20.07.2013 Views

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ga<strong>in</strong> Compensation<br />

7-12<br />

VOUT <br />

VIN a<br />

1 aZ G<br />

Z G Z F<br />

When a ⇒ ∞ Equation 7–9 reduces to Equation 7–<strong>10</strong>.<br />

VOUT VIN Z F Z G<br />

Z G<br />

(7–9)<br />

(7–<strong>10</strong>)<br />

As long as <strong>the</strong> op amp has enough compliance and current to drive <strong>the</strong> capacitive load,<br />

and Z O is small, <strong>the</strong> circuit functions as though <strong>the</strong> capacitor was not <strong>the</strong>re. When <strong>the</strong> capacitor<br />

becomes large enough, its pole <strong>in</strong>teracts with <strong>the</strong> op amp pole caus<strong>in</strong>g <strong>in</strong>stability.<br />

When <strong>the</strong> capacitor is huge, it completely kills <strong>the</strong> op amp’s bandwidth, thus lower<strong>in</strong>g <strong>the</strong><br />

noise while reta<strong>in</strong><strong>in</strong>g a large low-frequency ga<strong>in</strong>.<br />

7.5 Ga<strong>in</strong> Compensation<br />

When <strong>the</strong> closed-loop ga<strong>in</strong> of an op amp circuit is related to <strong>the</strong> loop ga<strong>in</strong>, as it is <strong>in</strong> voltagefeedback<br />

op amps, <strong>the</strong> closed-loop ga<strong>in</strong> can be used to stabilize <strong>the</strong> circuit. This type of<br />

compensation can not be used <strong>in</strong> current-feedback op amps because <strong>the</strong> ma<strong>the</strong>matical<br />

relationship between <strong>the</strong> loop ga<strong>in</strong> and ideal closed-loop ga<strong>in</strong> does not exist. <strong>The</strong> loop<br />

ga<strong>in</strong> equation is repeated as Equation 7–11. Notice that <strong>the</strong> closed-loop ga<strong>in</strong> parameters<br />

Z G and Z F are conta<strong>in</strong>ed <strong>in</strong> Equation 7–11, hence <strong>the</strong> stability can be controlled by manipulat<strong>in</strong>g<br />

<strong>the</strong> closed-loop ga<strong>in</strong> parameters.<br />

A aZ G<br />

Z G Z F<br />

(7–11)<br />

<strong>The</strong> orig<strong>in</strong>al loop ga<strong>in</strong> curve for a closed-loop ga<strong>in</strong> of one is shown <strong>in</strong> Figure 7–12, and<br />

it is or comes very close to be<strong>in</strong>g unstable. If <strong>the</strong> closed-loop non<strong>in</strong>vert<strong>in</strong>g ga<strong>in</strong> is changed<br />

to 9, <strong>the</strong>n K changes from K/2 to K/<strong>10</strong>. <strong>The</strong> loop ga<strong>in</strong> <strong>in</strong>tercept on <strong>the</strong> Bode plot (Figure<br />

7–12) moves down 14 dB, and <strong>the</strong> circuit is stabilized.<br />

20 Log<br />

KZG<br />

ZF + ZG<br />

dB<br />

20 Log K<br />

2<br />

20 Log<br />

Figure 7–12. Ga<strong>in</strong> Compensation<br />

K<br />

<strong>10</strong><br />

0dB<br />

–14 dB<br />

Compensated<br />

Loop Ga<strong>in</strong> Curve<br />

1/τ1<br />

Loop Ga<strong>in</strong> Curve<br />

1/τ2<br />

Log(f)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!