20.07.2013 Views

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

"Chapter 1 - The Op Amp's Place in the World" - HTL Wien 10

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Design<strong>in</strong>g Low-Voltage <strong>Op</strong> Amp Circuits<br />

Dynamic Range<br />

<strong>The</strong> trick to design<strong>in</strong>g s<strong>in</strong>gle supply op amp circuits is us<strong>in</strong>g external bias<strong>in</strong>g to strip off<br />

or null out <strong>the</strong> reference voltage. Design<strong>in</strong>g op amp circuits with bias<strong>in</strong>g normally <strong>in</strong>volves<br />

an iterative cut and try approach where <strong>the</strong> designer assumes a circuit configuration,<br />

solves equations, changes <strong>the</strong> configuration, and repeats <strong>the</strong> process until a solution is<br />

found. A technique that solves <strong>the</strong> problem <strong>the</strong> first time is presented later.<br />

18.2 Dynamic Range<br />

It is extremely hard to def<strong>in</strong>e dynamic range (DR) for an op amp, so lets start with a digitalto-analog<br />

converter (DAC) where DR is def<strong>in</strong>ed as <strong>the</strong> ratio of <strong>the</strong> maximum output voltage<br />

to <strong>the</strong> smallest output voltage <strong>the</strong> DAC can produce (least significant bit or LSB). Dynamic<br />

range is usually expressed <strong>in</strong> dB us<strong>in</strong>g <strong>the</strong> formula given <strong>in</strong> Equation 18–1.<br />

DR 20 Log (18–1)<br />

<strong>10</strong>VOUT(MAX) VOUT(MIN) <strong>The</strong> same def<strong>in</strong>ition of DR can be used for an op amp, and <strong>the</strong> maximum output voltage<br />

sw<strong>in</strong>g equals V OUTMAX. This output voltage sw<strong>in</strong>g is def<strong>in</strong>ed as <strong>the</strong> maximum output voltage<br />

<strong>the</strong> op amp can achieve (V OH) m<strong>in</strong>us <strong>the</strong> m<strong>in</strong>imum output voltage <strong>the</strong> op amp can<br />

achieve (V OL). V OH and V OL are easily obta<strong>in</strong>able from an op amp IC data sheet. Normally,<br />

V OH and V OL are guaranteed m<strong>in</strong>imum and maximum parameters respectively. This<br />

yields Equation 18–2.<br />

V OUT(MAX) V OH(MIN) V OL(MAX)<br />

(18–2)<br />

Equation 18–2 can be used to illustrate <strong>the</strong> role that power supply voltage plays <strong>in</strong> limit<strong>in</strong>g<br />

<strong>the</strong> DR. V OH(MIN) is <strong>the</strong> most positive power supply voltage m<strong>in</strong>us <strong>the</strong> voltage drop across<br />

<strong>the</strong> upper output transistor, thus V OH(MIN) is directly proportional to <strong>the</strong> most positive power<br />

supply voltage. For any op amp, <strong>the</strong> output voltage sw<strong>in</strong>g is directly proportional to <strong>the</strong><br />

power supply voltage, thus, <strong>in</strong> <strong>the</strong> same op amp, <strong>the</strong> DR is directly proportional to <strong>the</strong> power<br />

supply voltage.<br />

At first thought, one might th<strong>in</strong>k that <strong>the</strong> smallest output voltage that an op amp can have<br />

is zero, and <strong>the</strong> natural conclusion based on this assumption is that <strong>the</strong> DR is equal to<br />

<strong>in</strong>f<strong>in</strong>ity. This is never <strong>the</strong> case because op amp and external circuit imperfections ensure<br />

that <strong>the</strong> smallest op amp output voltage is greater than zero. It turns out that V OUT(MIN)<br />

is actually determ<strong>in</strong>ed by a series of error terms. <strong>The</strong>se error terms are <strong>the</strong> op amp’s <strong>in</strong>ternal<br />

noise (V n and I n), external resistor noise (V nR), power supply rejection ratio (k SVR),<br />

voltage offset (V IO), current offset (I IO), common-mode rejection ratio (CMRR), and<br />

closed loop ga<strong>in</strong> (G). Each of <strong>the</strong>se error terms is referred to <strong>the</strong> <strong>in</strong>put of <strong>the</strong> op amp, so<br />

<strong>the</strong>y must be multiplied by <strong>the</strong> closed loop ga<strong>in</strong> to be referred to <strong>the</strong> output (see Figure<br />

18–1).<br />

18-3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!