20.07.2013 Views

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Block Diagram Math and Manipulations<br />

5-2<br />

<strong>The</strong> <strong>in</strong>put impedance of each block is assumed to be <strong>in</strong>f<strong>in</strong>ite to preclude load<strong>in</strong>g. Also,<br />

<strong>the</strong> output impedance of each block is assumed to be zero to enable high fan-out. <strong>The</strong><br />

systems designer sets <strong>the</strong> actual impedance levels, but <strong>the</strong> fan-out assumption is valid<br />

because <strong>the</strong> block designers adhere to <strong>the</strong> system designer’s specifications. All blocks<br />

multiply <strong>the</strong> <strong>in</strong>put times <strong>the</strong> block quantity (see Figure 5–1) unless o<strong>the</strong>rwise specified<br />

with<strong>in</strong> <strong>the</strong> block. <strong>The</strong> quantity with<strong>in</strong> <strong>the</strong> block can be a constant as shown <strong>in</strong> Figure<br />

5–1(c), or it can be a complex math function <strong>in</strong>volv<strong>in</strong>g Laplace transforms. <strong>The</strong> blocks can<br />

perform time-based operations such as differentiation and <strong>in</strong>tegration.<br />

Figure 5–1. Def<strong>in</strong>ition of Blocks<br />

INPUT<br />

A<br />

VI<br />

VO<br />

(a) Input/Output Impedance<br />

Block<br />

Description<br />

(b) Signal Flow Arrows<br />

OUTPUT<br />

A K B B = AK<br />

(c) Block Multiplication<br />

d<br />

dt<br />

(d) Blocks Perform Functions as Indicated<br />

B<br />

VO = dVI<br />

dt<br />

Add<strong>in</strong>g and subtract<strong>in</strong>g are done <strong>in</strong> special blocks called summ<strong>in</strong>g po<strong>in</strong>ts. Figure 5–2<br />

gives several examples of summ<strong>in</strong>g po<strong>in</strong>ts. Summ<strong>in</strong>g po<strong>in</strong>ts can have unlimited <strong>in</strong>puts,<br />

can add or subtract, and can have mixed signs yield<strong>in</strong>g addition and subtraction with<strong>in</strong><br />

a s<strong>in</strong>gle summ<strong>in</strong>g po<strong>in</strong>t. Figure 5–3 def<strong>in</strong>es <strong>the</strong> terms <strong>in</strong> a typical control system, and Figure<br />

5–4 def<strong>in</strong>es <strong>the</strong> terms <strong>in</strong> a typical electronic feedback system. Multiloop feedback systems<br />

(Figure 5–5) are <strong>in</strong>timidat<strong>in</strong>g, but <strong>the</strong>y can be reduced to a s<strong>in</strong>gle loop feedback system,<br />

as shown <strong>in</strong> <strong>the</strong> figure, by writ<strong>in</strong>g equations and solv<strong>in</strong>g for V OUT/V IN. An easier method<br />

for reduc<strong>in</strong>g multiloop feedback systems to s<strong>in</strong>gle loop feedback systems is to follow<br />

<strong>the</strong> rules and use <strong>the</strong> transforms given <strong>in</strong> Figure 5–6.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!