HomG(V, V ), then φ is completely determ<strong>in</strong>ed<br />

by the image of f0 under φ, <strong>and</strong> φ(f0) must be a l<strong>in</strong>ear comb<strong>in</strong>ation (over<br />

Fq) of the e + 1 monomials φk(x). Conversely, given any such l<strong>in</strong>ear comb<strong>in</strong>ation<br />

e k=0 λkxkd , there exists a unique element φ ∈ HomG(V, V ) such<br />

that φ(f0) = λkxkd .<br />

Proof. The first part of the theorem is proved. In the converse part, the<br />

uniqueness is clear, but the existence of φ <strong>in</strong> HomG(V, V ) is probably not. It<br />

would be clear if we knew that the dimension of HomG(V, V ) were equal to<br />

e + 1. This follows from the fact that the dimension of HomG(V, V ) is equal<br />

to the number of G0-orbits <strong>in</strong> Fq (by Lemma 20.26.10), <strong>and</strong> this is e + 1 by<br />

Lemma 20.26.11.


20.26. THEOREMS OF BRUEN, LEVINGER AND CARLITZ 899<br />

Corollary 20.26.13. Fix k with 0 ≤ k ≤ e. The subspace of V spanned by<br />

the polynomial functions (x − a) dk , a ∈ Fq, is a G-module.<br />

Proof. If φ ∈ HomG(V, V ), then φ(V ) is a G-module. By the previous theorem,<br />

for fixed k there exists a φ <strong>in</strong> HomG(V, V ) with φ(f0) = x kd . Further,<br />

φ(fa)(x) = φ(Ta(f0))(x) = Ta(φ(f0))(x)<br />

= (φ(f0) ◦ T −1<br />

a )(x) = φ(f0)(x − a) = (x − a) kd .<br />

Hence φ(V ) is the module described <strong>in</strong> the corollary.<br />

Lemma 20.26.14. Let λ = n−1<br />

i=0 αip i , where 0 ≤ αi < p, <strong>and</strong><br />

n−1<br />

Mλ = {r = βip i : 0 ≤ βi ≤ αi}. (20.88)<br />

i=0<br />

If Sλ is the subspace of V spanned by the polynomials (x − a) λ , a ∈ Fq, then<br />

Sλ has a basis<br />

{ɛr(x) = x r : r ∈ Mλ}. (20.89)<br />

Proof. S<strong>in</strong>ce (x − a) λ = λ λ r λ−r<br />

r=0 x (−a) , Sλ is conta<strong>in</strong>ed <strong>in</strong> the subspace<br />

r<br />

of V generated by the ɛr with λ<br />

= 0 (<strong>in</strong> Fq). This is just the set <strong>in</strong> Eq. 20.88<br />

r<br />

s<strong>in</strong>ce λ<br />

is relatively prime to p exactly when r ∈ Mλ by the Theorem of<br />

r<br />

Lucas.<br />

For the converse, note that<br />

<br />

a q−1+r−λ (x − a) λ = <br />

a∈Fq<br />

=<br />

λ<br />

a∈F k=0<br />

λ<br />

k=0<br />

λ<br />

k<br />

= (−1) λ−r−1<br />

<br />

λ<br />

x<br />

k<br />

k (−1) λ−k a q−1+r−k<br />

<br />

x k <br />

λ−k<br />

(−1)<br />

<br />

λ<br />

x<br />

r<br />

r ,<br />

a∈Fq<br />

a q−1+r−k<br />

<br />

unless λ = q − 1 <strong>and</strong> r = 0 or q − 1. This follows from the fact that<br />

a∈Fq as = −1 if s ≡ 0 (mod q − 1), <strong>and</strong> <br />

a∈Fq as = 0 otherwise. Thus<br />

ɛr ∈ Sλ whenever r ∈ Mλ, except possibly <strong>in</strong> the exceptional case where<br />

λ = q − 1. But ɛq−1 ∈ Sq−1 by def<strong>in</strong>ition, <strong>and</strong>


900 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

where we used Eq. 20.81<br />

ɛ0(x) = 1 = <br />

fa(x) = <br />

−(x − a) q−1 ∈ Sq−1,<br />

a∈Fq<br />

S<strong>in</strong>ce d|(q − 1), clearly (d, p) = 1. Write d = n−1<br />

i=0 αip i , where 0 ≤ αi ≤<br />

p − 1, for 0 ≤ i ≤ n − 1 <strong>and</strong> we know that α0 = 0. Then 1 ∈ Md <strong>and</strong><br />

d − 1 ∈ Md. Recall that φr(x) = x dr , so φ1(x) = x d . Then φ1(V ) = Sd<br />

is a G-module. Hence for g ∈ G <strong>and</strong> r ∈ Md, ɛr ∈ Sd <strong>and</strong> <strong>in</strong> particular<br />

ɛ g r (x) = ɛr(gx) = (gx) r ∈ Sd.<br />

Lemma 20.26.15. Let f ∈ G. Then f(x) = u + vx t , where u = f(0),<br />

v = f(1) − f(0), <strong>and</strong> td ≡ d (mod q − 1). Also v d = 1, i.e., v ∈ K.<br />

Proof. Let u = f(0). S<strong>in</strong>ce each translation Ta is <strong>in</strong> G, (put a = −u)<br />

ψ(x) := T(−u)(f(x)) = f(x) − u ∈ G <strong>and</strong> ψ(0) = f(0) − u = 0.<br />

a∈Fq<br />

S<strong>in</strong>ce 1, d − 1 ∈ Md, both ɛ ψ<br />

1 = ψ <strong>and</strong> ɛ ψ<br />

d−1 = ψd−1 are <strong>in</strong> Sd. (Here we<br />

are us<strong>in</strong>g the fact that k ∈ Md <strong>and</strong> ψ ∈ G imply ɛ ψ<br />

k<br />

∈ Sd.)<br />

Also, ψ ∈ G0 <strong>and</strong> G0x = Kx imply x −1 ψ(x) ∈ K, so x d = ψ(x) · ψ(x) d−1 .<br />

But x d = ψ(x) · ψ(x) d−1 can be a product of two polynomials of degree at<br />

most d only if ψ(x) = vx t <strong>and</strong> ψ(x) d−1 = v ′ x d−t where vv ′ = 1 <strong>and</strong> 0 < t < d.<br />

Then ψ d (x) = v d x td = x d , if <strong>and</strong> only if td ≡ d (mod q − 1) <strong>and</strong> v d = 1.<br />

Further, v = ψ(1) = f(1) − u = f(1) − f(0).<br />

Theorem 20.26.16. (Bruen <strong>and</strong> Lev<strong>in</strong>ger [BL73]) Let q = p n , p a prime,<br />

<strong>and</strong> K = {x ∈ Fq : x d = 1} for some proper divisor d of q − 1. Then a<br />

mapp<strong>in</strong>g f of Fq <strong>in</strong>to itself satisfies<br />

for x = y <strong>in</strong> Fq, if <strong>and</strong> only if f(x) is given by<br />

(x − y) −1 (f(x) − f(y)) ∈ K (20.90)<br />

where a ∈ Fq, b ∈ K, <strong>and</strong> (q − 1) divides d(p j − 1).<br />

f(x) = a + bx pj<br />

, (20.91)<br />

Proof. It will suffice merely to show that <strong>in</strong> Lemma 20.26.15 the only choices<br />

for t are t = p j .<br />

Without loss of generality we may assume that f ∈ F has the form<br />

f(x) = x t . S<strong>in</strong>ce G is a group conta<strong>in</strong><strong>in</strong>g the translations Ta, for any fixed


20.27. WEDDERBURN’S THEOREM 901<br />

α = 0, h(x) := f(Tα(x)) = (x−α) t is a function <strong>in</strong> G. But by Lemma 20.26.15<br />

h(x) = u + vxt′ = (x − α) t (where u = h(0) = (−α) t <strong>and</strong> v = h(1) − h(0)).<br />

The equation (x − α) t − (u + vxt′ ) = 0 of degree at most max(t, t ′ ) < q − 1 is<br />

satisfied by each x ∈ Fq. Thus all coefficients <strong>in</strong> (x − α) t − (u + vxt′ ) are 0.<br />

This is only possible if t ′ = t, v = 1, <strong>and</strong> (x − α) t = xt + (−α) t′ . S<strong>in</strong>ce α was<br />

arbitrary, this shows that f(x + α) = (x + α) t = xt + αt for all α ∈ Fq, which<br />

implies (s<strong>in</strong>ce f(x) is multiplicative <strong>and</strong> additive) that f is an automorphism<br />

of F , i.e., t = pj . By Lemma 20.26.15 d(pj − 1) ≡ 0 mod q − 1).<br />

To obta<strong>in</strong> the theorem of Carlitz, suppose that p is an odd prime <strong>and</strong> put<br />

d = (q−1)/2. So a ∈ F ∗ q is a square if <strong>and</strong> only if a ∈ K = {α ∈ Fq : αd = 1}.<br />

Then if f is a permutation of the elements of Fq fix<strong>in</strong>g 0 <strong>and</strong> 1 <strong>and</strong> such that<br />

(x − y) −1 (f(x) − f(y)) ∈ K for all x, y ∈ Fq with x = y, it must be that<br />

f(x) = xpj. Here j can be any <strong>in</strong>teger, s<strong>in</strong>ce 2d = q − 1 <strong>and</strong> pj − 1 is even.<br />

20.27 Wedderburn’s Theorem<br />

A skew-field satisfies all the properties of a field except that multiplication is<br />

not commutative. Such an algebraic structure is also called a division r<strong>in</strong>g.<br />

Theorem 20.27.1. The famous theorem of Wedderburn says that a f<strong>in</strong>ite<br />

skew-field (i.e., division r<strong>in</strong>g) R is a field. Hence it is a f<strong>in</strong>ite Galois field<br />

GF (p r ) for some prime p.<br />

Proof. The follow<strong>in</strong>g proof is due to Witt [Wi31]. So let R be a f<strong>in</strong>ite skewfield.<br />

The unit of R generates the characteristic subfield of R, <strong>and</strong> this must<br />

be a f<strong>in</strong>ite field Fp for some prime p. R is naturally viewed as a vector<br />

space over Fp, so must have some f<strong>in</strong>ite dimension r. Then R has exactly<br />

p r elements. The center Z of R consistws of all elements z of R such that<br />

zx = xz for every x ∈ R. Z is a commutative subr<strong>in</strong>g of R, <strong>and</strong> hence is a<br />

f<strong>in</strong>ite field conta<strong>in</strong><strong>in</strong>g Fp. Let Z have q = p s elements. We wish to show that<br />

Z is all of R. In any case R is a vector space over Z, say with dimension t.<br />

Then R has q t = p st = p r elements <strong>in</strong> all. Here t = 1 if <strong>and</strong> only if Z = R.<br />

If x is any element of R, the normalizer Nx of x (i.e., the elements of R that<br />

commute with x) is easily seen to be a subr<strong>in</strong>g conta<strong>in</strong><strong>in</strong>g Z, i.e., a skew-field<br />

over which R may be viewed as a vector space. If Nx had dimension d over<br />

Z, Nx must have q d elements. If R has dimension u over Nx, then R has<br />

(q d ) u = q t elements where d|t. Hence <strong>in</strong> the multiplicative group R ∗ of the


902 CHAPTER 20. APPENDIX 2: ALGEBRA IN FQ[X]<br />

p r − 1 = q t − 1 nonzero elements of R, an element x not <strong>in</strong> Z has normalizer<br />

of order q d − 1, where d is a divisor of t <strong>and</strong> d < t. Count<strong>in</strong>g the elements of<br />

R ∗ we have the class equation for R ∗ :<br />

q t − 1 = q − 1 + qt − 1<br />

qd <br />

, (20.92)<br />

− 1<br />

where q − 1 enumerates the elements of Z <strong>and</strong> each rema<strong>in</strong><strong>in</strong>g summ<strong>and</strong><br />

counts the elements <strong>in</strong> some class of size (q t − 1)/(q d − 1), where d|t, d < t.<br />

Let w be a fixed, complex primitive dth root of 1. Then<br />

Φd(x) =<br />

1≤j≤d <br />

(d,j)=1<br />

(x − w j )<br />

is the dth cyclotomic polynomial whose zeros are the primitive dth roots of 1<br />

<strong>and</strong> all of whose coefficients are <strong>in</strong>tegers. Recall that for each positive <strong>in</strong>teger<br />

t, x t − 1 = <br />

d|t Φd(x). In particular, if d|t, d < t, then<br />

x t − 1 = Φt(x)Φd(x)G(x)<br />

is the product of three monic polynomials with <strong>in</strong>teger coefficients. Hence<br />

Φt(q) =<br />

1≤j≤t <br />

(t,j)=1<br />

(xt − 1)<br />

(xd = Φt(x)G(x).<br />

− 1)<br />

(q − w j ), w a primitive tth root of 1.<br />

S<strong>in</strong>ce w j = 1 is a coomplex root of unity, we have |q − w j | > q − 1. Hence<br />

Φt(q) is a rational <strong>in</strong>teger greater <strong>in</strong> absolute value than q − 1. If t > 1, then<br />

Φt(q) divides each term of Eq. 20.92 except q −1. But then Φt(q) also divides<br />

q − 1, which is impossible s<strong>in</strong>ce |Φt(q)| > q − 1. Hence the only possibility<br />

is that t = 1. This means that Z = R, imply<strong>in</strong>g that R is commutative <strong>and</strong><br />

must be a f<strong>in</strong>ite field.


Chapter 21<br />

Appendix 3: Review of<br />

Sesquil<strong>in</strong>ear Forms<br />

It is expected that many readers of this book will not need to study this<br />

chapter, but we have <strong>in</strong>cluded it as an appendix for easy reference.<br />

21.1 Sesquil<strong>in</strong>ear <strong>and</strong> Quadratic Forms<br />

Let q = pe , p a prime; F = GF (q). Let V be an n-dimensional vector space<br />

over F (i.e., V has rank n). Let B = {v1, . . . , vn} be an ordered basis for V<br />

over F . So for w ∈ V , w = n i=1 civi for unique scalars c1, . . . , cn ⎛ ⎞<br />

∈ F . Write<br />

[w]B = (c1, . . . , cn). And write B =<br />

then<br />

⎜<br />

⎝<br />

v1<br />

.<br />

vn<br />

⎛<br />

⎜<br />

w = [w]B · B = (c1, . . . , cn) ⎝<br />

⎟<br />

⎠ as a column “super”-vector.<br />

v1<br />

.<br />

vn<br />

⎞<br />

⎟<br />

⎠ =<br />

n<br />

civi.<br />

For example, if V = F n = {(a1, . . . , an) : ai ∈ F } <strong>and</strong> if B = {e1 =<br />

(1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)}, then for a =<br />

(a1, . . . , an) = a1e1 + · · · + anen, we have [a]B = a.<br />

Return to the general case with ordered basis B. Let A ∈ Mn(q) (i.e., A<br />

is an n × n matrix over F ), <strong>and</strong> let σ ∈Aut(F ). Def<strong>in</strong>e f : V × V :→ F by<br />

903<br />

i=1


904CHAPTER 21. APPENDIX 3: REVIEW OF SESQUILINEAR FORMS<br />

f : (v, w) ↦→ [v]BA([w] T B) σ .<br />

So if [v]B = (c1, . . . , cn), <strong>and</strong> [w]B = (d1, . . . , dn), then<br />

f(v, w) = (c1, . . . , cn) · A ·<br />

⎛<br />

⎜<br />

⎝<br />

d σ 1<br />

.<br />

d σ n<br />

⎞<br />

⎟<br />

⎠ .<br />

Result 21.1.1. f(av + bv ′ , w) = af(v, w) + bf(v ′ , w), so f is l<strong>in</strong>ear <strong>in</strong> its<br />

first variable.<br />

Result 21.1.2. f(v, aw + bw ′ ) = a σ f(v, w) + b σ f(v, w ′ ), so f is semil<strong>in</strong>ear<br />

<strong>in</strong> its second variable.<br />

We say f is sesquil<strong>in</strong>ear when it is l<strong>in</strong>ear it its first variable <strong>and</strong> semil<strong>in</strong>ear<br />

<strong>in</strong> its second variable. All sesquil<strong>in</strong>ear forms on V × V to F arise this way<br />

when dim(V ) < ∞.<br />

Case 1. f is symmetric provided f(v, w) = f(w, v) ∀ w, v ∈ V . This<br />

occurs when σ = id <strong>and</strong> A is symmetric (A = A T ). Then<br />

f(v, w) = [v]BA[w] T B = [w]BA[w] T B<br />

T<br />

= [w]B · A T · [v] T B = [w]B · A · [v] T B<br />

= f(w, v).<br />

Case 2. f is skew-symmetric provided f(v, w) = −f(w, v) ∀ v, w ∈ V . f<br />

is alternat<strong>in</strong>g provided f(v, v) = 0 ∀ v ∈ V .<br />

Note: If f is alternat<strong>in</strong>g, then necessarily f is skew-symmetric. If p = 2<br />

<strong>and</strong> f is skew-symmetric, then necessarily f is alternat<strong>in</strong>g. (What happens<br />

when p = 2?)<br />

Result 21.1.3. f is alternat<strong>in</strong>g (<strong>and</strong> hence skew-symmetric) if <strong>and</strong> only if<br />

σ = id <strong>and</strong> A T = −A <strong>and</strong> Aii = 0 for all i. For this reason it is usual to<br />

def<strong>in</strong>e the matrix A to be skew-symmetric if <strong>and</strong> only if A T = −A <strong>and</strong> (when<br />

p = 2) Aii = 0 for all i.


21.1. SESQUILINEAR AND QUADRATIC FORMS 905<br />

Case 3. f is Hermitian provided σ = id <strong>and</strong> f(w, v) = f(v, w) σ ∀v, w ∈ F .<br />

Then f(w, v) = f(v, w) σ = f(w, v) σ2,<br />

which implies that σ2 = id = σ. Hence<br />

σ has order 2 <strong>in</strong> Aut(F ), so q = pe with e even. In that case σ : x ↦→ xpe/2 = ¯x.<br />

Thus we have three types of sesquil<strong>in</strong>ear forms:<br />

symmetric alternat<strong>in</strong>g Hermitian<br />

σ = 1 σ = 1 σ 2 = 1 = σ.<br />

A function Q : V → F is a quadratic form on V provided<br />

(i) Q(λv) = λ 2 Q(v) ∀λ ∈ F, ∀v ∈ V ;<br />

(ii) The function fQ : V × V → F def<strong>in</strong>ed by<br />

fQ(v1, v2) = Q(v1 + v2) − Q(v1) − Q(v2)<br />

is bil<strong>in</strong>ear.<br />

Here the function fQ is the polar form of Q.<br />

Note: fQ is a symmetric, bil<strong>in</strong>ear form. If Q(v) = [v]B · A · [w] T B , then<br />

fQ(v, w) = [v + w]B · A · [v + w] T B − [v]BA[v] T B − [w]BA[w] T B<br />

= [v]BA[w] T B + [w]BA[v] T B<br />

= [v]B(A + A T )[w] T B ,<br />

which implies that fQ(v, v) = 2 · Q(v). So fQ is the symmetric bil<strong>in</strong>ear form<br />

associated with the symmetric matrix A + A T .<br />

Suppose p = 2 <strong>and</strong> f is a symmetric bil<strong>in</strong>ear form. Put Q(v) = 1f(v,<br />

v).<br />

2<br />

This gives a quadratic form Q with fQ = f. On the other h<strong>and</strong>, if p = 2,<br />

there are symmetric forms which are not the<br />

polar form of any quadratic<br />

1 0<br />

form. (Example: If p = 2 put A = .)<br />

0 0<br />

A vector space equipped with a symmetric, alternat<strong>in</strong>g, hermitian or<br />

quadratic form is called a polar space. In this book we consider three types<br />

of polar spaces:<br />

Symplectic Polar Space V with an alternat<strong>in</strong>g form<br />

Unitary Polar Space V with an hermitian form<br />

Orthogonal Polar Space V with a quadratic form <strong>and</strong> the associated<br />

symmetric bil<strong>in</strong>ear polar form.


906CHAPTER 21. APPENDIX 3: REVIEW OF SESQUILINEAR FORMS<br />

Let V1, V2 be equipped with the forms β1, β2, respectively, both of which<br />

are symplectic or both of which are unitary forms. An <strong>in</strong>vertible semil<strong>in</strong>ear<br />

map T : V1 → V2 with companion automorphism σ is a semisimilarity from<br />

(V1, β1) to (V2, β2) provided there is a nonzero c ∈ F such that<br />

β2(T (v), T (w)) = c · (β1(v, w)) σ ∀ v, w ∈ V1.<br />

T is a similarity iff σ = 1;<br />

T is an isometry iff σ = id <strong>and</strong> c = 1. .<br />

Let V1, V2 be equipped with quadratic forms Q1, Q2, respectively. Let<br />

T : V1 → V2 be an <strong>in</strong>vertible semil<strong>in</strong>ear map with companion automorphism<br />

σ. Then T is a semisimilarity from (V1, Q1) to (V2, Q2) provided there is a<br />

nonzero c ∈ F such that<br />

Q2(T (v)) = c · (Q1(v)) σ ∀ v ∈ V1.<br />

T is a similarity iff σ = 1;<br />

T is an isometry iff σ = 1 <strong>and</strong> c = 1. .<br />

NOTE: If g : V1 → V2 is a semisimilarity/similarity/isometry then g<br />

<strong>in</strong>duces a map ¯g : P V1 → P V2 which is called a projective semisimilarity/similarity/isometry.<br />

Let S = (V, β) be a polar space with β an alternat<strong>in</strong>g, hermitian, or<br />

quadratic form (with polar form fβ).<br />

ΓS = group of semisimilarities of V ;<br />

GS = group of similarities of V ;<br />

S = group of isometries of V.<br />

P ΓS, P GS, P S are the correspond<strong>in</strong>g projective groups.<br />

Let Z(S) be the group of form-preserv<strong>in</strong>g scalar maps. Then<br />

P ΓS ∼ = Γ/Z(S);<br />

P GS ∼ = GS/Z(S);<br />

P S ∼ = S/Z(S).<br />

Let f be a sesquil<strong>in</strong>ear form on V .<br />

.


21.1. SESQUILINEAR AND QUADRATIC FORMS 907<br />

v ∈ V is isotropic iff f(v, v) = 0.<br />

W ≤ V is totally isotropic iff f(v, w) = 0 ∀ (v, w) ∈ W × W.<br />

NOTE: In a symplectic space each vector is isotropic.<br />

Let Q be a quadratic form on V .<br />

v ∈ V is s<strong>in</strong>gular iff Q(v) = 0.<br />

W ≤ V is totally s<strong>in</strong>gular iff Q(w) = 0 ∀ w ∈ W.<br />

A Hermitian variety is the set of isotropic po<strong>in</strong>ts of a unitary projective<br />

space.<br />

A quadric is the set of s<strong>in</strong>gular po<strong>in</strong>ts of an orthogonal projective space.<br />

Two isotropic po<strong>in</strong>ts of a symplectic or unitary space are coll<strong>in</strong>ear provided<br />

they span a totally isotropic l<strong>in</strong>e.<br />

Two s<strong>in</strong>gular po<strong>in</strong>ts of an orthogonal space are coll<strong>in</strong>ear provided they<br />

span a totally s<strong>in</strong>gular l<strong>in</strong>e.<br />

Lemma 21.1.4. Let (V, β) be a polar space over F . Suppose the po<strong>in</strong>ts<br />

P1 = 〈v1〉 <strong>and</strong> P2 = 〈v2〉 are isotropic if β is alternat<strong>in</strong>g or hermitian, <strong>and</strong><br />

s<strong>in</strong>gular if β is quadratic with polar form fβ.<br />

(a) If β is alternat<strong>in</strong>g or hermitian, then P1 <strong>and</strong> P2 are coll<strong>in</strong>ear if <strong>and</strong><br />

only if β(v1, v2) = 0.<br />

(b) If β is a quadratic form, then P1 <strong>and</strong> P2 are coll<strong>in</strong>ear if <strong>and</strong> only if<br />

fβ(v1, v2) = 0.<br />

Proof. (a) Let σ be the companion automorphism of β, <strong>and</strong> L = 〈v1, v2〉.<br />

Any element of L × L may be written as (av1 + bv2, cv1 + dv2) for some<br />

a, b, c, d ∈ F . Then<br />

β(av1 + bv2, cv1 + dv2) = ac σ β(v1, v1) + ad σ β(v1, v2)<br />

+ bc σ β(v2, v1) + bd σ β(v2, v2) (21.1)<br />

= ad σ β(v1, v2) + bc σ β(v2, v1).<br />

So if L is totally isotropic, we have ad σ β(v1, v2)+bc σ β(v2, v1) = 0 ∀ a, b, c, d ∈<br />

F . In particular, sett<strong>in</strong>g a, d = 0 <strong>and</strong> c = 0 yields β(v1, v2) = 0. Conversely,


908CHAPTER 21. APPENDIX 3: REVIEW OF SESQUILINEAR FORMS<br />

putt<strong>in</strong>g β(v1, v2) = 0 <strong>and</strong> hence β(v2, v1) = 0 (us<strong>in</strong>g that an alternat<strong>in</strong>g<br />

form is skew-symmetric, <strong>and</strong> that β(v1, v2) = β(v2, v1) σ if β is hermitian) <strong>in</strong><br />

Eq. 21.1 implies that L is totally isotropic.<br />

(b) Let L = 〈v1, v2〉. Vectors on L are of the form av1 + bv2 for a, b ∈ F ,<br />

<strong>and</strong><br />

β(av1 + bv2) = a 2 β(v1) + b 2 β(v2) + abfβ(v1, v2)<br />

from which the result follows.<br />

= abfβ(v1, v2),<br />

Corollary 21.1.5. Each two po<strong>in</strong>ts of a totally isotropic subspace of a symplectic<br />

or hermitian polar space are coll<strong>in</strong>ear.<br />

Corollary 21.1.6. Each two po<strong>in</strong>ts of a totally s<strong>in</strong>gular subspace of an orthogonal<br />

space are coll<strong>in</strong>ear.<br />

Corollary 21.1.7. If three po<strong>in</strong>ts of a projective l<strong>in</strong>e lie on a quadric, the<br />

l<strong>in</strong>e is totally s<strong>in</strong>gular.<br />

Proof. 0 = Q(v1) = Q(v2) = Q(v1 + av2) = Q(v1) + a 2 Q(v2) + afβ(v1, v2) =<br />

afQ(v1, v2), imply<strong>in</strong>g that fQ(v1, v2) = 0.<br />

21.2 Perps <strong>and</strong> Radicals<br />

Let f be an alternat<strong>in</strong>g, hermitian or polar form on V . For U ≤ V , def<strong>in</strong>e<br />

the perp of U to be<br />

U ⊥ = {v ∈ V : f(u, v) = 0 ∀ u ∈ U}.<br />

The radical of f is: rad(f) = V ⊥ . If f is alternat<strong>in</strong>g (symplectic) or<br />

hermitian, rad(V ) =rad(f), <strong>and</strong> f <strong>and</strong> (V, f) are nondegenerate provided<br />

rad(f) = {0}; degenerate otherwise.<br />

If Q is a quadratic form on V with polar form fQ, the s<strong>in</strong>gular radical of<br />

Q (or of V ), denoted rad(Q) (or rad(V )) is<br />

rad(Q) = rad(V ) = {v ∈ radfQ : Q(v) = 0},<br />

with the quadratic form (<strong>and</strong> space) nondegenerate provided rad(Q) = {0};<br />

degenerate otherwise.<br />

For a subspace U ≤ V , restrict to U <strong>in</strong> the natural way. If f is alternat<strong>in</strong>g<br />

or hermitian, rad(U) = U ∩ U ⊥ . If Q is a quadratic form, rad(U) = {x ∈<br />

U ∩ U ⊥ : Q|U(x) = 0}, where fQ is used to def<strong>in</strong>e U ⊥ .


21.3. QUOTIENT SPACES 909<br />

21.3 Quotient spaces<br />

If U ≤ V , it is an additive subgroup of V , so the quotient group V/U =<br />

{v + U : v ∈ V } is a group under the (commutative) addition of cosets:<br />

(v + U) + (w + U) := (v + w) + U.<br />

Scalar multiplicatio<strong>in</strong> of cosets is given by<br />

a(v + U) := av + U.<br />

This makes V/U <strong>in</strong>to a vector space over the same field F .<br />

Theorem 21.3.1. Let V be a vector space over F .<br />

(a) Suppose f is an alternat<strong>in</strong>g (symplectic), hermitian (unitary) or polar<br />

(orthogonal) form on V . Let U = rad(f). Def<strong>in</strong>e f ′ on V/U by<br />

f ′ (v1 + U, v2 + U) := f(v1, v2).<br />

Then f ′ is a well-def<strong>in</strong>ed nondegenerate form of the same type as f.<br />

(b) Suppose Q is a quadratic form on V with polar form fQ; U = rad(Q).<br />

Def<strong>in</strong>e Q ′ on V/U by Q/(v + U) := Q(v). Then Q ′ is a well-def<strong>in</strong>ed nondegenerate<br />

quadratic form.<br />

Proof. We give the proof of (b). After read<strong>in</strong>g through it, the reader should<br />

write out the proof of (a). U = rad(Q) means u ∈ U if <strong>and</strong> only if<br />

1. Q(u) = 0 <strong>and</strong> 2. fQ(u, v) = 0 ∀ v ∈ V . Recall that v + U = w + U<br />

if <strong>and</strong> only if v − w ∈ U if <strong>and</strong> only if w = v + u for some u ∈ U. So we<br />

want Q ′ (v + U) to be equal to Q ′ (v + u + U) for all v ∈ V , u ∈ U. But<br />

Q ′ (v + u + U) = Q(v + u) = Q(v) + Q(u) + fQ(v, u) = Q(v). This shows that<br />

Q ′ is well-def<strong>in</strong>ed.<br />

Q ′ (λ(v + U)) = Q ′ (λv + U) = Q(λv) = λ 2 Q(v) = λ 2 (Q ′ (v + U)). Hence<br />

Q ′ satisfies the first property of be<strong>in</strong>g a quadratic form on V/U.<br />

fQ ′(w + U, v + U) = Q′ ((w + U) + (v + U)) − Q ′ (w + U) − Q ′ (v + U)<br />

= Q ′ (w + v + U) − Q ′ (w + U) − Q ′ (v + U)<br />

= Q(w + v) − Q(w) − Q(v) = fQ(w, v).<br />

S<strong>in</strong>ce fQ is (symmetric) bil<strong>in</strong>ear, it is easy to check that fQ ′ is (symmetric)<br />

bil<strong>in</strong>ear, so Q ′ is a quadratic form on V/U. The claim is that Q ′ is nondegenerate,<br />

i.e., rad(Q ′ ) is just the zero subspace of V/U. (Recall 0 + U = U<br />

is the zero element of V/U.)


910CHAPTER 21. APPENDIX 3: REVIEW OF SESQUILINEAR FORMS<br />

w + U ∈ rad(Q ′ )<br />

iff Q ′ (w + U) = 0 <strong>and</strong> fQ ′(w + U, v + U) = 0 ∀ v + U ∈ V/U<br />

iff Q(w) = 0 <strong>and</strong> fQ(w, v) = 0 ∀ v ∈ V<br />

iff w ∈ rad(Q) = U iff w + U = U.<br />

This implies that rad(Q ′ ) = {0 + U} is the zero subspace of V/U.<br />

21.4 Polar Spaces<br />

Theorem 21.4.1. In a nondegenerate polar space the follow<strong>in</strong>g properties<br />

hold:<br />

PS1. Every two isotropic/s<strong>in</strong>gular po<strong>in</strong>ts lie on at most one totally<br />

isotropic/s<strong>in</strong>gular l<strong>in</strong>e.<br />

PS2. If an isotropic/s<strong>in</strong>gular po<strong>in</strong>t P is not on a totally isotropic/s<strong>in</strong>gular<br />

l<strong>in</strong>e L, then either P is coll<strong>in</strong>ear with a unique po<strong>in</strong>t of L or P is coll<strong>in</strong>ear<br />

with all po<strong>in</strong>ts of L.<br />

PS3. No isotropic/s<strong>in</strong>gular po<strong>in</strong>t is coll<strong>in</strong>ear with all isotropic/s<strong>in</strong>gular<br />

po<strong>in</strong>ts.<br />

Proof. PS1 is clear because a polar space lives <strong>in</strong> a projective space. PS3<br />

follows because the polar space is nondegenerate. We give a proof of PS2 for<br />

the quadratic case. The reader should supply a proof for the symplectic <strong>and</strong><br />

unitary spaces.<br />

Let Q be a nondegenerate quadratic form on V with polar form fQ. Let<br />

P = 〈u〉 be a s<strong>in</strong>gular po<strong>in</strong>t, i.e., Q(u) = 0. Let L be a totally s<strong>in</strong>gular l<strong>in</strong>e<br />

(so Q(w) = 0 for all w ∈ L) not conta<strong>in</strong><strong>in</strong>g P . Recall that for R1 = 〈v〉 on<br />

L, P is coll<strong>in</strong>ear with R1 if <strong>and</strong> only if fQ(u, v) = 0.<br />

If not every po<strong>in</strong>t of L is coll<strong>in</strong>ear with P , there is some po<strong>in</strong>t R1 = 〈v〉 of<br />

L with fQ(u, v) = 0. Let R2 = 〈w〉 be any other po<strong>in</strong>t of L, so po<strong>in</strong>ts 〈w+av〉<br />

as a varies over the elements of F are all the po<strong>in</strong>ts of L except R1. P is<br />

coll<strong>in</strong>ear with 〈w+av〉 if <strong>and</strong> only if 0 = fQ(u, w+av) = fQ(u, w)+fQ(u, v)·a<br />

if <strong>and</strong> only if<br />

a = −fQ(u, w)<br />

fQ(u, v) ,<br />

so L has a unique po<strong>in</strong>t coll<strong>in</strong>ear with P .


21.4. POLAR SPACES 911<br />

Note: If f is a sesquil<strong>in</strong>ear form on V (with companion automorphism σ)<br />

given by f(u, v) = [u]BD([v] σ B )T for some ordered basis<br />

then<br />

B =<br />

⎛<br />

⎜<br />

⎝<br />

v1<br />

.<br />

vn<br />

⎞<br />

⎟<br />

⎠ ,<br />

⎛<br />

⎜<br />

f(vi, vj) = (0 · · · 1i · · · 0)D ⎜<br />

⎝<br />

0.<br />

1 σ j<br />

.<br />

0<br />

⎞<br />

⎟ = Dij.<br />

⎟<br />

⎠<br />

In general, if f is sesquil<strong>in</strong>ear <strong>and</strong> B = {v1, . . . , vn} is any ordered basis<br />

of V , the gram matrix D opf f with respect to B is given by Dij = f(vi, vj).<br />

Lemma 21.4.2. With the notation as above, f is nondegenerate if <strong>and</strong> only<br />

if det(D) = 0.<br />

Proof. the vector y is <strong>in</strong> the radical of f if <strong>and</strong> only if f(x, y) = 0 for all<br />

x ∈ V if <strong>and</strong> only if [x]BD([y] σ B )T = 0 ∀ x ∈ V if <strong>and</strong> only if D([y] σ B )T = 0.<br />

So rad(f) has a nonzero vector if <strong>and</strong> only if det(D) = 0.<br />

This <strong>in</strong>cludes the case f = fQ <strong>and</strong> q is odd. But what about characteristic<br />

2? Even then rad(f) = {0} if <strong>and</strong> only if det(D) = 0.<br />

Let f be an alternat<strong>in</strong>g, hermitian, or symmetric bil<strong>in</strong>ear polar form of a<br />

quadratic form, on a f<strong>in</strong>ite dimensional vector space V . Let U be a subspace<br />

of V , dim(U) = m, dim(V ) = n. Let β ′ = {u1, . . . , um} be an ordered basis<br />

of U. Complete β ′ to a basis β = {u1, . . . , um, um+1, . . . , un} of V . Put<br />

D = (Dij), where Dij = f(ui, uj), 1 ≤ i, j ≤ n. Then f(u, v) = [u]βD([v] σ β )T .<br />

f alternat<strong>in</strong>g ⇐⇒ D T = −D (with 0’s on diagonal <strong>and</strong> σ = id)<br />

f hermitian ⇐⇒ D T = D σ (σ ∈ Aut(F ), σ = id = σ 2 )<br />

f polar =⇒ D T = D (σ = id).<br />

U ⊥ = {v ∈ V : f(v, u) = 0 ∀u ∈ U} = {v ∈ V : f(u, v) = 0 ∀u ∈ U}. It<br />

follows from f(v, m i=1 ciui) = m i=1 cσi f(v, ui) that v ∈ U ⊥ ⇐⇒ f(v, ui) =<br />

0 for all i = 1, . . . , m.


912CHAPTER 21. APPENDIX 3: REVIEW OF SESQUILINEAR FORMS<br />

Theorem 21.4.3. Let f be a nondegenerate alternat<strong>in</strong>g, hermitian or polar<br />

form (with companion automorphism σ on an n-dimensional vector space V<br />

over V .<br />

(a) U ≤ W =⇒ W ⊥ ≤ U ⊥ ; <strong>and</strong> the map g : P V → P V : U ↦→ U ⊥ is a<br />

polarity.<br />

(b) If rad(f) = {0}, then dim(U) + dim(U ⊥ ) = dim(V ) + dim(V ⊥ ).<br />

(Recall: If the space is nondegenerate, the only time we could have<br />

rad(f) = {0} is when f = fQ, p = 2, <strong>and</strong> Q(v) = 0 for some v ∈ rad(f).)<br />

Proof. First we give a proof of (a). Here we need the assumption that the<br />

⎛ ⎞<br />

0.<br />

⎜ ⎟<br />

⎜ ⎟<br />

⎜ ⎟<br />

form f is nondegenerate, i.e., rad(f) = {0}. Then f(v, ui) = [v]BD ⎜ ⎟ =<br />

⎜ ⎟<br />

⎝ ⎠<br />

<br />

[v]B · ith <br />

column of D , which implies f(v, u1) = · · · = f(v, um) = 0 iff [v]B<br />

is <strong>in</strong> the left null space of the matrix D ′ consist<strong>in</strong>g of the first m columns of<br />

D. We assume that det(D) = 0, so D ′ has rank m <strong>and</strong> dim(U ⊥ ) = n − m.<br />

This implies dim(U) + dim(U ⊥ ) = dim(V ). As (U ⊥ ) ⊥ ⊇ U <strong>and</strong> dim(U ⊥ ) ⊥ =<br />

n−dim(U ⊥ ) = m, clearly U ⊥⊥ = U. Hence g = g−1 <strong>and</strong> g is a bijection <strong>and</strong><br />

thus a polarity.<br />

For the proof of part (b) we may drop the assumption that rad(f) = {0}.<br />

We may def<strong>in</strong>e a nondegenerate form f ′ on V/V ⊥ of the same type as f. By<br />

part (a),<br />

dim(U/V ⊥ ) + dim((U/V ⊥ ) ⊥ ) =<br />

= dim(U/V ⊥ ) + dim(U ⊥ /V ⊥ ) = dim(V/V ⊥ ).<br />

=⇒ dim(U) − dim(V ⊥ ) + dim(U ⊥ ) − dim(V ⊥ ) = dim(V ) − dim(V ⊥ )<br />

=⇒ dim(U) + dim(U ⊥ ) = dim(V ) + dim(V ⊥ ).<br />

The next theorem is a famous one due to Witt. We state the general<br />

result but refer the reader elsewhere (e.g., Taylor - pp. 57-58) for a complete<br />

proof. In the next chapter where we concentrate on quadratic forms we do<br />

give a proof <strong>in</strong> the orthogonal case.<br />

1i<br />

0.


21.4. POLAR SPACES 913<br />

Theorem 21.4.4. (Witt) Let f be an alternat<strong>in</strong>g, hermitian or polar form<br />

on V , with U, W ≤ V , <strong>and</strong> h : U → W an isometry. Then there is an<br />

isometry g : V → V such that g|U = h if <strong>and</strong> only if<br />

h(U ∩ rad(f)) = W ∩ rad(f).<br />

Corollary 21.4.5. If rad(f) = {0}, then the isometry h : U → W extends<br />

to g : V → V . Hence if U <strong>and</strong> W are isometric, then U ⊥ <strong>and</strong> W ⊥ are<br />

isometric.<br />

Proof. By Witt’s theorem, there is an isometry g : V → V with g|U(U) = W .<br />

Then<br />

g(U ⊥ ) = g ({v ∈ V : f(u, v) = 0 ∀ u ∈ U})<br />

= {g(v) ∈ F : f(gU, gv) = 0 ∀ gu ∈ W }<br />

= W ⊥ .<br />

A totally isotropic/s<strong>in</strong>gular subspace of maximum dimension will be referred<br />

to as a maximal.<br />

Corollary 21.4.6. All maximals of a f<strong>in</strong>ite dimensional polar space have the<br />

same dimension (i.e., rank).<br />

Proof. Any two totally isotropic/s<strong>in</strong>gular subspaces of the same dimension<br />

are isometric. Use Witt’s theorem to get an element of P ΓS tak<strong>in</strong>g one to the<br />

other. Suppose U1, U2 are maximals <strong>and</strong> dim(U) < dim(U2). Let U ′ 1<br />

≤ U2<br />

with dim(U1) = dim(U ′ 1). There must be a g ∈ P ΓS for which g(U1) = U ′ 1.<br />

Then g −1 (U2) properly conta<strong>in</strong>s U1, a contradiction.<br />

The rank (i.e., vector space dimension) of a maximal is called the Witt<br />

<strong>in</strong>dex of the form f.<br />

Suppose U is a totally isotropic/s<strong>in</strong>gular subspace of a polar space S =<br />

(V, β). U ⊆ U ⊥ implies that dim(U) ≤ dim(U ⊥ ) =⇒ 2dim(U) ≤ dim(V ) +<br />

dim(V ⊥ ). Hence<br />

Corollary<br />

<br />

21.4.7. The<br />

<br />

Witt <strong>in</strong>dex of S is less than or equal to<br />

⊥ dim(V ) + dim(V ) .<br />

1<br />

2


914CHAPTER 21. APPENDIX 3: REVIEW OF SESQUILINEAR FORMS<br />

21.5 Hyperbolic Pairs<br />

Let f be an alternat<strong>in</strong>g or hermitian form on V . A pair (v1, v2) of isotropic<br />

vectors of V that have f(v1, v2) = 1 is said to be a hyperbolic pair, <strong>and</strong> the<br />

l<strong>in</strong>e they span is a hyperbolic l<strong>in</strong>e.<br />

If Q is a quadratic form on V with polar form fQ, a pair (v1, v2) of s<strong>in</strong>gular<br />

vectors of V that have fQ(v1, v2) = 1 is a hyperbolic pair, <strong>and</strong> the l<strong>in</strong>e they<br />

span is a hyperbolic l<strong>in</strong>e.<br />

Lemma 21.5.1. Any two hyperbolic l<strong>in</strong>es of the same type are isometric.<br />

(a) Any two symplectic hyperbolic l<strong>in</strong>es are isometric.<br />

(b) Any two unitary hyperbolic l<strong>in</strong>es are isometric.<br />

(c) Any two orthogonal hyperbolic l<strong>in</strong>es are isometric.<br />

Proof. Let (V, f) be a symplectic/unitary hyperbolic l<strong>in</strong>e. Similarly, let<br />

(V ′ , f ′ ) be a symplectic/unitary hyperbolic l<strong>in</strong>e. Let f <strong>and</strong> f ′ have companion<br />

automorphism σ. Here V = 〈u, v〉 with f(u, u) = 0 = f(v, v), f(u, v) = 1.<br />

Then f(v, u) = −1 <strong>in</strong> the symplectic case <strong>and</strong> f(v, u) = 1 σ = 1 <strong>in</strong> the<br />

unitary case. Similarly, V ′ = 〈u ′ , v ′ 〉 with f ′ (u ′ , u ′ ) = 0, . . . , etc. Def<strong>in</strong>e<br />

T ∈ HomF (V, V ′ ) by T (u) = u ′ , T (v) = v ′ , <strong>and</strong> extend l<strong>in</strong>early. It is an easy<br />

exercise to show that<br />

f ′ (T (au + bv), T (cu + dv)) = f(au + bv, cu + dv),<br />

imply<strong>in</strong>g that T : V → V ′ is an isometry. This proves (a) <strong>and</strong> (b).<br />

Let (V, Q) be an orthogonal hyperbolic l<strong>in</strong>e. So V = 〈u, v〉, Q(u) =<br />

Q(v) = 0 <strong>and</strong> fQ(u, v) = fQ(v, u) = 1. Similarly, V ′ = 〈u ′ , v ′ 〉, Q ′ (u ′ ) = 0,<br />

. . . , etc. Def<strong>in</strong>e T : V → V ′ by T (u) = u ′ , T (v) = v ′ . Then<br />

Q(au + bv) = Q(au) + Q(bv) + fQ(au, bv)<br />

= a 2 Q(u) + b 2 Q(v) + ab · fQ(u, v)<br />

= 0 + 0 + ab.<br />

Similarly, Q ′ (T (au + bv)) = Q ′ (au ′ + bv ′ ) = ab = Q(au + bv), imply<strong>in</strong>g that<br />

T is an isometry.<br />

A subspace of a polar space is anisotropic provided it conta<strong>in</strong>s NO nonzero<br />

isotropic/s<strong>in</strong>gular vectors. A l<strong>in</strong>e L of a polar space is tangent (at P ) if it<br />

conta<strong>in</strong>s exactly one isotropic/s<strong>in</strong>gular po<strong>in</strong>t P . (Note: Sometimes a l<strong>in</strong>e is<br />

said to be tangent to the polar space if it is conta<strong>in</strong>ed entirely <strong>in</strong> it. However,<br />

for the rema<strong>in</strong>der of this chapter we will use the def<strong>in</strong>ition just given.)


21.5. HYPERBOLIC PAIRS 915<br />

Lemma 21.5.2. A l<strong>in</strong>e of a polar space is either<br />

• anisotropic<br />

• tangent<br />

• hyperbolic<br />

• totally isotropic/s<strong>in</strong>gular.<br />

Proof. Suppose that L is a l<strong>in</strong>e of a polar space (V, β) over a field F , where<br />

L conta<strong>in</strong>s at least one isotropic/s<strong>in</strong>gular po<strong>in</strong>t P = 〈v1〉. Note that rad(L)<br />

is either {0}, a po<strong>in</strong>t of L, or all of L. We show that this characterizes L as<br />

be<strong>in</strong>g (respectively) hyperbolic, tangent or totally isotropic/s<strong>in</strong>gular.<br />

We start with the alternat<strong>in</strong>g <strong>and</strong> hermitian cases. First suppose that<br />

rad(L) is {0}. If β is alternat<strong>in</strong>g, there is a w ∈ L such that β(v1, w) = a = 0.<br />

Then v2 = a −1 w is an isotropic vector with β(v1, v2) = 1. Similarly, if β is<br />

an hermitian form with companion automorphism σ, there must be a w ∈ L<br />

such that β(v1, w) = a = 0. Choose any d ∈ F with d + d σ = 0. Let<br />

c = (d + d σ ) −1 d σ β(w, w). Then v2 = −cu(a · a σ ) −1 + w(a σ ) −1 is an isotropic<br />

vector with f(v1, v2) = 1. In both cases L is an hyperbolic l<strong>in</strong>e. Conversely,<br />

let β be an alternat<strong>in</strong>g or hermitian form <strong>and</strong> suppose L conta<strong>in</strong>s a hyperbolic<br />

pair (v1, v2) with w a nonzero vector of rad(L). Writ<strong>in</strong>g v2 = aw+bv1 for some<br />

a, b ∈ F , we have 1 = β(v1, v2) = aβ(v1, w) + bβ(v1, v1) = 0, a contradiction.<br />

This shows that if L is hyperbolic, then rad(L) must be {0} <strong>in</strong> the alternat<strong>in</strong>g<br />

<strong>and</strong> hermitian cases.<br />

If rad(L) = L, then L ⊥ = L, that is, L is a totally isotropic l<strong>in</strong>e, <strong>and</strong><br />

conversely. If rad(L) is a po<strong>in</strong>t P = 〈v1〉 of L, then L must be tangent.<br />

Otherwise there is some isotropic po<strong>in</strong>t 〈u〉 of L dist<strong>in</strong>ct from P so β(v1, u) =<br />

0 (s<strong>in</strong>ce rad(L) = L ∩ L ⊥ ). This would force L to be a totally isotropic l<strong>in</strong>e,<br />

<strong>in</strong> which case rad(L) = L.<br />

F<strong>in</strong>ally, let (L, Q) be an orthogonal polar space with L a l<strong>in</strong>e, so Q is<br />

a quadratic form with polar form fQ. If L has no s<strong>in</strong>gular po<strong>in</strong>t, then L is<br />

anisotropic. So suppose 〈v1〉 is a s<strong>in</strong>gular po<strong>in</strong>t of L. Recall that rad(Q) =<br />

rad(L) = {w ∈ L : Q(w) = 0 <strong>and</strong> fQ(u, w) = 0 ∀ u ∈ L}.<br />

If L has three po<strong>in</strong>ts 〈v1〉, 〈v2〉, 〈v3〉 with Q(vi) = 0, we know all po<strong>in</strong>ts 〈v〉<br />

on L satisfy Q(v) = 0 <strong>and</strong> fQ(u, v) = 0 for all 〈u〉, 〈v〉 on L. So rad(L) = L<br />

<strong>and</strong> L is totally s<strong>in</strong>gular.<br />

Suppose that 〈v1〉, 〈v2〉 are the only dist<strong>in</strong>ct po<strong>in</strong>ts of L with Q(v1) =<br />

Q(v2) = 0. Then fQ(v1, v2) = 0, say fQ(v1, v2) = a = 0. So fQ(v1, a −1 v2) = 1


916CHAPTER 21. APPENDIX 3: REVIEW OF SESQUILINEAR FORMS<br />

<strong>and</strong> (v1, a −1 v2) forms a hyperbolic pair, so L is a hyperbolic l<strong>in</strong>e. The only<br />

possible po<strong>in</strong>ts <strong>in</strong> rad(L) are 〈v1〉 <strong>and</strong> 〈v2〉. But v1 ∈ rad(L) if <strong>and</strong> only<br />

if fQ(v1, w) = 0 for all 〈w〉 ∈ L iff fQ(v1, v2) = 0 iff L is totally s<strong>in</strong>gular.<br />

So rad(L) = {0} when L is hyperbolic, <strong>and</strong> rad(L) = L when L is totally<br />

s<strong>in</strong>gular.<br />

Suppose 〈v〉 is the unique po<strong>in</strong>t of L for which Q(v) = 0, i.e., 〈v〉 is the<br />

unique s<strong>in</strong>gular po<strong>in</strong>t of L. Let 〈w〉 be any other po<strong>in</strong>t of L, so Q(w) = 0 <strong>and</strong><br />

Q(w+av) = 0 for all a ∈ F . Hence Q(w+av) = Q(w)+a 2 Q(v)+afQ(w, v) =<br />

Q(w) + afQ(w, v) = 0 for all a ∈ F . This forces fQ(w, v) = 0 (otherwise put<br />

), so rad(L) = 〈v〉.<br />

a = −Q(w)<br />

fQ(w,v)<br />

Recap: L is anisotropic (imply<strong>in</strong>g rad(L) = {0})<br />

or<br />

L has at least one s<strong>in</strong>gular po<strong>in</strong>t <strong>and</strong><br />

L = hyperbolic l<strong>in</strong>e ⇐⇒ rad(L) = {0}<br />

L = tangent l<strong>in</strong>e ⇐⇒ rad(L) is a po<strong>in</strong>t<br />

L = totally s<strong>in</strong>gular ⇐⇒ rad(L) = L.<br />

For symplectic <strong>and</strong> unitary spaces, the same is true with “s<strong>in</strong>gular” replaced<br />

by “isotropic.”


Chapter 22<br />

Appendix 4: Interlac<strong>in</strong>g of<br />

Eigenvalues<br />

The general theory of <strong>in</strong>terlac<strong>in</strong>g of eigenvalues has been applied with great<br />

success to produce restrictions on the values of parameters of strongly regular<br />

graphs <strong>and</strong> other f<strong>in</strong>ite geometries <strong>in</strong>clud<strong>in</strong>g generalized quadrangles. When<br />

this technique was first applied to GQ <strong>in</strong> the early 1970’s, the present author<br />

referred to it as the “Higman-Sims” technique because of the <strong>in</strong>troduction<br />

by these two authors (D. G. Higman <strong>and</strong> C. Sims) of the general method <strong>in</strong><br />

algebraic comb<strong>in</strong>atorics. Later the method was generalized by W. Haemers<br />

<strong>and</strong> is now referred to simply as the method of <strong>in</strong>terlac<strong>in</strong>g of eigenvalues. We<br />

start by giv<strong>in</strong>g the more elementary aspects of the theory of <strong>in</strong>terlac<strong>in</strong>g of<br />

eigenvalues <strong>and</strong> then apply<strong>in</strong>g this theory to obta<strong>in</strong> the results on GQ that<br />

have been known for at least two decades.<br />

22.1 Real Symmetric Matrices: A Review<br />

If x = (x1, . . . , xn) T <strong>and</strong> y = (y1, . . . , yn) T are column vectors of real numbers,<br />

then x · y = xiyi denotes the usual dot product. If A is a real,<br />

symmetric, n × n matrix, for each x = 0, def<strong>in</strong>e the Rayleigh Quotient R(x)<br />

for A by<br />

R(x) =<br />

917<br />

x · Ax<br />

. (22.1)<br />

x · x


918 CHAPTER 22. APPENDIX 4: INTERLACING OF EIGENVALUES<br />

Hence<br />

Put O = {x ∈ R n : x · x = 1}, <strong>and</strong> note that for k = 0, x = 0,<br />

R(kx) = R(x). (22.2)<br />

{R(x) : x = 0} = {x · Ax : x ∈ O}. (22.3)<br />

The set W (A) = {R(x) : x ∈ O} is called the numerical range of A. It<br />

is the cont<strong>in</strong>uous image of a compact set, <strong>and</strong> hence is a closed, bounded<br />

<strong>in</strong>terval with a maximum M <strong>and</strong> a m<strong>in</strong>imum m. Let µ1 ≥ µ2 ≥ · · · µn be<br />

the eigenvalues of A associated with the eigenvectors x1, . . . , xn chosen so<br />

that xi ∈ O, <strong>and</strong> so that T = (x1, . . . , xn) is a real orthogonal matrix with<br />

T T AT = U = diag(µ1, . . . , µn).<br />

Observe that if x = T y, then x ∈ O if <strong>and</strong> only if y ∈ O. S<strong>in</strong>ce T is<br />

nons<strong>in</strong>gular, T maps O onto O <strong>in</strong> a one-to-one manner. Hence<br />

Similarly,<br />

M = maxx∈O{x · Ax} = maxy∈O{T y · AT y}<br />

= maxy∈O{y T T T AT y} = maxy∈O{y T Uy}<br />

= maxy∈O{<br />

n<br />

j=1<br />

m<strong>in</strong>x∈OR(x) = m<strong>in</strong>y∈O{<br />

µjy 2 j }.<br />

n<br />

j=1<br />

µjy 2 j } = m.<br />

By the order<strong>in</strong>g of the eigenvalues it follows that<br />

for y ∈ O. Similarly,<br />

n<br />

j=1<br />

µjy 2 j<br />

≤ µ1<br />

y 2 j = µ1(y · y) = µ1,<br />

n<br />

µjy 2 j ≥ µn, if y ∈ O.<br />

j=1<br />

Furthermore, y = (1, 0, . . . , 0) T <strong>and</strong> y = (0, . . . , 0, 1) T yield µjy 2 j = µ1 <strong>and</strong><br />

µjy 2 j = µn, respectively. S<strong>in</strong>ce (1, 0, . . . , o) T <strong>and</strong> (0, . . . , 0, 1) T belong to<br />

O, we have M = µ1 <strong>and</strong> m = µn. This proves the follow<strong>in</strong>g theorem.


22.1. REAL SYMMETRIC MATRICES: A REVIEW 919<br />

Theorem 22.1.1. Let A be an n×n real symmetric matrix, with eigenvalues<br />

µ1 ≥ · · · ≥ µn. Then for any nonzero x ∈ R n ,<br />

µn ≤ R(x) ≤ µ1, (22.4)<br />

µ1 = maxx∈OR(x), µn = m<strong>in</strong>x∈OR(x). (22.5)<br />

Us<strong>in</strong>g the same notation as above, we give an additional useful result.<br />

Theorem 22.1.2. If 0 = x ∈ R n satisfies R(x) = µi, for either i = 1 or<br />

i = n, then x is an eigenvector of A belong<strong>in</strong>g to the eigenvalue µi.<br />

Proof. Without loss of generality we may assume x ∈ O, <strong>and</strong> we first consider<br />

the case R(x) = xT Ax = µn. Let x = cixi, so that xT Ax = c2 i µi <br />

≥<br />

2<br />

µn ci = µn, with equality hold<strong>in</strong>g if <strong>and</strong> only if µi = µn whenever ci = 0.<br />

Hence R(x) = µn if <strong>and</strong> only if x belongs to the eigenspace associated with<br />

µn. The argument for µ1 is similar.<br />

We cont<strong>in</strong>ue to let A = (aij) denote an n × n real symmetric matrix. Let<br />

∆ = ∆1 + · · · + ∆r <strong>and</strong> Γ = Γ1 + · · · Γs be partitions of {1, . . . , n}. Suppose<br />

that Γ is a ref<strong>in</strong>ement of ∆, <strong>and</strong> write i ⊆ j whenever Γi ⊆ ∆j, 1 ≤ i ≤ s.<br />

Set<br />

<strong>and</strong><br />

δij = aµν; µ ∈ ∆i; ν ∈ ∆j;<br />

γij = aµν; µ ∈ Γi; ν ∈ Γj.<br />

So δij = δji <strong>and</strong> γij = γji by the symmetry of A. Def<strong>in</strong>e the follow<strong>in</strong>g<br />

matrices:<br />

A ∆ =<br />

δij<br />

δi<br />

<br />

1≤i,j≤r<br />

; A Γ =<br />

γij<br />

γi<br />

<br />

;<br />

1≤i,j≤s<br />

Ā∆ = diag( δ1, . . . , δr); ĀΓ = diag( √ γ1, . . . , √ γs);<br />

<br />

Â∆ = Ā∆A ∆ ( Ā∆) −1 =<br />

ÂΓ = ĀΓA Γ ( ĀΓ) −1 =<br />

δij<br />

δiδj<br />

1≤i,j≤r<br />

<br />

γij<br />

√ .<br />

γiγj<br />

1≤i,j≤s<br />

;


920 CHAPTER 22. APPENDIX 4: INTERLACING OF EIGENVALUES<br />

Hence Â∆ <strong>and</strong> ÂΓ are real symmetric matrices with real eigenvalues equal<br />

to those of A ∆ <strong>and</strong> A Γ , respectively. The smallest <strong>and</strong> largest eigenvalues<br />

of Â∆ <strong>and</strong> ÂΓ are the m<strong>in</strong>imum <strong>and</strong> maximum, respectively, of y T Â∆y/y T y<br />

<strong>and</strong> x T ÂΓx/x T x, 0 = y ∈ R r , 0 = x ∈ R s .<br />

Let y = (y1, . . . , yr) T be any nonzero vector <strong>in</strong> Rr . Then put x =<br />

(. . . , xα, . . .) T <br />

, where xα = yi γα/δi, whenever α ⊆ i (i.e., Γα ⊆ ∆i). Then<br />

s<br />

α=1<br />

=<br />

imply<strong>in</strong>g x T x = y T y. And<br />

=<br />

x 2 α =<br />

r<br />

i=1<br />

r<br />

<br />

<br />

i=1<br />

y 2 i<br />

δi<br />

x T ÂΓx =<br />

α⊆i<br />

<br />

α∈i<br />

s<br />

α,β=1<br />

γα<br />

yi<br />

<br />

r<br />

P<br />

α ∈ i β ∈ j γαβ<br />

√<br />

γαγβ<br />

i,j=1<br />

=<br />

=<br />

r<br />

i,j=1<br />

r<br />

i,j=1<br />

yi<br />

yi<br />

P<br />

<br />

γα/δi<br />

=<br />

r<br />

i=1<br />

<br />

2 y 2 i ,<br />

γαβ<br />

xα √ xβ<br />

γαγβ<br />

· yi<br />

√<br />

γα<br />

√<br />

δi<br />

α ⊆ i β ⊆ j γαβ<br />

δiδj<br />

δij<br />

δiδj<br />

This implies that any value of<br />

is a corollary of Theorems 22.1.1 <strong>and</strong> 22.1.2<br />

<br />

· yj<br />

√ <br />

γβ<br />

<br />

δj<br />

<br />

yj<br />

yj = y T Â∆y.<br />

yT Â∆y<br />

yT is also a value of y<br />

xT ÂΓx<br />

xT , so the follow<strong>in</strong>g<br />

x<br />

Theorem 22.1.3. If µ1 ≤ µ2 ≤ · · · ≤ µr are the eigenvalues of A ∆ <strong>and</strong><br />

λ1 ≤ · · · ≤ λs are the eigenvalues of A Γ , then λ1 ≤ µ1 ≤ µr ≤ λs. If<br />

y = (y1, . . . , yr) T satisfies A ∆ y = λ1y (so λ1 = µ1), then A Γ x = λ1x, where<br />

x = (· · · xα · · · ) T is def<strong>in</strong>ed by xα = yi whenever α ⊆ i. A similar result<br />

holds <strong>in</strong> case λs = µr.


22.1. REAL SYMMETRIC MATRICES: A REVIEW 921<br />

Proof. The first part of the theorem is evident. So let 0 = y = (y1, . . . , yr)<br />

satisfy A∆y = λ1y = µ1y. Then Ā∆y<br />

√ √<br />

= (y1 δ1, . . . , yr δr) T is an eigenvector<br />

of Â∆ belong<strong>in</strong>g to λ1 = µ1. This goes both ways:<br />

(y1, . . . , yr) T is an eigenvector of A ∆ belong<strong>in</strong>g to µ if <strong>and</strong> only if<br />

<br />

(y1 δ1, . . . , yr δr) T is an eigenvector of Â∆ belong<strong>in</strong>g to µ.<br />

Similarly,<br />

(x1, . . . , xs) T is an eigenvector of A Γ belong<strong>in</strong>g to λ if <strong>and</strong> only if<br />

√ √<br />

(x1 γ1, . . . , xs γs) T is an eigenvector of ÂΓ belong<strong>in</strong>g to λ.<br />

S<strong>in</strong>ce <strong>in</strong> this case Ā∆y<br />

√ √<br />

= (y1 δ1, . . . , yr δr) T is an eigenvector of Â∆<br />

belong<strong>in</strong>g to λ1 = µ1, by the proof of Theorem 22.1.2 z = (· · · zα · · · ) T ,<br />

√<br />

zα = yi γα for α ⊆ i, is an eigenvector of ÂΓ belong<strong>in</strong>g to λ1. It follows that<br />

x = (· · · xα · · · ) T , xα = yα for α ⊆ i, is an eigenvector of AΓ associated with<br />

λ1. A similar proof holds <strong>in</strong> case λs = µr.


922 CHAPTER 22. APPENDIX 4: INTERLACING OF EIGENVALUES


Bibliography<br />

[AS69] R.W. Ahrens <strong>and</strong> G. Szekeres, On a comb<strong>in</strong>atorial generalization<br />

of 27 l<strong>in</strong>es associated with a cubic surface, J. Austral. Math. Soc.,<br />

10(1969), 485 – 492.<br />

[AL89] V. Abatangelo <strong>and</strong> B. Larato, A characterization of Denniston’s<br />

maximal arcs, Geom. Dedicata, 30(1989), 197 – 203.<br />

[BLP94] L. Bader, G. Lunardon <strong>and</strong> S. E. Payne, On q-clan geometry,<br />

q = 2 e , Bull. Belgian Math. Soc., Simon Stev<strong>in</strong>, 1(1994), 301 -<br />

328.<br />

[BLT90] L. Bader, G. Lunardon <strong>and</strong> J. A. Thas, Derivation of flocks of<br />

quadratic cones, Forum Math., 2(1990), 163 – 174.<br />

[Ba46] R. Baer, Polarities <strong>in</strong> f<strong>in</strong>ite projective planes, Bull. Amer. Soc.,<br />

52(1946), 77 – 93.<br />

[BBW91] B. Bagchi, A.E. Brouwer <strong>and</strong> H. A. Wilbr<strong>in</strong>k, Notes on b<strong>in</strong>ary<br />

codes related to the O(5, q) generalized quadrangle for odd q.<br />

Geom. Dedicata, 39(1991), 339 – 355.<br />

[Ba02] . Ball, the number of directions determ<strong>in</strong>ed by a function over a<br />

f<strong>in</strong>ite field, prepr<strong>in</strong>t, 9 pp., 2002.<br />

[Ba55] A. Barlotti, ‘Un’extensione del teorema de Segre-Kustaanheimo’,<br />

Bol. Un. Mat. Ital. (7) 10 (1955), 498 – 506.<br />

923


924 BIBLIOGRAPHY<br />

[BaBo71] A. Barlotti <strong>and</strong> R. C. Bose, L<strong>in</strong>ear representation of a class of<br />

projective planes <strong>in</strong> four dimensional projective spaces, Ann. Mat.<br />

Pura Appl., 88(1971), 9 – 31.<br />

[BBP04] S. G. Barwick, M. R. Brown <strong>and</strong> T. Penttila, Flock generalized<br />

quadrangles <strong>and</strong> tetradic sets of elliptic quadrics of P G(3, q). J.<br />

Comb<strong>in</strong>. Theory Ser. A 113 (2006), no.2, 273 – 290.<br />

[Be80] L. Beneteau, <strong>Topics</strong> about Moufang loops <strong>and</strong> Hall triple systems,<br />

Simon Stev<strong>in</strong> 54(1908), 107 – 124.<br />

[Be65] C. T. Benson, <strong>Generalized</strong> Quadrangles <strong>and</strong> (B, N)-Pairs, Ph.D.<br />

thesis, Cornell University, 1965.<br />

[Be70] C. Benson, On the structure of generalized quadrangles, J. Algebra<br />

15(1970), 443 – 454.<br />

[Be37] W. Benz, Vorlesung über Geometrie der Algebren, Die<br />

Grundlehren der mathematischen Wissenschaften <strong>in</strong> E<strong>in</strong>zeldarstellungen<br />

197, Spr<strong>in</strong>ger, Berl<strong>in</strong>, 1937.<br />

[BR98] A. Beutelspacher <strong>and</strong> U. Rosenbaum, Projective <strong>Geometry</strong>, Cambridge<br />

University Press, 1998, x + 258 pp.<br />

[Bl??] A. Blokhuis, On subsets of GF (q 2 ) with square differences,<br />

[BBBSS99] . Blokhuis, S. Ball, A. E. Brouwer, L. Storme <strong>and</strong> T. Szönyi, On<br />

the number of slopes of the graph of a function def<strong>in</strong>ed over a<br />

f<strong>in</strong>ite field, J. Comb<strong>in</strong>. theory Ser. A, 86 (1999), 187 – 196<br />

[BW87] A. Blokhuis <strong>and</strong> H. A. Wilbr<strong>in</strong>k, A characterization of exterior<br />

l<strong>in</strong>es of certa<strong>in</strong> sets of po<strong>in</strong>ts <strong>in</strong> P G(2, q), Geom. Dedicata,<br />

23(1987), 253 – 254.<br />

[BB71] R. C. Bose <strong>and</strong> A. Barlotti, L<strong>in</strong>ear representation of a class of<br />

projective planes <strong>in</strong> a four dimensional projective spaces, Ann.<br />

Mat. Pura Appl., 88(1971), 9 - 31.


BIBLIOGRAPHY 925<br />

[Br00a] M. R. Brown, <strong>Ovoids</strong> of P G(3, q), q even, with a conic section,<br />

J. London Math. Soc. (2) 62(2000), 569 – 582.<br />

[Br00b] M. R. Brown, The determ<strong>in</strong>ation of ovoids of P G(3, q) conta<strong>in</strong><strong>in</strong>g<br />

a po<strong>in</strong>ted conic, Second Pythagorean Conference (Pythagoreion,<br />

1999), J. Geom., 67(2000), 61 – 72.<br />

[Br04] M. R. Brown, Projective ovoids <strong>and</strong> generalized quadrangles,<br />

prepr<strong>in</strong>t.<br />

[Br06] M. R. Brown, Laguerre geometries <strong>and</strong> some connections to generalized<br />

quadrangles, prepr<strong>in</strong>t.<br />

[BOPPR04] M. R. Brown, C. M. O’Keefe, S. E. Payne, T. Penttila <strong>and</strong> G.<br />

F. Royle, Spreads of T2(O), α-flocks <strong>and</strong> ovals, Designs, Codes<br />

<strong>and</strong> Cryptography, 31(2004), 251 – 282.<br />

[BOPPR??] M. R. Brown, C. M. O’Keefe, S. E. Payne, T. Penttila <strong>and</strong> G.<br />

F. Royle, The classification of spreads of T2(O) <strong>and</strong> α-flocks over<br />

small fields, <strong>in</strong> preparation.<br />

[BOP]<br />

[Br69] R. H. Bruck, Construction Problems of F<strong>in</strong>ite Projective Planes,<br />

<strong>in</strong> Comb<strong>in</strong>atorial Mathematics <strong>and</strong> Its Applications, ed. R. C.<br />

Bose <strong>and</strong> T. A. Dowl<strong>in</strong>g. The University of North Carol<strong>in</strong>a Press,<br />

Chapel Hill (1969), 426 – 514.<br />

[BB66] R. H. Bruck <strong>and</strong> R. C. Bose, L<strong>in</strong>ear representations of projective<br />

planes <strong>in</strong> projective spaces, J. Algebra, 4(1966), 117 – 172.<br />

[BL73] A. Bruen <strong>and</strong> B. Lev<strong>in</strong>ger, A theorem on permutations of a f<strong>in</strong>ite<br />

field, Can. Jour. Math., 25(1973), 1060–1065.<br />

[BT75] A. Bruen <strong>and</strong> J. A. Thas, Flocks, cha<strong>in</strong>s <strong>and</strong> configurations <strong>in</strong><br />

f<strong>in</strong>ite geometries, Atti. Accad. Naz. L<strong>in</strong>cei Rend. (8), 59(1975),<br />

744 – 748.


926 BIBLIOGRAPHY<br />

[Bu69] F. Buekenhout, Une caractérisation des espaces aff<strong>in</strong>s basée sur<br />

la notion de droite, Math. Zeit., 111(1969), 367 – 371.<br />

[Bu76] F. Buekenhout, Characterizations of semi quadrics: A survey. In<br />

Teorie Comb<strong>in</strong>atorie, Vol. I, pp. 393 – 421. Accad. Naz. dei L<strong>in</strong>cei<br />

(Rome, 1973).<br />

[Bu95] F. Buekenhout, editor, HANDBOOK OF INCIDENCE GE-<br />

OMETRY: Buuild<strong>in</strong>gs <strong>and</strong> Foundations, North Holl<strong>and</strong>,<br />

1995, xi + 1420 pp.<br />

[CP02] I. Card<strong>in</strong>ali <strong>and</strong> S. E. Payne, The q-Clan Geometries with q = 2 e ,<br />

available at http://www-math.cudenver.edu/∼ spayne/.<br />

[Ca60] L. Carlitz, A theorem on permutations <strong>in</strong> a f<strong>in</strong>ite field, Proc.<br />

Amer. Math. soc., 11(1960), 456 – 459.<br />

[Ch90] X. Chen, Skew-Translation GQ have s <strong>and</strong> t powers of the same<br />

prime, private communication, circa 1990.<br />

[CK73] Y. Chen <strong>and</strong> G. Kaerle<strong>in</strong>, E<strong>in</strong>e Bemerkung über endliche<br />

Laguerre- und M<strong>in</strong>kowski-Ebenen, Geom. Ded., 2(1973), 193–<br />

194.<br />

[Ch88] W. E. Cherowitzo, Hyperovals <strong>in</strong> Desarguesian planes of even<br />

order, Ann. Discrete Math., 37(1988), 87 – 94.<br />

[Ch98] W. E. Cherowitzo, α-flocks <strong>and</strong> hyperovals, Geom. Dedicata,<br />

72(1998), 221 – 246.<br />

[ChPa02] W. E. Cherowitzo <strong>and</strong> S. E. Payne, The cyclic q-clan geometries<br />

with q = 2 e , Advances <strong>in</strong> <strong>Geometry</strong>, Special Issue (2003), 158 –<br />

185.<br />

[COP01] W. E. Cherowitzo, C. M. O’Keefe, <strong>and</strong> T. Penttila, Unified construction<br />

of f<strong>in</strong>ite geometries aris<strong>in</strong>g from q-clans <strong>in</strong> characteristic<br />

two, Advances <strong>in</strong> <strong>Geometry</strong>, to appear.


BIBLIOGRAPHY 927<br />

[CPPR96] W. Cherowitzo, T. Penttila, I. P<strong>in</strong>neri, G. Royle, Flocks <strong>and</strong><br />

ovals, Geom. Ded., 60(1996), 17 – 37.<br />

[CS98] W. E. Cherowitzo <strong>and</strong> L. Storme, α-flocks with oval herds <strong>and</strong><br />

monomial hyperovals, F<strong>in</strong>ite Fields Appl., 4(1998), 185 – 199.<br />

[DCGT88] F. De Clerck, H. Gevaert, <strong>and</strong> J. A. Thas, Flocks of a quadratic<br />

cone <strong>in</strong> P G(3, q), q ≤ 8, Geom. Dedicata, 26(1988), 215 – 230.<br />

[DCH93] F. De Clerck <strong>and</strong> C. Herssens, Flocks of the quadratic cone <strong>in</strong><br />

P G(3, q), for q small, Reports of the CAGe project, 8(1993), 1 –<br />

75.<br />

[De68] P. Dembowski, F<strong>in</strong>ite Geometries, Spr<strong>in</strong>ger Verlag, 1968.<br />

[DST84] M. De Soete <strong>and</strong> J. A. Thas, A characterization theorem for<br />

the generalized quadrangle T ∗ 2 (O) of order (s, s + 2), Ars Comb.,<br />

17(1984), 225– 242.<br />

[DST86] M. De Soete <strong>and</strong> J. A. Thas, Characterizations of the generalized<br />

quadrangles T ∗ 2 (O) <strong>and</strong> T2(O), Ars Comb., 22(1986), 171 – 186.<br />

[Di58] L. E. Dickson, L<strong>in</strong>ear Groups (with an Exposition of the Galois<br />

Field Theory), Dover, 1958.<br />

[EP73] M. Eich <strong>and</strong> S. E. Payne, Nonisomorphic symmetric block designs<br />

derived from generalized quadrangles, Atti Accad. Naz. L<strong>in</strong>cei<br />

Rend. Cl. Sci. Fis. Mat. Natur. (8) 52(1972), 893 – 902 (1973).<br />

[Fe62] G. Fellegara, Gli ovaloidi <strong>in</strong> uno spazio tridemensionale di Galois<br />

di ord<strong>in</strong>e 8, Atti Accad. Naz. L<strong>in</strong>cei Rend. Cl. Sci. Fis. Mat. Nat.,<br />

(8) 32(1962), 170 – 176.<br />

[FT79] J. C. Fisher <strong>and</strong> J. A. Thas, Flocks <strong>in</strong> P G(3, q), Math. Zeit.,<br />

169(1979), 1 – 11.


928 BIBLIOGRAPHY<br />

[Fr88] D. Frohardt, Groups which produce generalized quadrangles,<br />

Jour. Comb<strong>in</strong>. Theory (A), 48(1988), 139 – 145.<br />

[GJ88] H. Gevaert <strong>and</strong> N. L. Johnson, Flocks of quadratic cones, generalized<br />

quadrangles <strong>and</strong> translation planes, Geom. Ded., 27(1988),<br />

301 – 317.<br />

[GJT88] H. Gevaert, N. L. Johnson <strong>and</strong> J. A. Thas, Spreads covered by<br />

reguli, Simon Stev<strong>in</strong>, 62(1988), 51 – 62.<br />

[Gl83] D. Glynn, Two new sequences of ovals <strong>in</strong> f<strong>in</strong>ite Desarguesian<br />

planes of even order, Comb<strong>in</strong>atorial Mathematics, X (Adelaide,<br />

1982), 217 – 229, Lecture Notes <strong>in</strong> Math., 1036, Spr<strong>in</strong>gere, Berl<strong>in</strong>,<br />

1983.<br />

[Gl84] D. Glynn, The Her<strong>in</strong>g classification for <strong>in</strong>versive planes of even<br />

order, Simon Stev<strong>in</strong>, 58(1984), 319 – 353.<br />

[Gl89] D. Glynn, A condition for the existence of ovals <strong>in</strong> P G(2, q), q<br />

even, Geom. Dedicata, 32(1989), 247 – 252.<br />

[Gl98] D. Glynn, Plane representations of ovoids, Bull. Belg. Math. Soc.<br />

Simon Stev<strong>in</strong>, 5(1998), 275 – 286.<br />

[GOKPP96] D. G. Glynn, C. M. O’Keefe, T. Penttila <strong>and</strong> C. Praeger, <strong>Ovoids</strong><br />

<strong>and</strong> monomial ovals, Geom. Dedicata, 59(1996), no. 3, 223 – 241.<br />

[Ha96] D. Hachenberger, Groups admitt<strong>in</strong>g a Kantor family <strong>and</strong> a factorized<br />

normal subgrop, Designs, Codes <strong>and</strong> Cryptography, 8(1996),<br />

135 – 143.<br />

[Ha03] W. Haemers, Conditions for <strong>in</strong>cidence matrices, Proceed<strong>in</strong>gs of<br />

Third Pythagorean Conference, on Rhodos, Greece, 2003.<br />

[Ha59] M. Hall, Jr., The Theory of Groups, Macmillan, 1959.


BIBLIOGRAPHY 929<br />

[Ha60] M. Hall, Jr., Automorphisms of Ste<strong>in</strong>er triple systems, IBM J.<br />

Res. Dev., 4(1960), 460 – 471.<br />

[Ha71] M. Hall, Jr., Aff<strong>in</strong>e quadrilaterals, Studies <strong>in</strong> Pure Mathematics,<br />

L. Mirsky ed., Academic Press, 1971, 113 – 116.<br />

[Ha72] M. Hall, Jr., Incidence axioms for aff<strong>in</strong>e geometry, Jour. Algebra,<br />

21(1972), 535 – 547.<br />

[Ha75] M. Hall, Jr., <strong>Ovals</strong> <strong>in</strong> the desarguesian plane of order 16, Annali<br />

Mat. Pura Appl., 102(1975), pp. 159 – 176.<br />

[He74] W. Heise, M<strong>in</strong>kowski Ebenen gerader Ordnung, J. <strong>Geometry</strong><br />

5(1974), 83.<br />

[Hi75] J. W. P. Hirschfeld, <strong>Ovals</strong> <strong>in</strong> Desarguesian planes of even order,<br />

Ann. Mat. Pura Appl. (4) 102(1975), 159 – 176.<br />

[Hi79] J. W. P. Hirschfeld, Projective Geometries over F<strong>in</strong>ite Fields,<br />

Oxford University Press, Oxford (1979).<br />

[Hi85] J. W. P. Hirschfeld, F<strong>in</strong>ite Projective Spaces of Three Dimensions,<br />

Oxford University Press, Oxford (1985).<br />

[Hi98] J. W. P. Hirschfeld, Projective Geometries over F<strong>in</strong>ite Fields, 2nd<br />

Ed., Oxford University Press, Oxford (1998).<br />

[HT91] J. W. P. Hirschfeld <strong>and</strong> J. A. Thas, General Galois Geometries,<br />

Oxford University Press, Oxford (1991).<br />

[Hu67] B. Huppert, Endliche Gruppen I, Spr<strong>in</strong>ger-Verlag, 1967.<br />

[Ja80] M. Jacobson, Basic Algebra II, W. H. Freeman <strong>and</strong> Company,<br />

1980.


930 BIBLIOGRAPHY<br />

[JK49] G. Järnefelt <strong>and</strong> P. Kustaanheimo, An observation on f<strong>in</strong>ite geometries,<br />

Den 11te Sk<strong>and</strong><strong>in</strong>aviske Matematikerkongress, Trondheim,<br />

1949, pp. 166 – 182, Johan Grundt Tanums Forlag, Oslo,<br />

1952.<br />

[Jo89] N. L. Johnson, The derivation of dual translation planes, J.<br />

Geom, 36(1989), 63 – 90.<br />

[Jo92] N. L. Johnson, Derivation of partial flocks of quadratic cones,<br />

Rend. Mat., 12(1992), 817 – 848.<br />

[JL94] N. L. Johnson <strong>and</strong> G. Lunardon, On the Bose-Barlotti ∆-planes,<br />

Geom. Ded., 49(1994), 173 – 182.<br />

[JLW91] N. L. Johnson, G. Lunardon <strong>and</strong> F. W. Wilke, Semifield skeletons<br />

of conical flocks, J. Geom., 40(1991), 105 – 112.<br />

[JP97] N. L. Johnson <strong>and</strong> S. E. Payne, Flocks of Laguerre Planes <strong>and</strong> Associated<br />

Geometries. Mostly F<strong>in</strong>ite Geometries (Ed. N. L. Johnson),<br />

Marcel Dekker, l997, pp. 51-122.<br />

[Ka79] W. M. Kantor, Classical groups from a non-classical viewpo<strong>in</strong>t,<br />

Mathematical Institute (Oxford Lectures 1978), Oxford, 1979.<br />

[Ka80] W. M. Kantor, <strong>Generalized</strong> quadrangles associated with G2(q),<br />

Jour. Comb. Theory (A), 29(1980), 212-219.<br />

[Ka86] W. M. Kantor, Some generalized quadrangles with parameters<br />

(q 2 , q), Math. Zeit., 192(1986), 45-50.<br />

[Kn92] N. Knarr, A geometric construction generalized quadrangles from<br />

polar spaces of rank three, Results Math., 21(3–4) (1992), 332 –<br />

344.<br />

[Ko78] G. Korchmáros, Gruppi di coll<strong>in</strong>eazioni transitivi sui punti di<br />

una ovale [(q+2)-arco] di S2,q, q pari, Atti Sem. Mat. Fis. Univ.<br />

Modena, 27(1978), 89 – 105.


BIBLIOGRAPHY 931<br />

[Le54] H. Lenz, Zur Begründung der analytischen Geometrie, Sitzber.<br />

Bayer. Akad. Wiss., Math.-Naturw. K1., (1954), 17 – 72.<br />

[La91] C. W. H. Lam, The search for a f<strong>in</strong>ite projective plane of order<br />

10, Amer. Math. Monthly, 98(1991), 305 – 318.<br />

[LN97] R. Lidl <strong>and</strong> H. Niederreiter, F<strong>in</strong>ite Fields, (2nd Ed.), Cambridge<br />

University Press, 1997.<br />

[LS58] L. Lunelli <strong>and</strong> M. Sce, k-archi completi nei piani proiettivi desarguesiani<br />

di rango 8 e 16, 1958. Centro di Calcoli Numerici,<br />

Politecnico di Milano.<br />

[Mi98]<br />

[WM69] James A. Murtha <strong>and</strong> Earl R. Willard, L<strong>in</strong>ear Algebra <strong>and</strong> <strong>Geometry</strong>,<br />

Hold, R<strong>in</strong>ehart <strong>and</strong> W<strong>in</strong>ston, Inc., 1969, viii + 238 pp.<br />

[OKP89]<br />

[OKP90] C. M. O’Keefe <strong>and</strong> T. Penttila, <strong>Ovoids</strong> of P G(3, 16) are elliptic<br />

quadrics, J. Geom., 44(1990), 95 – 106.<br />

[OKP91] C. M. O’Keefe <strong>and</strong> T. Penttila, Hyperovals <strong>in</strong> P G(2, 16), European<br />

Jour. Comb<strong>in</strong>., 12(1991), 51 – 59.<br />

[OKP92a] C. M. O’Keefe <strong>and</strong> T. Penttila, <strong>Ovoids</strong> of P G(3, 16) are elliptic<br />

quadrics, II, J. Geom., 44(1992), 140 – 159.<br />

[OKP92b] C. M. O’Keefe <strong>and</strong> T. Penttila, A new hyperoval <strong>in</strong> P G(2, 32), J.<br />

Geom., 44(1992), 117 – 139.<br />

[OKP94] C. M. O’Keefe <strong>and</strong> T. Penttila, Symmetries of arcs, J. Comb<strong>in</strong>.<br />

theory Ser. A, 66(1994), 53 – 67.<br />

[OKP96] C. M. O’Keefe <strong>and</strong> T. Penttila, <strong>Ovoids</strong> with a pencil of translation<br />

ovals, Geom. Dedicata, 62(1996), 19 – 34.


932 BIBLIOGRAPHY<br />

[OKP97] C. M. O’Keefe <strong>and</strong> T. Penttila, <strong>Ovals</strong> <strong>in</strong> translation hyperovals<br />

<strong>and</strong> ovoids, Europ. J. Comb<strong>in</strong>atorics, 18(1997), 667 – 683.<br />

[OKP00] C. M. O’Keefe <strong>and</strong> T. Penttila, Characterisations of flock quadrangles,<br />

Geom. Dedicata, 82(2000), 171 – 191.<br />

[OKP02] C. M. O’Keefe <strong>and</strong> T. Penttila, Automorphism groups of generalized<br />

quadrangles via an unusual action of P ΓL(2, 2 h ), European<br />

J. Comb. 23(2002), no. 2, 213 – 232.<br />

[OKPP91] C. M. O’Keefe, T. Penttila <strong>and</strong> C. E. Praeger, Stabilizers of hyperovals<br />

<strong>in</strong> P G(2, 32), Advances <strong>in</strong> f<strong>in</strong>ite geometries <strong>and</strong> designs<br />

(Chelwood Gate, 1990), 337 – 351, Oxford Sci. Publ., Oxford<br />

Univ. Press, New York, 1991.<br />

[OKPR94] C. M. O’Keefe, T. Penttila <strong>and</strong> G. F. Royle, Classification of<br />

ovoidsw <strong>in</strong> P G(3, 32), J. Geom. 50(1994), 143 – 150.<br />

[OKT96] C. M. O’Keefe <strong>and</strong> J. A. Thas, Coll<strong>in</strong>eations of Subiaco <strong>and</strong><br />

Cherowitzo hyperovals, bull. Belg. Math. Soc. Simon Stev<strong>in</strong>,<br />

3(1996), 177 – 192.<br />

[Or73] W. F. Orr, The Miquelian <strong>in</strong>versive plane IP(q) <strong>and</strong> the associated<br />

projective planes, Ph.D. thesis, University of Wiscons<strong>in</strong>,<br />

1973.<br />

[Pa55] G. Panella, Caratterizzazione delle quadriche di uno spazio (tridimensionale)<br />

l<strong>in</strong>eare sopra un corpo f<strong>in</strong>ito, Boll. Un. Mat. Ital.<br />

10(1955), 507 – 513.<br />

[Pa68] S. E. Payne, Symmetric representations of nondegenerate generalized<br />

n-gons, Proc. Amer. Math. Soc., 19(1968), 1321 – 1326.<br />

[Pa70] S. E. Payne, Aff<strong>in</strong>e representations of generalized quadrangles,<br />

Jour. Alg., 16(1970), 473–485.


BIBLIOGRAPHY 933<br />

[1] S. E. Payne, Coll<strong>in</strong>eations of aff<strong>in</strong>ely represented generalized<br />

quadrangles, Jour. Alg., 16(1970), 496 – 508.<br />

[Pa71b] S. E. Payne, Nonisomorphic <strong>Generalized</strong> Quadrangles, Jour. Alg.,<br />

18(1971), 201 – 212.<br />

[Pa71] S. E. Payne, A complete determ<strong>in</strong>ation of translation ovoids <strong>in</strong><br />

f<strong>in</strong>ite Desarguesian planes, Atti. Accad. Naz. L<strong>in</strong>cei Rend. Cl.<br />

Sci. Fis. Mat. Natur. (8) 51(1971), 328 – 331.<br />

[Pa73] S. E. Payne, A restriction on the parameters of a subquadrangle,<br />

Bull. A. M. S., 79(1973), 747 – 748.<br />

[Pa80] S. E. Payne, <strong>Generalized</strong> quadrangles as group coset geometries,<br />

Congr. Numer., 29(1980), 717 – 734.<br />

[Pa85] S. E. Payne, A new <strong>in</strong>f<strong>in</strong>ite family of generalized quadrangles,<br />

Congr. Numer., 49(1985), 115-128.<br />

[Pa85b] S. E. Payne, Hyperovals <strong>and</strong> generalized quadrangles, <strong>in</strong> FI-<br />

NITE GEOMETRIES, eds. C. A. Baker & L. M. Batten, Marcel-<br />

Dekker, Inc., 1985, 251 – 270.<br />

[Pa86] S. E. Payne, Hyperovals yield many GQ, Simon Stev<strong>in</strong>, 60(1986),<br />

211 – 225.<br />

[Pa89] S. E. Payne, An essay on skew translation generalized quadrangles,<br />

Geom. Ded., 32(1989), 93 – 118.<br />

[Pa92] S. E. Payne, Coll<strong>in</strong>eations of the generalized quadrangles associated<br />

with q-clans, Ann. Discr. Math., 52(1992), 449-461.<br />

[Pa94] S. E. Payne, Coll<strong>in</strong>eations of the Subiaco generalized quadrangles,<br />

Bull. Belgian Math. Soc., Simon Stev<strong>in</strong>, 1(1994), 427 - 438.


934 BIBLIOGRAPHY<br />

[Pa95] S. E. Payne, A tensor product action on q-clan generalized quadrangles<br />

with q = 2 e , L<strong>in</strong>. Alg. <strong>and</strong> its Appl., 226–228(1995), 115<br />

– 137.<br />

[Pa96] S. E. Payne, The fundamental theorem of q-clan geometry, Designs,<br />

Codes <strong>and</strong> Cryptography, 8(1996), 181 – 202.<br />

[Pa98] S. E. Payne, The Subiaco Notebook: An Introduction to<br />

q-Clan <strong>Geometry</strong>, q = 2 e , available at http://wwwmath.cudenver.edu/∼spayne/.<br />

[Pa02a] S. E. Payne, Four Lectures <strong>in</strong> Napoli: An Introduction to q-Clan<br />

<strong>Geometry</strong>, q = 2 e , W<strong>in</strong>ter, 2002, 63 pages.<br />

[Pa02b] S. E. Payne, The Cyclic q-Clans with q = 2 e , May 2002, 26 pages.<br />

[Pa04] S. E. Payne, Ten Lectures <strong>in</strong> Perth, (Elation <strong>Generalized</strong><br />

Quadrangles, Etc.), 129 pages, 2004; available at<br />

http//www.maths.uwa.edu.au/research/reports/2004/rr11pdf.<br />

(Notes written for ten lectures given at the University of Western<br />

Australia <strong>in</strong> June 2004.)<br />

[PC02] S. E. Payne <strong>and</strong> I. Card<strong>in</strong>ali, The q-Clan Geometries with q = 2 e ,<br />

prepr<strong>in</strong>t, 2002.<br />

[PC78] S. E. Payne <strong>and</strong> J. E. Conkl<strong>in</strong>, An unusual generalized quadrangle<br />

of order sixteen, Jour. of Comb. Theory (A) 24(1978), 50 – 74.<br />

[PM82] S. E. Payne <strong>and</strong> C. C. Maneri, A family of skew-translation generalized<br />

quadrangles of even order, Congress. Numer., 36(1982),<br />

127 – 135.<br />

[PPP95] S. E. Payne, T. Penttila, I. P<strong>in</strong>neri, Isomorphisms between Subiaco<br />

q-clan geometries, Bull. Belgian Math. Soc., 2(1995), 197 –<br />

222.


BIBLIOGRAPHY 935<br />

[PPR97] S. E. Payne, T. Penttila, G. F. Royle, Build<strong>in</strong>g a cyclic q-clan,<br />

Mostly F<strong>in</strong>ite Geometries, (ed. N. L. Johnson), Marcel Dekker,<br />

l997, 365 – 378.<br />

[PR90] S. E. Payne <strong>and</strong> L. A. Rogers, Local group actions on generalized<br />

quadrangles, Simon Stev<strong>in</strong>, 64(1990), 249-284.<br />

[PT75] S. E. Payne <strong>and</strong> J. A. Thas, <strong>Generalized</strong> quadrangles with symmetry,<br />

Simon Stev<strong>in</strong>, 49(75 – 76), Part I, pp. 3 – 32; Part II, pp.<br />

81 – 103.<br />

[PT84] S. E. Payne <strong>and</strong> J. A. Thas, F<strong>in</strong>ite generalized quadrangles, Pitman,<br />

1984.<br />

[PT91] S. E. Payne <strong>and</strong> J. A. Thas, Conical flocks, partial flocks, derivation<br />

<strong>and</strong> generalized quadrangles, Geom. Ded., 38(1991), 229 –<br />

243.<br />

[PT05] S. E. Payne <strong>and</strong> J. A. Thas, The Stabilizer of the Adelaide Oval,<br />

Discrete Math, 294 (2005), 161 – 173.<br />

[PT03] S. E. Payne <strong>and</strong> K. Thas, Notes on elation generalized quadrangles,<br />

European Journal of Comb<strong>in</strong>atorics, 24(2003), 969 – 981.<br />

[Pe99] T. Penttila, A plane representation of ovoids, Util. Math.,<br />

59(1999), 245 – 250.<br />

[Pe02] T. Penttila, Configurations of ovals, <strong>in</strong> Comb<strong>in</strong>atorics 2002:<br />

<strong>Topics</strong> <strong>in</strong> Comb<strong>in</strong>atorics: geometry, Graph theory <strong>and</strong> Designs,<br />

Maratea (Potenza), Italy, 2 – 8 June 2002, pp. 220 – 241.<br />

[PP94] T. Penttila <strong>and</strong> I. P<strong>in</strong>neri, Irregular hyperovals <strong>in</strong> P G(2, 64),<br />

Jour. Geom., 51(1994), 89 – 100.<br />

[PP99] T. Penttila <strong>and</strong> I. P<strong>in</strong>neri, Hyperovals, Australas. J. Comb<strong>in</strong>.,<br />

19(1999), 101 – 114.


936 BIBLIOGRAPHY<br />

[PP97] T. Penttila <strong>and</strong> C. E. Praeger, <strong>Ovoids</strong> <strong>and</strong> translation ovals, J.<br />

London Math. Soc. (2) 56(1997), 607 – 624.<br />

[PR94] T. Penttila <strong>and</strong> G. Royle, Classification of hyperovals <strong>in</strong><br />

P G(2, 32), J. Geom., 50(1994), 151 – 158.<br />

[PR95] T. Penttila <strong>and</strong> G. Royle, On hyperovals <strong>in</strong> small projective<br />

planes, Jour. Geom., 54(1995), 91 – 104.<br />

[PS98] T. Penttila <strong>and</strong> L. Storme, Monomial flocks <strong>and</strong> herds conta<strong>in</strong><strong>in</strong>g<br />

a monomial oval, J. Comb<strong>in</strong>. Theory, Ser. A 83(1998), 21 – 41.<br />

[Pe74] M. Percsy, Announcement at the F<strong>in</strong>ite Geometries Session,<br />

Oberwolfach, 1974.<br />

[PW77] O. Prohaska <strong>and</strong> M. Walker, A note on the Her<strong>in</strong>g type of <strong>in</strong>versive<br />

planes of even order, Arch. Math. 28(1977), 431 – 432.<br />

[Qv52] B. Qvist, Some remarks concern<strong>in</strong>g curves of the second degree<br />

<strong>in</strong> a f<strong>in</strong>ite plane, Ann. Acad. Sci. Fennicae. Ser. A. I. Math. -<br />

Phys., 1952 (1952), 134, 27 pp.<br />

[Sc60] M. Sce, Prelim<strong>in</strong>ari ad una teoria aritmetico-gruppale dei k-archi,<br />

Rend. Mat. e Appl., (5) 19(1960), 241 – 291.<br />

[Se55] B. Segre, <strong>Ovals</strong> <strong>in</strong> a f<strong>in</strong>ite projective plane, Canad. J. Math.,<br />

7(1955), 414 – 416.<br />

[Se57] B. Segre, Sui k-archi nei piani f<strong>in</strong>ite de caratteristica due, Rev.<br />

Math. Pures Appl., 2(1957), 289 – 300.<br />

[Se62] B. Segre, Ovali e curve σ nei piani di Galois di caratteristica<br />

due, Atti Accad. Naz. L<strong>in</strong>cei Rend. Cl. Sci. Fis. Mat. Nat. (8)<br />

32(1962), 785 – 790.<br />

[SB71] B. Segre <strong>and</strong> U. Bartocci, Ovali ed altre curve nei piani di Galois<br />

di caratteristica due, Actaq Arith., 18(1971), 423 – 449.


BIBLIOGRAPHY 937<br />

[SK77] B. Segre <strong>and</strong> G. Korchmáros, Una proprietà degli <strong>in</strong>siemi di punti<br />

di un piano di Galois caratterizzante quelli formati dai punti delle<br />

s<strong>in</strong>gole rette esterne ad una conica, Atti Accad. Naz. L<strong>in</strong>cei Rend.<br />

62(1977), 1 – 7.<br />

[Se50] E. Seiden, A theorem <strong>in</strong> f<strong>in</strong>ite projective geometry <strong>and</strong> an application<br />

to statistics, Proc. Amer. Math. Soc., 1(1950), 282 –<br />

286.<br />

[Se68] A. Seidenberg, Elements of the Theory of Algebraic Curves,<br />

Addison-Wesley, Read<strong>in</strong>g, Mass., 1968, 216 pp.<br />

[Sh02] B. F. Sherman, Rédei Block<strong>in</strong>g Sets <strong>in</strong> f<strong>in</strong>ite Desarguesian Planes,<br />

Jour. Comb<strong>in</strong>. theory, Series A, 98 (2002), 343 – 356.<br />

[SS79] S. A. Shad <strong>and</strong> E. E. Shult, The near n-gon geometries, unpublished,<br />

1979.<br />

[ST95] L. Storme <strong>and</strong> J. A. Thas, k-Arcs <strong>and</strong> partial flocks, L<strong>in</strong>ear Algebra<br />

Appl., 226(1995), 33 – 45.<br />

[Sy1844] J. J. Sylvester, Collected Mathematical Papers 1, Cambridge University<br />

Press, 1904.<br />

[Ta57] G. Tall<strong>in</strong>i, Sui q-archi di un piano l<strong>in</strong>eare f<strong>in</strong>ite di caratteristica<br />

p = 2. Atti Accad. Naz. L<strong>in</strong>cei Rend., 23(1957), 242 – 245.<br />

[Tam72] O. Tamaschke, Projektive Geometrie II. Bibliographisches Institut,<br />

Mannheim, Wien, Zürich, 1972.<br />

[Th72] J. A. Thas, Ovoidal translation planes, Arch. Math., 23(1972),<br />

110 – 112.<br />

[Th73] J. A. Thas, Flocks of f<strong>in</strong>ite egglike <strong>in</strong>versive planes, <strong>in</strong>: Fi<strong>in</strong>ite<br />

Geometric Structures <strong>and</strong> Their Applications, Bressanone, 1972,<br />

Cremonese, Roma, 189 – 191.


938 BIBLIOGRAPHY<br />

[Th74a] J. A. Thas, A remark concern<strong>in</strong>g the restriction on the parameters<br />

of a 4-gonal subconfiguration, Simon Stev<strong>in</strong> 48(1974 – 75), 65 –<br />

68.<br />

[Th74b] J. A. Thas, On semi ovals <strong>and</strong> semi ovoids, Geom. Dedicata,<br />

3(1974), 229–231.<br />

[Th75] J. A. Thas, Flocks of non-s<strong>in</strong>gular ruled quadrics <strong>in</strong> P G(3, q),<br />

Atti Accac. Naz. L<strong>in</strong>cei Rend., Serie VIII, 59(1975), 83 – 85.<br />

[Th81] J. A. Thas, <strong>Ovoids</strong> <strong>and</strong> spreads of f<strong>in</strong>ite classical polar spaces,<br />

Geom. Ded. 10(1981), 135 – 144.<br />

[Th84] The theorems of Dembowski <strong>and</strong> Heise-Percsy from the po<strong>in</strong>t of<br />

view of generalized quadrangles.<br />

[Th87] J. A. Thas, <strong>Generalized</strong> quadrangles <strong>and</strong> flocks of cones, European<br />

J. Comb<strong>in</strong>., 8(1987), 441-452.<br />

[Th93] J. A. Thas, A characterization of the Fisher-Thas-Walker flocks,<br />

Simon Stev<strong>in</strong>, 3–4(1993), 219 – 226.<br />

[Th98] J. A. Thas, 3-regularity <strong>in</strong> generalized quadrangles: a survey, recent<br />

results <strong>and</strong> the solution of a longst<strong>and</strong><strong>in</strong>g conjecture, Rend.<br />

Circ. Math. Palermo (2) Suppl., 53(1998), 199 – 218. Comb<strong>in</strong>atorics<br />

’98 (Mondello).<br />

[Th99] J. A. Thas, <strong>Generalized</strong> quadrangles of order (s, s 2 ), III, J. Comb<strong>in</strong>.<br />

Theory Ser. A 87(1999), 247 – 272.<br />

[Th01a] J. A. Thas, Geometrical constructions of flock generalized quadrangles,<br />

J. Comb<strong>in</strong>. Theory Ser. A 94(2001), 51 – 62.<br />

[Th01b] J. A. Thas, A result on spreads of the generalized quadrangle<br />

T2(O), with O an oval aris<strong>in</strong>g from a flock, <strong>and</strong> applications,<br />

European J. Comb<strong>in</strong>., 22(2001), 879 – 886.


BIBLIOGRAPHY 939<br />

[Th01c] J. A. Thas, Characterizations of translation generalized quadrangles,<br />

Designs, Codes <strong>and</strong> Cryptography, 23(2001), 249 – 257.<br />

[TDC77] J. A. Thas <strong>and</strong> F. De Clerck, Partial geometries satisfy<strong>in</strong>g the<br />

axiom of Pasch, Simon Stev<strong>in</strong>, 51(1977), 123 – 137.<br />

[THDC93] J. A. Thas, C. Herssens <strong>and</strong> F. De Clerck, Flocks <strong>and</strong> partial<br />

flocks of the quadratic cone <strong>in</strong> P G(3, q), <strong>in</strong>: F<strong>in</strong>ite <strong>Geometry</strong> <strong>and</strong><br />

Comb<strong>in</strong>atorics, Vol. 77, Cambridge University Press, Cambridge,<br />

1993, 379 – 393.<br />

[TP76] J. A. Thas <strong>and</strong> S. E. Payne, Classical f<strong>in</strong>ite generalized quadrangles:<br />

a comb<strong>in</strong>atorial study, Ars Comb<strong>in</strong>atoria 2(1976), 57–110.<br />

[TP94] J. A. Thas <strong>and</strong> S. E. Payne, Spreads <strong>and</strong> ovals <strong>in</strong> f<strong>in</strong>ite generalized<br />

quadrangles, Geom. Dedicata, 52(1994), 227 – 253.<br />

[TPG88] J. A. Thas, S. E. Payne <strong>and</strong> H. Gevaert, A family of ovals with<br />

few coll<strong>in</strong>eations, Europ. J. Comb<strong>in</strong>. 9(1988), 353 – 362.<br />

[JTKT06] J. A. Thas <strong>and</strong> K. Thas, Subquadrangles of order s of generalized<br />

quadrangles of order (s, s 2 ), Part III, prepr<strong>in</strong>t.<br />

[TVM97] J. A. Thas <strong>and</strong> H. Van Maldeghem, <strong>Generalized</strong> quadrangles <strong>and</strong><br />

the axiom of Veblen, <strong>in</strong> <strong>Geometry</strong>, Comb<strong>in</strong>atorial Designs, <strong>and</strong><br />

Related Structures, pp. 241 – 253, Cambridge University Press,<br />

Cambridge, 1997.<br />

[TTVM06] J. A. Thas, K. Thas <strong>and</strong> H. Van Maldeghem Translation <strong>Generalized</strong><br />

Quadrangles, Series <strong>in</strong> Pure Mathematics, World Scientific,<br />

2006.<br />

[KT04] K. Thas, Symmetry <strong>in</strong> F<strong>in</strong>ite <strong>Generalized</strong> Quadrangles<br />

Birkhäuser Verlag, 2004.<br />

[TP06] K. Thas <strong>and</strong> S. E. Payne, Foundations of elation generalized<br />

quadrangles, European Journal of Comb<strong>in</strong>atorics, 27(2006), 51<br />

– 62.


940 BIBLIOGRAPHY<br />

[Ti59] J. Tits, Sur la trialité et certa<strong>in</strong>s groupes qui s’en déduisent, Inst.<br />

Hautes Etudes Sci. Publ. Math. 2(1959), 14 – 60.<br />

[Ti62] J. Tits, Ovoïdes et groups de Suzuki, Arch. Math., 13(1962), 187<br />

– 198.<br />

[HVM98] H. van Maldeghem, <strong>Generalized</strong> Polygons, Birkhäuser, 1998.<br />

[VY38] O. Veblen <strong>and</strong> H. W. Young, Projective <strong>Geometry</strong>, Vol. I, Blaisdell,<br />

1938.<br />

[Wa76] M. Walker, A class of translation planes, Geom. Ded, 5(1976),<br />

135 – 146.<br />

[Wi31] E. Witt, Über die Kommutativität endlicher Schiefkörper, Abh.<br />

Math. Sem.Hamburg, 8(1931), 413.


Index<br />

(0, 2)-set, 157<br />

(p, L)-elation, 425<br />

(p, L)-transitive, 426<br />

(x, L, y)-elation, 426<br />

(x, L, y)-symmetry, 426<br />

G-module, 896<br />

T2(O), 447<br />

Y × Z, 320<br />

Y · Z, 320<br />

α-clan, 765<br />

α-cone, 759<br />

α-derivation, 232<br />

α-flock, 761<br />

α-flock, normalized, 763<br />

⊲⊳ equivalence relation, 709<br />

ˆ⊲⊳, 693<br />

P(V ), 64<br />

D(f), 179<br />

ρ(t)-flip, 773<br />

k-arc, 157, 379<br />

k-arc <strong>in</strong> a GQ, 379<br />

k-cap, 330<br />

k-ply transitive, 892<br />

q-b<strong>in</strong>omial theorem, 87<br />

q-isomorphism, 266<br />

[GQ], 741<br />

3-regular, 681<br />

4-cap, 746<br />

absolute po<strong>in</strong>t (l<strong>in</strong>e), 417<br />

admissible pair, 877<br />

941<br />

aff<strong>in</strong>e coord<strong>in</strong>ate, 105<br />

aff<strong>in</strong>e plane, 16, 27<br />

alternat<strong>in</strong>g, 904<br />

anisotropic, 246, 914<br />

anisotropic matrix, 588<br />

antiregular, 396, 409<br />

apolar l<strong>in</strong>ear complexes, 554<br />

arithmetic function, 815<br />

axial generator, 759<br />

axial pencil, 573<br />

Axiom of Veblen, 94<br />

axis, 81, 122<br />

axis of coll<strong>in</strong>eation, 207<br />

axis of oval, 208<br />

axis of symmetry, 625<br />

base po<strong>in</strong>t, 636<br />

basis of a projective space, 50<br />

Bezout’s Theorem, 853<br />

bowtie equivalence, 749<br />

bundle, 297, 574, 638<br />

cap, 295<br />

carrier (of a cone), 757<br />

carrier of a pencil, 367<br />

carriers of a flock, 295<br />

center, 81, 122<br />

center of coll<strong>in</strong>eation, 207<br />

central coll<strong>in</strong>eation, 122, 207<br />

Cherowitzo ovals, 785<br />

Ch<strong>in</strong>ese Rema<strong>in</strong>der Thm (CRT), 800


942 INDEX<br />

circle, 279<br />

circle plane, 636<br />

circles, 732<br />

classical <strong>in</strong>ternal structure, 737<br />

coll<strong>in</strong>eation, 121<br />

compatible ovals, 347<br />

complete quadrilateral, 110<br />

cone, 242, 757<br />

congruent, 251<br />

conic, 160<br />

conjugate, 240<br />

constrict<strong>in</strong>g about a regular spread,<br />

464<br />

coord<strong>in</strong>ate matrix, 249<br />

coregular, 409<br />

corner, 573<br />

correlation, 103<br />

cyclotomic coset, 354<br />

degenerate, 240, 251, 908<br />

dependent set of po<strong>in</strong>ts, 50<br />

derived plane, 734<br />

Desargues’ configuration, 68<br />

Desargues, theorem of, 67<br />

dilatations, 133<br />

dimension of projective space, 54<br />

Dirichlet convolution (product), 816<br />

discrim<strong>in</strong>ant, 262, 832<br />

division r<strong>in</strong>g, 901<br />

doily, 380<br />

dual coord<strong>in</strong>ate vector of l<strong>in</strong>e, 548<br />

dual tetradic set, 727<br />

duality (of GQ), 417<br />

egglike <strong>in</strong>versive plane, 639<br />

elation, 123, 207, 425<br />

elementary symmetric function, 826<br />

elliptic congruence, 556<br />

elliptic quadric ovoid, 342<br />

elliptic space, 257<br />

equivalent matrices, 587<br />

Euler’s Criterion, 805<br />

Euler’s phi-function, 815<br />

Eulerian generat<strong>in</strong>g function, 90<br />

expansion about a regular po<strong>in</strong>t,<br />

445<br />

exponent of a polynomial, 820<br />

exterior l<strong>in</strong>e, 157<br />

exterior po<strong>in</strong>t of oval, 158<br />

external l<strong>in</strong>es lemma, 222<br />

faithful, 892<br />

fan of ovals, 347<br />

flag, 18, 54<br />

flippable, 773<br />

flock, 293<br />

flock of elliptic quadric, 295<br />

flock of hyperbolic quadric, 279<br />

flock of quadratic cone, 291<br />

flock, l<strong>in</strong>ear, of I, 645<br />

frame, 149<br />

Gaussian coefficient, 83<br />

generalized f-fan, 794<br />

generalized quadrangle, 377<br />

generator of a cone, 757<br />

generator of cone, 289<br />

germ, 246<br />

Glynn’s Criterion for ovals, 187<br />

Glynn’s hyperovals, 217<br />

Glynn’s ovals 3σ + 4, 769<br />

Glynn’s ovals γ + σ, 784<br />

gram matrix, 911<br />

Greek plane, 541<br />

group action, 889<br />

harmonic conjugate, 111


INDEX 943<br />

Hensel’s Lemma, 844<br />

herd, 771<br />

Hermite-Dickson Criterion, 855<br />

Hermitian, 905<br />

hermitian polarity, 103, 104<br />

Higman’s <strong>in</strong>equality, 382<br />

homogeneous coord<strong>in</strong>ates, 76<br />

homography, 80, 105, 154, 207<br />

homology, 207<br />

hull, 16, 18<br />

hyperbolic congruence, 556<br />

hyperbolic l<strong>in</strong>e, 243, 379, 914<br />

hyperbolic space, 243, 257<br />

hyperboloid, 118<br />

hyperoval, 159<br />

hyperoval cone, 293<br />

hyperoval flock, 293<br />

hyperplane, 238<br />

<strong>in</strong> perspective from a po<strong>in</strong>t (l<strong>in</strong>e),<br />

68<br />

<strong>in</strong>dependent set of po<strong>in</strong>ts, 50<br />

<strong>in</strong>dex of quadratic form, 268<br />

<strong>in</strong>dex of s<strong>in</strong>gular orthogonal transformation,<br />

273<br />

<strong>in</strong>terior po<strong>in</strong>t of oval, 158<br />

<strong>in</strong>ternal structure, 735<br />

<strong>in</strong>versive plane, 638<br />

isometry, 242, 262, 906<br />

isotropic, 243, 907<br />

Kle<strong>in</strong> correspondence, 539<br />

Lagrange <strong>in</strong>terpolation, 824<br />

Laguerre geometry, 733<br />

Laguerre plane, 636<br />

Laguerre po<strong>in</strong>t, 731<br />

larc, 417<br />

Lat<strong>in</strong> plane, 541<br />

lattice, 82<br />

Lemma of Tangents, 175<br />

l<strong>in</strong>ear complex, 551<br />

l<strong>in</strong>ear congruence, 554<br />

l<strong>in</strong>ear flock, 279, 759<br />

l<strong>in</strong>ear space, 15<br />

l<strong>in</strong>earized q-polynomial, 199, 865<br />

local secant parameter set, 729<br />

Lucas, 799<br />

Möbius <strong>in</strong>version, 817<br />

Möbius plane, 636, 638<br />

maximal flag, 54<br />

M<strong>in</strong>kowski plane, 636, 674<br />

monomial o-polynomial, 180<br />

monomial oval cone, 758<br />

Moufang panel, 426<br />

net, 412<br />

Newton’s Formulas, 830<br />

noed, 573<br />

non-axial pencil, 574<br />

non-homogeneous coord<strong>in</strong>ate, 105<br />

nondegenerate, 240, 908<br />

norm, 823<br />

nuclear generator, 289, 293, 759<br />

nucleus of oval, 159<br />

null polarity, 102, 336, 557<br />

null system, 557<br />

o-permutation, 180<br />

o-polynomials, 180<br />

opposite regulus, 117<br />

orbit-count<strong>in</strong>g lemma, 891<br />

order of P GL(3, q), 155<br />

order of f<strong>in</strong>ite GQ, 378<br />

order of <strong>in</strong>versive plane, 638<br />

ordered frame, 149<br />

Orr, 639, 664


944 INDEX<br />

Orr’s Theorem, 328<br />

orthogonal, 240<br />

orthogonal l<strong>in</strong>ear map, 266<br />

orthogonal polar space, 906<br />

orthogonal polarity, 103<br />

oval, 158<br />

oval derivation, 229<br />

ovals compatible at a po<strong>in</strong>t, 793<br />

ovoid <strong>in</strong> P G(3, q), 329<br />

ovoid of H5, 582<br />

ovoid of GQ, 416<br />

ovoid of Kle<strong>in</strong> quadric, 585<br />

ovoidal <strong>in</strong>versive plane, 639<br />

pack<strong>in</strong>g, 463<br />

pack<strong>in</strong>g (of spreads), 461<br />

pack<strong>in</strong>g of P G(3, q), 582<br />

panel, 426<br />

Pappus’ configuration, 71<br />

Pappus, Theorem of, 71<br />

parabolic congruence, 556<br />

parabolic space, 257<br />

partial flock, 293<br />

partial geometry P aG(α, s, t), 93<br />

pencil, 367, 638<br />

pencil of circles, 636<br />

perp, 379, 908<br />

perp perp, 379<br />

pivotal spread, 463<br />

Plücker coord<strong>in</strong>ates, 537<br />

plane representation theorem, 346<br />

po<strong>in</strong>ted conic, 179, 211<br />

polar, 103, 240, 336<br />

polar form, 238<br />

polar form fQ, 905<br />

polar space, 905<br />

polarity, 102, 336, 338<br />

polarity of GQ, 417<br />

pole, 103, 336<br />

primitive element, 819<br />

primitive root, 799, 807<br />

pr<strong>in</strong>ciple of duality, 48<br />

projection of a flock, 291<br />

projective coll<strong>in</strong>eation, 148<br />

projective geometry, 54<br />

projective ovoid of T2(O), 509<br />

projective plane, 16<br />

projective semil<strong>in</strong>ear group, 80<br />

projective space; synthetic, 17<br />

Property (G), 743<br />

property (G), 609, 683<br />

pseudo polarity, 103<br />

pseudol<strong>in</strong>e, 497<br />

quadratic cone, 289<br />

quadratic form, 238, 905<br />

quadratic reciprocity, 840<br />

quadratic residue, 839<br />

quadric, 160, 238<br />

quiver, 491<br />

quotient geometry, 56<br />

quotient space, 909<br />

radical, 908<br />

reciprocity, 101<br />

reduced representative set, 354<br />

regular, 409<br />

regular hyperoval, 179, 211<br />

regular oval, 179<br />

regular po<strong>in</strong>t or l<strong>in</strong>e, 379<br />

regular spread, 463<br />

regular spread of P G(3, q), 564<br />

regulus, 93, 117<br />

resultant, 830, 848<br />

reverse polynomial, 834<br />

rosette of ovoids, 310


INDEX 945<br />

secant l<strong>in</strong>e, 157<br />

Segre’s oval, 183<br />

Segre’s Theorem, 174<br />

self-polar, 104<br />

semi-oval, 350<br />

semi-ovoid, 350<br />

semil<strong>in</strong>ear, 904<br />

semil<strong>in</strong>ear map, 80<br />

semisimilarity, 242, 906<br />

sesquil<strong>in</strong>ear, 904<br />

similarity, 242, 906<br />

s<strong>in</strong>gular element of G, 273<br />

s<strong>in</strong>gular po<strong>in</strong>t, 240<br />

s<strong>in</strong>gular vector, 240, 907<br />

skew-field, 901<br />

skew-symmetric, 904<br />

skew-translation GQ (STGQ), 433<br />

span, 16, 379<br />

span of po<strong>in</strong>tsets, 18<br />

spread of a GQ, 417<br />

Stickelberger’s Theorem, 836<br />

subprimitive, 821<br />

subspace of l<strong>in</strong>ear space, 15<br />

sum function, 817<br />

symmetric polynomials, 826<br />

symmetry, 426<br />

symmetry with respect to hyperplane,<br />

271<br />

symplectic GQ W (q), 385<br />

symplectic polar space, 905<br />

symplectic polarity, 102, 557<br />

syntheme-duad geometry, 376<br />

tangent l<strong>in</strong>e, 157<br />

tangent l<strong>in</strong>e to an ovoid, 329<br />

tetrad, 689<br />

tetradic set, 689<br />

Thas-Walker construction, 585<br />

Tits ovoid, 342<br />

totally isotropic, 243, 907<br />

totally s<strong>in</strong>gular, 907<br />

trace, 379, 822<br />

trace (absolute), 218, 259<br />

transitive, 892<br />

translation, 123<br />

translation dual, 732<br />

translation oval, 208<br />

transversal of ovoids, 695, 745<br />

triad, 379<br />

trivial subspace, 54<br />

unitary polar space, 905<br />

unitary polarity, 103, 104<br />

V<strong>and</strong>ermonde determ<strong>in</strong>ant, 884<br />

Wedderburn’s Theorem, 901<br />

whorl, 425<br />

Witt <strong>in</strong>dex, 246, 913

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!