CONDITIONAL COLORING by Mark R. Dillon B.S., Purdue ...

CONDITIONAL COLORING by Mark R. Dillon B.S., Purdue ... CONDITIONAL COLORING by Mark R. Dillon B.S., Purdue ...

math.ucdenver.edu
from math.ucdenver.edu More from this publisher
20.07.2013 Views

CONDITIONALCOLORING MarkR.Dillon by B.S.,PurdueUniversity,1982,1985 M.S.,PurdueUniversity,1984 UniversityofColoradoatDenver Athesissubmittedtothe oftherequirementsforthedegreeof inpartialfulllment AppliedMathematics DoctorofPhilosophy 1998

<strong>CONDITIONAL</strong><strong>COLORING</strong><br />

<strong>Mark</strong>R.<strong>Dillon</strong> <strong>by</strong><br />

B.S.,<strong>Purdue</strong>University,1982,1985 M.S.,<strong>Purdue</strong>University,1984<br />

UniversityofColoradoatDenver Athesissubmittedtothe<br />

oftherequirementsforthedegreeof inpartialfulllment<br />

AppliedMathematics DoctorofPhilosophy<br />

1998


ThisthesisfortheDoctorofPhilosophy<br />

<strong>Mark</strong>R.<strong>Dillon</strong> degree<strong>by</strong><br />

hasbeenapproved <strong>by</strong><br />

KathrynL.Fraughnaugh<br />

DavidC.Fisher<br />

J.RichardLundgren<br />

TomRussell<br />

TomAltman<br />

Date


<strong>Dillon</strong>,<strong>Mark</strong>R.(Ph.D.,AppliedMathematics) ConditionalColoring Thesisdirected<strong>by</strong>AssociateProfessorKathrynL.Fraughnaugh<br />

Theconditionalchromaticnumber(G;P)ofagraphGwithrespecttoa ABSTRACT<br />

graphicalpropertyPistheminimumnumberofcolorsneededtocolorthevertices<br />

write(G;:F).Theconditionalchromaticnumberofagraphhasbeenstudied ofGsuchthateachcolorclassinducesasubgraphofGwithpropertyP.When<br />

<strong>by</strong>variousauthorssince1968.Wefocusontwoconditionalchromaticnumbers, PisthepropertythatagraphcontainsnosubgraphisomorphictoagraphF,we<br />

specically(G;:Cj)and(G;:Pj),whereCjisacycleoflengthjforsomexed<br />

2j?5edges.Toaccomplishthis,wecharacterizeallHamiltoniangraphsoforder jforgraphsmissingatmostj?1edgesand(G;:Pj)forgraphsmissingatmost 3andPjisapathoflengthj?1forsomexedj 2.Wend(G;:Cj)<br />

atleastn2?(2n?5)edges.Wedeterminebothconditionalchromaticnumbers nwithatleastn2?(n?1)edgesandallgraphswithnoHamiltonianpathswith forallgraphswithacycliccomplements.Wealsodeterminealowerboundon if(G;:P3) (G;:Pj)intermsofthesizeofG.Finally,weshowtheproblemofdetermining<br />

Thisabstractaccuratelyrepresentsthecontentofthecandidate'sthesis.Irec- k,forsomek 0,isNP-complete.<br />

ommenditspublication. Signed KathrynL.Fraughnaugh<br />

iii


DEDICATION<br />

Tomywife,WendyTweten<strong>Dillon</strong>,whoselove,understanding,patience,and<br />

encouragementmadeitpossibletocompletethisdissertation.


Fraughnaughforhertirelessguidance,patience,inspirationandencouragement Iwouldliketoexpressmydeepgratitudetomyadvisor,ProfessorKathryn ACKNOWLEDGEMENTS<br />

tation.MysincerethankstoProfessorRichardLundgrenandProfessorDavidduringthecourseofmyresearchandthroughoutthepreparationofthisdisser- Fisherwhowerealwaystheretoanswerquestions. alwaysgavemethesupportIneededandmybrothersandsister,Steve,Dave, Scott,LauraandPaul<strong>Dillon</strong>fortheirconstantencouragement. Iwouldalsoliketothankmymotherandfather,PatandRussell<strong>Dillon</strong>who<br />

persontointerestmeintheeldofmathematicsandmyclosefriendsDoug Mckissack,ArthurShulmanandKevinWilliamsfortheirconstantencouragement. IalsothankMr.JohnDrubert,mysixthgradeteacher,whowastherst<br />

pleted.AircraftCompanywithoutwhosesupport,thisthesiswouldneverhavebeencom-<br />

Finally,Ireceived,andgratefullyacknowledgenancialassistancefromHughes


Contents 1Introductiontocoloringanditsapplications 1.1OverviewofThesisResults...................... 1<br />

1.2DenitionsandNotation....................... 54<br />

2BasicResultsfor(G;:Pj)and(G;:Cj) 1.3ConditionalColoring......................... 169<br />

3NP-complete 4Determiningtheconditionalchromaticnumberforgraphswith22<br />

acycliccomplements 4.1Determining(G;:Cj)whenGisacyclic............. 29<br />

4.2Determining(G;:Pj)whenGisacyclic............. 35 29<br />

4.3Thedierencebetweenthe:Cj-and:Pj-chromaticnumbersofa<br />

5Determining(G;:Cj) graph.................................. 39 37<br />

5.1Preliminaries............................. 39<br />

vi


6Determining(G;:Pj) 5.2Determining(G;:Cj)whene(G) n2?(j?1)........ 58 46<br />

6.1DeterminingwhichgraphsoflargesizehaveaHamiltonianpath. 6.2Graphsmissingcompletesubgraphsorastar............ 73 58<br />

6.3Determining(G;:Pj)whene(G)islarge............. 6.4Determiningboundson(G;:Pj)giventhenumberofedgesina 75<br />

AAppendix graph.................................. 84 79<br />

BReferences 95<br />

vii


1LetGbeagraph.AvertexcoloringofGisanassignmentofcolorstoitsvertices Introductiontocoloringanditsapplications<br />

sothatnotwoadjacentverticesreceivethesamecolor.Thechromaticnumber ofthechromaticnumberistheminimumintegerksuchthatthereisapartitionof theverticesintoksetssothatthesubgraphinduced<strong>by</strong>eachsetisanindependent (G)istheminimumnumberofcolorsneededtocolorG.Anequivalentdenition<br />

following.IntheUnitedStatesGovernment,therearecongressionalcommittees set.Vertexcoloringhasawidevarietyofapplications.Onesuchapplicationisthe<br />

ingtimesforthesecommittees,onemustnotschedulesimultaneousmeetingsfortwocommitteesthathaveacommonmember.Aschedulesolutionisfound<strong>by</strong>dewithmembersofCongressservingonmultiplecommittees.Whenassigningmeet- committees.Wedrawanedgebetweentwoverticesifthecommitteesrepresented Wecanmodelthisproblem<strong>by</strong>constructingagraphGwhoseverticesrepresent terminingtheminimumnumberoftimeslotsrequiredforthecommitteestomeet.<br />

<strong>by</strong>theseverticeshaveacommonmember.Determiningtheminimumnumberof Forfurtherdetails,seeRoberts[47]orBodinandFriedman[8]. timeslotsrequiredforthecommitteestomeetisequivalenttodetermining(G).<br />

geographicallyclose,say50miles,receivedierentfrequencyassignments.The regionaretobeassignedtransmittingfrequenciessothatradiostationswhichare Anotherapplicationisthechannelassignmentproblem.Radiostationsina<br />

problemofassigningfrequenciesisagraphcoloringproblem.Leteachvertex 1


epresentaradiostationanddrawanedgebetweentwoverticesiftheradiostationsrepresented<strong>by</strong>thoseverticesarewithin50miles.Thenumberoffrequenciessignmentproblem,seeCozzensandRoberts[20],Hale[28],OpsutandRobertschromaticnumberofthisgraph.Formoreinformationregardingthechannelas- requiredsothattheradiostationsdonotinterferewitheachotheristhevertex<br />

[43],orPennotti[46].<br />

textbooks.Forexample,seeBondyandMurty[10],Harary[29],Chartrandand problem.Thisisamuchstudiedproblemandisdiscussedinmostgraphtheory Thelastapplicationofvertexcoloringwewilldiscussistheclassicmapcoloring<br />

Lesniak[17],orRoberts[47].Givenamapwithvariouscountries,wewouldlike tocolorthecountriesinsuchawaythatweusethefewestnumberofcolors,andif twocountriesshareacommonborder,theyreceiveadierentcolor.Thisproblem canbetranslatedintoagraphcoloringproblem<strong>by</strong>buildingagraphwitheach<br />

minimumnumberofcolorsrequiredtocolorthemap,wend(G).Thisgraph countriesrepresented<strong>by</strong>thoseverticeshaveacommonborder.Todeterminethe vertexrepresentingacountryanddrawinganedgebetweentwoverticesifthe<br />

graphscanbecoloredusingatmostfourcolors. hasthepropertythatitisplanar.TheFourColorTheoremstatesthatallplanar<br />

classandallowcertaincongurationsofedges.Forexample,inthecommittee schedulingapplication,wecouldalloweachcommitteetohaveatimeconictwith Now,supposewerelaxtheconditionthattherebenoedgesineachcolor<br />

atmostoneothercommitteewithacommonmember.Inthiscase,eachcolor committeeschedulingproblem. classcancontainisolatedverticesandedges.Wewillcallthisproblemtherelaxed<br />

2


graphcoloring.Wedenetheconditionalchromaticnumber(G;P)ofGwith respecttoagraphtheoreticalpropertyPtobetheminimumintegerksuchthat Thisisanexampleofageneralizationforgraphcoloringcalledconditional<br />

eachsethasthepropertyP. thereisapartitionoftheverticesintoksetssothatthesubgraphinduced<strong>by</strong><br />

lem.Adesignerdrawsanelectricalcircuittobemanufactured.Severalcircuit boardssandwichedoneontopoftheothermayberequiredtobuildtheentire Anotherapplicationforconditionalcoloringisthecircuitmanufacturingprob-<br />

circuitsince,forthiscircuittoworkproperly,eachcircuitboardmustbebuilt withoutintersectingedges.Now,themanufacturerwouldliketodeterminethe<br />

tioninthecircuit.Drawanedgebetweentwoverticesinthegraphifthejunctions minimumnumberofrequiredcircuitboards.Theproblemcanbemodeledasa conditionalgraphcoloringproblem.Leteachvertexinourgraphrepresentajunc- represented<strong>by</strong>thoseverticesareconnectedinthecircuitdesign.Determiningthe<br />

i.e.,isplanar.Thisparticularconditionalchromaticnumberisalsoknownasthe wherePisthepropertythateachcolorclassbedrawnwithnointersectingedges, minimumnumberofcircuitboardsrequiredisequivalenttodetermining(G;P),<br />

BeinekeandWhite[7]orCimikowski[18].Forotherelectricalcircuitproblems, seeHutchinson[37]orGareyandJohnson[26]. vertexthicknessofagraph.Formoreinformationregardingvertexthickness,see<br />

nopathsoforderjinacolorclass,andthesecondpermitsnocyclesoforder jinacolorclass.Therelaxedcommitteeschedulingproblemisanexampleof Wewillstudytwotypesofconditionalchromaticnumbers.Therstpermits<br />

conditionalcoloringwiththepropertythatnocolorclasscontainsP3.Studying 3


thesetwonumbersmaygiveinsightintoand/orboundsonotherconditional understandingofageneralizationleadstoabetterunderstandingoftheoriginal chromaticnumbersortheoriginalchromaticnumber.Itisoftenthecasethatthe concept. 1.1 Thisthesiswillpresentsomenewresultsabouttheconditionalchromaticnumber OverviewofThesisResults<br />

tothepropertyofhavingnopathsofaxedlengthj?1. somenewresultsabouttheconditionalchromaticnumber(G;:Pj)withrespect (G;:Cj)withrespecttothepropertyofhavingnocyclesofaxedlengthjand<br />

reviewtheexistingliteratureregarding(G;:Cj)and(G;:Pj). Therstchapterwillprovidesomebasicdenitionsfromgraphtheoryand<br />

and(G;:Pj).Someoftheseresultswillbeneededinlaterchapters. Thesecondchapterwillpresentandprovesomebasicresultsregarding(G;:Cj)<br />

:P3-coloredusingkcolorsisNP-complete. Thethirdchapterwillshowthattheproblemofdeterminingifagraphcanbe<br />

complement,whatis(G;:Cj)and(G;:Pj)?Aconstructionwhichillustrates that(G;:Pj)?(G;:Cj) Thefourthchapterwillanswerthequestion:givenanygraphwithacyclic<br />

andFraughnaugh[21]characterized(G;:Cj)whenagraphismissingatmost Thefthchapterwilldetermine(G;:Cj)forallgraphsoflargesize.Dargen aforanypositiveintegeraisalsoprovided.<br />

j?2edges.Inthischapter,weextendthisresulttographsmissingatmostj?1 edges.Toaccomplishthis,wecharacterizeallHamiltoniangraphsofordernwith atleastn2?(n?1)edges.<br />

4


determine(G;:Pj)forallgraphsoflargesize,wewillcharacterizeallgraphsof determineanupperboundonthesizeofGgivenaboundfor(G;:Pj).To Thesixthchapterwilldetermine(G;:Pj)forallgraphsoflargesizeand<br />

1.2 ordernwithnoHamiltonianpathshavingatleastn2?(2n?5)edges.<br />

AgraphGconsistsofanitenonemptysetV=V(G)ofverticesandacollection DenitionsandNotation<br />

orderornumberofverticesofGisdenoted<strong>by</strong>n=n(G).Agraphissimpleif Gbeagraph.ThesizeornumberofedgesofGisdenoted<strong>by</strong>e=e(G),andthe E=E(G)ofdistinctpairsofvertices,callededges.Throughoutthispaper,let<br />

thereisatmostoneedgebetweenanydistinctpairofverticesandthereareno<br />

andvneighbors.TheopenneighborhoodN(u)ofavertexuisthesetofneighbors loops.Forthispaper,wewillassumethatallgraphsaresimple.<br />

ofu,andtheclosedneighborhoodN[u]ofuisN(u)[fug.ThedegreedG(v)ofa IfuandvareverticesofG,wewritetheedgejoininguandvasuvandcallu<br />

vertexisdenedtobethenumberofedgesinGincidentwiththatvertex.When itcleartowhichgraphwearereferring,wemaywrited(v).Theminimumdegree<br />

allverticeshavethesamedegreeandGisregularofdegreerorr-regular.A (G)istheminimumdegreeamongallverticesofGwhilethemaximumdegree<br />

3-regulargraphisacubicgraph.Ifavertexisnotincidenttoanyedge,thenthis (G)isthemaximumdegreeamongallverticesofG.If(G)=(G)=r,then<br />

vertexisanisolatedvertex. wewriteH AsubgraphHofGisagraphhavingallofitsverticesandedgesinG,and G.ForanysetSofverticesinG,theinducedsubgraphhSiisthe<br />

5


maximalsubgraphofGwithvertexsetS.IfSisanonemptysetofedgesinG, thenhSiisthesubgraphwhoseedgesetisSandwhosevertexsetisthesetof endsofedgesinS.Agraphiscompleteifeverypairofverticesisjoined<strong>by</strong>an edge.ThecompletegraphonnverticesisKn.Thegraphonnverticeswithno edgesisIn. apathPn.Wesaytheverticesv1andvnareconnected<strong>by</strong>thepathPn.We sometimescallthispatha(v1;vn)-path.Thelengthofapathisthenumberof Thegraphwithdistinctverticesv1;:::;vnandedgesv1v2;v2v3;:::;vn?1vnis<br />

edgesinit.Thedistanced(u;v)fromutovinGisthelengthofashortestpath fromutov.ThediameterofGisthemaximumdistancebetweenanytwovertices cycle.ThegraphwhichconsistsofacycleonjverticesisCj,andagraphwhich ofG.Ifu=vandthereareatleastthreeverticesonthepath,thenthispathisa containsnocyclesisacyclic.AgraphGisHamiltonianifithasacyclecontaining alltheverticesofG.AgraphGhasaHamiltonianpathifithasapathcontaining everyvertexofG.AgraphGisHamiltonianconnectedifforeverypairuandv ofdistinctverticesofG,thereexistsaHamiltonian(u,v)-path. tov.AmaximalconnectedsubgraphofGiscalledacomponentofG.IfGis notconnected,thenwesayGisdisconnected.Theconnectivity(G)ofGisthe Agraphisconnectedifforanytwoverticesuandv,thereisapathfromu<br />

graphisatree,andaforestisagrapheachofwhosecomponentsisatree. graph.IftheconnectivityofGis,wesayGis-connected.Aconnectedacyclic minimumnumberofverticeswhoseremovalresultsinadisconnectedortrivial<br />

vertex.Oncewechoosearootu,thelevelofavertexvisd(u;v).Therootisthe InatreeT,wecanmakeTarootedtree<strong>by</strong>designatinganyvertexastheroot<br />

6


onlyvertexatlevel0.Further,alladjacentverticesdier<strong>by</strong>exactlyonelevel, maximumlevelistheheighthu(T)ofthetree. andeachvertexatleveli+1isadjacenttoexactlyonevertexatleveli.The<br />

adjacentinGifandonlyiftheyarenotadjacentinG. ThecomplementGofGalsohasV(G)asitsvertexset,buttwoverticesare<br />

themaximumorderamongallcliquesofG.AnindependentsetofverticesofG isasetI AcliqueofGisacompletesubgraphofG.Thecliquenumber!(G)ofGis<br />

hasnotwoofitsedgesincident,andsuchasetisamatching. Next,wewilldiscusssomeoperationsdenedongraphs.LetG1andG2<br />

Vsuchthatxy=2Eforallx;y2I.AnindependentsetofedgesofG<br />

betwographswithdisjointvertexsets.TheunionG1+G2ofG1andG2has mGisthepairwisevertexdisjointunionofmcopiesofG.ThejoinG1_G2 V(G1+G2)=V(G1)[V(G2)andE(G1+G2)=E(G1)[E(G2).Ingeneral, oftwographsG1andG2hasV(G1_G2)=V(G1)[V(G2)andE(G1_G2)= E(G1)[E(G2)[fuv:u2V(G1)andv2V(G2)g. f(u;v):u2V(G1)andv2V(G2)g,and(u1;v1)and(u2;v2)areadjacentwhenevereitheru1u22E(G1)andv1=v2,oru1=u2andv1v22E(G2).Thestrong ThecartesianproductG1 G2oftwographsG1andG2hasV(G1 G2)=<br />

productG1G2oftwographsG1andG2hasV(G1G2)=f(u;v):u2V(G1)and v2V(G2)g,and(u1;v1)and(u2;v2)areadjacentwhenevereitheru1u22E(G1) andv1=v2,oru1=u2andv1v22E(G2),oru1u22E(G1)andv1v22E(G2). TheconjunctionG1^G2oftwographsG1andG2hasV(G1^G2)=f(u;v): u2V(G1)andv2V(G2)g,and(u1;v1)and(u2;v2)areadjacentwhenever u1u22E(G1)andv1v22E(G2). 7


twoadjacentverticesreceivedierentlabels.Wethinkofeachdistinctlabelasa colorandcalleachsetofverticesassignedaxedcoloracolorclass.Thevertex AvertexcoloringisanassignmentoflabelstotheverticesofGsothatany<br />

chromaticnumber(G)ofGistheminimumkforwhichGhasak-coloring,i.e., oneusingkcolors.Agraphisk-colorableifwecancoloritusingkcolors.<br />

ofagraphisdenedtobetheminimumnumberofcolorsneededtoedgecolor thatanytwoincidentedgesreceiveadierentlabel.Theedgechromaticnumber Anedgecoloringisanassignmentoflabels(orcolors)totheedgesofGso<br />

G.Ifweusetheterm\chromaticnumber"or\coloring"inthispaper,wemean vertexchromaticnumberorvertexcoloring.<br />

planegraphhasalreadybeenembeddedintheplane.Wewillrefertotheregions notwoedgesintersect.Agraphisplanarifitcanbeembeddedintheplane;a AgraphissaidtobeembeddedinasurfaceSwhenitisdrawnonSsothat<br />

planargraphis4-colorable.Foraproofofthisresult,seeAppelandHaken[5]. dened<strong>by</strong>aplanegraphasitsfaces.TheFourColorTheoremstatesthatevery<br />

subsetsV1andV2suchthateveryedgeofGjoinsV1andV2.Thebipartition numberb(G)ofagraphGisgiven<strong>by</strong>b(G)=maxfe(B):B AbipartitegraphGisagraphwhosevertexsetVcanbepartitionedintotwo<br />

bipartiteg. Forotherbasicgraphtheorydenitionsandterminology,thereaderisreferred GandBis<br />

toHarary[29].<br />

8


Anequivalentdenitionofvertexcoloringisapartitionofthevertexsetsothat 1.3 ConditionalColoring<br />

thesubgraphinduced<strong>by</strong>eachsetofthispartitionisanindependentset.Stated dierently,eachcolorclasscontainsnopathontwovertices. colorings.LetPbeanygraphtheoreticproperty.Forexample,Pcouldbethe propertythatagraphcontainsacliqueofacertainorder,thatagraphdoesnot Thisledseveralauthors[15],[16],[35]toamoregeneralconceptofvertex<br />

containacycleoforder6,thatagraphdoesnotcontainaninducedcycleoforder 6,orthemaximumdegreeofagraphis5.<br />

conditionalchromaticnumber(G;P)ofG(orbrieyP-chromaticnumber)isthesothatthesubgraphinduced<strong>by</strong>eachcolorclasssatisesthepropertyP.TheP- WedeneaP-coloringofagraphtobeanassignmentofcolorstoitsvertices<br />

minimumkforwhichGhasaP-coloringwithkcolors.WhenPistheproperty usualchromaticnumber. thatagraphconsistsentirelyofisolatedvertices,theP-chromaticnumberisthe<br />

induced)isomorphictoagraphF,wewrite(G;:F)fortheP-chromaticnumber andrefertoaP-coloringasa:F-coloringandtheP-chromaticnumberasthe WhenPisthepropertythatagraphcontainsnosubgraph(notnecessarily<br />

Pisthepropertythatagraphcontainsnoinducedsubgraphisomorphictoagraph :F-chromaticnumber.If(G;:F) F,wewrite(G;:F!)fortheP-chromaticnumberandrefertoaP-coloringasa k,thenwesayGis:Fk-colorable.When<br />

:F!-coloringandtheP-chromaticnumberasthe:F!-chromaticnumber. induced<strong>by</strong>theverticesineachsetinthepartitionhasthepropertyPseemsto Theconceptofpartitioningthevertexsetofagraphsothatthesubgraph<br />

9


havebeenindependentlydiscovered<strong>by</strong>severalauthorsaround1968(see[15],[16], [42]).Mathematicianshavestudiedvariousconditionalchromaticnumberssince [35])andagain<strong>by</strong>severalauthorsaround1985(see[3],[4],[12],[14],[23],[30],<br />

1968.In1968,Chartrand,Kronk,andWall[16]studiedaconditionalcoloring numbercalledthearboricityofagraphwherecolorclassesareacyclic.Hedetniemi [35]provedthatthearboricityofaplanargraphisatmostthree. (G;:Pj).Forexample,ifthediameterofGisd,then(G;:Pj) In1968,Chartrand,GellerandHedetniemi[15]provedseveralresultsabout<br />

suchthat(G;:Pj)=4.Thisprovedthatthereisnostrongerresultthanthe forj 2.Further,foreveryj 2,theauthorsconstructedaplanargraphG d?j+3<br />

FourColorTheoremfor(G;:Pj)forj [48]provedthatgivenj 2andK k2.Also,in1968,SachsandSchauble isomorphictoKj?1. (G;:Kj)=kanda:KjK-coloringofGcontainingatleastkcolorclasses 1,thereexistsagraphGwith<br />

thatthesubgraphinduced<strong>by</strong>eachcolorclasshasminimumdegreejforsome xedj In1969,KramerandKramer[39]discussed(G;P),wherePistheproperty<br />

jsameconditionalchromaticnumber.In1975,Cook[19]studied(G;:K1;j)for 1. 0.In1970,LickandWhite[41]publishedapaperwithresultsforthe<br />

Lesniak-FosterandStraight[40]publishedresultsfor(G;P),wherePisthe propertythateachcolorclassinducesacompletegraphoragraphwithnoedges. In1977,HararyandKainen[34]discussed(G;:K3)forplanargraphs.Also,<br />

Sampathkumar,Prabha,Neeralagi,andVenkatachalam[50]publishedresultsfor 10


ofthicknessisequivalentto(G;P),wherePisthepropertythateachcolor (G;:Pj)forj In1978,BeinekeandWhite[7]discussedthethicknessofagraph.Theconcept 2.<br />

classisplanar.Theauthorsdeterminedthethicknessofcompleteandcomplete bipartitegraphs.<br />

bersforseveraldierentpropertiesandhasbecomethestandardforconditionalcoloring.Thispaperdiscussedtheconditionalvertexandedgechromaticnum- In1985,Harary[30]publishedapaperprovidinganoverviewofconditional<br />

vertexdegreeineachcolorclassisatmostt.Theauthorsrelated(G;t) coloringterminology.<br />

to(G)<strong>by</strong>provingthat(G;t) In1985,AndrewsandJacobson[3]studied(G;t),wherethemaximum<br />

andFraughnaugh[31]alsopublishedresultsfor(G;t)in1985. (G;t) n2=(tn+n2?2e),wherenandearetheorderandsizeofG.Harary (G)=(t+1).Furthermore,theyshowed<br />

respecttothepropertythateachcolorclassisadisjointunionofcompletesubgraphs.Theyalsostudiedtheproblemofndingagraphsubjecttocertainrestric Alsoin1985,MynhardtandBroere[42]discussedconditionalcoloringwith<br />

tionsforwhichtheconditionalchromaticnumberisarbitrarilylarge.Mynhardt andBroere[12]alsostudiedconditionalcoloringwithrespecttothepropertythat eachcolorclasshasnoinducedsubgraphisomorphictoagraphF. numbertothatofaconditionalbipartitionnumber.Specically,givenaproperty P,agraphisconditionallybipartitewithrespecttoPifV(G)isthedisjointunion In1986,HararyandFraughnaugh[32]generalizedtheconceptofbipartition<br />

ofsetsXandYwheretheinducedsubgraphshXiandhYibothhaveproperty 11


P.Theconditionalbipartitionnumberb(G;P)ismaxfe(B):B conditionallybipartitewithrespecttoPg.Theauthorsstudiedb(G;P)forseveral minimumandmaximumdegreeproperties. GandBis<br />

wherePisthepropertythatthesubgraphinduced<strong>by</strong>eachcolorclassisacomplete r-partitegraphforanyrand(G;Q),whereQisthepropertythateachcolor Alsoin1986,Domke,Laskar,Hedetniemi,andPeters[23]discussed(G;P),<br />

classisadisjointunionofcompletesubgraphs.<br />

thepropertythateachcolorclasshasnoinducedsubgraphisomorphictoasetof Alsoin1987,BrownandCorneil[14]studiedconditionalcoloringwithrespectto In1987,AndrewsandJacobson[4]publishedapaperwithresultsfor(G;t).<br />

maticnumber.Thek-pathchromaticnumber(G;Pk)ofGisthesmallestnumber graphs.<br />

cofdistinctcolorswithwhichV(G)canbecoloredsuchthateachconnectedcomIn1989,Akiyama,Era,Gervacio,andWatanabe[1]discussedthek-pathchro- equivalenttoour:P3-chromaticnumber,weimmediatelygetthat(G;:P3) ponentofhViiisapathoforderatmostk,1 (G;Pk) lr+1 2mforr-regulargraphs.Sincethe2-pathchromaticnumberis i c.Theauthorsprovedthat<br />

forcubicgraphs.Alsoin1989,Albertson,Jamison,Hedetniemi,andLocke[2] discussedconditionalcoloringwithrespecttothepropertythateachcolorclass 2<br />

isadisjointunionofcompletesubgraphs.In1990,Baldi[6]publishedresultsfor<br />

maticnumberoftheCartesianproduct,join,strongproduct,andconjunctionof (G;:Pj)forj In1991,HararyandHsu[33]providedtheoremsrelatingtheconditionalchro- 2.<br />

twographstotheconditionalchromaticnumberoftheoriginalpairofgraphs. 12


oftheverticesofaplanargraphisk-cyclicifwhenevertwoverticeslieinthe boundaryofthesamefaceofsizeatmostk,theircolorsaredierent. In1992,Borodin[11]discussedthek-cyclicchromaticnumber.Acoloring<br />

classisnotpermittedtocontainsomeinducedsubgraph.Forexample,Brownand Corneil[13],discusseduniquely:H!k-colorablegraphswhereHisanygraph.A Therearealsoconditionalcoloringpaperspublishedin1992whereacolor<br />

graphGisuniquelyk-colorableifGisk-colorableandthereisonlyonek-coloring (uptoapermutationofcolors).Infact,BrownandCorneilconjecturedthat forallgraphsoforderatleasttwoandforallnonnegativeintegersk,thereexist is2-connectedorGis2-connected. uniquely:H!k-colorablegraphs.Sofar,theyhaveshownthisresultwheneverG<br />

integersl In1992,JohnsandSaba[38]considered(G;:Pj).Theyprovedthatgiven<br />

Kj(j+1)l. K(j?1)l.Also,thereexistsagraphsuchthat(G;:Pj)?(G;:Pj+1)=l,namely 1andj 2,thereexistsagraphGsuchthat(G;:Pj)=l,namely<br />

inguptoj?2edgesandSampathkumar[49]discussed(G;P),wherePisthe propertythatthesubgraphinduced<strong>by</strong>eachcolorclasshasindependencejfor In1993,DargenandFraughnaugh[21]determined(G;:Cj)forgraphsmiss-<br />

somexedj printedcircuitboardsforelectricalshorts. In1995,Cimikowski[18]presentedsomeheuristicsforthegraphthickness 0.Alsoin1993,Hutchinson[37]appliedthicknessresultstotesting<br />

subgraphofanonplanargraph.HealsoprovedthatT(G) problem,i.e.,decomposingagraphintotheminimumnumberofplanarsubgraphs.Theheuristicsarebasedonsomealgorithmsforndingamaximalplanar 13<br />

bq2e=3+3=2c,


whereT(G)isthethicknessofGandeisthesizeofG. werestudied,seeTable1.1. Forasurveyofdierentpropertiesstudied,whostudiedthem,andwhenthey<br />

disconnectedortrivial ColorClassProperty Table1.1.ConditionalColoringPropertiesstudied<br />

acyclic Year 1968Hedetniemi[35] 1968Chartrand,Kronk,Wall[16] 1970Hedetniemi[36] Reference<br />

hasnoK3 hasnoKjforsomexedj hasnoPjforsomexedj 1968Sachs,Schauble[48] 1968Chartrand,Geller,Hedetniemi[15] 1968Hedetniemi[35] 1977Harary,Kainen[34] 1977Sampathkumar,Prabha,Neeralagi,<br />

completeoragraphwithoutedges1977Lesniak-Foster,Straight[40] 1990Baldi[6] 1992Johns,Saba[38] Venkatachalam[50]<br />

hasmaximumdegreejforsome xedj 1985Harary,Fraughnaugh[31]<br />

completer-partitegraphforanyr 1985Andrews,Jacobson[3] 1986Harary,Fraughnaugh[32]<br />

hasnoinducedsubgraph 1986Domke,Laskar,Hedetniemi,Peters 1987Andrews,Jacobson[4]<br />

isomorphictographF 1985Broere,Mynhardt[12] 1985Mynhardt,Broere[42] 1987Brown,Corneil[14] [23]<br />

graphsF phictoanygraphFinasetofhasnoinducedsubgraphisomor- disjointunionofcomplete 1985Mynhardt,Broere[42] 1987Brown,Corneil[14]<br />

subgraphs 1986Domke,Laskar,Hedetniemi,Peters<br />

containsnoK1;j 1989Albertson,Jamison,Hedetniemi, 1975Cook[19] Locke[2] [23]<br />

minimumdegree jforxedj 1969Kramer,Kramer[39] 1970Lick,White[41] 14


disjointunionofpathsoforderat ColorClassProperty Table1.1.ConditionalColoringPropertiesstudied(cont.)<br />

jindependentforxedj mostk 1993Sampathkumar[49] Year 1989Akiyama,Era,Gervacio,Watanabe [1] Reference<br />

hasnoCjforxedj planar 1993Dargen,Fraughnaugh[21] 1978Beineke,White[7] 1993Hutchinson[37]<br />

phictoH k-cyclic containsnoinducedsubgraphisomor- 1992Borodin[11] 1995Cimikowski[18]<br />

surveyofproperties 1985Harary[30] 1992Brown,Corneil[13]<br />

orderj (G;:Cj)whereCjisacycleoforderj Inthisthesis,weconcentrateprimarilyontwoconditionalchromaticnumbers, 2. 3and(G;:Pj)wherePjisapathof<br />

15


2ThischapterprovidesthenecessarybackgroundforthetopicspresentedinChap BasicResultsfor (G;:Pj)and (G;:Cj)<br />

ters3,4,5,and6.Westart<strong>by</strong>provingsomebasicrelationshipsfor(G;:Cj) [15]. and(G;:Pj).Thefollowingstraightforwardresulthasbeenknownsince1968<br />

Proof.Letn=a(j?1)+r,where0 Theorem2.1LetGbeagraphofordern.Ifj r0.Hence(G;:Pj) ln j?1m.<br />

Proof.SinceacompletesubgraphoforderatleastjcontainsPj,eachcolorclass 2,then(Kn;:Pj)=ln j?1m:<br />

equalityfollowsfromTheorem2.1. ofKncancontainatmostj?1vertices.Therefore,(Kn;:Pj) ln j?1mand<br />

Thenexttheoremprovidesthemostbasicrelationshipbetween(G;:Cj)and 2<br />

Theorem2.2Ifj (G;:Pj).<br />

Proof.LetCbeanyminimum:Pj-coloringofG.Sinceacolorclassthat 3andGisagraph,then(G;:Cj) (G;:Pj):<br />

containsnoPjcontainsnoCj,thecoloringCisalsoa:Cj-coloringofG.So, (G;:Cj) (G;:Pj): 16<br />

2


(G;:Cj)and(G;:Pj),wecanndanupperboundfor(G;:Cj). Nowthatwehaveanupperboundfor(G;:Pj)andarelationshipbetween<br />

Corollary2.2Ifj Further,(Kn;:Cj)=ln 3andGisagraphofordern,then(G;:Cj) j?1m: ln j?1m:<br />

ln Proof.ByTheorem2.2andTheorem2.1,weget(G;:Cj) andthereforecannotbeacolorclassofKn.Hence,(Kn;:Cj) j?1m.LetG=Kn.Asubgraphinduced<strong>by</strong>jormoreverticesofKncontainsCj, ln(G;:Pj)<br />

Thenexttheoremrelatestwodierentconditionalcoloringnumbers. j?1m. 2<br />

Theorem2.3Ifj Proof.LetCbeanyminimum:Pk-coloringofG.Sinceacolorclassthat k 2,then(G;:Pj) (G;:Pk):<br />

containsnoPkcontainsnoPjfork G.Therefore,(G;:Pj) (G;:Pk): j,thecoloringCisalsoa:Pj-coloringof<br />

Onemightaskiftheabovetypeoftheoremistruefor(G;:Cj).Infact,there 2<br />

onegraph.Further,(C3;:C4)=1and(C3;:C3)=2,whichimpliesthat isnorelationshipingeneralineitherdirection.Forexample,(C4;:C4)=2 and(C4;:C3)=1,whichimpliesthat(G;:C4)6 (G;:C4)6 (G;:C3)foratleastonegraph. (G;:C3)foratleast<br />

numbersofagraphanditssubgraphs. Thenexttheoremprovidesarelationshipbetweentheconditionalchromatic<br />

Theorem2.4LetGbeagraphwithH (G;:Pj).Ifj 3,then(H;:Cj) (G;:Cj): G.Ifj 2,then(H;:Pj)<br />

17


Proof.LetCbeanyminimum:Cj(:Pj)-coloringofG.SinceH coloringCisalsoa:Cj(:Pj)-coloringofH.So,(H;:Cj) (H;:Pj) (G;:Pj): (G;:Cj)and G,the<br />

Nowthatwehaveresultsforsubgraphsfor(G;:Cj)and(G;:Pj),wecan 2<br />

Theorem2.5IfGisagraphandj deriveanelementarylowerboundfor(G;:Pj)and(G;:Cj).<br />

Proof.Firstofall,K!(G) G.ByCorollary2.2,(K!(G);:Cj)=l!(G) 3,then(G;:Pj) (G;:Cj) l!(G) j?1m.By j?1m.<br />

Theorem2.4,weget(G;:Cj) have(G;:Pj) (G;:Cj): (K!(G);:Cj)=l!(G) j?1m.ByTheorem2.2,we<br />

ThisboundisattainedwhenG=Kn,andthereforetheboundistight.In 2<br />

ordertoderivesomeupperboundsontheorderofacolorclassofsomegraph G,weneedsomewellknownresultsregardingHamiltoniangraphs,Hamiltonian connectedgraphs,andgraphswhichhaveaHamiltonianpath.First,westate Ore'sTheorem,Dirac'sTheorem,andanothertheoremwhichappearsasCorollary<br />

Theorem2.6(Ore[44])IfGisagraphofordern 4.6inBondyandMurty[10].<br />

nonadjacentverticesuandv,d(u)+d(v) n,thenGisHamiltonian. 3suchthatforalldistinct<br />

Theorem2.7(Dirac[22])IfGisagraphofordern degreeatleastn2,thenGisHamiltonian. 3andeachvertexhas<br />

Theorem2.8(Ore[45],Bondy[9])IfGisagraphofordern nverticesandn2?3n+4 n2?3n+6 2 ,thenGisHamiltonian.Moreover,theonlynon-Hamiltoniangraphswith 3ande(G)<br />

2 edgesareK1_(K1+Kn?2)andK2_I3. 18


exerciseinWest[51]andpart(ii)issimplyarestatementoftherstsentencein Theorem2.8. Thefollowingtheoremisalsowellknown.Parts(i)and(iii)appearasan<br />

Theorem2.9LetGbeagraphofordern. Ifn 2ande(G) 3ande(G) n2?(n?4),thenGisHamiltonianconnected: n2?(n?3),thenGisHamiltonian. (ii) (i)<br />

Proof.(i).(<strong>by</strong>inductiononn).Ifn Ifn 2ande(G) n2?(n?2),thenGhasaHamiltonianpath: 3,then(i)isvacuouslytrue.If (iii)<br />

n=4,thenG=K4andacompletegraphisHamiltonianconnected.Ifn=5, thenG2fK5;K5?egwhereeisanedge.ThesetwographsareHamiltonian connected.Ifn=6,thenG2fK6;K6?e;K6?E(2K2);K6?E(P3)g=Gwhere appropriategraphsonn?1vertices. eisanedge.EachG2GisHamiltonianconnected.Soassume(i)holdsfor<br />

GisHamiltonianconnected.Letfu;vg LetGbeagraphonn 7verticesande(G) V(G)withu6=v. n2?(n?4).Wewillshow<br />

n?1 2?(n?5)and,<strong>by</strong>theinductionhypothesis,G?uisHamiltonianconnected. Ifd(u) n?2,thene(G?u) e(G)?(n?2) n2?(n?4)?(n?2)= Nowe(G) leastn?3edgesfromacompletegraphinorderfor(G)=2.Sinced(u) n2?(n?4)impliesthat(G) wecanchoosez2N(u)?fvgandadduztoaHamiltonian(z,v)-pathinG?u 3forwewouldneedtoremoveat<br />

toformaHamiltonian(u,v)-pathinG. 3,<br />

e(G)?(n?1) IfuisadjacenttoeveryothervertexinG(i.e.,d(u)=n?1),thene(G?u)= n2?(n?4)?(n?1)=n?1 19<br />

2?(n?4)and,<strong>by</strong>Theorem2.8,


G?uisHamiltonian.Breakanedgeinvolvingv(sayvw)ontheHamiltoniancycle<br />

(ii).ForaproofofOre'sTheorem,seeRoberts[47]. case,GhasaHamiltonian(u,v)-path.Therefore,GisHamiltonianconnected. inG?uandaddtheedgewutoobtainaHamiltonian(u,v)-pathinG.Ineither<br />

Sincee(G) (iii).IfGiscomplete,thenGisHamiltonian.So,assumeGisnotcomplete. ConsiderG+uv.Now,e(G+uv)=e(G)+1 n2?(n?2),wegetn G+ehasaHamiltoniancycle.Therefore,GhasaHamiltonianpath. 3.LetuvbeanymissingedgeofG. n2?(n?3).By(ii),thegraph<br />

Wecanseethatallthreestatementsintheprevioustheoremareexactsince 2<br />

K2_(K1+Kn?3)hasn2?(n?3)edgesandisnotHamiltonianconnected,<br />

hasn2?(n?1)edgesandcontainsnoHamiltonianpath.Lastly,westatea K1_(K1+Kn?2)andK2_I3haven2?(n?2)edgesandarenotHamiltonian(in<br />

sucientconditiononthesizeofagraphtoobtaincyclesofallorders. fact,Theorem2.8pointsoutthatthesearetheonlysuchgraphs),andK1+Kn?1<br />

Theorem2.10IfGisagraphwithordern Ck Gforallk=3;4:::;n. 3ande(G) n2?(n?3),then<br />

Proof.(<strong>by</strong>inductiononn).Ifn=3,thenG=K3andtheresultfollows immediately.Assumethatn n?1 2?(n?4)edgescontainsCjforj=3;4;:::;n?1. LetGbeagraphofordernwithe(G) 4andthatanygraphofordern?1withatleast<br />

wegetCn G.IfGiscomplete,theresultfollowsimmediately.IfGisnot n2?(n?3).ByTheorem2.9, complete,then(G) G.ConsiderG?v.Thene(G?v)=e(G)?(G) n?2.Chooseavertexv2V(G)ofminimumdegreein<br />

20<br />

n2?(n?3)?(n?2)=


subgraphs.Therefore,GcontainsthesameC3;:::;Cn?1assubgraphs. n?1 2?(n?4).Bytheinductionhypothesis,G?vcontainsC3;C4;:::;Cn?1as<br />

Nowthatwehavesomebasicresults,wediscussthecomputationalcomplexity 2<br />

ofthefollowingproblem:GivenagraphGandapositiveintegerk,canGbe NP-complete. :P3-coloredusingkcolors?Inthenextchapter,weshowthatthisproblemis<br />

21


3Apolynomialtimealgorithmisanalgorithmwhoseworst-caserunningtimeis NP-complete<br />

O(nk),wheretheinputtothealgorithmisofcardinalitynandkissomecon- instancesandasetSofproblemsolutions.Forexample,considertheproblem SHORTEST-PATHofndingashortestpathbetweentwogivenverticesinG. stant.Aproblem isdenedtobeabinaryrelationonasetIofproblem<br />

tices.AsolutionisasequenceofverticesinthegraphGwithperhapstheemptyAninstanceforSHORTEST-PATHisatripleconsistingofagraphandtwover- sequencedenotingthatnopathexists.TheproblemSHORTEST-PATHitselfisa relationthatassociateseachinstanceofagraphandtwoverticeswithashortest pathinthegraphthatconnectsthetwovertices.Forsimplicity,thetheoryofNP- Inthiscase,wecanviewanabstractdecisionproblemasafunctionthatmapsthe instancesetItothesolutionsetf0;1g.Forexample,adecisionproblemrelated completenessrestrictsitselftodecisionproblems,thosehavingayes/nosolution.<br />

toSHORTEST-PATHisasfollows:GivenagraphG,twoverticesfu;vg andapositiveintegerk,doesthereexistapathoflengthatmostk? Therearedecisionproblemswhichcanbesolvedinpolynomialtimeandthose V(G),<br />

whichcanbesolvedusingadeterministicpolynomialtimealgorithm. whichrequiresuperpolynomialtime.Apolynomialtimesolvableproblemisone<br />

completenessisthatofapolynomialtransformation.Let1and2denotetwowecanverifythissolutioninpolynomialtime.AbasicideainthetheoryofNP- ThecomplexityclassNPistheclassofproblemswheregivena\yes"solution,<br />

22


decisionproblems.Wesaythatthereisapolynomialtransformationfrom1to 2,written1/2,ifthefollowingtwoconditionshold:<br />

answertoF(I)is\yes"withrespectto2. F(I)of2suchthattheanswertoIwithrespectto1is\yes"ifandonlyifthe (a)ThereexistsafunctionFtransforminganyinstanceIof1toaninstance<br />

Adecisionproblem 0/. (b)ThereexistsanpolynomialtimealgorithmtocomputeF(I).<br />

Thek-<strong>COLORING</strong>problemisstatedasfollows:givenagraphG=(V;E)and isNP-completeif 2NPandforeveryproblem02NP,<br />

integer3 istodeterminehowdicultitistosolvetheproblemofconditionallycoloringa thek-<strong>COLORING</strong>problemisNP-completefork k jVj,isGk-colorable?WeknowfromGareyandJohnson[27]that<br />

graph.Observethatthe:P2k-<strong>COLORING</strong>problemistheusualk-<strong>COLORING</strong> 3.Thegoalofthischapter<br />

toeachcolorclasscontainingnoPjforj ofthecolorabilityproblem?Wewillshowtheansweris\no"whenj=3.The problem.Doesrelaxingtheconditionforeachcolorclassbeinganindependentset<br />

:P3k-<strong>COLORING</strong>problemisstatedasfollows:givenagraphG=(V;E)and 3changethecomputationalcomplexity<br />

withatmostljVj integer3 k ljVj<br />

eachsubgraphinduced<strong>by</strong>asetinthepartitiondoesnotcontainP3asasubgraph 2mcolors),doesthereexistak-partitionofthevertexsetsothat 2m(Note:ByTheorem2.1,agraphcanalwaysbe:P3-colored<br />

Theorem3.1The:P3k-<strong>COLORING</strong>problem (notnecessarilyinduced)?<br />

Proof.LetG=(V;E)beagraphofordern,andCa:P3k-coloringofG.The isNP-completefork 3.<br />

followingisapolynomialtimealgorithmwhichcanbeusedtocheckthatCisa 23


valid:P3-coloringofG.Examinealltriplesofdistinctverticesineachcolorclass anddeterminewhetherthegraphinduced<strong>by</strong>eachtriplecontainsP3.Determining<br />

that ifatriplecontainsP3isO(1).Sinceeachsetinthepartitioncancontainatmost nvertices,thereareO(n3)triples.Thisalgorithmisofordern3andthisshows<br />

.ConstructagraphF(G)fromG=(V;E)asfollows:foreachv2V,letF(G) Next,wewillshowthataknownNP-completeproblemcanbetransformedto 2NP.<br />

containtwoverticesv1andv2.Wesaythatv1andv2areassociatedwiththe<br />

3.1forthetransformationofG=C4. vandjoinv1tov2.Observethatthistransformationispolynomial.SeeFigure vertexv.InF(G),joinv1andv2totheverticesassociatedwitheachneighborof<br />

Wewillshowthat(G) kimpliesthat(F(G);:P3) k.Assume(G)<br />

us sv sw xs x1s<br />

sx2 sw1<br />

C4 u1s su2w2 ??? H Hv2s<br />

H@H<br />

A sHAAH@A<br />

AA@Asv1<br />

? @@@ HHHHHHH AAAAAAA ? ?<br />

Figure3.1.TheconstructionofF(C4). F(C4)<br />

k.LetH=F(G)andCbeak-coloringofG.ColorHasfollows:Foreachvertex v2V,assignC(v)tothetwoverticesassociatedwithvinH.Thiscoloringuses atmostkcolorstocolorH.Toseethatthiscoloringisavalid:P3-coloringofH, 24


suppose,<strong>by</strong>wayofcontradiction,thatacolorclassofHcontainsP3=uvw.By construction,ab2E(H)ifandonlyifeitheraandbareassociatedwiththesame vertexinGorthereexistscd2E(G)suchthataisassociatedwithcandbis<br />

k-coloring.Thus,uv2E(H)impliesthatthereexistsc2V(G)suchthatuand color,thentheymustbeassociatedwiththesamevertexinGsinceGhasavalid associatedwithd.Therefore,iftwoadjacentverticesinHareassignedthesame<br />

construction,thereareexactlytwoverticesinHassociatedwithavertexinG. withcimplythatvandwareassociatedwithc.Thisisacontradictionsince,<strong>by</strong> vareassociatedwithc.Similarly,vw2E(H)andvbeingavertexassociated<br />

f1;2;:::;kgbea:P3k-coloringofH.WecolortheverticesofGusingAlgorithm Therefore,(H;:P3) Next,wewillshowthat(H;:P3) k.<br />

3.1presentedinFigure3.1.Letc:V(G)!f1;2;:::;kgbethefunctionthat kimpliesthat(G) k.Letd:V(H)!<br />

assignscolorstotheverticesofGbasedonAlgorithm3.1. thecolorsassignedtothetwoverticesinHassociatedwithz. Note1:ObservethatAlgorithm3.1assignsacolortoz2V(G)fromoneof<br />

onew2NH(v1;v2)coloredc(v).Suppose<strong>by</strong>wayofcontradictionthatthereexist x;y2V(H)suchthatfx;yg Note2:Foreveryv2V(G)withassociatedverticesv1andv2,thereisatmost<br />

knowthateitherv1orv2iscoloredc(v),sayv1.Butxv1yformsP3inH,which isacontradiction. NH(v1;v2)andd(x)=d(y)=c(v).ByNote1,we<br />

eitherLine9orLine17.Sincethenumberofverticesinagraphisnite,allthe verticesofGareassignedacolor.Wewillshowthatcisavalidk-coloringofG. Eachtimethroughtheloop(Lines7-22),avertexinGisassignedacolorin<br />

25


Input:GraphsGandH,anda:P3-coloringd:V(H)!f1;2;:::;kgofH. Output:Ak-coloringc:V(G)!f1;2;:::;kgofG. 1.Foreveryz2V(G)withassociatedverticesz1andz2inH. 2. 3. 4. Ifd(z1)=d(z2),thenletc(z)=d(z1). Ifd(z1)62d(N(z1))andzisuncolored,thenletc(z)=d(z1).<br />

7. 6. 5.IfGhasuncoloredvertices,then Ifd(z2)62d(N(z2))andzisuncolored,thenletc(z)=d(z2).<br />

8. Repeatsteps8-22untilallverticesofGarecolored. Letpreviouscolor=?1andzbeanuncoloredvertexinG.<br />

10. 9. Ifpreviouscolor6=d(z1),then<br />

11. letpreviouscolor=d(z1),andwbetheuniquevertexinV(G)with letc(z)=d(z1),<br />

12. Ifwisuncolored,then whichthevertexinNH(z1)withcolord(z1)isassociated.<br />

16. 13. 14. elseifthereareuncoloredverticesinG,then letz=w.<br />

17. 18. else(previouscolor=d(z1)) letc(z)=d(z2), letpreviouscolor=d(z2),andwbetheuniquevertexinV(G)with letpreviouscolor=?1andzbeanuncoloredvertexinG.<br />

19 20. Ifwisuncolored,then whichthevertexinNH(z2)withcolord(z2)isassociated.<br />

23.Outputcandstop. 21. 22. elseifthereareuncoloredverticesinG,then letz=w. letpreviouscolor=?1andzbeanuncoloredvertexinG. Figure3.1.Algorithm3.1<br />

26


Letv2V(G)withc(v)=a,u2N(v),v1andv2betheverticesinHassociated c(u)6=a. withv,andu1andu2betheverticesinHassociatedwithu.Wewillshowthat<br />

assignedcoloraorelsethesubgraphinduced<strong>by</strong>thecolorclassinHcontainingv1, v2,andoneoftheverticesassociatedwithuwouldcontainP3.Thus,allvertices AssumevwasassignedcolorainLine2ofAlgorithm3.1.Now,ucannotbe<br />

assignedacolorinLine2ofAlgorithm3.1receiveavalidcolor. andtheneighborsofv1(whichincludeu1andu2)arenotcoloreda.Sinceuis assigneditscolorfromoneofthecolorsassignedtou1oru2(Note1),wehave AssumevwasassignedcolorainLine3ofAlgorithm3.1,thatis,d(v1)=a<br />

argumentprovesthateveryvertexcoloredinLine4receivesavalidcolor. c(u)6=a.Thus,allverticescoloredinLine3receiveavalidcolor.Asimilar<br />

3.1.Sinceonlyonevertexiscoloredatattime,let'sassumethatuwasalready c(u)6=c(v).SoassumeuandvwereassignedcolorsinLines9or17ofAlgorithm WehavejustshownthatifuorvwereassignedacolorinLines2,3,or4,then<br />

coloredwhenviscolored.<br />

d(u1)=aandweletpreviouscolor=a(Line10).Sinceweassumedthat Algorithm3.1.Intheloop(Lines7-22)withz=u,inLine9wehavec(u)= Supposethatc(u)=c(v)=a.AssumeuwasassignedcolorainLine9of<br />

c(v)=a,eitherv1orv2iscoloreda(Note1).Further,sincethereisatmostone neighborofu1coloreda(Note2),wemusthavez=v(Line12),i.e.,visthenext vertextobecoloredintheloop(Lines7-22).Whenwegothroughtheloopto colorv,eitheritgetscoloredinLine9or17.IfviscoloredinLine9,thensince previouscolor=a,weknowthatthecolorofc(v1)6=a(Line8)andc(v)6=a 27


(Line9).SovmustbecoloredinLine17andweknowthatd(v1)=a(Line16) andc(v)=d(v2)=a(Line17).Now,d(v2)6=aorelsevwouldhavebeencolored inLine2.Thusc(v)6=a,whichcontradictstheassumptionthatc(v)=a.By applyingthepreviousargumentreplacingx1withx2andstartingwithz=xin Line17,weagainreachacontradiction.<br />

completeproblemtoourproblem.Therefore,the:P3k-<strong>COLORING</strong>problemisAlgorithm3.1producesak-coloringofG.WehavetransformedaknownNP- Thus,foreveryadjacentu;v2V(G),wehavec(u)6=c(v),whichimpliesthat<br />

NP-complete. ThisconstructionforHdoesnothelptoprovethatthe:Pjk-colorability 2<br />

researchincludedeterminingwhetherthe:Pjk-colorabilityproblem,the:Cj<br />

problemisNP-completeforj forthe:Pjk-colorabilityproblemwithnosuccess.Suggestedareasforfuture 4.WehavetriedotherconstructionsforH<br />

withacycliccomplements. jk-colorabilityproblem,andthe:Kjk-colorabilityproblemareNP-completefor 3.Now,weturnourattentiontonding(G;:Pj)and(G;:Cj)forgraphs<br />

28


4 Determiningtheconditionalchromaticnum-<br />

Inthischapterwewillshowthat(G;:Cj)and(G;:Pj)mayhavedierent berforgraphswithacycliccomplements<br />

graphswhosecomplementsareacyclicandthenperformasimilaranalysisfor valuesformanygraphs.First,wewillexaminethevaluesof(G;:Cj)for<br />

between(G;:Cj)and(G;:Pj)canbemadearbitrarilylargeinaparticular familyofgraphs. (G;:Pj).Finally,themaintheoremofthischaptershowsthatthedierence<br />

Todetermine(G;:Cj)forj 4.1 Determining(G;:Cj)whenGisacyclic<br />

colorclasscanbeinaminimum:Cj-coloringofG.Ifj=3,thenwewillseethe largestcolorclassmustbeofsize4orlessandifj 3,itisnecessarytodeterminehowlargeany<br />

mustbeofsizejorless.Therefore,wedetermine(G;:C3)and(G;:Cj)for j 4intwoseparatetheorems.Werstaddressthesizeofthelargestpossible 4,thenthelargestcolorclass<br />

colorclassfor(G;:C3)withthefollowinglemma. Lemma4.1IfGisagraphofordern asasubgraph. 5andGisacyclic,thenGcontainsC3<br />

Proof.LetGbeagraphofordern asubgraphofGwithvevertices.WemayassumeHisatree(otherwisewe removeedgesfromHuntilHisatree).IfHhasavertexvsuchthatdH(v) 5withacycliccomplement.LetHbe<br />

thensinceHcontainsnocycles,NH(v)isanindependentsetinHofsizeatleast 3,<br />

29


3.IfeveryvertexinHhasdegreeatmost2,thenH=P5,whichclearlycontains anindependentsetofsize3.Ineithercase,theverticesfromtheindependentset inHformsC3inH.SinceH Thefollowingtheoremevaluates(G;:C3)whenGisacyclic. G,thegraphGcontainsC3. 2<br />

Theorem4.1LetGbeagraphwithacycliccomplement.Letmbethenumber<br />

Proof.LetAbeacolorclassina:C3-coloringofG.ByLemma4.1,jAj ofedgesinamaximummatchingofG.Ifm 0,then(G;:C3)=ln?m 2m.<br />

size3.TheonlyC3-freegraphsoforder4whosecomplementsareacyclicareP4 Letabethenumberofcolorclassesofsize4andbthenumberofcolorclassesof 4.<br />

edges.TheonlyC3-freegraphsoforder3whosecomplementsareacyclicareP3 subgraphinduced<strong>by</strong>eachcolorclassofsize4mustbemissingtwoindependent andC4.Eachofthesegraphsismissingtwoindependentedges.Therefore,the<br />

andK2+K1.Eachofthesegraphsismissinganedge.Therefore,thesubgraph induced<strong>by</strong>eachcolorclassofsize3mustbemissinganedge. ofedgesfromeachcolorclassofsize4andonefromeachcolorclassofsize3. ThusjM1j=2a+b,andsincemisthesizeofamaximummatching,weget Sincecolorclassesaredisjoint,wecanformamatchingM1inGwithapair<br />

2a+b=jM1j m.Thus,(G;:C3) ln?4a?3b 2 m+a+b=ln?2a?b<br />

manycolorclassesofsize4aspossible<strong>by</strong>usingtheendpointsoftwoedgesinM Toconstructacoloring,letMbeamaximummatchinginG.Weformas 2mln?m 2m.<br />

ineach,thenbasedontheparityofm,zero(ifmiseven)orone(ifmisodd) colorclassofsize3usingtheendpointsofoneedgeinMandanadditionalvertex, andnallyasmanycolorclassesofsize2aspossible.Withthisconstruction,the 30


C3-freeandarevalidcolorclasses. induced<strong>by</strong>acolorclassofsize3iseitherP3orK2+K1.Eachofthesegraphsis graphinduced<strong>by</strong>acolorclassofsize4iseitherC4orP4.Further,thegraph<br />

2.Withthiscoloring,weget(G;:C3) Ifmiseven,therearem2colorclassesofsize4,andtherestareofsizeatmost ln?4(m2)<br />

ofsize3.Therestareofsizeatmost2.Withthiscoloring,weget(G;:C3) Ifmisoddandn>2m,therearem?1 2colorclassesofsize4andonecolorclass 2m+m2=ln?m 2m.<br />

n?4(m?1 Ifmisoddandn=2m,therearem?1 2 2)?3+m?1<br />

2+1=ln?m 2m.<br />

2Nextwewillcompletethestudyofgraphswhosecomplementsareacyclic<strong>by</strong><br />

classofsize2.Withthiscoloring,(G;:C3) 2colorclassesofsize4andonecolor m?1 2+1=m+1 2=lm2m=ln?m 2m.<br />

determining(G;:Cj)forj 2.10guaranteescyclesofallordersifagraphismissingatmostj?3edges.The colorclasscanbeinaminimum:Cj-coloringofagraph.RecallthatTheorem 4.Again,weneedtodeterminehowlargeany<br />

ton?1edges. followingtheoremshowsthatwestillhavelongcyclesforsomegraphsmissingup<br />

Cn?1 Lemma4.2LetGbeagraphofordern G.Furthermore,ifK1;n?26G,thenGisHamiltonian. 5withacycliccomplement.Then<br />

Proof.WemayassumeG=TwhereTisatreeandK1;n?2 G.(Otherwise,removeedgesfromGuntilwegetagraphwhosecomplementisa tree.Sincen 5,thiscanbedonewithoutcreatingK1;n?2inthecomplement.) TonlyifK1;n?2<br />

Choosearootvertexv0ofTsothattheheightofthetreehv0(T)ismaximum. 31


Sincen Further,dT(v0)=1andthereisexactlyonevertexv1atlevel1.LetTEbethe subgraphofGinduced<strong>by</strong>theverticesonevenlevelsofT,andTObethesubgraph 5,thediameterofthetreeTisatleast2andtherefore,hv0(T) 2.<br />

ofGinduced<strong>by</strong>theverticesonoddlevelsofT.<br />

onlevelsi?2;i?3;:::;1;0inG.Ineachofthefollowingcases,wewillshow Hamiltonianconnected.Further,allverticesonleveliareadjacenttoallvertices SinceTEandTOarecompletegraphs,everyinducedsubgraphofTEorTOis<br />

Cn?1 Case1.hv0(T) Now,aHamiltonian(v0,v4)-pathfromTE?v2togetherwithv4v1together GandeitherK1;n?2 4.Letvibeavertexonthetreeatlevelifori=2;3;4. TorCn G.<br />

Hamiltonian(v1,v3)-pathfromTOtogetherwithv3v0formsCn Further,aHamiltonian(v0,v4)-pathfromTEtogetherwithv4v1togetherwitha withaHamiltonian(v1,v3)-pathfromTOtogetherwithv3v0formsCn?1 G. G.<br />

Case2.hv0(T)=3.Letw1;w2;:::betheverticesonlevel2andx1;x2;:::the verticesonlevel3.<br />

aHamiltonian(x1,x2)-pathinTOtogetherwithx1v0x2.Inthiscase,wehave atleasttwoverticesx1andx2onlevel3.ThenCn?1isformedinG<strong>by</strong>using Case2A.Thenumberofverticesinlevel2is1.Sincen 5,thereare<br />

K1;n?2 Case2B.Thenumberofverticesinlevel2isatleast2.Sincehv0(T)=3, thereisatleastonevertexx1onlevel3.Assumewithoutlossofgeneralitythat Tinduced<strong>by</strong>theverticesonlevels1,2,and3.<br />

w1x12E(T). getherwithw2x1v0formsCn?1Iflevel3hasonlyonevertex,thenaHamiltonian(v0,w2)-pathfromTEto- G.Further,K1;n?2 32<br />

Tisinduced<strong>by</strong>the


verticesonlevels0,1,and2. E(T),thenformCn?1 withw2x2togetherwithaHamiltonian(x2,x1)-pathinTO?v1togetherwithx1v0. Assumelevel3hasatleasttwoverticesx1,x2(andw1x12E(T)).Ifx2w12<br />

AHamiltoniancycleisformedinG<strong>by</strong>usingaHamiltonian(v0,w2)-pathinTE<br />

G<strong>by</strong>usingaHamiltonian(v0,w2)-pathinTEtogether<br />

x1v0.Otherwise,withoutlossofgeneralityassumex2w22E(T),andwecanform togetherwithw2x2togetherwithaHamiltonian(x2,x1)-pathinTOtogetherwith<br />

Cn?1 withaHamiltonian(x2,x1)-pathinTO?v1togetherwithx1v0.AHamiltonian cycleisformedinG<strong>by</strong>usingaHamiltonian(v0,w1)-pathinTEtogetherwith G<strong>by</strong>usingaHamiltonian(v0,w1)-pathinTEtogetherwithw1x2together<br />

w1x2togetherwithaHamiltonian(x2,x1)-pathinTOtogetherwithx1v0. Case3.hv0(T)=2.ThenG=K1;n?1andTE=Kn?1whichcontainsCn?1.2<br />

inaminimum:Cj-coloringofG.Wecompleteouranalysisofgraphswhose complementsareacyclicwiththefollowingtheoremwhichdetermines(G;:Cj) Weusetheaboveresulttogetanupperboundonthesizeofacolorclass<br />

Theorem4.2LetGbeagraphofordernwithacycliccomplement.Letm whenj 4.<br />

then(G;:Cj)=maxln?m bethemaximumnumberofpairwisevertexdisjointcopiesofK1;j?2inG.Ifj 4, 0<br />

Proof.LetAbeacolorclassina:Cj-coloringofG.NoticethathAiisacyclic j?1m;lnjm.<br />

contradiction.HencejAj sinceGisacyclic.IfjAjj,anditfollowsthat(G;:Cj) j+1,then<strong>by</strong>Lemma4.2,wegetCj lnjm. hAi,a<br />

33


wemusthaveK1;2 order4withacycliccomplementcontainseitherC4orK1;2.SinceAisacolorclass, SupposejAj=j.WewillshowK1;j?2 hAi.Ifj 5,then<strong>by</strong>Lemma4.2,wehaveK1;j?2<br />

hAi.Supposej=4.Everygraphof<br />

disjoint,wegeta Letabethenumberofcolorclassesofsizej.Sincecolorclassesarevertex m.Therefore,(G;:Cj) ln?aj hAi.<br />

(G;:Cj) j?1m+a=ln?a j?1m ln?m<br />

Toshowtheinequalityintheotherdirection,weproduceaminimum:Cj- maxln?m j?1m;lnjm. j?1mand<br />

coloring.ConsiderfU1;U2;:::;Umg,whereeachUiisaK1;j?2inGandtheUi's Weconsidertwocases:m arepairwisevertexdisjoint.LetS=V(G)?Smi=1V(Ui).Now,n=(j?1)m+s.<br />

letV(Ui)togetherwithavertexfromSformacolorclassofsizej(thesubgraph Ifm s,thenn mj,whichimpliesthatln?m sand0 s


Now, jBj=jTj?$nj% =s+r(j?1)?(m?r)<br />


whereeisanedge.AllgraphscontainP4exceptK4?E(K1;3),whichcontains P3.So,assumen andthereforePn?1 onCn?1canbeaddedtoCn?1toformPn<br />

5.ByLemma4.2,thegraphGcontainsCn?1asasubgraph G.IfG6=K1;n?1,then(G) G. 1andthevertexinGnot<br />

Thefollowingtheoremdetermines(G;:Pj)forgraphswhosecomplements 2<br />

areacyclic. Theorem4.3LetGbeagraphofordernwithacycliccomplement.Letm then(G;:Pj)=ln?m bethemaximumnumberofpairwisevertexdisjointcopiesofK1;j?1inG.Ifj 2, 0<br />

Proof.LetAbeacolorclassina:Pj-coloringofG.NoticethathAiisacyclic j?1m.<br />

sinceGisacyclic.IfjAj>j,then<strong>by</strong>Lemma4.3,wegetPj contradictstheassumptionthatAisacolorclass.Therefore,jAj SupposejAj=j.Now,hAiisacyclicandisPj-free.Therefore,<strong>by</strong>Lemma4.3, j. hAi,which<br />

classesarevertexdisjoint,wegeta ln?a wegetK1;j?1=hAi.Letabethenumberofcolorclassesofsizej.Sincecolor<br />

j?1m m.Therefore,(G;:Pj) ln?aj<br />

Toshowtheinequalityintheotherdirection,weproduceaminimum:Pj- ln?m j?1m. j?1m+a=<br />

coloring.ConsiderfU1;U2;:::;Umg,whereeachUiisaK1;j?1inGandtheUi's V(Ui)(thesubgraphinduced<strong>by</strong>eachsuchcolorclassisPj-freesinceitcontainsa vertexofdegreezero).Withtheremainingvertices,formasmanycolorclassesof arepairwisevertexdisjoint.Foreachi=1;:::;m,formacolorclassofsizejusing<br />

Therefore,(G;:Pj)=ln?m sizej?1aspossible.Withthiscoloring,weget(G;:Pj) j?1m. ln?mj j?1m+m=ln?m j?1m.<br />

36<br />

2


statedhereforreference. Thefollowingcorollarywillbeusedseveraltimesinupcomingchaptersandis<br />

Corollary4.1IfGisagraphwithhE(G)i=K1;mandj (G;:Pj)=8>: 2,then ln ln?1 j?1mif0 j?1mifj?1m


s<br />

sss BBBBBB<br />

s<br />

sss BBBBBB<br />

s<br />

sss BBBBBB<br />

s<br />

sss BBBBBB Figure4.1.TheconstructionofGforj=5,a=1andn=24 ss<br />

questions.Whathappensifweremovetherestrictionthatthecomplementis acyclicandexamineallgraphsmissingn?1edgesorexaminegraphswhose Somepossibledirectionsforfurtherresearchincludeansweringthefollowing<br />

Also,aretherefamiliesofgraphswhere(G;:Pj)?(G;:Cj)isO(nk)fork complementsarebipartite?Willthedierenceincreaseand,ifso,<strong>by</strong>howmuch?<br />

n,howmuchcanthesetwoconditionalchromaticnumbersdierifweremovehalf Thefollowingquestionsalsoremainopen.Forthesetofgraphsofaxedorder 1?<br />

oftheedgesfromthecompletegraph?And,ingeneral,giventhesizeofG,what areupperandlowerboundsfor(G;:Pj)?(G;:Cj)?Whichgraphsattain thesebounds?<br />

38


Nextweaddresstheproblem:givenagraphofordernwitheedges,whatarethe 5 Determining (G;:Cj)<br />

boundsontheconditionalchromaticnumber?In1995,DargenandFraughnaugh<br />

Theorem5.1(DargenandFraughnaugh,[21])Ife(G) publishedthefollowingtheorem.<br />

(G;:Cj)=8>:<br />

n2?(j?2),then ln?1 ln j?1m j?1mifG=K1;j?2 orG=K3andj=5<br />

fromacompletegraphtoobtainagraphwhose:Cj-conditionalchromaticnumber Wecandeducefromthistheoremthatweneedtoremoveatleastj?2edges otherwise.<br />

sothat(G;:Cj)=ln?2 removingonlytwoedgesfromacompletegraphwhenj=3. isln?1 j?1m.Anaturalquestiononemayaskishowmanyedgesdoweneedtoremove<br />

Inthischapter,wewilldeterminewhichgraphsareHamiltoniangiventhat j?1m?Wewillshowthatthisnumbercanbeobtained<strong>by</strong><br />

thesizeoftheircomplementisatmostn?1.Usingthisinformation,thenal graphsmissingexactlyj?1edges. theoremofthischapterwillexpandtheknowledgeof(G;:Cj)totheclassof<br />

5.1 Toprovethenaltheorem,wewillrstaddresssomespecialcases.Wewillsoon Preliminaries<br />

seethatthespecialcasesforthenaltheoremaregraphsmissingastarofa particularorderandgraphsmissingpairwisevertexdisjointcompletesubgraphs. First,wewilladdressgraphsmissingastarofaparticularorder. 39


Theorem5.2LetGbeagraphofordern.Ifj andK1;j?2 G,then(G;:Cj)=ln?1 j?1m. 3ande(G) n2?(2j?6)<br />

Proof.LetXbeasetofverticeswhichinduceK1;j?2 ande(G) Therefore,v02X.LetAbeacolorclassina:Cj-coloringofG. 2j?6,thereisexactlyonevertexv0ofdegreeatleastj?2inG. G.SinceK1;j?2 G<br />

and<strong>by</strong>Theorem2.10,wegetCj musthavejAj Supposev062A.IfjAj j,thenhAiwouldbemissingatmostj?4edges<br />

then<strong>by</strong>thesameargument,wegetCj j?1.Supposev02A,andconsiderA?v0.IfjA?v0j hAi.Therefore,forAtobeacolorclass,we<br />

whichimpliesjAj j.Thus,therecanbeatmostonecolorclassofsizej(one hA?v0i.Therefore,jA?v0j j?1, j,<br />

containingv0),and(G;:Cj) ln?j<br />

j<strong>by</strong>usingtheverticesinXtogetherwithonevertexfromG?Xandformas Toshowtheinequalityintheotherdirection,formonecolorclassBofsize j?1m+1=ln?1 j?1m.<br />

manyothercolorclassesaspossibleofsizej?1withtheremainingverticesin hBi.Therefore,(G;:Cj) G?X.NowhBiisCj-freesincev0isadjacenttoatmostoneothervertexin<br />

Next,wewouldliketodetermine(G;:Cj)whenGismissingasetofmutu- ln?j j?1m+1=ln?1 j?1m. 2<br />

allydisjointcompletegraphsofaspecicorder.Toaccomplishthis,weusethe<br />

Lemma5.1LetGbeagraphofordern followingtwolemmas.<br />

(ri 1;p 1)foreachi.TheneitherGisHamiltonianormaxifrig 3suchthatG=Wpi=1SiwhereSi=Iri<br />

Proof.Letv2V(G).Thenv2Siforsomeiandd(v)=(n?1)?(ri?1)=n?ri. ln+1 2m.<br />

Therefore,sinceeachvertexinGisinsomeSi,weget(G)=n?maxifrig.If 40


Dirac'sTheorem(Theorem2.7),GisHamiltonian. maxifrign?ln+1 2m=jn?1 2k.Thus,(G) n=2and<strong>by</strong><br />

Lemma5.2LetGbeagraphofordern 4suchthatG=Wpi=1SiwhereSi=Iri 2<br />

existr1andr2suchthatr1=r2=ln2m. (1 ri ln2m;p 1)foreachi.TheneitherGcontainsan(n?1)-cycleorthere<br />

ThenG0=Ir1?1_(Wpi=2Si)andmaxi2fri;r1?1gj+1.Let 2m=j+1 2. 2mm.<br />

BthathBicancontainatmosttwocopiesofIj+1 1 q2 AsuchthatjBj=j+2.ThenhBi=Wki=1Iqiwhere1 (j+1)=2,and1 qi (j?1)=2for3 i ksincejBj=j+2implies q1 (j+1)=2,<br />

ofIq1andIq2,formC BsuchthatjCj=j.Now,hCi=Iq1?1_Iq2?1_Wki=3Iqi, 2.Byremovingonevertexfromeach<br />

41


andmaxifqig assumptionthathAiisCj-free.SojAj j?1<br />

IfjAj=j+1,then<strong>by</strong>Lemma5.2,either2Ij+1 2.ByLemma5.1,hCiisHamiltonian.Thiscontradictsthe j+1.<br />

jAj=j,then<strong>by</strong>Lemma5.1,wehaveIj+1 j-cycle.BecausehAicannotcontainCj,wemusthave2Ij+1 2 hAiorhAicontainsa<br />

classesofsizej+1andbbethenumberofcolorclassesofsizejina:Cj- 2 hAi.Letabethenumberofcolor 2 hAi.Now,if<br />

coloringofG.Sincecolorclassesarevertexdisjoint,weget2a+b (G;:Cj) Toshowtheinequalityintheotherdirection,wesplittheproofintothree ln?(j+1)a?jb j?1 m+a+b=ln?2a?b j?1m ln?m j?1m. m.Now,<br />

cases.RecallthatG=Wm+n?(j+1 i=1 2)m<br />

Case1.miseven.ColorGasfollows:For1 Si=I1fori=m+1;m+2;:::;n?j+1 SiwhereSi=Ij+1 2m. l m=2,formacolorclassof 2fori=1;2;:::;mand<br />

Sincebipartitegraphsonlycontainevencycles,MisCj-free.Withtheremaining sizej+1<strong>by</strong>usingalltheverticesfromS2l?1andS2l.Thesubgraphinduced<strong>by</strong> eachofthesecolorclassesisisomorphictoM=Ij+1 vertices,formasmanyothercolorclassesofsizej?1aspossible.Withthis 2_Ij+1 2,whichisbipartite.<br />

Case2.misoddandn coloring,weget(G;:Cj) mj+1 ln?(j+1)m2 j?1m+m2=ln?m 2+j?1 2.ColorGasfollows:For1 j?1m. l m?1<br />

sincethesubgraphinduced<strong>by</strong>eachofthesecolorclassesisbipartite,itisCj-free. formacolorclassofsizej+1<strong>by</strong>usingalltheverticesfromS2l?1andS2l.Again, 2,<br />

assignedtocolorclasses.FormonecolorclassCofsizejusingalltheverticesfrom Smtogetherwithj?1 Observethatn mj+1<br />

2verticesfromV(G)?Smi=1V(Si).Now,hCi=Ij+1 2+j?1 2guaranteesthatthereareatleastjverticesnotyet<br />

thelargestcyclewecanformisCj?1obtained<strong>by</strong>alternatelytraversingbetween 2_Kj?1 2and<br />

42


j?1aspossible.Then(G;:Cj) theverticesofKj?1 isCj-free.Withtheremainingvertices,formasmanyothercolorclassesofsize 2andIj+1 2untilweusealltheverticesinKj?1 n?m?1 2(j+1)?j j?1 +m?1 2+1=ln?m 2.Therefore,hCi<br />

Case3.misoddandn


Band1 LetAbeacolorclassina:Cj-coloringofG.SupposethatjAj>j.Let<br />

mostonecopyofIj+2 AsuchthatjBj=j+1.ThenhBi=Wki=1Iqiwhere1 qi j=2for2 i ksincejBj=j+1impliesthathBicancontainat q1 (j+2)=2,<br />

isHamiltonian.ThiscontradictstheassumptionthathAiisCj-free.SojAj jCj=j.Now,hCi=Iq1?1_Wki=2Iqi,andmaxifqig 2.ByremovingonevertexfromIq1,formC j2.ByLemma5.1,hCi Bsuchthat<br />

and(G;:Cj) IfjAj=j,thensincehAiisCj-free,<strong>by</strong>Lemma5.1wehaveIj+2 lnjm. j<br />

bethenumberofcolorclassesofsizejina:Cj-coloringofG.Sincecolorclasses arevertexdisjoint,wegeta m.Therefore,(G;:Cj) ln?jm2<br />

hAi.Leta<br />

Hence,(G;:Cj) Toshowtheinequalityintheotherdirection,weproduceaminimum:Cj- maxlnjm;ln?m j?1m. j?1m+m=ln?m j?1m.<br />

coloring.LetU=V(G)?Smi=1V(Si).Now,n=(j+2 cases:j?2 Ifj?2 2m 2m s,thenn sand0 s


T=U[(Smi=m?r+1V(Si)).For1 If0 s


Todeterminethe:Cj-chromaticnumberwhenj 5.2 Determining(G;:Cj)whene(G) 8forgraphsgiventhesizeof n2?(j?1)<br />

thecomplementisatmostj?1,werstdeterminewhichgraphsofordern areHamiltoniangiventhesizeoftheircomplementisatmostn?1. 8<br />

Theorem5.4LetGbeagraphofordern K1;n?2 GorGisHamiltonian. 8withe(G) n?1.Theneither<br />

Proof.AssumeK1;n?26G.IfG=Kn,thenGisobviouslyHamiltonian.So K1;n?26G,wemusthaved(u) assumeGisnotcompleteandletuandvbeapairofnonadjacentvertices.Since theproofintocasesbasedonthenumberofedgesinGincidenttouorv. Case1.SupposethatthenumberofedgesinGincidenttouorvis 2andd(v) 2.LetH=G?fu;vg.Webreak<br />

n?1.Sincee(G)=n?1,Hiscomplete. Theseverticesexistsinced(u) Hamiltonian(a,x)-pathfromH?fy;bgformsCn.SoassumejN(u)\N(v)j IfjN(u)\N(v)j=0,thenletx;y2N(u)anda;b2N(v)bedistinctvertices. 2andd(v) 2.Nowxuybvatogetherwitha<br />

thatw2N(u)\N(v),x2N(u)andy2N(v).Thenxuwvytogetherwithan IfjN(u)\N(v)j=1,thenletw,x,andybedistinctverticesinHsuch 1.<br />

(y,x)-pathfromH?fwgformsCn. intoHoutofapossible2(n?2),theremustben?2edgesfromfu;vgintoH. Sincen SoassumejN(u)\N(v)j 8,thereareatleastsixedgesfromfu;vgintoH.Therefore,wecan 2.Sincetherearen?2edgesmissingfromfu;vg<br />

assumed(u)ord(v)isatleast3.Withoutlossofgenerality,assumed(u) Letw;x;y2N(u),andw;x2N(v).ThenxvwuytogetherwithaHamiltonian 3.<br />

46


(y,x)-pathfromH?fwgformsCn.Therefore,wecanassumethateverysuch Case2.SupposethatthenumberofedgesinGincidenttouorvis pairofverticescanbeincidenttonomorethann?2edgesinG. exactlyn?2.Sincetherearen?3missingedgesfromfu;vgintoH,His missingatmostoneedge,andthereare2(n?2)?(n?3)=n?1edgesfrom fu;vgintoH. HandjN(u)\N(v)j=0,thesubgraphHneedstohaveatleastn?1vertices. ButHonlycontainsn?2vertices,andwereachacontradiction. SupposejN(u)\N(v)j=0.Theninordertohaven?1edgesfromfu;vginto<br />

J=G?fu;v;wg.ThenJisagraphofordern?3missingatmostoneedge. Sincen Therefore,wecanassumejN(u)\N(v)j 8,wehavee(J) n?3 1.Letw2N(u)\N(v).Consider<br />

connected<strong>by</strong>Theorem2.9. 2?1 n?3<br />

IfN(u)6=N(v),thensinced(u) 2,d(v) 2?(n?7)andJisHamiltonian<br />

verticesx;y2V(J)suchthatx2N(u)andy2N(v).Nowxuwvytogetherwith aHamiltonian(x,y)-pathinJformsCn. 2,andn 8,thereexistdistinct<br />

fu;vgintoH.Therefore,d(u)=d(v)=n?1 SowecanassumethatN(u)=N(v).Recallthattherearen?1edgesfrom<br />

thereexistdistinctverticesx;y2V(J)suchthatx;y2N(u)\N(v),x6=w, forn?1 2tobeaninteger.Therefore,n 9andd(u)=d(v) 2.Theintegernmustbeoddinorder<br />

andy6=w.ThenxuwvytogetherwithaHamiltonian(x,y)-pathinJformsCn. 4.Thisimpliesthat<br />

Thus,wemayassumethatforeverynonadjacentpairofverticesuandv,the numberofedgesinGincidenttouorvisatmostn?3.<br />

47


Case3.SupposethatthenumberofedgesinGincidenttoevery Thereareatmostn?4edgesmissingfromfu;vgintoH.Thereforethereare nonadjacentpairofofverticesu,visatmostn?3. atleast2(n?2)?(n?4)=nedgesfromfu;vgintoH.So,d(u)+d(v) andsinceuandvarearbitrarynonadjacentvertices,<strong>by</strong>Ore'sTheorem(Theorem 2.6)GisHamiltonian. 2n<br />

determining(G;:Cj)whene(G) (G;:Cj)whenj Now,armedwithTheorems4.1,4.2,5.2,5.3,and5.4,wecanproceedwith 8. n2?(j?1).Webegin<strong>by</strong>determining<br />

Theorem5.5Ifj 8ande(G) n2?(j?1),then (G;:Cj)=8>: ln?1 ln j?1motherwise. j?1mifK1;j?2 G<br />

Proof.SupposeK1;j?2 e(G)=n2?(j?1) ln?1 n2?(2j?6),and<strong>by</strong>Theorem5.2,wehave(G;:Cj)= G.Wehavej?1 2j?6sincej 8.Therefore,<br />

showthatjAj


Theorem5.6LetGbeagraphofordern Hamiltonianexceptinthefollowingcases: K1;n?2 G 3withe(G) n?1.ThenGis<br />

K3 hE(G)i=C4andn=5 hE(G)i=K4?ewhereeisanedgeandn=6 Gandn=5 (iii) (iv) (ii) (i)<br />

Proof.LetGbeagraphofordern hE(G)i=K4andn=7 3withe(G) n?1.Ife(G) (v)<br />

thenGisHamiltonian<strong>by</strong>Theorem2.10.Soassumen?2 e(G) n2?(n?3),<br />

isexceptionalcase(i).Soassume(G) (G) 1(orequivalentlyK1;n?2 G),thenclearlyGisnotHamiltonian.This 2.Ifn=3,then(G) n?1.If<br />

thatG=C3,whichisHamiltonian.Ifn=4,then(G) G2fK4;K4?e;C4g,allofwhichareHamiltonian.Ifn 8,then<strong>by</strong>Theorem 2impliesthat 2implies<br />

5.4,GisHamiltonian.So,assume5 andvbeapairofnonadjacentverticesinG.LetH=G?fu;vg.Next,webreak Nown?2 e(G) n?1and5 n n7. theproofintocasesbasedonthenumberofedgesinGincidenttouorv. 7implyGisnotcomplete.Soletu<br />

Case1.SupposethatthenumberofedgesinGincidenttouorvis n?1.SincethetotalnumberofedgesinGisatmostn?1,Hiscomplete. contradictstheassumptionthat(G) Ifn=6,thentherearefouredgesfromfu;vgtoHinG.Moreover,(G) Ifn=5,thenhavingfouredgesincidenttouorvinGforces(G) 2. 1,which<br />

impliesthat(G) inFigure5.1.IfGisgraph(a)inFigure5.1,thenuwyvzxuformsaHamiltonian 3andThereforeGis,uptoisomorphism,oneofthegraphs 2<br />

cycle.IfGisgraph(b)inFigure5.1,thenuwyzvxuformsaHamiltoniancycle. IfGisgraph(c)inFigure5.1,thenclearlyGisnotHamiltoniansinceN(u)= 49


z r??@@ uv<br />

y r rxrr<br />

(a) r wz<br />

rrrr ??@@ uv y(b)<br />

rxr<br />

wz<br />

rrrr ??uv y(c)<br />

rxr<br />

w<br />

Figure5.1.ThenonisomorphicpossibilitiesforGwhenthenumberof<br />

N(v)=fw;xgandthelargestcyclecontainingverticesuandvisC4.Further, edgesincidenttouorvis5andn=6.<br />

hE(G)i=K4?e,whereeisanedge,andwegetexceptionalcase(iv).<br />

za??@@<br />

rrrr uv<br />

yrAAAwx<br />

rrrr (a) za??@@<br />

uv<br />

yr<br />

wx rrrr (b) ? ??? ? r uv za y wx<br />

Figure5.2.ThenonisomorphicpossibilitiesforGwhenthenumberof edgesincidenttouorvis6andn=7. (c)<br />

inFigure5.2.IfGisgraph(a)or(b)inFigure5.2,thenuwavzyxuforms impliesthat(G) Ifn=7,thenthereareveedgesfromfu;vgtoHinG.Moreover,(G) 4.ThereforeGis,uptoisomorphism,oneofthegraphs 2<br />

aHamiltoniancycle.IfGisgraph(c)inFigure5.2,thenuwvazyxuformsa edgesincidenttofu;vgisn?1. Hamiltoniancycle.Thisaddressesallthegraphswherethenumberofmissing Case2.SupposethatthenumberofedgesinGincidenttouorvis exactlyn?2.SincethetotalnumberofedgesinGisatmostn?1,H= 50


G?fu;vgismissingatmostoneedge. implies(G) 5.3.ThetwononisomorphicpossibilitiesforGwhenGhasthreeedgesincident Ifn=5,thentherearetwoedgesfromfu;vgtoHinG.Moreover,(G) 2.ThereforeGis,uptoisomorphism,oneofthegraphsinFigure 2<br />

y ??@@ rrrr uv x<br />

y ??uv r(a) r wy<br />

rrrr ??@@ uv<br />

xr<br />

r rr<br />

x<br />

(d) wy<br />

rrrr ??uv (b) r w @@ rrrr ??@@ r<br />

x(e)<br />

r wy<br />

rrrr ??uv xr(f)<br />

w<br />

uv y x(c)<br />

w<br />

Figure5.3.ThenonisomorphicpossibilitiesforGwhenthenumberof<br />

touorvande(H)=0aredepictedintherstcolumninFigure5.3.Asstated edgesincidenttouorvis3andn=5.<br />

previously,thesubgraphHcanbemissingatmostoneedge.Thegraphsinthe secondandthirdcolumndepictallpossiblenonisomorphicplacementsofthat additionaledge.<br />

vertexinG.Further,hE(G)i=C4andwegetexceptionalcase(iii).IfGisgraph IfGisgraph(b)inFigure5.3,thenclearlyGisnotHamiltoniansincexisacut IfGisgraph(a)or(c)inFigure5.3,thenuxvywuformsaHamiltoniancycle.<br />

(d),(e),or(f)inFigure5.3,thenGisnotHamiltoniansinceN(u)[N(v)=fw;xg. Further,K3 implies(G) Ifn=6,thentherearethreeedgesfromfu;vgtoHinG.Moreover,(G) Gandwegetexceptionalcase(ii). 3.ThereforeGis,uptoisomorphism,oneofthegraphsinFigure 2<br />

51


5.4.ThetwononisomorphicpossibilitiesforGwhenGhasfouredgesincident<br />

z rrrr ??@@ uv yr(f)<br />

xr<br />

wz<br />

rrrr ??@@ uv y(g)<br />

rxr<br />

w HHH rrrr ??@@ rr<br />

uv z y(h)<br />

x w rrrr ??@@ @@rr uv z rrrr ??uv y(a)<br />

rxr<br />

wz<br />

rrrr ??uv y(b)<br />

rxr<br />

w rrrr ??@@r r<br />

z y(i)<br />

x wz<br />

rrrr ??@@?? uv yr(j)<br />

xr<br />

w<br />

uv z y(c)<br />

x wz<br />

rrrr ??uv y(d)<br />

rxr<br />

wz<br />

rrrr ???? uv y(e)<br />

rxr<br />

w<br />

Figure5.4.ThenonisomorphicpossibilitiesforGwhenthenumberof edgesincidenttouorvis4andn=6.<br />

tofu;vgande(H)=0aredepictedintherstcolumninFigure5.4.Asstated previously,thesubgraphHcanbemissingatmostoneedge.Thegraphsinthe secondandsubsequentcolumnsdepictallpossiblenonisomorphicplacementsof thatadditionaledge. inFigure5.1.WehavealreadyshownthatthisgraphisnotHamiltonianand isexceptionalcase(iv).IfGisgraph(a),(b),(d),or(e)inFigure5.4,then IfGisgraph(c)inFigure5.4,thenthisgraphisisomorphictograph(c)<br />

uwvzyxuformsaHamiltoniancycle.IfGisgraph(f),(g),or(h)inFigure5.4, thenuwzvyxuformsaHamiltoniancycle. thenuwyzvxuformsaHamiltoniancycle.IfGisgraph(i)or(j)inFigure5.4,<br />

implies(G) 5.5. Ifn=7,thentherearefouredgesfromfu;vgtoHinG.Moreover,(G) 4.ThereforeGis,uptoisomorphism,oneofthegraphsinFigure 2<br />

52


za qqqq ?@AA uvwx y(v)<br />

q za(w)<br />

qqqq ?@AA uvwx yq<br />

AA qqqq ?@AA q uvwx<br />

za qqqq ?@ uvwx<br />

qqqq ?? uvwx<br />

y(g)<br />

q za qqqq ?@ uvwx<br />

za<br />

za ?? qqqq ?@ uvwx<br />

yq<br />

qqqq (l) ?? uvwx<br />

y(h)<br />

q za PPPP qqqq ?@ uvwx<br />

za(m)<br />

y(p)<br />

q za qqqq ?? ?@ uvwx<br />

yq<br />

?? qqqq uvwx<br />

yq<br />

qqqq (i) AA ?@ q<br />

za<br />

y(q)<br />

q za PPPP ?? qqqq ?@ uvwx<br />

y(n)<br />

q za qqqq ?? uvwx q<br />

y(r)<br />

q za qqqq ?? ?@ uvwx<br />

y(o)<br />

q<br />

za y qqqq ?@AA uvwx<br />

y qqqq ?@<br />

(s) za ?? uvwx y(t)<br />

q za ?? qqqq ?@ uvwx y(u)<br />

q<br />

(x) za y(y)<br />

q<br />

uvwx<br />

za qqqq ?uvwx y(a)<br />

q za qqqq ?uvwx yq<br />

qqqq ?AA (b) q<br />

za y qqqq ?@ uvwx (j) za y(k)<br />

q<br />

uvwx za y qqqq (c) za ?uvwx y(d)<br />

q za qqqq ??? uvwx y(e)<br />

q za qq ?uvwx y(f)<br />

q q<br />

Figure5.5.ThenonisomorphicpossibilitiesforGwhenthenumberof edgesincidenttouorvis5andn=7.<br />

53


varedepictedintherstcolumninFigure5.5.Sincethetotalnumberofedges inGisatmost6andthenumberofedgesinHincidenttouorvisexactly5,H ThevenonisomorphicpossibilitiesforGwhenGhas5edgesincidenttouor<br />

depictallpossiblenonisomorphicplacementsofthatadditionaledge. ismissingatmostoneedge.Thegraphsinthesecondandsubsequentcolumns<br />

verticesofK3andI4untilweusealltheverticesinK3.Further,hE(G)i=K4 thelargestcyclewecanformisC6obtained<strong>by</strong>alternatelytraversingbetweenthe IfGisgraph(n)inFigure5.5,thenclearlyG=I4_K3isnotHamiltoniansince<br />

andwegetexceptionalcase(v). Hamiltoniancycle.IfGisgraph(e)or(f)inFigure5.5,thenuwvazyxuforms aHamiltoniancycle.IfGisgraph(g),(h),(i),(k),(p),(q),(r),or(t)inFigure IfGisgraph(a),(b),(c),(d),or(j)inFigure5.5,thenuwyzvaxuformsa<br />

5.5,thenuxvazywuformsaHamiltoniancycle.IfGisgraph(l),(m),or(o)in Figure5.5,thenuwvyzaxuformsaHamiltoniancycle.IfGisgraph(s)or(u) inFigure5.5,thenuwzyavxuformsaHamiltoniancycle.IfGisgraph(v),(w), (x),or(y)inFigure5.5,thenuwzxavyuformsaHamiltoniancycle.<br />

andvinGthatthenumberofedgesinGincidenttouorvisatmostn?3. uorvisatleastn?2.Therefore,wecanassumeforallnonadjacentverticesu Thisaddressesallthegraphswherethenumberofmissingedgesincidentto<br />

Case3.SupposethatthenumberofedgesinGincidenttoevery nonadjacentpairofofverticesu,visatmostn?3. atleast2(n?2)?(n?4)=nedgesfromfu;vgintoH.So,dG(u)+dG(v) and<strong>by</strong>Ore'sTheorem(Theorem2.6),GisHamiltonian. Thereareatmostn?4edgesmissingfromfu;vgintoH.Therefore,thereare 2n<br />

54


forallj Nowwecanproceedwithdetermining(G;:Cj)whene(G) 3. n2?(j?1)<br />

Theorem5.7Ife(G) n2?(j?1),then<br />

(G;:Cj)= 8 >< ln?1 ln?2 j?1mifhE(G)i=2K2andj=3, j?1mifhE(G)i=P3andj=3, K1;j?2 K3 Gandj=5, Gandj 4,<br />

>: ln hE(G)i=C4andj=5,<br />

j?1motherwise. orhE(G)i=K4andj=7,and hE(G)i=K4?ewhereeisanedgeandj=6,<br />

Proof.Ife(G)>n2?(j?1),thentheresultfollowsfromTheorem5.1.So assumee(G)=n2?(j?1).Further,theresultfollowswhenj 5.5.Therefore,weonlyneedtodetermine(G;:Cj)whenj=3,4,5,6or7. Ifj=3,thenhE(G)i2f2K2;P3g.IfhE(G)i=2K2,then(G;:C3)=ln?2 8<strong>by</strong>Theorem<br />

<strong>by</strong>Theorem4.1.IfhE(G)i=P3,then(G;:C3)=ln?1 Ifj=4,thenhE(G)i2f3K2;P3+K2;K1;3;P4;K3g.IfhE(G)i=3K2,then j?1m<strong>by</strong>Theorem4.1. j?1m<br />

and(G;:C4)=lnjmifn


thenwegetCj e(hBi) e(hBi)=j+1 j+1 2?(j?1).ButsinceGismissingj?1edges,wemusthave hBi<strong>by</strong>Theorem2.10andreachacontradiction.Therefore,<br />

whichimpliesj If(hBi) 2?(j?1).<br />

(hBi) 2,whichimplies(hBi) 1,thene(hBi) 3.Butthiscontradictstheassumptionthatj (j+1)=2.Now,j?1=e(hBi) j?2.Choosev2V(hBi)sothatdhBi(v) 5.Therefore, (j+1)=2,<br />

j?2.ConsiderhBi?v.Now,e(hBi?v)=e(hBi)?d(v) j+1<br />

Therefore,jAj j2?(j?3)and<strong>by</strong>Theorem2.10,wehaveCj j. hBiandreachacontradiction. 2?(j?1)?(j?2)=<br />

acolorclassofsizej.ByTheorem2.10,hAimustbemissingatleastj?2edges. SinceGismissingatmostj?1edges,wemusthavea(j?2) Letabethenumberofcolorclassesofsizejina:Cj-coloringofGandAbe<br />

asizej,whichimpliesthat(G;:Cj) 1.Therefore,all:Cj-coloringsofGcancontainatmostonecolorclassof ln?j j?1,orsimply<br />

Hamiltonian.IfGcontainsoneofthesenon-Hamiltoniangraphsasaninduced ByTheorem5.6,weknowwhichgraphsmissingatmostj?1edgesarenon- j?1m+1=ln?1 j?1m.<br />

subgraph,thenwecancolorGsothatthereisacolorclassofsizejandget (G;:Cj)=ln?1 Theprevioustheoremproducesanupperboundfordetermininghowmany j?1m,andifnot,then(G;:Cj)=ln j?1m. 2<br />

believe,usingtheabovemethods.However,extrapolatingonthecomplexityofthe edgesneedtoremovedfromacompletegraphtoobtainagraphwith(G;:Cj)= ln?2<br />

proofsforremovingj?1edgesversusthecomplexityoftheproofforremoving j?1m.Determining(G;:Cj)whenGismissingjedgescanbeaccomplished,we<br />

onlyj?2edgesleadsustobelievethattheproofforremovingjedgeswill 56


eextremelylongandcomplicated.Wehavealreadydeterminedtheminimum inTheorem5.7.Removingjedgesfromacompletegraphwillprobablynotallow theconditionalchromaticnumbertodecreaseagain.Thus,thereislittletobe numberofedgestoberemovedtoobtainaconditionalchromaticnumberofln?2 j?1m<br />

gained<strong>by</strong>provingtheabovetypeofresultforgraphsmissingjedges.<br />

toattainaparticularconditionalchromaticnumber. determininggeneralupperandlowerboundsonthenumberofedgesforagraph Infact,furtherresearchintheareaofdetermining(G;:Cj)shouldfocuson<br />

57


WediscoveredinTheorem5.7thatitisnecessarytoremovej?2edgesfrom 6 Determining (G;:Pj)<br />

:Cj-chromaticnumberwhenj=3.Wewouldliketodeterminetheminimum acompletegraphtodecreasethe:Cj-chromaticnumberfromln andthatitisnecessarytoremovej?1edgestoattainavalueofln?2 j?1mtoln?1 j?1mforthe j?1m<br />

fromacompletegraphtoattainavalueofln?2 :Pj-chromaticnumberanddeterminetheminimumnumberofedgestoremove numberofedgestoremovefromacompletegraphtoattainavalueofln?1<br />

j?1mforthe:Pj-chromaticnumber. j?1mforthe<br />

:Pj-chromaticnumberforalargesetofgraphs.Webegin<strong>by</strong>determiningwhich Whileattemptingtondthesenumbers,wewillobtaininformationaboutthe graphsoflargesizehaveaHamiltonianpath,thendeterminetheminimumnum-<br />

graphsmissing2j?5orfeweredges.Finally,wewilldeterminealowerboundon berofedgeswhichneedtoberemovedfromacompletegraphfor(G;:Pj)to decreasefromln<br />

(G;:Pj)intermsofthesizeofG. j?1mtoln?1 j?1m,andthendeterminethechromaticnumberforall<br />

6.1 DeterminingwhichgraphsoflargesizehaveaHamil-<br />

Todeterminethe:Pj-chromaticnumberforgraphswhosecomplementshavesize tonianpath<br />

atmost2j?5,weneedtodeterminewhichgraphsofordernmissingatmost 2n?5edgeshaveaHamiltonianpath.Thefollowingisaneasyandusefulresult.<br />

58


Lemma6.1LetGbeagraphofordernandS path,thenthenumberofcomponentsinG?SisatmostjSj+1. V(G).IfGhasaHamiltonian<br />

G.IfweremoveSfromG,thenHbreaksapartintoatmostjSj+1subpaths. Proof.LetS Therefore,G?ScontainsatmostjSj+1components. V(G)with0 jSj n,andletHbeaHamiltonianpathin<br />

Thefollowingsetswillbeusedrepeatedlyinthissection.Let 2<br />

F=fK2_(K2+I3),K1_(Kn?3+I2),Ir_Kr?2,wherer G=fGjGisaspanningsubgraphofagraphinFg,and H=fK2_(K2+I3),K1_(Kn?3+I2),I4_K2,(I4_K2)?e,I5_K3, 4andn 4g,<br />

(I5_K3)?e,I6_K4,whereeisanedgeandn Lemma6.2IfagraphG2G,thenGdoesnothaveaHamiltonianpath. 4g.<br />

Proof.LetG=F_(K2+I3)whereF=K2.LetS=V(F).Thenthenumber aHamiltonianpath. ofcomponentsinG?Sis4and4>3=jSj+1.ByLemma6.1,Gdoesnothave<br />

componentsinG?Sis3and3>2=jSj+1.ByLemma6.1,Gdoesnothave aHamiltonianpath. LetG=F_(Kn?3+I2)whereF=K1.LetS=V(F).Thenthenumberof<br />

nothaveaHamiltonianpath. ofcomponentsinG?Sisrandr>(r?2)+1=jSj+1.ByLemma6.1,Gdoes LetG=Ir_FwhereF=Kr?2andr 4.LetS=V(F).Thenthenumber<br />

2inFdoesnotcontainaHamiltonianpath,FcannotcontainaHamiltonianpath. LetG=F,whereFisaspanningsubgraphofagraphinF.Sinceeachgraph<br />

59


2n?5edges.Sinceweareinterestedindeterminingwhichgraphsmissingatmost 2n?5edgeshavenoHamiltonianpath,wewilldeterminethelargestsubsetof NowGcontainsmoregraphsthanjustthosegraphsofordernmissingatmost<br />

graphsoforderninGthataremissingatmost2n?5edges.<br />

ifandonlyifG2H. Lemma6.3LetGbeagraphofordern 1withe(G) 2n?5.ThenG2G<br />

Proof.LetGbeagraphofordern IfGisaspanningsubgraphofK2_(K2+I3),thensinceK2_(K2+I3)ismissing 9=2(7)?5edges,wemusthavethatG=K2_(K2+I3)2H.IfGisaspanning 1withe(G) 2n?5.AssumethatG2G.<br />

wemusthavethatG=K1_(Kn?3+I2)2H.SoassumethatGisaspanning subgraphofK1_(Kn?3+I2),thensinceK1_(Kn?3+I2)ismissing2n?5edges, subgraphofIr_Kr?2,wherer or(r?6)(r?3) n2?r2,orr2 2n?5=2(2r?2)?5.Simplifying,wegetr2?9r+18 4.Nown2?(2n?5) e(G) e(Ir_Kr?2)=<br />

thatr 4.IfGisaspanningsubgraphofI4_K2,thensinceI4_K2ismissing 0.Thisimpliesthat3 r 6.Wehavealreadyassumed0<br />

6=2(6)?6edges,Gcanbemissinguptoonemoreedge.Thus,G=I4_K2or G=(I4_K2)?ewhereeisanedge.BothofthesegraphsareinH.IfGisa spanningsubgraphofI5_K3,thensinceI5_K3ismissing10=2(8)?6edges, Gcanbemissinguptoonemoreedge.Thus,G=I5_K3orG=(I5_K3)?e whereeisanedge.BothofthesegraphsareinH.IfGisaspanningsubgraph ofI6_K4,thensinceI6_K4ismissing15=2(10)?5edges,wemusthavethat G=I6_K42H.Therefore,ifG ByLemma6.2,Hconsistsofgraphsofordernmissingatmost2n?5edges H.Clearly,H G. 2<br />

withnoHamiltonianpath.Thenextstepistoprovethataconnectedgraph 60


this,weneedthefollowingtheoremwhichappearsinChartrandandLesniak[17]. missingatmost2n?5edgesiseitherinHorhasaHamiltonianpath.Toprove<br />

tonian.Ifforalldistinctnonadjacentverticesuandv,d(u)+d(v)Theorem6.1LetGbeaconnectedgraphoforder3ormorethatisnotHamil- misapositiveinteger,thenPm+1 G. m,where<br />

ingatmost2n?5edgeshaveaHamiltonianpath.Thefollowingtheoremcompletelycharacterizeswhichgraphsofordernmiss- Theorem6.2IfGisaconnectedgraphofordern eitherG2HorGhasaHamiltonianpath. 1ande(G) 2n?5,then<br />

Proof.LetGbeaconnectedgraphofordernwithe(G) thenthetheoremisvacuouslytrue.Ifn=3,thenG2fP3;K3g,bothofwhich haveaHamiltonianpath.Ifn=4,thensincee(G) 3andGisconnected,G2 2n?5.Ifn 2,<br />

fK1;3;P4;K1_(K1+K2);C4;K4?e;K4g.IfG=K1;3,thenG=K1_(K1+I2)2H. obviouslyGhasaHamiltonianpath.SoassumeGisnotcomplete.Letuandv Otherwise,GhasaHamiltonianpath.Soassumen beapairofnonadjacentverticesinGandH=G?fu;vg.SinceGisconnected, 5.IfG=Kn,then<br />

eachofuandvhasaneighbor.IfN(u)=N(v)=fwg,thenthenumberofedges<br />

edgesincidenttouorv.ThisimpliesthatG=K1_(Kn?3+I2)2H.Therefore, Hisn?3.Sinceweassumedthatuv62E(G),wehaveatotalof2n?5missing missingbetweenuandHisn?3andthenumberofedgesmissingbetweenvand<br />

wecanassumethatthereexista;b2V(H)suchthata2N(u),b2N(v)and a6=b.WebreaktheproofintocasesbasedonthenumberofedgesinGincident touorv. 61


Case1.SupposethatthenumberofedgesinGincidenttouorvisn+1 ormore.ThenHisagraphonn?2verticesmissingatmost(2n?5)?(n+1)= (n?2)?4edges.ByTheorem2.9,HisHamiltonianconnected,andhencethere isaHamiltonian(a,b)-pathinH.So,uatogetherwiththeHamiltonian(a,b)-path inHtogetherwithbvisaHamiltonianpathinG.Therefore,wecanassumethat<br />

n.ThenHismissingatmost(2n?5)?n=(n?2)?3edges.ByTheorem Case2.SupposethenumberofedgesinGincidenttouorvisexactly everypairofnonadjacentverticesisincidenttonomorethannedgesinG.<br />

2.9,thesubgraphHhasaHamiltoniancycleC.LetC=u1u2:::un?2u1.Ifu (orv)isadjacenttoconsecutiveverticesonC,thenwecouldconstructa(n?1)cycleusingadetourthroughu(orv)andcouldthenattachv(oru)tothiscycle thepigeonholeprinciple,u(orv)wouldbeadjacenttoconsecutiveverticesonC. andproduceaHamiltonianpathinG.Soassumeneitherunorvisadjacentto consecutiveverticesonC.Thus,d(u) n?2 2andd(v) n?2<br />

Next,wedetermineallpossiblevaluesforthedegreesofuandvinG.There 2;forotherwise,<strong>by</strong><br />

are2(n?2)possibleedgesfromfu;vgtoHandsincen?1oftheseedgesare<br />

even,d(u)=n?4 missing,thereareexactlyn?3edgesfromfu;vgtoH.Nowd(u)+d(v)=n?3 andthefactthateachofuandvhasdegreeatmostn?2 2,andd(v)=n?2 2(Case2A);ornisoddandd(u)=d(v)=n?3 2impliesthateithernis<br />

Case2A.Assumeniseven,neitherunorvisadjacenttoapairofconsecutive (Case2B). 2<br />

verticesonCandd(u)=n?4<br />

neighborsadjacentonC,thevertexvmustbeadjacenttoalternatingvertices ForvtobeadjacenttohalfoftheverticesinHandnothavetwoofits 2andd(v)=n?2 2.<br />

62


onC,saytheverticesonCwithoddsubscripts.Sinced(u)=n?4<br />

2,wecansay<br />

withoutlossofgeneralitythatthevertexuisnotadjacenttou1.Nowwebreak<br />

thiscaseintosubcasesbasedonwhetherornotN(u) N(v).<br />

Case2A1.jN(u)\N(v)j=n?4<br />

2.FirstwewillshowthatifthereisanedgeinH<br />

betweenapairofverticeswithevenindices,thenwecanconstructaHamiltonian<br />

pathinG.Ifu2u42E(G),thenwecanconstructaHamiltonianpathinGasfol-<br />

lows:u4u2u1vu3uifn=6andu4u2u1vu3uu5:::un?2ifn>6.Ifu2un?22E(G),<br />

thenwecanconstructaHamiltonianpathinGasfollows:uu3u4:::un?2u2u1v.<br />

Ifu2u2k2E(G)forsome2


wecanconstructaHamiltonianpathinGasfollows:<br />

Ifu2ku2k+22E(G)forsome1


Case2A2.jN(u)\N(v)j


totwoconsecutiveverticesonC,sayuu162E(G)anduu262E(G).Forutohave degreen?3 Sinced(u)=n?3<br />

2andnothavetwoadjacentneighborsonC,thevertexumustbe 2andtherearen?2verticesonC,thevertexuisnotadjacent<br />

adjacenttotheremainingverticesonCwithodd(oreven)subscripts,sayodd. Thus,wecanassumethatN(u)=fu3;u5;:::;un?2g.Nextwebreakthiscase intosubcasesbasedonwhetherornotN(u)=N(v). Case2B1.N(u)=N(v).FirstwewillshowthatifthereisanedgeinH betweenapairofverticeswithevenindices,thenwecanconstructaHamiltonian pathinG.Ifu2u2i2E(G)forsome2 HamiltonianpathinGasfollowsu1u2u4u3vu5uifn=7and i (n?3)=2,thenwecanconstructa<br />

ifn>7(seeFigure6.3). u1u2u2iu2i?1u2i?2:::u3vu2i+1uun?2un?3:::u2i+2<br />

Ifu4u2l2E(G)forsome2


su4<br />

pps<br />

u3<br />

qsu2<br />

qs<br />

u1pp<br />

p<br />

p<br />

pp<br />

p<br />

p<br />

pp<br />

p<br />

pp<br />

p<br />

p<br />

pp<br />

p<br />

p<br />

pp<br />

p<br />

p<br />

p<br />

p<br />

p<br />

pp<br />

p<br />

p<br />

pp<br />

p<br />

p<br />

pp<br />

p<br />

p<br />

p<br />

p<br />

p<br />

pp<br />

p<br />

p<br />

pp<br />

p<br />

p<br />

pp<br />

p<br />

p<br />

p<br />

p<br />

p<br />

pp<br />

p<br />

p<br />

ps<br />

un?2q<br />

q<br />

q<br />

q<br />

q<br />

q<br />

q<br />

q<br />

q<br />

q<br />

s<br />

u2l+1 qqs<br />

u2lpps<br />

u2l?1 qs<br />

u2l?2qqqqqqqqqqs<br />

u2k+1<br />

pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppsu2k<br />

qsu2k?1<br />

qqqqqqqqqq<br />

sv<br />

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq<br />

ppppppppppp<br />

p p qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq<br />

ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp<br />

s<br />

u p<br />

q<br />

p q pp<br />

p<br />

q<br />

Figure6.4.ThegraphGwhennisoddandu2ku2l2E(G)forsome<br />

2


Case2B2.N(u)6=N(v).RecallthatN(u)=fu3;u5;:::;un?2g.Noweither adjacenttoconsecutiveverticesonC.Ifvu12E(G),thenvu1u2:::un?2uisa vu12E(G)orvu22E(G),otherwise,<strong>by</strong>thepigeonholeprinciple,vwouldbe HamiltonianpathinG.Ifvu22E(G),thenvu2u1un?2:::u4u3uisaHamiltonian pathinG.Therefore,wecanassumethateverypairofnonadjacentverticesis Case3.SupposethatthenumberofedgesinGincidenttouorv incidenttonomorethann?1edgesinG. isexactlyn?1.Thereare2(n?2)possibleedgesfromfu;vgtoH,and sincen?2oftheseedgesaremissing,wegetd(u)+d(v)=n?2.Thegraph<br />

H=K1_(K1+Kn?4)forn Hismissingatmost(2n?5)?(n?1)=n?4edges.Therefore,e(H) n?2<br />

Case3A.AssumeHisHamiltonian.Again,letC=u1u2:::un?2u1beaHamil- 2?(n?4)=(n?2)2?3(n?2)+4 2 5,orH=K2_I3. edges.ByTheorem2.8,eitherHisHamiltonian,<br />

toniancycleinH.Ifu(orv)isadjacenttoconsecutiveverticesonC,thenwe couldconstructa(n?1)-cycleusingadetourthroughu(orv)andcouldthen attachv(oru)tothiscycleandproduceaHamiltonianpathinG.Soassume<br />

<strong>by</strong>thepigeonholeprinciple,uwouldbeadjacenttoconsecutiveverticesonC. otherwiseeitheruorvwouldbeadjacenttoatleastn?1 neitherunorvisadjacenttoconsecutiveverticesonC.Nownmustbeeven,for<br />

Soassumethatniseven,neitherunorvisadjacenttoapairofconsecutive 2verticesinH,sayu,and<br />

verticesonCanduisnotadjacenttoapairofconsecutiveverticesonC,thevertex uisadjacenttoeitheralltheverticesonCwithoddsubscriptsorallthevertices verticesonC,andd(u)=d(v)=n?2 2.Sinceuisadjacenttoexactlyhalfofthe<br />

onCwithevensubscripts.Thesameistrueforv.Bysymmetry,therearetwo 68


casestoconsider:N(u)=fu2;u4;:::;un?2gandN(v)=fu1;u3;u5;:::;un?3g (Case3A1);andN(u)=N(v)=fu1;u3;u5;:::;un?3g(Case3A2). Case3A1.N(u)=fu2;u4;:::;un?2gandN(v)=fu1;u3;u5;:::;un?3g.Inthis Case3A2.N(u)=N(v)=fu1;u3;u5;:::;un?3g.Firstwewillshowthatifthere case,vu1u2:::un?2uisaHamiltonianpathinG. isanedgeinHbetweenapairofverticeswithevenindices,thenwecanconstruct aHamiltonianpathinG.Ifu2kun?22E(G)forsome1 aHamiltonianpathinG.Ifun?4un?22E(G),thenun?4un?2un?3uu1:::un?5vis<br />

u2kun?2un?3uu1:::u2k?1vu2k+1u2k+2:::un?4 k


qqun?2q<br />

qqqqqq<br />

u1qs qs qsu2<br />

u2l u2l+1ppspsq<br />

p qsu3<br />

u2l?1 qq<br />

pqs us pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp<br />

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq<br />

sv pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq<br />

p<br />

q su4<br />

u2l?2qqqqqqqqqqs ps u2k+1 pppp pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppsu2k psu2k?1 qqqqqqqqqq p<br />

Figure6.5.ThegraphGwhennisevenandu2ku2l2E(G)forsome 1k


adjacenttoavertexinU,sayu1.Sinced(v) N(v) SupposethatN(u) U.<br />

where1


casethereareveedgesbetweenfu;vgandtheverticesofH.Withoutlossof generality,eitherd(u)=1andd(v)=4,ord(u)=2andd(v)=3. Case3C1.Supposethatd(u)=1andd(v)=4.Then<strong>by</strong>thesymmetryof H,wecanassumethateithervu562E(G)orvu162E(G).Ifvu5=2E(G),then u1u5u2u3vu4u1formsC6andwecanattachutothiscycletoformP7 vu1=2E(G),thenu1u4vu3u2u5u1formsC6andwecanattachutothiscycleto formP7 G. G.If<br />

leasttwooftheverticesinVorvisadjacenttoatexactlyonevertexinV. Case3C2.Supposethatd(u)=2andd(v)=3.Theneithervisadjacenttoat<br />

u1u5vu4u2u3u1formsC6andwecanaddutoformP7 IfvisadjacenttoatleasttwooftheverticesinV,sayu4andu5,then<br />

Now,ifuisadjacenttoatleastoneofu3oru4,sayu3(asimilarconstruction IfvisadjacenttoexactlyonevertexinV,sayu5,thenN(v)=fu1;u2;u5g. G.<br />

eitherN(u)=fu1;u2gorN(u)=fu1;u5g.IfN(u)=fu1;u2g,thenG= worksforu4)thenuu3u1u4u2u5visaHamiltonianpathinG.Ontheotherhand, ifuisnotadjacenttoatleastoneofu3oru4,thenwithoutlossofgenerality, hu1;u2i_(hv;u5i+u+u3+u4)=K2_(K2+I3)2H.IfN(u)=fu1;u5g,then Case4.SupposethatthenumberofedgesinGincidenttouorvisat mostn?2.IfGisHamiltonian,thenobviouslyGhasaHamiltonianpath.So uu5vu1u4u2u3isaHamiltonianpathinG.<br />

assumeGisnotHamiltonian.Thereareatmostn?3edgesmissingfromfu;vg intoH.Therefore,thereareatleast2(n?2)?(n?3)=n?1edgesfromfu;vg intoH.So,d(u)+d(v) n?1.ByTheorem6.1,Pn G. 2<br />

72


ordernmissingatmost2n?5edgeshaveaHamiltonianpath. Thenexttheorembuildsontheprevioustheorem<strong>by</strong>statingwhichgraphsof<br />

aHamiltonianpathifandonlyif(G)>0andG62H. Theorem6.3LetGbeagraphofordern 1withe(G) 2n?5.ThenGhas<br />

Proof.LetGbeagraphofordern thatGisnotconnected.LetAbeacomponentofGwithjAj=aandB=G?A. andG62H.ToapplyTheorem6.2,wemustshowthatGisconnected.Suppose 1withe(G) 2n?5.Assumethat(G)>0<br />

minimumforthisquadraticfunctionoccurswhena=2ora=n?2andweget Since(G)>0,wehave2 e(G) an?a2 2n?4.Thus,thesizeofGmustbeatleast2n?4,which a n?2.Now,e(G) a(n?a)=an?a2.The<br />

contradictstheassumptionthate(G) Theorem6.2,GhasaHamiltonianpath. AssumethatGhasaHamiltonianpath.Now(G)>0orelseGwouldnot 2n?5.Therefore,Gisconnected.By<br />

haveaHamiltonianpath.ByLemma6.2andLemma6.3,G62H. NowthatweknowwhichgraphsoflargesizehaveaHamiltonianpath,wewill 2<br />

6.2 addresstheproblemofdetermining(G;:Pj)whene(G) Graphsmissingcompletesubgraphsorastar 2j?5.<br />

Aswehaveseeninthepreviouschapter,graphsoflargesizemissingastaror termining(G;:Cj).Thesamewillprovetobetruewhendetermining(G;:Pj)completesubgraphsarethegraphswhichneedtohandledasspecialcaseswhende- forgraphsoflargesize.First,let'sprovearesultforagraphwhosecomplement containsastarasasubgraph. 73


K1;j?1 Theorem6.4LetGbeagraphofordern.Ifj G,then(G;:Pj)=ln?1 j?1m. 2,e(G) n2?(2j?5),and<br />

asetofverticeswhichinduceK1;j?1 Proof.Ifj=2,thenthetheoremisvacuouslytrue.Soassumej thereisexactlyonevertexv0ofdegreeatleastj?1inG.Therefore,v02X. G.SinceK1;j?1 Gande(G) 3.LetXbe<br />

LetAbeacolorclassina:Pj-coloringofG. 2j?5,<br />

j?4edges,and<strong>by</strong>Theorem2.9,weknowthathAihasaHamiltonianpath. Therefore,forhAitobePj-free,wemusthavejAj Supposev062A.IfjAj j,thenhAiwouldbemissingatmost2j?5?(j?1)=<br />

considerA?v0.IfjA?v0j Therefore,jA?v0j j,then<strong>by</strong>thesameargument,wegetPj j?1.Supposev02A,and<br />

onecolorclassofsizej(onecontainingv0),and(G;:Pj) j?1,whichimpliesjAj j.Thus,therecanbeatmost ln?j hA?v0i.<br />

j<strong>by</strong>usingtheverticesinXtogetherwithonevertexfromG?Xandformas Toshowtheinequalityintheotherdirection,formonecolorclassBofsize j?1m+1=ln?1 j?1m.<br />

manyothercolorclassesaspossibleofsizej?1withtheremainingverticesin G?X.NowhBiisPj-freesincev0isnotadjacenttoanyothervertexinhBi. Therefore,(G;:Pj) Theprevioustheoremalongwithmostofthefollowingtheoremswillbeused ln?j j?1m+1=ln?1 j?1m: 2<br />

inthenextsection.Thefollowingtheoremsaremoregeneralthanweneed,butwe wishtopresentthemintheirentiregenerality.Theirproofsarestraightforward andusethesameproofmethodology.Therefore,toquicklyreachthemainresults ofthischapter,theremainingtheoremsinthissectionwillbepresentedhere withoutproof.TheirproofscanbefoundinAppendixA.<br />

74


Theorem6.5LetGbeagraphofordern hE(G)i=mKj+2 2,then(G;:Pj)=maxln?m j?1m;lnjm. 1.Ifj 2iseven,m 0,and<br />

whereeisanedge,then(G;:Pj)=ln?1 Theorem6.6LetGbeagraphofordern.Ifj j?1m. 3isoddandhE(G)i=Kj+3 2?e,<br />

Theorem6.7LetGbeagraphofordern.Ifj then(G;:Pj)=ln?1 j?1m. 4andhE(G)i=Ij?3_K2,<br />

Theorem6.8LetGbeagraphofordern hE(G)i=mKj+4 2,then(G;:Pj)=maxln?2m j?1m;ln 1.Ifj j+1m. 4iseven,m 0,and<br />

Theorem6.9LetGbeagraphofordern.Ifj Kj+4 2?e,whereeisanedge,then(G;:Pj)=ln?1 j?1m. 2isevenandhE(G)i=<br />

Theorem6.10LetGbeagraphofordern.Ifj K1_(Kj2+K1),then(G;:Pj)=ln?1 j?1m. 6isevenandhE(G)i=<br />

Theorem6.11LetGbeagraphofordern.Ifj Kj+2 2+K2,then(G;:Pj)=ln?1 j?1m. 6isevenandhE(G)i=<br />

6.3Wewillusemostofthesetheoremstodetermine(G;:Pj)whene(G)islarge. Firstofall,wecanremovej?2edgesandshowthat(G;:Pj)doesnotdecrease Determining(G;:Pj)whene(G)islarge<br />

<strong>by</strong>applyingawellknownresultaboutHamiltonianpaths.Asanaside,ifj toproveTheorem6.12infullgenerality.However,itwaseasiertoproveTheorem thenTheorem6.12isanimmediateresultofTheorem6.13.Thuswedidnotneed 3,<br />

6.12thisway. 75


Theorem6.12LetGbeagraphofordern.Ifj then(G;:Pj)=ln j?1m. 2ande(G) n2?(j?2),<br />

LetB Proof.LetAbeacolorclassina:Pj-coloringofG.SupposethatjAj 2.9,wegetPj AwithjBj=j.NowhBiismissingatmostj?2edges.ByTheorem hBi,acontradiction.Therefore,jAj< j?1mifG=Kn?5_(K2+I3)andj=7, K1;j?1 G=Kn?(j?1)_(Kj?3+I2)andj G=(Kn?4_I4)?eandj=6, G=Kn?4_I4andj=6, G, 4,<br />

>: ln G=(Kn?5_I5)?eandj=8, G=Kn?5_I5andj=8,<br />

j?1m otherwise. orG=Kn?6_I6andj=10,and<br />

76


Proof.Letj j=2,thenthetheoremisvacuouslytrue.Soassumej 2andGbeagraphofordernwithe(G) 3. n2?(2j?5).If<br />

eisanedge,and<strong>by</strong>Theorem6.6,weget(G;:P7)=ln?1 SupposethatK1;j?1<br />

SupposethatG=Kn?5_(K2+I3)andj=7.ThenhE(G)i=K5?e,where G.Then<strong>by</strong>Theorem6.4,weget(G;:Pj)=ln?1 j?1m.<br />

and<strong>by</strong>Theorem6.7,weget(G;:Pj)=ln?1 SupposethatG=Kn?(j?1)_(Kj?3+I2)andj j?1m. 4.ThenhE(G)i=Ij?3_K2, j?1m.<br />

G=Kn?6_I6andj=10.ThenhE(G)i=Kj+2 SupposethatG=Kn?4_I4andj=6,orG=Kn?5_I5andj=8,or<br />

andonlyifn (G;:Pj)=ln?1 j?1mifn j.But,whenn


LetB aHamiltonianpath.SinceK1;j?16G,(hBi)>0. IfhBi=K2_(K2+I3),thenj=7.Now9=2(7)?5=e(hBi)and AsuchthatjBj=j.WewanttouseTheorem6.3toshowthathBihas<br />

e(G) thatG=Kn?(j?1)_(Kj?3+I2),acontradiction. IfhBi=K1_(Kj?3+I2),thenj 2j?5implythatG=Kn?5_(K2+I3),acontradiction.<br />

IfhBi=I4_K2,thenj=6and2j?5=7=e(hBi)+1.IfhBi= 4.Now2j?5=e(hBi),whichimplies<br />

(I4_K2)?e,thenj=6and2j?5=7=e(hBi).NoweitherG=Kn?4_I4or<br />

(I5_K3)?e,thenj=8and2j?5=11=e(hBi).NoweitherG=Kn?5_I5<br />

G=(Kn?4_I4)?e,andwereachacontradiction.<br />

orG=(Kn?5_I5)?e,andwereachacontradiction. IfhBi=I5_K3,thenj=8and2j?5=11=e(hBi)+1.IfhBi=<br />

thatG=Kn?4_I6,acontradiction. ThereforehBi62Hand<strong>by</strong>Theorem6.3,hBihasaHamiltonianpath,a IfhBi=I6_K4,thenj=10.Now2(10)?5=15=e(hBi),whichimplies<br />

contradiction.ThusjAj


coloring.Therefore,weabandonthisapproachtond(G;:Pj)forallgraphs<br />

2j?2edges. oflargesizewiththeknowledgethatinordertoproduceagraphwhose:Pjchromaticnumberisln?2 j?1m,weneedtoremovesomewherebetween2j?4and<br />

6.4 Determiningboundson(G;:Pj)giventhenumberof<br />

Inthissection,wendanupperboundonthesizeofagraphgiventheconstraint edgesinagraph<br />

Pj-freegraphofordern.TherstupperboundonthesizeofaPj-freegraph thatthe:Pj-chromaticnumberisatmostjn?k Tondtheupperbound,werstneedtodeterminethemaximumsizeofa j?1k.<br />

wasdiscoveredin1959,<strong>by</strong>P.ErdosandT.Gallai[24].TheirtheoremstatesifG isaPj-freegraph,thene(G) improvedonthisboundforthemaximumsizeofaPj-freegraph.Infact,they foundtheleastupperboundanddeterminedwhichgraphsmetthatbound.The (j?2 2)n.In1975,R.FaudreeandR.Schelp[25]<br />

theoremisrestatedhereforcompletenessandreference. Theorem6.14(FaudreeandSchelp,[25])IfGisagraphofordern=q(j?1)+r (0 equalityifandonlyifG=qKj?1+Kror(whenjiseven,q>0,andr=j=2or (j?2)=2),G=lKj?1+Kj?2 q,0 r


Corollary6.1IfGisaPj-freegraphofordern 1)(j?1). j 2,thene(G) (n?j+<br />

Proof.LetmnbetheminimumnumberofedgesinthecomplementofaPj-free graphofordern=q(j?1)+r,whereq inductionthatforn statementofthecorollary.Nown j,wehavemn jimpliesthatq (n?j+1)(j?1),whichestablishesthe 0and0 r1.ByTheorem2.9(iii), j?2.Wewillshow<strong>by</strong><br />

mj mn= j?1.ByTheorem6.14,<br />

= n2!?q q(j?1)+r j?1 2!? r2!<br />

2 !?q =(q(j?1)+r)(q(j?1)+r?1)?q(j?1)(j?2)?r(r?1) j?1 2!? r2!<br />

=q2(j?1)2+rq(j?1)+q(j?1)(r?1)?q(j?1)(j?2) 22<br />

=q(j?1)[(q?1)(j?1)+2r] =q(j?1)[q(j?1)+2r?1?j+2] 2 2<br />

Whenr


=q(j?1)2?q(j?1)(j?2) =q(j?1)<br />

Now<strong>by</strong>theinductionhypothesis,(mn+1?mn)+mn j?1:<br />

(n+1?j+1)(j?1). j?1+(n?j+1)(j?1)=<br />

Wegetthefollowingimmediateresultforthe:Pj-chromaticnumberfrom2<br />

Theorem6.14. Theorem6.15Letj 0 rkj?1 2.IfGisagraphofordern=k(j?1)+r(0 2+r2,then(G;:Pj) 2. k,<br />

Therefore,(G;:Pj) Proof.Letj 0 rkj?1 2andletGbeagraphofordern=k(j?1)+r(0 2. 2+r2.ByTheorem6.14,wegetPj G. k,<br />

NextweuseCorollary6.1toderiveanupperboundonthesizeofGgiven 2<br />

Theorem6.16LetGbeagraphofordern (G;:Pj).<br />

jn?k j?1k,thene(G) n2?k(j?1). 1,j 2andk 0.If(G;:Pj)<br />

maximumnumberofedges.NowGmustcontainalledgesbetweenanytwocolor Proof.LetGbeagraphofordernsatisfying(G;:Pj) jn?k<br />

classes.For,ifnot,wecouldaddanedgebetweentwocolorclassestoformanew j?1kwiththe<br />

thiscontradictsthemaximalityofG.Therefore,wecanassumeallmissingedges graphHwith(H;:Pj) jn?k j?1kusingthesamecoloringweusedforG.But<br />

81


esidewithinthecolorclasses.Furthermore,<strong>by</strong>maximality,anycolorclassofsize atmostj?1isnotmissinganyedges. thenumberofcolorclassesofsizeifori=1;:::;j?1.Tominimizethenumber ofmissingedgesinourgraphG,weneedtominimizethenumberofmissingedges Letaj+ibethenumberofcolorclassesofsizej+ifori=0;:::n?jandbibe<br />

mustbemissingatleast(i+1)(j?1)edgesforalli=0;:::;n?j. inallcolorclassesofsizeatleastj.ByCorollary6.1,acolorclassofsizej+i<br />

1)aj+1+:::+(n?j+1)(j?1)aj+n?j=(j?1)Pn?j foramomentandderiveanotherinequality. Therefore,wewanttondalowerboundforthefunction(j?1)aj+2(j? i=0(i+1)aj+i.Let'sleavethis<br />

n=j?1<br />

=j?1 Xi=1ibi+n?j Xi=1(j?1)bi?j?1 Xi=0(j+i)aj+i<br />

=(j?1)(j?1 Xi=1bi+n?j Xi=1[(j?1)?i]bi+n?j Xi=0aj+i)?j?1 Xi=1[(j?1)?i]bi+n?j Xi=0(i+1)aj+i+n?j Xi=0(i+1)aj+i<br />

Xi=0(j?1)aj+i<br />

=(j?1)$n?k n?k?j?1 Xi=1[(j?1)?i]bi+n?j j?1%?j?1 Xi=1[(j?1)?i]bi+n?j Xi=0(i+1)aj+i: Xi=0(i+1)aj+i<br />

Now,rearrangingtheaboveequation,weget<br />

sincePj?1 n?j<br />

i=1[(j?1)?i]bi Xi=0(i+1)aj+i 0. k+j?1 Xi=1[(j?1)?i]bi k<br />

thate(G) thenumberofmissingedgesinallcolorclassesisatleastk(j?1),whichimplies Usingtheaboveinequality,weget(j?1)Pn?j<br />

n2?k(j?1). i=0(i+1)aj+i (j?1)k.Therefore,<br />

82<br />

2


LetGbeagraphofordernwithG=kK1;j?1,wherek Itisimmediatelyseenfromthefollowingexamplethatthisboundisattainable.<br />

get(G;:Pj)=ln?k n=kj=k(j?1)+k,wehavethatj?1dividesn?kand<strong>by</strong>Theorem4.3,we 0andj 2.Since<br />

givenaboundfor(G;:Pj)forj thesizeofGgivenaparticular:Pj-chromaticnumber. j?1m=jn?k j?1k.WehavefoundanupperboundonthesizeofG 2.Thenexttheoremgivesalowerboundon<br />

thene(G) Theorem6.17LetGbeagraphofordernandj n2?n2(j?2). 2.If(G;:Pj)>ln?1 j?1m,<br />

1) Proof.Wewillprovethecontrapositive.LetGbeagraphwithe(G)


AAllthesetheoremsdeterminethe:Pj-chromaticnumberforagraphwhenits Appendix<br />

complementcontainsaveryspecicsetofedges.Therstthreetheoremsand<br />

Theorem6.5LetGbeagraphofordern thenaltwotheoremsareusedintheproofofTheorem6.13.<br />

hE(G)i=mKj+2 2,then(G;:Pj)=maxln?m j?1m;lnjm. 1.Ifj 2iseven,m 0,and<br />

Proof.Ifj=2,thenhE(G)i=mK2,whichimpliesn Wewillshowthereisnocolorclassofsizeatleast3.IfAwereacolorclassofsize 2m,orn?m ln2m.<br />

mostoneedgeandP3 atleast3,thenthegraphinduced<strong>by</strong>anythreeverticesinAwouldbemissingat consistoftheendpointsofanedgeinG.Therefore,(G;:P2) hAi,acontradiction.Also,acolorclassofsize2must<br />

<strong>by</strong>Theorems5.3and2.2,weget(G;:Pj) n 2m,wegetn?m ln2m.Thus,(G;:P2)=maxn?m;ln2m.Ifj n?m.Since<br />

Toshowtheinequalityintheotherdirection,weproduceaminimum:Pj- (G;:Cj)=maxln?m j?1m;lnjm. 4,then<br />

coloring.ObservethatG=Wm+n?(j+2 i=1 2)m<br />

Now,n=j+2 andSi=I1fori=m+1;m+2;:::;n?j+2 SiwhereSi=Ij+2<br />

2m+s.Weconsidertwocases:j?2 2m.LetS=V(G)?Smi=1V(Si). 2m sand0 2fori=1;2;:::;m<br />

colorclassofsizej<strong>by</strong>usingalltheverticesfromSitogetherwithj?2 Ifj?2 2m s,thenn mjandln?m j?1m lnjm.Foreachi=1;:::;m,forma s


possible.Thus,wehave(G;:Pj) colorclassesareisomorphictoIj+2 partitiontheremainings?j?2 2mverticesintoasmanycolorclassesofsizej?1as 2_Kj?2 m+s?(j?2 2,which<strong>by</strong>Lemma6.2,isPj-free.We<br />

j?1 2)m=(j+2<br />

2)m+s?m j?1 =ln?m<br />

andT=S[Smi=m?r+1V(Si).Foreachi=1;:::;m?r,formacolorclassof If0 s


Theorem6.6LetGbeagraphofordern.Ifj whereeisanedge,then(G;:Pj)=ln?1 j?1m. 3isoddandhE(G)i=Kj+3 2?e,<br />

Proof.ObservethathE(G)i=Kj+3 coloringofG.SupposethatjAj whereR=Kn?(j+3 2),S=Ij?1 2andT=K2.LetAbeacolorclassina:Pj- j+1.LetB 2?eifandonlyifG=R_(S+T),<br />

1.Now,Bcontainsuptoj+3 2verticesfromS[Tandatleastj?1 AsuchthatjBj=j+<br />

Kj?1 fromR.Forallcombinationsofverticesfromthesesets,wegethCi=Ij+3 2vertices<br />

hCiandW=fw1;w2;:::;wj?1 2 hBi.LetU=fu1;u2;:::;uj+3 2gbethesetofverticesofdegreejinhCi.Now, 2gbethesetofverticesofdegreej?1 2in 2_<br />

u1w1u2w2:::uj?1 fromS[T.Suppose<strong>by</strong>wayofcontradictionthatacolorclassAofsizejcontains Now,eachcolorclassofsizejmustcontainstrictlymorethanj+3 2wj?1 2uj+1 2formsPj hCi,acontradiction.Therefore,jAj 4vertices j.<br />

andatleast3j?3 <strong>by</strong>4.Ifj+3isdivisible<strong>by</strong>4,thenAcontainsatmostj+3 atmostj+3 4verticesfromS[T.Sincejisodd,eitherj+3orj+1isdivisible<br />

wegethDi=Ij+3 4verticesfromR.Forallcombinationsofverticesfromthesesets, 4verticesfromS[T<br />

x1y1x2y2:::xj+3 3j?3 4inhDiandy1;y2;:::;y3j?3 4_K3j?3 4 4betheverticesofdegreej?1inhDi.Now, hAi.Letx1;x2;:::;xj+3<br />

4yj+3 4yj+7 4yj+11 4:::y3j?3 4formsPj hDi,acontradiction.There- 4betheverticesofdegree<br />

Amustcontainatleast3j?1 fore,j+1mustbedivisible<strong>by</strong>4,Acontainsatmostj+1<br />

thesesets,wegethDi=Ij+1 4verticesfromR.Forallcombinationsofverticesfrom 4verticesfromS[T,and<br />

ofdegree3j?1 Now,x1y1x2y2:::xj+1 4inhDiandy1;y2;:::;y3j?1 4_K3j?1 4 4betheverticesofdegreej?1inhDi. hAi.Letx1;x2;:::;xj+1<br />

4yj+1 4yj+5 4yj+9 4:::y3j?1 4formsPj hDi,acontradiction. 4bethevertices<br />

Therefore,eachcolorclassofsizejmustcontainstrictlymorethanj+3 86<br />

4vertices


therecanbeatmostonecolorclassofsizejand(G;:Pj) fromtheS[T,whichisstrictlymorethanhalftheverticesofS[T.Therefore, ln?j<br />

formonecolorclassAofsizej<strong>by</strong>usingalltheverticesinStogetherwithj?3 Next,wewillshowtheinequalityintheotherdirection.ColorGasfollows: j?1m+1=ln?1 j?1m.<br />

sincehAicontainsj?1 verticesfromRandbothverticesfromT.Now,hAi=Kj?3 2verticesofdegreej?3 2withexactlyj?3 2commonneighbors, 2_Ij?1 2+K2and 2<br />

hAiisPj-free.Withtheremainingvertices,formasmanycolorclassesofsize j?1aspossible.Withthiscoloring,weget(G;:Pj) (G;:Pj)=ln?1 j?1m. ln?j j?1m+1=ln?1 j?1m.So,<br />

Theorem6.7LetGbeagraphofordern.Ifj 4andhE(G)i=Ij?3_K2, 2<br />

Proof.Letj then(G;:Pj)=ln?1 4andGbeagraphofordernsuchthathE(G)i=Ij?3_ j?1m.<br />

fr1;r2;:::;rn?j+1gbetheverticesofR,fs1;s2;:::;sj?3gbetheverticesofS, K2.ThenG=R_(S+T)whereR=Kn?(j?1),S=Kj?3,T=I2.Let andft1;t2gbetheverticesofT.LetAbeacolorclassina:Pj-coloringof andt262B,thenhBiiscomplete,whichimpliesthatPj G.SupposethatjAj tion.Ift12Bandt262B,thenB=ft1;r1;:::;rp;s1;s2;:::;sj?1?pgforsome j+1.LetB AsuchthatjBj=j+1.Ift162B<br />

3 p j?1.Now,t1r1r2r3:::rps1s2:::sj?1?pformsPj<br />

hBi,acontradiction.Therefore,wemusthaveft1;t2g<br />

verticesfromS,thesubgraphhBimustcontainatleasttwoverticesr1andr2 B.SinceBcancontainatmostj?3 hBi,acontradic-<br />

fromR.SoB=ft1;t2;r1;:::;rt;s1;s2;:::;sj?1?pgforsome2 Now,t1r1t2r2r3:::rps1s2:::sj?1?pformsPj hBi,whichagainisacontradic- p j?1.<br />

87


tion.Therefore,wemusthavejAj Gismissingatmost2j?5edges,therecanbeatmostonecolorclassofsize hAiismissingfewerthanj?1edges,thenhAihasaHamiltonianpath.Since j.SupposejAj=j.ByTheorem2.9,if<br />

j.Thus,(G;:Pj) coloring.FormonecolorclassAofsizejwithA=ft1;t2;r1;s1;s2;:::;sj?3g. ln?j<br />

NowhAi=K1_(Kj?3+I2),which<strong>by</strong>Lemma6.2,isPj-free.Wepartitionthe j?1m+1=ln?1 j?1m.Nextweproduceaminimum:Pj-<br />

remainingn?jverticesintoasmanycolorclassesofsizej?1aspossible.Thus, wehave(G;:Pj) Inearliertheoremswehavederivedavalueofln?m ln?j j?1m+1=ln?1 j?1m. j?1mforthe:Pj-chromatic 2<br />

numberforgraphsofordernwhosecomplementsconsistofmpairwisevertex<br />

whosecomplementsconsistofmpairwisevertexdisjointcopiesofacomplete disjointcopiesofacompletegraphofaparticularorder.Thefollowingtheorem<br />

graphofaneworder. derivesanewvalueforthe:Pj-chromaticnumber,namelyln?2m j?1m,forgraphs<br />

Theorem6.8LetGbeagraphofordern hE(G)i=mKj+4 2,then(G;:Pj)=maxln?2m j?1m;ln 1.Ifj j+1m. 4iseven,m 0,and<br />

andSi=I1fori=m+1;m+2;:::;n?j+4 Proof.ObservethatG=Wm+n?(j+4 i=1 2)m<br />

coloringofG.SupposethatjAj>j+1.LetB SiwhereSi=Ij+4 2m.LetAbeacolorclassina:Pj- AsuchthatjBj=j+2.Then 2fori=1;2;:::;m<br />

forall3 orhBi=Wki=1Iqiwhere1 eitherhBi=Wki=1Iqiwhereq1=(j+4)=2,and1 q1 (j+2)=2,1 q2 qi(j+2)=2,and1 j=2forall2 iqik(1), verticesfromIq1.If(2),thenformC2 i k(2).If(1),thenformC1BsuchthatjC2j=j<strong>by</strong>removingone BsuchthatjC1j=j<strong>by</strong>removingtwo j=2<br />

88


Also,hC2i=Iq1?1_Iq2?1_Wki=3Iqi,andmaxifqig vertexfromeachofIq1andIq2.Now,hC1i=Iq1?2_Wki=2Iqi,andmaxifqig j2.ByLemma5.1,hC1i j2. andhC2iareHamiltonian.ThiscontradictstheassumptionthathAiisPj-free. SojAj LetAbeacolorclassofsizej+1.WewillshowthatIj+4 j+1and(G;:Pj) ln j+1m.<br />

and1 wayofcontradictionthatIj+4 26hAi.ThenhAi=Wki=1Iqiwhereq1 2 hAi.Suppose<strong>by</strong><br />

onevertexfromIq1.Now,hBi=Iq1?1_Wki=2Iqi,andmaxifqig qi j=2forall2 i k.FormB AsuchthatjBj=j<strong>by</strong>removing j2.ByLemma (j+2)=2,<br />

5.1,hBiisHamiltonian.ThiscontradictstheassumptionthathAiisPj-free.So Ij+4 Ij+2 2LetCbeacolorclassofsizej.ByLemma5.1,eitherhCiisHamiltonianor hAi.<br />

classesofsizejina:Pj-coloringofG.Sinceeachcolorclassofsizej+1must 2Letabethenumberofcolorclassesofsizej+1andbbethenumberofcolor hCi.SincehCiisnotHamiltonian,wemusthavethatIj+2 2 hCi.<br />

containalltheverticesfromSiforsome1 vertexdisjoint,wemusthavea sizejmustcontainj+2 m.Wehavejustshownthateachcolorclassof i m,andsincecolorclassesare<br />

fromsomeSi(1 usetheverticesofSi(1 i2independentvertices,whichismorethanhalfthevertices Sinceacolorclassofsizeatleastjrequiresmorethanhalftheverticesfromsome m)sincej+2 i m)toformtwodierentcolorclassesofsizej. 2>12j+4 2 whenj 2.Thuswecannot<br />

Si(1 inequalityanda Now, i m)andcolorclassesarevertexdisjoint,wegeta+b mimplythat2a+b 2m. m.This<br />

(G;:Pj) &n?a(j+1)?bj j?1 '+a+b=&n?2a?b 89<br />

j?1'&n?2m j?1'


coloring.RecallthatG=Wm+n?(j+4 Hence,(G;:Pj) Toshowtheinequalityintheotherdirection,weproduceaminimum:Pj- maxln j+1m;ln?2m<br />

i=1 2)m j?1m.<br />

Si=I1fori=m+1;m+2;:::;n?j+4 n=j+4 SiwhereSi=Ij+4<br />

2m+s.Weconsidertwocases:j?2 2m.LetS=V(G)?Smi=1V(Si).Now, 2m sand0 2fori=1;2;:::;mand<br />

formacolorclassofsizej+1<strong>by</strong>usingalltheverticesfromSitogetherwithj?2 Ifj?2 2m s,thenn m(j+1)andln?2m j?1m ln j+1m.Foreachi=1;:::;m, s


thosevertices.ToshowhBiisPj-free,wewillrstshowthatjBj jBj=jTj?$n j+1%j?2 2 j.Now,<br />

=s+r(j+1)?mj?2 =s+rj+4 2 ?(m?r)j?2 2 2<br />

j.LetB 2),S=Ij2,andT=K2.LetAbeacolorclassina:Pj-coloring 2?eifandonlyifG=R_(S+T),where<br />

containsuptoj+4 2verticesfromS[Tandatleastj?2 AsuchthatjBj=j+1.Now,B<br />

Letu1;u2;:::;uj2betheverticesofdegreej?2 combinationsofverticesfromthesesets,wegethCi=Ij2+K2_Kj?2 2inhCi,v1;v2betheverticesof 2verticesfromR.Forall 2 hBi.<br />

91


u1w1u2w2:::uj?2 degreej2inhCi,andw1;w2;:::;wj?2 2wj?2 2v1v2formsPj2betheverticesofdegreejinhCi.Now, S[T.Suppose<strong>by</strong>wayofcontradictionthatacolorclassAofsizejcontains Noweachcolorclassofsizejmustcontainstrictlymorethanj+4 hCi,acontradiction.Therefore,jAj 4verticesfrom j.<br />

andtherefore,atleast3j?4 <strong>by</strong>4.Ifjisdivisible<strong>by</strong>4,thenAcontainsatmostj+4 atmostj+4 4verticesfromS[T.Sincejiseven,eitherjorj+2isdivisible<br />

thesesets,wegethDi=Ij+4 4verticesfromR.Forallcombinationsofverticesfrom 4verticesfromS[T<br />

Now,x1y1x2y2:::xj+4 ofdegree3j?4 4inhDiandy1;y2;:::;y3j?4 4_K3j?4 4 4betheverticesofdegreej?1inhDi. hAi.Letx1;x2;:::;xj+4<br />

4yj+4 4yj+8 4yj+12 4:::y3j?4 4formsPj hDi,acontradiction.So 4bethevertices<br />

mustcontainatleast3j?2 thesesets,wegethDi=Ij+2 j+2mustbedivisible<strong>by</strong>4,Acontainsatmostj+2 4verticesfromR.Forallcombinationsofverticesfrom 4verticesfromS[T,andA<br />

Now,x1y1x2y2:::xj+2 ofdegree3j?2 4inhDiandy1;y2;:::;y3j?2 4_K3j?2 4 4betheverticesofdegreej?1inhDi. hAi.Letx1;x2;:::;xj+2<br />

4yj+2 4yj+6 4yj+10 4:::y3j?2 4formsPj hDi,acontradiction. 4bethevertices<br />

fromS[T,whichisstrictlymorethanhalftheverticesinS[T.Therefore,there canbeatmostonecolorclassofsizejand(G;:Pj) Therefore,eachcolorclassofsizejmustcontainstrictlymorethanj+4 ln?j j?1m+1=ln?1 4vertices<br />

hE(G)i=P3.Formonecolorclassofsize2usingthetwononadjacentver- Next,wewillshowtheinequalityintheotherdirection.Ifj=2,then j?1m.<br />

ticesinGandputtheremainingn?2verticesinton?2colorclasses.Therefore, sizej<strong>by</strong>usingalltheverticesinStogetherwithj?4 verticesfromT.Now,hAi=Kj?4 (G;:Pj) n?1.Ifj 4,thencolorGasfollows:formonecolorclassAof<br />

2_Ij2+K2andhAiisaspanningsubgraphof 2verticesfromRandboth<br />

92


So,(G;:Pj)=ln?1 Ij+2 manycolorclassesofsizej?1aspossible.Weget(G;:Pj) 2_Kj?2 2.ByLemma6.2,hAiisPj-free.Withtheremainingvertices,formas<br />

j?1m. ln?j j?1m+1=ln?1 j?1m.<br />

Theorem6.10LetGbeagraphofordern.Ifj 6isevenandhE(G)i= 2<br />

Proof.Assumej K1_(Kj2+K1),then(G;:Pj)=ln?1 6isevenandGisagraphofordernsuchthathE(G)i= j?1m.<br />

T=I1.Letfr1;r2;:::;rn?(j2+2)gbetheverticesofR,fs1;s2;:::;sj2gbethe verticesofdegree1inS,sbethevertexofdegreej2inS,andtbethevertex K1_(Kj2+K1).ThenG=R_(S+T)whereR=Kn?(j2+2),S=K1;j2and<br />

inT.NowH=Kn?(j2+2)_(K2+Ij2) (G;:Pj) Toshowtheinequalityintheotherdirection,colorGasfollows:formone (H;:Pj)=ln?1 j?1m. Gand<strong>by</strong>Theorems6.9and2.4,<br />

colorclassAofsizejwithA=fs1;s2;:::;sj2;s;r1;r2:::;rj?4 Kj?4 6.2,isPj-free.Withtheremainingverticesformasmanycolorclassesofsizej?1 2_(K1;j2+I1),whichisaspanningsubgraphofIj+2 2_Kj?2 2;tg.NowhAi=<br />

aspossible.Withthiscoloring,weget(G;:Pj) ln?1 j?1m. 2and<strong>by</strong>Lemma<br />

Theorem6.11LetGbeagraphofordern.Ifj Kj+2 2+K2,then(G;:Pj)=ln?1 j?1m. 6isevenandhE(G)i=<br />

LetAbeacolorclassina:Pj-coloringofG.SupposethatjAj Proof.Assumej Kj+2 2+K2.ThenG=R_(S_T)whereR=Kn?(j+2 6isevenandGisagraphofordernsuchthathE(G)i=<br />

B AwithjBj=j+1.NowBcontainsuptoj+2 2+2verticesfromS[Tand 2+2),S=Ij+2 2andT=I2. j+1.Let<br />

93


atleastj?4 getC=Kj?4 2verticesfromR.Forallcombinationsofverticesfromthesesets,we<br />

degreej?1inC.Now,y1x1y2x2:::yj?4 inC,y1;y2;:::;yj+2 2_(Ij+2 2betheverticesofdegreej2inC,andz1;z2betheverticesof 2_I2) hBi.Letx1;x2;:::;xj?4<br />

2xj?4 2yj?2 2z1yj2z2yj+2 2betheverticesofdegreej<br />

jAjToformacolorclassofsizej,wemustusealltheverticesinS.ForifA j. 2formsPj C.Hence<br />

containsatmostj2verticesfromS,thenforv2A,wehavedhAi(v) <strong>by</strong>Dirac'sTheorem(Theorem2.7),hAiisHamiltonian,acontradiction.Thus, j2and,<br />

ln?j therecanbeatmostonecolorclassofsizej.Therefore,weget(G;:Pj)<br />

colorclassofsizej<strong>by</strong>usingallj+2 j?1m+1=ln?1 Toshowtheinequalityintheotherdirection,colorGasfollows:formone j?1m.<br />

verticesfromR.NowhAi=Ij+2 theremainingverticesformasmanycolorclassesofsizej?1aspossible.With 2_Kj?2 2verticesfromS,onevertexfromT,andj?4 2,which<strong>by</strong>Lemma6.2,isPj-free.With 2<br />

thiscoloring,weget(G;:Pj) ln?1 j?1m. 2<br />

94


B1.J.Akiyama,H.Era,S.GrevacioandM.Watanabe,Pathchromaticnumbers References<br />

2.M.O.Albertson,R.Jamison,S.T.HedetniemiandS.C.Locke,Thesub- ofgraphs,J.GraphTheory13(5):569{575(1989).<br />

3.J.A.AndrewsandM.S.Jacobson,Onageneralizationofchromaticnumber, chromaticnumberofagraph,Discr.Math.74:33{49(1989).<br />

4.J.A.AndrewsandM.S.Jacobson,Onageneralizationofchromaticnumber Congr.Numer.47:33{48(1985).<br />

5.K.I.AppelandW.Haken,Thesolutionofthefour-color-mapproblem, andtwokindsofRamseynumbers,ArsCombin.23:97{102(1987).<br />

6.P.Baldi,Onageneralizedfamilyofcolorings,GraphsandCombinatorics Freeman,California,1977.<br />

7.L.W.BeinekeandA.T.White,SelectedTopicsinGraphTheory,Academic 6:95{110(1990).<br />

8.L.D.BodinandA.J.Friedman,SchedulingofcommitteesfortheNewYork Press,London,1978.<br />

9.J.A.Bondy,VariationsontheHamiltoniantheme,Can.Math.B.15:57{62 StateAssembly,Technicalreport,StateUniversityofNewYork,1971.<br />

10.J.A.BondyandU.S.R.Murty,GraphTheorywithApplications,Elsevier (1972).<br />

NorthHolland,Inc.,NewYork,1976. 95


11.O.Borodin,Cycliccoloringofplanegraphs,Discr.Math.100:281{289<br />

12.I.BroereandC.M.Mynhardt,Generalizedcoloringsofouterplanarandpla- (1992).<br />

nargraphs,inGraphTheorywithApplicationstoAlgorithmsandComputer13.J.I.BrownandD.G.Corneil,Onuniquely?Gk-colorablegraphs,Quaes-<br />

Science,WileyIntersci.Publ.,NewYork,1985.<br />

14.J.I.BrownandD.G.Corneil,Ongeneralizedgraphcolorings,J.Graph tionesMathematicae15:477{487(1992).<br />

15.G.Chartrand,D.P.GellerandS.T.Hedetniemi,Ageneralizationofthe Theory11:87{99(1987).<br />

16.G.Chartrand,H.V.KronkandC.E.Wall,Thepoint-arboricityofagraph, chromaticnumber,Proc.Camb.Philos.Soc.64:265{271(1968).<br />

17.G.ChartrandandL.Lesniak,GraphsandDigraphs,Wadsworth,Inc.,Cal- Isr.J.Math.6:169{175(1968).<br />

18.R.Cimikowski,Onheuristicsfordeterminingthethicknessofagraph,Inf. ifornia,1986.<br />

19.R.J.Cook,Pointpartitionnumbersandgirth,Proc.Am.Math.Soc. Sciences85(1):87(1995).<br />

20.M.B.CozzensandF.S.Roberts,T-coloringsofgraphsandthechannel 49:510{514(1975).<br />

assignmentproblem,Congr.Numer.35:191{208(1982). 96


21.K.C.DargenandK.Fraughnaugh,Conditionalchromaticnumberswith<br />

22.G.A.Dirac,Sometheoremsonabstractgraphs,Proc.LondonMath.Soc. forbiddencycles,LinearAlgebraitsAppl.217:53{66(1995).<br />

23.G.S.Domke,S.T.Laskar,S.T.HedetniemiandK.Peters,Thepartite- 2:69{81(1952).<br />

24.P.ErdosandT.Gallai,Onmaximalpathsandcircuitsofgraphs,Acta chromaticnumberofagraph,Congr.Numer.53:235{246(1986).<br />

25.R.J.FaudreeandR.H.Schelp,PathRamseynumbersinmulticolorings,J. Math.Acad.Sci.Hungar10:337{356(1959).<br />

26.M.R.GareyandD.S.Johnson,Anapplicationofgraphcoloringtoprinted Comb.Th.B19:150{160(1975).<br />

27.M.R.GareyandD.S.Johnson,ComputersandIntractability,AGuideto circuittesting,IEEETrans.CAS23:591{599(1976).<br />

28.W.K.Hale,Frequencyassignment:theoryandapplications,Proc.IEEE theTheoryofNP-Completeness,W.H.Freeman,NewYork,1979.<br />

29.F.Harary,GraphTheory,Addison-Wesley,1969. 68:1497{1514(1980).<br />

30.F.Harary,Conditionalcolorabilityingraphs,inGraphsandApplications, Proc.FirstColo.Symp.GraphTheory(F.HararyandJ.Maybee,eds.), WileyIntersci.Publ.,NewYork,1985.<br />

97


31.F.HararyandK.Fraughnaugh(Jones),ConditionalcolorabilityII:bipartite<br />

32.F.HararyandK.Fraughnaugh(Jones),Degreeconditionalbipartitionnum- variations,Congr.Numer.50:205{218(1985).<br />

33.F.HararyandL.Hsu,Conditionalchromaticnumberandgraphoperations, bersingraphs,Congr.Numer.55:39{50(1986).<br />

34.F.HararyandP.C.Kainen,Ontriangularcoloringsofaplanargraph,Bull. Bull.Inst.Math.Acad.Sinica19(2):125{134(1991).<br />

35.S.T.Hedetniemi,Onpartitioningplanargraphs,Can.Math.B.11(2):203- CalcuttaMathSoc.69:393{395(1977).<br />

36.S.T.Hedetniemi,Disconnectedcoloringsofgraphs,inCombinatorialStruc- 211(1968).<br />

turesandTheirApplications,Proc.CalgaryInternat.Conf.(R.Guy,ed.),<br />

37.J.P.Hutchinson,Coloringordinarymaps,mapsofempires,andmapsof GordonandBreach,NewYork,1970.<br />

38.G.JohnsandF.Saba,Onthepath-chromaticnumberofagraph,inGraph themoon,Math.Mag.66(4):211{225(1993).<br />

1986. TheoryanditsApplications:EastandWest(M.F.Capobianco,ed.),Jinan,<br />

39.F.KramerandH.Kramer,Einfarbungsproblemderknotenpunkteeines graphenbezuglichderdistanzp,Rev.RoumaineMath.PuresAppl.14(2):1031{ 1038(1969). 98


40.L.Lesniak-FosterandJ.Straight,Thecochromaticnumberofagraph,Ars<br />

41.D.R.LickandA.R.White,k-degenerategraphs,Can.J.Math.22(5):1082{ Combin.3:39{45(1977).<br />

42.C.MynhardtandI.Broere,Generalizedcoloringsofgraphs,inGraphTheory 1096(1970).<br />

withApplicationstoAlgorithmsandComputerScience(Y.Alavi,ed.),Wiley<br />

43.R.J.OpsutandF.S.Roberts,Ontheeetmaintenance,mobileradio Intersci.Publ.,NewYork,1985.<br />

frequency,taskassignment,andtracphasingproblems,inTheTheory York,1981. andApplicationsofGraphs(G.Chartrand,ed.),WileyIntersci.Publ.,New<br />

44.O.Ore,NoteonHamiltoniangraphs,Am.Math.Mo.67:55(1960). 45.O.Ore,Arccoveringsofgraphs,Ann.Mat.Pura.Appl.55:315{321(1961). 46.R.J.Pennotti,ChannelAssignmentinMobileCommunicationSystems,<br />

47.F.S.Roberts,AppliedCombinatorics,PrenticeHall,1984. PhDThesis,PolytechnicInstituteofNewYork,1976.<br />

48.H.SachsandM.Schauble,KonstructionvonGraphenmitgewissenfarbungseigenschafte,inBeitragezurgraphentheorie,(Kolloquium,Maneback,1967)(H. 49.E.Sampathkumar,Generalizationsofindependenceandchromaticnumbers Sachs,H.VossandH.Walter,eds.)Teubner,Leipzig,1968.<br />

ofagraph,Discr.Math.115:245{251(1993). 99


50.E.Sampathkumar,S.Prabha,S.NeeralagiandV.Venkatachalam,AgennatakUniv.Sci.22:44{49(1977).eralizationofthechromaticandlinechromaticnumbersofagraph,J.Kar 51.D.B.West,IntroductiontoGraphTheory,PrenticeHall,NewJersey,1996.<br />

100

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!